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By Kristin Sainani, PhD

It’s easy to make mistakes 
in computational models... 

and hard to catch them.
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In 2006, a paper in Nature Medicine
suggested a novel and poten-

tially revolutionary method for predict-
ing patient responses to cancer thera-
pies using gene signatures. The finding
piqued the interest of oncologists at
The University of Texas MD Anderson
Cancer Center, who sought help from
two statisticians, Keith A. Baggerly,
PhD, and Kevin Coombes, PhD, to
recreate the approach. 

Baggerly and Coombes, both profes-
sors of bioinformatics and computa-
tional biology, unexpectedly uncovered
multiple errors with the data: off-by-
one indexing errors, label reversals,
inconsistencies, and duplications. The
consequence: the original results were
not reproducible and the approach was
ultimately discredited. 

The story received unusual public
attention (more details follow). But it is
by no means an isolated case. Errors in
biomedical computing are surprisingly
common. Strictly speaking, every bio-
medical model contains error in the
sense that it is an imperfect representa-
tion of the truth. But more troubling are
the errors that are avoidable—such as
misadventures in Excel, glitches in the
software, bad assumptions, and typos. As
datasets and models become increasingly
complex, errors of this type become both
harder to avoid and harder to detect. 

“When you’ve got a complicated
model with a bunch of stuff in it, it’s
hard to tell when it’s wrong,” says
James Bassingthwaighte, MD, PhD,
professor of bioengineering at the
University of Washington. The point
of a complex model is to predict behav-
ior beyond the limits of intuition; but,
in this realm, our intuition for
spotting errors also becomes
unreliable. 

Plus, the current publication
system wasn’t designed to catch
errors buried within high-
dimensional data or intricate
models. Reviewers and editors
rarely have direct access to
datasets or code; and when they
do, they don’t have time to
check every step of the authors’
analyses. “There’s no way that
your typical reviewer can catch
some of these problems, unless
the journal editor is willing to
give you a year and a half to
review a paper,” Baggerly says.
Furthermore, some reviewers
may lack an understanding of

were riddled with bookkeeping errors.
For example, in one instance, the
authors accidentally shifted data cells
in Excel, causing all the gene labels to
be off by one; and, in another instance,
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the biology while others lack an under-
standing of the computation. Thus, it’s
inevitable that errors—both inconse-
quential and serious—will slip through.

Errors are a touchy and uncomfort-
able subject. Many researchers avoid the
topic for fear of stirring up controversy,
making enemies, or casting a shadow of
doubt over the field. But keeping silent
threatens both the integrity and long-
term credibility of biomedical comput-
ing. Thus, the best way to address errors
is head-on, with the attitude that errors
are opportunities for learning rather
than for embarrassment. This article
reviews examples where researchers
have boldly identified errors—in the
data, software, methodology, or paper—
as well as the lessons that can be gleaned
from these errors.

Errors In the Data
The first opportunity to introduce

error is within the data—either in
datasets that will be fed into statistical
models; or in parameter values or bio-
chemical structures that will be fed
into simulations. 

Baggerly and Coombes’ investiga-
tion is a case in point of errors in high-
throughput data. The Nature Medicine
paper claimed that gene signatures
built using publicly available cancer
cell lines could predict patient respons-
es to specific chemotherapy drugs. It
was a striking claim—and was named
one of the “Top 6 Genetics Stories of
2006” by Discover magazine.

But after months of work, including
multiple rounds of emailing with the
authors from Duke University, Baggerly
and Coombes concluded that the data

Disappearing Act. Potti and Nevins identified cell
lines that were sensitive and resistant to the
chemotherapy drug 5-fluorouracil (5-FU). Panel 1
shows expression levels of 45 genes (y-axis) that best
separate these two groups (cell lines are on the x-axis).
Baggerly and Coombes were able to generate the
identical heatmap (panel 2). However, the list of 45
genes that Potti and Nevins said were present in the
signature—which they claimed made biological
sense—was completely wrong, due to an off-by-one
indexing error. When Baggerly and Coombes produced
the expression profile for these biologically plausible
genes, there was no separation between resistant and
sensitive cells (panel 3). Panel 1 reproduced by permis-
sion from Macmillan Publishers Ltd from Figure 2a in
Potti A et al. Genomic signatures to guide the use of
chemotherapeutics. Nature Medicine 2006; 12: 1294-
1300.  Panels 2 and 3 courtesy of: Keith Baggerly, MD
Anderson Cancer Center. 
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data errors are “far from uncommon,”
he says. In 2002, Coombes’ team won
the Competitive Analysis of Microarray
Data (CAMDA) contest because they
were the only team to discover and fix a
major (and unintentional) screw up in
the competition data. A one-cell dele-
tion in Excel followed by an inappropri-
ate shifting of values scrambled the
annotations for about half the samples.
Baggerly says he has also caught such
errors in work at MD Anderson. 

