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Bayesian methods have garnered huge interest in cognitive science as an approach
to models of cognition and perception. On the other hand, Bayesian methods
for data analysis have not yet made much headway in cognitive science against
the institutionalized inertia of 20th century null hypothesis significance testing
(NHST). Ironically, specific Bayesian models of cognition and perception may not
long endure the ravages of empirical verification, but generic Bayesian methods
for data analysis will eventually dominate. It is time that Bayesian data analysis
became the norm for empirical methods in cognitive science. This article reviews
a fatal flaw of NHST and introduces the reader to some benefits of Bayesian data
analysis. The article presents illustrative examples of multiple comparisons in
Bayesian analysis of variance and Bayesian approaches to statistical power. © 2010

John Wiley & Sons, Ltd. WIREs Cogn Sci 2010 1 658-676

his brief article assumes that you, dear reader,

are a practitioner of null hypothesis significance
testing, hereafter abbreviated as NHST. In collecting
data, you take care to insulate the data from your
intentions. For example, double-blind procedures in
clinical trials insulate the data from experimenter
intentions. As another example, in field research,
the observers construct elaborate ‘duck blinds’ to
minimize the impact of the observer on the data. After
carefully collecting the data, you then go through
the ritual invocation of p < 0.05. Did you know
that the computation of the p value depends crucially
on the covert intentions of the analyst, or the analyst’s
interpretations of the unknowable intentions of the
data collector? This is true despite the emphasis by the
data collector to make the data unaffected by his/her
intentions, as will be shown below. Moreover, for any
set of data, an intention can be found for which p is
not less than 0.05.

There is a better way to draw inferences from
data. Bayesian data analysis is gaining acceptance in
many fields as the best way to conduct data analysis,
but many disciplines within cognitive science have
been slow to re-tool. This brief article reviews a
fundamental problem with NHST, and shows some
of the advantages of Bayesian data analysis. Although
there have been a number of previous articles that
have come to a similar conclusion, the present
article emphasizes different points. In particular, this
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article emphasizes the fatal role of experimenter
intention in NHST, and that this fault is inherent
in confidence intervals too. The article highlights
multiple comparisons of groups as an illustration of
the advantages of Bayesian analysis. This article also
presents two perspectives on Bayesian interpretation
of null effects. Finally, this article describes Bayesian
approaches to statistical power, more generally
framed as the probability of achieving a research goal.

THE ROAD TO NHST IS PAVED WITH
GOOD INTENTIONS

Many previous articles have reviewed various prob-
lems with NHST.! This article will focus on the
crucial and fatal problem: the p value in NHST,
upon which we base our inference, is dependent upon
the intentions of the experimenter. This dependence
exists despite the fact that conscientious researchers
deliberately insulate their data collection from their
intentions.

To make the issue concrete, consider an example.
You have a scintillating hypothesis about the effect
of some different treatments on a metric dependent
variable. You collect some data (carefully insulated
from your hopes about differences between groups)
and compute a ¢ statistic for two of the groups. The
computer program, that tells you the value of ¢, also
tells you the value of p, which is the probability of
getting that ¢ by chance from the null hypothesis.
You want the p value to be less than 5%, so that you
can reject the null hypothesis and declare that your
observed effect is significant.
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What is wrong with that procedure? Notice
the seemingly innocuous step from ¢ top. The
p value, on which your entire claim to significance
rests, is conjured by the computer program with an
assumption about your intentions when you ran the
experiment. The computer assumes you intended, in
advance, to fix the sample sizes in the groups.

In a little more detail, and this is important to
understand, the computer figures out the probability
that your ¢ value could have occurred from the null
hypothesis if the intended experiment was replicated
many, many times. The null hypothesis sets the two
underlying populations as normal populations with
identical means and variances. If your data happen
to have six scores per group, then, in every simulated
replication of the experiment, the computer randomly
samples exactly six data values from each underlying
population, and computes the ¢ value for that random
sample. Usually ¢ is nearly zero, because the sample
comes from a null hypothesis population in which
there is zero difference between groups. By chance,
however, sometimes the sample ¢ value will be fairly
far above or below zero. The computer does a bizillion
simulated replications of the experiment. The top
panel of Figure 1 shows a histogram of the bizillion
¢ values. According to the decision policy of NHST,
we decide that the null hypothesis is rejectable by an
actually observed 7, value if the probability that the
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null hypothesis generates a value as extreme or more
is very small, say p < 0.05. The arrow in Figure 1
marks the critical value #.i; at which the probability
of getting a ¢ value more extreme is 5%. We reject
the null hypothesis if #,,s > teic. In this case, when
N = 6 is fixed for both groups, #.;i = 2.23. This is the
critical value shown in standard textbook ¢ tables, for
a two-tailed #-test with 10 degrees of freedom.

In computing p, the computer assumes that you
did not intend to collect data for some time period
and then stop; you did not intend to collect more or
less data based on an analysis of the early results;
you did not intend to have any lost data replaced by
additional collection. Moreover, you did not intend
to run any other conditions ever again, or compare
your data with any other conditions. If you had any
of these other intentions, or if the analyst believes you
had any of these other intentions, the p value can
change dramatically.

The Intention to Collect Data until the End
of the Week

In most of my research, I have only a rough sample
size in mind, and I collect data for a period of time
until that rough sample size is achieved. For example,
I will post session times for which volunteers can sign
up, and the posted times span, say, a 2-week period.

Fixed N = 6 per group (x2 groups)

0.4
0.3
£ 024 tri=2.23
0.1
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Fixed duration = 2 weeks (x6/week)
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. . 0.2 - t.. =244
FIGURE 1| Sampling distribution of £ for two . crit = 2
groups when the null hypothesis is true, when g
the intention is to fix N = 6 for both groups, 0.1
regardless of how long that takes (top), or when
the intention is to fix the duration of data 0.0 -
collection at 2 weeks, when the mean rate is ! ' ' ! '
-4 -2 0 2 4

N = 6 per week (bottom). t
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I expect some typical rate of subject recruitment
during that span of time, hoping to get a sample
size in the desired range.

It is easy to generate a sampling distribution
for ¢ under these intentions. Specifically, suppose that
the mean rate of subject sign-ups is six per week,
with the actual number randomly generated by a
simple Poisson process, as is often used to model
the arrival of customers in a queue.”? The Poisson
distribution generates an integer value between zero
and infinity, with a mean, in this case, of 12 for a
2-week duration. Each subject is randomly assigned
to one of the groups by a flip of a fair coin. Thus, in
some random replications, we will happen to get six
subjects in each group, but in other replications we
will get, say, five subjects in one group and eight in
the other. (On those rare occasions when this process
allocates fewer than two subjects to a group, the
number of subjects is promoted to two.) For every
simulated replication, the ¢ value is computed. The
resulting distribution of ¢ values is shown in the
lower panel of Figure 1. The value of ¢, at which
only 5% of the distribution is more extreme, is
e = 2.44.

In summary, if the intention was to collect six
subjects per group, then the null hypothesis predicts
t values distributed according to the upper panel of
Figure 1, but if the intention was to collect data for
2 weeks, with a mean rate of six subjects per week,
then the null hypothesis predicts ¢ values distributed
according to the lower panel of Figure 1.

