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Conventional wisdom suggests that only the estimated intercept is affected by
imposition of a zero censoring threshold on a Tobit model. This is true for
Heckman–Lee estimation. For maximum likelihood (ML) estimation, however, it is
only true if the censoring threshold is known and is subtracted from the dependent
variable. Failure to properly transform the dependent variable prior to ML
estimation of a zero threshold Tobit model will generally bias the coefficient
estimates. A long neglected topic is ML estimation of a Tobit model with common,
but unknown, censoring threshold. This paper shows that the ML estimator of the
censoring threshold is the minimum order statistic from the observed subsample, and
that existing software for estimation of a zero-threshold Tobit model is easily
adapted to include estimation of the censoring threshold.

I . INTRODUCTION

Conventional wisdom suggests that only the estimated
intercept is affected by imposition of a zero censoring
threshold on a Tobit model.1 This is true for Heckman–Lee
(HL) estimation. For maximum likelihood (ML) estima-
tion, however, it is only true if the censoring threshold is
known and is subtracted from the dependent variable.
Failure to properly transform the dependent variable prior
to ML estimation of a zero threshold Tobit model will
generally bias the coefficient estimates. A long neglected
topic is ML estimation of a Tobit model with common, but
unknown, censoring threshold. This paper shows that the
ML estimator of the censoring threshold is the minimum
order statistic from the observed subsample, and that
existing software for estimation of a zero-threshold Tobit
model is easily adapted to include estimation of the
censoring threshold.

II . THE TOBIT MODEL

The model considered in this paper has been classified as a
‘Type I Tobit’ model by Amemiya (1985). The form of the
latent regression is:

Y�
i ¼ �þ Xi�þ �"i

where "is i.i.d.N(0, 1). The dependent variable Y�
i is not

observed. Instead, a censoring indicator, Ji, is observed
where

Ji ¼ 1 if Y�
i > �

and

Ji ¼ 0 if Y�
i < �

The parameter � is a common censoring threshold.2 The
observed dependent variable, denotedYi, equalsY

�
i if Ji¼ 1.

1 Examples are numerous. Amemiya (1985, 363) denotes the censoring limit by y0, and states that a zero censoring limit can be imposed ‘without essentially
changing the model, whether y0 is known or unknown, because y0 can be absorbed into the constant term of the regression’. Maddala (1983, 159) specifies
the Tobit model with zero censoring limit in his Equation (6.1), and states that ‘the Tobit model can be specified as in Equation (6.1) without loss of
generality’. Finally, Greene (2000, 906) states that he will ‘assume that the censoring point is zero, although this is only a convenient normalization’.
2As presented here, an observation is censored if it is strictly less than �. In what follows, the only result that changes if an observation is censored when it
is less than or equal to �, is that the maximum likelihood estimator of � corresponds to the supremum of the likelihood function rather than the maximum.
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The value of Yi is missing (although commonly coded as
zero) if Ji¼ 0. The vector of regressors, Xi, is observed
regardless of any censoring of the dependent variable.

If � is known, then the model may be expressed in
equivalent form as a zero-threshold model. Subtracting �
from both sides of the latent regression gives

y�i ¼ � þ Xi�þ �"i

where y�i ¼Y�
i � � and �¼ �� �. The censoring indicator,

Ji, is determined as

Ji ¼ 1 if y�i > 0

and

Ji ¼ 0 if y�i < 0

The observed dependent variable, yi, equals y�i if Ji¼ 1.
The value of yi is missing if Ji¼ 0.

Heckman (1976) and Lee (1976) provide a particularly
simple estimator for the Tobit model. In the first stage, a
Probit model is estimated using only the qualitative infor-
mation in the observed values of Ji. The log-likelihood
function of the Probit model is

ln Lð�; �; �; �Þ ¼
Xn
i¼1

Ji ln 1��
�� �� Xi�

�

� �� ��

þð1� JiÞ ln�
�� �� Xi�

�

� ��

where �( ) denotes the standard normal distribution func-
tion. Without quantitative information, only the standar-
dized parameters 	¼ (�� �)/� and 
¼ �/� are identified.
The identification conditions �¼ 1 and �¼ 0 may be
imposed on the Probit model without loss of generality.3

