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Abstract

In late December 1668 the Kangxi 康熙 emperor (r. 1662–1722) asked the Jesuit 

astronomer Ferdinand Verbiest (1623–1688) to give publicly verifiable proof that 

the western astronomical system introduced to China by the Jesuits was accurate. In 

response Verbiest proposed that he and his Chinese opponents should be set the task 

of predicting the length of the shadow cast by a gnomon of a given length at a given 

time on a given day, and his suggestion was accepted. Success in this experimental 

trial was vital to the future of the Jesuit mission in China. After repeating the trial at 

noon on three successive days, Verbiest was judged to have succeeded in showing 

the superiority of western methods in this respect. In this paper, we provide a 

detailed technical analysis of the methods used by Verbiest to make his predictions 

of gnomon shadows, and trace the sources of his skills back to his astronomical 

studies in Europe before his departure for China. In the course of this investigation, 

we discuss changes in European astronomical techniques up to the mid 17th century 

that played a decisive role in his predictive task. As a result of this analysis, we are 

able to explain certain previously puzzling features of Verbiest’s predictions as a 

rational response on his part to the contentious circumstances under which the trial 

was conducted.

Corresponding author:

Christopher Cullen, Needham Research Institute, 8 Sylvester Road, Cambridge CB3 9AF, UK. 

Email: cc433@cam.ac.uk

1114093 JHA0010.1177/00218286221114093Journal for the History of AstronomyCullen and Jami
research-article2022

Article



Cullen and Jami 423

Keywords

Astronomical tables, astronomy in 17th C. China, astronomy in 17th C. Europe, 

Ferdinand Verbiest, Giambattista Riccioli, gnomonics, Jesuits, Sino-western scientific 

contacts, solar parallax

Introduction

In a previous publication we have given a detailed account of the political, cultural and 

religious context of certain events that took place in Beijing in the closing days of 1668 

and early 1669, involving three Jesuit missionaries who had been under house arrest 

since 1665, and who were restored to imperial favour because of the success of one of 

their number in a test of astronomical skill.1 The present study concentrates on certain 

technical aspects of that test which were not foregrounded in the previous discussion, but 

which turn out to be vital to understanding all the dimensions of the events described.

For the reader’s convenience, a brief recapitulation of the main events discussed in the 

previous study may be useful. Jesuit missionaries had served the Manchu rulers of the Qing 

清 dynasty as official astronomers since the dynasty seized control of Beijing in 1644. But 

in autumn 1664, the Jesuits at court were imprisoned as a result of a prosecution launched 

by a Chinese literatus opposed to the Jesuit presence in China, Yang Guangxian 楊光先 

(1597–1669) . Initial sentences of death or banishment on those Jesuits principally con-

cerned were commuted to house arrest in May 1665, while their missionary colleagues 

elsewhere in China were removed to Canton. Several Chinese Christian officials holding 

posts in the Astronomical Bureau, Qin tian jian 欽天監, were executed. By late 1668, the 

death of Johann Adam Schall von Bell (1592–1666, Tang Ruowang 湯若望 in Chinese), 

formerly Director of the Astronomical Bureau, left only three Jesuits in Beijing: Ferdinand 

Verbiest (1623–1688, Nan Huairen 南懷仁), formerly Schall’s assistant and the sole mem-

ber of the party skilled in astronomy, Lodovico Buglio (1606–1682, Li Leisi 利類思), the 

superior of the group, and Gabriel de Magalhães (1609–1677, An Wensi 安文思), who was 

skilled in handicrafts and left us a detailed account of what had recently taken place in a 

letter dated 2 January 1669, addressed to Jesuit colleagues in Macao.

In December 1668 the presence of the three remaining Jesuits in Beijing came to the 

notice of the young Kangxi 康熙 emperor (r. 1662–1722), who the year before had for-

mally assumed personal rule. The Jesuits were summoned to the palace, and at the sug-

gestion of Verbiest the emperor ordered them to demonstrate their astronomical ability 

by predicting the noon shadow cast by a gnomon of given height on a given date, in a 

trial which was repeated on three successive days (27, 28 and 29 December). Yang 

Guangxian, then Director of the Astronomical Bureau, and the Deputy Director Wu 

Mingxuan 吳明烜 initially claimed to be able to make such predictions, but when put to 

the test were forced to admit their inability to do so. As a result of Verbiest’s acknowl-

edged success in this trial, the Beijing Jesuits were released from confinement and the 

emperor and his advisors set Verbiest further tests. His success in these led to Yang and 

Wu being deprived of office in 1669, and to Verbiest’s effective appointment to fill most 

of the functions in the Bureau once exercised by Schall.
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The present article deals with a question that was not touched on in our previous 

study: by what means did Verbiest succeed in making the predictions demanded of him? 

The answer to this question turns out to involve not only technical aspects of astronomi-

cal calculation, but also the compromises made by Verbiest to fulfil his imperative need 

to be judged as a success by people whose understanding of what he was doing was at 

best limited.

In the first place, we shall ask why Verbiest chose gnomon shadow predictions as 

the preferred test of his system’s validity. We then ask what exactly was it that he was 

attempting to predict, and what mathematical theory and tabulated data he needed to 

make his predictions. Next, we consider how Verbiest acquired the skills necessary to 

deal with such questions. We then look at a key element in understanding Verbiest’s 

approach, his handling of the two corrections normally applied to the sun’s theoretical 

altitude derived from astronomical tables in order to find the altitude as it will actually 

be measured by an observer in a particular position on the surface of the earth. We then 

attempt to reproduce the values of shadow length that Verbiest predicted for the three 

successive days of the trial. In making this attempt, we compare the results of three 

different methods of calculation that were available to Verbiest: first we use the method 

set out in the Chinese writings of the Jesuits themselves on astronomical calculation, 

next we use a method based on pre-calculated data in the ephemerides of Argoli, which 

we know to have been in Verbiest’s possession at the time he made his predictions, and 

finally we use the techniques set out in the Rudolphine tables of Kepler. The full details 

of these calculations, summarised in the main text, follow the Conclusion in the 

Appendices.

Whatever the method of calculation used, the resulting shadow lengths depend on 

certain assumptions concerning the location of the observer, and the corrections to calcu-

lated values required in order obtain the apparent position of the sun as seen by that 

observer. On the basis of a set of assumptions consistent with Verbiest’s explicit state-

ments as well as with what is known of his astronomical studies, all three methods yield 

the noon shadow length given by Verbiest for the first day of the trial. However, none of 

the three methods, taken with the same assumptions, agree with the shadow lengths 

stated for the second and third days. Indeed, it becomes evident that no single method 

consistently applied could possibly reproduce all the predictions given by Verbiest for 

each of the three days of the trial. Finally, we suggest a possible reason for this apparent 

inconsistency, and examine its implications for our understanding of Verbiest’s motives 

in making his predictions.

Choosing the gnomon test

It was the emperor who demanded from Verbiest an objective test that could be applied 

to the rival astronomical systems presented before his court. In the audience of 26 

December 1668 he asked:

南懷仁曆法。合天與否。有何明顯的據
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What clear evidence is there that your astronomical system is or is not in conformity with the 

heavens?2

Verbiest answered that since antiquity it had been the universal practice to test the valid-

ity of an astronomical system by observation. And what is more, the ideal instrument for 

testing the accuracy of a system in predicting the seasons was the gnomon:

要考騐曆法合天與不合天。從古以來。皆以測騐為據。如要知曆上所定節氣之日時刻度
分。合天與否。無過於勾股表影之法。請先定一表。不拘長短。令兩家預推。某日某時
刻。表影有若干長短。尺寸分釐。臨期公同測騐其誰合誰差。衆目共見。不辨自明。

In checking whether an astronomical system is or is not in conformity with the heavens, in all 

[cases] from antiquity onwards the proof has come from observation. If you wish to check 

whether the day, hour, and degree when the sun reaches a certain solar season according to an 

astronomical system is or is not in conformity with the heavens, there is nothing better than the 

method [that applies] right-angled triangles to gnomon shadows. I request that a gnomon be 

fixed – the length is immaterial – and that both parties be instructed to make predictions in 

advance, for a given day at a given time, of what the length of the gnomon shadow will be, in 

feet, inches and tenths and hundredths of an inch. We can then wait for the given instant, and 

then together determine who is accurate and who is in error. All eyes will see it: there need be 

no dispute since it will be self-evident.3

In response, the emperor commanded that the shadow of a gnomon at noon the next day, 

27 December, should be predicted. Verbiest was certainly right in pointing out that as far 

back as systematic records of astronomical practice by imperial officials can be traced, 

the ultimate test of an astronomical system was whether or not its predictions were in 

accordance with observation.4 His proposal of an observational evaluation of competing 

systems was therefore completely within accepted norms, and was in no way alien to 

time-honoured Chinese practice. In this respect there was no ‘struggle over the rules of 

the game, the proper measurement of the truth of claims to knowledge’: Verbiest was 

simply stating the normal practice in such matters.5

But why did Verbiest insist on the primacy of gnomon shadows as the preferred 

observational test, rather than, for instance, suggesting direct measurement of the 

angular altitude of the sun using a quadrant? The latter instrument had been the choice 

of Ptolemy of Alexandria, when in the second century CE he gave his views on the 

topic of solar observations in the Almagest, for many centuries the key text of the west-

ern astronomical tradition. There he carefully set out the mathematical procedure for 

calculating the length of noon gnomon shadows at the solstices and equinoxes from 

knowledge of the elevation of the north celestial pole above the horizon, and the ‘arc 

between the solstices’ (i.e. change in the declination of the sun from one solstice to the 

other, 2ε, where ε is the obliquity of the ecliptic), a procedure which can easily be 

extended to predict noon shadows for any other date for which sun’s declination is 

known. He then points out that the procedure can be reversed, so that noon shadow 

measurements can yield the values of the quantities on which the previous procedure 

was based. However, he notes:
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. . . in so far as the accuracy of the observation is concerned, the former quantities [elevation of 

the pole and 2ε] can be exactly determined in the way we explained; but the ratios of the 

shadows in question to the gnomon cannot be determined with equal accuracy, since the 

moment of the equinox is, in itself, somewhat indeterminate, and the tip of the shadow at winter 

solstice is hard to discern.6

The instrument preferred by Ptolemy for determining the basic data referred above to 

was not the gnomon. Earlier in his text he explains:

. . . our first task, as we said, is to determine the inclination of the ecliptic to the equator . . . 

This quantity can be determined directly by an instrumental method, using the following simple 

apparatus. [He then describes how to make a graduated meridian ring in bronze, and to use it 

for observing solar altitude] [. . .] We found an even handier way of making this kind of 

observation by constructing, instead of the rings, a plaque of stone or wood [. . .]. On this we 

drew a quadrant [. . .].7

In China, however, the status of the gnomon as the classic instrument for astronomical 

measurements was sanctioned by ancient authority, and even when instruments incorpo-

rating graduated rings had come into widespread use, the gnomon retained its place of 

honour. The primacy of the gnomon was established by the reference to its use in the 

Zhou li 周禮 ‘Ritual of the Zhou [dynasty]’ supposedly composed by Dan 旦, Duke of 

Zhou, a revered figure in the foundation of the dynasty c. 1046 BCE, who was seen by 

Confucians as embodying the qualities of an ideal minister and subject. There we read:

日至之景尺有五寸謂之地中。

When the [summer] solstice shadow [of an 8 chi high gnomon] is 1 chi 5 cun [1.5 chi], that 

[place] is called the middle of the land.8

The enduring status of the gnomon as the foundational astronomical instrument more 

than two millennia after the traditional date of the Zhou li is clear from the beginning of 

a 13th century Yuan dynasty discussion of the Shou shi li 授時曆 ‘Season Granting 

[astronomical] system’, the culminating point of the indigenous Chinese astronomical 

tradition:

天道運行，如環無端，治曆者必就陰消陽息之際，以為立法之始。陰陽消息之機，何
從而見之? 惟候其日晷進退，則其機將無所遁。候之之法，不過植表測景，以究其氣至
之始。

Heaven moves round in an endless cycle. Those who handle astronomical systems need to 

grasp the ebb and flow of Yin and Yang, in order to lay down the starting point of their methods. 