Suppose we are handed some data from two
groups, with six values per group, we compute ¢ and
find that ¢t = 2.35. Do we reject the null hypothesis?
According to NHST, we can only answer that question
when we ascertain the intention of the experimenter.
We ask the research assistant who collected the data.
The assistant says, ‘I just collected data for 2 weeks.
It is my job. I happened to get six subjects in each
group’. We ask the graduate student who oversaw
the assistant. The student says, ‘I knew we needed
six subjects per group, so I told the assistant to run
for 2 weeks. We usually get about six subjects per
week’. We ask the lab director, who says, ‘I told my
graduate student to collect six subjects per group’.
Therefore, for the lab director, # = 2.35 rejects the
null hypothesis, but for the research assistant who
actually collected the data, ¢ = 2.35 fails to reject the
null hypothesis.

The Intention to Examine Data Thoroughly
Essentially all introductory NHST textbooks describe
only fixed-N #-distributions. Although the books
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implicitly acknowledge the dependence of critical
t values on this assumption of fixed sample size, they
rarely illustrate how much the critical ¢ depends on
the assumption, nor how strange it is for the decision
to depend on the assumption.

The only application in which standard text-
books regularly acknowledge the role of intent is mul-
tiple comparisons. When there are multiple groups, the
analyst has the option of many different comparisons
of different groups and combinations of groups. With
every comparison, there is new opportunity to commit
a false alarm, i.e., to have a ¢ value that is spuriously
or accidentally larger than the critical ¢ value, even
though there is no actual difference between groups.
For example, consider a situation in which there are
four groups, with intentionally fixed N = 6 per group.
Suppose the analyst computes a ¢ value for comparing
groups 1 and 2. If the underlying populations are not
actually different, then there is a 5% chance that the
sample ¢ will exceed t.j = 2.23, i.e., there is a 5%
false alarm rate. Suppose the analyst also computes the
t value for comparing groups 3 and 4. Again there is a
5% chance that the sample # will exceed #.e = 2.23 if
the null hypothesis is true. If the analyst conducts both
tests, however, there is a greater chance of committing
a false alarm, because a false alarm can arise if either
test happens to spuriously exceed the critical value.

Figure 2 shows how the probability of false
alarm depends on the intended set of comparisons and
the candidate critical # value. In all cases, there are
five groups with fixed N = 6 per group. The lower-left
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FIGURE 2 | Probability that any of the ¢ values among the
comparisons exceeds the critical value, when the null hypothesis is true,
and N = 6 is fixed for all five groups. The arrow labeled ‘Grp 1 versus
Grp 2" is at t = 2.23 as shown in the top panel of Figure 1.
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curve shows the case where only a single comparison is
intended. As the candidate critical ¢ value gets larger,
the false alarm rate gets smaller. The curve crosses
p(FA) = 0.05 when . = 2.23, which corresponds
to the upper panel of Figure 1. The middle curve
of Figure 2 shows the case in which the intent is to
compare the first group with each of the other four
groups. Here, the curve crosses p(FA) = 0.05 when
teic = 2.95. The rightmost curve shows the case in
which the intent is to compare each group with every
one of the others (i.e., 10 pairwise comparisons).
In this case, the curve crosses p(FA) = 0.05 when
teric = 3.44.

Now, suppose we actually run the experiment.
We randomly assign 30 people to the five groups, six
people per group. The first group gets the placebo,
and the other four groups get the corresponding four
drugs. We are careful to make this a double-blind
experiment: neither the subjects nor experimenters
know who is getting which treatment. Moreover, no
one knows whether any other person is even in the
experiment. We collect the data. Our first question
is to compare the placebo and the first drug, i.e.,
group 1 versus group 2. We compute the # statistic for
the data from the two groups and find that # = 2.95.
Do we decide that the two treatments had significantly
different effects?

The answer, bizarrely, depends on the intentions
of the person we ask. Suppose, for instance, that we
handed the data from the first two groups to a research
assistant, who is asked to test for a difference between
groups. The assistant runs a #-test and finds ¢ = 2.95,
declaring it to be highly significant because it greatly
exceeds the critical value of 2.23 for a two-group
t-test. Suppose, on the other hand, that we handed
the data from all five groups to a different research
assistant, who is asked to compare the first group
against each of the other four. This assistant runs a
t-test of group 1 versus group 2 and finds # = 2.95,
declaring it to be marginally significant because it just
squeezes past the critical value of 2.95 for these four
planned comparisons. Suppose, on yet another hand,
that we handed the data from all five groups to a
different research assistant, who is told to conduct
all pairwise comparisons post hoc because we have
no strong hypotheses about which treatments will
have beneficial or detrimental or neutral effects. This
assistant runs a ¢-test of group 1 versus group 2 and
finds ¢ = 2.95, declaring it to be not significant because
it fails to exceed the critical value of 3.43 that is
used for post hoc pairwise comparisons. Notice that
regardless of which assistant analyzed the data, the
t value for the two groups stayed the same because
the data of the two groups stayed the same. Indeed, the
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data were completely uninfluenced by the intentions
of the analyst. So why should the interpretation of the
data be influenced by the intentions of the analyst?
It should not.

Confidence Intervals: Only as Confident

as Intentions

Some practitioners of NHST give the impression that
a lot of problems would be solved if researchers
would report a confidence interval and not only a
p value.> A confidence interval does convey more
information than a point estimate and a p value,
but rarely acknowledged is the fact that confidence
intervals depend on the experimenter’s intentions in
the same way as p values.

A confidence interval is merely the range of
hypothetical parameter values we would not reject if
we replicated the intended experiment many times.?
For any candidate value of a parameter, we generate
a sampling distribution from simulated replications
of the intended experiment, and determine whether
or not our actually observed # falls in the extreme
5% of the sampling distribution.*’ Examples of
sampling distributions are shown in Figure 2, for the
case when the candidate value of the parameter is
zero. The confidence interval considers all possible
parameter values, not only zero. A candidate value
of the parameter is not in the confidence interval if
the observed ¢ value falls in the extreme 5% of the
sampling distribution. Because sampling distributions
depend on the experimenter’s intentions, confidence
intervals also depend on the experimenter’s intentions.

Readers familiar with how to compute the
confidence interval for a sample mean may recall
that the interval’s limits are given by the actual sample
mean plus or minus the critical ¢ value times the
sample standard error. If the experimenter intended
to stop when N = 6, then the critical ¢ value is 2.23,
as shown in the upper panel of Figure 2, and therefore
the width of the confidence interval is 2.23 times twice
the standard error. But, if the experimenter intended
to stop at the end of 2 weeks, then the critical ¢ value
is 2.44, as shown in the lower panel of Figure 2, and
the width of the confidence interval is 2.44 times twice
the standard error. In other words, the confidence
interval is wider, even though the data have not
changed, merely because the experimenter intended
to stop after 2 weeks instead of when N = 12.

The dependence of the confidence interval
on the intentions of the experimenter is rarely
if ever acknowledged by computer programs for
single ¢-tests. Computer programs do reveal the
dependency, however, when showing the results of
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multiple comparisons. The confidence intervals will
indicate that they were determined by one or another
‘correction’ for multiple comparisons.

Good Intentions Make any Result
Insignificant

It is trivial to make any observed difference between
groups non-significant. Just imagine a large set of
other groups that should be compared with the two
initial groups, and earnestly intend to compare the two
groups with all the other groups, once you eventually
collect the data. The false alarm rate sky rockets and
any observed difference between the first two groups
becomes insignificant. The analogous result holds for
confidence intervals: the confidence interval becomes
huge, merely by intending to compare the first two
groups with lots of other groups.