As a result, he and others at MD
Anderson have implemented proce-
dures to systematically avoid or catch
this type of error. For example, they
require reports to be written in Sweave,
a function within the statistical pro-
gramming language R which integrates
code and data with a written report
that is automatically updated whenever
code or data change, and can easily be
rerun and checked. 

Baggerly and Coombes have also
become champions of the “reproducible
research” cause. “There are quite a few
things in the literature where we look
and, quite honestly, we can’t tell if there’s
a mistake. And we can’t tell because
there’s not enough detail for us to
check,” Baggerly says. Complex analyses
involve so many tiny decision points
that without a complete record, it is
painstaking to retrace the authors’ steps.
Baggerly and Coombes spent about 1500
hours recreating Potti and Nevins’ analy-
ses. In their own papers, Baggerly and
Coombes provide supplements contain-
ing detailed transcripts of their analyses. 

Data errors can also occur in simula-
tions. Though modelers don’t have to
worry about the integrity of data spread-
sheets, they do have to worry about the
parameter values that populate their
models. They typically cull these num-
bers from the literature. But rather than
citing the original source of the data,
they cite the most recent use. For exam-
ple, Smith et al. measure a rate constant
in guinea pig cells; Jones et al. use this
number in their simulation; the next
team cites Jones et al. as the source of
the parameter rather than Smith et al.;
and the chain continues, much like the
children’s game of “telephone”—where
a phrase whispered from child to child
becomes distorted and comical. 

“It’s amazing how often this hap-
pens,” says Daniel A. Beard, PhD, pro-
fessor of physiology at the Medical
College of Wisconsin. “This is the rule
and not the exception.” 

the authors reversed the labeling of
drug-sensitive and drug-resistant cells.
Once these errors were corrected, the
impressive predictions disappeared.

Baggerly and Coombes reported their
findings in a 2007 letter to the editor of
Nature Medicine. 

Meanwhile, the Duke team, led by
Anil Potti and Joseph Nevins, contin-
ued to publish similar results for differ-
ent drugs and cancers—all with fatal
errors. Baggerly and Coombes continued
to follow the case, occasionally writing

letters to the editors (several of which
were rejected). Then, in 2009, they
learned that multiple clinical trials of
the approach were underway at Duke.  

“At which point, we’re
going: ‘They’re using stuff that’s
this screwed up to choose what
treatment patients get?’ This is
bad,” Baggerly says. “So that’s
pretty much when we started
shifting it from a mild stink to a
loud stink.” They published a
detailed paper laying out their
criticisms in the Annals of

Applied Statistics. (They initial-
ly sent a draft to the editor of a
prominent biological journal,
but were told that the story was
“too negative,” Baggerly says.)
Their criticisms still didn’t
gain traction, however—Duke
suspended clinical trials in
October of 2009, only to restart
them a few months later.  

The turning point finally
came in July of 2010. The Cancer
Letter (a publication known for
controversy) revealed that Potti
had lied on his resume, includ-
ing about being a Rhodes
Scholar. This sensational reve-
lation finally thrust the case
into the limelight and incited
action on several fronts. The

clinical trials were permanently halted;
several papers were retracted (includ-
ing the one in Nature Medicine); and
Potti resigned from Duke. 

“It took us over three years to get
some of the problems paid attention to.
During that time, about 110 patients
were treated,” Baggerly reflects. 

