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CHAPTER 1

INTRODUCTION

Transmission of gas by pipeline is a vital commercial 
activity. It is also a somewhat tricky business. The gas 
dispatcher, the human operator, must balance supply and 
demand under uncertain circumstances through proper 
sequencing of equipment that is both expensive to run and 
maintain. Although computer decision aids are entering the 
gas dispatching task, these aids have not proven 
sufficiently capable to face the changing environment 
autonomously. Furthermore, many existing computer 
algorithms require large amounts of computational 
horsepower; the human dispatcher makes the same decision 
with relative ease. As a result, gas dispatching, like most 
complex technical tasks, still relies heavily upon the human 
operator's experience and savvy.

The goals of this study are the development of robust 
decision-making and learning algorithms for gas pipeline 
operations. To achieve the desired breadth of behavior, we 
abandon the traditional techniques of optimization and 
control theory in favor of mei^.cds associated with genetics 

and artificial intelligence. We adopt these methods to more

1
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closely match the human learning and decision-making 
experience, because ultimately, we seek algorithms capable 
of autonomous pipeline control.

In the remainder of this chapter, the scope, 
methodology, and benefits of this research are detailed. We 
conclude the chapter with a summary and an overview of the 
sequel.

1.1 Scope of Research
TIME!: 7:00 AM, Monday morning, January 198-
PLACE: Central Dispatch Center

Central Iowa Gas Transmission Company

"Well, Joe, how's it look?"
"Don't know yet. Weather service predicts a cold one.
Front moving through."

"Gee, how we gonna make it with the number 2 unit out 
at Lorraine?"

"Might be tough. Think we can get by if we run the 
standby and push a bit harder upstream. That worked 
pretty good last year at Downing. Things at Lorraine
are usually a little less hairy anyway."

This fictional account of a dispatcher’s informal
decision shows the complexity and breadth of knowledge
required in the simplest day-to-day operating decisions. In
the brief exchange, the two operators 1) recognize and
evaluate the severity of the situation, 2) size up a
response, and 3) reinforce and informally prove strategy
success by citing a complex inequality relation. Note that
this whole process is seemingly effortless, a product of
complex intuitive thought.

If successful algorithms for learning and decision-
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making are to be developed, they must possess skills of 
similar breadth as our fictional dispatchers. The primary 
measure of this quality is robustness. Paraphrasing Holland 
[1], a robust system is one which is efficient over the 
range of environments it may encounter. A robust pipeline 
operator (human or artificial) must be capable of learning 
and making decisions under widely varied circumstances.
This requires satisfactory adaptation to normal and abnormal 
conditions alike. It further suggests that some decision be 
made in situations which may or may not be completely 
familiar (an educated guess).

The efficiency required of a robust system is 
demonstrated in the effortlessness of human intuitive 
decisions; this type of efficiency is also desirable in an 
artificial decision maker. The computational intensity of 
many artificial decision procedures suggests that there is 
room for a good deal of improvement.

1.2 Basic Approach
To achieve the desired breadth and effortlessness of 

behavior, we apply computer techniques connected with 
genetics and artificial intelligence to the pipeline 
operations problem, proceeding in two separate steps.

First, we apply genetic algorithms (GA) [1] to two 

problems i-n pipeline optimization. Genetic algorithms seek 
improved performance by combining some string manipulations 
similar to the mechanics of natural genetics and a survival- 

of-the-fittest mechanism, This application demonstrates the
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efficacy of genetic algorithms as a search procedure in 
practical engineering problems; it also ties the present 
work to existing pipeline operation and control literature.

This experience leads us to the second step of our 
study: the development of a learning classifier system 
(LCS) for pipeline control. Briefly, a learning classifier 
system is a learning system that learns rules to improve its 
performance in some arbitrary environment. The LCS uses 
behavioral reinforcement (reward) and environmental 
information to guide its learning and decision making. Our 
experiments with genetic algorithms are quite useful here, 
because a genetic algorithm serves as one of two major 
learning mechanisms in the LCS. We expect the system to be' 
capable of learning and responding to varied normal and 
abnormal operations alike.

Why this Approach?

While this work represents a departure from more 
traditional methods of optimization and control, it is not a 
case of being unconventional for its own sake.

Traditional methods of optimization and control suffer 
from two major shortcomings. First, they most often employ 
local search procedures. Local techniques are, by 
definition, myopic; they cannot see the forest for the 
trees, unless the trees happen to grow in some well-behaved 
manner. Second, traditional methods are structurally rigid. 
System models, objective functions and improvement 
algorithms are usually fixed in form; even those techniques

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



5

which adapt to environmental information tend to limit that 
adaptation to a few, select parameters.

The methods we suggest for this study answer these two 
objections directly. Genetic algorithms are a global search 
technique, a result of their stochastic origins. They are 
not, however, a simple random search; genetic algorithms 
efficiently exploit past information to explore new regions 
of the decision space with a high probability of finding 
improved performance.

Learning classifier systems overcome structural 
rigidity by requiring the formation and testing of general 
rules for system decision making. In a sense, a learning 
classifier system learns by reprogramming itself with better 
and better rules.

By overcoming locality and rigidity, the development of 
these tools pushes us closer to computer systems capable of 
autonomous pipeline control.

1.3 Benefits of this Research
The development of practical techniques for learning 

control of pipelines has a variety of benefits. Most 
obviously, this research leads to the installation of 
systems which learn to operate pipelines. These systems 
will combine the effortless, robust behavior of the human 
operator with the vigilance of an on-line computer system.

Yet, while we seek systems capable of autonomous 
control, we are in no way motivated by a desire to replace 
existing human dispatchers with silicon surrogates; the
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savings in salaries is dubious justification for such an 
undertaking, and automating for its own sake has never been 
a persuasive argument with justifiably, hard-nosed utility 
executives. Instead, our motivations are much closer to 
those of utility management: we seek safety and efficiency 
gains by using a learning system as a decision aid and as a 
permanent storehouse of pipeline operations knowledge.

As a decision aid, the experienced learning system acts 
as an expert consultant to help shape the human dispatcher's 
operating sequence. Under the stress of abnormal or 
emergency operations, the learning system acts as an extra 
pair of eyes and ears, monitoring conditions and suggesting 
alternatives to alleviate the problem.

As a storehouse of system operating knowledge, the 
learning system is the permanent repository of all operating 
experience in a form which cannot quit, retire, or take a 
job elsewhere. Thus, loss of key people becomes less of a 
problem, because their experience does not leave with them. 
Training of new people is simplified, because they may run 
through a sequence of case studies with the learning system 
using its response as a guide. Viewed in this way, the 
learning system is not a competitor to be feared and 
avoided; rather, it becomes an invaluable member of the 
operations team, advising, training, and assisting team 
members as they strive to improve pipeline safety and 
efficiency.

This research generalizes to many other industries.
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Power plants, chemical plants and factories may, one day, 
employ these techniques. Energy exploration and production 
operations may be improved using this technology. Any field 
where operator intuition is an important ingredient is a 
candidate for the application of these methods. Similar 
techniques may be applied in design; however, the step from 
the operation of a relatively fixed plant to the design of 
some complex system should not be taken too lightly.

A less tangible, but nonetheless, important benefit of 

this research is the study of engineering intuition itself. 
In developing robust methods of decision making and 
learning, we are drawn toward techniques which have some of 
the richness of human behavior. The study and further 
development of these methods can help our understanding of 
the art of engineering which has for so long been shrouded 
in almost mystical terms.

1.4 Summary

In this chapter, we have outlined the goals, approach, 
and benefits of this research. Simply stated, we seek 
robust techniques for the automatic operation of gas 
pipelines. We start by applying a genetic algorithm (GA) to 
two problems in pipeline optimisation . This demonstrates 

the utility of the genetic algorithm as a search technique 
in practical engineering problems. At the same time, it 
connects our work to existing literature in optimal control 
of pipelines. Following the optimization work, we develop 
and apply a learning classifier system (LCS) to control a
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gas pipeline. The system must learn to operate the pipeline 
under normal and .leak conditions.

This research has many benefits; however, replacement 
of dispatch personnel is not our aim. Instead, we seek 
improved safety and efficiency by using an experienced 
learning system as a decision aid and knowledge repository. 
In addition to improving safety and efficiency, these 
applications should help eliminate personnel turnover 
problems and training difficulties.

In the remainder, we start by examining the gas 
dispatching environment with particular emphasis on the use 
of computers. The genetic algorithm and learning classifier 
system are successively developed and applied in pipeline 
environments.
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CHAPTER 2

PIPELINE OPERATIONS AND COMPUTERS

To build decision aids for pipelines, one must have a 
solid understanding of current pipeline operations methods. 
In this chapter, we review gas pipeline dispatching practice 
so the responsibilities, available decision-making options, 
and system information are clearly defined. We also discuss 
the computer technology of pipelining to understand its 
effect on the dispatching mission.

2.1 What is Gas Dispatching?

Many have asked this question. Lafferty [2] answers it 
well in his time-honored article by stating that the primary 
function of the gas dispatching department is,
". . . determining the market demand for gas and adjusting 
the operations of a pipeline system to meet those demands." 
Although this sounds like a fairly straightforward process, 
it can be a challenging task because of the many conflicting 
constraints of the pipeliner's environment.

A schematic of this environment is shown in Figure 2-1. 
The dispatcher must juggle the needs of gas users with the 
availability of supply, using equipment with highly dynamic 

response characteristics. This juggling act is performed

9
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against a backdrop of vagaries in weather, corporate policy, 
and economic conditions. Lafferty discusses many of these 
issues and gives examples of typical dispatcher solutions.

Dispatching Goals
What is a dispatcher trying to accomplish when he 

operates a pipeline? The specific answer to this question 
lies in the complex interaction between the dispatcher, his 
immediate supervisor, and perceived corporate policy. A 
more general answer is available when the basic dispatching 
task is considered. Fundamentally, a dispatcher must 
deliver sufficient quantities of gas to market safely and 
efficiently. These three goals, sufficiency, safety, and 
efficiency must be balanced to achieve a good operating 
strategy. In many companies, there is an understandable 
tendency to weight sufficient and safe delivery more heavily 
than efficiency. This is a source of difficulty for 
traditional artificial decision makers which tend to weight 
efficiency most heavily because of their structure.

Dispatch Information and Controls

In a study of decision making— artificial or human— one 
of the most important ingredients is the information flow 
from the different components of the environment. The 
following is a list of data available to a dispatcher;

1. Pipeline - pressures, flows, temperatures.
2. Supply - available quantity and pressure.

3. Demand - current and predicted demand.
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Fig. 2-1. Gas Dispatching Environment
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4. Weather - temperature, wind speed and direction,
humidity, etc.

5. Corporate - contractual obligations, standard
operating procedures, management praise 
and punishment.

The first four categories are easily quantified, while the
last presents some difficulty. The importance of this
category and difficulty in its representation are major
shortcomings in existing artificial decision procedures.

While a dispatcher receives a large information flow 
from his environment, he has relatively few actions he can 
take to maintain acceptable conditions on his system. These 
actions are related to the components of his environment 
over which he possesses some control:

Supply - Distribution of supply (pipeline, storage, 
or production)

Pipeline - Compressor status and level, controller set 
points.

Demand - Curtailment of interruptible demand. 
Additionally, the dispatcher may have to take steps to alert 
others to dangerous conditions such as line breaks and 
explosions.

Dispatcher Learning and Decision Making

A thorough investigation of human dispatcher learning 
and decision making would take us beyond the reasonable 
boundaries of this dissertation onto the turf of human 

psychology and cognition? however, to get an intuitive feel 
for these processes, two gas control centers at two 
different gas companies were visited. Informal discussions
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were held with operations managers and dispatchers; 
dispatchers were also observed over the course of several 
days while they operated their pipeline.

During these observation periods, the dispatchers 
frequently made operating decisions. During these decision 
episodes, the dispatcher typically spent most of his time 
communicating with supply, delivery, and internal operating 
personnel. After getting a clear picture of the situation, 
he made a decision and passed it on to all involved parties. 
The decision rarely required any analysis or calculations; 
the dispatcher simply knew what to do.

As we might expect, attempts to get dispatchers to
explain specific decisions were largely unsuccessful; people
running on intuition are not the best at explaining the
logic of their actions. Nonetheless, one dispatcher
volunteered several of his rules of thumb, culled from his
pipeline experience;

If you are losing 10-15 psi/hour then you must take 
corrective action.

If in a 6 hour period you lose 70 psi of linepack 
then replenish before moderating operation.
Try to maintain 700 psi at W  (a location) during
the winter.

At this juncture, we are little concerned with the content 
of the rules (though we might marvel how three little rules 
could say so much.); rather, we observe that a dispatcher 
voluntarily chose to describe his knowledge in rule form. 
This notion of intuitive, rule-based thought will become 
more important when we decide upon an underlying
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computational structure for our learning system.
How does a dispatcher learn to make good decisions? To 

observe this in the field requires more than a few casual 
sessions; however, the management-dispatcher discussions did 
shed light on this process. The primary mode of dispatcher 
learning is on-the-job training. A new dispatcher (in both 

companies visited) is an apprentice until he gains a wide 
spectrum of operating experience. During this 
apprenticeship, the novice dispatcher observes the line and 
operates alongside a more experienced person. Some formal 
training or coursework may also be required, but this is not 
considered as important as the cn-the-job training by the 
dispatchers themselves. As the new dispatcher gains 
confidence, he is allowed to take over more and more 
operating duties, until he is deemed competent to control 
the system autonomously. Arriving at this point of autonomy 

seems to take at least a year, and it can take two or three.
The learning processes that take place during this 

apprenticeship and throughout a dispatcher's career are 
manifold and complex; yet, one thing is clear; since a 

dispatcher is never in the exact same situation twice, he 
must, both, generalize his experience when it is acquired 
and apply this generalized knowledge to specific situations 
as they arise. This must bias our search for learning 

algorithms towards those that can do likewise.

2.2 Computers in Gas Pipelining

The spread of the commercial digital computer in the
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fifties encouraged increasing applications in gas pipelining 
[3-8], Primarily, computers have been used for 
communicating and processing distributed pipeline 
information for centrally located, human pipeline operators. 
Computer pipeline simulation techniques have been devised 
for both real-time and look-forward modeling. Optimization 
and control techniques have been suggested for closing the 
operations loop; however, to date, no major pipeline is run 
by an autonomous computer program.

In this section, we examine the application of 
computers to gas pipelining. Specifically, we survey the 
use of computers in data acquisition and remote control, 
simulation, optimization, and other control applications.
We survey the field with a general eye, though our main 
focus remains with automated decision making and learning.

System Control and Data Acquisition (SCADA)
The computer's greatest single impact on the gas 

dispatch function has come from the widespread installation 
of centralized data acquisition and control systems. These 
systems provide centralized data monitoring and logging 
functions. Additionally, they often permit control over 
remote compressors, valves, and controller set points. For 
examples of modern day installations, see representative 
articles by Yonker [93 and Kloer [10], Turner [11] presents 
a good discussion of general system specifications and 

requirements. Early efforts in this field are discussed in 
papers by Wilson (1953) [12], Orlofsky (1958) [13], and
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Armstrong (1964) [14]. These articles demonstrate the 
progression from analog methods, to relay computers, to the 

modern digital computer. The availability of SCADA 
computers has improved the dispatcher's ability to monitor 
and respond to the pipeline environment. Previously, remote 
information was manually logged over teletype or phone, and 
it was only updated after long time intervals (hours). With 
SCADA, this information is available upon demand, permitting 
the dispatcher to form an accurate picture of pipeline 
status.

Pipeline Modeling
With computers in widespread dispatching use, 

suggestions for more involved information processing have 
occurred quite naturally. There has been a growing 
discussion of the merits of concurrent and look-forward 
modeling for dispatcher assistance and training. See for 
example, Pai and Mugele [15], Heath and Blunt [16], Rachford 
[17], Covington [18], and Wylie and Streeter [19].

The idea is threefold. First, a real-time (concurrent) 
model may be used to identify anomalies between predicted 
and actual response, thereby pointing to leaks or other 

undesirable events. Second, a look-forward model permits an 
operator to try alternative strategies in a safe quasi
environment, hopefully improving dispatcher decision 
making. Last, use of a model as a training simulator 

reduces the need for costly on-the-job training.

Pipeline modeling on computers had its origins in the
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fifties when Hardy Cross techniques were placed or. the old 
punched card computers [20]. More realistic models for 
transmission lines which include dynamic phenomena may be 
seen in papers by Nelson and Powers (1958) [21], and Taylor, 
Wood and Powers (1962) [22]. Since that time, many have 
contributed to the literature of pipeline modeling [23-28].

Modeling has developed where, today, software is 
available commercially for real-time and look-forward 
applications. Several look-forward and training simulator 
models are being installed, although results from these 
efforts have not been widely reported in the literature.

Continued use of real-time and predictive modeling 
promises better information digestion by human dispatchers. 
Whether dispatchers develop hearty appetites for these tools 
remains to be seen. The existence of modelisig tools has 
also led to the development of various optimization 
procedures.

Optimization of Pipeline Operations
The notion of optimization is an old and recurring 

theme in the engineering literature. Basically, one seeks a 
design or operating sequence that is best in some well- 
defined sense. In pipeline operations, this may imply 
finding the operating sequence that minimizes total cost of 
transportation subject to various delivery and safety 

requirements. Many techniques have been applied to the 
pipeline operations problem.

Dynamic programming has been used for steady state and
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transient optimization of simple pipeline operations by Wong 
and Larson [29] and Larson, Humphrey and Wong [30]. Ade 
[31] has applied Pontryagrin's principle to the problem of 
optimizing more complex configurations. This work also 
offers a solid discussion of the many factors that 
contribute to formulating a realistic objective function. 
Sood, et al. [32] have considered the network problem using 
a gradient search technique. Wienecke [33] has described 
the use of a method based upon linear programming. This 
work suggests possible real-time usage of the method by 
operations personnel. Many others have considered the 
problem of optimization in pipeline design [34-37].

Although there has been much interest in the 
development of these optimization procedures, their field 
implementation and use by working dispatchers has not been 
widely reported. There are numerous reasons for this. Cost 
of implementation is a factor; software and hardware costs 
for these methods can be substantial; however, cost is not 
the whole story. Dispatch supervisors and dispatchers 
consulted during the informal visits, felt that dispatchers 
already did a good job, and the optimization procedures 
would not bring substantial savings. Furthermore, they 
argued that a computer procedure could not handle all the 
exceptions and extraordinary situations that arise.

While some of this may be chalked up to job 
protectionism and homo sapiens chauvinism, there is some 

sense in this stance. Good dispatchers (human) do a good
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job. They respond to a broad spectrum of events with 
intuitive flair. By contrast, optimization techniques 
respond to situations with a pre-cast methodology. Changes 
in the environment must be handled explicitly or they are 
not noticed at all. Changes in operating philosophy 
(objectives) are difficult to model.

Because of this, it is understandable why optimization 
methods have not caught on in the pipeline dispatch 
environment. We must have robust methods that handle the 
breadth of a real pipeline system.

Other Computer Methods
Other methods have been suggested for gas pipeline 

control. Two papers have discussed the development of 
heuristic pipeline control algorithms. The early SRI report 
[30] on dynamic programming suggested a heuristic control 
scheme based upon some simple operations rules, These rules 
were generalized by the authors from their dynamic 
programming model. A later paper by Larson and Wismer [38] 
outlines a scheme for hierarchical control for more general 
networks. It is interesting that both papers seek to 
generalize low computation, heuristic rules from complex 
optimization procedures. The approach to be studied in 
Chapter 5 seeks heuristic rules in a more direct manner.

2.3 Summary

In this chapter, we have examined the gas dispatching 
function and the role of computers in that function-.
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The dispatcher faces a demanding environment, fraught 
with uncertainty, complex hardware, and changing objectives. 
Nonetheless, he meets his environment head on, tackling the 
task with a flexible, intuitive approach. Observations of 
dispatchers at two gas companies confirm this; the 
dispatcher learns and decides easily. During decision 
episodes, he gets a clear picture of the situation, decides 
what to do, and does it; there is little analysis or 
agonizing,

Computers have helped the dispatcher in his role as a 
communicator. Centralized systems provide reliable 
information and equipment control at his fingertips; 
however, the computer has had little to do with aiding the 
dispatcher's decisions.

Why haven't computers been more helpful in this 
important role? The primary reason is the robustness gap 
between man and machine. Good (human) dispatchers do a good 
job; they approach a tough job with intuitive flair and a 
flexible attack. By contrast, artificial decision 
techniques approach the task with a rigid, pre-cast 
methodology that is guaranteed to fail when it encounters 
the unanticipated or when its pre-set models don't (model).

Thus, it is little wonder that dispatchers and their 
managers have been less than enthusiastic in their embrace 
of these techniques. If the computer is ever to effectively 
aid in the dispatcher's decision process, our mission is 

clear; we must try to close the robustness gap and bring
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machine performance closer to the intuitively flexible 
approach of the human dispatcher.

Over the next four chapters we take a few small steps 
in this direction. First, we investigate a genetic 
algorithm, an improvement search technique with some of the 
boldness and innovation of human search, in pipeline 
optimization. After these optimization studies, we 
integrate the genetic algorithm into a more complete rule- 
learning system. This system learns rules of thumb for high 
performance interaction with its pipeline environment. By 
doing this, we hope to come closer to the intuitive approach 
used by the working dispatcher.
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OPTIMIZATION VIA GENETIC ALGORITHM

Optimization is a natural first step in a quest for 
artificial decision-making procedures similar to human 
processes. The idea is simple: human decision makers seek 
the best decision in some well-defined sense. While common- 
sensical, this notion begs to be questioned. Human decision 
makers perform in situations where both the environment of 
decision and the concept of best are, at best, ill-defined. 
Because of this, optimization with its well-defined 
constraints, objective functions, and system models, is no 
more than a rigid approximation to natural decision-making 
processes.

Nonetheless, we study optimization for two good 
reasons. First, because optimization is well defined, it 
provides a pure proving ground for search procedures. A 
robust decision maker must use algorithms enabling 

improvement with experience. With optimization, we can 
test, explore, and compare different search procedures and 
still maintain strict control over the search environment. 
Second, optimization has proved to be a useful tool in the 
hands of a skilled engineer or technologist. The user can

22
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carefully tune model and objective parameters to obtain 
desirable system performance; it is, however, this human 
interaction, the art of optimization, which keeps such 
systems from autonomy.

In this chapter, we study one search procedure, a 
genetic algorithm, with promise in both areas: as a search 
algorithm in a larger decision-making learning machine and 
as a practical, engineering optimization tool. We focus on 
the latter for now, but keep in mind the former. Genetic 
algorithms have seen growing application in the past decade 
in computer scientific domains. Here, we explore their use 
as an engineering optimization tool. This lays the 
foundation for actual application to two problems in 
pipeline control in the next chapter.

To get a handle on genetic algorithms, we look at what 
they are and where they come from. In so doing, we question 
the motivation for looking at still other techniques of 
optimization (aren't there enough already?). The mechanics 
of the algorithm are then presented; we attempt to gain some 
intuition of why they work. We finish with a more rigorous 
explanation of the underlying search processes.

3.1 What are Genetic Algorithms?

Genetic algorithms are a class of stochastic improvmal 
algorithm; they seek improved performance by sampling areas 
of a parameter space with high probability of success. The 

algorithms are genetic because the string manipulations 
employed resemble the mechanics of natural genetics. In a
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sense, genetic algorithms enforce a Darwinian survival of 
the fittest among a population of artificial creatures 
(strings). Every generation, a new set of creatures is 
created using bits and pieces of the fittest of the old 
generation; an occasional new part is tried for good 
measure.

Yet, one should not assume that genetic algorithms are 
a simple random walk through some parameter space; these 
methods are not coin flipping by a fancy name. Genetic 
algorithms efficiently exploit old information to seek trial 
points with above average performance.

Genetic algorithms have been developed by John Holland 
and his students in the Computer and Communications Sciences 
Department at the University of Michigan. The main goals of 
their research have been twofold: 1) abstract and 
understand, mathematically, the adaptive processes of 
natural systems, 2) design artificial systems software that 
retain the important mechanisms of natural systems. This 
approach has led to important discoveries in both natural 
and artificial systems science.

The central issue of this philosophy is robustness— the 
balance between efficiency and efficacy necessary for 
survival in different environments. The implications of 
robustness for artificial systems are manifold. If 

artificial systems can be made more robust, costly redesic ■'» 
can be reduced or eliminated. If higher levels of 
adaptation can be achieved, existing systems can perform
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thei'r' function longer and better. Designers of artificial 
systems— both software and hardware, whether mechanical, 
chemical, civil, or electrical— can only marvel at the 
robustness, the flexibility of biological systems. Features 
for self-repair, self-guidance, and reproduction are the 
rule in biological systems, whereas they barely exist in the 
most sophisticated artificial systems.

Thus, we are drawn to an interesting conclusion: where 
robust performance is desired— and where is it not?— nature 
does it better; the secrets of adaptation and survival are 
best learned from the careful study of biological example.