How can one observe the mechanism of how Yin and Yang ebb and flow? That is done by 

observing the advance and retreat of the solar shadow, so that nothing about the mechanism is 

hidden. The method of observation is none other than setting up a gnomon and measuring its 

shadow, so as to search out the starting point for the arrival of qi.9
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The text continues by noting, as had Ptolemy, the difficulty of measuring shadow lengths 

precisely, but goes on to discuss the methods adopted by Yuan astronomers for dealing with 

that problem – including making the gnomon five times higher than the standard 8 chi 

length,10 and adopting a pinhole device for giving a sharp image of the top of the gnomon 

on the measuring scale.11 Finally, it gives a series of examples of how the precise moments 

of solstices can be determined using interpolation between noon shadow measurements.12

There were, then, excellent reasons for choosing gnomon shadows as the scene of 

competition in the context of astronomy in China. Added to that, there was another strong 

reason for Verbiest’s choice – which was, as we shall shortly see, that although his oppo-

nents initially expressed complete confidence in their ability to handle a challenge on such 

a central astronomical issue as gnomon shadows when it was first put to them in audience 

with the emperor, Verbiest knew that it was unlikely that they actually possessed the tech-

nical means needed to meet the challenge in the precise form that the emperor had 

accepted. Further, the knowledge of relevant advances in astronomical techniques that he 

is likely to have gained during his studies in Europe before his departure for China in 1657 

may have added to his confidence in his own ability to make successful predictions.13

The dimensions of the problem

The different heights of the gnomons used on the 3 days of the trial, and the correspond-

ing predictions of noon shadow lengths made by Verbiest are recorded in two printed 

texts by him. One was composed in Chinese not long after the events in question: this 

is Qin ding xin li ce yan ji lue 欽定新曆測騐紀略 (A summary of observations in 

accordance with the new astronomical system, imperially commissioned).14 The other 

was written in Latin for a western audience 18 years later: this is Astronomia Europaea 

. . . ex umbra in lucem revocata . . . (‘European astronomy . . . called back to light 

from darkness . . .’.15 The same figures are given in the official report submitted on the 

final day of the trial (29 December 1668) by the officials appointed by the emperor to 

supervise it, to be found in the collection of memorials, assembled under the title Xi 

chao ding an 熙朝定案 (Cases decided during the [Kang]xi reign).16 The gnomon 

heights and noon shadow lengths are summarised in Table 1.

Table 1. Verbiest’s shadow predictions.

Date, 1668 Gnomon height, chi Verbiest’s noon shadows, chi

December 27 8.49 16.6617

December 28 2.2 4.345

December 29 8.055 15.83

The length unit chi 尺 used here, often rendered in English as ‘foot’ (see above), 

was close to 32 centimetres in Ming and Qing times. In the original Chinese texts, the 

subdivisions of the chi are expressed in decimal fractions – tenths as cun 寸 (inches), 

hundredths as fen 分 and thousandths as li 釐, this last unit being equivalent to 0.32 mm, 

a length difficult to perceive on a graduated ruler, and certainly not capable of being 

distinguished on a gnomon shadow over 5 m long (16 chi = 512 cm), which fades into 
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the penumbra over several centimetres without any sharp and obvious boundary mark-

ing its end point.

In his writings for a European readership, Verbiest claims that these predictions were 

acknowledged by all present to be a complete success. Previous authors have sometimes 

asked whether Verbiest’s predictions were, in fact, really correct. The best-known discus-

sion in those terms is found in an article by Pingyi Chu, which makes use of calculations 

by Huang Yi-long.18 Huang does not explain exactly how his calculations of shadow 

lengths were performed, apart from telling us that they were calculated in accordance with 

‘modern astronomical knowledge’ xiandai tianwen zhishi 現代天文知識. However, as 

can be seen from Table 2, the apparent noon solar altitudes implied by Huang’s shadow 

lengths are very close (within 0.01°) to the values of the apparent noon solar altitude of 

the centre of the sun yielded by the NASA Horizons online ephemeris programme, at the 

location of the Beijing Ancient Observatory, with allowance for atmospheric refraction.19 

It seems clear, therefore, that Huang’s shadow lengths were derived from a calculation of 

the altitude of the solar centre for the days in question, however performed.

Table 2. Verbiest’s shadow lengths and Huang Yi-long’s calculations.

December 
1668

Gnomon 
height, chi

Verbiest’s 
predicted 
shadow 
length, chi

Huang Yi-long’s 
calculated 
shadow length, 
chi

Altitude of light 
source implied 
by Huang’s 
shadow length, 
degrees

Altitude of the 
centre of the 
sun at local noon 
Beijing, NASA 
Horizons ephemeris 
(refracted), degrees

27 8.49 16.66 16.807 26.800 26.793

28 2.2 4.345 4.345 26.854 26.846

29 8.055 15.83 15.868 26.914 26.906

Huang notes that the discrepancy between his predictions and those of Verbiest is 

particularly large for the first day, and speculates that there may be an error in Verbiest’s 

Chinese text, which, he suggests, should be corrected to 16.86 chi for the first day. This 

would however, make the shadow length inconsistent with the length given in Verbiest’s 

later Latin writings, as well as in the official report: see note 17. In fact, we shall see 

below, the real problem with Huang’s approach is that the lengths of the shadows pre-

dicted by Verbiest were those of the umbra, the densest part of the shadow, cast by the 

sun’s upper limb, not by its centre.

But a more serious problem with the approach of Huang, followed by Chu, is that the 

question of what ‘correct’ means in this context is not raised, and, as we shall see, that is 

a crucial issue in making sense of Verbiest’s shadow predictions and the reaction to them. 

To clarify this issue, we shall try to answer the following questions:

(a) What was it that Verbiest was actually attempting to predict on each day of the 

trial?

(b) How did he carry out those predictions?

(c) What did those present at the times of observation think he should have been 

predicting?
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Before we begin our analysis, it is important to note that calculating gnomon shadows in 

this way was an unusual procedure in China. Astronomers in East Asia had long made 

use of daily series of observational measurements of the lengths of noon gnomon shad-

ows to deduce the precise moments of solar events crucial to the initial conditions of 

astronomical systems, such as solstices. As mentioned above, there are a number of 

examples of this in the Yuan dynasty Shou shi li 授時曆 ‘Season granting astronomical 

system’, on which was based the Ming dynasty Da tong li 大統曆 ‘Great concordance 

astronomical system’, restored to use by the Jesuits’ opponents. But the reverse proce-

dure, predicting the noon length of a gnomon shadow on the basis of the position of the 

sun in its annual cycle on the day in question, was not part of normal practice.

It was probably their knowledge of the way that shadow observations had been used 

in the past that led Yang Guangxian and Wu Mingxuan to excuse their ignorance of how 

to predict the shadow of a gnomon at noon on a given day in the following terms:

這箇我們不曉得。不能預先推定。但能看日影已到之處已後方知推算。

This is something beyond our understanding. We cannot make advance predictions. All we can 

do is to make calculations after we have seen where the shadow reaches to.20

But Verbiest was taking things in the reverse order: he did not set out to use shadow 

observations to deduce the instant when a particular astronomical event had taken place, 

but instead began from a given time on a given date, and on that basis he undertook to 

predict how long the shadow then cast by a given gnomon would be. In order to make 

such predictions, Verbiest needed three things:

(a) Tables and procedures enabling him to find the position of the sun on the celestial 

sphere in angular coordinates at any desired instant.

(b) Knowledge of the angular altitude of the north celestial pole above the horizon at 

the point of observation (equivalent to the observer’s latitude), so that the orienta-

tion of the celestial sphere relative to that horizon was known, and hence the 

position of the sun relative to that horizon (specifically its noon altitude and 

zenith distance) could be determined.

(c) Trigonometric tables enabling the sun’s noon altitude above the horizon to be 

used to determine the shadow cast by a gnomon of known height.

The Season Granting system and its near twin the Great Concordance system both pro-

vided tables, and specified procedures for their use, adequate for (a),21 and as for (b) the 

altitude of the pole had been systematically measured at 26 different locations in the 

Yuan empire in 1279 as part of the preparation of the Season Granting system.22 In order 

to make the most precise predictions there were, as we shall see, certain corrections that 

needed to be applied to the results obtained for the sun’s altitude and zenith distance, but 

the major element possessed by Verbiest but not by his opponents was (c), trigonometri-

cal tables. The Jesuits had introduced such tables into China early in the 17th century. A 

full set of tables in 6 juan formed part of the books presented to the throne on Chongzhen 

4/1/28,23 28 February 1631, and is now found in the Chong zhen li shu 崇禎曆書 
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‘Writings on mathematical astronomy [compiled] during the Chongzhen reign [of the 

Ming dynasty, i.e. 1628–1644’] with whose use Verbiest would have been familiar, 

although he knew it under the modified title Xi yang xin fa li shu 西洋新法曆書 ‘Writings 

on mathematical astronomy [in accordance with] the new methods’ which it was given 

by Schall at the start of Qing rule in Beijing in 1644.24

To illustrate the crucial role of trigonometry in Verbiest’s task, consider Figure 1.

Here a distant small bright light source, assumed to be far enough away so that it can 

be treated as being effectively a point, will cause the vertical gnomon of height h to cast 

a sharp edged shadow, length s, on the horizontal surface. The angle a is the altitude of 

the light source above the horizon, and angle z is its ‘zenith distance’. From the diagram, 

we see that since the gnomon is at right angles to the horizontal,

z  a  9  z and a are thus complementary angles+ = 0°; .

Since by definition of the tangent function tan (a) = h/s and tan (z) = s/h, we may write:

s  h  tan a and s  h  tan z= ( ) = ( )/ . ,

depending on which is more convenient. Thus if we know the height of the gnomon and 

either the altitude or the zenith distance, we can predict the length of the shadow that will 

be cast – but only if we have a table of tangents or its equivalent. Using the Great 

Concordance system, it would be possible to predict what a or z would be at noon on a 

given day at Beijing if the light source is the sun, but without a tangent table there would 

be no means of finding s by calculation.

a

z

Vertical gnomon, 

height h

Shadow, length, s

Zenith

Distant light source

Horizontal surface

Figure 1. Gnomon, angles and shadow length.
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To see how the noon altitude or zenith distance of a given celestial body may be found 

from more basic data obtainable from tables, consider Figure 2, which shows a vertical 

section through the celestial sphere along the meridian of a terrestrial observer.

The observer is at O, the centre of the sphere whose diameter is taken to be effectively 

infinite. N and S are the north and south points on the observer’s horizon, and Z is the 

zenith point of the sphere, vertically above the observer. P and P′ are the north and south 

celestial poles, through which runs the polar axis about which the celestial sphere appears 

to rotate in the course of a day and a night. The elevation of the north celestial pole above 

the horizon, L, is equal to the observer’s latitude. The line EE′ is a side view of the celes-

tial equator, whose plane is perpendicular to PP′. The star X is currently on the north-

south plane through the observer’s position which intersects the celestial sphere in the 

arc SXEZN, the observer’s meridian (or at least the part of it visible above the horizon). 

The angular distance of the star from the equator along the meridian is its declination, δ 

(delta).

Since OZ is perpendicular to SN, the angle between the plane of the celestial equator 

and the vertical is equal to L, and the zenith distance of the star will be:

z  L  = + δ

and the altitude will be:

a  9   L  = − +( )0° δ .

For a given observer, L is a fixed quantity dependent on their location. A star’s declina-

tion changes only very slowly in the course of centuries, due to the phenomenon of pre-

cession, and thus stars cross the meridian at the same altitude from one day to the next. 

The sun, moon and planets are however in constant motion on the celestial sphere, and 

L

LLL

LL

Zenith distance, z 

Altitude, a 

Z

S O N

X

E

P

E

P

Polar 

axis

Horizon 

line

Celestial 

equator

OO

Figure 2. Celestial sphere, latitude, declination, zenith distance and altitude.
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thus astronomers in the pre-computer age would normally need to find the declination of 

the object of interest on a given day at a given time by consulting appropriate tables.

For a naked-eye terrestrial observer, a star is effectively a point source of light, which 

would cast a sharp-edged shadow, assuming that the star was bright enough for the 

shadow to be perceptible. If however we are dealing with the sun, the shadow is cast by 

light from an extended body appearing as a bright disk on the celestial sphere, of diam-

eter about 30 minutes of arc. The visible shadow will therefore be composed of an infi-

nite number of superposed shadows, each cast by a different point on the sun’s disk and 

hence differing slightly from one another in length and direction. As a result, the shadow 

will have fuzzy edges, but more importantly will not end sharply at some given length, 

but instead will fade away gradually, so it is difficult to decide exactly where it ends, and 

thus to define its length.