Why Persist with NHST?

The NHST hostage might attempt to defend his or
her warden: ‘there is only a limited range of realistic
intentions, and the p value does not change much
within that range’. This argument does not work.
As was shown above, p values do change a lot with
realistic changes of intentions. More importantly, data
interpretation should not depend on intentions at all.
To argue that the dependence is okay as long as it is
not big is like saying it is okay for the butcher to put
his finger on the scale because most butchers cheat
roughly the same amount. The point is that it should
not happen at all.

In the movie Ammnie Hall, the final scene has
the narrator explaining why people stay in dubious
relationships, by analogy to an old joke: a guy goes to
a psychiatrist, and says, ‘Doc, my brother thinks he’s
a chicken’. Psychiatrist responds, ‘Well, why don’t
you turn him in?’ Guy replies, ‘I would, but I need
the eggs’. The narrator concludes that we keep going
through it because we need the eggs.

And indeed, NHST lays an egg. The p value,
which is supposed to be NHST’s main offering,
is as fickle as intentions. Confidence intervals are
just as groundless. Some NHST procedures do not
even provide a confidence interval. For example, a
chi-square test of independence yields a p value for
the null hypothesis, but no range of believable cell
proportions. (A hard-boiled proponent of NHST
could derive sampling distributions for various
hypotheses and laboriously approximate a confidence
interval, but this is not done in any standard computer
packages.) And NHST does not tell us how reliable
a result is: the p value tells us little if anything about
the probability that we would get a significant result

662 © 2010 John Wiley & Sons, Ltd.

wires.wiley.com/cogsci

if we repeated the experiment.® There is a better way:
Bayesian data analysis.

BAYESIAN DATA ANALYSIS

Suppose there is an upcoming election between
candidates A and B. You ask a few friends which
candidate they prefer, and you thereby get a vague
sense that candidate A is preferred. But to get a better
prediction of which candidate will win, you would
want to poll a larger random sample of the population.
Suppose you acquire data from such a poll. What is the
effect of the data on your beliefs? The data cause you
to shift your beliefs from the uncertain prior beliefs
to more certain beliefs informed by the representative
sample data.

The Bayesian Idea: Data Indicate How to
Reallocate Beliefs

The role of data is to reallocate beliefs. Bayesian data
analysis is merely the mathematical specification of
that reallocation. First, the various candidate beliefs
are specified as a space of possibilities. For example,
the population’s preference for candidate A could be
any value from 0% to 100%. Next, the degree of belief
in each value is specified as a probability. For exam-
ple, there might be 90% belief that the population
preference is in the range from 0.52 to 0.58. (Tech-
nically, for infinitesimal intervals, degree of belief is
specified as probability ‘density’.) The distribution of
belief probabilities over candidate parameter values
is a mathematical description of our knowledge.

We go into any research situation with prior
beliefs, which may be diffuse and uncertain, or which
may be heavily concentrated on a narrow range of
parameter values. Then we collect data (insulated
from the researcher’s intentions, of course). Based on
the data, we decrease our belief in parameter values
that are less consistent with the data, and increase our
belief in parameter values that are more consistent
with the data. The mathematical formula for the
reallocation of beliefs is called Bayes’ rule. Bayes’
rule is just a general form that can be applied to many
different specific models and situations, whereby it
derives its vast ramifications.

Bayesian reasoning in everyday life is quite
intuitive. First, there is the reasoning from Sherlock
Holmes: ‘how often have 1 said to you that
when you have eliminated the impossible, whatever
remains, however improbable, must be the truth?’
(Ref 7, p. 93). This is just a description of Bayesian
reallocation of beliefs: even though the prior belief on
a candidate may be small, if the other candidates are
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eliminated, then the posterior belief on the remaining
candidate must be high. The complementary logic
is judicial exoneration: if there are several distinct
suspects, and one suspect is convincingly shown to
have committed the crime, then the other suspects
are exonerated. This is again Bayesian reallocation of
beliefs: the prior belief in each suspect is moderate, but
when one suspect is identified as the culprit and thus
belief in that suspect becomes high, then the posterior
belief in the other suspects drops.

The question of whether Bayesian mathematics
captures other aspects of human cognition is of great
interest to cognitive scientists.®~!! Cognitive scientists
do not know what models and parameters the mind
might be using (or behaving as if it were using).
A Bayesian model that adequately mimics human
cognition might never be discovered. Data analysts,
on the other hand, define the descriptive models that
are useful for summarizing data. These descriptive
models could be generic domain-independent models
such as linear regression, or they could be domain-
specific models.'? Given the models, the rational way
to allocate beliefs among models and their parameters
is via Bayesian analysis. The present article is about
Bayesian data analysis, and only indirectly about
Bayesian models of mind.

Data Interpretation Should Depend on Prior
Beliefs

Some people are leery of the Bayesian requirement
to specify a prior belief, because they suspect that
the prior belief is vague or idiosyncratic. Fortunately,
these fears are unfounded. If prior beliefs are vague,
this is not a problem. When priors are only weakly
informed, then relatively small amounts of data will
overwhelm the prior, and the specific form of the
prior has little influence on the posterior (for typical
moderate-scale models). Examples in subsequent
sections will illustrate this fact. Lee and Webb!3
provide a summary of mathematical formalizations
of vague priors.

Priors for scientific data analysis are not
idiosyncratically capricious and covert. Priors for an
analysis are overtly specified and deemed reasonable
by the scientific community, and in particular
by skeptical reviewers of articles in peer-reviewed
journals. Moreover, because priors are explicitly
specified, it is straightforward to do Bayesian
analysis with different plausible priors and report
the invariance of the resulting posteriors.

Most importantly, it is crucial to recognize that
it is unreasonable not to consider prior beliefs. For
example, suppose we are trying to determine the
underlying probability that a particular coin comes
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up heads, we know it is a regular coin manufactured
at an official government mint. We flip it 1000 times
and it comes up heads 535 times. Although this result
deviates somewhat from the 500 heads we would
expect from a fair coin, we would be reluctant to
declare that the coin is biased, because of the strong-
prior belief that the coin is fair. On the other hand,
suppose that we are parachuted into a random foreign
city where two candidates are running for mayor,
we have no familiarity with this culture, so we have
only the most vague prior belief regarding what the
underlying preferences in the population might be.
Suppose we poll 1000 people at random and find that
535 prefer candidate A, from this sample preference,
which shows a 7% point advantage for candidate A,
we would be fairly confident in asserting that there
is indeed a real preference in the population, because
our prior beliefs were weak.

These two situations, i.e., the strong-prior coin
toss and the weak-prior election poll, are handled
identically by NHST. If the intention was to flip
the coin or conduct the poll until N = 1000, then
p =0.015 and we reject the null; i.e., the coin is
biased and the population has a preference. If the
intention was to flip the coin or conduct the poll
until the end of the day (and there just happened
to be 1000 outcomes in the sample) then p is
different, but still identical for the two situations.
NHST treats the coin and the poll identically, ignoring
prior knowledge, but irrationally relying on the
intended stopping rule for data collection. Bayesian
inference, on the other hand, does not use the data
collector’s arbitrary and unknowable intentions, but
does rationally incorporate the scientific community’s
prior knowledge.