Yet, we do not accept the genetic algorithm method by 
appeal to this beauty-of-nature argument alone. Genetic 
algorithms are theoretically and empirically proven to 
provide robust search in complex spaces. The primary 
monograph on the topic is Holland's, Adaptation in Natural 
and Artificial Systems [1] (hereafter ANAS). Many papers 
[39-47] and dissertations [48-54] establish the validity of 
the technique in function optimization and control 
applications. Particularly applicable to the present; work 
are Ph.D. theses by Hollstein [51], De Jong [53], and Bethke 
[54].

While established as a valid approach to problems 
requiring efficient and effective search, genetic algorithms 
have not been widely applied in engineering circles. There 

is no good reason for this oversight. These algorithms are 
computationally simple, yet powerful in their search for
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above average behavior. Furthermore, they are not 
fundamentally limited by restrictive assumptions about the 
search space (continuity, existence of derivatives, etc.).
We will investigate the reasons behind these attractive 
qualities; but before this, we need to explore the 
robustness of more widely accepted search procedures.

3.2 Robustness of Conventional Search Methods
This is not a comparative study of optimal search 

techniques. Nonetheless, it is important to question 
whether conventional search methods meet our robustness 
requirements. The current literature identifies three main 
types of search methods: calculus-based, enumerative, and 
random. Let us examine each type to see what conclusions 
may be drawn without formal testing.

Calculus-based methods have been heavily studied.
These subdivide into two main classes: indirect and direct 
methods. Indirect methods seek local extrema by solving the 
usually, nonlinear set of equations resulting from setting 
the gradient of the objective function equal to zero. This 
is the generalization of the elementary calculus notion of 
extremal points. On the other hand, direct (search) methods 
seek local optima by hopping on the objective function and 
moving in a direction related to the local function
gradient. This is simply the notion of hill-climbing. To
find the local best, one climbs in the steepest permissible 
direction. While these methods have been improved,
extended, hashed, and rehashed, some simple reasoning shows
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their lack of robustness.
First, both methods are local in scope; the optima they 

seek are only the best in a neighborhood of the current 
point. Further improvement must be sought through random 
restart or other trickery. Second, they depend upon the 
existence of derivatives. Even if we allow numerical 
evaluation of derivatives, this is a severe shortcoming.
Many practical parameter spaces have little respect for the 
notion of a derivative and the smoothness this implies. The 
engineering community has been too willing to accept the 
tradition of the 18th century classicists who painted a 
clean world of quadratic objective functions, ideal 
constraints, and ever present derivatives. The real world 
of search is fraught with discontinuities and vast multi
modal, noisy search spaces. It comas as no surprise that 
methods depending upon the restrictive requirements of 
continuity and derivative existence are unsuitable for all 
but a very limited problem domain. For this reason and 
their inherent local scope of search, we must reject 
calculus-based methods; they are insufficiently robust in 
unintended domains.

Enumerative, search-for-the-best schemes have taken a 
variety of forms; but, their consideration in the robustness 
race must be limited for a simple reason: lack of 
efficiency. Most parameter spaces are simply too large to 
search one at a time and still have a chance of using the 
information to some practical end. Even the highly touted
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scheme, dynamic programming, is little more than logical 
enumeration with a model* It too, breaks down on problems 
of moderate complexity, suffering from a malady 
melodramatically labeled the "curse of dimensionality" by 
its creator [55]. We must conclude that less clever 
enumerative schemes are similarly— and more abundantly—  

cursed for real problems.

Random algorithms have achieved increasing popularity 
as researchers recognize the shortcomings of calculus-based 
and enumerative schemes [56]. Yet, strictly random search 
must also be discounted because of the efficiency 
requirement. Random searches, in the long run, can be 
expected to do no better than enumerative schemes. We must 
be careful to separate random search methods from randomized 
techniques. The genetic algorithm we investigate is an 
example of a search procedure which uses random choice as a 
tool to guide a highly exploitative search through the 
parameter space.

While not an exhaustive examination, we are left with a 
somewhat unsettling conclusion: conventional search methods 
are not robust. This does not'imply they are not useful.
The schemes mentioned and countless hybrid permutations have 
been used successfully in many applications; however, as 
more complex problems are attacked, other methods will be 
necessary. We shall soon see how genetic algorithms help 
fill this robustness gap in practical engineering 
applications.
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3.3 Goals of Optimization
We are seeking methods which optimize efficiently and

effectively over a broad environmental spectrum. We must
now be clearer about our meaning when we say optimize. What
are we trying to accomplish in an optimization process? The
conventional view is presented well by Beightler, Phillips
and Wilde [573 :

Man's longing for perfection finds expression in the 
theory of optimization. It studies how to describe and 
attain what is Best, once one knows how to measure and 
alter what is Good or Bad . . . Optimization theory 
encompasses the quantitative study of optima and methods 
for finding them.
From this we see that optimization seeks to improve 

performance toward some optimal point or points. Note that 
this definition has two separable parts: 1) we seek 
improvement to approach some 2) optimal point. There is a 
clear distinction between the process of improvement and the 
destination or optimum itself. Yet, in judging optimization 
procedures we commonly focus solely upon convergence, 
whether the method reaches the optimum, and forget entirely 
about interim performance. This emphasis stems from the 
origins of optimization in the calculus. It is not, 
however, a natural emphasis.

Consider a human decision maker, for example, a 
businessman. How are his decisions judged? What criteria 
are used to decide whether he does a good or bad job?

Usually he is judged by whether he makes good selections 
within the time and resources allotted. Goodness is judged 
relative to his competition. Does he make a better widget?
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Does he get it to market more efficiently? With better 
promotion? Our businessman is never judged by attainment- 
of-the-best criteria; perfection is all too stern a 
taskmaster. Convergence to the best is not an issue in 
business or in most walks of life; we are only concerned 
with doing better relative to others, Thus, if we want more 
human-like optimization tools, we are led to a reordering of 
priorities. The most important goal of optimization is 
improvement. Can we get to some good, sufficing level of 
performance quickly. Fine tuning can be performed in our 
spare time. Attainment of some optimum is much less 
important for complex systems. It would be nice to be 
perfect: in the meanwhile, we can only strive to improve.

In the next chapter, we watch the genetic algorithm for 
these human-like qualities. In the meantime, we define a 
simple genetic algorithm to see how and why it works.

3.4 A Simple Genetic Algorithm
In this section, we investigate a simple genetic 

algorithm, both its mechanics and why it works. The 
mechanics of the process are surprisingly simple. We do 
nothing more complex than string copying and partial string 
swapping. The explanation of why it works is much more 
subtle and powerful. This simplicity of operation and power 
of effect are one of the main attractions of the genetic 
algorithm approach.

We separate this discussion into two parts. First, we 
address the structures being processed. Next, we outline
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the rules and operators used to modify the structures. Our 
main efforts, at first, are directed toward understanding 
the mechanics of the process and gaining an intuitive feel 
for their robustness. Later, we return for a rigorous 
examination of genetic cilgorithm performance.

Strings and Chromosomes

The basic structure processed by genetic algorithms is 
the string. The strings we consider are a sequence of 
characters of finite length 1 composed over some alphabet V. 
In this study, we limit ourselves to the binary strings over 
the alphabet V = {0,1} without loss of generality.

Roughly speaking, strings in artificial systems are 
analogous to chromosomes in biological systems. In natural 
systems, the chromosome (or set of chromosomes) is a 
prescription for the operation of some animal or plant. In 
artificial systems optimization, the string is a description 
of a parameter set for operating the underlying system. The 
system designer has a variety of alternatives in coding 
numeric and non-numeric parameters. We will confront this 
when we discuss applications in the next chapter. Right 
now, we aim to see how genetic algorithms can effect 

improvement regardless of the coding scheme used.
Because the genetic algorithm is rooted in natural 

genetics and computer science, the terminology used is an 
unholy mixture of the natural and artificial. We review the 
terminology to connect with existing literature and also 

permit the occasional slip of a natural utterance or two.
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In the geneticists parlance, a chromosome is composed of 
genes which may take on a number of values called alleles.
A gene is also identified by its position on the chromosome 
called its locus. The correspondence between natural and 
artificial vernacular is shown in Table 3-1.

Table 3-1 
Natural and Artificial Vernacular

natural artificial

chromosome string
gene character or bit
allele bit value
locus position

In this study, we do not distinguish between a gene
(character) and its locus (position); the position or a gene
determines its meaning uniformly throughout a population and 
throughout time. More complex chromosome (string) models 
may be introduced; but, these have not proved necessary in 
applications studies to date.

As a notational convenience, we refer to strings by 
capital letters and individual characters by lower case 
letters subscripted by their position. For example, the 
string A may be represented as follows:

A — a^a23-2' * * ̂  1
Here the a. represent the alleles at the ith gene. A
particular string is represented in its binary form.
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Populations of Strings

We have defined the individual structures as finite 
length strings. It would be possible to operate on strings 
one at a time, thereby generating a sequence of individual 
strings with time. Many optimization algorithms operate 
this way, moving gingerly from one parameter set to another: 
gradient methods, as an example, use this individual 
sequential approach. Yet, nature does not work this way, 
and nor shall we. In natural systems, a population of 
individuals exists at any one time. As time progresses, new 
generations are born and older generations die away, 
creating constantly changing populations. Similarly, 
genetic algorithms generate a sequence of string 
populations. This factor alone gives genetic algorithms 
much of their differential advantage over conventional 
search methods.

By working from a population, genetic algorithms 
maintain a rich database of well-adapted diversity from 
which new members may be created. By maintaining this 
diversity, these algorithms can search different regions of 
a parameter space in parallel. This results in a search 
with a much broader, more global flavor than any method that 
searches from a single point.

As a matter of notation, we consider a sequence of 
populations A(t) where the underscore indicates a vector of 
strings and the index t refers to the time step. For 

simplicity, we consider non-overlapping populations A(t}
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where all the members of the population undergo mating and 
genetic action to create the members of generation t+1. We 
also limit ourselves to populations of constant size.
Having adopted these guidelines, we examine how genetic 
algorithms act to create a sequence of improving 
populations.

Reproductive Plans and Genetic Operators
At some point in time, we imagine a population of 

strings A(t). The job of a genetic algorithm is to perform 
a series of simple operations on the current population to 
generate a new population in the next time step. This is 
done with a number of transition rules.

Genetic algorithms are composed of two types of 
transition rules:

1. Reproductive plans
2. Genetic operators

Reproductive plans determine the number of copies 
(offspring) of an existing string to make during a 
reproductive cycle (iteration). Genetic operators determine' 
the modification and combination of these strings which will 
form the strings of the next generation.

One simple genetic algorithm, which gives good 
practical results, is composed of three rules, one 

reproductive plan and two genetic operators:
1. Fitness proportionate reproduction
2. Simple crossover

3. Simple mutation
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Fitness proportionate reproduction is a simple rule 
whereby the probability of reproduction during a given cycle 
is proportional to the fitness of the individual string. 
Fitness is defined as some non-negative measure of merit (an 
objective function to be maximized;. The effect of this 
rule is clear. High fitness individuals have a higher 
expected number of offspring than low fitness individuals. 
Reproduction is, thus, the survival-of-the-fittest or 
emphasis step of the simple genetic algorithm.

One common implementation of this rule evaluates a 
reproduction count for every member of the old population. 
This count is simply the individual’s fitness u^ divided by 
the average fitness of the population u. This normalization 
assures a population of constant size N. Note that the 
reproduction count is usually some non-integral value. To 
round off to integral values, two things are often done. 
First, the population count may be scaled so the best 

individual gets at least two copies. This insures some 
pressure toward the best strings while still maintaining 
constant population size. Second, the non-integral 
reproduction counts may be rounded probabilistically to the 
next higher or lower integer using the fractional part to 
bias a simulated coin toss.

After the reproduction phase, simple crossover may 
proceed in two steps. First, members of the newly 
reproduced generation are mated at random. Then, each pair 

of strings undergoes crossover as follows: an integer
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position k along the string is selected uniformly at random 
on the interval 1<k£l-1. Two new strings are created by 
exchanging all characters between positions 1 and k, 
inclusively.

For example, consider two strings A and B of length 7 
mated at random;

A = a 1a 2a 3a4a 5a ga7 
B « b 1b 2b 3b4b 5b 6b7 

Suppose the roll of a die turns up a four. The resulting 
crossover yields two new strings;

A' = b 1b 2b 3b4a 5a ga 7 
B' = aia 2a 3a4b 5b6b7

What is the effect of crossover on the search process? 
Clearly, crossover is some sort of randomized, yet, 
structured information exchange. Together with 
reproduction, this simple operator gives genetic algorithms 
much of their surprising power. A rigorous explanation of 

this may be given in terms of schemata. A more intuitive 
feel can be obtained by considering strings as ideas and 
substrings as containing notions.

A string is a complete idea or prescription of how to 
do a particular task (in our case, a description of how to 
operate a pipeline). Substrings contain various notions of 
what's important or relevant to the task. Viewed in this 

manner, the population is a body of knowledge containing a 
multitude of notions and rankings of those notions for task 
performance. The act of crossover with previous
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reproduction, combines various notions of high performance 
strings to form new ideas. Intuitively, exchanging notions 
to form new ideas is appealing if one thinks in terms of the 
process of innovation. What is an innovative idea? Most 
often, it is a combination of things that have worked well 
in the past. In much the same way, reproduction and 
crossover combine to search potentially pregnant, new ideas.

It is as if various widget experts from around the 
world gathered at a trade show to discuss the latest in 
widget technology. After the paper sessions, they all pair 
off around the bar to exchange widget stories. Well-known 
widget experts, of course, are in greater demand, and 
exchange more ideas, thoughts and notions with their lesser 
known widget colleagues. The show ends and the widget 
people return to their widget laboratories to try out a 
surfeit of widget innovations. The process of reproduction 
and crossover is precisely this kind of exchange among 
experts. High performance notions are repeatedly tested and 
exchanged, seeking better and better performance.

While reproduction and crossover effectively search and 
recombine extant notions, occasionally they may become 
overzealous and destroy some potentially useful genetic 
material. The mutation operator protects against such an 
unrecoverable loss. Mutation is the occasional random 
alteration of a string position. In a binary code, this 
simply means changing a 1 to a 0 and vice versa. By itself, 
mutation is a random walk through the search space. When
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used sparingly with reproduction and crossover it is an 

insurance policy against premature loss of important 
notions.

Other genetic operators and reproductive plans have 
been abstracted from the study of biological example; 
however, the three examined in this section, proportionate 
reproduction, simple crossover, and simple mutation have 
proven to be both computationally simple and effective in 
solving optimization problems. In the next section, we 
perform a hand simulation of our simple genetic algorithm to 
demonstrate both the mechanics and effect of the method.

3.5 Genetic Algorithm at Work - A Simulation by Hand
Consider the problem of finding high performance 

strings (1=5) where the objective functions is f(x) = x and 
strings are interpreted as binary integers on the interval 
[0,2^-1]. In this section, we perform one generation of the 
simple genetic algorithm to drive home the mechanics and 
concept of the method in a simple problem domain.

To start, a small initial population of four strings 
(N=4) is selected at random. Bit positions have been chosen 
by flipping an honest penny. The decimal values x are shown 
with their respective fitness values in Table 3-2. 
Reproduction counts are set by taking the integer part of 

the normalized fitness and adding a count with probability 
equal to the remaining fractional part. In the particular 
simulation, 3 coins have been flipped to approximate this 
process to the nearest eighth.
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Table 3-2
Hand Simulation of Genetic Algorithm

Initial
Population

X
Value

f ( x ) f  ( x ) 
E ( x )

Count String
Copies

Mated
With

Cross
over
Site

Mew
Population

X
Value

f  ( x )

01101 13 169 0.58 1 01101 2 4 01100 12 144
11000 24 576 1.97 2 11000 1 4 11001 25 625
01000 8 64 0.22 0 11000 4 2 11011 27 729
10011 19 361 1.23 1 10011 3 2 10000 16 256

Average 293 439
MOTES: 1) Reproduction count rounding, crossover and mating performed at 

random using one or more coin tosses.

2) Mutation probability p assumed small enough to be negligible 
over a single generation.

3) X interpreted as binary integer [0,31].
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Reproduction proceeds by copying the number of strings 
specified in the reproduction counts. Random mating of the 
strings follows, using coin tosses to pair off the happy 
couples. After mating, crossover is applied to each pair by 
randomly selecting a crossover site. The mutation 
probability has been assumed to be small. Therefore, 
following reproduction and crossover, the new population is 
ready to be tested.

The results of a single generation of the simulation 

are shown in the table. While concrete conclusions from a 
single trial of a stochastic process are, at best, a risky 
business, we start to see how genetic algorithms combine 
high performance notions to achieve better performance.
Note how both the maximal and average performance have 
improved in the new population. Although random processes 
help cause this happy circumstance, we can see how this 
improvement is no fluke. The best string of the first 
generation (11000) receives 2 copies because of its high, 
above average performance. When this combines at random 
with the next highest string (10011) and is crossed at 
location 2 (again at random), one of the resulting strings 
(11011) proves to be a very good choice indeed.

This event is an excellent illustration of the ideas 
and notions analogy we developed in the previous section.
In this case, the resulting good idea is the combination of

two above average notions, namely the substrings 11 and
 11. While still somewhat heuristic, we start to see how
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genetic algorithms effect a robust search. In the next 
section, we tighten down these concepts by analyzing genetic 
algorithms in terms of schemata.

3.6 A Rigorous Reappraisal
The intuitive viewpoint developed thus far has much 

appeal. It places the genetic algorithm in similitude with 
certain human search processes commonly called innovative or 
creative; however, as engineers and technologists, we need 
to have a better handle on genetic algorithm performance.

To get this, we examine the raw data available for any 
search procedure and discover that we can increase the 
information available by comparing strings and exploiting 
important similarities in a population. We develop the 
framework of similarity templates or schemata to rigorously 
show how genetic algorithms work. We show how this leads us 
to consider a keystone of the genetic algorithm process, the 
building block hypothesis.

Grist for the Search Mill - Important Similarities 
For much too long we have ignored a fundamental 

question. In a search process where we only have payoff 
data (fitness), what information is contained in a set of 
structures (strings) to help guide a directed search for 

improvement? To make this clearer, consider the strings and 
fitness values originally displayed in Table 3-2 from the 
simulation of a previous section and gathered below for 
convenience;

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



42

String Fitness

01101 169
1 1000 576
01000 64
10011 361

What information is contained in this population? On. the 
face of it, there is not much: four independent samples of 
different strings with their fitness values. As we stare at 
the page, however, quite naturally we start scanning up and 
down the string column. We notice certain similarities 
among ths strings. Furthermore, we note certain 
similarities that seem highly associated with good 
performance. The temptation is great to experiment with 
these high fitness associations. It seems reasonable to 
play with those particular substrings that are highly 
correlated with past success. For example, in the sample 
population, the strings starting with a 1 seem to be among 
the best. Might this be an important ingredient in 
optimizing this function? Certainly with this function 
(f(x)= x ) and coding (binary integer) we know it is. But, 
what are we doing here? Really, two separate things. First, 
we are seeking similarities among strings in the population. 
Second, we are looking for causal relationships between 
these similarities and high fitness. By doing this, we 
admit a wealth of new information to help guide a search.
To see how much and precisely what information is being 

considered, we introduce the important concept of a schema
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or similarity template.

Schemata - Similarity Templates
We are no longer interested in strings as strings 

alone. Since important similarities can help guide a 
search, we need to define how a string is similar to other 
strings. In what ways is a string a representative of other 
string classes with similarities over certain string 
positions? The framework of schemata provides the tool to 
analyze these questions.

A schema is a similarity template describing a subset 
of strings with similarities over certain string positions. 
The template may be motivated by appending the symbol * or 
don't care to the normal alphabet V. With this extended 
alphabet, the characters of V retain their normal 
significance. A don't care in a string position means that 
any character of V  at that position will satisfy the 
template. Thus, positions that are important are specified 
by elements of V; positions where the similarity is 
unimportant are occupied by a don't care. We point out that 
the * is a meta-symbol; it is not actually processed by any 
algorithm. It is simply a notational device which allows us 
to describe all possible similarities.

As an example, consider the-strings of length 5. The 
schema *0000 describes a subset of strings, namely {10000, 
00000}. The schema *111* describes a subset with 4 members 

{01110, 01111, 11110, 11111}. In this way, schemata provide 
a straightforward means of describing all the similarity
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subsets possible among the strings of given length.
Counting the number of schemata is an enlightening

exercise. In the previous example, with 1=5, we note there
5are 5 = 243 different similarity templates because each of

the 5 positions may be a 0, 1 or *. In general, for 
alphabets of cardinality k, there are (k+1)^ schemata. At 
first blush, it appears that schemata are making our search 

lives more difficult. For an alphabet of cardinality k 
there are only (only?) k^ different strings. Why consider 
schemata and enlarge the space of concern? The answer lies 
in the number of strings and schemata contained in each 
sampled population. How many strings are there in a 
population of size N? Obviously, there are N strings in a 
population of size N. How many schemata are contained in a 
population of size N? To see this, consider a single string

5of length 5: 11111, for example. This string contains 2 
schemata because each position may take on its actual value 
or a don't care symbol. In general, a particular string 
contains 2^ schemata. As a result, a population of size N 
contains somewhere between 21 and N*2^ schemata depending 
upon the population diversity. This fact verifies our 
earlier intuition. The original motivation for considering 
important similarities was to get more information out of a 
string population. The counting argument shows that there 
is indeed a wealth of information about important 

similarities contained in even moderately sized populations. 
We will examine how genetic algorithms effectively exploit
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this information. At this juncture, we suspect the need for 
some parallel processing if we are to make use of all this 
information in a timely fashion.

Schema Properties
All schemata are not created equally. Some are more 

specific than others. Some have defining positions that 
span a greater or lesser proportion of the string. To 
identify these differences we identify two properties of a 
schema following Bethke [54]: order and defining length.

The order of a schema h, denoted by o(h), is simply the 
number of ones or zeroes present in the template. It is a 
measure of schema specificity; the higher the order the more 
specific the template.

Defining length of a schema h, denoted by 6(h), is the 
distance between the first and last specific string position 
(one or zero). Defining length is a measure of schema span. 

To illustrate these properties consider a schema hci
over the strings of length 7:

h = * 10***1 a
What are the order, o(h ) and defining length 6 ( h )  of thiso a
particular schema? The order is straightforward. There are 
two ones and a single zero. Hence, the order of this schema 

is 3. To calculate the defining length, we note that the 
first defining position is at location 2. The last defining 
position is at location 7. The defining length is the 

difference, 7-2 = 5. While these two properties are easily 
calculated for any schema, they play an important role in
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identifying genetic algorithm performance.

Processing of Schemata by Genetic Algorithm
Schemata are an interesting notational device for 

discussing similarities in strings. More than this, they 
provide the basic means for analyzing the performance of 
genetic algorithms. W'; have already considered how genetic 
algorithms process string populations. We now consider how 
they process schemata, "the underlying similarities in the 
string population. We examine reproduction, crossover, and 
mutation to identify the expected effect of each transition 
rule.

The effect of reproduction on the number of schemata in 
a population unveils quite directly. Recall that a string 
receives u / u copies during fitness proportionate 
reproduction. For any schema h, we assume there are m(h,t) 
such schemata in a population at time step t. After 
reproduction, we expect m(h,t)*u(h)/u schemata h, where u(h) 
is simply the average fitness over all the strings 
containing schema h. Considering reproduction alone, the 
number of schemata will grow or decline depending upon the 
ratio u(h)/u— whether a schema is above or below the current 
sampling average.

This rate of schemata growth has been connected to the 
multi-armed bandit problem by both Holland [1] and De Jong 
[53]. Simply stated, this problem seeks the optimal 

allocation of trials among a number of alternatives with 
unknown payoff (a bank of slot machines). The objective of
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the problem is to minimize the expected losses from the 
allocation. The form of the solution derived by Holland 
suggests that an exponentially increasing number of trials 

should be allocated to the observed best alternative. In 
fact, the optimal strategy is not realizable because it 
requires knowledge of outcomes before their occurrence. 
Nonetheless, the plan forms an important bound on 

performance which a time sequential procedure should attempt 
to emulate. The simple reproductive plan does precisely 
this. Fitness proportionate reproduction allocates 
exponentially increasing numbers of trials to the observed 
best schemata. As the number of trials increases, the 
allocation by this procedure approaches the optimal 
allocation. As such, it is an important, yet easily 
realized, near-optiinal allocation procedure.

Reproduction by itself is not too interesting in 
complex systems as no new points are explored. Crossover 
provides the structured, though randomized, information 
exchange between strings to effect a search of new points. 
How does crossover affect schemata growth? Clearly, many 
schemata remain unscathed because the crossover site does 
not fall between schemata defining positions. To see this, 
examine the following schema:

Recall that simple crossover proceeds with the random 

selection of a crossover site and the exchange of material 
through that site inclusively with the chosen mate. We note
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that the first defining position of the schema is at 
location 3 and last defining position is at location 6. 
Therefore, this schema survives the crossover operation a 
majority of the possible cases. The schema survives with 
crossover at locations 1 or 2 or locations 6 through 10. 
Conversely, the schema is broken with a crossover site at 
locations 3, 4, or 5. Since the site is selected uniformly 
at random, the probability of schema survival is easily 
calculated. For the particular example, there are 10-3 = 7 
survival sites out of 10 possible sites, probability=0.7. 
More generally, this crossover survival probability may be 
related to the defining length 5(h). The survival 
probability is equal to 1 - 6(h)/(l-1) for a particular 
schema h because the schema survives if the crossover site 
does not fall within the defining length. Actually, this 
estimate is conservative because it does not include the 
probability of swapping identical defining positions between 
two strings.