Unfortunately, these types of simple
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Oops! Mixed-up Labels. Potti and Nevins claimed that the
signatures they derived from cell lines could predict patient
responses to the chemotherapy agent docetaxel. They used
clinical data on women with breast cancer published previous-
ly in the Lancet (Chang et al.). However, when Baggerly and
Coombes retrieved the original paper, they noticed that Chang
et al. (top panel) had 11 docetaxel-sensitive cases (blue) and 13
docetaxel-resistant cases (red). But Potti and Nevins (lower
panel) claimed to have data on 13 sensitive cases (blue
squares) and 11 resistant case (red triangles). Potti and Nevins
had gotten the labels reversed. Thus, if their signatures were
predictive, they would be giving docetaxel to the women most
likely to be resistant. Top panel  reproduced from: Figure 2a
from: Chang JC et al. Gene expression profiling for the predic-
tion of therapeutic response to docetaxel in patients with
breast cancer. Lancet 2003; 362:362-9. Lower panel reproduced
by permission from Macmillan Publishers Ltd from Figure 1d in
Potti A et al. Genomic signatures to guide the use of
chemotherapeutics. Nature Medicine 2006; 12: 1294-1300. 
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Thus, researchers unwittingly use
parameter values that are decades old,
from the wrong species, or from inappro-
priate experimental conditions. They
may even propagate explicit errors,
Bassingthwaighte notes. “For example,
there was one model that introduced a
rate constant for hexokinase that was
wrong. It went through about eight gen-

erations of models continually wrong.”
A 2007 paper in the Journal of

Experimental Biology formally explored
this phenomenon. Authored by
Nicolas Smith, PhD, professor of bio-
medical engineering at Kings College
London, his then graduate student
Steven Niederer, and Beard and
Bassingthwaighte, the paper showed
how a parameter for calcium binding
affinity from 1974 worked its way
through five generations of models, re-

appearing (with increasingly recent
citations) in models in the 1980s,
1990s, and 2000s. 

In a 2009 paper in Experimental
Physiology, Smith and Niederer traced
back the entire genealogical history of
two state-of-the art models of human
heart cells. The model parameters turned
out to be decades old and derived from a

host of different animals and tempera-
tures. “This is fundamental; almost any
physiologist would tell you that the dif-
ferences in function between species and
temperatures are profound,” Smith says.
And the problem is widespread. “We
could pretty much have gone through
every existing cardiac model and I assure
you that for 90 percent of them we would
have found the same thing.”

Despite the significance, it was diffi-
cult to get the paper published, Smith

says. “Parameter sensitivity is the kind
of thing nobody wants to talk about.”
But, he says, the paper has prompted
discussions at recent meetings and sug-
gested some easy fixes going forward.
For example, authors should include a
supplemental table that gives each
parameter’s original citation and details
about how the parameter value was

derived. They can also use sen-
sitivity analyses—which show
how sensitive the model is to
changes in particular parame-
ters—to gauge the potential
impact of uncertain values. In
the future, markup languages
like CellML and SBML may
make it easier to directly link
model parameters with experi-
mental data held within dedi-
cated databases, he adds.

For molecular dynamics simulations,
errors may also occur in the structural
data. For example, these structures may
have subtle stereo-chemical errors,
such as incorrect chirality, where the
shape used is a mirror image of the real
shape, says Eduard Schreiner, PhD, a
postdoc at the University of Illinois at
Urbana-Champaign. “If you feed that
into a simulation, the error will persist
because the force field also supports
this form.” This can dramatically

Citation Tree. The binding affinity of calci-
um to calsequestrin was measured in a 1974
experimental study. This parameter value
was then propagated, with increasingly
recent citations, through five generations of
heart cell models. Reprinted with permis-
sion from Figure 4B from: Smith NP et al.,
Computational biology of cardiac myocytes:
proposed standards for the physiome, J Exp
Biol. May;210(Pt 9):1576-83 (2007).

Stereochemical Errors. This fig-
ure shows the impact of two dif-
ferent stereochemical errors on a
molecular dynamics simulation
involving an α-helix. (A) shows a
stereochemically correct helix; (B)
shows a helix with a chirality
error; and (C) shows a helix with
an erroneous cis bond. The stereo-
chemical errors introduce incorrect
turns and coils into the helix.
Figure 3 from: Schreiner et al.,
Stereochemical errors and their
implications for molecular dynam-
ics simulations, BMC Bioinformatics
12:190:1471-2105 (2011). 
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different models—combinations of four
force fields and four water models—to
simulate the same crystal lattice. “In
some of them, the crystallographic lat-
tice totally melted, which is really
unfortunate because we know this
should not be happening,” he says.
AMBER did the best job of maintain-
ing the integrity of the lattice; and
CHARMM also did well with certain
corrections, he found. 