To avoid this uncertainty, the normal practice in 17th century Europe was therefore to 

define the umbra recta (Latin ‘direct shadow’), as the darkest part of the shadow of a 

vertical gnomon on horizontal ground, whose end effectively marks the full length of the 

shadow cast by the upper edge of the sun, its ‘upper limb’.25 The fainter shadow beyond 

the end of the umbra recta, fading to become imperceptible with increasing distance 

from the gnomon is the penumbra (Latin ‘nearly shadow’). Thus if we wish to predict the 

length of the umbra recta from the declination of the sun found in tables for a given noon 

(which refers to the centre of the sun’s disk), then if the sun’s diameter is taken to be 

30 minutes of arc we must subtract 15 minutes from the tabulated declination if the sun is 

south of the equator (as in winter) or add 15 minutes if the sun is north of the equator (as 

in summer). The rationale of this adjustment was made plain in the diagram below, which 

comes from a part of the Chong zhen li shu collection submitted to the throne in its final 

form on Chongzhen 4/8/1, 27 August 1631 under the title Ce liang quan yi 測量全義 ‘A 

complete account of observational measurement methods’. The Jesuit missionary 

Giacomo Rho (1593–1638) contributed his mathematical expertise to the compilation of 

this text (Figure 3).26

The roman letters in the diagram have been added for ease of reference. As the accom-

panying text explains, the shadow of the vertical gnomon UV cast by the upper limb of 

the sun Z is VF, termed zhi ying 直景 ‘direct shadow’, that is, umbra recta. Thus, if the 

zenith distance of the centre of the sun, X, is known we must subtract the sun’s semidi-

ameter to find the zenith distance of the upper limb, from which the umbral shadow may 

be derived, and vice versa. Making shadow measurements in ignorance of this correc-

tion, the text points out, means that many pre-modern determinations of solar zenith 

distance and altitude must have been in error.27

But there are two further corrections that enter into the relationship between calcu-

lated values of the zenith distance or altitude of the solar centre, and the lengths of shad-

ows actually observed. These corrections relate to two effects, refraction and parallax, 

the first representing the effect of the sun’s rays bending slightly on entering the atmos-

phere so that the altitude of the sun appears slightly greater than it would have done in 

the absence of an atmosphere, and the second resulting from the fact that an observer on 

the surface of the earth is not at the point for which astronomical tables are calculated 

(the centre of the earth), thus slightly changing the direction of the line from the observer 

to the sun, so as to decrease the observed altitude from the predicted value.
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To understand Verbiest’s application of these corrections, we shall need to consider 

the background of his astronomical studies in 17th century Europe.

A Jesuit astronomer and his education: Verbiest’s sources

The densely referenced research of Noël Golvers relating to Ferdinand Verbiest is inval-

uable as a source of evidence for how and where Verbiest studied astronomy before his 

voyage to China; in this section we shall refer to Golvers’ work repeatedly.

Some of Verbiest’s training in this field is likely to have taken place during his 

apprenticeship as Schall’s assistant in Beijing from 1660, but it is also important to 

investigate what he is likely to have learned as a Jesuit student and teacher before his 

departure for China in 1658. Whatever he had learned by then was sufficiently impres-

sive to have led both Schall and his Beijing colleague de Magalhães to look forward to 

his arrival in China as someone already ‘well versed in the science of mathematics’ (wel 

ervaren in de Wetenschap van de Mathesis) and ‘especially well trained in mathematics’ 

(praecipue Mathematices instructus).28

Some elementary knowledge of basic astronomy was part of the Jesuit curriculum in 

philosophy, and indeed Verbiest himself tells us that his two colleagues in Beijing, Buglio 

and de Magalhães ‘had absorbed some principles of the two spheres [terrestrial and 

celestial] from their philosophical studies’ (fundamenta quaedam utriusque sphaerae ex 

Philosophia haussisent).29 There was no however no more advanced course available in 

any Jesuit institution in Europe where Verbiest might have acquired the training he 

needed. Indeed, his colleague in the novitiate and later in China, Francois de Rougemont, 

wrote in a letter in 1661 that Verbiest’s expertise was all the more admirable because it 

Figure 3. Finding the umbra recta, the shadow cast by the sun’s upper limb. From Ce liang quan 

yi 10, 16a. See Cullen and Jami, op. cit. (Note 1) p. 48 n. 115.
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was privato fere studio acquisitam ‘gained mostly by private study’.30 As to when the 

‘private study’ (which expression did not exclude individual work with a teacher, as 

opposed to attending a formal course of lectures) may have taken place, likely periods 

are his year in the Collegio Romano in 1652–53, when he met Athanasius Kircher, with 

whom he later maintained a correspondence, his further visit to Rome and Genoa in 

1655, and his time teaching mathematics at Coimbra from 1656–57, a period when he 

said he ‘learned more than he taught’. Finally, there was the long voyage to China with 

his fellow Jesuit Martino Martini (formerly a student of Kircher in mathematics), who he 

tells us gave instruction in astronomy to the young missionary passengers.31

It is also possible to identify one highly probable textual source for at least some of 

the astronomical knowledge gained by Verbiest before he came to China. Giambattista 

Riccioli (1598–1671) was born a quarter of a century before Verbiest, and joined the 

Society of Jesus at the age of 16.32 His major substantive post was as a professor of theol-

ogy at the University of Bologna, but it was astronomy that drew him as a researcher, 

writer and teacher, and he was eventually allowed to devote himself to it full time. His 

first major work on this topic, with the ambitious title Almagestum Novum ‘The new 

Almagest’),33 hereafter abbreviated as AN, was published in 1651, 6 years before Verbiest 

left for China in 1657. In his preface, Riccioli explains that he is writing in the hope of 

providing ‘for the men of our Society, and others’ a single compendious work from 

which they may learn everything about ancient and modern astronomy, including the 

relevant controversies that have taken place.

A modern reader consulting Riccioli’s book may well feel that he succeeded in writ-

ing the book he intended to write. His writing is clear, detailed and gives full ‘state of the 

field’ reviews of all the topics he discusses, so that the reader is not only well informed 

of Riccioli’s views and his reasons for holding them, but is also told what all previous 

writers on the topics treated have said, from antiquity up to Riccioli’s day. In addition, he 

informs us of what he has learned from an extensive correspondence with contemporary 

astronomers throughout Europe. He gives frequent examples of the observations and 

calculations, by himself and others, on which his work is based, with detailed explana-

tions designed to facilitate the work of students. To make his very substantial writings 

more accessible, he adds comprehensive and well-structured indexes and lists of tables 

at the end of his book. Riccioli has mostly been discussed by recent historians in relation 

to his opposition to heliocentrism, but his contemporaries valued his work as an indis-

pensable and comprehensive technical and historical reference, irrespective of their reli-

gious allegiance. Thus the English astronomer John Flamsteed (1646–1719), appointed 

as the first Astronomer Royal in 1675 and by no means a geocentrist, appears to have 

‘frequently consulted’ Riccioli’s book in the preparation of the Gresham lectures he 

delivered in London in 1681–84.34

As a student (and later teacher) of mathematics and astronomy during this period, it is 

hard to believe that Verbiest would not have studied – even acquired – this comprehen-

sive, up to date and reader-friendly book by a fellow Jesuit before leaving for China. This 

likelihood is greatly strengthened by the fact that Riccioli sent a copy of his recently 

published Almagestum Novum to Kircher in February 1652, early in the year during 

which Verbiest was in Rome and is known to have been in contact with Kircher, with 

whom he later maintained a correspondence.35 There is clear evidence from Verbiest’s 
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later writing that he knew of Riccioli’s works, and was highly appreciative of their 

value36; the catalogue of the Jesuits’ library in Beijing lists no less than four copies of the 

Almagestum Novum.37

By what one can only describe as a highly fortuitous coincidence, Riccioli wrote his 

book in Bologna, the one place in 17th century Europe where there was a well estab-

lished tradition of interest in gnomon observations of the sun – and using gnomons twice 

as high as any constructed in China. The gnomon of Bologna did not take the form of a 

vertical pole, as in the Chinese tradition, nor of a horizontal bar mounted in a stone tower 

like the 10 m high Yuan dynasty gnomon mentioned above. Instead, the first version of 

the Bologna gnomon, set up by Egnazio Danti in 1576,38 consisted of a hole pierced in 

the wall of a side chapel of the great university church of San Pietro, at a height of 65 feet 

of Bologna and 9.25 inches, equivalent to 25 m.39 The sun’s light passing through this 

aperture fell on a meridian line marked on the floor of the church, and the Italian name 

of the line ‘meridiana’ was used to refer to the overall arrangement. Riccioli includes an 

illustration of the meridiana in his book (see Figure 4).

Danti’s gnomon was useful, but somewhat imperfect; its meridian line was forced by 

the layout of the church pillars to deviate from north-south alignment by 9°, and it was 

not precisely level. In 1655–56, Giovanni Domenico Cassini oversaw the construction in 

San Pietro’s of a new meridiana that eliminated these problems.40 But this further part of 

the gnomon’s story need not concern us here, although we shall have occasion to refer to 

Cassini’s work in Bologna a little later.

Figure 4. Danti’s gnomon in the church of San Pietro, Bologna: see Almagestum Novum Book 
3, p. 132 (Source gallica.bnf.fr/Bibliothèque nationale de France). The caption records its 
construction in 1576 under the patronage of the Senator Giovanni Pepuli. The rectangle T and 
the circle Z represent respectively (not to scale) the iron plate set into the roof structure, and 
the circular hole in it through which the sun’s light passes. The three images of the sun drawn 
on the horizontal scale represent what is seen (from left to right) at summer solstice noon, at 
equinoctial noon and winter solstice noon.
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Given Riccioli’s familarity with gnomon observations, it is not surprising that we find 

in Almagestum Novum a discussion of how the true altitude of the sun may be deduced 

from a gnomon shadow measurement in, by calculating the tangent of the apparent alti-

tude from the height of the gnomon divided by the shadow length, and applying certain 

corrections to the angle thus found. Riccioli’s words are:

Si Solis Altitudinem Meridianam, per umbram Gnomonis meridianam observare volueris, 

oportebit notam esse altitudinem styli & longitudinem umbrae meridianae [. . .] deinde per 

Trigonometriam inquirendus est in triangulo rectilineo rectangulo, angulus oppositus Gnomoni 

[. . .] qui angulus erit altitudo visa superioris Solis limbi, a qua si detraxeris semidiametrum 

Solis apparentem, relinquetur altitudo Solis, id est centri eius, apparens; quae correcta additione 

Parallaxeos, detractione Refractionis, dabit altitude[inem] veram Solis [. . .].

If you wish to observe the altitude of the sun by the noon shadow of a gnomon, you must note 

the height of the pillar [i.e. the gnomon] and the length of the noon shadow [. . .]. Next you use 

trigonometry to find the angle opposite the gnomon in the rectilinear right-angled triangle 

[. . .], which angle will be the apparent altitude of the upper limb of the sun, and if you subtract 

the apparent semidiameter of the sun [from the apparent altitude], that will leave the altitude of 

the sun, that is, of its centre; which, if corrected by the addition of the parallax and the 

subtraction of the refraction, will give the true altitude of the sun.41

Given this explanation, it would have been simple for Verbiest to reverse the procedure, 

and calculate what length of shadow would result from using a given gnomon at a time 

when the altitude of the sun was known from tables. Thus, if Verbiest could use tables to 

calculate the true noon altitude of the sun’s centre on a given day, he could then apply the 

two corrections in reverse (subtracting parallax and adding refraction), add the semidi-

ameter of the sun, and so find a value for the apparent altitude of the upper limb at noon 

on the given day. From this, using the equation given above

s  h  tan a= ( )/

he could find the length of the umbra recta shadow s from the gnomon height h and the 

altitude just found. There is an example of this calculation in Verbiest’s account of the 

new instruments he constructed for the imperial observatory after he took office in 1669. 

He tells us that after having determined by a quadrant that the noon altitude of the sun 

was 33;42°, and by a sextant that the zenith distance was 56;18°, 42 it was found that the 

shadow cast by a gnomon 8.5 chi high was 13.745 chi long.43 The shadow length is 

clearly a misprint for 12.745 chi, since:

8 5  tan 56 18   12 745 . ; .chi chi× ( ) =°

Since the quantities discussed in this example all related to the apparent sun, the question 

of corrections did not arise. But later in the same work, in discussion of observations 

made using a quadrant, Verbiest stresses the necessity of taking both factors mentioned 

by Riccioli, parallax and refraction, into account if underlying true values of celestial 

coordinates were to be deduced from apparent values.44
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The two corrections: What were they, and what were their 

values?

But what exactly were the refraction and parallax corrections specified by Riccioli? As 

already indicated, refraction is the physical effect operating on rays of light that enter the 

atmosphere at an angle to the vertical, as a result of which they change direction slightly 

towards the vertical, resulting in the celestial body that is the source of the light having 

an apparent altitude slightly greater than what would have been observed from the earth’s 

surface in the absence of an atmosphere. Parallax is the difference between the altitude 

of a celestial body (in this case the sun) as seen by an observer at the centre of the earth 

(which is the position for which tables of solar motions are calculated) and by an observer 

who is ‘off-centre’ somewhere on the earth’s surface, assumed for this purpose to be 

devoid of atmosphere. The result of parallax is to decrease the altitude of the celestial 

body slightly relative to what would have been seen from the centre of the earth. Parallax 

is thus in principle a quantity that can be calculated by trigonometry, given relative val-

ues for the radius of the earth and the distance of the sun from the earth; changing esti-

mates of the dimensions of the solar system therefore necessarily implied changes in 

predicted values of parallax.45 Refraction, on the other hand, had to be estimated in part 

at least empirically until the discovery and publication of a quantitative law of refraction 

by various authors during the first half of the 17th century. Both of these effects fall to 

zero when the object is seen at the zenith (90° altitude), and are at their maximum when 

it is seen on the horizon.