An Example of Bayesian Data Analysis

This section uses an extended example to illustrate
some of the results and benefits of Bayesian data
analysis. First, the example illustrates how parameters
are estimated and how the posterior distribution on
the parameters explicitly indicates which values are
credible. In particular, ‘null’ values may or may
not be among the credible values. (A subsequent
section describes a different Bayesian approach to
testing a null value.) Next, a Bayesian analysis
of variance (ANOVA) is conducted to show how
multiple comparisons can be made without fear of
inflated false alarm rates. Each comparison is merely
a different perspective on the multi-dimensional
posterior distribution. This section also describes
how the posterior distribution inherently reveals
correlations among credible parameter values, and
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how the posterior distribution can be used by
other researchers to encourage cumulative growth of
knowledge.

For purposes of illustration, consider data from
a simple learning experiment. In this experiment, a
person sees common words such as ‘radio’ and ‘ocean’
on a computer screen, and the person must learn
which words indicate which keys to press in response.
A trial consists of the words appearing, the learner
pressing a key, the computer displaying the correct
response, and the learner studying the feedback and
then pressing the space bar for the next trial. In a
highlighting design, the learner initially is trained on
cases of two words, denoted PE and I, indicating
outcome E. Later in training, two words, PL and I,
indicate a different outcome L. The word labels are
mnemonic: E is the early learned outcome, PE is the
perfect predictor of E, L is the later-learned outcome,
PL is the perfect predictor of L, and I is an imperfect
predictor. Notice that the early trained PE.I — E and
late-trained PL.I — L cases are symmetric: each has
a perfectly predictive cue word, and the cases share
the imperfect predictor. If people learn the simple
symmetry, then I should be equally strongly associated
with both outcomes, and PE should be as strongly
associated with E as PL is associated with L. These
predictions are assayed by subsequent testing of novel
cue combinations. It turns out that when people are
tested with cue I by itself, there is a strong tendency
to select response E. This is not merely a generic
primacy bias, however, because when tested with cue
combination PE.PL, there is a strong tendency to
select response L. Readers interested in the cognitive
theory underlying this perplexing phenomenon are
referred to the overview provided by Kruschke.'* The
emphasis here is on methods for analyzing the data.

For present purposes, the focus is on the test
trials after learning. There were several different cue
combinations presented at test, such as I by itself, the
combination PE.PL, PE and PL by themselves, and
various others. For each test item, the learner’s choice
and response time (RT) were measured. The design can
therefore be described as a repeated measures, within-
subject design: every subject provided data for every
test item, repeated several times. Because repetitions
of the same item were randomly interspersed among
many other test items, we will assume that responses
on each trial were independent of other trials. This is
merely a simplifying assumption made for the analysis;
it is typical of both NHST and Bayesian analyses. In
principle, Bayesian models can incorporate trial-to-
trial dependencies, but this is not undertaken here.

The emphasis of highlighting experiments has
been on choice preferences, but Lamberts and
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Kent!'S manipulated RT deadlines to explore whether
(presumably slow) rule-application processes might
underlie the preferences. Lamberts and Kent!®
also examined RTs for unspeeded preferences, and
modeled those RTs with the ADIT model.'® Because
RTs for the various probes have implications for
process models, it can be useful to compare their
RTs. Because there are many different probes to
compare, this immediately raises the issue of multiple
comparisons, which will be addressed presently from
a Bayesian perspective.

The analysis of RT used here is an ‘off the
shelf” hierarchical Bayesian ANOVA model.!”~1° For
our illustrative purposes, we will model log;,(RT)
by a normal distribution. (A more accurate model
of RT distributions is provided by Rouder et al.??)
In the hierarchical Bayesian ANOVA, the goal is to
estimate (1) the overall baseline RT, (2) the deflection
away from that baseline due to each test item, and
(3) the deflection away from that baseline due to each
subject. The deflections are constrained to sum to
zero. For example, suppose that the baseline RT is
1.5s, the test item PE is a single perfect predictor,
and therefore is responded to quickly, which means it
has a negative deflection relative to the baseline RT.
The test combination PE.PL, however, consists of two
conflicting cues, and therefore is responded to slowly,
which means that it has a positive deflection relative
to the baseline RT. Different individual subjects are
faster or slower than average. The deflection from
baseline for fast subjects is negative, and the deflection
for slow subjects is positive. The test-item and subject
deflections are modeled as coming from higher-level
distributions centered at zero. The variances of the
higher-level distributions are estimated from the data.

The prior beliefs regarding values for the
baseline, treatment, and subject effects are shown
in Figure 3. The priors are only vaguely informed
by the general background knowledge that RTs are
in range of single seconds. Thus, the prior belief
for the baseline, denoted By on a log;,(RT) scale,
is a normal distribution centered at zero (i.e., at
0 = log;((15s)), with a standard deviation of about 2.
This prior only very weakly emphasizes RTs near 1,
expressing (perhaps unrealistically) huge uncertainty
in the baseline RT. The purpose of using such a vague
prior is to be as uncontroversial as possible. The prior
distribution on the deflection due to the test item,
also known as the treatment effect and denoted by
Bj, is centered at zero but given a broad range so
as not to presume a null effect. Similarly, the prior
distribution on the deflection due to subjects, denoted
Bi, is centered at zero but very broad. These rather
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FIGURE 3 | Prior probability distributions for parameters in Bayesian ANOVA. The left distribution is the prior for the baseline RT, denoted gy. The
o values are in units of log,,(s). The mean of the distribution is at log,,(0s) = 15, indicating a prior belief that RTs are about 1 s in duration.
Notice that the scale is broad, which indicates that the prior is only mildly informed by the knowledge that human RTs are not on the order of
nanoseconds or millennia. The middle distribution is the prior for all seven test cue effects, denoted g;. The right distribution is the prior for all 64
subject effects, denoted B;. Both the middle and right distributions indicate deviations from baseline, hence a prior mean of 0 indicates a mild
preference for null effects. The dark bar labeled ‘95% HDI' indicates the highest density interval, i.e., the interval that contains 95% of the distribution
such that parameter values outside the highest density interval (HDI) have less believability than parameter values inside the HDI. These histograms
were generated by a large random sample from the continuous and symmetric underlying distribution.

non-committal priors have very little influence on the
posterior, as will be seen.

The posterior for the baseline and various test-
item deflections is shown in Figure 4. Like the prior,
these posterior distributions are represented by a
large random sample from the continuous underlying
posterior.® Consider the top-left distribution in
Figure 4, which shows the believable values for the
baseline. The mean of the believable baseline values is
log,o(RT) = 0.175, which corresponds to a baseline
response time of 1.50s. Notice that the breadths of
the posterior distributions are tiny compared with the
diffuse breadth of the prior, and that the variation
from one test effect to another is tiny compared with
the breadth of the prior. This is one indication that the
specific form of the prior had little constraint on the
posterior. Indeed, if the priors are made more diffuse,
the posterior hardly changes at all.

The posterior distribution explicitly reveals the
extent to which various baseline RTs and cue effects
are credible, given the data. Unlike NHST, we do
not have merely a dichotomous decision to reject
or fail-to-reject the null value, nor do we have a
p value that mutates according to the intentions of
the data collector. The posterior shows a continuous
distribution of believability across the spectrum of
parameter values. It can be summarized by values
such as its mean and 95% highest density interval
(HDI), which is the interval that contains 95% of the
distribution such that all points inside the interval have
higher believability than points outside the interval.

