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Organic reaction mechanism classification 
using machine learning

Jordi Burés1 ✉ & Igor Larrosa1 ✉

A mechanistic understanding of catalytic organic reactions is crucial for the design  

of new catalysts, modes of reactivity and the development of greener and more 

sustainable chemical processes1–13. Kinetic analysis lies at the core of mechanistic 

elucidation by facilitating direct testing of mechanistic hypotheses from experimental 

data. Traditionally, kinetic analysis has relied on the use of initial rates14, logarithmic 

plots and, more recently, visual kinetic methods15–18, in combination with mathematical 

rate law derivations. However, the derivation of rate laws and their interpretation 

require numerous mathematical approximations and, as a result, they are prone to 

human error and are limited to reaction networks with only a few steps operating 

under steady state. Here we show that a deep neural network model can be trained to 

analyse ordinary kinetic data and automatically elucidate the corresponding 

mechanism class, without any additional user input. The model identifies a wide 

variety of classes of mechanism with outstanding accuracy, including mechanisms 

out of steady state such as those involving catalyst activation and deactivation steps, 

and performs excellently even when the kinetic data contain substantial error or only 

a few time points. Our results demonstrate that artificial-intelligence-guided 

mechanism classification is a powerful new tool that can streamline and automate 

mechanistic elucidation. We are making this model freely available to the community 

and we anticipate that this work will lead to further advances in the development of 

fully automated organic reaction discovery and development.

Determining the exact sequence of the elementary steps involved 

in transforming substrates into products is essential in regard to 

rational improvement of synthetic methods, design of new catalysts 

and safely scale-up industrial processes (Fig. 1a–d)1–4. To elucidate 

the mechanism of a reaction, several kinetic profiles are collected 

and human experts must carry out kinetic analysis of the data. 

Although reaction-monitoring technology has improved markedly 

during past decades to the point at which kinetic data collection can 

be fully automated19–22, the underlying theoretical framework for 

mechanism elucidation has not advanced at the same pace. The cur-

rent pipeline for kinetic analysis involves three broad steps (Fig. 1e, 

top path): extraction of kinetic properties from experimental data, 

prediction of the kinetic properties of all plausible mechanisms and 

comparison of experimentally extracted properties with those pre-

dicted. The method most commonly used to extract kinetic proper-

ties, despite its numerous pitfalls23, is the log–log plot of initial rates 

developed over a century ago14. Modern kinetic analyses, such as 

reaction progress kinetic analysis15,16 and variable time normalization 

analysis17,18, extract richer kinetic information using entire kinetic 

profiles rather than only a small section of them. However, they miss 

implicit kinetic information embedded in the kinetic profiles because 

they focus on specific reaction properties, mainly orders of reaction. 

Prediction of kinetic properties also requires that chemists fully mas-

ter the intricate derivation and interpretation of steady-state rate 

laws. Although steady-state equations are a good approximation 

to the kinetic behaviour of many mechanisms, they fail to predict 

commonly found systems far from steady state, such as reactions 

with slow catalyst activation or irreversible catalyst deactivation24. 

In addition, even moderately complex reaction networks can lead to 

unmanageable rate law equations that are exceedingly difficult to 

interpret. Alternatively, kinetic modelling has been used to fit kinetic 

data and, although it is a powerful engineering tool for parametriza-

tion of chemical processes, its applicability to mechanism elucidation 

is limited due to the difficulties involved in discriminating between 

models with similar goodness of fit25.

Inspired by recent dramatic advances in the application of artificial 

intelligence (AI) to long-standing scientific challenges26–33, we envi-

sioned that AI could transform the field of kinetic analysis. Herein we 

demonstrate that a deep learning model trained on simulated kinetic 

data is capable of correctly elucidating a wide variety of classes of mech-

anisms from temporal concentration profiles (Fig. 1e, bottom path). 

The machine learning model eliminates the need for rate law deriva-

tions and kinetic property extraction and prediction, thus streamlin-

ing kinetic analysis and greatly facilitating the elucidation of reaction 

mechanisms to all synthetic laboratories. The method increases the 

capacity to interrogate reaction profiles because of the holistic analysis 

of all kinetic data available, removes potential human error from the 

kinetic analysis process and expands the scope of the kinetics that 

can be analysed to include non-steady-state (including activation and 

deactivation processes) and reversible reactions. We envision that this 
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method will be complementary to currently available kinetic analysis 

methods and will be especially useful in the most challenging cases.