The first stage estimates of 	 and 
 are then used to construct
an auxiliary regressor based on the conditional expectation
E("i j Ji¼ 1). In the second stage, ordinary least squares
(OLS) is applied to the subsample regression function

Yi ¼ �þ Xi�þ �
� �	̂� Xi
̂
� 	

1�� �	̂� Xi
̂
� 	

" #
þ �i

where �( ) denotes the standard normal density function.
The zero threshold form of the subsample regression func-
tion is obtained by subtracting � from both sides of the
equation. Since the second stage regression is estimated by
OLS, the only effect of subtracting � from the dependent
variable is to reduce the estimated intercept accordingly.
The estimate of �, and the maximized value of the likelihood
function from the second stage regression are unchanged.
This is probably why �¼ 0 is often mistaken as an
identification condition for the Tobit model.

Assuming that � is known, the log-likelihood function of
the Tobit model is

ln Lð�; �; �Þ ¼
Xn
i¼1

Ji �lnð�Þ þ ln �
Yi � �� Xi�

�

� �� ��

þ ð1� JiÞ ln �
�� �� Xi�

�

� ��

The zero threshold form of the log-likelihood function is

ln Lð�; �; �Þ ¼
Xn
i¼1

Ji �lnð�Þ þ ln �
yi � � � Xi�

�

� �� ��

þ ð1� JiÞ ln �
�� � Xi�

�

� ��

It is important to note that the zero threshold log-
likelihood function is expressed in terms of the transformed
dependent variable, yi¼Yi � �, not the original dependent
variable, Yi. If the dependent variable yi is properly con-
structed, then maximization of lnL(�,�, �) is equivalent to
maximization of lnL(�,�, �). The estimates of � and � are
identical, and the estimates of � and � are related as �̂ ¼

�̂þ �. When the censoring threshold is known, either model
can be estimated, provided that the proper dependent
variable is constructed.

This does not imply that the restriction �¼ 0 is an
identification condition for the Tobit model. Failure to
construct the transformed dependent variable, yi¼Yi� �,
when estimating a zero threshold Tobit model will constrain
the maximized value of the likelihood function, and will
result in biased coefficient estimates. The intuition behind
this bias is simple. When expressed as a zero threshold
model, the intercept of the regression model is reduced by �.
If the dependent variable is not properly transformed, then
this reduction in mean is not reflected in the empirical
distribution of Yi, and any decrease in the intercept
degrades the fit of the observed subsample. Since the
Tobit ML estimates are the solution to a set of simultaneous
nonlinear implicit functions, the effects of a failure to
properly transform the dependent variable will spill over to
the estimates of � and �. In contrast, the HL estimator of �
is invariant to the choice of �, because it fails to impose the
functional relationship between the parameters in the first
and second stages of estimation. Of course, this is also the
source of the inefficiency of the HL estimator.

III . ML ESTIMATION OF THE CENSORING
THRESHOLD

This section considers the case where � is unknown.4 The
maximization problem is complicated by the fact that the

3 In contrast, when the quantitative information in the observed subsample of Yi is included, the parameters �, �, �, and � are all identified.
4 To my knowledge, estimation of the Tobit model when � is unknown has not been considered in the literature. Of course, there have been many
generalizations of the Tobit model that relax the assumption of a common censoring threshold. These models are more appropriate in many applications
than the standard Tobit model. Nevertheless, the standard Tobit model is still widely used.
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sample space of the observed dependent variable, Yi, is a
function of the unknown parameter �.5 The likelihood
function above, lnL(�,�, �), is only valid for values of �
that keep all observed values of Yi in the sample space.
Specifically, it is required that �6Yi for all observations in
the observed subsample. If �>Yi for any observation, there
is a contradiction; the observed value of Yi should have
been censored. This restriction may be simplified to �6Y1,
where Y1 denotes the minimum order statistic from the
observed subsample. The minimum order statistic for the
observed subsample provides an upper bound for the cen-
soring threshold.