Multiple Comparisons

It is important to understand that the posterior is a
joint probability distribution in a high-dimensional
parameter space, and that what is shown in Figure 4
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is only the marginal distribution of individual
parameters, like pressing a flower between the pages
of a heavy book. In other words, the posterior
specifies the credible combinations of all the parameter
values. Because believable parameter values might
be correlated, the marginals of different parameters
should not be directly compared with each other to
assess differences between parameters. Instead, the
differences between parameter values are explicitly
computed at only the believable combinations of
parameter values. Figure 5 shows examples of these
differences. For example, the top row’s middle
distribution shows the difference between the PL and
PE deflections for all the believable combinations of
BpL and Bpe. The distribution reveals that most of
the believable differences are greater than zero, and
the 95% HDI does not span zero. Therefore, it is
quite credible that RTs for PL are faster than those
for PE. The distribution of credible differences takes
into account the fact that the estimated effects of PE
and PL are negatively correlated, with » = —0.187. In
other words, the uncertainty of the difference, shown
in Figure 5, is appropriately larger than would be
suggested by the individual distributions of PE and
PL in Figure 4.

The joint posterior distribution on test cue
deflections can be summarized in many informative
ways. For example, we might be interested in knowing
whether ambiguous tests, including PE.PL, I, and
PE.PLo, take longer on average than unambiguous
tests, including PE, PL, PE.I, and PL.I. This
comparison is easy to conduct: for every believable
combination of the test deflections, we simply
compute the average of the ambiguous-test deflections
and subtract the average of the unambiguous-test
deflections. Then we inspect the distribution of the
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FIGURE 4 | Posterior distributions for the test cue effects (compare with priors in Figure 3). The 8 values are in units of log,,(s); for example, the

mean baseline 8y = 0.175 corresponds to 10%17> = 1.50 s.

differences, which is shown in the lower-right panel of
Figure 5. The posterior distribution of differences is
far above zero, and therefore it is highly credible that
ambiguous tests take longer than unambiguous tests.

All the comparisons displayed in Figure 5 are
merely different perspectives on the same joint pos-
terior distribution. We can make these comparisons,
and any others we care to think of, without worrying
about inflated false alarm rates, because the posterior
distribution does not change when we consider other
comparisons. (Recall that in NHST, the sample space
does change when we consider other comparisons.)
The joint posterior distribution specifies the believ-
able parameter combinations, given the data. Any
comparison we make is simply looking at that high-
dimensional posterior distribution from a different
perspective.

666 © 2010 John Wiley & Sons, Ltd.

A Bayesian analysis is not immune to false
alarms. False alarms are unavoidable by any analysis
because data are a random sample, and some random
samples will accidentally comprise a coincidence of
outliers. But Bayesian analysis says it is irrational
to make decisions based on the probability of false
alarms (i.e., the p value), because that probability is
ill-defined: it depends on experimenter’s intentions.
Bayesian analysis instead says that the posterior
distribution is the best we can do, given the data
we have.

How, then, does a Bayesian analysis mitigate
false alarms? Answer: by incorporating knowledge
into the prior distribution. In the case of multiple
groups, the prior can include structural knowledge
whereby data from different groups mutually inform
and constrain each other’s estimates. For example, in
the Bayesian ANOVA model, the group deflections
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FIGURE 5 | A variety of comparisons of RTs for various test cues. These are the differences of the posterior estimates of parameter values shown
in Figure 4, transformed back to the original RT scale of seconds instead of log, ,(s). Importantly, these differences take into account any

correlations in believable parameter values.

come from an overarching distribution. The variance
of that overarching distribution is estimated from
the data. If the data from most groups are near
each other, then the estimate of the variance of the
overarching distribution is small, which in turn acts to
attenuate the estimated deflections of outlying groups.
Thus, estimates of outlying conditions are shrunk
toward the grand mean, and this shrinkage attenuates
false alarms.!”>18:21-23 A clear example of shrinkage is
provided later in the article, accompanying Figure 6.
Shrinkage is a benefit of Bayesian ANOVA that is
not in NHST ANOVA. Notice that shrinkage is not a
mere kludge appended onto the analysis like an NHST
post hoc correction. Rather, the higher-level structure
in the prior is an explicit formalization of the prior
knowledge that the different treatments are mutually
informative.

Correlated Parameters Inherently Revealed

The posterior distribution reveals combinations of
believable parameter values in the high-dimensional
joint parameter space. In other words, the posterior
distribution inherently reveals correlations among
believable parameter values. Correlated parameters
are frequently found in analyses such as multiple
linear regression. The intercept and slope parameters
are correlated for data not centered at zero, and slopes
on different regressors can be correlated, especially
when the values for the regressors are correlated in
the data. These situations pose no special problem
for Bayesian analysis, because the consequences for
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parameter estimation are explicit in the conjoint
posterior distribution. Of course, it is up to the analyst
to carefully examine the joint posterior distribution.

Posterior Distributions Can be Used by
Subsequent Researchers

Posterior distributions of high-dimensional models
can be examined in myriad ways, not all of which
can be mentioned in any single research report. The
posterior distribution of an analysis can be posted
online, whereby subsequent researchers can examine
the posterior any way they wish. Another benefit of
Bayesian analysis is that if future researchers conduct
similar experiments and analyze their data with similar
models, then the posterior of one experiment can
inform the prior of the next. In other words, if a
researcher were to replicate an experiment, then the
posterior of the first analysis could be used as the prior
for the subsequent analysis, or at least as a strong
informant for the prior of the subsequent analysis.

Is There an Effect? Two Bayesian
Approaches

The examples in the previous section showed the
natural application of parameter estimation to judging
whether a null value is among the credible values.
This is a straightforward approach to assessing the
credibility of null values, and it is presented in
many textbooks.!*?42% The approach begins with
a question of estimation, such as, ‘what is the
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magnitude of the effect?’, or, ‘what is the magnitude
of the difference of effects?” To answer the question,
we establish a prior on the effects, that may be
informed by the situation but must be agreeable to
a skeptical scientific audience. An example of such a
prior is shown in Figure 3. Bayesian inference yields a
posterior distribution that indicates the believabilities
of different magnitudes of effect, for example, as
shown in Figure 5. It is then natural to summarize the
form of the posterior relative to any landmark value(s)
of interest, such as a null value. For example, the
lower-right panel of Figure 5 shows that the 95% HDI
falls far from zero, a situation that we interpret as
indicating that a difference of zero is not credible.

An infelicity of deciding to reject the null value if
it is excluded by an HDI is that the procedure can lead
to false alarms when the null is true, even for large
sample sizes. It turns out that, if the null is true, then
the 95% HDI will exclude the null value 5% of the
time, regardless of the amount of data. Despite this
behavior, (sometimes referred to as ‘inconsistency’), it
is also true that the HDI gets narrower and gets closer
to the true value as the amount of data increases.
Therefore, the large-sample false alarm rate can be
reduced to zero by a simple fix: we reject the null
value only if the HDI falls outside a range of practical
equivalence (ROPE) around the null value. The actual
size of the ROPE is determined by situation-specific
practical considerations. The ROPE can be arbitrarily
small, in principle, to solve the technical false alarm
problem, but in practice real-world costs and benefits
can be taken into account (for examples, see Ref 26,
where the ROPE is called an ‘indifference zone’). In
the case of RTs for perceptual categorization tasks, the
ROPE might be reasonably set at [—0.005,40.005]s.
Our decision rule is, therefore, if any part of the
95% HDI falls within 5 ms of the null value, we do
not decisively reject the null. But mere overlap of the
HDI with the ROPE does not mean that we accept
the null; acceptance is suggested when the HDI falls
entirely within the ROPE. A notion similar to ROPE
was introduced by Freedman et al.3? (who called the
ROPE the ‘region of equivalence’) and developed by
Spiegelhalter et al.3! and Hobbs and Carlin.?? The
approach is used subsequently in this article in the
section regarding power and replication probability.