We considered 20 commonly encountered mechanisms of reac-

tions converting substrate (S) to product (P) mediated by a catalyst 

(cat) (Fig. 2a). These mechanisms belong to four distinct categories 

(Fig. 2a): (1) the core mechanism (M1), which is the simplest Michae-

lis–Menten-type mechanism14; (2) mechanisms with bicatalytic steps 

(M2–M5) that involve either catalyst dimerization (M2 and M3) or 

a reaction between two different catalytic species (M4 and M5); (3) 

mechanisms with catalyst activation steps based on the core mecha-

nism, in which a precatalyst requires activation unimolecularly (M6) 

via either substrate coordination (M7) or ligand dissociation (M8); 

and (4) mechanisms with a variety of catalyst deactivation steps from 

either catalytic intermediate of the core mechanism (M9–M20), which 

are often extremely challenging to differentiate but are encountered 

in the vast majority of catalytic processes.

Each mechanism is mathematically described by a set of ordinary dif-

ferential equations (ODEs) function of kinetic constants (k1, … kn) and 

concentration of chemical species (Supplementary Information). These 

equations allow the generation of an infinite number of temporal con-

centration profiles of substrate and products, defining a kinetic space. 

Although kinetic spaces are characteristic for each mechanism, they can 

partially overlap. For example, if a particular set of kinetic constants for 

M2 results in no substantial formation of the off-cycle dimer cat2, the 

resulting kinetic profiles are indistinguishable from those of the core 

mechanism, M1 (Fig. 2b). Overlaps between classes—in our case, mecha-

nisms—are well known to have detrimental effects on the performance 

of learning algorithms34,35. To minimize these overlaps we used chemical 

criteria (Supplementary Information) to define the kinetic space of 

each mechanism, giving preference to the simplest mechanisms and 

therefore avoiding the classification of kinetic concentration profiles 

to overcomplicated mechanisms with insufficient kinetic evidence.

The training of deep learning models typically requires large amounts 

of data, which can pose a considerable challenge when these data must be 

collected experimentally. However, in our case we were able to generate 

5 million kinetic samples for the training and validation of the model by 

numerically solving the sets of ODEs, without having to use steady-state 

approximation. Each kinetic sample, used as input of the deep neural 

network, contains four temporal concentration profiles from a particular 

mechanism with a fixed set of kinetic constant values; three of the profiles 

have identical initial concentration of substrate ([S]0) but different [cat]0 

in the range 1–10 mol%, and the fourth is a ‘same-excess’ experiment15 

with reduced [S]0 (Fig. 2c) and product added ([P]0). We chose this com-

bination of experiments because it includes the necessary information 

to differentiate between the set of potential mechanisms considered 

(Fig. 2a). Specifically, experiments with different concentrations of 

catalyst help in the assessment of the presence of mechanistic steps 

involving more than one catalytic species, and same-excess experiments 
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provide information about both product inhibition and the activation 

and deactivation processes of the catalyst. The profiles include concen-

tration of substrate and product at 20 randomly selected times, which 

ensures a breadth of profiles with data heterogeneously distributed over 

time and covering different ranges of conversions (see Supplementary 

Information for a detailed description of the data generation process).

Our model contains 576,000 trainable parameters and uses a com-

bination of two types of neural network: (1) long short-term memory 

neural networks, a type of recurrent neural network used to process 

sequences of temporal data (that is, the temporal concentration data) 

and (2) fully connected neural networks, used to process atemporal 

data (that is, the initial concentrations of catalyst in each kinetic run 

and features extracted by the long short-term memory). The model 

outputs probabilities for each mechanism, with the total sum of prob-

abilities equalling 1 (for a full description of the model architecture see 

Supplementary Information). Data augmentation was applied during 

training, which involved (1) reducing the number of concentration–time 

points in the sample from 20 to any value in the range 20–3 and (2) 

introducing Gaussian error on the sample concentration values of S 

and P, with a s.d. up to 2%. Evaluation of the model with the validation 

set during training showed little to no overfitting, probably due to the 

varied and large training set (Supplementary Fig. 4).