Refraction and parallax had been recognised in Europe since antiquity,46 although 

they do not appear to have been discussed in China before the arrival of the Jesuits. In 

1543 Copernicus discussed parallax in the context of his new cosmography, and gave a 

table of expected values for the parallaxes of sun and moon at all altitudes, using the 

parameters of his own system.47 The first modern systematic consideration of parallax 

together with refraction was attempted by Tycho; however various factors including his 

under-estimate of the sun’s distance relative to the size of the earth, led him to greatly 

overestimate the magnitude of the necessary correction for parallax. In order to produce 

consistency with his own highly accurate observations, this error involved Tycho in hav-

ing to assume that rays of light from the sun, the moon and the stars were refracted by 

slightly different angles, so that the refraction applied to observations of these bodies had 

to be tabulated separately.48 It is, however, Tycho’s tables of refraction and parallax for 

the sun that are tabulated in the Chong zhen li shu, and reproduced in the version that 

became the Xin fa li shu.49

The Chong zhen li shu explains how the parallax of the sun can be calculated, using a 

diagram of which the image in Figure 5 is a modernised version, with some quantities 

marked explicitly that are only referred to in the explanatory text of the original.50

The observer is at D on the surface of the earth (of which only a quadrant is shown), 

whose semidiameter is r. Her local zenith is at A. The angle z (angle ADB) is the apparent 

zenith distance of the sun, whose altitude above her horizon will therefore be 90°–z. If 

however the observer was to use astronomical tables to find the zenith distance of the sun 

at her moment of observation, what she would find would not be z, but z′ (ACB), the 

zenith distance that would have been seen by an observer at the centre of the earth, C. 

The difference between the two angles is the sun’s parallax, p (angle DBC).
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The diagram in Figure 5 shows the distance of the sun, s, as only about 5r. But no 

serious astronomer since antiquity has ever believed the s was any less than 1000r. If 

s = 1000r, the earth would be almost invisible on the diagram, and angle p would be no 

more than a few minutes at most, so we can make some approximations in our calcula-

tions with very little loss of accuracy.

Thus, if we begin by constructing DX at right angles to DB, then the angle CDX will 

be the altitude, 90°–z. Because p is so small, we may also take DX as being perpendicu-

lar to CB, so that the angle z′ is very nearly equal to z. DX can thus be found from:

DX  r sin z= ( )

Also, since XC is much smaller than s, we may take BX = s, and thus in the triangle XDB:

p  arcsin DX s  arcsin r s  sin z= ( ) = ( ) ( )( )/ / .

Using this expression, then given the ratio r/s we may calculate the parallax p for any 

apparent zenith distance, and thus for any apparent altitude. To obtain the true zenith 

distance from the apparent zenith distance we subtract the parallax, and to find the true 

altitude from the apparent altitude we add the parallax.

The maximum value of the parallax p will be seen when z = 90°, so that the sun is on 

the observer’s horizon. Then sin (z) = 1, so that:

p  arcsin r s= ( )/

This maximum value is called the ‘horizontal parallax’.
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Figure 5. Calculating parallax.
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The explanatory text in Chong zhen li shu and Xin fa li shu makes only one reference 

to r/s, when it notes that Copernicus (Ge Baini 歌白泥) took it to be 1/1142.51 Significantly 

Tycho also cites Copernicus as giving the 1142 value for s in his explanation of how 

parallax may be found, on which the Chinese text is no doubt based. Tycho’s own chosen 

value took (r/s) = 1/1182 at apogee,52 so that the maximum value of p, the sun’s ‘horizon-

tal parallax’ when z = 90° at apogee will be:

p = arcsin (1/1182) = 0;02,54°

This is indeed the maximum tabulated apogee value for parallax in Tycho’s table, trans-

lated in Xin fa li shu. The maximum values for parallax at mean distance and perigee, 

together with the other values in his table, follow similarly.

If, however, Verbiest had studied those parts of Riccioli’s book that dealt with such 

questions, he would have soon realised that Tycho’s parallax values were widely regarded 

as obsolete by the time he began to study astronomy. The key point was that Tycho’s 

estimates of the distance of the sun were, by the middle of the 17th century, beginning to 

be seen as much too small, implying that his predicted values of parallax were too large. 

One of Riccioli’s major contributions to astronomy was his careful use of the telescope 

to find the distance of the moon by the process known as ‘lunar dichotomy’, by which 

one observed the moment when the edge of the ‘terminator’ ran in an apparent straight 

line from north to south in the observer’s field of view, giving an exact half-moon. At that 

moment, the line from the terrestrial observer to the moon was perpendicular to the line 

from the moon to the sun. This enabled him to estimate the ratio of the distance from the 

moon to the sun as a multiple of the distance from the earth to the moon; in turn, using 

an estimate of the earth-moon distance he went on to deduce that the ratio of the earth’s 

semidiameter to the distance of the sun at apogee was more like 1/7580 than Tycho’s 

1/1182, leading to a value for maximum solar horizontal parallax of only 0;00,30° rather 

than Tycho’s 0;02,54°.53 As Riccioli noted, this change not only involved the scale of the 

solar system, but also had implications for basic astronomical constants such as the 

obliquity of the ecliptic. Thus, he pointed out, an observation of the altitude of the sun 

made by him at Bologna in June 1646 would have implied an obliquity of the ecliptic 

equal to 23;31,02° using Tycho’s parallax, but yielded a value of 23;30,00° using his own 

new parallax.54 Although Riccioli’s horizontal parallax was several times smaller than 

Tycho’s, it was however still large enough compared to the true value to force him, like 

Tycho, to give different tables for the refraction to be used for the sun, the moon and the 

fixed stars, in order to be consistent with observational results.55

Riccioli was not alone in seeking to expand the dimensions of the solar system. He 

noted that Gottfried Wendelin (1580–1667), with whom he was in correspondence, had 

proposed distances of the sun double his own, which would have reduced the horizontal 

parallax of the sun to about 0;00,14°. Both Riccioli’s and Wendelin’s parallaxes were 

more realistic estimates than Tycho, but modern values of r = 6358 km (measured through 

the poles) and a mean distance for the sun of s = 149,597,900 km give a ratio of 1/23,440, 

leading to an even smaller horizontal parallax of 0;00,09°.56

By the second half of the 17th century, when Verbiest studied and practised astronomy, 

it was clear that the old schemes of sizes and distances in the solar system were no longer 

to be trusted.57 A striking instance of scepticism may be see in the early work of the Italian 
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astronomer Giovanni Domenico Cassini (1625–1712), known as Jean-Dominique Cassini 

after his later move to Paris. In 1650, at the age of 25, he was appointed to the chair of 

astronomy at the University of Bologna. As we noted earlier, it was Cassini who replaced 

Danti’s meridiana with a new and much improved construction in 1665–56. Using this 

and other instruments, Cassini became convinced that the sun’s parallax was much smaller 

than had been suspected. In an outline of some of his early experiments published in 1656, 

one of the sections was headed Parallaxis solis paene insensibilis ‘The parallax of the sun 

[is] nearly imperceptible’.58

In it he refers to an observation he made on 4 April 1653, when he had observed a 

‘dichotomy’ of the moon at its first quarter (implying that the angle earth-moon-sun was 

90°) which be believed he could show took place only a few minutes away from the 

moment when the angle between the sight-lines from the observer to the moon and the 

sun were also at 90°, thus implying, as he says:

. . . per consequens totam Lunae a Terra distantiam ad Solis a Luna distantiam insensibilem 

rationem habere, Terramque a Sole conspectam instar puncti apparere, & proinde distantiam 

oculi a Terrae centro nullam sensibilem parallaxim Solis efficere.

. . . consequently the whole distance of the moon from the earth bears a negligible ratio to the 

distance of the sun from the moon, and the earth seen from the sun appears like a point, so that 

the distance of the [observer’s] eye from the centre of the earth will give rise to no perceptible 

solar parallax.59

What is more, he claimed, this particular observation was exceptionally reliable, since it 

was based on direct measurement of the moon’s position relative to the fixed stars (and 

hence to the sun), and did not involve finding that position by using lunar tables. Nor did 

it in any way involve an estimate of lunar parallax. And its clear implication was that the 

actual size of the sun must be much larger than astronomers had so far taken it to be – so 

large, in fact, that it would equal previous estimates of the size of the cosmos made by 

‘ancient astronomers’ (veteres Astronomi).

When Cassini published these striking declarations in 1656, he was still a young man 

of 28. In an essay published 6 years later as part of the ephemerides prepared under the 

patronage of Marchese Cornelio Malvasia, a retired general, enthusiastic astronomical 

amateur and Senator of Bologna, he repeated the claim that the solar parallax was negli-

gible – but only as the first of ‘two hypotheses competing with one another for pre-emi-

nence’ (duplici hypothesis inter se praestantia certantes). The second hypothesis gave 

the sun at perigee a horizontal parallax of 1 minute of arc, the value favoured by Kepler, 

about double the value arrived at by Riccioli, implying that the sun was at that moment 

only 3400 earth semidiameters from the earth.60 It was on the second basis that Cassini 

prepared the table of refraction and parallax included in the ephemerides. The possibility 

cannot be excluded that this choice may have in part resulted from the preferences of the 

Marchese himself, to whom Cassini owed a debt of gratitude for his support for the work 

on the meridiana of San Pietro that Cassini had undertaken in 1655–6.61 Later in his 

career, when he was established in Paris under a patron (Louis XIV) who was less likely 

to have decided views on the solar parallax, Cassini held to his previous position, agree-

ing with Flamsteed, who published an open letter to him in 1673 reporting observations 
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indicating that that the solar parallax was ‘at most 10″ and its distance 21,000 terrestrial 

semidiameters’ (summum 10″ & distantiam 21 000 Terrae semidiametros); Cassini noted 

that his own estimate was 22,000 semidiameters.62

We need not here follow the detailed development of ideas about solar parallax any 

further. It is sufficient to say that when Verbiest spent time with Riccioli’s promoter Kircher 

in Rome in 1652–3 (as already mentioned) it was more than likely that he would have 

heard of not only Riccioli’s considerable reduction of the solar parallax from the value 

given by Tycho, but also of its virtual elimination as claimed by Cassini after his observa-

tions of April 1653, made at Riccioli’s base in Bologna. The possible implications of this 

will emerge when we discuss the details of Verbiest’s shadow calculations in December 

1668.

Reproducing Verbiest’s predicted shadow values:  

The first day

In this and the following section we shall try to answer two questions:

1. By what method, based on what textual resources, did Verbiest make his calcula-

tions of shadow lengths on 27, 28 and 29 December 1668?

2. Was his method of calculation consistent over those 3 days?

We may note that at the time of his shadow predictions Verbiest was confined to the 

Dong tang 東堂 ‘Eastern Church’ Jesuit residence,63 and had no access to the main Jesuit 

library, which was in the Xi tang 西堂 ‘Western Church’ residence, at that time under the 

control of Yang Guangxian.64 We know, however, that Verbiest had all that he needed to 

make predictions of shadow lengths during his confinement in the Jesuits’ residence, 

since he tells us:

Ingenue fateor, saepius ego quidem inter privatos, & domesticos parietes eiusmodi umbras 

antea venatus sum, & quidem stylis variis, iisque brevioribus, sed plerumque inter illas & 

calculum meo defectum aliquem, vel excessum observavi, quod quidem in ipsum instrumentum 

non exacte collocatum referendum putavi.

It must in all fairness be said that I had frequently investigated such shadows within the walls 

of our residence, even with several different and shorter gnomons, but that I had mostly 

observed some deficit or surplus between the shadows and my calculations. I presumed that the 

reacon for this was the incorrect positioning of my instrument.65

It is noteworthy that Verbiest attributes any discrepancies between prediction and obser-

vation to errors in positioning his instrument (probably referring to its not having been 

precisely levelled or aligned north-south) rather than to any error in his method of calcu-

lation, in which he appears to be quite confident.