It should be kept in mind that any discrete
decision regarding a null value is an incomplete
summary of the actual posterior distribution. It is
always the actual posterior distribution that specifies
what we ought to believe. The use of the HDI with
the ROPE is a convenient way to summarize whether
the null value is among the credible values.
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A second approach to judging the veracity of a
null value begins with a different question. Instead of
asking to estimate an effect size, it asks to adjudicate
between two distinct prior distributions. One prior
distribution expresses the hypothesis that the null
value is true. For this prior, all belief is loaded
onto a sharp spike over the null value (typically
zero). A second prior distribution expresses the
alternative hypothesis that any value is possible. In this
alternative prior, beliefs are diffused over a broad
range (for discussions, see Refs 1,33). Typically in this
approach, the alternative prior is chosen to represent
a minimally informed ‘automatic’ prior that does not
require consideration of prior knowledge, and that
respects technical mathematical considerations such
as consistency, which means that as the sample size
approaches infinity, the null hypothesis is favored if it
is true.3* In another approach, a spectrum of limited-
range vague priors is considered.?’ In any case, once
an automatic alternative prior is established, then
Bayesian model comparison can be used to derive the
posterior relative believabilities of the two priors.

As an example, consider data reported in Table
3 of Solari etal.3® regarding an experiment that
measured ascorbic acid content of tomatoes, in nine
groups that were given different types of manuring.
The third group appeared post hoc to differ from the
other eight. To decide whether the apparent difference
was believable, the analysts conducted a Bayesian
model comparison for null and alternative hypotheses.
The null model used the same central-tendency
parameter for all nine groups. The alternative model
had a distinct central-tendency parameter for the third
group but a shared central-tendency parameter for the
other eight groups, and a diffuse prior distribution
on the difference between the third group and the
other eight. The Bayesian model comparison showed
that the alternative model was relatively much more
probable than the null model.

The null-versus-alternative comparison is diffi-
cult to interpret, however, because either way the
result points, we will not necessarily want to actually
believe the favored model. For the tomato-manuring
data, the favored model is the alternative, but the
alternative model asserts that eight of the groups are
identical to each other. Although this might acciden-
tally happen to be true for these particular data, it is
more likely to be the case that the other eight groups
are different from each other, at least somewhat,
because they had eight different treatments. To better
illustrate this point, recall the comparison of ambigu-
ous versus unambiguous probe items, shown in the
lower-right panel of Figure 5. This comparison of
ambiguous versus unambiguous cases could instead

Volume 1, September/October 2010



€ m WIREs Cognitive Science

have been posed as a comparison of two models: the
null model would put all probes equal to each other.
The alternative model would put all the ambiguous
probes equal to each other, and put all the unam-
biguous probes equal to each other, and set a diffuse
prior distribution on the difference between those two
central tendencies. The Bayesian model comparison
would, no doubt, favor the alternative model, which
states that ambiguous probes are not equal to unam-
biguous probes, but all ambiguous probes are equal
to each other and all unambiguous probes are equal
to each other. We would not want to believe the pre-
ferred model, because clearly the unambiguous probes
are not all equal (e.g., PE vs. PL in the upper middle
panel of Figure 5) and the ambiguous probes are not
all equal (e.g., PE.PL vs. I in the upper right panel of
Figure 5).

To address this problem of which combinations
of group means are equal to each other, the
model-comparison approach may be applied to a
combinatorial hierarchy of all possible treatment
groupings, to tease apart which combinations of
groups are credibly different.?1»37 Scott and Berger3$
presented a model that simultaneously estimates the
deflections of each group, and the probability that
the deflection is non-zero. The method naturally
incorporates Bayesian shrinkage on the estimates of
non-zero probabilities, but the authors note that the
estimates are very sensitive to prior assumptions,
and therefore informed priors should be used.
Gopalan and Berry?® considered a hierarchy of
all possible combinations of group-mean equalities,
using a Dirichlet process prior. It should be kept in
mind, however, that this latter approach entertains
hypotheses that different groups might or might not
derive from identical underlying means, and this sort
of hypothesis structure is not universally applicable; it
should only be tested when it is genuinely meaningful
to hypothesize that different groups actually have
identical means.

The effect-estimation approach, on the other
hand, provides a complete multi-dimensional poste-
rior estimate of all the parameters simultaneously,
which can be meaningfully examined for any compar-
ison of interest, as was exemplified earlier in Figure 5.
Consider again the tomato acidity data from Ref 36.
We can conduct a Bayesian ANOVA, and then com-
pute a contrast in which the third group is compared
with the mean of the other eight. Figure 6 shows the
resulting posterior distribution of the contrast, where
it can be seen that a difference of zero has little credibil-
ity. The conclusion from the contrast agrees with the
model comparison that group 3 is different from the
others, but the contrast estimate in Figure 6 is made
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FIGURE 6 | Posterior estimate for difference of groups in Solari
et al.3¢ The third group is credibly different from the mean of the other
eight groups.

while the other eight groups have their own (corre-
lated) individual mean estimates, unlike the model
comparison which assumes equal means in the other
groups.

The contrast estimate in Figure 6 also illustrates
shrinkage of the group estimates. Because eight of
the nine groups happen to have little between-group
variation, the estimate of the variance between the
group means is small, causing the estimate of the
mean of the third group to shrink toward the
overall baseline, away from that group’s sample
mean. Specifically, the mean of the posterior estimate
for group 3 is 6.17, which is noticeably less than
group 3’s actual sample mean of 6.77. Shrinkage is
a natural consequence of priors expressed by model
structure: the model assumes that groups come from
an overarching distribution, therefore data from
one group inform the estimate of the other group.
As described earlier, shrinkage is a rational way to
mitigate false alarms.

The Bayesian model-comparison approach is
sometimes touted as a way to garner evidence in
favor of the null hypothesis,**3> unlike traditional
NHST which can only reject the null hypothesis
and never accept it. Nevertheless, when a Bayesian
model comparison concludes by preferring the null
hypothesis, the analyst should be careful when
interpreting the result. Consider again the tomato
acidity experiment. Suppose that a model comparison
showed that two types of manuring yielded results so
similar that the null model is preferred, should we
believe the null hypothesis that there is no difference
between the two types of manuring? Probably not;
after all, the two types of manuring are, by definition,
different. What we really want is an estimate of the
magnitude of the difference. In this situation, when
we compute the posterior estimate, it will probably
span zero, from which we conclude that zero is
among the credible differences, but we will also have
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a posterior distribution that reveals our uncertainty
in that estimate, including other small but credible
differences.