The probability of mutation leaving a schema unscathed
is also easily calculated. The number of defining positions
in a schema has been called its order o(h). If the
probability of mutation is constant and specified as pm , the
probability of a schema surviving intact is simply (1-
Pm )°'^« For small values of pm , this is well approximated
bv (1-o(h)*p_).rm

The combined effect of all three transition rules, 
reproduction, crossover, and mutation, is easily derived.
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The expected number of schemata h to survive into the next 
generation is simply the product of the expected number from 
reproduction alone and the survival probabilities of 
crossover and mutation:

m(h,t+1) = m(h,t)«u(h,t)/u(t)
•(1-6(h)/(l-1))*(1-o(h).pm )

Identical results are presented in ANAS. The factor
multiplying the m(h,t) may be thought of as a growth factor.
If it is larger than one, the expected number of schemata h,
will continue to grow; otherwise, it can do no more than
remain constant in number. We note that this relationship
holds for all schemata contained in the population. In
other words, the simple genetic algorithm processes all
schemata in this manner. We observe that highly fit
schemata tend to survive because of the factor u/u. Short
definition length schemata are also preferred because the
crossover survival probability is closer to one. As a
practical matter, mutation usually plays little role as
mutation probabilities are often quite small (<0.001); this
has little effect except on schemata of very high order.

Standing back from the computation, we observe several 
things: short schemata, 6(h) << 1, are sampled at near- 
optimal rates. Longer schemata are sampled correspondingly 
less frequently than this. In all, Holland [58] has 
observed that approximately N schemata, where N is the 
population size, are usefully sampled in parallel during
each generation of the genetic algorithm. While this is

1 1considerably less than the 2 -N»2 schemata which exist in a
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population, it still represents a large amount of data 
processing for populations of even moderate size (50-100). 
This process proceeds in parallel with the action of simple 
operators applied to strings only; no explicit computation 
is ever made to correlate or keep track of schemata. They 
simply behave as we have shown— the best getting more and 
more trials. This property of genetic algorithms has been 
called implicit parallelism by Holland because large number 
of schemata are handled simultaneously without explicit 
manipulation or recognition.

Building Blocks

The picture of genetic algorithms is much clearer with 
the perspective afforded by schemata. High performance 
schemata of relatively low defining length are sampled, 
recombined and resampled to form strings of potentially 
higher performance. In a sense, the problem has been 
reduced in complexity; instead of seeking the highest 
performing string by trying every conceivable combination, 
we try to construct better and better strings from partial 
solutions of past samplings.

Because high performance, low defining length schemata 
play such an important role in the action of genetic 

algorithms, Holland gives them a special name: building 
blocks. Just as a child creates magnificent fortresses from 
simple blocks of wood, a genetic algorithm seeks optimal or 
near-optimal performance through the juxtaposition of short, 
high performance schemata or building blocks.
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There is. however, one catch in our discussion to this 
point. Repeatedly we have claimed that notions combine to 
form better notions. Just now, we have claimed that 
building blocks combine to form better building blocks.
While these ideas seem perfectly reasonable, how do we know 
whether they hold true or not?

Certainly there is a growing body of empirical evidence 
to support these claims. Starting in 1967 with Bagley's 
pioneering thesis [48] through De Jong's careful study [53] 
of genetic algorithms on a broad problem spectrum, this 
building block hypothesis has held up in many different 
problems. Smooth uni-modal problems to noisy multi-modal 
problems have been successfully attacked using virtually the 
same reproduction, crossover, and mutation model. While 
limited empirical evidence does no theory prove, it does 
suggest that genetic algorithms are appropriate for many of 
the types of problems we normally encounter.

More recently, Bethke [54] has shed a great deal of 
light on this topic. Using discrete Walsh transforms and 
clever transformations of schemata, he has obtained a method 
to identify the actual schemata average fitnesses. In this 
way, he is able to identify whether for particular functions 

and codings, the building blocks combine to form the 
optimum. Attempts to generalize these results to arbitrary 
codings prove difficult, -although he does derive sufficient 
conditions on the derivatives of a function of a single 
variable which has been encoded by a normal fixed point
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coding. Despite the current limitations, Bethke has 
provided an important tool for the analysis of genetic 
algorithm performance.

As part of this research, Bethke also has generated a 
number of test cases which are genetic algorithm hard (GA- 
hard): they are not easily solved by the reproduction, 
crossover, and mutation procedure. While the results are 
inconclusive, they tend to suggest that when functions are 
genetic algorithm hard, they tend to contain isolated 
optima; the best points tend to be surrounded by the worst. 
Practically, many of the functions we encounter do not have 
this needle-in-the-hay-stack quality. There is usually some 
regularity in the function and coding that may be exploited 
by the building blocks. Nevertheless, it is important to 
keep in mind that, fundamentally, the simple genetic 
algorithm depends upon the combination of high performance 
building blocks to seek the best points. If the building 
blocks are misleading due to the coding used or the function 
itself, the problem may not be solvable by the simple 
algorithm.

3.7 Summary

In this chapter, we have laid a foundation for 
understanding genetic algorithms. We are lead to these 
methods by our search for robustness; natural systems are 
robust— efficient and efficacious— as they adapt to wide 
ranging environments. By abstracting the adaptation 

mechanism of natural systems in algorithm form we hope to
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achieve similar breadth of capability. In fact, genetic 
algorithms have proven their breadth in analytical and 
empirical studies.

The detailed mechanics of a simple genetic algorithm 
have been presented. Genetic algorithms operate upon 
populations of strings. The strings are coded to represent 
the underlying parameter set. Reproduction, crossover, and 
mutation are applied to successive string populations to 
create new string populations. The operations performed are 
simple string copies and partial string swaps, yet the 
effect is extremely powerful. Genetic algorithms realize an 
innovative notion exchange among strings. The best strings 
provide the largest number of notions contributing to 
continued improvement. A hand simulation of a simple 
genetic algorithm has been helpful in illustrating both the 
detail and power of this method.

In this examination, we notice there are three notions 
underlying the genetic algorithm concept which separate it 
from more familiar search techniques:

1. Direct manipulation of strings (structure)
2. Search from a population, not a single point.
3. Search rules as stochastic operators
Genetic algorithms manipulate control variable

representations at the string level to exploit similarities 
in above average population members. Other methods deal 
with functions at the variable level; the underlying coding 
is only a necessary evil to obtain a computer solution.
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Because genetic algorithms operate at the coding level, they 
are difficult to fool even when the function is difficult.

Genetic algorithms work from a population; many other 
methods work from a single point. Genetic algorithms heed 
the old adage "security in numbers." By retaining a 
population of sample points, the probability of reaching a 
false (local) peak is reduced.

The transition rules of genetic algorithms are 
stochastic; many methods nave deterministic transition 
rules. We are careful, however, to distinguish between 
these randomized operators and random search. Genetic 
algorithms use random choice to guide a highly exploitative 
search. This may seem unusual, using chance to achieve a 
particular result (the best points); nature is full of 
precedent [46].

A more rigorous appraisal of genetic algorithm 
performance has been undertaken using schemata or similarity 
templates. A schema is a string over an extended alphabet, 
V+(*), where V is the normal string alphabet and the 
asterisk is a don't care symbol. This notational device 
greatly simplifies the analysis of the genetic algorithm 

method because it explicitly recognizes all the possible 
similarities inherent in a population of strings. We have 
shown how building blocks (short, high performance schemata) 
are combined to form strings with expected higher 
performance. This occurs because short building blocks are 

sampled at near-optimal rates and recombined via crossover.
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Mutation has little effect on the building blocks; it does 
help prevent the unrecoverable loss of potentially important 
genetic material. Whether building blocks combine to form 
better strings depends upon the function and the coding used 
While there are functions which are genetic algorithm hard 
(GA-Hard), these problems tend to have remote, highly 
isolated optima and are difficult for other optimizers as 
well.

Genetic algorithms seem to have much to recommend them. 
In the next chapter, we apply the method to two problems in 
pipeline optimization. This application will help identify 
whether the method is as practical as it is promising.
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CHAPTER 4

APPLICATION OF GENETIC OPTIMIZATION IN PIPELINING

In this chapter, we apply the simple genetic algorithm 
to two problems in pipeline optimization. Our goal is to 
illustrate genetic programming's effectiveness in practical 
problem domains. We also try to clarify some of the more 
persistent implementation details we have encountered along 
the way.

We first explore four issues which confront the genetic 
optimization user: discretization and coding, constraint 
handling, minimization mapping, and genetic algorithm 
parameter selection. We then solve two problems in pipeline 
optimization: the serial, steady state problem and the 
transient, single line problem. The simple genetic 
algorithm presented in the previous chapter is used with 
constant, fixed parameters. Problem formulations and 
results from both problems are presented and analyzed; 
techniques are suggested for improving the already 

acceptable performance. We finish the chapter by reviewing 
the method's salient features.

4.1 Discretization and Coding

Genetic algorithms process populations of strings to

56
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search a particular problem space for improved performance. 
While problems exist where the natural coding is a string 
(crossword puzzles, word games), the usual engineering 
problem is formulated as a parametric or continuous 
variational problem.

In a parametric problem, a finite number of real 
parameters may be adjusted for best performance. In the 
variational problem some real function must be varied in 
time or space to control the process. In either case, the 
use of genetic algorithms forces us to transform the 
underlying formulation to a finite string through some 
discretization and coding process.

Discretization may be required at a variety of levels. 
With variational problems, we must first reduce the problem 
to a finite number of parameters. This is accomplished 
through the type of discretization associated with 
interpolation theory, finite elements, and other related 
areas. Typically, the continuum is subdivided into discrete 
chunks. Parameters are associated with points in the space, 
and some functional relationship— step function, piecewise 
polynomial, smooth spline, etc.— is assumed to describe the 
function's behavior in between the discrete points.

Upon reduction of the problem to a finite number of 
parameters (if necessary), another kind of discretization 
becomes important: the discretization resulting from the 
choice of coding. In most numerical computer work, we take 

our parameter codings for granted. Typically, in using an
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algorithmic language, FORTRAN as an example, we simply 
create a set of parameters of type REAL and perform our 
numerical work upon the parameters as if they were, in fact, 
real numbers; we tend to forget that we are working with a 
finite simulation of the real numbers. With genetic 
algorithms, we must be very explicit about both the coding 
and the way we combine the codings to form a string.

While we could form strings by simple concatenation of 
the normal REAL representation, there is strong motivation 
to avoid this approach. In the previous chapter, we learned 
how genetic algorithms process building blocks— relatively 
high performance, short schemata. If we use the normal 
floating point representation on most computers (30-60 
bits), the resulting strings are enormous for problems with 
even modest numbers of parameters. For these codings, 
adequate interaction of different parameters or even 
different parts of the same parameter would require building 
blocks with long defining lengths. As we know, longer 
building blocks are destroyed with high probability by the 
crossover operator. Therefore, it is better to custom 
tailor shorter parameter codings which span the control 
space with adequate precision.

A number of alternatives are available to code 
individual parameters. Shortened fixed point (integer) and 
floating point (real) codings are possible. De Jong [53] 
discusses a mapped, fixed point parameter where the j bit 
substring is interpreted as the usual, unsigned binary
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integer on the interval [0,2^-1], This integer is linearly 
mapped to some specified interval of the real numbers,

•̂um i n ,umax^* T^e Precis^on * this type of coding is 
uniform and depends upon the length of the parameter 
substrings j:

2^-1

This type of parameter coding is adopted in this study.
Floating point codings have been suggested [54] for 

genetic optimization. In a typical floating point 
representation, the string contains two parts, a mantissa 
and and exponent. This type of coding gives greater range 
at the expense of precision. They are advantageous when 
parameters are known to vary over many orders of magnitude. 
In this study, uniform precision is more important than wide 
range; floating point codings have not been used.

Other coding schemes are possible. For example, Gray 
codes have been investigated with genetic algorithms [51], 
Gray codes map adjacent integers to binary strings which 
differ by precisely one bit. While interesting, this work 
proves no consistent differential advantage for these more 
esoteric codings, and we stick to conventional schemes.

Once individual parameters have been coded, we must 
decide how to assemble them on a string. Again, a variety 
of options confronts us. The simplest ana most highly 
investigated scheme simply concatenates the individual 

parameter codings into a single string. Other methods have
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been suggested which intermix the bits of different 
parameters. The hope here is to create highly relevant, 
short length building blocks through rearrangement of the 
string structure. Eethke [54] has suggested a preset 
interleaving of bits from each parameter. A more general 
approach to this parameter mapping problem is to use the 
inversion operator discussed by Holland [1]. Inversion, a 
genetic operator with precedent in nature, is a structured 
yet randomized rearrangement of locus (string position). In 
this way, natural selection not only finds highly fit 
strings, it finds highly fit arrangements of the bits on the 
string. Implementation of this operator requires that we 
tag each gene with its logical position; physical position 
no longer is sufficient to specify function. While 
potentially important in complex problems, it has not been 
considered in this study. Instead, we go part way and 
permit a specified shuffling of parameter bits with a bit 
m a p . Before decoding each string, the bit map rearranges 
the physical string into the logical string which is viewed 
as a concatenation of parameter substrings. If no bit map 
is specified, the physical string and logical string are 
identical; the string is a simple concatenation of parameter 
substrings.

4.2 Constraints and Genetic Algorithms

Thus far, we have only discussed genetic algorithms for 
searching unconstrained fitness (objective) functions. 
Typical engineering problems often contain one or more
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constraints which must also be satisfied. In this section, 
we see how constraints may be incorporated in a genetic 
algorithm search.

Constraints are classified whether they are equality or 
inequality relations. Since equality constraints may be 
subsumed into the system model, we are only concerned with 
inequality constraints.

At first, it would appear that inequality constraints 
pose no particular problem. A genetic algorithm generates a 
sequence of parameter sets to be tested using the system 
model, objective function, and constraints. One simply runs 
the model, evaluates the objective function, and checks to 
see if any constraints are violated. If not, the parameter 
set is assigned the fitness corresponding to the objective 
function evaluation. If constraints are violated, the 
solution is infeasible and thus, has no fitness. This 
procedure is fine, except that many problems are highly 
constrained; finding a feasible point is almost as difficult 
as finding the best. As a result, we might want to rate 
infeasible solutions as well, perhaps degrading their 
fitness ranking in relation to the degree of constraint 
violation. This is what is done in penalty methods [59],

In a penalty method, a constrained problem in 
optimization is transformed to an unconstrained problem by 
associating a cost or penalty with constraint violations. 
This cost is included in the objective function evaluation. 
Consider the original constrained problem:
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minimize f(x)
subject to g i (x)^0 i=1,2,...,n

where x is an m vector
We transform this to the unconstrained form:

minimize f (x) +r=* £ ^ ( g ^ x ) )  i = 1,2,...,n
where - penalty function

r - scaling coefficient
A number of alternatives exist for the form of the penalty
function 4>. In this study, we simply square the violation

2of the constraint: <j>(ĝ  (x) )=g^ (x) for all violated 
constraints i. Under certain conditions, the unconstrained 
solution converges to the constrained solution as the 
scaling coefficient r approaches infinity [59]. As a 
practical matter, r values are sized for each type of 
constraint so that moderate violations of the constraints 
yield a penalty which is a significant percentage of some 
nominal operating cost. This sizing procedure is discussed 
in more detail for each problem.

Suggestions exist to provide an increasing sequence of 
penalty coefficients during the optimization process [59].
At first, when many of the trials are infeasible, useful 
payoff information is obtained. As the solution progresses, 
higher and higher penalties are enforced, driving the 
solution to the actual optimum. This idea has much merit; 
it is not adopted here because it introduces more • 
parameters, complicates the process, and shifts our 
attention from the real concern, the use and workings of
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genetic algorithms.

4.3 Fitness Mapping

In many cases, optimization studies are naturally 

formulated as minimization problems. The genetic algorithm 
depends upon maximizing a fitness function, the non
negative, increasing figure of merit discussed earlier. As 
a result, we sometimes must find a way to transform a 
minimization problem to a non-negative maximization problem.

In normal optimization practice, we can transform 
minimization to maximization or vice versa by multiplying 
the objective function by a -1. With genetic optimization 
we must also satisfy the non-negativity requirement. One 
way to do this is with the following simple mapping 
relationship:

u (x ) = CmaX'9(x) 9<x><Cmax
0 3(x)2Cmax

where C - nominal maximum costIua X
u(x) - fitness function
g(x) - cost function

This is the method adopted throughout this study. In the
current implementation, Cmax is specified by the user; it
could have been selected automatically as the highest value
of g(x) calculated thus far; however, this has not been done
to keep the run comparisons meaningful.

There are other alternatives for this mapping function.
Consider the following rational function:
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u(x) = C 1 / (C2 + g (x ))
Clearly, as g(x) goes to infinity, u(x) goes to zero as 
desired. and C 2 may be selected to scale u(x) 
appropriately. This function may be particularly useful for 
functions with a wide range of values.

4.4 Setting Genetic Algorithm Parameters
Genetic algorithms have a number of parameters which

must be selected: population size N, crossover probability
p 1 and mutation probability pm . The effect of these
parameters upon genetic algorithm performance has been 
investigated extensively by De Jong [53]. He has performed 
parametric studies of the basic genetic algorithm over a set 
of five test functions. These results point in several 
directions:

-Crossover probability should be high to obtain maximum 
search of new samples

-Mutation probability should be low to prevent 
destruction of well-adapted schemata.

-Population size should be moderate to avoid problems
of genetic drift while encouraging rapid improvement
and avoiding the inertia of large numbers.

In this spirit, the following values have been chosen for
these parameters:

’In the previous chapter, we assumed a crossover 
probability of 1. It is a simple extension to determine 
whether an individual string is to be mated and crossed via 
random choice. This process introduces the crossover 
probability as a parameter.
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Population size = 50
Probability of Crossover = 1.0
Probability of Mutation = 0.001
Parameter selection can have an effect upon performance 

of the genetic algorithm. De Jong's work accounts for the 
contributing factors, backing up his conjecture with both 
intuitive and mathematical reasoning. In the present study, 
we, too, could search for optimal parameter settings, but 
this would counter our real objectives. We are interested 
in how well the method works when we haven’t twiddled with 
parameters and fine tuned results. This is a better measure 
of the practical performance we might expect when applying 
the method in other problem domains.

4.5 Steady State Serial Line Problem
One important problem of pipeline control is the long 

term optimisation problem. If demand remains steady for a 
long period of time, how do we supply and compress gas to 
minimize transportation cost, yet still meet delivery and 
safety constraints? This is a static problem because the 
flow is assumed constant for a long period. In actuality, 
the strict conditions of long term optimization are never 

met in practice: small fluctuations from steady conditions 
always exist. Nonetheless, for many pipeline systems, 
particularly long transmission systems, the approximation is 

a good and useful one because lines are set up and operated 
to give relatively, if not perfectly, steady operation.

In this section, we study the long term optimization of
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a serial pipe-compressor system using a genetic algorithm. 
The serial configuration is of practical importance because 
it is so commonly used in transmission practice. This 
configuration has also been studied using other optimization 

methods. As a result, we are able to identify optimal 
results independently and compare performance. In the 
remainder, we define the problem, the system model, 
objective function, and constraints; we also discuss 
important implementation detail and present results of 
genetic algorithm trials.

Modeling Equations and Control Parameters
The problem we study here has also been solved by other 

methods. Wong and Larson [29] originally formulated and 
solved the problem using dynamic programming. More 
recently, Edgar, et. al. [37], have solved the same problem 
using a gradient procedure. As a point of comparison, we 
adopt the notation and problem formulation of Wong and 
Larson.

A schematic of the line configuration is presented in 
Figure 4-1. We envision a serial system with an alternating 
sequence of compressors and pipelines. A fixed pressure 
source exists at the inlet; gas is delivered at line 
pressure to the terminus. Along the way, compressors are 
used to boost pressure with fuel for the compressors taken 
from the line. To model this system we consider the system 
equations for pipe flow and compression.

Steady state pipe flow of natural gas is well studied.
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Assuming isothermal conditions and a level pipeline, the
difference of the squares of the absolute pressures (AP ) is
proportional to the standard volumetric flow2 rate squared.
The pressure-flow relationship may be stated as follows:

PD? - PSi + ̂ = K.«Q? i= 1,2 , . . . ,N
where PD. - discharge pressure of the ith

compressor (psia)
PS* - suction pressure of the ith 

compressor (psia)
Q. - standard flow of gas ith pipe (MMCFD)

Wong and Larson identify this as the Weymouth equation;

actually, it represents any number of equations of the form 
2 2AP.=K.»Q. with the proper choice of the K, . Generallyl x l  1

speaking, the constant of proportionality depends upon 
friction, temperature, pipe diameter, pipe length, as well 

as dimensional constants and standard conditions. In this 
study, we assume these constants are given for each line 
segment.

The pressure-flow relationship for a compressor may be
obtained by considering the adiabatic compression of an
ideal gas. The resulting equation is of the following form:

HP./Qj = A^tPDj/PS. )R i-Bi
where HP. - Power required for ith

compressor (horsepower)
Q i - Flow rate (MMCFD)
A^,B.,R. - Compressor Constants for

ith compressor
The coefficients A ^ , B^ and Rj may be selected to match

2In natural gas practice, it is common to measure gas 
quantities as a standard volume, the volume of gas occupied 
by a certain mass expressed at some reference pressure and 
temperature (standard conditions).
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either theoretical considerations or the performance of an 
actual unit; the latter is preferred in practice. The power 
consumption HP^ is often regarded as the primary control 
parameter. In Wong and Larson [29], an auxiliary control 
relationship and variable is introduced; power is calculated 
as a side computation. For consistency we follow their
procedure and introduce the set of control parameters

2 2U^=PD.“PS^. This parameter, the difference of the squared 
discharge and suction pressures, is computationally 
convenient; it does not correspond to usual gas operations 
practice. Dispatchers usually watch power, compression 
ratio or simply suction and discharge pressure to control 
and monitor a line. In a numerical procedure this choice is 
somewhat arbitrary, however.

In natural gas systems, the flowing fluid often 
provides fuel for the compression equipment. To express 
this fact, a fuel removal factor describes the reduction in 
flow rate experienced downstream through the following 
relationship;

Q. = (1-r.)*Q- .l  v i - 1

where r^ - fuel removal factor at the ith station 
The fuel used is related to detailed compressor settings.
For simplicity the r^ are specified as input constants.

Objective Function and Constraints

The objective for this problem is to minimize the total 
power consumption. We state this succinctly in the 
following relation;
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minimize (£ HP^)
Keep in mind that this objective function is only one of

factors in gas transmission objectives is found in Ade's 
work [31].

This minimization proceeds subject to a number of 
constraints. The pipelines are not permitted to carry gas 
at high pressures for safety reasons. Furthermore, there is 
usually a required minimal pressure because of contract 
requirements. Together, these constraints may be written as 
follows:

Additionally, constraints are placed upon the pressure 
ratio, the ratio of discharge pressure to suction pressure, 
at each of the compressors. These correspond to physical 
constraints of power available and prudent operation. We 
represent them by the following set of relations:

The lower bound corresponds to no compression, while the 
upper bound values are the physical constraints for each 
compressor unit.

Computational Considerations
The steady state system model, objective function, and 

constraints have been posed. We proceed to solution of the 
problem by putting forth numerical parameters and clearing 

some of the final details of discretization and constraint

many alternatives, A more complete discussion of other

max
£ PD. s P i

max

1 < PDi/PSi £ S i
max
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representation.
The particular problem we solve is the 10 compressor,

10 pipe problem of Wong and Larson [29]. Numerical
parameters are presented in Table 4-1. The pipe segments
are fairly uniform except for numbers 3 and 9 which are
about twice as long as the average pipe. The compressors
are roughly equivalent except for units 4, 6, and 7. Unit 4
has a pressure ratio limit of 1.3 due to its more limited
capacity, while unit 7 has a better-rhan-average pressure
ratio limit of 1.75 due to its additional capacity. All the
units are equally efficient except for number 6 which is two
thirds as efficient as the others. We might expect a lower
utilization of this unit compared to the others.