The trained model was evaluated with a test set of 100,000 kinetic 

samples (5,000 per mechanism) containing six concentration–time 

points per profile, a typical number of data points collected when sam-

pling reactions. Importantly, all kinetic samples in the test set belong to 

unique kinetic profiles, different to those used in the training set (Sup-

plementary Information). The model afforded a categorical accuracy 

of 92.6%, confusion entropy36 of 0.053 and top-three accuracy of 100% 

with this test set. Other machine learning methods, such as similarity 

search, support vector machines and random forest, provided much 

inferior results (Supplementary Information). Interestingly, analysis 

of the confusion matrix plotting the actual mechanism against the pre-

dicted mechanism (Fig. 3a) showed that most mechanisms are correctly 

predicted with very high recall, with most mistakes clustering between 

two activation mechanisms (M6 and M8) and between three deactiva-

tion mechanisms (M11, M12 and M14). Analysis of the probability curves 

predicted for the samples of each mechanism (Fig. 3b) shows that, in the 

majority of test samples, the model not only predicts the correct mecha-

nism but also does so with very high confidence (over 99%). Test sam-

ples with lower confidence are mostly due to overlap of kinetic spaces. 

For example, a large section of the sample pools of M11 and M14 has a 

confidence of around 50% because both mechanisms can have kinetic 

profiles in which catalyst deactivation depends identically on substrate 

concentration and, therefore, some of their profiles are indistinguish-

able. Because we consider both mechanisms to have similar complexity, 

we decided not to assign the common kinetic space exclusively to one 

of them, which would have resulted in an artificial hierarchy between 

them. On the contrary, we welcomed these crosses between mechanistic 

predictions because they demonstrate that the model is capable not 

only of correct classification of most mechanisms, but also of identifica-

tion of sets of data that are consistent with more than one mechanism 

and assigning them a substantial probability. Taking advantage of this 

quality of the model, we decided to generate more flexible and valuable 

outcomes by grouping the top predictions until achieving a cumulative 

confidence threshold higher than 99%. By allowing the grouping of 

predicted mechanisms (Fig. 3c), model categorical accuracy increased 

to 99.96% (a total of only 38 mistakes in the 100,000 sample test set), 

with 69,740 samples of the test set predicted as unique mechanisms, 

23,767 with two proposed mechanisms, 6,067 with three and a residual 
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0.43% with more than three (for further analysis see Supplementary 

Information). Remarkably the model tends to group mechanisms within 

the same category, with very few crossings between categories (Fig. 3d). 

This result suggests that most of the original 7.4% inaccuracy obtained 

with single mechanistic classifications was due to overlaps between 

mechanisms that should, indeed, be proposed together.

To fully explore the potential of our machine learning model, we 

investigated the effect of introducing error in the data and changing the 

number of data points provided. Temporal concentration profiles with 

Gaussian s.d. up to 2% (plus or minus 4% on yield with 95% confidence 

interval) in concentration (Fig. 4a) are commonly found experimen-

tally37. Extraction of information from profiles with so much error is 

one of the biggest challenges in kinetic analyses38–40 and therefore is an 

excellent test for our model. We introduced various levels of Gaussian 

error (up to 5% s.d.) on the concentration variable of the original test 

set. Remarkably, when the resulting test sets were evaluated, the model 

was able to maintain very high categorical accuracy (over 99.6%) even 

with appreciable standard error (s.e., up to 2%) in the data (Fig. 4b, top 

left). Even for poor-quality data (that is, s.e. = 5% or an error of plus or 

minus 10% in yield with 95% confidence interval), a categorical accuracy 

of 83% was achieved. The model copes with the inherent uncertainty 

introduced by the error in the data by increasing the number of mecha-

nisms grouped in its predictions (Fig. 4b, top right). Circos plots of the 

mechanisms grouped for test sample data containing 1% and 5% s.d. 

(Supplementary Figs. 8 and 9) show that whereas grouping is maintained 

within the same mechanistic category for the dataset with s.e. = 1%, 

crossings between categories of mechanisms appear with s.e. = 5%. 

The latter is not unexpected because the distortion of kinetic profiles is 

very large and therefore the resulting sample data could truly belong to 

mechanisms from different categories. The model responds similarly to 

the presence of outliers (Supplementary Information) but these results 

are less relevant because, experimentally, one would normally exclude 

obvious outliers from analysis using any kinetic analytical techniques.

A common strategy used to mitigate the inaccuracy derived from error 

in the data is to increase the amount of data. We explored the effect of 

varying the number of concentration–time points provided to the model 

for its predictions using a dataset with 1% s.e. (Fig. 4b, bottom left). High 

categorical accuracy was obtained across the board for test sets contain-

ing between two and 20 concentration–time points. The model is able to 

use the additional time point information to increase the proportion of 

predictions in which a single mechanism is correctly proposed (Fig. 4b, 

bottom right). Conversely, the number of grouped mechanisms increases 

when concentration–time points are decreased below six. Despite the 

model never having been trained with samples containing fewer than 

three concentration–time points, it still performs remarkably well with 

a test set containing only two data points per kinetic profile.