There are even situations in which a null-versus-
alternative model comparison will favor the null, but
the posterior estimate of the effect will have an HDI
that excludes the null value.*® This situation can arise
when there is a confluence of two conditions. First,
the data indicate that the true effect is near the null
value, but the sample size is so large that there is only
a narrow range of non-null effect magnitudes that
accommodate the data. Second, the alternative prior
is so diffuse that its density is very slight at the effect
magnitudes indicated by the data. The consequence
of these conditions is that model comparison prefers
the null hypothesis because the alternative prior is
so diluted, but effect estimation excludes the null
value because the sample size is so large. This
uncomfortable situation highlights a general point
that the outcome of a Bayesian model comparison can
be very sensitive to the choice of priors in the two
models.*! One way to try to address the sensitivity is
by considering a spectrum of alternative priors, and
deciding that the null hypothesis should be preferred
if the model comparison favors the null across the
entire range of alternative priors.>> Unfortunately,
the spectrum of alternative priors that is usually
entertained in these approaches does not include the
most plausible alternative hypothesis, namely one
that is informed by previous research. When the
alternative prior is actually informed by previous data
and by tenable theory based on those data, rather
than being an untenable caricature of ‘objectivity’,
then the alternative prior will probably place fairly
high believability on values that are consistent with
the new data. In this situation, null-versus-alternative
comparison will have a much more difficult time
favoring the null hypothesis.

In general, Bayesian model comparison can be
an excellent procedure for judging the relative veracity
of genuinely viable models, as long as the priors in
each model are carefully justified and the conclusion
is examined for sensitivity to the priors.*!=*3 This
general assessment applies to the special case of
comparing null and alternative hypotheses. In other
words, the Bayesian model-comparison approach to
null hypothesis testing should be used only when
the null hypothesis is a genuinely tenable belief
in the context of the actual situation (Ref 34,
p- 235), and when the alternative hypothesis is also
formulated as a genuinely tenable belief, preferably as
informed by previous research. Otherwise, the model
comparison reveals merely which unbelievable prior
is more unbelievable. If a researcher is specifically
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interested in deciding between the null and alternative
models because those models have genuine theoretical
meaningfulness, then the Bayesian model comparison
procedure is quite appropriate. In some clinical
settings where a yes/no decision is demanded, rather
than a parameter estimate, the model-comparison
procedure may have better operating characteristics.**
It is up to the researcher to determine whether he or
she seeks a posterior estimate of effect magnitudes, or
a judgment about two vying hypotheses.

Can the Effect be Replicated? A Natural
Bayesian Answer

The previous sections have emphasized that the result
of Bayesian analysis is a posterior distribution that
reveals a joint estimate of all the parameter values,
given the data. The posterior estimate helps the
researcher achieve a goal of the research. Sometimes
the goal is to demonstrate that a null value is
incredible. Other times, such as in a political poll,
the goal is simply to get an estimate with a minimal
degree of precision. Greater precision can always be
obtained (on average) by collecting more data. With
the research goal specified, and an intended data-
collection procedure proposed, we can ask how likely
it is to achieve the goal.

The Bayesian framework provides a natural
way to address the question (unlike NHST, which
suffers serious problems; see Ref 6). The posterior
distribution on the parameters indicates the most
credible values, given the data. These parameter values
shape the model that we use to describe the data. The
model, with its credible parameter values, can also be
construed as a machine for generating random data
that should be distributed like the actual data. We use
the generative model as a mechanism for anticipating
results from repeating the experiment.

Consider, for example, the posterior that is
shown in Figure 4. To generate data from the
posterior, we start by randomly selecting a believable
baseline value (from the upper left distribution in
Figure 4), along with its believable treatment effect
(from the pertinent treatment distribution in Figure 4),
and its subject effect (not shown in Figure 4), and then
randomly selecting RTs based on those believable
parameter values.Y The posterior thereby implies
what believable data should look like, incorporating
our uncertainty regarding the underlying parameter
values.

We use the posterior distribution to simulate
data from many replications of an intended experi-
ment. From the simulated replications, we tally how
often the research goal is achieved. For example, in
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the simulated replications, we can tally how often the
HDI excluded the ROPE, or we can tally how often a
desired precision was achieved.

Figure 7 lists three types of replication proba-
bility in a Bayesian framework. The first row of the
table expresses an actual Bayesian analysis for a set
of data observed from the real-world. The prior for
the analysis is whatever the analyst and the skeptical
scientific audience can agree upon. The result of the
analysis is the actual posterior distribution.

The remaining rows of Figure 7 describe ways to
define the probability that an intended data-collection
procedure will accomplish a desired research goal.
In all cases, data are repeatedly simulated from
an assumed generative distribution that models the
world, and the simulated data are examined by
a Bayesian analysis. What differs among the three
ways is the assumptions regarding the generative
distribution and the prior used for the Bayesian
analysis of the simulated data.

A prospective power analysis uses a researcher’s
hypothetical belief distribution over model parameters
to generate simulated data. Each set of simulated
data is examined with a Bayesian analysis that uses a
skeptical-audience prior. The resulting posterior either
does or does not accomplish the research goal, and a
tally is kept across the many simulated data sets, as an
estimate of the probability that the research goal will
be accomplished.

A retrospective power analysis proceeds the
same way as a prospective power analysis except that
the data generator is the actual posterior distribution
from a previously conducted experiment. The idea is
that the researcher’s best estimate of the world is the
posterior from the previous experiment, and therefore
that posterior is used to generate simulated data. The
simulations are tallied for whether or not the research
goal is achieved.

Finally, a cumulative replication probability is
computed by using the actual posterior as the data
generator and the actual posterior as the prior for the
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Bayesian analysis. The idea here is that the simulated
data are treated as cumulative along with the actual
experiment’s data, so that the simulated data represent
a simulated cumulative replication of the original
experiment.

To clarify these concepts, what follows is a
specific example of a retrospective power analysis.
Consider another learning experiment, this one
involving learning which keys to press in response to
simple geometric figures. The figures were rectangles
that had different heights, containing a vertical interior
segment that could have different lateral positions.
Different groups of learners had to learn different
correspondences of rectangles to key responses.
The two filtration correspondences allowed perfect
classification by attending to height alone or to
segment position alone; the other dimension could be
filtered out. The two condensation correspondences
required attention to both stimulus dimensions to
achieve perfect accuracy. The primary goal of the
experiment was to assess whether learning accuracy
was better in the filtration conditions than in the
condensation conditions, as predicted by theories that
posit learned attention to dimensions (see Ref 45, for
more details).

The results can be examined with a hierarchical
Bayesian data analysis. Each individual provides a
number correct out of the total number of training
trials. This number correct was, for purposes of
illustration, simplistically modeled as a random draw
from a binomial distribution. (In other words, changes
of accuracy across trials were not modeled; merely
the overall accuracy was modeled.) The binomial
distribution has a parameter that describes the
probability of being correct on a trial; every individual
was allowed to have a different value for this
parameter. The individual parameters were modeled
as coming from an overarching distribution for the
group. (The model of individual differences used
here is a simplistically unimodal beta distribution;
see Ref 46 for more details regarding individual
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differences within these groups, and see Ref 47 for
a Bayesian approach to finding clusters of individuals,
analogous to the method of Ref 39 for finding clusters
of groups in ANOVA.) The overarching distribution
has two parameters that describe its mean and
narrowness. The mean parameter for each group is
the primary descriptor of interest.