Errors in the
Methodology

The specific steps that people take
to analyze data or build models provide
abundant opportunities for errors, due
to the many assumptions, subtleties,
and choices involved.    

Misuse of statistics in the medical lit-
erature is a well-known problem. For
example, some researchers have recent-
ly called into question the statistics used
in a series of high-profile papers that
claim to show that traits such as obesi-
ty, happiness, loneliness, and divorce
can spread “contagiously” through
social networks. In a 2007 paper in the
New England Journal of Medicine, the
authors showed that (not surprisingly)

impact the results, for example causing
helices to kink or unwind when they
shouldn’t, he showed in a 2011 paper in
BMC Bioinformatics. 

“I think these errors are more com-
mon than one thinks,” Schreiner says.
“It’s just people don’t think about it
and they don’t check.” His team has
written open source software to identi-
fy and fix stereo-chemical errors before
and during simulations. 

Errors In 
the Software

Widely used—and well-trusted—
software packages may contain bugs or
inherent limitations. This can lead to
widespread errors within a community,
especially when users are unaware of
the technical details of their tools.  

For example, a problem in the statis-
tical package S-Plus led to statistical
errors in 37 papers on air pollution and
health. Several groups of researchers
used a particular statistical model to test
the association between daily changes
in air pollution and morbidity and mor-
tality. However, the defaults in S-Plus
were not set correctly for this type of
data. When the data were re-analyzed
correctly for a 2003 EPA report, the
links between air pollution and morbid-
ity/mortality were greatly diminished
(by nearly 50 percent overall). This led
to changes in the default parameters in
S-Plus and prompted EPA officials to
warn that “widespread use does not
guarantee that a software or algorithm
has no drawbacks.” 

The molecular dynamics community
is often heralded as a paradigm of excel-
lence for building and disseminating
standardized software tools and force
fields (the energy functions used for
molecular dynamics simulations), such
as AMBER, CHARMM, and GRO-
MACS. However, even these tools
have imperfections. 

For example, a 2008 paper in
the Journal of Chemical Theory and

Computation identified a bug in AMBER
and GROMACS. Unless the user spec-
ified otherwise, these programs always
used the same seed in their random
number generators, causing streams of
“random” numbers to repeat. This can
create artificial patterns. “If you run a
bunch of simulations with the same
seed, you can actually see periodic
behavior emerging in the system
[where there may actually be none],”
says study co-author Peter Freddolino,
PhD, a postdoc in the Lewis-Sigler
Institute for Integrative Genomics at
Princeton University. Though the error
has been corrected in both programs,
many published simulations may have
been affected and “it shows how sensi-
tive these simulations can be,” he says.  

The force fields have inherent limi-
tations as well. For example, certain
force fields work better in certain situa-
tions. “From my personal experience,
the CHARMM force field is good for
proteins but bad for nucleic acids,”
Schreiner says. CHARMM tends to
make RNA too floppy, he says. 

“These models all have different
propensities,” Freddolino agrees. For
example, in a 2010 paper, he used 16
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Melting Lattice. Different force fields give different
results for simulations of the same crystal lattice. The
top cartoon depicts two interacting monomers after
simulation with a “good” force field for this applica-
tion; the simulated structures line-up nicely with the
original structure (pictured as a transparent outline).
The bottom cartoon depicts the same two monomers
after simulation with a “bad” force field for this
application; the simulated structures line up poorly
with the original structure. Courtesy of: Peter
Freddolino, Princeton University.
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participants in a large community study
who became obese were more likely to
have friends and relatives who became
obese. More interestingly, they used sta-
tistical models to (purportedly) show
that this clustering wasn’t just due to
shared environment, shared genes, or
self-selection (the tendency for similar
people to seek each other out). 

But their statistical arguments and
models contain fatal flaws, says Russell
Lyons, PhD, professor of mathematics
at Indiana University. The models aren’t
appropriate and actually contradict their
conclusions, Lyons says. Even if the
models had been sound, they wouldn’t
adequately account for shared environ-
ment and selection, Lyons and others
have argued. For example, other
researchers used similar models to show
that acne, height, and headaches are
“contagious” among teenagers.  

“No one is arguing that people don’t
influence other people. Everyone agrees
that it could be. But the issue is whether
they’ve actually added any knowledge,”
Lyons says. “And they haven’t.” 