The log-likelihood function of the Tobit model may be
generalized to include this restriction on the sample space
through the use of an indicator function. Specifically, let
�(�)¼ 1 if �6Y1 and �(�)¼ 0 if �>Y1. If �(�)¼ 0, a value
of � has been chosen that is inconsistent with the observed
data. Using this notation, the log-likelihood function may
be written as

ln Lð�; �; �; �Þ ¼
Xn
i¼1

Ji �lnð�Þ þ ln �
Yi � �� Xi�

�

� ���

þ ln �ð�Þ

�
þ ð1� JiÞ ln �

�� �� Xi�

�

� ��

This generalization simply recognizes that the probability
of (Yi, Ji) pairs outside the sample space is zero.6

Where it exists, the score equation for � is

@ ln Lð�; �; �; �Þ

@�
¼

Xn
i¼1

ð1� JiÞ�
�1�

�� �� Xi�

�

� �

� �
�� �� Xi�

�

� �� ��1

which is always positive. The log-likelihood function is
increasing in �, for any �<Y1. The log-likelihood function
is discontinuous at �¼Y1, however. For any �>Y1, the
value of �(�) is zero, and the log-likelihood function falls
precipitously; essentially to minus infinity. The maximum
to the likelihood function over � occurs at Y1. The ML
estimator, �̂, is the minimum order statistic from the
observed subsample of Y.7

Substituting �̂¼Y1 into lnL(�,�, �, �) gives the concen-
trated log-likelihood function

ln Lð�; �; �; �̂Þ ¼
Xn
i¼1

Ji �lnð�Þ þ ln �
Yi � �� Xi�

�

� �� ��

þ ð1� JiÞ ln �
�̂� �� Xi�

�

� ��

Letting yi¼Yi � �̂ and �¼ �� �̂, the concentrated log-
likelihood function may be written as

ln Lð�; �; �; �̂Þ ¼
Xn
i¼1

Ji �lnð�Þ þ ln �
yi � � � Xi�

�

� �� ��

þ ð1� JiÞ ln �
�� � Xi�

�

� ��

This is just the log-likelihood function of the zero threshold
Tobit model, where the ML estimator �̂ is subtracted from
the dependent variable. Consequently, software for estima-
tion of a zero threshold Tobit model is easily adapted to
the case of an unknown censoring threshold.8 Conventional
test statistics for the Tobit model are valid conditional on �̂.

IV. DATA GENERATION

The purpose of the Monte Carlo portion of this study is to
examine how imposition of a zero censoring threshold
affects the estimate of � when the true censoring threshold
is positive. In order to focus on this topic, the structure of
the model is kept as simple as possible. The model contains
an intercept, �, and a single regressor, X, with coefficient,
�. The regressor, X, is a random draw of independent
standard normals, and is fixed in repeated sampling. The
assumption of a zero mean and unit variance for the
regressor involves no loss in generality. In practice,
standardizing a regressor will simply scale the coefficient
estimate without affecting the precision of the estimate
or the fit of the model. The disturbance, ", is a sequence
of independent standard normals that are statistically
independent of X. Given this structure, the unconditional
mean of the latent dependent variable Y* is controlled by
the single parameter �.

5 The sample space of the latent dependent variable, y�i , is the set of real numbers, while the sample space of the observed dependent variable, yi, is the set
of nonnegative real numbers.
6 Current econometric software is written for the case of known �, and does not control for the discontinuity in the likelihood function induced by the
restricted sample space of Y. For example, if the transformed dependent variable, yi¼Yi� �, is constructed using an invalid value of � (one exceeding Y1),
and zero threshold software is used to maximize lnL(�, �, �), incorrect values for the likelihood function will be reported without any error message or
warning. Furthermore, for invalid �, the reported value of the log-likelihood function will differ from one software package to the next, depending on how
the censored subsample is determined. (See footnote 8.)
7 The problem is similar to that of finding the ML estimator of � for a random sample of uniform random variables on the interval (0, �). The ML
estimator for this problem is the largest order statistic.
8A practical problem arises with software packages that determine the censored subsample from the numerical value of the dependent variable, rather
than from a separate binary variable that indicates censoring. If observations for which yi6 0 are treated as censored, then the observation corresponding
to Y1 will be switched from the observed to the censored subsample after construction of yi. The simplest solution to this problem is to choose as the
estimate of � a number ‘slightly’ smaller than Y1.
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Two factors affecting the performance of Tobit estima-
tors are the fit of the latent regression and the degree of
censoring. Nelson (1984) shows that the variance of the
Tobit estimator is affected proportionally by a change in �.
When comparing the relative performance of the estimator,
the choice of � is arbitrary. Changes in � affect the absolute,
but not the relative scale of the variances. If the normal-
ization �¼ (1� �2)1/2 is adopted, then the fit of the latent
regression is controlled by the single parameter, �. For this
choice of �, the slope coefficient, �, corresponds to the
correlation coefficient between Y* and X. The parameters �
and � affect the probability of censoring only through the
difference �� �. Constructing � as �¼ �� �, where � is the
critical value of the standard normal distribution function
that gives the desired degree of censoring, results in equi-
valent variation in � and � that leaves the probability of
censoring unchanged. This allows an examination of the
effect of an increase in � on the performance of the zero
threshold Tobit model, without confounding variation in
the degree of censoring.