Figure 8 shows results of the Bayesian analysis.
The top row shows the prior distributions of the group
accuracy parameters for the four groups. The mildly
informed prior gave greater believability to accuracies
greater than chance, because these learning tasks were
known to be fairly easy. The second row shows
the prior on selected contrasts of the group-mean
parameters, as implied by simply taking differences of
the prior mean parameters. The third row shows the
posterior on the group-mean parameters. Notice that
their range is much smaller than the range of priors,
which suggests that the mildly informed prior had
very little influence on the posterior. (Repeating the
analysis with other priors confirms that the posterior
is negligibly affected by this prior.) The bottom row
shows various comparisons of the group parameters.
In particular, the lower-right distribution shows that
the average of the filtration groups is much higher
than the average of the condensation groups; 100%
of the posterior falls well above a difference of zero.
On the other hand, the lower-left distribution shows
that two filtration groups are only marginally different
from each other, depending on how wide a ROPE is
defined. The lower-middle distribution shows that the
most credible difference between the two condensation
groups is essentially zero, and the distribution also
shows the range of uncertainty around the estimate.

Now that the actual posterior distribution has
been established, we can ask about replication prob-
ability. In particular, I will illustrate a retrospective
power analysis. The posterior shown in Figure 8 con-
stitutes our best estimate of the parameters that
describe people’s accuracy in these groups. We can
therefore use these estimates to predict what would
happen if we had run the experiment using differ-
ent sample sizes. To do this, we generate simulated
data for a subject as follows: first, randomly sample
representative parameter values from the posterior to
simulate the subject, then use that subject’s parameter
values to randomly generate simulated data. Repeat
this process for every simulated subject. Then, con-
duct a Bayesian analysis on the simulated data and
assess whether the goal was achieved.

In the present application, there are at least
three different goals we may want to achieve. First
and foremost, we may want to show that the mean
accuracy of the filtration groups is credibly higher
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than the mean accuracy of the condensation groups.
We will declare this goal to be achieved if the
95% HDI of the p differences excludes a ROPE
extending from —0.01 to +0.01. Second, we may
want to show the more subtle difference between the
two filtration groups is credible. We will declare this
goal to be achieved by the same criterion as for the
first goal. Notice that this criterion is barely exceeded
in the lower-left panel of Figure 8. Third, because the
two condensation were not expected to differ much,
we may want to achieve a specific minimal precision
on the estimate of the difference between the two
condensation groups. We will declare this goal to be
achieved if the width of the 95% HDI s less than 0.135,
as it is, for example, in the lower-middle panel of
Figure 8. The goal of minimal precision is more robust
than the goal of excluding a ROPE from an HDI,
because minimal precision can always be achieved
(in principle) with a larger sample size, but excluding
a ROPE from an HDI can only be achieved with high
probability if the data-generating distribution actually
has a fairly certain non-null effect. (For other goals
involving the HDI, see Refs 48—53. For goals involving
model comparison, see Refs 49,54.)

We also must decide what prior to use in
the Bayesian analysis of the simulated data. For
the present demonstration, we will suppose that the
analysis of the simulated data is to be presented to
an audience who knows only of the new data, and
therefore the Bayesian analysis will use the same prior
that we used for the initial analysis. This is a case of
retrospective power analysis as listed in Figure 7.

There were 500 simulated replications run.
When the sample size was N =40 per group, as
in the original experiment, there was 100% success
in showing that filtration is more accurate than
condensation. But there was only 23% success in
showing that the two filtration groups differed from
each other, i.e., that the 95% HDI of the difference
excluded the ROPE of [—0.01,-+0.01]. In other
words, the marginal difference observed in the actual
data (lower-left panel of Figure 8) had a relatively
small probability of exceeding the ROPE. Finally, the
probability is 60% that the width of the 95% HDI
of condensation differences achieves 0.15 or less.
If either of the latter two goals was of primary concern,
we would want to increase the sample size to attain
a higher probability of achieving the goal. If, on
the other hand, the primary goal is merely showing
that filtration is more accurate than condensation,
we can get away with using fewer subjects. It turns
out that when the sample size is only N =8 per
group, the probability that the 95% HDI of filtration
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minus condensation exceeds the ROPE is still 89%. Of
course, the probability of achieving the other two goals
drops dramatically, to only 5% and 0%, respectively.

A researcher might instead be interested in com-
puting the probability of achieving the goal in a follow-
up or continuation of the already obtained data. In
this case, the posterior of the original data analysis is
the prior for the simulated replication, to determine
what is anticipated for accumulated data rather than
de novo data. This is called the cumulative replication
probability and is listed in the bottom row of Figure 7.

The specific types of goal-achievement prob-
abilities listed in Figure 7 use novel nomenclature,
but the simulation approach described here was also
presented by Wang and Gelfand,’? who, like their
predecessors, distinguished between data-generating
distributions and analysis priors. The approach
described here has assumed a data-generating distribu-
tion based on a posterior from a single experiment, but
De Santis®® described how to mix posteriors from sev-
eral previous experiments to create a data-generating
distribution.

It is important to recognize that the use of simu-
lated data for computing replication probabilities does
not fall victim to the criticisms of NHST presented
earlier in this article. NHST uses intention-based sim-
ulated data to interpret the significance of actual
data via a p value, but the computation of replica-
tion probability does not. Replication probability uses
intention-based simulations exactly as appropriate,
viz, to anticipate probable results if the intended exper-
iment were conducted. But all the simulated data, and
the actual data, are analyzed in a Bayesian fashion.

CONCLUSION

This article began by pointing out that NHST is based
on the intentions of the researcher and analyst: the
p value depends entirely on the assumed intention.
If data are collected for a certain duration instead of
for a certain sample size, the p value changes. If some
data are lost by accident or attrition or declaration
of outliers, the p value changes. If the analyst wants
to be thorough and investigate multiple comparisons,
the p value changes. If the researcher might possibly
collect more data in the future that could be compared
with the present data, then the p value of the present
data changes.
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Bayesian data analysis does not suffer those
dependencies on the researcher’s intentions. Bayesian
data analysis computes what we actually want to
know: the believability of candidate values given the
data we have actually observed. Bayesian data analy-
sis yields natural ways to assess the credibility of null
values, and the probability of achieving a research
goal.

Bayesian data analysis can and should endure
regardless of whether Bayesian models of cognition
endure. As modelers of mind, we do not know what
models and parameters the mind might be using, and
so it is an open question as to whether we will be
able to create models that accurately mimic human
cognition.>® But Bayesian data analysis is based on
generic descriptive models (e.g., linear regression,
ANOVA, etc.) that are useful for summarizing trends
in data regardless of the underlying natural processes
that generated those data. As data analysts, we get
to define the models and parameters of interest to us,
and, having done so, then the rational way to allocate
beliefs among those models and parameters is via
Bayesian analysis. A tutorial for doing the analyses in
this article is available.®

The advantages of Bayesian analysis have been
recognized by many scientific disciplines, including
archeology,®” astrophysics,’® conservation biology,>’
ecology,®® epidemiology,®! evolutionary biology,®?
meteorology,®? political science,®* etc. It is time that
cognitive science does too.

NOTES

9There are various ways of defining a confidence inter-
val. In all definitions, the interval is a random entity
that is defined in terms of its behavior across replica-
tions of the intended experiment.

bThe program for generating the sample was written
in the R language,®® using the BRugs interface®® to
the OpenBUGS version®” of BUGS.%8

“What I call the HDI is often referred to as the high-
est posterior density (HPD) interval. I use the more
general term, HDI, so that it can be applied either
to the prior distribution or to the posterior distribu-
tion.

4Terminology: the distribution of data generated by
the posterior distribution of parameters is sometimes
called the ‘posterior predictive distribution’.

The author thanks Michael Erickson and Luiz Pessoa for helpful comments on a draft of this article.
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