Lyons had difficulty publishing his cri-
tique. The New England Journal of
Medicine rejected his paper without
explanation. “Clearly they just weren’t
interested,” Lyons says. “But they should
have been.” The paper was published in a
relatively new and obscure journal called
Statistics, Politics, and Policy in 2011. 

The example points to broader
issues with publication, peer review,
and statistical training, Lyons says. For
example, the authors of the contagion
papers did not adequately write out
their models, making it difficult for
others to check them. Authors need to
make their code and data available, he
says. Also, biomedical researchers need
better training in statistics and compu-
tation, so that errors don’t slip through
peer review, he says. 

Peer review does have problems,
agrees Richard Simon, D.Sc., chief of
the Biometric Research Branch of the
Division of Cancer Treatment and
Diagnosis at the National Cancer
Institute. “You see papers that are just
really wrong, and you wonder how did
these things ever get published?”
Simon says. The problem is that jour-
nal editors don’t always know enough
to select the right reviewers, he says. 

In a 2007 review of 42 microarray
studies for cancer prognosis (many pub-
lished in high-impact journals), Simon’s
team found that half had basic statistical

flaws in the analysis. For example, sever-
al papers had incorrectly implemented a
statistical technique called cross-valida-
tion. With high-dimensional data, it’s
easy to spot patterns that are actually
just random noise. Therefore, it’s essen-
tial that the data used to fit the model
(“training” data) differ from those used
to evaluate the model (“test” data). In
cross-validation, researchers divide their
data into temporary training and test
sets and then fit and test the model.
They repeat this process many times and
then calculate the average model fit
over all iterations.

The problem is that people often

implement this wrong, Simon says.
Rather than redoing their gene selection
during each loop of training/test parti-
tion, they do this selection only once
and then “cross-validate” how much
weight each gene is given in the signa-
ture as opposed to which genes belong
in the signature. “It’s not intuitive that it
would make that big of a difference, but
it makes an enormous difference,”
Simon says. And it wasn’t just novices
who got this wrong—those who had the
most computationally intensive and
fancy algorithms were actually more
likely to make this error, probably

because they wanted to avoid rerunning
the algorithm each time, Simon says. 

Since their paper was published,
people have slowly begun to catch onto
this error, Simon says. But they still
make other mistakes. For example, even
when authors validate or cross-validate
their results correctly, they still publish
the “resubstitution” statistics—statistics
garnered from fitting and testing the
model on exactly the same data. “The
biased results are so impressive, even
though they are so biased, that they
want to give them,” he says. In a simu-
lation, his team showed that gene sig-
natures culled from completely random

data always appear to have impressive
prognostic ability when the resubstitu-
tion statistics are used.

These errors negatively impact the
credibility of genomics, because highly
publicized findings turn out to be much
less exciting than initially pronounced.
“A lot of the population gets turned off
to all of genomics. They think it’s all
garbage, which it’s not,” he says. 

Modeling studies are similarly
fraught with opportunities for errors and
shaky assumptions. Molecular dynamics
simulations start with a “horrendous set
of assumptions,” Freddolino says. For

Statistical Fallacy. In the social contagion papers, the authors claim to have found a directional
effect: a friend increases your risk of obesity (or smoking, happiness, or loneliness) the most when
the friendship is mutual (top); less when you name him/her as a friend but not vice versa (mid-
dle); and the least when he/she names you as a friend but not vice versa (bottom). The authors
argue that this is evidence of transmission rather than shared environment. However, the differ-
ences in effects between the three types of friendships are not statistically significant, as can be
seen from the overlapping confidence intervals. FP=focal participant; LP=linked participant. Figure
1 from: Lyons, Russell (2011) “The Spread of Evidence-Poor Medicine via Flawed Social-Network
Analysis,” Statistics, Politics, and Policy: Vol. 2: Iss. 1, Article 2.
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develop infrastructure and standards,
he says. “I bet there are many errors
that we don’t even know about.” 