To perform the optimization, each string must decode to
a set of control parameters. For this problem, the string
decodes to a set of 10 U. values (AP across the compressor
station). As indicated previously, we use a mapped fixed
point coding. Each parameter is treated as a j bit integer
which maps linearly to the interval [Um . ,Um ]. For thisJ m i n ' max
problem, we select a discretization of j=4 bits.
Additionally, we must select the bounds for U • and Ummin max
The natural lower bound corresponds to a compressor at rest,
PD^=PS.; or Um ^n=0. The upper bound corresponds to the
maximum possible difference:

Umax = max{Pi }2 " min{pi . }2 , max 0 min
= 100(T - 500 = 7 . 5(10)

The resulting precision it of this coding is easily
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Table 4-1
Numerical Parameters 
Steady Serial Problem

Pipe/
Compressor

i

Pipeline
Coefficients

Compressor
Coefficients

Constraints

K.l R.l A.l B.i r . i P. .lmin P.imax s.imax

1 0.800 0.217 215.8 213.9 0.005 500.0 1000.0 1.6
2 0.922 0.217 215.8 213.9 0.005 500.0 1000.0 1.6
3 1.870 0.217 215.8 213.9 0.005 500.0 1000.0 1.5
4 0.894 0.217 215.8 213.9 0.005 500.0 1000.0 1.3
5 0.917 0.217 215.8 213.9 0.005 500.0 900,0 1.6

6 0.989 0.217 323.7 320.8 0.005 500.0 1000.0 1.6
7 0.964 0.217 215.8 213.9 0.005 500.0 900.0 1.75
8 1.030 0.217 215.8 213.9 0.005 500.0 1000.0 1.5
9 1.950 0.217 215.8 2.13.9 0.005 500.0 1000.0 1.6

10 1.040 0.217 215.8 213.9 0.005 500.0 1000.0 1.6
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calculated:

» - <°max -’’.i.'/l2'-'1 * 5(1»4)
This precision in the control variable translates to an
average precision in pressure of 34 psi over the range
500-1000 psia. This level of precision proves adequate for
engineering purposes? additional precision may be obtained
by lengthening the parameter substrings. We must also
decide how to form the full string from the parameter
substrings. In this study, the full string is obtained with
normal bit map; the resultant is a string of length 4 » 10=40,
the concatenation of 10, four bit substrings. With j, Um i p ,
Um=v' an<3 bit map selected, we may create a population of
binary strings and interpret the strings as values. For

example, with j=4, um in=0, Umax = 7 * ^ ' anc* normal bit map
the string 1000 0011 0111 0110 1111 0000 1100 1000 1110 0110
(low to high=right to left, spaces added for readability)
translates to the set of Uj values (30000, 70000, 40000,
60000, 0, 75000, 30000, 35000, 15000, 40000) (low to
high=left to right).

Constraints have been specified on both minimum and 
maximum pressures as well as compression ratio. As 
previously indicated, these constraints are adjoined to the 
problem with a penalty method. A cost is added to the 
unconstrained objective (total horsepower) proportional to 
the square of the constraint violations. Table 4-2 displays 
.values of penalty coefficient adopted in this study. These 
coefficients have been sized to penalize a nominal violation
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on each of the compressors by about 10% of a nominal 
operating cost.

. Table 4-2
Penalty Coefficients 
Steady Serial Problem

Constraint Type Penalty Coefficient Nominal Violation

maximum pressure 10 5 psia
minimum pressure 1 °6. 5 psia
pressure ratio 1(10b ) 0.02

With objective function, discretization, and 
constraints in place, we are almost ready to perform the 
genetic optimization. One final computational detail must 
be explored. Since we have formulated the problem as a 
minimization we transform the objective function to a 
fitness function with the transformation described 
previously:

u(x) = Snax ■ 9 <x)
For this problem, the maximum of g is very large; however,
we choose Cmax= 1(106 ). This permits adequate admission of
infeasible solutions, while maintaining a reasonably
competitive range.

Results of Computation

The model, objective function, constraints, and genetic 
algorithm have been programmed as described. In this 
section, we examine results from independent trials and
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compare to published results.
To initiate simulation, starting populations (N=50) are 

chosen at random. For each trial, the genetic algorithm is 
run to generation 60. This represents a total of 50*61=3050 
function evaluations per trial. This may seem like a large 
number of function evaluations until we consider the size of 
space being searched. Recall that the binary strings are of 
length 1=40. This represents a total of 24 ^=1.1(101^) 
possible different alternatives in the search space. In 

this light, 3050 function evaluations is a miniscule 
fraction, 0.00000028%, of the possible unique alternatives. 
To put this performance in perspective, if we were to search 
this efficiently for the best person among the world’s 4.5 
billion inhabitants, we would only examine 13 people before 
making our selection.

The results of three independent trials— using 
different starting points for the pseudo-random number 
generator— are displayed in Figure 4-2. This figure shows 
the cost of the best string of each generation as the 
solution proceeds. At first, performance is poor. By the 
action of selection, mating, and crossover, better and 
better strings are formed. In all three cases, near-optimal 
results are obtained by generation 20 (1050 function 
evaluations). Careful examination of the best-of-run 
results is instructive. ■ Table 4-3 shows the cost breakdown 
for the best of each run. It is comforting to see that 
three independent simulations consistently give near-optimal
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results. In all cases, power cost alone is very near- 
optimal, with most of the excursion incurred as penalty.
This is the result of small constraint violations caused by 
the fairly crude degree of pressure control (=34 psi).

Another useful performance measure is displayed in 
Figure 4-3, the population average performance. At first, 
most of the population is infeasible; as a result., the 
average is near the arbitrary specified maximum cost of 
1(10^). For a time, improvement comes easily. During early 
and middle stages, the creative notion exchange brings vast, 
rapid improvement. After awhile, the population enters a 
stagnation period. An examination of the individual strings 
at this point shows substantial convergence at most bit 
positions. This fact is also reflected in the closeness of 
the population average and the maximum value by comparing 
Figures 4-2 and 4-3 during later generations. We may wonder 
why the solution exhibits a form of convergence which does 
not contain-the global optimum. There are three reasons 
which have been identified for this behavior: discretization 
and constraint handling, genetic drift, and genetic 
algorithm hard problems. We will examine these reasons and 
their solutions near the end of the chapter.

In Figure 4-4 we compare the optimal pressure profile 
(solid line) to the best of run SS.1 (triangles). First, we 
note that the optimal solution is highly constrained. Six 
pressures rest at a maximum or minimum pressure constraint. 
Figure 4-5 shows the situation in run SS.1 for the
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Table 4-3
Best-of-Run Results 

Steady Serial Problem

Run Least Cost 
of Run

%
Power Cost Difference 

from Optimal
%

Penalty of 
Cost Optimal

SS. 1 1.380 1. 148 +1.1 0.232 20.4
SS.2 1.310 1.187 -4.6 0.123 10.8
SS.3 1.400 1.057 -6.9 0.343 30.2
Mean 1.363 1.131 0.233 20.5

Optimum 1.135 1.135 0 0 0

C
NOTES: 1) All costs are in units of 10 horsepower.

compression ratio. In the optimal results, 4 compressors 
rest at maximum compression ratio. In all, 10 points are 
constrained. This results naturally from the 
characteristics of compressible flow. In a pipe carrying an 
isothermal compressible fluid, friction gradient decreases 
with increasing pressure. Furthermore, for a given flow, 
compression power required is a sub-linear function of 
compression ratio. As a result, other things being equal, 
it is desirable to run at the highest pressures and 
compression ratios while just satisfying delivery pressure 
requirements. The optimal solution reflects this expected 
behavior well. The only pressures not dictated by 
constraint are discharge pressures at station 6 and 10. 
Station 10 is set to just satisfy the outlet pressure after
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accounting for losses through the last pipe. Compressor 6 
is not fully utilized because of its low efficiency.
Recall, that compressor 6 is two thirds as efficient as the 
other units. As a result, it is advantageous to use more 
economical compression in its place.

The genetic algorithm solution also reflects these 
basic principles. Run SS.1 agrees well with the optimal 
solution except at compressors 1, 4, 6 and 8. Over 
compression occurs, at compressors 1 and 4 with attendant 
under compression at 6 and 8. The under compression at 6 is 
in line with the low efficiency of that unit. The over 
compression at units 1 and 4 is consistent with the 
principle of elevated pressure; however, these excursions 
are less than optimal because of pressure ratio constraint 
violation; The under utilisation at unit 8 is not explained 
by any means; somewhere along the way this set up was 
advantageous in the context of other existing substrings.

4.6 Single Line Transient Problem
Another important area of application for optimization 

is in time-varying flow problems. On many gas transmission 
lines the assumptions of steady flow are hardly, if ever, 
met. In these situations, it is important to model the 
dynamics of pipeline flow in addition to the friction losses 
that play the predominant role in steady flow. In this 
section, a problem in transient flow on a single gas 

pipeline is studied to further illustrate the use of the 
genetic algorithm. Results are presented and compared to
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solutions available in the literature.
The situation we study is illustrated in a schematic 

diagram, Figure 4-6. A known demand schedule is required at 
the delivery end of a single gas pipeline of known dimension 
and characteristics. The supply flow may be adjusted within 
limits to meet demand. This is done while minimizing the 
cost of compression subject to minimum and maximum pressure 

constraints.
This problem has been well studied by other authors 

using more traditional methods of optimization. These 
methods were briefly reviewed in Chapter 2. In this 
section, we again follow the work of Wong and Larson; 
however, we only adopt their problem specification this 
time; newer, more appropriate modeling techniques are used 
in this study.

Modeling Equations and Control Parameters
As with the steady state problem, it is conventional to 

consider models for each piece of equipment and link them 
together. In the following, we consider a single pipe with 
specified flow boundaries and a compressor at the upstream 
end.

Dynamic pipeline models have been extensively studied 
and tested. In this study, simplified, one-dimensional 
partial differential equations of mass and momentum 
conservation are written and solved using the method of 
characteristics transformation and a second order finite 
difference approximation. This model is well established
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and has been used by numerous natural gas companies in 
operations and design.

As in the steady state case, flow is assumed to be
isothermal and all pipes have level profile. These
restrictions may easily be lifted; they have been adopted to
keep the equation set as simple as possible and still
maintain a realistic simulation. The simplified momentum
equation may be written as follows:

1  12 + 3v + f»v|v| = 0 
p 3x 3t  2^6 u

where p - pressure
p - mass density 
v - average velocity 
d - pipe diameter
f - friction factor (dimensionless) 
x - distance along pipe 
t - time

A simplified continuity equation may be written:

M  + Ifi = o ax at u

where x,t,p - as before
m - mass flux (mass rate per unit area)

The equation set is completed by recognizing an 
appropriate equation of state, as well as a relationship 
between average velocity and mass flux: 

p = pRT
where p,p - as before

T - temperature (absolute scale)
R - gas constant

m = p • v
where p,v,m - as before 

Eliminating variables among the four equations we obtain the 
following two relationships:
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2c _3£ + 8m , f«mjm| _ n
3x 3t 2»d'p
3m + 3p _ Q 
3x 3t

where m, p, x, t - as before 2
c - isothermal wave speed ( c =RT )

Together with appropriate initial and boundary conditions,
these equations provide sufficient information to calculate
density and mass flux over the entire pipeline for all time.
Initial conditions appropriate to this problem may be
written as follows:

p(x,0) = f(x)
m(x,0) = g(x)

where f, g - specified functions of x
It is quite common to assume steady initial conditions; this
has been done in this study. To complete the problem
specification, we specify mass flux boundary conditions at
both pipe ends:

m(0,t) = h(t) 
m(L,t) = i (t )

where i, h - specified functions of time 
L - length of pipe

For this problem, the downstream boundary represents a
specified user demand. The upstream boundary is the main

control variable. We are attempting to vary flow to obtain
optimal (least energy) results.

To solve the equations, we transform the partial
differential equations to ordinary differential equations
using the method of characteristics. The resulting
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equations are solved numerically on a fixed space-time grid. 
The method of characteristics may be motivated in a number 
of ways [19]. Consider multiplying our reduced continuity 
equation by an unknown multiplier X and adding the product 
to the reduced momentum equation:

A similar expression is available for the density. In the 
combined expression, we recognize the form of the total 
derivatives and can rewrite it if we are willing to restrict 
the direction of integration. This process results in the 
following four differential equations:

These four ordinary differential equations may be 
conveniently solved using a second order finite difference 
approximation. The detail of this formulation is presented 
elsewhere [19] and is not covered here.

The resulting procedure may be thought of as a black 
box where time-varying upstream and downstream flow are 

specified and upstream and downstream density (pressure) may 
be calculated as time goes on.

We also require a relationship for calculating power

OXf c^ao . 1 . xam . am + f «m|mI = nL x ax at J ax at 2dp u
We recognize from the calculus the form of a total
derivative:

dx _ +c
3t = ~
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consumption in the upstream compressor. The relationship 
developed in a previous section for steady flow is also used 
to calculate power use in transient flow. Dynamic effects 
in compressors are small compared to the inertia and storage 
capacity of even modest length transmission lines; such 
effects are usually and presently ignored. The time 
integral of power consumption (energy) is calculated using a 
trapezoidal rule approximation, a second order procedure.

Objectives and Constraints
As before we want to deliver the demand flow at minimum

total power while satisfying pressure constraints. The
objective must now be stated as an integral because the
problem is now time dependent;

minimize HP(t)*dt
This minimization is subject to minimum and maximum pressure
requirements;

p • ^ d  (x , t ) SlDpm m  ^ ' ^max
With system model, constraints, and objective function 
specified, we consider the computational details in 
preparation for solution.

Computational Considerations
The computational detail of our particular solution is 

now presented. Specifically, we examine numerical 

parameters, discretization, and constraint handling. The 
particular problem we solve has been presented by Wong and 
Larson [29]. Their pipeline parameters were selected from
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field studies presented originally by Wilkinson, et 
al. [23]. The pipeline characteristics and compressor 
coefficients are presented in Table 4-4.

Table 4-4
Pipeline and Compressor Coefficients 

Single Line Transient Problem

Pipeline Parameters

Length •• 15.95 miles
Inside Diameter •• 1.63 feet

Gas Molecular Weight •• 20.30 (S.G.=0.7)
Friction Factor •• 0.01028

Temperature •• 53.0.7° R

Compressor Parameters

A Coefficient : 215.8 horsepower/MMCFD
B Coefficient : 213.9 horsepower/MMCFD

R exponent : 0.217
Constraints

Minimum Pressure : 450 psia
Maximum Pressure ; None specified 

Maximum Pressure Ratio : None specified

Unlike the steady state problem, we now have a time 
dependent problem; we must find the input flow function 
which minimizes accumulated horsepower. To solve by genetic 
algorithm, we first reduce to a finite number of parameters
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by time discretization and then code and discretize each 
parameter to a suitable precision. Time discretization is 
accomplished over m equidistant intervals using linear 
interpolation between the m+1 parameters associated with 
each of the interval endpoints. For the particular problem, 
10 minute intervals are chosen resulting in 15 parameters 

over a 140 minute simulation. Each parameter is represented 
by the mapped fixed point coding discussed previously. For 
this problem, we choose a 3 bit representation over the 
interval, tQ__v ,Qm - ] = [100, 170] MMCFD3. This results in auioa lit in
precision it equal to | 170-1 00 |/(2^-1 )= 10 MMCFD. The 
string representation of the time series is the 
concatenation of the fixed point parameters (normal bit map) 
resulting in a string of length 1=3*15=45.

Constraints are once again adjoined to the problem via 
penalty cost. As before, the cost is taken proportional to 
the square of the violation; however, because the problem is 
time dependent, we must integrate the violation over the 

simulation. For the constraints, this is done with a 
rectangular rule integration, a first order procedure. The 
penalty coefficient has been sized to permit a nominal 5 psi 
violation over 50% of the simulation. The penalty 
coefficient in psi and average horsepower units is 4822.

This coefficient yields a nominal average horsepower cost of

^Although the equations are in mass flux form, we 
still express the rates as a volumetric mass flux. To 
convert one to the other, we use the relation, m=p »Q /A 
where A is the pipe cross-sectional area and the subscripts 
indicates a quantity expressed at standard conditions.
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25.
The minimization is transformed to maximization with 

the same kind of mapping used in the steady state case. The
total cost is subtracted from a nominal maximum cost of
5000. The fitness is the greater of the calculated 
difference or zero. The cost in these runs is interpreted
as an average power consumption. The accumulated power
(energy) is time normalized resulting in an average power 
consumption over the simulation.

Results of Computation
In this section, we examine the results of two 

independent trials of the genetic algorithm on the transient 
problem. The model, objectives, and constraints have been 
programmed and interfaced to the same genetic algorithm used 
in the steady state problem. Identical parameters have been 
used for the population size, mutation and crossover 
probabilities:

population size = 50

^crossover ~
^mutation “ ^*^01
Once again, the genetic algorithm finds improvement in 

a workmanlike manner. Figure 4-7 shows the best-of- 
generation results. Both trials are started from random 

populations and run to generation 60 resulting in a total of 
3050 function evaluations. Improvement is steady, although 
less dramatic than that obtained in the previous case. This 
is because the interval of control variable (input flow) has
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been more carefully selected. As a result, highly 
infeasible solutions are difficult to come by. This is in 
stark contrast to the steady state formulation where much of 
the parameter space was highly infeasible.

Table 4-5 shows a cost breakdown on the best of the two 
runs in comparison with the optimal solution. In both 
cases, results are near-optimal. Unpenalized power is very 
near-optimal, and the penalties themselves are a small 
percentage of the optimal average power.

The generation average results are presented in Figure 
4-8. Population average lags the best as expected. Near 
the end of the run, examination of the strings shows 
convergence at most bit positions. This is also reflected 
in the closeness of the population average and best results.

Examination of a sample solution is also instructive. 
Wong and Larson found that the optimal results were obtained 
by just maintaining the minimum pressure at the downstream 
point at all times. The genetic algorithm, best-of-run TR.1 
results follow this same trend quite closely. Figure 4-9 
shows the delivery point pressure with time for run 
T R . 1. The pressure remains near 450 psia except for small 
excursions in the middle and end of the run. The input flow 
time history selected by the genetic algorithm results is 
shown in Figure 4-10. Wong and Larson's results show a 
similar flow hump mid-run although the results are not 
directly comparable because the pipeline models are 
different. The dashed line shows the specified output flow
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Table 4-5
Best-Of-Run Results - Single Line Transient Problem

Run
Cost 

Avg. HP
Power
Only

%A
Optimal Penalty

% of 
Optimal

tr. 1 2107 2077. +2.4 30 1.5
tr.2 2107 2001 -1.3 106 5.2
average 2107 2039 68 3.4

optimal 2028 2028

time history.

4.7 Good News and Bad News
As the old story goes, we have some good news and some 

bad news. The good news is that genetic algorithms have 
demonstrated their efficacy as improvement finding 
algorithms in two separate practical engineering 
optimization problems. The bad news is that absolute 
convergence to the best is not guaranteed. In this section, 
we take a closer look at the reasons for the "bad news" and 
some possible solutions within the genetic algorithm 
context. We also take a look at the "good news": the 
genetic algorithms simplicity and power.

Suboptima1 Performance and Premature Convergence
In both the steady state and transient problem, an 

interesting thing has been observed: near-optimal results 
are easily obtained, while further improvement is difficult.
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Furthermore, examination of the strings contained in the 
population toward the end of the run shows substantial 
convergence at all bit positions. Both suboptimal 
performance and premature convergence have been observed 
previously by other authors [49,53]. We examine three 
contributing factors to account for this behavior: 
discretization and constraints, genetic drift and genetic 
algorithm hardness.

One reason the genetic algorithm results cannot match 
the continuous optimum is because we are not solving the 
same problem. Discretization of the parameter space and 
introduction of penalty functions transform the original 
problem so the actual optimum is unattainable.
Discretization implies that we are only examining a finite 
number of points in the continuous parameter space; it is 
unlikely (an event with zero probability) that the discrete 
optimum matches the continuous optimum. Furthermore, the 
introduction of a penalty method with finite penalty 
coefficients also modifies the problem. Only as the penalty 
coefficients go to infinity can we hope to be solving the 
same problem. While discretization and penalties may 
account for suboptimal performance, neither of these 
problems is totally responsible for the premature 
convergence we have observed. Additionally, both 

discretization and penalty selection may be controlled by 
the user to get as close as is necessary and practical to 

the original constrained problem. Therefore, we must turn

R e p ro d u c e d  with p e rm iss ion  of th e  copyright ow ner.  F u r th e r  rep roduction  prohibited w ithout pe rm iss ion .



99

to more fundamental explanations of genetic algorithm 
behavior to explain the phenomenon of premature convergence.

Premature convergence to suboptimal results has been 
observed in empirical studies by both Cavicchio [49] and De 
Jong [53]. De Jong likened the primary cause of this 
behavior with a natural genetic phenomenon called genetic 
drift. In small populations, the difference between the 
expected number of offspring and the actual realization can 
cause the population to drift away from the desired path.
We see this more clearly if we again look at our 
reproductive plan in some detail.

We recall that in reproduction the number of copies is 
proportional to the normalized fitness u/u. This rate of 
sampling has been identified as a near-optimal, realizable 
strategy. In actual implementations, we must reconcile the 
fractional nature of the quotient, u/u, with the need for an 
integer number of offspring. In this study, we have used a 
probabilistic rounding, where the population count is 
rounded up with a biased coin toss, using the fractional 
part as the bias. This procedure is simple and gives the 
correct expected number of offspring when large populations 
are involved. Furthermore, the method adopted here is an 
improvement over earlier methods which selected N 
reproduction candidates from the population at large using 
the selection probabilities p-/Zp? nonetheless, the biased 
flip of a coin is-a high variance process. As a result, 
excursions from the expected and near-optimal sampling rate
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are commonplace. It is this difference that largely permits 
the drift toward premature, suboptimal convergence.

The idea of reducing the variance can and has been 
extended further. One particularly interesting approach 
treats the fractional part of the fitness like an interest 
payment. The interest is compounded over a number of 
generations until it compounds to create another individual. 
While not adopted in this study, this variance reduction 
method provides a way of reducing the effects of premature 
convergence due to genetic drift.

While genetic drift is a primary ingredient in 
premature convergence, there is another important reason why 
the simple genetic algorithm may converge to suboptimal 
results: the problem may be genetic algorithm hard (GA- 
H a r d ) . A recent study by Bethke [54] has rigorously 
explored whether or not a problem is difficult for the 
simple, three rule genetic algorithm. In a previous 
section, we saw how the genetic algorithm depends upon the 
assembly of short building blocks. Crossover permits near- 
optimal sampling of short schemata, but effectively destroys 
longer ones. As a result, in problems where short building 
blocks do not correctly predict the optimum, we may 
naturally get convergence to suboptimal points. Although 
Bethke has developed an approach for determining GA-Hard 
problems by identifying schema average fitnesses with a 

Walsh function analysis, the approach is cumbersome for 
problems without simple analytical description. In
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generalizing his investigation he has suggested that these 
GA-Hard problems tend to have well-isolated optima: this 
conclusion is limited to single parameter problems using a 
normal fixed point coding.

In the large, there is little evidence that either of 
the problems we have solved are GA-Hard. Short schemata 
building blocks have re]iably led to near-optimal portions 
of the.space. In the neighborhood of the optimum, the 
problems may be partially difficult for the genetic 
algorithm. In both problems, the parameter cost surface is 
relatively flat near the optimum. This, together with an 
interaction of the penalized constraints and relatively 
crude discretization create the opportunity for irregular 
multi-modality. This kind of irregularity may be difficult 
for the genetic algorithm to exploit, however, we must 
consider it to be a secondary effect when compared to the 
problem of genetic drift.

The primary method of improving genetic algorithm 
performance on GA-Hard problems is to seek a reordering of 
bit positions which more naturally permits short building 
blocks to lead to the optimum. Parameter interleaving or 
specified bit maps as described previously are one 

possibility for this. The more general solution is to 
incorporate the inversion operator [ANAS Ch. 6], This may 
be necessary in tackling tougher problems with longer string 
representations.

Other methods may be useful for improving convergence.

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



102

Bethke [54] has suggested hybrid techniques where a genetic 
algorithm is used to define potentially important areas of a 
space and a gradient searcher is used to converge to some 
localized peak. This idea is attractive as it combines the 
global perspective of the genetic procedure with the 
convergence characteristics of calculus-based schemes. We 
might also consider a hybrid scheme where instead of 
reverting to the original parameter space for the gradient 
search, we consider the 1 bit string representation as an 1 
dimensional parameter space. In this 1-space, single bit 
changes are analogous to numerical evaluation of 
derivatives. Numerous strategies may then be used to combine 
promising single bit changes into potentially promising 
multiple bit moves. This procedure is, thus, analogous to a 
gradient search in the 1-space.

Genetic Algorithm Strengths
In trying to portray an accurate picture of genetic 

algorithm performance we have investigated a number of 
genetic algorithm difficulties. Methods have been suggested 

to answer each of these within the spirit of the genetic 
algorithm methodology. In focusing upon problems, it is 
possible to forget the strengths of the genetic algorithm 
approach. This would be a mistake, as the method's 
strengths are manifold.

First on the strength side of the score sheet is 
simplicity. Genetic algorithms are elegantly simple in 
operation and application. String copying, substring
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swapping, and random number generation are the only 

essential operations required. Application to different 
problem domains is exceedingly straightforward as we have 
shown. In the present study, the genetic algorithm and 
decoding routines for both the steady and transient problems 
are identical; only the system model, objectives, and 
constraints have been changed. This simplicity of 
application results in a clean interface between optimizer 
and model. The usual genetic algorithm interface involves 
passing a string down to the model and a fitness back up to 
the genetic algorithm. This simple interface encourages 
clean, modular programming; extant modules may be used with 
little or no modification to either model or optimizer.
This is in stark contrast to many optimization methods. 
Dynamic programming and other clever enumerative schemes, 
for example, depend upon an unholy mixture of model and 
improvement algorithm to effect a solution. Calculus-based 
methods also involve a more complex interaction because at 
the very least, derivative information is necessary for the 
improvement algorithm.