To exemplify the potential of AI models in analysis of experimental 

kinetic data, we applied it to a diverse range of catalytic reactions includ-

ing ring-closing olefin metathesis41, cycloadditions42, alkene isomeriza-

tions43, C–H aminations44, photocatalysed hydroalcoxylations45 and 

carbonyl–olefin metathesis46,47 (Fig. 5). These case studies include 

examples in which the kinetic data contain only three reaction profiles 

at varying catalyst concentration (that is, without the same-excess 

experiment), as well as examples in which only substrate or product 

is monitored. In all cases the machine learning models have been able 

to identify the important characteristic mechanistic features of each 

system, matching those proposed by the authors through kinetic and 

additional mechanistic experiments. More remarkably, the models 

have also proposed mechanisms that could not be demonstrated by 

traditional kinetic analyses, such as specific catalyst deactivation 
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pathways. In the case of the ring-closing olefin metathesis reported 

by Thiel et al.41 (Fig. 5a), the machine learning model is able not only to 

recognize the catalyst deactivation proposed by the authors but also to 

implicate the product on the deactivation pathway. The prediction of 

the model is in agreement with previous work carried out on stoichio-

metric Ru complexes and density functional theory calculations48,49, 
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model and output. Filled symbols, substrate concentration; hollow symbols, 

product concentration; red triangles, lowest catalyst loading; yellow squares, 

medium catalyst loading; blue circles, largest catalyst loading; turquoise 

diamonds, lower concentration of substrate. a, A ring-closing metathesis with 

proposed catalyst deactivation by product.b, A [2+2]-cycloaddition reaction 

with proposed catalyst deactivation by substrate.c, An alkene isomerization 

with proposed catalyst deactivation by an inhibitor.d, A C–H amination with 

proposed catalyst activation by substrate.e, An alkyne hydroalkoxylation  

with proposed catalyst activation by ligand dissociation.f, A carbonyl-olefin 

metathesis with either catalyst deactivation or bicatalytic steps. Data from  
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which indeed showed the possibility of the ethene product inducing 

catalyst decomposition. Similarly, in the [2 + 2] cycloaddition reac-

tion reported by Joannou et al.42 (Fig. 5b), the machine learning model 

identifies deactivation of the catalyst with involvement of the sub-

strate of the reaction. Although classic kinetic analysis had not allowed 

identification of this mechanistic feature because of its subtle effect 

on kinetic data42, the authors had observed in stoichiometric organo-

metallic studies a substrate-mediated dehydrogenative deactivation 

of the catalyst. Another deactivation process not immediately obvious 

was shown by the machine learning model in the alkene isomerization 

reported by Knapp et al.43 (Fig. 5c). The AI models also identify highly 

specific catalyst activation processes, as in the case of the C–H amina-

tion reported by Stroek et al.44 (Fig. 5d) and the hydroalcoxylation by 

Lehnherr et al.45 (Fig. 5e). In the case of the carbonyl–olefin metathesis 

reported by Ludwig et al.46 and Albright et al.47 (Extended Data Fig. 1 

and Fig. 5f), the model proposes the largest number of mechanistic 

possibilities among the seven case studies, which suggests that extra 

experiments would be desirable to increase accuracy in this case. This 

especially challenging case shows the potential for AI-guided design 

of new kinetic experiments and refinement of mechanistic proposals.

In conclusion, we have demonstrated that deep learning can be lever-

aged to provide an extremely powerful tool for mechanistic elucida-

tion from kinetic data. The new model simplifies the previous lengthy 

process of rate law derivation and kinetic analysis into an integrated 

and more accurate process that requires merely milliseconds. The 

trained model is able to resolve complex problems for which analysis 

was previously very challenging, such as kinetic data with error and 

even systems out of steady state. We have also shown how these AI 

models can be readily applied to extract mechanistic insights using 

experimental kinetic data from a variety of catalytic reactions. We 

envision that machine learning will become a powerful tool, enhancing 

the ability of synthetic chemists to tackle mechanistic investigations.
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Extended Data Fig. 1 | Additional case study with experimental kinetic 

data. Includes the reaction under study, the experimental kinetic data used as 

input for the AI-model and its output. Symbols correspond to substrate 

concentration. Red triangles: lowest catalyst loading; yellow squares: medium 

catalyst loading; blue circles: largest catalyst loading. Data from ref. 47.
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