For example, Smith’s team invited 20
international teams to simulate electrical
signaling in a simple cube of heart tissue
(with known behavior). Of the 12 teams
who eventually contributed a solution,
three of them “got horribly different
results” initially. They were able to use
the fact that they got different results to
figure out what was wrong and fix their

example, researchers simulate molecules
in a small box of salt water, and allow
the box to interact with itself on all sides
to avoid boundary effects. This creates
an artificial spatial periodicity, and may
lead compact structures to be over-stabi-
lized if the box is too small, he says. “So,
you need to think very carefully about
all of the decisions that you make when
you are setting up your system.” It’s also
important to be upfront with readers,
especially experimentalists, about the
assumptions and potential pitfalls of the
model, Freddolino says. “The really
impressive part, in some ways, is that
molecular dynamics gets so much right
despite all these assumptions,” he adds.

Errors can also be introduced in the
algorithms used to run simulations.
Researchers commonly divide space or
time into discrete chunks to make simu-
lations computationally tractable—but
making these chunks too big can cause
the model to be imprecise and unstable.
For example, in biomechanical simula-
tions, researchers divide objects into a
grid, or “mesh,” of repeated polygons
(e.g., squares, triangles, or cubes). With
many published papers, one can tell
with a “quick look” that “there’s no way
that the mesh was adequate for the
problem,” says Jeffrey A. Weiss, PhD,
associate professor of bioengineering at
the University of Utah. Analysts should
perform mesh convergence studies—
where they progressively decrease the
size of the mesh until the results change
by only a negligible amount, Weiss says.

Similarly, with molecular dynamics
simulations, researchers break the sim-
ulation into discrete time steps. The
standard is to make these time steps
two femtoseconds, Schreiner says. “But
one finds simulations where people go
to even larger time steps. The force
fields were never designed for that.” 

Another issue for molecular dynamics
simulations is model convergence. If
researchers don’t run the simulation for
long enough, they may reach a confor-
mation that is stable within a short time-
frame but not at physiologic time scales,
says Scott C. Schmidler, PhD, associate
professor of statistical science and com-
puter science at Duke University. “I see
people making claims about simulations
that I know have not been run long
enough to make those claims reliably,” 

Schmidler’s team has developed an
automated procedure to diagnose model
convergence. The algorithm samples
the conformational space by running

many simulations in parallel, starting
from different initial conditions; then it
uses statistics to predict whether the
model has converged (or when it’s like-
ly to converge). They plan to make
their software freely available. 

Molecular modelers at least face a
relatively well-defined set of potential
errors, Beard says. In contrast, he likens
physiology modeling to the “Wild
West.” The problems and approaches
are so vast that it’s been difficult to
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So Impressive, But So Biased. This figure shows results from a simulation study in
which prognostic gene signatures were created from randomly generated gene expression
data. The resulting model does an excellent job of predicting survival in the training set
(the data which were used to fit the model), but has no predictive value when applied to
the validation set. Figure 2 from: Subramanian J and Simon R. Gene Expression–Based
Prognostic Signatures in Lung Cancer: Ready for Clinical Use? J Natl Cancer Inst
2010;102(7): 464-474, by permission of Oxford University Press.
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code, Smith says. “But until that point
they’d had no idea [their approach was
wrong]. And they’d published lots of
work up to that point. We promised not
to say who was who in that process.” 

In a similar example (with a known
solution), the FDA asked several model-
ing teams to simulate blood flow
through a Left Ventricular Assist Device
(LVAD), an implantable device that
helps the heart pump blood. They also
asked teams to rate themselves as begin-
ners, intermediates, or experts. The self-
rated “experts” actually did the worst.
“Some of the solutions that were sub-
mitted by people who were claiming to
be advanced users were just ridiculous,”
Smith says. “That makes me worried.”
These types of benchmark studies can
help uncover errors and suggest best
practices. Standards for physiome mod-
eling are emerging, though there’s still a
long way to go, Beard says. 

In all fields of biomedical comput-
ing, the methods used for “validating”
the model are often flawed. “There’s so
much confusion in the field about what
constitutes proper validation,” Simon
says. For example, it is not appropriate
to “validate” a prognostic gene signa-
ture against biological data; it needs to
be validated for its intended use, as a
decision tool for physicians.  

Weiss says the same confusion exists
for modeling studies. “I have seen
many, many studies published with
either no validation or the validation
that was done was just wholly inade-
quate,” he says. Investigators have such
a poor understanding of validation that
they often think they have done a good
job of it when they haven’t, he says.
Many papers say that “the model has
been validated;” but validation is not
an on/off switch, he says.  