At no point does Verbiest tell us what astronomical texts he was using as the basis of 

his calculations in late December 1668. There is only one text that we can say with cer-

tainty that he had at his disposal, and that is the 1648 three volume edition of the 
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astronomical compendium by Andrea Argoli, the second and third volumes of which 

contain ephemerides giving the positions of the sun, moon and planets calculated at 

Rome noon at daily intervals from 1641 to 1700. We have a copy of this work from the 

collection of the Jesuit library in Beijing, with frequent annotations in the handwriting of 

Verbiest,66 who mentions Argoli’s table in his own later account of the ‘restoration of 

European astronomy’ in 1668–9.67 It is highly significant that this text has inked horizon-

tal marks next to the entry rows for the ephemeris data for 27 and 28 December 1668, the 

first two dates for which Verbiest had to make shadow predictions. Since Argoli provides 

ready-made computations of solar longitudes, using these tables would have spared 

Verbiest a considerable amount of labour and uncertainty. Even if he did not use them as 

the basis of the predictions he submitted, a cross-check with Argoli’s tables would still 

have given him valuable reassurance that he had not made any gross error in his 

calculations.

On the other hand, Argoli’s book does not contain any trigonometrical tables, nor does 

it give values for the refraction and parallax corrections; in itself it was therefore not a 

sufficient resource to enable Verbiest to complete a set of shadow predictions. He must 

therefore have had some other text or texts at his disposal, of which the most probable 

candidate is the Xin fa li shu, which would have provided all the data he needed.68

If we follow the methods for finding the position of the sun on the celestial sphere set 

out in the Xin fa li shu, in combination with Verbiest’s stated value of the altitude of the 

north celestial pole at Beijing, we can get as far as predicting the true noon zenith dis-

tance and altitude of the sun’s centre before we have to make any decisions about correc-

tions. The value found for Beijing noon solar zenith distance on 27 December 1668 is 

63;17,13°, which implies a true altitude of 26;42,47°: see Box 1 for an outline of the 

calculations involved. Rows have been numbered for convenience of reference. The pre-

cise sources of the data used in the table will be outlined shortly.

Box 1. Finding zenith distance and altitude of sun on 27 December 1668.

Row Degrees Minutes Seconds Total seconds 

of arc

1 Winter solstice daily motion 

of sun near perigee, m

1 1 20 3680

2 Altitude of celestial pole at 

Beijing (stated by Verbiest), P

39 55 143,700

3 Hours Minutes Seconds Total seconds 

of time

4 Time from Beijing midnight 

beginning 21 December 1668 

to moment of true winter 

solstice, S (see Appendix A, 

Box A1)

6 8 13 22,093

5 Time from winter solstice 

to noon on 21 December, 

T = 12 hours – S

5 51 47 21,107

 (Continued)
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Rows 1 and 2 give two important fixed parameters to be used in the calculation. Row 1 

tells us how much the position of the sun shifts in longitude in 1 day. This quantity, which we 

label here as m, is at a maximum value at perigee, when the sun is closest to the earth and 

thus reaches its greatest apparent speed of motion along the ecliptic. In 1668 the perigee was 

about 6° to the east of the winter solstice. As can be seen from the Xin fa li shu table entitled 

Tai yang zhou sui ping shi er xing biao 太陽周歲平實二行表 ‘Table of the [daily] mean 

and true motion of the sun [along the ecliptic] throughout the year [counted from winter 

solstice]’,69 the sun’s rate of daily motion was taken to be effectively constant within accept-

able precision at 61 1/3 minutes70 for 29 days after winter solstice, a fact confirmed by 

another table, Xi xing bian shi biao 細行變時表 ‘Table for converting small amounts of 

motion to time’,71 which uses the value of 1;01,20° (given as 61′ 20″) from winter solstice 

to 37 days thereafter. During the period of interest to us, which begins on the day when the 

sun is at winter solstice, 21 December, and continues for 8 days until 29 December, we may 

therefore safely use the value 1;01,20° for determining daily solar motion.

Row 2 gives the altitude, P, of the north celestial pole above the horizon at Beijing, as 

specified by Verbiest in a text he completed in early 1669, at most 2 months after the 

shadow trial of December 1668.72 We may therefore adopt it here. This quantity is equal 

to the latitude of the place of observation; a modern value for the latitude of Beijing is 

identical to within 1 minute of arc.

Row 4 gives the time interval between the preceding midnight at Beijing and the true 

moment of winter solstice, when the sun is at a longitude of 270° measured from its 

6 Degrees Minutes Seconds Total seconds 

of arc

7 Motion of sun from winter 

solstice to noon on 21 December, 
N = m × T / (24 hours)

0 14 59 899.0019

8 Motion of sun from winter solstice 
to noon on 27 December, N + 6 m

6 22 59 22,979.0019

9 From interpolation in tables, 

south declination, D, of solar 

centre at noon, corresponding 

to sun’s motion

Degrees Minutes Seconds Total seconds 

of arc

10 27 December 23 22 13 84,133.34824

11 Add polar altitude P to find 

zenith distance of solar centre, 

Z = D + P

Degrees Minutes Seconds Total seconds 

of arc

12 27 December 63 17 13 227,833.3482

13 Altitude of solar centre, 

A = 90°– Z

Degrees Minutes Seconds Total seconds 

of arc

14 27 December 26 42 47 96,166.6518

Box 1. (Continued)



444 Journal for the History of Astronomy 53(4)

spring equinox position. The process by which this quantity is derived from tabulated 

mean data is explained in Appendix A. Since we shall be concerned with positions of the 

sun at noon, we subtract this quantity from 12 hours in Row 5 to obtain T, the time inter-

val from winter solstice to noon on the relevant day, 21 December.

In row 7, we go on to use the values of the daily motion m and the time T just calcu-

lated to find how far the sun moves from its winter solstice position by noon, N = m × T/

(24 hours). In row 8, we add 6 m to find the motion of the sun from winter solstice at the 

noon of interest to us, 27 December.

We now consult another table, entitled Huang chi er dao xiang ju wei du biao 黃赤二
道相距緯度表 ‘Table of the separation of the ecliptic and equator in degrees of declina-

tion’, which appears to be a direct translation of an equivalent table by Tycho Brahe.73 

Like its original, the Chinese table given by the Jesuits begins at spring equinox; degrees 

from winter solstice are counted backwards from the end of the table in the lower two 

registers at intervals of 10 minutes of arc. The values corresponding to the noon motions 

from winter solstice on the relevant days must be found by interpolation. Thus, for 27 

December, for which the motion is 6;22,59°, we look up the tabulated values immedi-

ately above and below (with their differences conveniently tabulated) to find:

Motion   Declination (south)

6;20.00°   23;22,22°

      Difference  −0;00,29°

6;30,00°   23;21,53°

We thus reckon the amount to be subtracted from the first declination as:

−0;00,29° × (0;02,59°/0;10,00°) = −29″ × (179″/600″) = −8.65″

So the resultant value of the south declination of the sun is:

23 22 22   8 65   23 22 13  to the nearest second ; , ; , . ; ,° ° °− =0 00 0 oof arc.

This is the declination value, D, of the centre of the sun for noon on 27 December in row 

10. By adding the polar altitude P we obtain the distance of the centre of the sun from the 

zenith:

Z  D  P  yielding the value in row 12= + , .

39 55  23 22 13  63 17 13; , ; , ; ,00° ° °+ =

The altitude of the centre of the sun is:

A  9   Z in row 14= −0° .

9 63 17 13  26 42 470° ° °− =; , ; ,

Using this information, we now have to choose values for the following three corrections 

in order to find the apparent zenith distance of the upper limb of the sun from the true 

zenith distance of the sun’s centre, and thus to predict the length of a gnomon shadow:
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(a) The angle representing refraction, to be subtracted from the true zenith distance 

of the sun’s centre.

(b) The angle representing parallax, to be added to the true zenith distance of the 

sun’s centre.

(c) The angle representing the sun’s semidiameter, to be subtracted from the true 

zenith distance of the sun’s centre.

If we make the assumption that Verbiest would have uncritically adopted the values 

found in Xin fa li shu, we would find the following values for these corrections:

(a) Refraction: 0;02,04°, by interpolating for the solar altitude in the table of refrac-

tion given in Xin fa li shu, Ri gao qing meng qi cha biao 日高清蒙氣差表 ‘Table 

of the difference [caused by] clear and turbid qi according to the altitude of the 

sun’.74 This short table gives values for every 2° of altitude. For an altitude of 

26;42,47°, the relevant values are 0;02,15° for 26° and 0;01,45° for 28°, a change 

of –0;00,15° for 1° altitude:

− = − ″ ″( ) = − 15  x 42 47 1    15   2567 36   0 00 00 0 00 00; , ; , / ; , * /° ° ° °   11

So 2 15   11   2 4  is the value r

0 00

0 0 0 00 0 0 0

; ,

; , ; , ; ,

°

° ° °− = eequired.

(b) Parallax: 0;02,46° by interpolating for the solar altitude in the table of parallax 

given in Xin fa li shu, Zui gao san ju di ban jing cha biao 最高三距地半徑差表 

‘Table of the parallax difference [resulting from] the semidiameter of the earth 

for three distances from the apogee’,75 using the values corresponding to posi-

tions near perigee. For an altitude of 26;42,47°, the relevant values are 0;02,47° 

for 26° and 0;02,45° for 27°, −0;00,02° change for 1°:

− = − ″ ″( ) = −0 00 0 00 0 00 0 00; , ; , / ; , * /2  x 42 47 1    2   2567 36    ° ° ° ° 00 00 0

0 0 0 00 0 0 0

; ,

; , ; , ; ,

1

So 2 47   1   2 46  is the value re

°

° ° °− = qquired.

(c) Semidiameter of the sun: 0;15,30°, the value corresponding to perigee in the table 

of solar semidiameters given in Xin fa li shu, Shi ban jing biao 視半徑表 ‘Table 

of apparent semidiameters’.76

As a result of applying these corrections, we arrive at an apparent noon zenith distance 

for the sun’s upper limb of

63 17 13  2 4   2 46   15 3   63 2 25; , ; , ; , ; , ; ,° ° ° ° °− + − =0 0 0 0 0 0 0 0

We thus obtain for s, the umbra recta cast by the sun’s upper limb of the 8.49 chi gnomon 

used on that day:

s  h tan z   8 49  tan 63 2 25= ( ) = × ( ). . ; ,chi 0 °

=  16 692  16 69 to the precision used by Verbiest. , . .chi chi
77
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The value of the zenith distance that would have given the precise length actually pre-

dicted by Verbiest, 16.66 chi, is 62;59,47°. The discrepancy, 0;02,38° is not negligible in 

comparison to the values of parallax and refraction applied. What might be the reason for 

such a large discrepancy?

Let us look more closely at the value of the parallax correction used in the above cal-

culation, As we have seen, it is highly unlikely, given his studies in Europe, that Verbiest 

would have been unaware that Tycho’s parallax values of half a century earlier, repeated 

in Xin fa li shu, were very far from the truth, and that astronomers such as Riccioli were 

adopting values for the distance of the sun considerably greater than Tycho’s, leading to 

much smaller solar parallaxes – or, in the case of Cassini, reporting his observations of 

1653 (see above), no perceptible parallax at all. For Verbiest, confined in the Dong tang, 

the advantage of following Cassini would have been that it entailed simply treating solar 

parallax as negligible, without the need to look up values in a text like Riccioli’s to which 

he might not have had access at the time.

If accordingly we set the solar parallax to zero, we find that the shadow length pre-

dicted would have been:

s  h tan z   8 49  tan 62 59 39

16 66 to Verb

= ( ) = × ( )

=

. . ; ,

.

chi

chi

°

iiest’s precision.

This is the length he actually predicted for the first day, 27 December. It therefore seems highly 

likely that Verbiest did make the assumption that the parallax was imperceptible compared to 

other relevant quantitites.

Reproducing Verbiest’s predicted shadow values: The 

second and third days

Now we have succeeded in reproducing the shadow prediction for the first day by a 

highly plausible method, we would expect to be able to do the same for the second and 

third days using the same procedure. But this turns out not to be the case. If, for instance, 

we use the Xin fa li shu data and methods, again treating the parallax as negligible, we 

obtain the results shown in Table 3, each shown to the same precision as the correspond-

ing prediction. For full details of the calculations see Appendix B, Box A2.

The discrepancies between calculation and prediction for the second and third days 

are striking.

Lest it should be thought that this result is due to some anomaly in the data and calcu-

lation methods specified in Xin fa li shu, we may compare the results that Verbiest could 

have obtained from two other very different sources. Firstly, let us consider an obvious 

source that Verbiest might have used as an error check on his calculations – the ephem-

eris of Argoli, which we know was in his possession during his confinement. If we use 

Argoli’s values for Rome noon longitudes of the sun, and interpolate to find the values at 

Beijing noon using Verbiest’s own value of 6 hours 42 minutes as the time difference 

between the two capitals,78 then use Argoli’s tables to find the sun’s declination before 

applying the same polar altitude and corrections we used above, we obtain the results in 

Table 4, again shown with the same precision used by Verbiest.
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For full calculation details, see Appendix C, Box A3. The similarity with the Xin fa li 

shu results is evident. The shadow length for the first day again matches Verbiest’s pre-

diction. But the shadows for the second and third days differ from the recorded predic-

tions by very similar amounts to those found previously.