The clean interface issue is not simply one of elegance 

in programming; it also determines where the methods may be 
applied. For example, dynamic programming and calculus- 
based methods are generally inappropriate in situations 
where no model exists as in the direct control of a 
prototype system. Genetic algorithms have no such 

restrictions because they only require payoff information.
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While simple, genetic algorithms are powerful in their
quest for improvement. In this study, two problems with

12 13large problem domains (10 -10 alternatives) have been
solved using the simple reproduction, crossover, mutation 
procedure. In all cases, near-optimal results have been 
obtained in a relatively small number of function 
evaluations. Furthermore, acceptable interim behavior is 
noted because of the rapid initial improvement phase in both 
cases. Genetic algorithms obtain acceptable performance 
quickly and fine tune performance at a more leisurely pace. 
This kind of behavior is desirable in practice. As we 
pointed out when we discussed the goals of optimization, 
finding the best is not usually important; reliably finding 
an acceptable solution is.

No small part of the genetic algorithm’s power derives 
from its global perspective. Genetic algorithms work from a 
database of diverse points. As a result, during the search, 
many hills are climbed simultaneously. This helps eliminate 
the myopia of typical algorithms which work from a single 
point.

Genetic algorithms are problem independent; they are 
truly a canonical search method. The present study has 

investigated two very different problems successfully with 
the same procedure. Previous studies have investigated 
genetic algorithms in a variety of domains: smooth and 

discontinuous, deterministic and noisy, unimodal and multi
modal. The combination of this breadth of performance and
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power of effect supports the claim that genetic algorithms 
are robust.

Last, in this study, we have demonstrated the intuitive 
appeal of genetic algorithms. The valuable notion exchange 
heuristic which underlies genetic algorithm performance is 
dramatically similar to human innovative thought. We make 
no claim that the simple genetic algorithm captures the full 
richness of human innovation; yet in its simplicity, it 
bears some strong resemblances. We note that this 
heuristic is largely an inductive procedure. Genetic 
algorithms by their nature, generalize from specific 
example; this is a breath of fresh air among other search 
algorithms which are methodically deductive.

4.8 Summary

In this chapter, we have applied the genetic algorithm 
approach to two practical problems in pipeline control: long 
term optimization of a serial system and transient optimal 
control of a single line. The applications have proven 
successful in independent trials on both problems: near- 
optimal results have been obtained using an infinitesimal 
sampling of the possible alternatives. Along the way, we 
have also addressed some practical issues in using genetic 
algorithms ,on engineering problems.

To apply genetic algorithms to practical problems, we 
concern ourselves with four things: discretization and 
coding, fitness mapping, constraints, and genetic algorithm 
parameters. Discretization may appear at two levels. In
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continuous control problems, the time or space continuum is 
reduced to a finite space by assuming some convenient 
functional form. For example, in the transient problem we 
consider piecewise linear interpolation of the control 
variable (mass flux) over equidistant time intervals. Once 
we have reduced to a finite number of parameters, we must 
discretize the individual parameters and combine them to 
form a complete string. In this study, all parameters have 
been coded in mapped, fixed point form. This type of coding 
gives uniform precision over a well-known interval. We also 
have discussed how shortened floating point codes and other 
exotica may be useful for other problems. In this study, 
strings have been formed in both problems by the simple 
concatenation of the individual parameters. The computer 
implementation allows for a specified bit map; however, this 
feature did not prove necessary as the performance has been 
deemed satisfactory.

Genetic algorithms are designed for unconstrained 
problems; to handle constraints we must transform a 
constrained problem to an unconstrained formulation with a 
penalty method. A cost is associated with constraint 
violation; in this study, the cost is proportional to the 
square of the constraint violations. . A sizing procedure has 
been developed for calculating reasonable penalty 
coefficients; coefficients are chosen so that nominal 
violations result in penalties which are a percentage, 
usually 10% of some nominal cost.
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Fitness mapping may be necessary depending upon the 
problem formulation. The normal genetic algorithm depends 
upon the maximization of some non-negative figure of merit, 
the fitness. In minimization problems, we must transform 
the as-formulated objective function to a proper fitness 
function form. In this study, we use a simple mapping 
function: we subtract the minimized objective function value 
from a specified constant and arbitrarily assign all 
negative values to zero.

While the parameters of the genetic algorithm affect 
its performance, nominal values of population size, 
crossover probability, and mutation probability have yielded 
acceptable engineering results. These parameters may be 
fine-tuned— or adapted automatically— to get peak 
performance; however, this should rarely be necessary for 
practical results.

The steady state and transient problems have been posed 
using the problem formulations of Wong and Larson [29]. In 
the steady problem, we seek the least power operation of a 
serial system of ten compressors and ten pipes. Maximum and 
minimum pressure and compression ratio constraints are 
specified. For this problem, the string is interpreted as 
the concatenation of 10-four b i t 'substring parameters. Each 

parameter is a mapped, fixed point code representing the 
control parameter U* (AP ) for each of the compressors. In 
three independent trials of the genetic algorithm with fixed 

genetic parameters, near-optimal performance is obtained.
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In all three cases, power cost alone is very near-optimal 
(<5%), while nominal pressure and compression ratio 
violations cause a total penalty violation cost ranging 
between 10 and 30 percent.

In the transient problem, with known demand time 
history, we seek the supply schedule which minimizes energy 
consumption, subject to maximum and minimum pressure 

constraints. To solve this via genetic algorithm, we first 
discretize the continuous control schedule into 14-ten 
minute intervals. A parameter is associated with each 
interval endpoint and the flow is assumed to vary linearly 
in between. The 15 parameter sequence is represented by the 
concatenation of 3 bit substrings using a mapped fixed point 
coding scheme. Two independent trials of the problem have 
been performed using the same genetic algorithm and 
parameters. In both cases, very near-optimal performance 
has been been determined. The energy-only cost is within 
2.5% of the optimal value, while the penalty cost adds less 
than 6% of the optimal value. Wong and Larson have found 
that the optimal solution is to just satisfy the minimum 
pressure constraint at the downstream end for the duration 
of the simulation. The genetic algorithm solutions follow 
this trend as well; close examination of one solution shows 
the pressure hugging the minimum pressure constraint of 450 
psia.

While it is- encouraging to consistently obtain near- 
.optimal performance, in both problems we note a form of
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convergence at most bit positions by the end of each run.
We have seen how discretization and penalty methods 
transform the original problem so we do not expect to obtain 
the continuous constrained optimum exactly; but, these 
effects do not adequately explain this premature 
convergence. Genetic drift has been identified as the 
primary cause of this problem. The difference between a 
string's expected reproduction rate and its actual 
realization may cause small populations to drift away from 
the proper course. Variance reduction methods have ‘been 
suggested to mitigate this problem.

Another cause of premature convergence is problem 
hardness (GA-hard problems). If short building blocks do 
not reliably predict the optimum, premature convergence may 
result. In the problems investigated here, there is little 
evidence of GA hardness. For problems which do display such 
difficulty, the inversion operator may be necessary. This 
operator attempts to find satisfactory re-orderings of bit 
positions so short building blocks predict improvement more 
reliably; thus far, inversion has not proved necessary for 
problems with modest string lengths (<50).

While we have noted these difficulties, we also have 
demonstrated some of the genetic algorithm's many strengths. 
Genetic algorithms are simple in operation and application. 
Yet, in their simplicity they have demonstrated great power 
to search complex spaces quickly. Furthermore, they appeal 
to our own sense of innovation. Unlike many optimization
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procedures, genetic algorithms are inductive, they 
generalize from specific instances. In a sense, the process 
is a more human-like search; it is bold and synergistic. It 
does not plod mechanically from point to point. Instead, it 
combines its best ideas to speculate on improved 
performance. As a result, genetic algorithms hold great 
promise, not only in traditional problems, but as the 
fundamental search mechanism in a learning system. In the 
next chapter, we explore this application.
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CHAPTER 5

A LEARNING CLASSIFIER SYSTEM

We started this study with the goal of designing, 
constructing, and testing broadly applicable algorithms for 
learning and decision making. In one sense, our study of 
optimization with genetic algorithms in the previous two 
chapters has been a digression from this goal because we 
know full well that optimization is too rigid a methodology 
to be trusted to control even fairly simple systems. In 
another sense, this work is germane to our goal because it 
has helped us examine the genetic algorithm's innovative 
flair for searching rapidly through arbitrary string spaces? 
they seem more human-like a search mechanism than others we 
commonly encounter. What then is the problem? Why can't we 
unleash this innovation in more complex, less completely 
defined environments? The problem lies not with the genetic 
algorithm, but rather, with the structures we choose to 
adapt.

In this chapter, we overcome this difficulty by 
changing the adapted structure. A learning system is 
described and tested based upon a population of string 

rules. The string rules use both environmental information
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and the current internal state to decide what to do and what 
to think next. A genetic algorithm generates new, possibly 
better, rules for inclusion in the population. In this way, 
the innovation of the GA is used to reprogram the system 
with better and better rules. At first we confine our 
attention to the origins of these rule systems, called 
learning classifier systems (LCS). We describe in broad 
terms the operation and structure of the LCS and then test 
its operation on a simpler problem domain than the ultimate 
pipeline control setup: one-dimensional control of a 
frictionless inertial object. By doing this, we can test 
the simple LCS without the complexities of a more 
sophisticated operating environment.

5.1 Learning Classifier Systems - Overview
A learning classifier system is an artificial system

that learns rules, called classifiers, to guide its
interaction in some specified environment. Learning
classifier systems are the latest outgrowth of Holland’s
continuing work on adaptive systems.

In 1962, when Holland outlined his theory of adaptive
systems [60], he developed a general theory encompassing

many systems but ultimately he was addressing himself toward
machines who could program themselves:

The study of adaptation involves the study of both the 
adaptive system and its environment. In general terms, 
it i s a  study of how systems can generate procedures 
enabling them to adjust efficiently to their 
environments. If adaptability is not to be arbitrarily 
restricted at the outset, the adapting system must be 
able to generate any method or procedure capable of an
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effective definition.
With this foundation, more concrete suggestions emerged 

for classes of schemata processors [61] which in some 
limited respects resemble the present day LCS. This work 
has evolved into the intricately interesting, but as yet 
unimplemented, broadcast language [1], The first practical 
implementation of a learning system based on these theories 
appeared in 1978. Holland and Reitman [62] describe this 
first Learning Classifier System which learns a simple maze 
running task. Though the task is simple, the achievement is 
remarkable because of its successful marriage of a rule- 
based knowledge system and a genetic algorithm for discovery 
of new rules. Holland [63,64] is continuing this work with 
construction of a user-tailored information retrieval 
system. Booker [65] has recently completed his study of an 
LCS-based artificial creature learning to survive in a two 
dimensional domain containing both food and noxious 
substances. His work goes to great length to tie the LCS 
and Holland Adaptive Systems Framework to current work in 
cognitive science. Wilson [66] is applying the LCS concept 
to visual pattern recognition. With this as historical 

background, we need to examine the elements of an LCS to see 
why it holds promise as an effective learner and decision 
maker.

A learning classifier system is composed of three main 
elements:
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1. Rule and Message System
2. Apportionment of Credit System
3. Genetic Algorithm

The rule and message system of an LCS is a special kind of 
production system. In computer science parlance, a 
production system is a computational schema -which uses ’r.ules?'. 
as its only algorithmic device. Although there is a wide 
variety of syntax among production systems, the rules are 
generally of the following form:

if <ccndition> then <action>
Semantically, the action’ is taken if the given condition is 
satisfied.

At first blush, the restriction to such a simple device 
for the representation of knowledge might seem too 
constraining. Yet, it has been shown that production 
systems are computationally complete [67-69]. Their power 
in representing knowledge involves more than this. They are 
also computationally convenient. A single production or 
small group of productions can often represent a complex set 
of ideas. In procedural languages, FORTRAN, ALGOL, etc. it 
is rare that a single statement represents a complete 
thought.

While completeness and convenience are important, we 
are also drawn toward rule-based systems because, in some 
sense, human operators seem to store their knowledge in rule 
form. Earlier on, we noticed in our informal survey of the 

gas dispatcher's environment, that a gas dispatcher, when
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talking about his operation of the system, chose to describe 
his knowledge in rule-of-thumb form. We repeat the selected 
rules below:

If you are losing 10-15 psi/hr then you must take 
corrective action
If during a 6 hr period you lose 70 psi of linepagk 
then replenish before moderating.
Try to maintain 700 psi at W_______ (a location)
during the winter.

As we expect, the rules are simple in form but powerful in
their summary of a large deal of experience. In designing
an artificial learner and decision maker, it seems
reasonable to select a similar rule-based structure.

With their simplicity, power, and common sense appeal,
it is no wonder that productions systems have been very
useful in representing expert knowledge in artificial
intelligence systems. Two of the best known and successful
expert systems, DENDRAL [703 (Mass Spectroscopy Analysis)
and MYCIN [71] (Bacterial Infection Diagnosis), use
production systems for their representation of knowledge.
More recently and perhaps of more interest to engineers, the
Prospector system [72] has been constructed as a geological
field assistant to determine areas with high mineral
deposits. Other engineering expert systems have been
constructed to aid in oil well drilling [73], assist in
seismic data analysis, analyze oil well logs, site
hydropower developments, and manage a nuclear reactor [74],

Yet, production systems have been less frequently
suggested in situations in need of learning. One of the
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main obstacles to learning has been complex production 
syntax. Many productions systems permit involved 
grammatical constructions for the condition and action 
portions of a rule. Learning classifier systems depart from 
the mainstream by restricting the rule (classifier) to a 
fixed length representation. This has two benefits. First, 
all strings under the permissible alphabet are syntactically 
meaningful; this is not true in many production systems and 
most procedural languages. Second, a fixed representation 
permits meaningful string operators of the genetic kind.
This leaves the “door open for a genetic algorithm search of 
the space of permissible classifiers.

In traditional expert systems, the value or rating of a 
rule relative to other rules is fixed by the programmer in 
conjunction with the expert or group of experts being 
emulated. In a rule learning system, we don't have this 
luxury. The relative value of different rules is one of the 
key pieces of information which must be learned. To 
facilitate this type of learning, Holland has suggested that 
rules function in a competitive service economy. A 
competition is held among classifiers where the right to 
answer relevant messages goes to the highest bidders with 
this payment serving as a source of income to previously 
successful message senders. In this way, a chain of 
middlemen is formed from manufacturer (source message) to 
consumer (environmental action and payoff). The competitive 
nature of the economy insures that the good rules
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(profitable) survive and the unsuccessful die off.
While we shall soon examine the many details of this 

apportionment of credit algorithm, one point is crucial; the 
introduction of an internal currency or figure of merit.
The exchange and accumulation of an internal currency 
provides a natural measure for the application of genetic 
algorithms. Using the classifier's net worth (which we 
shall shortly call strength) as a fitness function, 
classifiers may be reproduced, crossed, and mutated as we 
have done in Chapters 3 and 4. Thus, not only can the 
system learn by evaluating and ranking existing rules, but 
new rules, the offspring of high performance rules, are 
inserted into the population by a genetic algorithm. We 
must be a little less cavalier about generating entirely new 
populations of rules, and we pay more attention to who gets 
replaced; however, the process is very similar to the one 
used in our optimization studies.

Together, apportionment of credit via competition and 
search with genetic operators form a powerful learning 
heuristic when combined with the computationally convenient 
and complete framework of classifiers. In the following, we 
examine the structure of the learning classifier system by 
detailing each of the component parts: the rule and message 

system, apportionment of credit system, and genetic 
algorithm system.

5.2 The Rule and Message System

The rule and message system is central to the operation
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of the learning classifier system. Not only does it provide 
the computational framework for LCS thought and action, it 
also is the backbone of the competitive service economy and 
GA learning functions. To see this, Figure 5-1 shows a 
schematic of the rule and message system integrated with the 
apportionment of credit and genetic algorithm processes. In 
this schematic, we see that the rule and message system 
receives environmental information through its sensors, 
called detectors, which decode to some standard message 
format. This environmental message is placed on a message 
list along with a finite number of other internal messages 
generated from the previous cycle. Messages on the message 
list may activate classifiers (rules) in the classifier 
store. If activated, a classifier may then be chosen to 
send a message to the message list for the next cycle. 
Additionally, certain messages may call for external action 
through a number of action triggers called effectors. In 
this way, the rule and message system combines both external 
and internal data to guide behavior and the state of mind in 
the next state cycle.

The process is like a popular mode of communication at 
our widget conventions. At these conventions, widget 
conventioneers reach their fellow widget delegates by 
posting notes on the widget convention bulletin board. The 
notes may be posted by anyone (as long as there is room) and 

may be addressed to individuals, widget committees, or other 
groupings of widget delegates with something in common. In
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this way, individual widgeteers rendezvous, committees 
change or set their plans, and in general, the direction of 
the convention is altered. Similarly, classifiers and 
effectors are accessed and activated by the common 
communication channel of the message list. Thus, the LCS is 
able to change subsequent internal state and external 
action.

To better understand the message processing action, we 
examine the system’s two informational units:

1. Messages
2. Classifiers

In the LCS sense, a message is simply a string of fixed 
length 1, over some finite alphabet, V. In this discussion, 
we limit V to the binary alphabet {0,1} without loss of 
generality. More formally, a message is defined as follows:

<message> — > {0 ,1}^
Messages may contain a variety of information, coded in any 
imaginable manner. At a minimum, messages carry 
environmental input data, internal tags, internal data, and 
effector codings.

Messages are processed by classifiers. Recall that 
classifiers are a form of rule in the tradition of 
production systems. For this study, we limit classifiers to 
the following form:

<classifier> — > <condition^><condition2><message>
As in the production systems discussed earlier, the 

meaning of the classifier is clear: the message is sent
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upon satisfaction of both conditions. A condition is a 
recognition device which depends upon the presence of 
certain messages on the message list. It would be nice if a 
single condition could recognize not just a single message, 
but rather, a class of messages with well-defined 
similarity. We may achieve this capability quite simply and 
elegantly by extending our message alphabet V by one 
character to the alphabet V+ = {0,1,#}. Thus, a condition 
is defined as an 1 position string over V+s

<condition> — > {0 , 1 ,#}^
Under the alphabet V+, at a given position, a 0 is 

matched by a 0 , a 1 is matched by a 1 , and a # is matched by 
either. For example, the condition #1111 is triggered by 
either of: the messages 01111 or 11111. At the other

4extreme, the condition # 1### fires on any of the 2 = 16
messages with a 1 in the second position. In this way, the 
# is a wild card symbol permitting explicit recognition of 
any of the subsets of messages with one or more 
similarities. This is particularly useful in a learning 
syster. what must generalize and instantiate new rules from 
the ratings of the current rule store.

The mechanism of the rule and message system is fairly 

straightforward; however, to reinforce these ideas, let us 
examine a simple example. In Table 5-1, we see a single 
iteration of the rule and message system. In this example, 
we have a message list wi.th two messages, n = 2 , fourHIw 9 w
classifiers in the store, ncyass = 4 and string width of 4
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positions, 1 = 4 .  In the example, the classifiers numbered 
1 and 3 are matched completely and therefore send their 
messages to the message list in the next time step (for 
simplicity, we have ignored any environmental messages).
This raises an interesting question: What would happen if 
we matched more classifiers, that is, the number of 
potential messages exceeded the size of the message list?
We must be concerned with this question because we are very 
likely to have many matched classifiers with a severely 
restricted message list. In the next section, we examine 
how the apportionment of credit mechanism handles this and 
other conflicts which arise.

Together, the picture of the rule and message system is 
complete. Messages, either environmental messages or 
internal messages, are placed on the finite size message 
list. In turn, these messages may either match effectors 
which cause external action or they match other classifiers 
which may in turn send internal messages. In this way, the 
rule and message system promotes behavior which depends upon 
external stimulus and internal state of mind.

5.3 Apportionment of Credit

We now see how the rule and message system provides a 
convenient method of storing and using rules for performance 
in arbitrary environments. Yet, we are left with several 
pressing questions: How can we select among many 

potentially active classifiers when the communication 

channel (the message list) is of finite size? How can we
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apportion credit for performance among different rules which 
may call each other in complex ways? As we have already 
suggested, our answers to these questions are related to the 
creation of an internal, competitive service economy.

This service economy consists of two elements:
1. An auction
2. A payment clearinghouse

During the auction, classifiers matched by the message list
bid for the right to send messages to one of the n_ slots 3 • mess
of the next time step. Following the auction, the winning 
classifiers make payment to the clearinghouse where each 
payment is divided among all those classifiers responsible 
for activating the particular payment-making classifier.

We can see one complete cycle of this payment process 
in Figure 5-2. In this diagram, classifiers 10, 20, and 55 
are activated auction winners at time t and as a result, 
they send their messages to the 3 position message list 

^nmess=^ *  A ^ter another auction, classifiers 4, 6 , and 19 
are activated by the messages as shown. In consideration of 
this activation, classifiers 4, 6 , and 19 make payments 
which are divided among the time t classifiers. As 
examples, c^'s payment is divided among all three 

classifiers (c iq, c 20 anc  ̂ c 5 5  ̂ whereas c 1Q's payment is only 
paid to C 5 5 . Hence, classifiers receive payment from the 
outside world whereby they then distribute payment amongst 
themselves and accumulate payment for their own accounts.

To implement a well-defined procedure, we must be a bit
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more rigorous in detailing the auction and payment scheme. 
During the auction, classifiers make bids designated by the 
letter B. Winning classifiers turn over their bids, B, to 
the clearinghouse as payments, P. A classifier may also 
have receipts from its previous message sending activities; 
we designate a classifier's receipts by the letter R. In 
addition to bids and receipts, we also permit one or more 
forms of taxation, T. For each classifier, the receipts and 
payments are made to and from a single bank account. The 

classifier's account balance is called its strength, S. In 
essence, strength is a classifier's net worth; we shall see 
how it is related to its ability to make a profit by setting
up subsequent reward.

Taken together, we write an equation governing 
depletion or accretion of a classifier's strength as 
follows:

Sj(t+1) = S.(t) - P ^ t )  - Tj(t) +R.(t)
where: S - strength

P - payment 
T - taxation 
R - receipt 
t - time index 
i - classifier index

This system of first-order difference equations is the major
component of our apportionment of credit scheme. To
understand its effect upon classifier activation and
utilization, we look at the circumstances of bidding,
receipts and taxation. We also consider the detail of
effector activation and reinforcement.
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Bidding and the Auction
During the auction, the nmess highest bidding 

classifiers are chosen to send their messages in the next 
time step. Each classifier's bid must reflect its value to 
the system in setting up fruitful action and subsequent 
reward. One component of this value is a classifiers 
strength. Strength is a measure of the.classifier's 
relative ability to profit by receiving external reward 
through classifier chains of payment. Another component of 
value is a classifier's relevance to the matching messages. 
Not only do we want winning classifiers to be strong, we 
also require them to be strongly related to their activating 
messages. One measure of this relevance relationship is the 
simple matchscore:

M = 2 Zm(akj)
where: k - condition index

j - position index 
a - position value 

m(a) - 0 if a=#
1 if a =1 or 0

The matchscore is, thus, a simple count of a matched 
classifiers total specificity, the number of condition 
positions with non-wild characters.

Since we are inte;rested in promoting classifiers with 
high strength and high specificity, following Holland 
[63,64], we define our bid to be proportional to the product 
of matchscore and strength:
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B i = Cbid * M i * S i
where: B - bid

M - matchscore
S - strength

Cbid ~ constant
i - classifier index

We could simply stop things at this point and choose
the auction winners deterministically by selecting the nJ J 3 mess
highest: however, this would unreasonably bias results
towards the status quo [75], Instead, we hold our auction
in the presence of random noise. Specifically, we calculate
an effective bid for each matched classifier, the sum of the
deterministic bid and a noise generator:

EBj = B; ♦ ^ ( 0 ^ )
where: EB - effective bid

B - bid 
N- - noise generator 

- noise deviation
For this study, we use the noise generator defined by a 9 
point discrete approximation to zero-mean, Gaussian random 
noise shown in Figure 5-3. The noise deviation, is a
specified system parameter which may be varied to provide 
more or less randomness to the auction.

Receipts and the Clearinghouse

After our somewhat noisy auction and the selection of 
winners, payment must be made to those classifiers 
responsible for sending the messages that activated the 
winners. The winners pay their total bid to the 

clearinghouse where each payment is divided evenly among 
condition 1 and condition 2 , and thence it is divided evenly

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited w ithout perm iss ion .