A brief summary of theMonte Carlo process is as follows:

(1) The regressor, X, is drawn. It is fixed across
repetitions.

(2) The disturbance " is drawn. Given the regressor, X,
and the parameters �, �, and �, the values of Y and J
are computed.

(3) Coefficient estimates are obtained for each of the
estimators.

(4) Steps 2 and 3 are repeated on successive repetitions,
and sample moments for the estimators are compiled
across repetitions.

The data generation process was carefully structured in
order to limit intra-experiment random variation.9 Each
estimator is applied to the same sequence of data sets for
any given parameter combination, (�, �, �). This will limit
random variation in comparisons across estimators.
In addition, the same sequence of independent standard
normal errors, ", will be used to construct the data sequence
(Y, J ) required for each distinct parameter combination.10

This will limit random variation in comparisons across
parameter values.

V. RESULTS

Zero threshold software may be used to obtain ML
estimates of the Tobit model, whether � is known or
unknown. The essential step is construction of the proper
dependent variable. If � is known, the user must construct

the transformed dependent variable, yi¼Yi � �. This
estimator will be referred to as the KT-MLE (known
threshold). If � is unknown, the user must construct
yi¼Yi � Y1. This will be called the MOS-MLE (minimum
order statistic). Use of the original dependent variable, Yi,
in conjunction with zero threshold software will be called
the ZT-MLE (zero threshold). For nonzero �, this
estimator is generally biased.

Section II showed that the HL estimator of � is invariant
to the value of �. The MOS-MLE and KT-MLE are also
invariant to variation in �, provided the degree of censoring
is held constant. Recall that the degree of censoring is held
constant in the face of an increase in �, by imposing a
symmetric increase in � that leaves the difference �� �
unchanged. Since an increase in � results in one-to-one
increases in Yi and Y1, simultaneous increases in � and �
will leave the transformed dependent variables, Yi � Y1

and Yi � �, unchanged. Only the ZT-MLE will be affected
by variation in �.

The results of this section are based on 500 repetitions of
samples of size 100. Figure 1 plots the mean bias of the
estimate, as a percentage of the true �, against the true
value of the censoring threshold, �. Figure 2 plots the root
mean square error of the estimate, again as a percentage of
the true �, against the censoring threshold. The mean
values appear as a solid line, while a 95% asymptotic
confidence interval is given by the surrounding dotted
lines. Results are shown for censored subsamples of 25%,
50% and 75%. In both figures, the explanatory power of
the latent regression is 50%.11

Figure 1 shows that the mean bias of the ZT-MLE is
increasing in � and increasing in the degree of censoring.
The mean bias of the ZT-MLE is linear in � for any given
degree of censoring. For example, with a censored
subsample of 50%, a one standard deviation increase in �
results in a 75% increase in mean bias.12 As noted earlier,
the MOS-MLE and HL estimates of � are invariant to
changes in �. Since the mean bias of both of these
estimators is statistically zero, results are only reported
for the case of censored subsamples of 25%. Finally, the
mean bias of the KT-MLE (for all values of �) is given by
the vertical intercept of the ZT-MLE. The mean bias of the
KT-MLE is also statistically zero.

Figure 2 reports the root mean square error (RMSE) of
the estimators as a function of �. The RMSE of the ZT-
MLE is increasing in � and increasing in the degree of
censoring. For � greater than 0.5, the RMSE is essentially
linear in � for any given degree of censoring. For a censored
subsample of 50%, a one standard deviation increase in �
results in approximately a 90% increase in RMSE.