If we choose a another means of calculation which, while less likely, might still have 

been used by Verbiest under the circumstances in which he found himself – the 

Rudolphine Tables of Kepler – we obtain the results in Table 5.

For full details of the calculations, see Appendix D, Box A4. The result for the first 

day’s shadow is still identical to Verbiest’s to within the precision he applies – but once 

more we see a worse match with Verbiest’s predictions for the next 2 days, with results 

very similar to those previously calculated.

If we look again at the implications of Verbiest’s data for gnomon height and shadow 

length (which as we have are attested by multiple sources in both Chinese and Latin), it 

Table 3. Reproducing Verbiest’s shadow predictions for first and subsequent days, using Xin fa 

li shu.

Date, 1668 Verbiest’s 
gnomon 
height H, chi

Tangent of apparent 
zenith distance of 
upper limb, tan (Z’), 
interpolated from 
Xin fa li shu tables

Predicted umbral 
shadow length, 
U = H × tan (Z’), 
chi, to Verbiest’s 
precision

Verbiest’s 
stated shadow 
lengths, chi

27 December 8.49 1.96265 16.66 16.66

28 December 2.2 1.95761 4.307 4.345

29 December 8.055 1.95247 15.73 15.83

Table 4. Shadows calculated using Argoli’s tables to find longitude and declination of sun.

Date, 1668 Verbiest’s 
gnomon 
height H, chi

Tangent of apparent 
zenith distance of 
upper limb, tan (Z’)

Predicted umbral 
shadow length, 
U = H × tan (Z’), chi

Verbiest’s 
stated shadow 
lengths, chi

27 December 8.49 1.96175831 16.66 16.66

28 December 2.2 1.95745869 4.306 4.345

29 December 8.055 1.95263945 15.73 15.83

Table 5. Shadows calculated using Rudolphine Tables to find longitude and declination of sun.

Date, 1668 Verbiest’s 
gnomon 
height H, chi

Tangent of apparent 
zenith distance of 
upper limb, tan (Z’)

Predicted umbral 
shadow length, 
U = H × tan (Z’), chi

Verbiest’s 
stated shadow 
lengths, chi

27 December 8.49 1.962203145 16.66 16.66

28 December 2.2 1.957715309 4.307 4.345

29 December 8.055 1.952616215 15.73 15.83
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can be seen that they have a highly problematic feature which is quite at odds with astro-

nomical reality (Table 6).

Since winter solstice fell on December 20th, the noon sun must have been steadily 

rising in the sky during the 3 days from 27 to 29 December, so that its zenith distance 

steadily decreased. Columns 6 and 7, which record the changes in noon zenith distances 

predicted by the Xin fa li shu and by modern calculations (Starry Night Pro), show the 

expected pattern in identical amounts, as do the calculations using Argoli and the 

Rudolphine Tables (not shown here for brevity). Column 5 shows the changes implied by 

Verbiest’s stated values for gnomon height and shadow length, and there the contrast is 

striking. The change from the second to third day is close to that predicted in columns 6 

and 7, but from the first to the second day it is implied that the zenith distance increases 

by an amount almost double the expected decrease. There is no way that such a change 

in zenith distance could result from any astronomical calculation based on the actual 

motion of the sun during the relevant period shortly after winter solstice, during which, 

as already noted, zenith distance steadily decreases.

The only possible conclusion to be drawn is that whatever Verbiest’s method of cal-

culation was for the shadow on the first day, he did not calculate the shadows on the 

following two days by the same method.

What might have motivated Verbiest to make a major change in his method of calcula-

tion after the first day? We suggest that the answer to this lies in something that happened 

on the observatory at noon on 27 December. As has already been set out in Cullen and 

Jami ‘Christmas 1668 and after’ (see Note 1, pp. 21–28), a serious problem arose on that 

first day, which Verbiest nowhere acknowledges in his own writings – indeed he claims 

that each day’s prediction was an unqualified success. However, the report of that day’s 

work submitted to the emperor by the responsible officials, while agreeing with Verbiest’s 

prediction of 16.66 chi, notes that his two adversaries refused to concede that this value 

Table 6. Apparent zenith distances implied by Verbiest’s data, and by other predictive 
methods.

1 2 3 4 5 6 7

Date, 1668 Verbiest’s 
gnomon 
height H, 
chi

Verbiest’s 
stated 
shadow 
lengths, 
chi

Apparent 
noon zenith 
distance 
from shadow 
length and 
gnomon 
height implied 
by Verbiest’s 
data, degrees

Change of 
noon zenith 
distance from 
preceding 
day implied 
by Verbiest’s 
data, degrees

Change of 
noon zenith 
distance from 
preceding day 
found from 
Xin fa li shu 
data, degrees

Change of 
noon zenith 
distance from 
preceding day 
found from 
modern data, 
degrees

27 December 8.49 16.66 62.996  

28 December 2.205 4.345 63.093 0.097 −0.052 −0.052

29 December 8.055 15.83 63.031 −0.062 −0.061 −0.061
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was correct, and objected that the shadow predicted by Verbiest and marked on the hori-

zontal scale in advance was too short:

南懷仁等將表影高做成八尺四寸九分。正午日影，到一丈六尺六寸六分之處畫界限。
日到正午，我等公同看。得日影正合着所畫之制。楊光先說影已多九分等語。吳明烜
朔已多六分等語。因本日具題。

Verbiest and his colleagues made the height of the gnomon 8 chi 4 cun 9 fen [8.49 chi]. As for 

the shadow at noon, he drew a limiting line at the place where it reached 1 zhang 6 chi 6 cun 6 

fen [16.66 chi]. When the sun reached noon, we all looked together, and found that the solar 

shadow exactly matched with the limit that had been drawn. Yang Guangxian spoke to the 

effect that it was 9 fen [0.09 chi] longer, and Wu Mingxuan spoke to the effect that it was 6 fen 

[0.06 chi] longer. So on the same day we memorialized accordingly.79

The response from the emperor was immediate:

旨：二十五日二十六日再測.

Rescript: ‘Measure again on the 25th and 26th days [i.e. 28 and 29 December].’80

It seems obvious what went wrong: Verbiest had carefully predicted the length of the 

umbral shadow of the gnomon, cast by the sun’s upper limb, as was normal practice in 

Europe when he learned astronomy – but both of his rivals saw that there was in fact a 

visible though fainter shadow continuing past the line marked by Verbiest. As Verbiest’s 

colleague Gabriel de Magalhães complained in his letter of 2 January 1669, Yang 

Guangxian and Wu Mingxuan were looking at the penumbral shadow which was visible 

beyond the end of the umbra:

Só o adversario, e o mouro, e o Colao China, começarão maliciosamente a calumniar a acção, 

para todos tão rara, maravilhosa e nunca vista. Calumniavão elles, e como ignorantes do que o 

Poeta disse: Confinia lucis et umbrae; e do que os mathematicos dizem: umbraginem ou 

penumbram, fazião sombra verdadeira e falsa que he o mesmo que umbrago ou penumbra.

Only the Adversary [Yang Guangxian], and the Moor [Wu Mingxuan], and the Chinese Colao 

[Grand Secretary Li Wei 李霨] began maliciously to calumniate what had been done, [which 

appeared] to everybody so rare, marvellous and never before seen. They calumniated, ignorant 

of what the poet said of ‘the borders between light and dark’; and of what mathematicians call 

the umbra or the penumbra, making true and false shadows which are the same as the umbra 

and penumbra.81

Under these circumstances, then, the emperor took the prudent course of ordering that 

the trial should be continued for a further 2 days. For the second day, a much shorter 

gnomon 2.2 chi in height was specified.82 Since this was about a quarter of the length of 

the gnomon used on the first day, any perceived errors would have been proportionately 

reduced, which would have made objections by Verbiest’s opponents less easy to sustain. 

All sources agree that there was no dissent expressed on that day. But for the third day, 
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the gnomon length specified was close to that of the first day, on which major shadow 

length discrepancies had been complained of. If this had happened again, it is unlikely 

that the emperor would have been any more willing to treat Verbiest as having gained a 

clear success than he had been on the first day.

In this context, the results of a comparison between calculation and Verbiest’s stated 

prediction for the third day are highly suggestive. As we have seen, Verbiest seems to 

have used the result of calculation without modification on the first day. But on the third 

day, the prediction he put forward exceeded the unmodified calculated result rounded to 

the same precision by:

15 83  15 73  1  1. . .−( ) = =chi chi fen0 0 0

This is very close to the amount by which Yang Guangxian had complained that the 

shadow had fallen short on the first day. It may be that in his urgent need to extinguish 

any possibility of dissent on the last day, Verbiest simply increased his prediction for that 

day by an amount large enough to make up for the ‘missing shadow’ of which Yang 

Guangxian had complained on the first day for a gnomon of similar height . But a more 

general procedure seems a more probable choice by Verbiest: the same result would have 

been obtained by his decreasing solar altitude by 0;09,00°, about a little under 2/3 of the 

value of 0;15,30° for the sun’s semidiameter that Verbiest is likely to have adopted – so 

that he would have been allowing for the tendency of his adversaries to include part of 

the penumbra in the shadow length by predicting the shadow cast by a point some way 

between the sun’s centre and its upper limb, rather than the upper limb itself. Applying 

the same shift to the calculation for the second day produces a shadow prediction of 

4.335 chi, which is less than 0.25 % away from the value said to have been given by 

Verbiest.83 On this basis, it appears that Verbiest adjusted his method of calculation for 

the second and third days of the trial to allow for the fact that the spectators of his predic-

tions considered that the end of gnomon shadows lay some way into the penumbra, 

rather than at the end of the umbra itself.

Conclusion

As we have seen, although gnomon observations traditionally played a larger role in 

astronomical practice in China than they did in Europe, it is very unlikely that Verbiest 

was unacquainted with such matters before his arrival in Beijing. The principal Jesuit 

astronomical writer active during the years preceding his departure for the East, 

Giambattista Riccioli, was based in Bologna and Verbiest is likely to have read his 

account of how he had made observations in the church of San Pietro with a gnomon 

larger than any to be found in China. Verbiest must therefore have approached the task of 

predicting the noon gnomon shadow in Beijung with some confidence. But although he 

was finally judged to have been successful, we have seen that the road to victory 

demanded that he should significantly modify his approach for the second and third days 

of observation.

This modification did not entail any compromise with the basic astronomical science 

used by Verbiest. On the first day, he calculated the shadow length with which he was 
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familiar – the umbral shadow cast by the sun’s upper limb. But when it came to the test 

of observation, it became evident from their protests that his opponents did not see the 

‘real shadow’ in their terms as being limited to the umbra, but as extending some way 

into the more visible parts of the penumbra. This was not a scientific error on their part, 

but was purely a difference of convention. In response, Verbiest appears to have adapted 

his calculations on subsequent days, so as to predict the shadow as he now knew that his 

opponents would recognise it. Such a change is evocative of the basic principle of the 

Jesuit missionary strategy of ‘accommodation’, in which one presents the substance of 

one’s message in a way that enables one’s audience to receive it.84 As Ignatius of Loyola 

put it ‘Enter through the door of the other so as to make them leave through our door’: 

Verbiest wished to convince the supervising officials, and the emperor himself, of the 

efficacy of his methods of astronomical calculation – ultimately, of course, in the inter-

ests of propagating Christianity in China by re-establishing the Jesuit mission that had 

been terminated in 1665.85 So on the second and third days he showed that he could 

predict the kind of shadow that his opponents thought he should be predicting, and in this 

he appears to have succeeded admirably.

What is more, Verbiest appears to have been quite open about what he was doing, 

since, as de Magalhães tells us in his letter of 2 January 1669, on 28 December he pre-

sented a diagram to the supervising officials explaining the distinction between the 

umbra and the penumbra with a clarity that led one Manchu official to exclaim ‘We have 

a great master [here]!’ (Amba supi!). In an audience with the emperor after the successful 

conclusion of the trial on 29 December, Verbiest showed the diagram to the young 

emperor, who was apparently so pleased with Verbiest’s explanation that he insisted on 

keeping the diagram on which it was based.86

By the middle of the 17th century there were those in non-Catholic Europe who might 

have seen Verbiest’s flexibility as all too typical of what a modern author has called the 

‘facility with which Jesuit scientists adapted their work to [. . .] many different environ-

ments’ with ‘serious consequences for the way in which Jesuit statements about the natu-

ral world were evaluated by natural philosophers outside the order’.87 Such an evaluation 

of Verbiest’s actions in the present case would however be baseless. Verbiest’s calcula-

tion techniques were as accurate as the astronomy of his day permitted them to be, and 

his flexible use of those techniques to predict the quantities that he found that his Chinese 

opponents regarded as significant was not only unexceptionable, but showed his mastery 

of the topic.
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day had been only half a fen (1.6 mm) greater than specified (making it 2.205 chi or 70.56 cm) 

then the shadow prediction with the adjusted solar altitude would have been 4.345 chi, exactly 

as stated.