1 2 9

ino

C3

CO .. ■ ■ ■

C3

3.00-3.005.00 “ 1.00N UMBER OF STD 1.00D EV I P T I G N S

Fig. 5-3. Nine Point Discrete Approximation to 
Gaussian Distribution

-«
5.00

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



130

among all the classifiers which sent matching messages to 
each of the conditions. Thus, a classifier sending a 
message which matches condition k of classifier j receives 
the share of payment, SP, given by the expression:

SPi = P j / (2 *n s harek^
where: SP - share of payment

P - payment 
nshare ~ number of shares

k - condition index 
j - paying index 
i - receiving index

For each message sending classifier, the total receipts are
simply the sum of the share payments from all classifier
conditions matched.

Taxation

Each classifier is taxed to prevent freeloading, 
thereby biasing the population toward productive rules.
Many schemes are available; we simply collect a tax 
proportional to the classifier's strength:

T. = C. * S-1 tax 1
where: T - taxation

S - strength 
C v,„x - tax constant

i - classifier index

Activating Effectors

The foregoing mechanisms for bidding, payment, and 
activation are strictly true for pure classifiers, those 
whose only effect is to send a message. For those 
classifiers that ultimately set and perform an external
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action (Holland calls these e-classifiers) we must be 
careful to arbitrate among mutually exclusive activities. 
Just as a switch cannot be both on and off at the same 
momentr we too must choose among competing alternative 
actions. In the prototype LCS, this is done very simply. 
After classifiers are matched and the auction is held, the 
winners' messages are immediately matched against the 
effector store. If different classifiers match mutually 
exclusive actions, the classifier-action pair with the 
highest effective bid is selected for operation. Note that 
the effective (noisy) bid is used, as with the pure 
classifiers, to eliminate bias toward existing higher 
strength e-classifiers.

Reinforcement
Intermittently, the LCS is rewarded with some payment 

from the environment. This reinforcement is given to all e- 

classifiers active during the previous time step. The 
reasoning behind this is that these most recent actions and 
their activating chains are most clearly responsible for the 

current reward. Holland has suggested that the entire 
message list receive reward; however, this has not been 
adopted here for fear of encouraging unproductive 
classifiers. This point should be kept in mind in future 
studies where these free-floating classifiers may be more 
useful in look-forward modeling or setting up future 
classifier-action chains.
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Stability and Effect
We now have a fairly complete picture of the workings 

of the apportionment of credit algorithm; however, we need
to explore the stability of this algorithm and its effect on
rule ratings and selection.

To examine both of these, we recast the apportionment 
of credit equation into a more useful form where all
payments and taxes have been replaced by their strength
equivalent.

S(t+1) = S(t) - Cbid*M*S(t) - Ctax*S(t) * R (t)
We have dropped the index i and all terms are as defined 
previously. Grouping terms we obtain the following;

S(t+1) = (1-K)*S(t) + R(t)
where: K = C k .,*M +bid tax

To see when this equation is stable we perform the usual Z 

transform [76] on the homogeneous system and obtain the 
characteristic equation;

Z - (1 - K) = 0
Stability is assured when | Z | 5 1 ,which implies that

0 ^ K £ 2; however, in practice we never permit K > 1 to 
enforce non-negativity of the strength. This analysis is 
only fully valid for the classifier which remains activated 
thereby maintaining a constant K. However, the system 
remains stable even with the switching non-linearity 
introduced by the activation and deactivation of real 
classifiers as long as the changing K meets the stability 
criterion.
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Stability is essential, but to see the effect of the 
mechanism, we are primarily concerned with performance in 
the time domain. Assuming some initial strength, S(0), we 
may define the strength on the nth time step by the 
expression:

S(n) = (1 - K)nS(0) + 2 R ( j ) • ( 1 - K )n _ ^ ” 1 

Once again we have ignored the switching non-linearity 
although this could be incorporated as a time-varying K(j).

To further identify the effect of this mechanism we 
examine the steady state response of the algorithm. If the 
process continues indefinitely with a constant receipt 
R(t) = R, we obtain the steady state strength, S(t), as t 
approaches infinity:

S = R / K ss
Therefore, the strength is simply the receipt amplified by 
the gain coefficient 1 / K. Furthermore, the steady bid is 
derived directly:

BSS - Cbia * M  / K » R = Cbid . M  / <Cbid»M ♦ C tax) *R 
Since C fcax is usually quite small, the steady bid value is 
simply: Bgs = R. in other words, the bid value approaches 
the receipt. For non-constant inputs we see that the bid is 
a geometrically weighted average of the input. As such, it 
acts as a filter of the possibly intermittent and noisy 
receipt values.

5.4 Genetic Algorithm

The apportionment of credit algorithm gives us a clean 
method of valuing rules, deciding among alternatives, and

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



134

weeding out unprofitable rules. Yet, we still must come up 
with a way of injecting new rules into the system. This is 
where the genetic algorithm steps in, Using a genetic 
algorithm similar to the one described in Chapter 3, new 
rules are created by the now-familiar reproduction, 
crossover, and mutation process. These rules are then 
placed in the population and processed by the probabilistic 
auction, payment, and reinforcement mechanism to properly 
evaluate their role in the system. In this section, we 
concentrate on the differences between the GA used in the 

LCS and the one described in Chapter 3, Specifically, these 
differences include overlapping generations, roulette wheel 
selection, partial replacement and crowding, restricted 
crossover, and ternary mutation.

Overlapping Generations

In the previous description of the genetic algorithm, 
the populations were non-overlapping; we completely 
generated a new population at each iteration. This is not 
desirable for the current application. With the LCS, we are 
concerned with maintaining a high level of performance as 
the system adapts. This requires that we leave our current 
best rules alone and try to form better rules with a small 
portion of the population. To do this, we introduce the 

parameter, PROPORTION and generate nc iass * PROPORTION new 
classifiers at each call to the genetic algorithm. To do 

this conveniently, we must modify our method of selection.
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Roulette Wheel Selection
In Chapter 4, we described a variance limiting process, 

where we attempted to give each population member the 
correct expected number of offspring u / u. Although this 
has certain advantages, it becomes cumbersome with 
overlapping generations and therefore, we abandon it. 
Instead, we select parents for mating via the weighted 
roulette wheel technique.

In this method, we spin a weighted roulette wheel, 
pictured in Figure 5-4, nc ^ags * PROPORTION times where the 
wheel weights are given by Sj / £ S^. In this way, we still 
bias the parent selection toward high strength members and 
thereby schemata in the proper proportion? however, the 
bookkeeping is greatly simplified. If this tradeoff between 
programming simplicity and efficacy proves too deleterious, 
we may always return to more sophisticated techniques.

Replacement and Crowding
Because we no longer generate entire populations, we 

must be careful when choosing population members for 
replacement, while it makes sense to replace low strength 
members, simple replacement of the worst is probably not 
good enough. This encourages a higher loss of alleles than 
is desirable. To this end, we implement a crowding 

mechanism among a low performance sub-population. With this 
technique described by De Jong [53], when a child is 

generated for insertion into the population, n repiace 
replacement candidates are selected from the
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Fig. 5-4. Roulette Wheel Selection
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n replace * PROPORTION * nc lass mem^ers °f the lowest 
performance population. These members are compared to the 
child and the child replaces the most similar candidate on 
the basis of similarity count, where similarity count is a 
simple count of the positions where both child and candidate 
are identical ( #=#, 1=1, 0=0 ). In this way, children 
replace similar population members and a pressure exists to 
maintain diversity within tha population. This pressure 
helps counterbalance the occurrence of premature convergence 
noted earlier.

Restricted Crossover

Previously, our structure was a simple string and we 
permitted crossover at any crossing site between 1 and the 
string length 1. With a classifier, we may also perform 
simple crossover if we view the rule as the concatenation of 
3 strings, two conditions and the message. For example, 
with 1 = 4 :

§ 1 # 0 0 1 0 1 0

C, | C 2 | M
Once again, we could simply permit crossover anywhere along 
the string; however, to retain greater control over the 
kinds of offspring we permit, we introduce 3 new parameters, 
XLO, XHI and GAMODE. The parameters XLO and XHI define the 
region of permissible crossover. For example, XLO = 1 and 
XHI = 1-1 permit crossover along the entire condition or 

message, whereas other values would specify some sub-range.
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This mechanism permits the allocation of protected string 
regions which may not be modified by crossover.

The parameter GAMODE specifies which elements of the 
classifier engage in the crossing as follows:

GAMODE Elements

0 C v  C2 , M
1 C 1 only
2 C 2 only
3 M only
4 C 1 ' C 2
5 C r  M
6 C2 , M

By this mechanism, regions of crossing may be further 
restricted, giving more control over the learning process.

We note that with the GAMODE parameter, we still only 
permit crossing of similar elements: C-.-C.J, C2-<''2' M-M. 
Holland [63,64] has suggested extensions to this crossover, 
where messages may be crossed with conditions thereby 
promoting an increased probability of linkage between rules. 
These extensions are important if we expect useful chains of 
rules to form in a timely fashion. In this study, however, 
we keep the system as simple as possible to investigate the 
capabilities of the basic mechanism.

Ternary Mutation

Previously, with the binary alphabet, mutation was
simply a bit inversion with probability, pmutation * The
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message portion of the classifier also uses a binary 
alphabet and therefore, message mutation is interpreted as 
before. With the conditions, we have the ternary alphabet 
V+ and we extend the mutation operator so that with 

probability Pmutation we c^an9e characters. The changed 
character is selected with probability 0.5 from the two 
remaining characters.

5.5 Application to a Simple Control Problem
In this section, we apply the learning classifier 

system to the control of a pure, inertial object in a 
frictionless, one-dimensional domain. The system is 
pictured in Figure 5-5, and the plant dynamics are given by 
Newton’s second law:

m d2x = f(t) 
dt2

where: m - mass
f - force 
x - distance 
t - time

The objective is to center the object given a decision 
space of two alternatives: the LCS may apply a force of 
given magnitude, Fmag, in the positive or negative 
directions. We assume complete state knowledge; however, 
this information is limited by the discretization we select.

The problem seems simple, perhaps too simple to be of 
much use in evaluating the LCS method. Nonetheless, the 

simpler problem is interesting for two reasons. First, time 
optimal control of an inertial object is a fundamental 
problem in optimal control theory. Its bang-bang solution
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is well known [77] and thus, we connect the LCS work with 
extant control literature. Second, the control of an 
inertial object is a problem people and other mobile
creatures solve everyday: whether driving a car, riding a
bicycle or moving our limbs through space, we repeatedly 
face and solve this problem effortlessly. If the LCS is to 
be useful, it too must be capable of attacking this 
recurring model problem.

Problem Specification
Specifically, the LCS is faced with the following 

domain parameters:
L - wall to wall distance = 50 m 
M - object mass = 5 kg

Fmag - force magnitude = 2 N
At - cycle time = 1 s

The LCS is born with detectors capable of deciphering the
following information with the specified discretization 
within the stated limits:

Measurement
Discretization 

(in bits)
Low

Level
High

Level

x - distance 2 0 50
u - velocity 2 -2 2

Fmag ~ ^orce magnitude 1 0 2

F • - force sign sign 5 1 -1 1

P - payoff 1 0 1

With this discretization, the LCS perceives the domain as 4
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subregions. Speed is recognized in 4 discrete sub-ranges, 2
forward and 2 reverse, and the other detectors are simple
binary switches.

To better see how the LCS sees its domain, we outline
the format of the environmental message in Figure 5-6. The
message is of length 1= 8 with distance, velocity, force, and
payoff measurements allocated as shown. We note that the
tag field is one position long; this is sufficient in this
study as 2 classes of messages, external and internal, are
all that are required.

With the stated parameters and discretization we may
learn some additional information about the domain through
some elementary calculation. The wall to wall travel time
assuming constant application of F may be calculated asma y
follows;

fcwall to wall sqrt(2ML/Fm a g )
= sqrt( 2(50)5/2 )
= 15.8 s

Under these conditions the terminal velocity before striking
the opposing wall is given :

V = F *t . /M max mag wtw'
= 6.3 m/s

This value is the maximum obtainable with inelastic walls.

As a result, with the specified sensitivity, the velocity 
measurement may saturate occasionally.

Another parameter of interest is the minimal centering 

time Tcmin « Assuming the object is on the wall and
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FIGURE 5-6 
Environmental Message and Coding

1

Fm Fs P tag

X u
Sub

message Meaning
Sub

message Meaning

00 quad 0 (leftmost) 00 u<-umax/ 2
10 quaa 1 10 -umax£u<0
01 quad 2 01 0£u<umax/ 2
11 quad 3 (rightmost) 11 umaxJsu

Emag F .sign
Sub

message Meaning
Sub

message Meaning

0 no force 0 negative force
1 force=max 1 positive force

P-payoff Tag
Sub

message Meaning
Sub

message Meaning

0 no payoff 0 internal message
1 payoff 1 environmental message
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stationary,, the 'time optimal control is to apply the maximal 
restoring force until the object is halfway to the desired 
location and then apply the maximal force in the opposite 
direction until the objective position is achieved and the 
object is once again stationary. For our problem, this 
results in a minimal centering time as follows:

Tcmin ‘ 2 * s« ct( 2EW L/4,/M >
= 15.8 s

We should hope that the LCS is capable of positioning the 
objeefc from any location in a time on the order of this 
value after sufficient learning has taken place. These 
results will be useful when we look at the results from 
actual learning simulations.

Reward Mechanism
As described earlier, rules which activate rewarded 

effectors, receive a point score as a payment. In natural 
domains, reward is usually in the form of food or other 
substances necessary for survival. In our artificial 
domain, the reward may come from one of two sources: the 

keyboard (a knowledgeable instructor) or a computer 
subroutine which rewards the system according to some 
systematic method. In an actual installation, the use of an 
expert instructor may be the preferred mode of instruction; 

however, in the interest of uniformity and repeatability, a 
systematic computer procedure is adopted for this study.

For the inertial object environment, the reward 
procedure works according to the following scheme:
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if (T mod Tgval = 0) (* every T eva]_th time step *)
and ( not accelerating away from the target ) 
and ( (Near the walls and applying restoring force) 

or (Near the target and (going slow or 
decelerating)) 

then points=MAXPOINTS 
else points=0

The conditions, near the wall and going slow, are made 
rigorous by introducing the input parameters xto  ̂ and u s i o v  

respectively.

Implementation
A computer procedure encompassing the LCS described in 

this chapter as well as the inertial object environment, 
reward mechanism, input-output routines, and necessary 
interface procedures has been implemented in Pascal and 6502 
assembler for execution on an Apple II computer. Skeletal 
pseudo-code descriptions outlining the program’s modular 
structure are presented in Appendix B. The code is written 
primarily in Pascal to enhance portability. The portions of 
code written in assembler may be replaced by equivalent 
Pascal cede; however, the use of machine code speeds up the 
fundamental rule matching process by a factor of between 3 
and 1 0 .

Setting LCS Parameters
In both the apportionment of credit system and the 

genetic algorithm, a number of parameters must be selected 
before proceeding* Here, we examine the method of choosing 
these parameters, relying on both limited simulations and 
past experience with GA optimization.
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To select the apportionment of credit parameters, a 
series of limited simulations have been undertaken with 
performance compared over a fixed interval. There are three 
parameters of interest: bidding coefficient taxation
coefficient C fcax and the bid spread 0 ^ 3 * Additionally, 
these coefficients must be considered in relationship to the 
regularity of reward from the environment. In our system, 
this may be controlled by adjusting the period of evaluation

Teval'
In the restricted simulations, a known set of good 

rules is specified with some bad rules implanted to test the 
ability to weed out the bad and elevate the good. Table 5-2 
shows the rule set, individual rule meanings in shorthand, 
and a brief explanation of each rule's purpose. For this 
set of experiments, the apportionment of credit algorithm is 
enabled while the genetic algorithm has been turned off.

In the first set of experiments, the parameter is
varied over a range of values while and C fcax are set to
zero: there is deterministic bidding and no taxation. The 
population is started from a relatively high value of 
strength, and the calculations proceed. In this manner, 
unfit rules, continuously lose strength while the good rule 
set adapts to its appropriate steady state value.

The results from 3 different values of C.*j are shownbid
in Figure 5-7, a graph of total evaluation, TOTALEVAL, vs. 
time. With the largest value, apparently too much is 
wagered too soon and the performance lags that of the lower
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Key!
+ CBID=0.0104, 0.0208 
A  CBID=0.0417 
n  CBID=0.0052

T I M E

Fig. 5-7. Variation of CBID - TOTALEVAL vs. Time
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values.
To gain more perspective on the effect of we need

to look at the interaction with other system parameters. 
Holding constant we vary the interval of evaluation,

Teval' over a tange between 1 and 5 time steps. The total 
evaluation is plotted versus time in Figure 5-8. For the 
values 1, 3, and 5 the results are as we might expect; as 
the interval of evaluation goes up, the rate of evaluation 
goes down roughly proportionately. In the cases with 

Tevai = 2 » '*» something strange occurs. The performance is 
much worse than we expect; hardly any reward is achieved in 
either case. Close examination of the run details shows the 
reason. There is a continuous oscillation between a good 
rule and a bad rule. The oscillation causes the bad rule to 
be active during reward time steps and the good rule to be 
active on time steps without reward. This continues until 
the object enters a zone where the bad rule's action may 
receive reward as a braking rule. This reward is then 
sufficient for the bad rule to drive the object to the waj.1 
where the process repeats itself. The problem here is 

caused by our deterministic bidding process (0^ 3 =0 ) in 
concert with the rhythmic reward pattern. As the good and 
bad rules are activated alternatively, each must pay its 
bid, reducing its strength some small amount. This makes 
its next bid less than its competitor by some small amount 
thereby continuing the oscillation. Thus, we encounter our 

first empirical need for noisy bidding to eliminate bias in
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the decision process. In this case, some small randomness 
in bidding should destroy the certainty of the oscillation 

and decrease the impact of small differences among competing 
bids.

We investigate this by holding = 0.0208 and

Teval = 2 w h ^ e varying °bid the amount stochastic bid 
spread over the values, 0 .0 0 1 , 0 .0 1 , 0 , 1 , 1.0 times 
MAXPOINTS. These results are summarized in Figure 5-9 
showing the values at time = 150 vs. ^/MAXPOINTS. The 
introduction of even the smallest amount of randomness, 
results in a drastic improvement over the deterministic 
decision process; the certainty of the oscillation is 
destroyed as we predicted.

Yet, we should not assume that this small a level will 
encompass all possible cases. Remember, we will be 
generating new rules for insertion into the population at 
the average strength of their parents. As a result, if 
these rules are ever to have a possibility of trial, the 

°bid Parameter must be sized to lift them above the leaders 
upon occasion. To examine this possibility, a test is set 
up where two good rules are placed at artificially low 
levels of strength and is varied to investigate the
value required to raise the rules from their initially low 

values during bidding competition. The results of this test 
are shown in Figure 5-10, a graph of the average strength of 
the 2 reduced strength rules at time = 300 time steps 

vs. o^^/maxpoints. Below 15%, the randomness is
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Fig. 5-8. Variation of TEVAL - TOTALEVAL vs. Time
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insufficient to give the two rules the needed boost as the 
strength is simply the free fall value at the tax rate of 

0.002. Above 15%, the mechanism gives sufficient assistance 
to start to raise the rules from their artificially low 
values.

With and 0 ^ 3  selected, our attention turns to the
taxation coefficient, In setting the tax rate, the
main consideration is the free fall half life. Since the 
apportionment of credit algorithm simply reduces an inactive 
rule by the tax rate, after n iterations of inactivity we 
have the following value of strength:

S(t+n) = S(t) (1-C.. )nt- 4* rfv
Thus, the half-life may be given:

n = log( 1/2 ) / log(1“Ctax)
The half-life is tabulated below for convenient values of 
Ctax *

^tax Half Life
0.1 6 . 6
0 .01 69.0
0.005 133.3
0.004 172.9
0.003 230.7
0 . 0 0 2 346.2
0 . 0 0 1 692.8

Since new rules are regularly inserted into the population 
at possibly elevated levels of strength (average of 

parents'), the tax rate must be set to insure that inactive 
rules are degraded sufficiently before reproducing and 
inserting new rules. If this is not done, relatively 
inactive rules can retain an unrealistically high level of

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



153

o

a  - CO

O

C3a  • •

€ 3a
IxIlT*
S I G B I D / m X P O I N T S

Pig. 5-S. Variation of SIGMABID - TOTALEVAL vs. 
SIGMABID/MAXPOINTS

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



n.5o

Fig.

1.70 1.90 2.10 2.30 2.50S I G B I D / H A X P O I N T S  (X101)

5-10. Variation of SIGMABID - Low Initial Strength 
Average TOTALEVAL (2 rules) vs. 
SIGMABID/MAXPOINTS

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



1 5 5

strength and ultimately reach reproduction themselves, 
thereby cluttering future rule sets with large numbers of 
overrated, inactive rules. Therefore, C fcax must be set to 
yield a half-life on the order of the insertion period of 
the genetic algorithm, Tga *

In these initial runs, an insertion period of T = 200
c ga

has been set. This period is long enough to encompass a 
meaningful span of system behavior. It is an order of 
magnitude greater than the minimum centering time, Tc m in ? it 
permits meaningful evaluation of new and extant rules. In 
early tests, a Cfcax value of 0.001 was used (Half Life=693) 
In conjunction with the GA period this resulted in large 
numbers of over-evaluated rules. In subsequent tests, a 
value of Cfcax = 0.002 (Half Life=346) eliminated this 
difficulty by reducing the half life sufficiently without 
detrimental deterioration of memory.

With C fcax and Tga set, the other GA parameters have 
been selected based on a combination of past experience and 
current expectations. PROPORTION, the proportion of a 
population selected for replacement at a given GA 
invocation, has been varied to obtain a small number of new 
trials (usually between 2 and 4) per GA activation. 
Contrasting the current learning tests to the optimization 
studies in a previous chapter, this is a necessary step if 
we want to maintain current performance at high levels while 
exploring new rules.

In this study, we select a value of n  . „ = 3, thereplace ;
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number of low strength rules in each replacement 
subpopulation. This value is chosen arbitrarily although it 
is consistent with De Jong's findings [53] in an 
optimization setting.

Results
With the LCS implemented and parameters selected; we 

perform some learning tests. In these tests, we start with 

a random selection of rules and proceed forward monitoring 
performance by summing the total reward, TOTALEVAL; we also 
examine an important auxiliary performance characteristic 
related to goal achievement. In these tests, our ultimate 
goal is to locate the object at some specified location (the 
center). The total point score reflects the achievement of 
this goal; however, it is easier to monitor if we keep track 
of the number of times it is achieved. Since, it.is 
unreasonable to expect the goal to be achieved exactly, we 
create a more workable definition. For this study, the 
centering criterion is achieved when the object is within 
the target zone |x - xtarget| < xtol and is going slow,

|u| < uslow for ncriterion consecutive time steps. The 
values used for these parameters are as follows:

ncriterion “
uslov ■ ’-5

XfcQl = 12,5
Upon reaching the goal, the goal statistic, TOTALGOAL, 

is incremented by one and the object is disturbed by a force 

of ±  disturbance for one time sfcep. We use a value or
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Fdisturbance = 5 0 * In ' fĉ e LCS repeatedly
forced to perforin over a broad range of space and velocity
values thereby providing a fairer test of the procedure's
capability.

To test the system, two series of tests have been 
performed. These tests examine the LCS performance both, 
with and without genetic algorithm under both undisturbed 
and rule-deprived conditions.

In the first series of tests, we start the LCS from a 
randomly generated population of 30 rules of the forms: 

RRRR#R#1:#######1/00001100 (force +)
RRRR#R#1:#######1/00001000 ( f o r c e  - )

Half of the population is of the first type and half is of 
the second type. In this notation, the colon separates 
conditions, the slash separates conditions from the message, 
the 0 , 1 , and # characters have their normal meaning, while 
the R designates a position to be selected using random 
choice. To permit control over the level of generality 

(number of # s ) , we introduce the parameter Pgeneraiity? a 
don't care symbol, #, is selected with probability 

Paenerality a 0 or a 1 is selected with probability

( 1" ^ g e n e r a l i t y ) / 2 * We f i x  P g e n e r a l i t y  = ° ’ 75 9 i v i n 9 a 
f a i r l y  g e n e r a l  i n i t i a l  r u l e  s e t .

Table 5-3 shows the initial population generated for 
the first series of cases. In the first run, number 
IOLCS.1, we start from this population and proceed with rule 
and message system and apportionment of credit system
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enabled and the genetic algorithm disabled. In run I0LCS.2, 
all subsystems, including the genetic algorithm, are 

enabled. The parameters are the same for both runs as 
follows:

C bid SC 0.0208

°bid = 1.0

^tax = 0 . 0 0 2

T ga - 200

^mutation as o•o
PROPORTION = 0.0667

^eval = 1

MAXPOINTS = 6

In Figure 5-11, we compare the results with and without 
genetic algorithm to random performance on the basis of 
time-averaged accumulated evaluation, TOTALEVAL/T. In the 
random results, the decision to direct the force right or 
left is determined by the flip of a fair coin (p=0.'5). We 
note that both the LCS runs are much better than random- 
performance. Furthermore, case I0LCS.2 (with GA) eventually 
overtakes and outperforms run I0LCS.2 (without GA). In 
fact, while the differences appear small on this basis, the 
difference in physical control is much better in the case 
with genetic algorithm.