9 See Hendry (1984).
10 The independent standard normals were obtained with the algorithm of Forsythe et al. (1977).
11 The results obtained when the explanatory power was increased to 75% or decreased to 25% were almost indistinguishable from those presented in
Figs 1 and 2. The mean values of each specification generally fell within the envelope formed by the 95% confidence intervals.
12 Examination of the log-likelihood function shows that it is the size of � relative to � that determines its empirical significance.
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Fig. 2. Root mean square error (%) as a function of � (n ¼ 100, repetitions¼ 500, R2
¼ 0.50)

Fig. 1. Mean bias (%) as a function of � (n¼ 100, repetitions¼ 500, R2
¼ 0.50)
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Results for the HL and MOS-MLE are only reported for
censored subsamples of 75%. This figure represents a
‘worst case’ scenario for the HL estimator. As would be
expected, the MOS-MLE has a MSE advantage on the HL
estimator. As the degree of censoring is reduced, the
RMSE of both of these estimators falls. The size of the
MSE advantage diminishes as the degree of censoring is
reduced.

Despite its bias, the ZT-MLE has a MSE advantage over
the HL estimator for sufficiently small �. With censored
subsamples of 75%, the RMSE of the ZT-MLE is lower
than that of the HL estimator for � less than about 1.1
standard deviations. As the degree of censoring falls, the
RMSE of the HL estimator falls. For censored subsamples
of 25% (not shown), the RMSE of the ZT-MLE is lower
than that of the HL estimator for � less than about 0.75
standard deviations. This is just a reflection of the relative
inefficiency of the HL estimator.

Finally, the RMSE of the KT-MLE (for all values of �) is
given by the vertical intercept of the ZT-MLE. The RMSE
of the KT-MLE and MOS-MLE are virtually identical for
like degrees of censoring. Since imposing a valid constraint
can only improve the precision of the estimates, the KT-
MLE is expected to have a MSE advantage over the MOS-

MLE. The results of Fig. 2 show that this MSE advantage
is trivial for the sample sizes considered here. Even for
observed subsamples averaging 25 observations (where
75% of 100 observations are censored), the precision of the
MOS estimator of � is sufficient to yield almost indis-
tinguishable results.

While the ZT-MLE of � is biased upwards, its
corresponding t-statistic is biased downward. Figure 3
depicts the relationship between the censoring threshold, �,
and the mean value of the t-statistic obtained under the
null hypothesis �¼ 0, for different degrees of censoring and
explanatory power. First, the degree of censoring is fixed at
75%, and the degree of explanatory power, represented by
R2, is decreased from 75%, to 50%, to 25%. In each case,
the mean value of the t-statistic is decreasing in �, and this
relationship is shifted downward by a decrease in
explanatory power. For sufficiently large values of � and
sufficiently small values of R2, the outcome of the test is
altered by use of the ZT-MLE.

Figure 3 also illustrates the effects of variation in the
degree of censoring. The degree of explanatory power is
fixed at 25%, and the degree of censoring is increased from
25%, to 50%, to 75%. The mean value of the t-statistic is
again decreasing in �, and the relationship is shifted

Fig. 3. Mean value of t-statistic (Ho :�¼ 0) as a function of � (n¼ 100, repetitions¼ 500)

1168 T. W. Zuehlke

D
ow

nl
oa

de
d 

by
 [

14
1.

21
2.

10
8.

13
] 

at
 2

1:
26

 1
8 

Ju
ly

 2
01

4 



downward by an increase in the degree of censoring. For
sufficiently large values of � and a sufficiently high degree
of censoring, the outcome of the test is altered by use of the
ZT-MLE.

VI. CONCLUSION

This paper shows that proper treatment of the censoring
threshold when estimating a Tobit model is no trivial
matter. If the censoring threshold is known, it must be
subtracted from the dependent variable prior to ML
estimation of a zero-threshold model. Failure to do so
will result in an upward bias in the coefficient estimates,
and a downward bias in conventional t-statistics. The ML
estimate of a common censoring threshold is shown to be
the minimum order statistic from the observed subsample.
Existing software for estimation of the zero-threshold
Tobit model is easily adapted to this case, by simply
subtracting the ML estimate of the censoring threshold
from the dependent variable prior to use. The MSE of this
generalized ML estimator is found to rival that of the
conventional ML estimator (where the censoring threshold
is known), even for relatively small observed subsamples.
Whether the censoring threshold is known or unknown,
failure to properly transform the dependent variable

mis-specifies the Tobit model and results in a substantial
increase in MSE.
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