84. See S. Tutino, “Jesuit Accommodation, Dissimulation, Mental Reservation,” in I.G. Zupanov 

(ed), The Oxford Handbook of the Jesuits (Electronic Text) (Oxford: Oxford University Press, 

2019), pp. 216–40.

85. N. Standaert, “Jesuit Corporate Culture as Shaped by the Chinese,” in G.A. Bailey, T.F. 

Kennedy, S.J. Harris and J. O’Malley (eds), The Jesuits: Cultures, Sciences and the Arts 

1540-1773 (Toronto: University of Toronto Press, 1999), pp. 352–63, 357.

86. Cullen and Jami, op. cit. (Note 1), p. 23. See also Cullen, op. cit. (Note 81); the relevant text 

is on folios 271v and 272v.

87. M.J. Gorman, “From ‘the Eyes of all’ to ‘Usefull Quarries in Philosophy and Good Literature’: 

Consuming Jesuit Science 1600-1665,” in G.A. Bailey, T.F. Kennedy, S.J. Harris and J. 

O’Malley (eds), The Jesuits: Cultures, Sciences and the Arts 1540-1773 (Toronto: University 

of Toronto Press, 1999), pp. 170–89, 182–3.

88. Shi Yunli and Chu Longfei, op. cit. (Note 24), pp. 898–902.

89. Two values are given for this quantity under the relevant year in the collated edition of Shi 

Yunli and Chu Longfei, op. cit. (Note 24). We use the one found in the Xin fa li shu version of 

the text, which is the one with which Verbiest would have been familiar.

90. Shi Yunli and Chu Longfei, op. cit. (Note 24), pp. 891–2.

91. See for instance the instructions attached to the mean and true winter solstice diagram, Shi 

Yunli and Chu Longfei, op. cit. (Note 24), p. 892.

92. The equation of centre as given in the CZLS table appears to have been calculated in accord-
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 where M is the mean anomaly measured from 

perigee and e is the eccentricity, here set at 1792 for a 10,000 deferent radius, representing the 
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halving of Tycho’s 3584 value, as argued for by Kepler, who however chose a rounded value 

of 1800 for his own calculations. See J. Kepler, Astronomia nova aitiologetos: seu physica 

coelestis, tradita commentariis de motibus stellæ Martis, ex observationibus G. V. Tychonis 

Brahe, jussu & sumptibus Rvdolphi II . . . plurimum annorum pertinaci studio elaborata 

Pragæ . . . / a Joanne Keplero (Prague,1609), pp. 130 and 136.

93. Shi Yunli and Chu Longfei, op. cit. (Note 24), p. 940.

94. We may note that the time of li chun is calculated as 09:28 in Y.T. Liu, “Conversion 

Between Western and Chinese Calendar (722 BCE — 2200 CE).” https://ytliu0.github.io/

ChineseCalendar/index.html?y=1670 (2018–2022) which attempts to reproduce Jesuit astro-

nomical procedures using modern trigonometrical expressions, taken from or constructed on 

the basis of publications such as Chu Longfei and Shi Yunli, op. cit. (Note 68).

95. Noel Golvers, personal communication in email of 16 July 2017. The annotation is found in 

the copy of vol 2 p. 898 of Argoli, op. cit. (Note 66), in the Beijing National Library (cat. 

871/123). Square brackets in the text and translation indicate places where an elision or omis-

sion in the original has been restored or explained by us; the insertion [. . .] indicates where 

the cited text has been abbreviated by us; the round brackets are in the original.

96. Nan Huairen 南懷仁 (Ferdinand Verbiest), Da Qing Kang xi jiu nian shi xian li 大清康熙九
年時憲曆 (Calendar according to the Timely Modelling system for Kangxi 9, 1670) (1669), 

Copy in Library of Congress: Control Number 2014514060.

97. For a detailed account of Thomas’ life and work, see C. Jami, The Emperor’s New Mathematics: 

Western Learning and Imperial Authority in China During the Kangxi Reign (1662-1722) 

(Oxford: Oxford University Press, 2012), chapter 9, pp. 180–213.

98. See J. Kepler and T. Brahe, Tabulae Rudolphinae, quibus astronomicae scientiae . . . restau-

ratio continentur; a . . . Tychone . . . primum animo concepta et destinata . . . Tabulas ipsas 

. . . continuavit . . . perfecit, absolvit; adque causarum et calculi perennis formulam traduxit 

Joanne Keplerus (Ulmae : Typis Jonae Saurii, 1627), p. 51.

99. All these quantities are tabulated in Kepler and Brahe, op. cit. (Note 98), Part 2, pp. 42–3. 

For the sun’s equation of centre we use the version of Kepler’s Tabula Aequationum Solis 

(Kepler and Brahe, op. cit. (Note 98), Part 2, 44–6) in J.-B. Morin, Tabulae Rudolphinae ad 

meridianum Uraniburgi supputatae a Joanne Baptista Morino,. . . ad accuratum et facile 

compendium redactae (Parisiis: apud P. Ménard, 1657), pp. 20–1, since it is considerably 

more convenient to use than in the formulation of the original – which is deliberately designed 

to reflect the complex development of Kepler’s thinking on this topic, on which see W.H. 

Donahue, “Kepler’s Approach to the Oval of 1602, From the Mars Notebook,” Journal for 

the History of Astronomy, 27 (1996), 281, 283 and note 220.

Appendices: Calculation methods

Appendix A: Finding the winter solstice of December 1668

The date and time of this solstice may be calculated using the data in the table in the Xin 

fa li shu (hereafter abbreviated as XFLS) titled Li yuan hou er bai heng nian biao 曆元
後二百恆年表 ‘Table for the two hundred successive years after the system origin’.88 

We use the figures given under the year Kangxi 8, 1669-70 己酉 jiyou.46, since this is 

the ‘Root Year’ gen nian 根年 for which the solstice of late 1668 provides the starting 

point of calendrical calculations. The two numerical quantities given under that root 

year, which serve to fix the 1668 winter solstice, are:
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The ‘solar mean motion root number’ ri ping xing zhi gen shu 日平行之根數: 

0;57,44,57°89

The ‘perigee [position]’ zui gao chong 最高衝 (lit. ‘opposite the highest [point]’: 

6;30,44°

The instructions for calculating the solstice date and time are given a few pages before 

the table.90 The significance of the figures given above, and the subsequent process of 

calculation, may be followed more easily using the modernised redrawing of the diagram 

supplied with those instructions, Appendix Figure A1.
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Figure A1. Diagram for 1668 mean and true winter solstice calculation.

AB is a section of the ecliptic, seen from outside the celestial sphere, so that the west 

to east motion of the sun is from left to right. A and C represent the positions of the mean 

sun at two successive midnights. The second midnight position C marks the beginning of 

the so-called ‘root day’ shown at the foot of the column of data for the year as sexagenary 

day jiayin.51, in this case equivalent to 22 December 1668. The distance between A and 

C, m, is the sun’s mean daily motion, which in Xin fa li shu is taken to be 0;59,08,20°.91 

The root number, r, is the distance between the position of the mean sun at winter sol-

stice, D, and the midnight at C. We may follow the sequence of calculations in Box A1.
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Box A1. Calculation of winter solstice of December 1668.

Row 
number

Root year: Kangxi 8, 1669–70 己酉 jiyou.46 Root day: 甲寅 jiayin.51, 22 
December 1668

1 Angles Degrees Minutes Seconds Thirds Total thirds

2 XFLS Root number, r 57 44 57 207,897

3 Solar mean motion, m 59 8 20 212,900

4 Longitude number L = m–r 0 1 23 23 5003

6 Perigee distance, p 6 30 44 1,406,640

7 Guide number g = L + p 6 32 7 23 1,411,643

9 Tabulated values above 

and below g in table of 

equation of centre

 

10 g = 6;30 0 14 13 51,180

11 Difference 22 1320

12 g = 6;40 0 14 35 52,500

13 Proportional increment 4.66 279.6

14 Interpolated equation q 0 14 17 39 51,459.6

16 Recall longitude number, L 0 1 23 23 5003

17 True longitude number 
of winter solstice sun, 
L’ = L + q

0 15 41 2 56,462.6

19 Time Hours Minutes Seconds Thirds Total thirds

20 Change true longitude 

number to time

 

21 A: Directly, using winter 
solstice daily motion 
0;61,20°

6 8 14 3 1,325,643.652

22 B: Or using conversion 
table

 

23 Tabulated for 15 minutes 
of arc

5 52 10 26 1,267,826

24 Tabulated for 41 seconds 
of arc

16 2 37 57,757

25 Total, Time of true 

winter solstice after 

midnight beginning the 

day preceding root day 
甲寅 jiayin.51, which 

is 癸丑 guichou.50, 

December 21, 1668

6 8 13 3 1,325,583
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By subtracting the root number from the mean motion, we obtain:

L = m – r, the ‘longitude number’ jing shu 經數, AD, given in row 4.

Adding L to the perigee distance p, we obtain the ‘guide number’ yin shu 引數, AB

g = L + p, given in row 7

This quantity plays a role equivalent to the sun’s mean anomaly, which in the western 

tradition is measured from the apogee rather than the perigee. With it, we enter the table 

entitled Ri chan jia jian cha biao 日躔加減差表 ‘Table of additive and subtractive dif-

ferences for the sun’s orbit’, to find what in the west is called the ‘equation of centre’.92 

The necessary interpolation is carried out in rows 10–14, and by adding the resulting 

equation, g, to the longitude number we obtain the true longitude number:

′ = +L   L  q  given in row 17, .

We now change this to hours, minutes and seconds to find the time elapsed since the 

midnight preceding the true winter solstice. This might be done directly, as in row 21, 

by dividing by the daily motion of the sun near winter solstice, which is 0;61,20°. The 

text however specifies that the conversion should be performed using a table, thus 

avoiding a sexagesimal division. The relevant table appears to be the one entitled Xi 

xing bian shi biao 細行變時表 ‘Table for converting small amounts of motion to time’, 

using the section of the table relating to the winter solstice, which states it is based on 

a daily motion of 0;61,20°.93 We sum the times corresponding to the minutes fen and 

seconds miao of arc to obtain the total time elapsed in row 25; this differs by only 

1 second of time from the directly calculated result. This time interval, 6 hours 8 min-

utes and 13 seconds (neglecting thirds), is the time elapsed between midnight begin-

ning the sexagenary day guichou.50 (21 December 1668) and the moment of the true 

winter solstice at 06:08:13.

The winter solstice in question is found by modern calculations (Starry Night Pro 

planetarium software) to have taken place at JD 2330639.46111, equivalent to 23:03:59 

UT on 20 December 1668 at Greenwich. Taking the longitude of the imperial observa-

tory at Beijing as being 116.43472° E (from Google Maps), which is equivalent to a time 

difference of 7 hours 45 minutes 44 seconds, the solstice would fall at 06:49:44 Beijing 

mean local time on 21 December, 41 minutes later than the Xin fa li shu prediction. Since 

near winter solstice an hour of time difference leads to a latitude change of less than 

1 second of arc, this is not a significant time discrepancy.

Verbiest nowhere tells us the value he used for the time of the winter solstice in 

December 1668. However, if we use the time calculated above as our starting point, and 

follow the procedures set out in the Xin fa li shu, it is possible to calculate the time at 

which later instants in the solar cycle fall. One of these is the time of li chun 立春 

’Establishment of Spring, which in Jesuit astronomical practice was defined as the 

moment when the sun was 45° of celestial longitude, measured along the ecliptic, past its 
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winter solstice position. Performing this calculation using the winter solstice timing 

found above predicts that this instant should fall at 09:38 on 3 February 1669 (Kangxi 

8/1/3): this is precisely the moment stated by Verbiest himself in his comparison of his 

own values with those found by his rival Wu Mingxuan 吳明烜: see CYJL, p. 14a, where 

it is stated as si chu er ke ba fen 巳初二刻八分 ‘two marks [each of 15 min] and 8 min-

utes after the start of the period si [09:00-11:00]’, thus 09:38. The exact correspondence 

found here suggests strongly that we have calculated the time of the preceding winter 

solstice as did Verbiest.94

Appendix B: Full shadow calculations using Xin fa li shu

In the main text, the calculations of Beijing noon solar zenith distance and altitude for 27 

December 1668 were set out in Box 1, and the method for calculating the corresponding 

shadow length was explained in the text that followed. In Box A2, we now set out the full 

calculations for noon shadow lengths for all 3 days 27–29 December, following the same 

principles.