To see this, we shift the basis of comparison to the 
more sensitive measure, time-averaged number of criterion 
achievements, displayed as Figure 5-12. Again, LCS 

performance is far better than random. Performance with the
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Table 5-3.,
Initial Rule Population 

Learning Tests I0LCS.1 and I0LCS.2

<CONDITION 1>:<CONDITION2 >/<MESSAGE>

###0# ## 1 :#######1 / 0 0 0 0 1 0 0 0  
0######1 ;####### 1 / 0 0 0 0 1 0 0 0  
0 1 0 # # 1#1 :#######1 / 0 0 0 0 1 0 0 0  
1#0 0 # 1# 1 :#######1 / 0 0 0 0 1 0 0 0  
# 0##### 1 :#######1 / 0 0 0 0 1 0 0 0  
##0 0 # # # 1 :#######1 / 0 0 0 0 1 0 0 0  
Q 1##### 1 1 / 0 0 0 0 1 0 0 0  
# # 10# 0# 1 :#######1 / 0 0 0 0 1 0 0 0  
# # # # # # # 1 :#######1 / 0 0 0 0 1 0 0 0  
# 0# 0###1 :#######1 / 0 0 0 0 1 0 0 0  
0# # 1###1 :#######1/ 0 0 0 C 1000 
1######1 : ####### 1 / 0 0 0 0 1 0 0 0  
#######1 :#######1 / 0 0 0 0 1 0 0 0  
# # # # # # # 1 :#######1 / 0 0 0 0 1 0 0 0  
# 1##### 1J####### 1 / 0 0 0 0 1 0 0 0
# # 11### 1:#######1 / 0 0 0 0 1 1 0 0  
# 1# 0### 1 :#######1 / 0 0 0 0 1 1 0 0  
#######1 :#######1 / 0 0 0 0 1 1 0 0  
0 1 ##### 1 :#######1 / 0 0 0 0 1 1 0 0  
# # 1##0 # 1 :#######1 / 0 0 0 0 1 1 0 0  
##0 #### 1 :#######1 / 0 0 0 0 1 1 0 0  
0######1 :#######1 / 0 0 0 0 1100 
##### 1# 1 :#######1 / 0 0 0 0 1 1 0 0  
0# # 1### 1 :#######1 / 0 0 0 0 1 1 0 0  
# 1 0 1### 1 :#######1 / 0 0 0 0 1 1 0 0  
# 1##### 1 ;#######1 / 0 0 0 0 1 1 0 0  
#######1 :#######1 / 0 0 0 0 1100 
0 0 0 #### 1 :#######1/ 0 0 0 0 1100 
# 0#####1 :#######1 / 0 0 0 0 1 1 0 0  
##0 0 ### 1 :#######1 / 0 0 0 0 1 1 0 0

genetic algorithm is that much better than without. In 
fact, by the end of the learning run IOLCS.2 with GA, the 
LCS had learned rules sufficient for the regular restoration 
of the object to the goal position.
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Fig. 5-12. Time-averaged Goal Count vs. Time
Random Rule Set - Runs IOLCS.l and IOLCS.2
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To get a better feel for the type of rules selected and
formed by the two learning mechanisms, we examine the above
average rule sets generated by each of the runs. Earlier,
we introduced the time-optimal solution where we recognized
the need for two types of action: restoring action and
braking action. Roughly speaking, we accelerate toward the
target with maximum force and suddenly apply the maximum

force in the opposite direction to place the object at the
desired location. Both types of actions are necessary for
effective control in a frictionless system. Similarly, in a
rule-based system, we expect to see 2 types of rules,
restoration and braking. Previously, in our tuning tests,
the specified rule set consisted of 4 rules, two restoring
and two braking rules as follows:

if <x=L> then <F+> : Restoration
if <x=R> then <F->

if <x=1> & <u=+> then <F-> : Braking
if <x=2> & <u=-> then <F+>

The restoring rules are fairly general. If the object is in
.. .

the left or right half plane a restoring force is applied. 
The braking rules are more specific, only applying a braking 
force when the object is adjacent to the goal location and
moving quickly toward the goal. Removal of any of these
rules is detrimental to performance. Restoration without 

braking results in a perpetual oscillation. Braking without 
restoration is ineffective because no work is directed 
toward the desired goal.

In the two trial runs, we see evidence, as we must, of
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both types of rules. In Table 5-4 we list the above average 
rules of run I0LCS.1 {no GA) at the end of the run 
(7=10000). Some of the more clear cut rules are interpreted 
in the table. In fact, we see some of the rules designed 
(by an intellect superior to the LCS) for the tuning tests, 
although the population was selected initially at random 
with no implants of helpful seeds. Clearly, the population 
has sufficient restoration rules, as we might expect, * 
because the model restoration rules require the setting o h  a 
single bit. The braking rules are not quite as plentiful, 
nor are the ones selected as effective as we desire.

Contrasting these results to the above average rules of 
run IOLCS.2 (with GA), we see that by exploring new rules we 
can obtain more efficient braking as evidenced by the higher 
scores and the final rule set shown in Table 5-4. In this 
rule set, the presence of better braking rules is clearly 
responsible for better performance. This is precisely the 
kind of learning we had hoped to achieve. The apportionment 
of credit mechanism rates extant rules and decides among 
competitors, while the genetic algorithm contributes new 
rules to the fray.

Deprivation Cases
Further evidence of this desirable type of learning 

behavior is evidenced in runs IOLCS.3 and IOLCS.4. In these 
cases, we make life even more difficult for the LCS by 
starting from an otherwise randomly generated population 
with the best rules removed. As before, we generate a
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population at random using the same rule templates, this 

time with nc iass = 40. We permit the system to select its 
best rules by running the LCS with AOC on and GA off. At 
the end of this initial trial, we remove the 10 best rules 
and restore the remaining deprived population of bc ]_ass = 30 
to the normal initial strength value. This deprived 
population is used as the starting point for the two 
learning deprivation runs, IOLCS.3 (no GA) and IOLCS.4 (w/ 
GA). The deprived initial population is displayed as Table 
5-5.

Once again we compare performance on the basis of time- 
averaged accumulated evaluation, TOTALEVAL/T and contrast 
this to the performance of the random walk. These results 
are shown in Figure 5-13. As before, the case without GA 
outperforms the random walk and is outperformed by the case 
with genetic action. More dramatically, we see the physical 
performance as measured by the time-averaged criterion count 
in Figure 5— 14. Here the effect of deprivation is most 
striking. Without genetic action, the deprived rule set 
never achieves criterion. With genetic action the rule set 
quickly outperforms the other cases moving toward the 
results of the previous simulations without deprivation.

As before, a comparison of the above average rules is 
instructive. Looking at Table 5-6, without the GA, we 
clearly see the reason for not achieving criterion: there 
are no effective braking rules. In the run IOLCS.4 the 
genetic algorithm has discovered some effective brakes
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Table 5-5
Initial Deprived Rule Set 
Runs IOLCS. 3 and IOLCS.4

<CONDITION1>:<CONDITION2>/<MES SAGE>

###0###  
##### 1# 0#00#0# 
# 00####  
1#0 # # 1# 
0# 1####  
# # 10# 0 # 
# 1# 0###  
##0####  
000# #0# 
# 1#####  
#o#o#o# 
# # 10### 
# 1# 0###  
#0 # # # 1#

#######
# 1# # # 0 #
# 1 #####
# # # # # 0 #
1# # # # 1#
# 0#####
# 1# 1###
01#####
0# # 1# 1#
# # # 1###
#####0 #
# # 1####
11#####
1# 1# # 1#
# 1 # 1 # 1 #

# # # # # # # 1 / 0 0 0 0 1 0 0 0
# # # # # # # 1 / 0 0 0 0 1 0 0 0
# # # # # # # 1 /0 0 0 0 1 0 0 0
## # # # # # 1 /0 0 0 0 1 0 0 0
# # # # # # # 1 /00001000
## # # # # # 1 / 0 0 0 0 1 0 0 0
# # # # # # # 1 / 0 0 0 0 1 0 0 0
## # # # # # 1 /00001000
# # # # # # # 1/00001000
# # # # # # # 1 /00001000
# # # # # # # 1 / 0 0 0 0 1 0 0 0
## # # # # # 1 /00001000
# # # # # # # 1 /00001000
## # # # # # 1 /00001000
# # # # # # # 1 /00001000

# # # # # # # 1 / 0 0 0 0 1 1 0 0  
# # # # # # # 1 / 0 0 0 0 1 1 0 0  
# # # # # # # 1 / 0 0 0 0 1 1 0 0  
# # # # # # # 1 /00 0 0 1 1 0 0  
# # # # # # # 1 / 0 0 0 0 1 1 0 0  
## # # # # # 1 / 0 0 0 0 1 1 0 0  
# # # # # # # 1 / 0 0 0 0 1 1 0 0  
## # # # # # 1 / 0 0 0 0 1 1 0 0  
## # # # # # 1 / 0 0 0 0 1 1 0 0  
## # # # # # 1 / 0 0 0 0 1 1 0 0  
# # # # # # # 1 / 0 0 0 0 1 1 0 0  
## # # # # # 1 / 0 0 0 0 1 1 0 0  
# # # # # # # 1 / 0 0 0 0 1 1 0 0  
# # # # # # # 1 / 0 0 0 0 1 1 0 0  
# # # # # # # 1 / 0 0 0 0 1 1 0 0

thereby permitting consistent criterion achievement. 

5.6 Summary

In this chapter, we have explored the history,
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principles of operation, and application of a learning 
classifier system (LCS).

Learning classifier systems are the product of 
Holland's continuing work on adaptive systems. A variety of 
researchers have applied and enhanced these ideas; however, 
the application in engineering-related domains has been 
limited.

We have seen how the LCS starts from the concept of a 
rule and message system, a type of production or rule-based 
system. Production systems are useful in operations domains 
because human operators seem to store their knowledge in 
rule-of-thumb form. As with other production systems, the 
rules are of the form, if <conditions> then <action>; 
however, in the LCS, conditions and messages are restricted 
to a fixed length string. Explicit pattern recognition is 
provided by extending the binary alphabet by a single, don't 
care symbol, #. Though simple in form, this system is both 
computationally complete and convenient.

Classifiers (rules) send messages which may be placed 
on the message list, potentially activating other rules or 
directing external action by setting an action trigger, an 
effector. The presence of a central message list is a 
distinguishing and important feature providing a universal 
communication.channel much like a bulletin board.

Since space is limited on the message list, some method 
must exist for choosing among competing messages. An 

apportionment of credit algorithm modeled after a
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competitive service economy insures that rules are properly 
evaluated and selected. Rules bid for the right to send 
their messages; winning bids are paid to classifiers which 
previously sent activating messages. In this way, a chain 
of middlemen forms from the environment to ultimate action. 
Competition keeps the system honest; useful classifiers live 

and prosper, while the unsuccessful lose the means to engage 
in commerce.

The payment made to and from a rule increases and 
decreases its net worth called its Strength. Strength is 
used to help determine a rule's bid; it also serves as a r 
rule's fitness in a genetic algorithm search for new rules. 
The GA adopted is similar to the one described earlier in 
the optimization chapters; however, we only reproduce a 
portion of the rule population at any one GA invocation. 
Differences in the reproduction and mutation methods are 
relatively minor and have been discussed in this chapter.

An LCS has been implemented and interfaced to a 
simulated environment: an inertial object traveling in a 
frictionless, one-dimensional space bounded by inelastic 
walls. The LCS decides whether to apply a force in the 

positive or negative direction, and it is rewarded if the 
force tends to center the object and bring it to rest. We 
choose this test problem to gain experience with the LCS in 
a simpler environment than the typical pipeline system.

Yet, we recognize that this problem is no pussy cat; a 
variety of rules working together are necessary for high
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performance.
In a variety of studies, the LCS has learned effective

rule sets for control in this domain. In studies with the
genetic algorithm enabled and disabled, the LCS has always
outperformed a random walk. Cases with genetic algorithm
have consistently outperformed those without; the
difference is accentuated if we look at the number of times
the centering goal is accomplished. Even in cases where a
random population has been deprived of its best rules, the
apportionment of credit mechanism rates the remaining rules
and the genetic algorithm searches for new, better rules.

These results build our confidence in the learning
classifier system as an artificial learning and decision-

♦

making device. In the next chapter, wejEurth'er test its
* . \

capability by applying the LCS method to the control of a 
highly variable pipeline environment.
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CHAPTER 6

PIPELINE CONTROL WITH A LEARNING CLASSIFIER SYSTEM

The idea of tying computers to control equipment to 
produce an 'automatic distribution system'. . . does not 
seem impossible to me. Present use of telemetric and 
remote control equipment has already gone a long way to 
produce just that. How much farther it will go in the 
future, and just how fast, is entirely a question of 
economics. - E. F. Trunk, Gas Engineer.
The words sound fresh, as if uttered only yesterday,

but, in fact, they appeared in Gas magazine [7] in 1955 as
part of a symposium on computers in the gas industry. The
meteoric ascent of the digital computer at that time
increased expectations for rapid automation of pipelining
and network operations to the point where total control of a
pipeline by computer seemed imminent:

It would appear to me that the future of computers in 
the gas industry is unlimited. . . . The only objection 
to having an automatic distribution system is money.

- J. P. Clennon, Gas Engineer.
While optimistic enthusiasm for new technology is laudable, 

in this case, it proved a bit premature. Though computers 
have played an increasing role in communications, 
simulation, and optimization in pipelining practice, the 
dream of an automatic system is not much closer to fruition 

today than it was in 1955.' Why is this so? Were our

'Some might argue that we are further away from this
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writers correct and we have simply not invested enough money
to go all the way to human-free, closed-loop systems? Money
was and has not been the only obstacle as was recognized
even back in 1955 by another symposium participant:

Within the foreseeable future, no computer will be able 
to perform any operation which has not, first, been 
anticipated by its designer and taught to the computer. 
Since unforeseen emergencies do occur, we cannot yet 
hope to build into a computer the ability to respond 
correctly to any situation that may arise. The possible 
consequences of computer response to conditions arising 
through some unpredictable accident are too serious to 
accept. While continuous automatic indication of ideal 
distribution dispatching may well be commonplace in 20 
or 10 or even 5 years, there must be retained at least 
one element of human judgement with full power to veto 
any operating order which the computer may produce.

- J. H. Starr, Gas Engineer.
As this author realizes, conventional computer systems are 
doomed for autonomous control applications because of their 
brittle nature.2 If we must anticipate all possible 
changes in the future before we can implement automatic 
systems, we cannot succeed because, surely, we will miss

goal because we have lost our enthusiasm for new computer 
discoveries and applications; everyone knows the way to 
apply computers in their fields, and people do not work on 
the innovations required for smarter machines. Even in AI 
(artificial intelligence) research— where we should expect a 
high level of innovation in this direction— one is 
overwhelmed by the prevalence of convention over invention, 
as evidenced by the burgeoning numbers of straight expert 
system applications.

2While this author recognizes the brittleness of 
conventional computer systems, he fails to recognize or 
admit the possibility of adaptive computers. He is also 
guilty of an implied double standard toward man and machine. 
For his automatic distribution system he requires the 
"ability to respond correctly to any situation." Does he 
require such perfection from his human dispatchers? We must 
overcome this double standard, one which is widely held, if 
we are to judge our computer efforts fairly.
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something or anticipate the future incorrectly. This truth 
places a premium on learning and adaptation; the.need for 
effective adaptation is crucial to have any hope for 
autonomous pipeline system control.

In this chapter, we strike at the heart of these issues 
directly by applying a learning classifier system to the 

control of a highly variable pipeline environment. Not only 
do we require the system to perform undcsr normal conditions, 
we also expect the system to detect the presence or absence 
of leaks on the pipeline. Furthermore, the test is made 
more difficult by our choice of starting conditions. Unlike 
Mr. Starr's computer system where everything must be 
anticipated beforehand, in our tests, nothing is 
anticipated; we start from a randomly generated initial 
state of mind. This places our focus right where it should 
be, on the system's ability to learn and adapt.

We start our journey down this promising path by 

describing the simulated pipeline environment and LCS 
interface particulars. While the environment is a simulated 
abstraction of a real environment, we are careful to 
preserve important characteristics which make good 

performance a challenge. After this description, we present 
results from a variety of simulations. Specifically, we 
look at normal operations— summer and winter— and leak upset 
operations. We compare results with and without the genetic 
algorithm to a random walk as we did in the previous 
chapter.
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6.1 Environmental Description
We develop a fairly complete, though simplified, 

pipeline environment to test the breadth of LCS techniques 
in pipeline control. In this section, we describe the 
pipeline model, load model, and supply alternatives, as well 
as the upset conditions which together comprise the pipeline 
environment.

Pipeline Model
For this portion of our study, we adopt a simplified 

model of the pipeline dynamics as compared to the transient 
optimization study in Chapter 4. We ignore gas inertia and 
use a simple volume, nonlinear resistance model of pipeline 
behavior. This permits simpler algebraic computations and 
larger time steps, thereby promoting more efficient 
computation. The LCS computations are demanding enough 
without burdening the little Apple II with a detailed 
pipeline model.

The model may be viewed simply as a balloon and pipe as 
shown in Figure 6-1. We write a simplified continuity 
equation for the balloon as follows:

Q i " Q0 = dV/dt
where: Q.- inflow

Q0 - oytflow
V - line pack 
t - time

We combine this with a no-inertia equation of motion:
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Fig. 6-1. Simplified Pipeline Model Schematic
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P2. - p2o = K«Q0»|Q0 |

where: P- - inlet pressure
P Q - outlet pressur
K - resistance

The two are linked by an isothermal equation of state:
V = c ^ P j  

where: c 1 = T #A*L/(P *T)

Together, these equations define our simplified pipeline 
dynamics. If we assume a linear variation of the quantity 
Qj - Q q from one time step to the next, we may integrate the 
set exactly using a trapezoidal rule integration. The 
detail of this formulation is straightforward; however, we 
do not pursue it further as this might be seen as an 
endorsement of this type of modeling for normal engineering 
work. More complete models such as the one developed in 
Chapter 4 and those referenced in Chapter 2 should normally 
be used. We adopt simpler models here because of the 
constraints of our computing environment.

Load Model
In our system, we have two types of load pattern which 

may occur: summer and winter. Both patterns are cyclical, 
repeating on a daily basis every time steps. The

seasons change every Tseason time steps and each major 
season change is preceded by a minor seasonal chanqe-- 

roughly equivalent to spring and fall— where the ambient 
temperature changes but the load pattern does not yet shift.
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We adopt a pattern of loading shown in Figure 6-2. The 
daily variation roughly corresponds to some results 
presented by Boyer [78] who used cluster analysis to 
identify typical daily usage patterns for a California gas 
utility.

Supply Alternatives
As in our earlier study of transient optimization, our

major control variable here is the pipeline inflow. We may
supply different levels of flow between Q„. and CL.min “max
depending upon the discretization of the effector. For this 
study, we permit 4 levels of flow to be specified by the 
LCS.

Upset Conditions

In addition to normal summer and winter conditions, the 
pipeline may be subjected to a leak upset. During any given 
time step, a leak may occur with probability Pieak* If a
leak occurs, the leak flow, Q]_eaj?f is removed from the
upstream junction; however, this is not directly reflected 
in any system measurements. The leak persists for T leak 
time steps.

Together, the pipeline, loading, supply alternatives, 
and upset conditions specify the pipeline environment.
While we have simplified it a great deal, we have not 
eliminated the high load variability normally encountered in 
practice; nor have we removed the unpredictable to make the
task easier. The LCS must learn to deal with both the
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expected and the unexpected if it is to be successful in our 
environmental abstraction. In the next section, we examine 
the LCS-environmental interface to see what kind of cues the 
learning system can get from the environment.

6.2 LCS-Environmental Interface
The LCS is presented with a fairly complete, yet fairly 

crude, picture of its environment. In this section, we 
examine that picture. We also specify the reward mechanism 
adopted to evaluate the LCS's decisions and actions.

Environmental Message
The environmental message template for this problem is 

shown in Table 6-1 along with the interpretations of the 
various codings. The system has complete, albeit imperfect 
and discrete, knowledge of its state including inflow, 
outflow, inlet pressure, outlet pressure, pressure rate 
change, season, time of day, time of year and current 
temperature reading.

Reward Mechanism

As in the inertial object study, we install an ever- 
vigilant computer procedure to consistently administer 
reward to the LCS= We describe the procedure in pseudo-code 
as follows;
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Table 6-1
Pipeline LCS 

Environmental Message Template

i I I I M  I II I I I I i ’I 1
| PI | QI | PO | QO | DP j TOD |TY|TP| TAG |

Variable Description min max
if of 

positions

PI inlet pressure 0 2000 2

QI inlet flow 0 80 2
PO outlet pressure 0 2000 2
QO outlet flow 0 80 2
DP u. s. pressure rate -200 200 2
TOD time of day 0 24 2
TY time of year 0 1 1
TP temperature 0 1 1
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Every Tgvalth time step
if there is a leak and it is detected then 

points=ptsleak else points=0 
if there is no leak and 
if it is winter and the pressure is ok then 

points=ptsnotover 
or if it is summer and the temperature is hi

and (pressure is lo-ok or 
lowering) then 

points=ptsnotover 
or if it is summer and temperature is lo

and pressure is hi-ok or rising 
then

points=ptsnotover 
or if pressure is below acceptable

but system is packing at max rate 
then >.

points=ptspressure 
or if pressure is above acceptable

but system is drafting at max rate 
then

points=ptspressure.
The pressure ranges described in this procedure are 

illustrated in Figure 6-3. In words, a variety of point 
rewards may be given to the LCS depending upon the action 
taken and the current state of the pipeline. If a leak is 
present and it is detected, a certain level of reward is 
given; no points are given for an undetected leak 
regardless of other actions. If no leak is present, points 
are awarded depending upon the season, pressure and 
temperature level. Additionally, if the pressure is out of 
range, but the system is packing or unpacking to return the 
system to an acceptable pressure, then another quantity of 
points is awarded.

The normal level of award, ptsnotover, is greater than 
the out-of-range value, ptspressure, because in the former, 
both the action and system state are correct, while in the
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Fig. 6-3. Pressure Levels for Reward and Penalty
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latter, only the action is correct. The leak award is 
generally higher than the other values because the 
occurrence of a leak is a relatively low probability event, 
thereby necessitating higher award for leak rule survival.

With a reward mechanism specified and LCS-enviror.mer.tal 
interface drawn, we proceed toward simulation results by 
first examining salient implementation details and system 
parameters.

6.3 Implementation Details
In this section, we attack some remaining details of 

implementation and summarize the LCS and environmental 
parameters used in the pipeline operations learning tests.

The pipeline environment has been coded in Pascal and 
hooked up with the learning classifier system of the 
previous chapter. Careful, modular programming eliminates 
the need for LCS modifications when arranging a new 
application. The skeletal description of the LCS, presented 
as Appendix B, is still an accurate representation of the 
LCS code, except that the environment is replaced by the 
pipeline operation environment also presented in Appendix B.

The learning system parameters of the previous chapter 
have been adapted for this study. must be scaled to
reflect the longer message length and higher possible 

maximum matchscore. Other length dependent values have been 
adjusted to reflect the new message length. All the 
parameters are summarized in Table 6-2.

The environmental parameters are displayed in Table

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



186

Table 6-2
LCS Parameters 

for
Pipeline Operation Tests

nclass = 4  ̂ (normal), 60 (leak runs) 
1 (message length) = 16

nmess - ®
xlo = 1

xhi " 14
^generality “ ®«75

pmutation = C)-001 
Cbid = 0.0156

°bid s 1,0 
nreplace " 3

ctax = °*002 
T g a  "  2 0 0

Teval " 1
PROPORTION = 0 . 0 5  (normal), 0.0333 (leak runs)

6-3. The line is of moderate length, 94.7 miles, and 
diameter, 1.0 foot. As we saw previously, the load varies 
greatly from summer to winter. Furthermore, we note that 

the leak flow Q^eak a si9n ificant multiple of the 
normal through flow. This • flow rate is realistic as it 

represents the blowdown rate we might see if we were to 
punch a 4 inch diameter hole into the line at a pressure of 
1000 psia.
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Table 6-3
Environmental Parameters 

for
Pipeline Operation Tests

pressure units
flow units = MMCFD

dt = 1 hour 
gas gravity = 0.6 (relative to air) 

P e4.o = 14.73 'PSIA 
• 5 2 0 ■

P „ „ ^  = 1500 PSIA 
= 1000 PSIA

Pmin = 500 PSIA
Pipe length = 500000 feet 

Pipe diameter = 1.0 feet 
f factor = 0*01 

Gas temperature = 520 K

K1 = 300 (compressor coefficients) 
K2 = 295 
K3 = 0.25

T. •. = 24
T . ^ S i i ?  = 480seasons

LEAKQ = 250 MMCFD
P leak = 0,2

ptsnotover = 6 
ptspressure = 5

ptsleak = 12 (leak runs only)

Summer Load (time,load)
( 0,25) ( 3,20) ( 5,25)
(10,35) (12,25) (17,20)
(20,25) (22,30) (24,25)

Winter Load

(0,50) (3,40) (5,50)
(10,70) (12,50) (17,40)
(20,50) (22,60) (24,50)
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6.4 Normal Operating Simulations
With a well-specified learning system and test 

environment established, we proceed with several learning 
tests under normal operating conditions (no leaks). As in 
the inertial object tests, we look at learning with and 
without genetic algorithm and compare those results to a 
random walk through the decision space.