There’s actually a rich literature on
the validation of computational mod-
els, but it exists outside of biomedical
computing, within traditional engi-
neering fields such as computational
mechanics, Weiss says. Researchers
need to look beyond PubMed to find
these papers and standards, he says.  

Errors In the Paper
Published papers frequently have

typos, omissions, and otherwise poor doc-
umentation of methods. These errors
make it impossible to figure out exactly
what was done or to reproduce the results.  

Researchers who curate models for
repositories—such as the Physiome

Project or the CellML model reposito-
ry—are especially attuned to these
types of errors. “Currently there are a
few hundred models in the CellML
repository. I think there are maybe five
or six of those that didn’t have errors in
the original publication,” says David
Nickerson, PhD, a research fellow at
the University of Auckland. The errors
include missing equations and parame-
ter values, typos in equations, or ambi-
guities about which equations were
used for which analyses, he says. 

“Ninety-nine percent of models are
not reproducible,” agrees Bassingthwaighte,
who leads the Physiome project. “Name
any element and it will be wrong some-
where,” he says. “There’s usually a
process of iterating with the authors to
get things right.”

Beard recalls a paper he published
with a 40-page supplement. “I couldn’t
tell you with any confidence that there
are not typos in that supplement. I know
that I would never want to sit down
with that supplement and try to repro-
duce that model,” he says. This is why
authors need to make their code avail-
able and to use markup languages such
as CellML and SBML, so that everyone
is on the same page, Beard says.

The same publication errors occur
in high-throughput studies. In a 2009
paper in Nature Genetics, teams of ana-
lysts tried to reproduce a table or figure
from 18 microarray studies published in
the journal from 2005 to 2006. Even
though data were available in theory
for all 18 studies, only two studies were
fully reproducible. 

Baggerly recalls that one of Potti and
Nevins’ papers involved 59 patients, but
gave a link to a dataset with 153
patients. “So technically they fulfilled
the letter of the law, by saying ‘this is
where our data came from.’ But they
didn’t tell us which 59 were chosen,” he
says. “And we are ornery and geeky, but
attempting all 153 choose 59 combina-
tions, that’s beyond even our tolerance.”

Common Lesson
A common lesson that emerges from

these examples is the need for changes
in the publication system. Many jour-
nals now encourage authors to make
code and data available, but compliance
is still spotty at best; and “availability”
currently doesn’t guarantee usability.  

To address these problems, the jour-
nal Biostatistics named the first-ever
“editor of reproducibility,” Roger Peng,

PhD, associate professor of biostatistics
at The Johns Hopkins Bloomberg
School of Public Health. Once a paper
is accepted, authors may request a
“reproducibility review,” in which Peng
does the hard work of going through
the code and data to make sure that the
paper’s tables and figures are complete-
ly reproducible. If so, the paper is
marked with “R” for reproducible (as
well as “D” for data available and “C”
for code available.) 

Reproducibility doesn’t mean the
paper is right. But reproducibility has
to be met before one can begin to ferret
out errors in the data, software, or
methods, Peng says. 

Many envision more sweeping
changes to the publication system. In
this vision, published papers will con-
sist of a human-readable summary
linked to a complete implementation
of the model in standard formats. “In
that way, the journal article can ignore
the underlying details and just present
what the study was about,” Nickerson
says. “But then, from there, you can rel-
atively straightforwardly link back to
the underlying encoding.” 

Implementing this vision will not be
straightforward, however. Journals will
need new tools and infrastructure.
Editors will have to figure out how to
handle proprietary data and algorithms
with commercial potential. Researchers
will have to be convinced of the bene-
fits of making their work—and,
inevitably, their errors—more transpar-
ent. This may require researchers to
embrace a more positive view of errors,
where they see them as teaching
moments for the community rather
than as individual failures.  

Imagine if Potti and Nevins had
viewed errors in this way—they may
have heeded the early warnings of
Baggerly and Coombes, giving that
story a much happier ending. 

Identifying and fixing errors is a fun-
damental part of the scientific process,
says Ron Dror, PhD, a scientist at D. E.
Shaw Research. “It’s almost taken for
granted that if you read the literature
on any hot scientific topic from 10
years ago, you’ll discover a lot of papers
where it turns out that some of the con-
clusions were incorrect, often because a
given set of data can be interpreted in
multiple ways.” 

He adds: “I don’t want to make
excuses for errors, but I feel like some of
that is the nature of science.” !!