Box A2. Xin fa li shu shadow calculations for December 1668.

Row Degrees Minutes Seconds Total 

seconds of 

arc

1 Winter solstice 

daily motion of sun 

near perigee, m

1 1 20 3680

2 Altitude of celestial 

pole at Beijing as 

stated by Verbiest, 

P

39 55 143,700

3 Hours Minutes Seconds Total 

seconds of 

time

4 Time from Beijing 

midnight beginning 

21 December 1668 

to moment of true 

winter solstice, S  

(see calculation in 

Appendix A)

6 8 13 22,093

5 Time from winter 

solstice to noon 

on 21 December, 

T = 12 hours – S

5 51 47 21,107

 (Continued)
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6 Degrees Minutes Seconds Total 

seconds of 

arc

7 Motion of sun 

from winter 

solstice to noon 

on 21 December, 

N = m × T / (24 hours)

0 14 59 899.0018519

8 Motion of sun from 

winter solstice 
to noon on 27 
December, N + 6 m

6 22 59 22,979.00185

9 To noon on 28 
December, N + 7 m

7 24 19 26,659.00185

10 To noon on 29 
December, N + 8 m

8 25 39 30,339.00185

11 South declination, 

D, of solar 

centre at noon, 

corresponding to 

sun’s motion

Degrees Minutes Seconds Total 

seconds of 

arc

12 27 December 23 22 13 84,133.34824

13 28 December 23 19 0 83,940.32323

14 29 December 23 15 20 83,719.52988

15 Add polar altitude 

P to find zenith 

distance of solar 

centre, Z = D + P

Degrees Minutes Seconds Total 

seconds of 

arc

16 27 December 63 17 13 227,833.3482

17 28 December 63 14 0 227,640.3232

18 29 December 63 10 20 227,419.5299

19 Altitude of solar 

centre, A = 90° – Z

Degrees Minutes Seconds Total 

seconds of 

arc

20 27 December 26 42 47 96,166.65176

21 28 December 26 45 60 96,359.67677

22 29 December 26 49 40 96,580.47012

 (Continued)

Box A2. (Continued)
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23 Refraction from 

A interpolated in 

XFLS table, c

Degrees Minutes Seconds Total 

seconds of 

arc

24 27 December 0 2 4 124.3056177

25 28 December 0 2 4 123.5013468

26 29 December 0 2 3 122.5813745

27 Semidiameter of 

sun, r

0 15 30 930

28 Apparent zenith 

distance of sun’s 

upper limb, Z’ = Z 

– r – c; parallax set 

at zero

Degrees Minutes Seconds Total 

seconds of 

arc

29 27 December 62 59 39 226,779.0426

30 28 December 62 56 27 226,586.8219

31 29 December 62 52 47 226,366.9485

32 Verbiest’s 

gnomon 

height H, 

chi

Tangent of 

apparent 

zenith 

distance of 

upper limb, 

tan (Z’)

Predicted 

umbral 

shadow 

length, 

U = H × tan 

(Z’), chi

Verbiest’s 

stated 

shadow 

lengths, chi

33 27 December 8.49 1.96212 16.66 16.66

34 28 December 2.2 1.95761 4.307 4.345

35 29 December 8.055 1.95247 15.73 15.83

Box A2. (Continued)

Appendix C: Finding shadow lengths using Argoli’s tables

By using his copy of Argoli’s ephemerides, which give values of the longitudes of the 

sun, moon and planets at Rome noon for every day of the year, Verbiest might have been 

able to skip a number of the stages of calculation outlined earlier in this article, or at least 

provide himself with a check on the longitudes calculated for the 3 days of the shadow 

trial using the methods of the Xin fa li shu. As we have seen, he made pen strokes by the 

sides of the dates of the first two dates of the trial in his copy of Argoli. It is therefore 

interesting to look at this possibility in more detail.

First, however, we need to ask how Verbiest could have adapted calculations made for 

the longitude of Rome for use in Beijing. Fortunately, Verbiest himself has left us 
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handwritten notes in his copy of Argoli explaining exactly how he did this. A scribbled 

note in Verbiest’s handwriting is found at the bottom of a page from Argoli’s ephemeris 

for April 1670. We are grateful to Noel Golvers, who produced the transcription of which 

we give here the relevant parts, and to which he has kindly allowed us to suggest some 

small modifications:95

Die 19 hora 6.54 post merid[iem] fit ☌ [concursus] ☽ [lunae] cum ☉ [sole] [. . .] (facta equatione 

meridiani) ☌ [concursus] ☽ [lunae] cum ☉ [sole] fit die 19 horâ 13.36 ./. hora 1ma [ = prima] 

36 post medi[um] noct[is] more Sinico [. . .]

We may translate, expanding the abbreviations and symbols, as follows

‘On day 19 [of April 1670] at 06:54 after noon there is a conjunction of the Moon with the Sun 

[. . .] (after having made the correction of the meridian) the conjunction of the moon with the 

sun happens on the day 19 [of April], at 13:36 [after noon], i.e. at 01:36 after midnight [i.e. on 

day 20 of April], according to the Chinese way [. . .].

The time shift from Rome to Beijing is therefore 13:36 – 6:54 = 6 hours 42 minutes.

Such a calculation is likely to have been made as a check when Verbiest was engaged 

in preparing the calendar for Kangxi 9, in which 20 April 1670 is the first day of the third 

lunar month, on which the conjunction of the sun and moon should fall. The time shift 

implied above would therefore represent the value he used during 1669, when he would 

have had to begin work on this task. The moment given for this conjunction in the official 

People’s Calendar for Kangxi 9 is chou zheng chu ke er fen 丑正初刻二分 ‘two elapsed 

minutes after the start of the first mark of the second half of the 2-hour period chou 

[01:00-03:00]’, i.e. 02:02.96 The fact that this differs from the value found using Argoli 

by only 26 minutes must have reassured Verbiest that his calculation using the Xin fa li 

shu was correctly performed. Another (undated) note in Verbiest’s handwriting is found 

scribbled on the front papers of the third volume of his copy of Argoli (1648), and implies 

a time difference of 6 hours 44 minutes – which a neatly written summary added below 

by the Jesuit mathematician and astronomer Antoine Thomas (1644–1709) changes to 

6 hours 45 minutes. Thomas joined Verbiest as his assistant in 1685, and played an impor-

tant role as a mathematical specialist after the latter’s death in 1688.97 Such small changes 

do not affect the predicted shadow lengths within the precision used by Verbiest. A mod-

ern estimate based on the longitude difference between Rome and Beijing gives a time 

shift of 6 hours 56 minutes; again, changing to this value would have a negligible effect 

on shadow predictions.

Box A3 shows the steps by which Argoli’s Rome noon values for solar longitude may 

be used to calculate the Beijing noon shadow lengths needed by Verbiest.
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Box A3. Shadow calculations using Argoli’s ephemeris.

Row Degrees Minutes Seconds Total seconds 

of arc

1 Altitude of celestial pole 
at Beijing (stated by 
Verbiest), P

39 55 143,700

2 Hours Minutes As whole 

hours

3 Time from Beijing noon to 
Rome noon, from notes 
by Verbiest in Argoli 1648

6 42 6.7

4 Argoli Rome 1648 vol 2 

p. 856, noon positions 

of sun in Capricorn, 

equivalent to longitude 

distance from winter 

solstice

Degrees Minutes Seconds Total seconds 

of arc

5 26 December 1668 5 36 33 20,193

6 27 December 1668 6 37 51 23,871

7 28 December 1668 7 39 9 27,549

8 29 December 1668 8 40 27 31,227

9 Shifted back by 6 hours 

42 minutes worth of 

daily motion to give 

positions of sun at 

preceding Beijing noon

Degrees Minutes Seconds Total seconds 

of arc

10 27 December 6 20 44 22,844.225

11 28 December 7 22 2 26,522.225

12 29 December 8 23 20 30,200.225

13 From interpolation 

in table, south 

declination, D, of 

solar centre at noon, 

corresponding to sun’s 

motion

Degrees Minutes Seconds Total seconds 

of arc

14 27 December 23 21 58 84,118

15 28 December 23 18 54 83,934

16 29 December 23 15 27 83,727

 (Continued)
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17 Add polar altitude P to 

find zenith distance of 

solar centre, Z = D + P

Degrees Minutes Seconds Total seconds 

of arc

18 27 December 63 16 58 227,818

19 28 December 63 13 54 227,634

20 29 December 63 10 27 227,427

21 Altitude of solar 

centre, A = 90° – Z

Degrees Minutes Seconds Total seconds 

of arc

22 27 December 26 43 2 96,182

23 28 December 26 46 6 96,366

24 29 December 26 49 33 96,573

25 Refraction from A 

interpolated in XFLS 

table, c

Degrees Minutes Seconds Total seconds 

of arc

26 27 December 0 2 4 124.2416667

27 28 December 0 2 3 123.475

28 29 December 0 2 3 122.6125

29 Semidiameter of sun, r 0 15 30 930

30 Apparent zenith 

distance of sun’s upper 

limb, Z’ = Z – r – c; 

parallax set at zero

Degrees Minutes Seconds Total seconds 

of arc

31 27 December 62 59 24 226,763.7583

32 28 December 62 56 21 226,580.525

33 29 December 62 52 54 226,374.3875

34 Verbiest’s 

gnomon 

height H, 

chi

Tangent of 

apparent 

zenith 

distance of 

upper limb, 

tan (Z’)

Predicted 

umbral 

shadow 

length, 

U = H × tan 

(Z’), chi

Verbiest’s 

stated shadow 

lengths, chi

35 27 December 8.49 1.96175831 16.66 16.66

36 28 December 2.2 1.95745869 4.306 4.345

37 29 December 8.055 1.95263945 15.73 15.83

Box A3. (Continued)
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Rows 1 and 3 record the value of polar altitude for Beijing and the Rome-Beijing time 

shift used by Verbiest. Rows 5–8 record the Rome noon positions of the sun in Capricorn 

given for 26–29 December 1668 in Argoli 1648 vol. 2, 856. The difference between these 

positions enables the mean motion during the days 26–27 December to be calculated by 

subtraction, and thus by linear interpolation using the time shift, the Beijing noon posi-

tions of the sun for 27, 28 and 29 December are calculated in rows 10–12. We then inter-

polate in the table of declinations given in Argoli (1648) vol. 1, 376–387 to find the 

corresponding noon declinations in rows 14–16. From this point onwards the calculation 

proceeds as in Box 1 and more fully in Box A3.

As is evident from Box A3, the shadow for the first day is once more predicted to be 

16.66 chi, to the precision with which this result is stated in reports of the shadow trial, 

just as we found in the case of the Xin fa li shu calculation. The results for the second and 

third day are also very close to those found by that method.

Appendix D: Finding shadows using the Rudolphine tables

Of the three methods for calculating shadow lengths mentioned in the main text, perhaps 

the least likely to have been used by Verbiest is to have calculated Beijing noon solar 

altitudes using Kepler’s Rudolphine tables, although we do know that a copy of these may 

have reached Beijing well before Verbiest arrived there, as noted in the catalogue of the 

Jesuits’ Beitang library. Unlike Argoli’s tables, Kepler’s are calculated for the longitude of 

Uraniborg, the site of Tycho’s original observatory, rather than Rome. But since the lon-

gitudes of these positions differ by only 0.19°, equivalent to less than 1 minute of time, the 

same time shift of 6 hours 42 minutes may be used in applying their data to Beijing. The 

process of calculation dictated by the use of these tables is set out in Box A4.
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Rows 1–3 illustrate the fact that Kepler’s tables are based throughout on the Julian 

rather than Gregorian calendar, so that 27 December 1668 (Gregorian) is represented by 

17 December (Julian).98 Rows 6–10 list the common components of mean motion for the 

days of the shadow trial, including the component contributed by the extra day of 

February because 1668 is a bissextile (‘leap’) year. However, to take account of Verbiest’s 

6 hours 42 minutes time shift, only 17 hours 18 minutes of this day’s motion is added. We 

then add on the motion for 16, 17 and 18 days to find the Beijing total noon mean motions 

for the days of the shadow trial, given in rows 17–18. Next in 20–24 we find the total of 

the components of the apogee longitude for December 1668, and hence the mean anom-

aly and from that the equation of centre for each day in rows 26–28 and 30–32.99 From 

this we find the true longitudes in rows 34–36, from which the declinations may be found 

from Kepler’s Tabula Ascensionum Rectarum, Declinationum Eclipticae Punctorum 

(Tables part 1, folio 24–5). The rest of the calculation proceeds as in other cases. Again 

we see the same result of 16.66 chi for the shadow of 27 December, and calculated values 

very close to those found using the Xin fa li shu and Argoli (but differing from the stated 

predictions) for the next 2 days.