For this series of tests we generate an initial 
population of rules of size, n c lass^O; ten rules are 
reserved for each of the four possible decisions 
corresponding to the four possible input flow rates. The 
rules are restricted to the following form:

RRRRRRRRRRRRRR1 1 ' . # # # # # # # # # # # # # # }  1/< ACTION MESSAGE >
As in the inertial object study, the R signifies a position 
chosen at random with the generality bias probability,

^generality'
In the first set of learning tests, we start from the 

initial population presented in Table 6-4. In run P0LCS.1, 
the learning proceeds with apportionment of credit only (no 
GA). In run POLCS.2, both kinds of learning are enabled. 
Results from these tests are presented in Figure 6-4, a 
graph of time-averaged total evaluation vs. time. The 
pattern displayed in this figure is familiar; both lea rning 

tests outperform the random walk. Furthermore, while 
outperformed at first, the run with genetic algorithm soon 
beats the case without. This is not unexpected as we 

obtained similar results in the inertial object simulations.
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Table 6-4
Initial Rule Population 
Runs P0LCS.1 & POLCS.2

# 100##########  
1###1 
# 0## # # # 0 # 1###1 
1# 0# # # # # 10# 1##  
# ##0 # # 0# 1####0  
# 0# # # 1# 0 # # # 0##  
0# 1# 0 0 0#######  
^#0# 1 1 1 0 # 1##  
1# # # # # # # 1# 0 ###  
# # # 0# 0########  
# 0# # 1# # # # # # 1## 
1# # # # # 1#######  
# # # # # 110# # # 11# 
# # # # # #1#######  
11# # # # # # # 1####

## 0# # 1# # # 1 1 0 0 #

# 1001# # 1 1#####  
# 1# # # # # # 0#####  
# # 0# # # # # # # # #0# 
1# # # 1# # # # # 0 1##  
1 ####### 1 #####  
1# # # # 1# # # # # 1 1 # 
#######  1### 10# 
#### # # # # # # 01# 1 
# # # 0 0 1 # # 1#####  
0 ##1###1 0 0#### 
#### # # 1#######  
# # # 1# # 0# # # # 0## 
# # # 1# 1########  
# # 1# # 0# # 1###00 
1# 0 1 ## # # # # 0 # # 0  
###### i#io###i 
0 # 110# # # # # 10#0 
# # # # # # # 1 # # # 1 ##  
# 1## 0#####11#1

# # 11# # 11######  
1# # # # 1# # # 1 1 # # 0

##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############
##############

1 / 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
i / 0 1  1 0 0 0 0 0 0 0 0 0 0 0 0 0  

1 / 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0  

1 / 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 / 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

To further explore why this-occurs, we delve into the 
particular rules learned by the system. In Table 6-5, we
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Fig. 6-4. Time-averaged TOTALEVAL vs. Time. Normal 
Operations. Runs POLCS.l & POLCS.2
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see the top rules, those exceeding 3 times the average 
strength at each run's end. Comparing the run POLCS.1 (no 
GA) rules to the environmental template, the rules seem to 
be a hodgepodge of not nonsensical, but not entirely clear, 
rules. For example, the two top rated rules translate 
loosely as follows:

If [ (P^ is hi)
and (DP^/dt is (very negative or moderately 
positive)) ] 

then [ set inflow=Q1 ]

If t (P^ is low) and (Qq is low) and (temp is hi) ] 
then [ set infla»=Q 1

Although the rules are not usually counterproductive,, they 
are by themselves, not complete. This is the best wo can 
expect when we start from a random state of mind, and we 
permit no refinement of the rules through genetic action; 
the system must choose the best of the bunch to try to cover 
the operating conditions it sees.

By contrast, when we permit genetic action, the best 
rules in run POLCS.2 start to approach our intuition of how 
a system should be controlled. For example, the two best 
rules of run POLCS.2 translate as follows:
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Table 6-5
Top Rule Subset & Strengths (End of Run)

Runs POLCS.1 & POLCS.2

POLCS.1 (no GA)

1:##############11/1010000000000000 54.30
#0#####0#1#jj!#11 1 :############## 1 1/1 1 10000000000000 35.2o

1:##############11/0010000000000000 28.95
d M # # 0 j W # # 1 1 # 1 1 1/0010000000000000 26.79

POLCS.2 (w/ GA)
#0############1 1:£#############1 1/1 1 10000000000000 65.44

1 ###1 1/0010000000000000 60.31 
######1#10####111 # # # # # # # # # # # # # # }  1/0010000000000000 37.07

if [ (P.. is low) ] then [ set inflow=Qm ] i max
if [ (dP./dt is (extremely negative or moderately

positive)) ] 
then [ set inflow=Qm ^n ]

These simple rules, a simple pressure threshold and a multi
level rate threshold, seem more natural than the earlier 
mixture of complex rules (The pressure rate rule makes more 
sense than it first seems because the extremely negative DP/ 

dt is not seen under the normal conditions of this run). 
Judging by the relative performances, these rules are also a 
good bit more effective than their no-GA counterparts.

A confirmation set. of runs is started from a different, 
randomly generated set of rules, runs POLCS.3 and POLCS.4. 
Again, the comparison of time-averaged total evaluation
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yields the same result (shown in Figure 6-5): the run with 
genetic algorithm outperforms the run without, and both 
outperform the random walk.

6.5 Leak Detection Simulations '——— —— ——— _r“ 1
To test the breadth of the LCS method, we see if the 

system can learn, not only normal operating rules, but also 
rules that detect leaks. Recall that the LCS has only a 
limited discretization of its environment to work with and 
that no rules have been implanted to help it find its way. 
Certainly, if the system can learn to detect leaks, we have 
reason to hope that we can teach it many other tasks 
required in a real operating environment.

In the leak runs, we again start from a randomly 
generated set of rules. In these tests, 40 are devoted to 
the four flow effectors, and 20 are allocated to the two 
external leak messages: leak is present and no leak is 
present. Once again, we compare performance with and 
without a genetic algorithm to a random walk. In runs 
POLCS.5 (no GA) and POLCS.6 (with G A ) , history repeats 
itself with the GA run outperforming the no-GA run, and both 
outperforming the random walk on the basis of time-averaged 
total evaluation shown in Figure 6-6. It is also 
instructive to look at the percentage of leaks alarmed 
correctly in Figure 6-7. without the genetic algorithm, the 
percentage of leaks alarmed correctly starts out very high 
and remains stationary throughout the simulation. By 
contrast, the simulation with genetic algorithm starts out
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lower and approaches (and would eventually surpass) the no- 
GA results on this basis. This seems surprising until we
examine the percentage of false alarms (shown in Figure
6-8). The high percentage of correct leak detections for 
run POLCS.5 (no GA) is bought at the expense of a very high 
(worse than random) percentage of false alarms. With the 
genetic algorithm enabled, the system learns to not alarm 
falsely at the same time it learns to detect correctly.
This results in the large differential in point score 
between the two simulations.

If we examine the rule set at the end of run POLCS.6 
(with GA) we see the reason for its high level of success in 
detecting leaks. Among the leak rules, those with a leak or 
no leak message effector, two rules predominate at the end 
of the run:

if [ anything ] then [ send no leak message ]

if [ (P^ is low) and (?o is low) and
(dP^/at is very negative) ] 

then [ send leak message ]
In other words, by default the system sends the no leak 
message; the leak message is only sent under very specific 
conditions. We note that the leak rule designed by the 
system is not among the original random population. 
Furthermore, the rule is the ideal leak detection rule for 

this system because the specified conditions are precisely 
those the system will see with the magnitude of leak
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imposed.
A confirmation set of runs is performed using a 

different, randomly generated, rule population. The results 
are presented in Figures 6-S (time-averaged total 
evaluation), 6-10 (% leaks correct), and 6-11 (% false 
alarms). In these cases, the run with GA does not find the 
ideal leak detection rule; however, its GA-refined rule set 
still beats random and no-GA performance by a significant 
margin on the basis of time-averaged total evaluation. In 
the other measures, percentage leaks correct and percentage 
false alarms, run POLCS.8 (with GA) outperforms run POLCS.7 
(no G A ) ; by contrast, in the previous runs, the no-GA case 
outperformed the GA case in the percentage leaks detected 
measure, but this was countered by the high percentage of 
false alarms encountered. In the present cases, GA 
perfprmance is consistently better than no-GA performance in 
all measures, although the differences are less dramatic 
than in the previous cases. Examination of the end-of-run 
high performance rules shows why the runs differ: in runs 
POLCS.7 and POLCS.8 there is no evidence of the crucial leak 
detection schema, "if [very negative pressure rate] then 
[send leak message]." The schema did not exist in the 
initial population (In fact, the schema "very negative 
pressure rate" did not exist in any rule in these runs). 
Furthermore, generation of this schema (via GA) during the 
run is a fairly low probability event because it requires a 

mutation at one or two specific locations or a cross at a
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specific site between two specific alleles in different 
rules. The problem here (if there really is one— the GA run 
did outperform the no-GA run, and both outperformed the 
random walk.) is the small population, size. Higher order 

schemata are not present in the starting population in 
sufficient quantities because of the small population sizes 
adopted. Larger populations should be used to provide 
sufficient expected numbers of higher order schemata in 
starting populations generated at random. Small populations 
have been used in this study to keep computational 
requirements (which qo up as the product of rule population 
size and the message list length) to a minimum. The use of 
large populations in future applications will rectify this 
situation.

6.6 Summary
In this chapter, we have applied a learning classifier 

system (LCS) to the control of a varied and uncertain 
pipeline environment. Starting from randomly generated 
rules, the system has learned, not only to operate under 
normal summer and winter conditions, but also it has learned 
to detect the presence or absence of leaks with increasing 
certainty.

In two series of normal operating condition tests, the 
LCS has consistently outperformed a random walk. The 
simulations with GA have, once again, improved upon the 
initial rule set by outperforming the runs without GA. 
Examination and comparison of the best rules has
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demonstrated the increased effectiveness of the GA- 
discovered rule set.

Two sets of leak detection runs have been performed. 
Starting from a random rule set, the learning system has 
outperformed the random walk. The GA runs have outperformed 
the no-GA runs. Examination of the leak detection rules has 
shown definite movement toward pressure rate leak detection 
as we should expect. Indeed, in one of the two leak runs 
the ideal leak detection rule has been discovered even 
though it did not exist in the original rule population.
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CHAPTER 7

CONCLUSIONS

Our goals in this study have been clear: we have 
sought robust learning and decision algorithms for operating 
a gas pipeline. We have emphasized the need for 
robustness— the efficiency and breadth of performance we 
observe in human pipeline operators— because the varying 
pipeline environment is fraught with change and uncertainty; 
any pre-programming, modeling, or a priori decision making 

is doomed to failure when conditions change, thereby 
violating the assumptions contained in the programs, models, 
or decision rules we so carefully constructed at an earlier 
time.

Although it is easy to talk about algorithmic 
efficiency and breadth, finding examples of robust 
adaptation procedures is not so simple; a survey of 
methodologies has shown that most common artificial 
procedures have two shortcomings: locality and structural 

rigidity. Because of these shortcomings, we have abandoned 
the frontal attack— traditional optimizers and the learning 
systems that use them— and instead, have staged a two 

pronged assault on our objective.
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First, we have tested the flanks by investigating a 
genetic algorithm in two pipeline optimization applications. 
This algorithm has demonstrated more of a global flavor than 
other search procedures we commonly encounter.

Second, we have struck at the heart of structural 
rigidity through the development and application of a 
learning classifier system, first in an inertial object 
environment and then in a pipeline environment. The 
learning classifier system avoids rigidity because it is a 
rule-based computational scheme that, in a sense, programs 
itself with better and better rules.

In this chapter, we review our progress in genetic 
algorithm and learning classifier system applications. We 
also recommend some important directions for the 
continuation of this work.

7.1 A Genetic Algorithm and Pipeline Optimization
In our bout with a genetic algorithm (one of a class of 

algorithms) we have detailed its mechanics and effect. 
Generally, genetic algorithms imitate the mechanics of 
natural genetics by combining a survival-of-the-fittest 
notion (reproduction) with a randomized, though structured, 
information exchange (crossover) among strings in a 
population. These operators involve nothing more complex 
than string copying and partial string swapping, yet, we 

have seen how this simple process effects a rapid search 
among alternatives by independently sampling building 
blocks, short high strength schemata, at near-optimal rates.

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited w ithout perm iss ion .



207

Intuitively, this process is appealing because it is a kind 
of innovative search where new ideas are boldly formed from 
the best pieces of our old ideas.

Our genetic algorithm also contains a strictly random 
operator, mutation, thrown in as an insurance policy against 
unrecoverable loss of information. Many are surprised that 
this operator only plays a secondary insurance role in the 
search process; genetic algorithms are not coin flipping by 
a fancy name. Crossover and reproduction carefully exploit 
existing information to search for improvement in future 
generations.

The three operator (reproduction, crossover, and
mutation) genetic algorithm has been tested on two pipeline
optimization problems, steady state operation of a serial
line and transient operation of a single line. In both
cases, in a variety of runs, near-optimal results have been
found after examining an infinitesimal fraction (10~^ - 

-7-10 %) of the search space.

These results have established the genetic algorithm 
approach as a practical methodology in engineering 
optimization. They also have bolstered our confidence in 
using the genetic algorithm as a component in a more 
flexible learning system, a learning classifier system.

7.2 A Learning Classifier System Controls a Pipeline

A learning classifier system (LCS) has been developed 
to control a simulated pipeline system. An LCS is a 
learning system that creates, evaluates, and exploits string
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rules for high performance interaction with some arbitrary 
environment.

Our LCS learns in two ways. First, existing rules are 
evaluated by an apportionment of credit algorithm modeled 
after a competitive service economy. Rules bid to become 
active and pay their bids to message-sending predecessors.
In this way, rules gain or lose accumulated wealth depending 
u i their ability to set up reward from the environment.

Second, the system learns new rules by using a genetic 
algorithm similar to the one in the optimization studies.
New rules are created by reproducing, crossing, and mutating 
rules in the current rule set. Thus, new rules are 
generated from the best pieces of the old; they are then 
inserted into the population and evaluated by the 
apportionment of credit mechanism.

In two different environments, an inertial object and a 
pipeline, an LCS has learned effective rules for high 
performance control. In the inertial object environment, 
both braking rules and restoration rules have been learned 
to center the inertial object after it is disturbed from 
rest. In the pipeline environment, rules have been learned 
to control the pipeline during normal summer and winter 
conditions; the system also learns how to detect leaks with 
increasing effectiveness. In all cases, the learning has 
proceeded from a random state of mind; no rules have been 
implanted to help the system learn its task more easily.
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7.3 What Needs to be Done?
The coming application of genetic methods in tougher 

problem domains will demand fundamental study of a number of 
genetic operators and mechanisms. Crowding, locus 
rearrangement (inversion), and dominance mechanisms should 
be studied empirically to verify the theories advanced to 
date (ANAS). Crowding is particularly important in multi
modal problems (and learning systems) because it divides 
population slots among different peaks. Locus rearrangement 
operators like inversion should be studied to verify their 
usefulness in GA-hard problems; Bethke's methods may be 
used to design GA-hard codings of GA-easy functions. 
Dominance operators should be studied to naturally prevent 
allele loss without disruptive mutation rates.

The LCS system may be extended simply to achieve more 
computational convenience. At present, recognition of 
environmental patterns and data is easy; transformation of 
data is not. We suggest the extension of the LCS alphabet 
by a single shift and transfer character, the dollar sign $. 
In a condition a $ behaves like a # .  In a message, it 
transfers data from the condition side (processing left to 

right) to the open $ slots in the message side. Such an 
operation is necessary for convenient formation of time 

histories and other transformed representations of incoming 
data.

Beyond this we should strive to unify messages, 
classifiers, and the algorithms that process them. If we can
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extend the rule and message system simply, so the basic 
genetic operators (and AOC?) may themselves be written in 
rule form, we can achieve the ultimate in flexibility, a 
system that learns to learn as it learns to perform.

7.4 Are the GA and LCS Ready for Gas
Pipeline Control and Vice Versa?
Yes, maybe, and probably not.
In this study, we have demonstrated the practicality of 

genetic algorithms in pipeline engineering optimization 
applications. If you have a model of your system, well- 
defined constraints, and some appropriate objective 
function, a genetic optimizer is a nice little black box you 
plug into. In addition to being easy to use, we have also 
seen how the GA does not rely upon the restrictive 
assumptions of other methods (unimodality, existence of 
derivatives, stage decomposability, piecewise linearity, 
etc.) Indeed, genetic algorithms stand ready, today, to 
perform practical production optimization studies on 
pipelines and other engineering systems.

Learning classifier systems are, perhaps, not quite as 
ready to start performing their roles as expert consultants 
and knowledge storehouses; however, the progressive pipeline 
manager may want to keep abreast of their progress and maybe 
start a pilot investigation into their applicability.

In a pilot study, we should keep both the application 
and our expectations down to a reasonable size. 

Implementation of an LCS on an isolated stub line or a
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simple main line is feasible; however, as with an infant, we 
should not expect too much too soon. We should not expect 
an LCS to solve problems that we cannot solve (although this 
seems to be one popular success criterion for AI research). 
Instead, if the system learns to advise its operators in a 
consistent manner, we should be pleased. If the system 
starts to take on some of our intuitive knowledge in its 
rule set, we should be modestly ecstatic.

Is the pipeline community ire"ady for genetic algorithms 
and learning classifier systems? As we have already 
speculated, probably not. The notion of using artificial 
genetics to optimize pipeline operations is sufficiently 
bizarre to raise a few eyebrows; however, the resistance to 
these techniques will probably be the same resistance that 
faces other optimizers. Pre-programmed models and objective 
functions have a difficult time representing the real world. 
As a result, human dispatchers tend to distrust optimizer 
recommendations and rely on their own intuition.
Nonetheless, genetic optimizers can be a useful tool in the 
hands of the skilled dispatcher or engineer; furthermore, 
the innovative search process underlying the genetic 
algorithm may appeal to the operator's own sense of 
innovation.

The notion of a learning system that learns rules of 
thumb similar to the dispatcher will probably face a 

different, less justified, kind of resistance. Dispatchers 
may fear for their jobs, discomfited by the prospect of an
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infallible silicon surrogate. Although we understand these 
fears, our goals run in a different direction. A learning 

system should replace no dispatchers; it should aid the 
decision-making process and act as a storehouse of 
pipelining knowledge. This should ease, not teplace, the 
dispatcher’s job, while it adds continuity of experience to 
the pipelining workplace.

Regardless of the time and place of application of this 
research, its pursuit can only help with our understanding 
of intuitive gas dispatching and the performance of other 
complex technical tasks. Our parting hope is twofold;
First, we hope this work spurs other engineers to carry on 
both applied and basic research in this field. Second, we 
hope it encourages the trial of these techniques on an 
operating pipeline system, because in engineering, practical 
application is the certain touchstone of success.
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APPENDIX A

SKELETAL CODE FOR GENETIC OPTIMIZATION 
PROGRAMF GENESS AND GENETR

In this appendix, the hierarchy of coding is presented 
for t'he genetic optimization work of Chapter 4.
Relationships are presented in Pascal-like pseudocode with 
procedures described in brief comments— (* comment enclosed 
like this *). We proceed, presenting code from general to 
particular, in the order of program flow.

Program GENESS

program geness; (* SS Serial Problem *) 
begin (* main *)

input; (* read GA parameters *)
creation? (* create a string population and initialize 

problem *)
generation; (* perform subsequent generation

calculations *)
end.

procedure creation; 
begin

randomize; (* shake up random number generator *) 
randomstart; (* randomly initialize string population

*)
initialreport? (* parameter printout *) 
initmodel? (* initialize the model #) 
fitnessevaluation; (* evaluate gen-0 fitness *) 
greport; (* generation report *) 
plotreport; (* initial plot report *) 

end;
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procedure generation; 
begin

for ngen := 1 to maxgen do 
begin (* generation loop *)

reproduction; (* fitness proportionate reproduction
and mutation *) 

crossover; (* mate and cross reproduced strings *) 
fitnessevaluation; (* evaluate fitness over

population *) 
greport; (* generation report *) 
plotreport; (* plot report *) 
advance; (* oldpop := newpop *) 

end (* end loop *)
end;

procedure fitnessevaluation; 
begin

for [all strings] do 
begin

unpackchrom; (* unpack chromosome (string) *) 
decodeparms; (* decode string to sequence of real

parameters *) 
modelss; (* steady state model calculations and 

cost accounting *) 
end; (* string loop *) 

sort; (* order strings by fitness , hi to lo, for 
convenience not necessary *) 

countcalc; (* calculate reproduction count with 
probabilistic rounding *)

end;

procedure modelss; 
begin

flow; (* calculate flow and pressure for each pipe- 
compressor *) 

horse; (* calculate horsepower *) 
constraint; (* calculate penalty cost *)
[calculate fitness] 

end;

procedure countcalc; 
begin

[calculate average fitness of population];
[calculate fitness count with probabilistic rounding 

scaling (max=2) until all slots filled]
end;

Program GENETR

The transient program is similar in structure except f'or
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the model. The following code replaces procedure modelss; 
otherwise the structures are identical.

procedure modeltr; (* transient single line problem *) 
begin

modelinit; (* initialize model *) 
modelexec; (* execute model *) 
costcalc; (* cost accounting calculations *) 
summaryreport; (* summary report, if flagged *) 

end;

procedure modelinit; 
begin

initreset; (* reset time and accumulator variables *) 
initsstate; (# set initial steady state conditions *) 
report; {* variables report *) 

end;

procedure modelexec; 
begin

while [time is less than maximum] 
begin

timecalc; (# calculations in time *) 
report; (* variables report *) 
advance? (* advance pressure-flow vars *) 

end (* time iterations *)
end;

procedure timecalc; 
begin

interior; (* interior point calculations in pipe *) 
boundary; (* boundary junction calculations *) 
statistics; (* calculate run statistics *) 

end;
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APPENDIX B

SKELETAL CODE FOR 
LEARNING CLASSIFIER SYSTEM (LCS)

INERTIAL OBJECT AND PIPELINE OPERATIONS ENVIRONMENTS

In this appendix, the program hierarchy is presented 
for the learning classifier system work of Chapters 5 and 6. 
Relationships are presented in Pascal-like pseudocode with 
procedures described in brief comments— (* comment enclosed 
like this *). We proceed from general (main program) to 
particular (lower level procedures) in the the normal order 
of program execution.

Program LCSIO (Inertial Object)

program lcsio; (* Inertial Object LCS *) 
begin (* main *)

initialization; (* initialize the LCS *) 
initenvironment; (* initialize the environment *) 
report; (* t=0 report *)
repeat (* thought iteration *) 

lcs; (* LCS computations *)
efftocontrol; (* set actions from effectors *) 
timekeeper; (* keep time and flags for ga, report,

eval *)
environment; (* environmental calculations and

display *)
statetomessage; (* place new environmental state in

env. message *) 
reinforcement; (* reward active e-classifiers *) 
report; (* report on iteration *) 

until haltflag (* end of run *) 
end.

procedure initenvironment; 
begin

initenvdata; (* read environmental data *) 
initenvreport; (* initial env. report *) 
initdisplay; (* set up screen display *) 

end;
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procedure initialization; 
begin

randomize; (* shake up random number generator *) 
initlcs; (* initialize the lcs *) 

end;

procedure initlcs; 
begin

readdata; (.* read in LCS parms and data *) 
initreport; (* printout initial LCS parms *) 

end;

procedure lcs; 
begin

performance; (* rule and message system and aoc *) 
if gaflag then ga; (* genetic algorithm if enabled *) 

end;

procedure performance; 
begin

matchclass; (* match classifiers to messages and build
pointer list *) 

bid; (* construct active list and hold noisy bidding *) 
sort; (* pick best active classifiers by bid *) 
effector; "(* check best actives for e-classifiers and 

arbitrate among mutually exclusives *) 
payment; (* payment to previous message senders - 

clearinghouse and taxation *) 
statistics; (* update avg, max, min stats *) 

end;

procedure ga; 
begin

pickmofon; (* pick potential replacement candidates *) 
repeat

mating; (* selection, crossover, mutation *) 
until [ enough mates ] 

end;

procedure mating; 
begin

select; (* 2 mates *)
crossover; (* crossover and mutation *) 
replacement; (* the new children *) 

end;

procedure environment; (* inertial object version *) 
begin
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evalkeyboard; (* keyboard commands and evaluation *) 
model; (* inertial object model calculations - f=ma *) 
evaluation; (* automatic evaluation procedure at

specified intervals *) 
criteval; (* criterion counting mechanism *) 
display; (* screen display update *) 

end;

Pipeline Operations Environment
The pipeline LCS differs from the inertial object LCS 

in the environment installed. The following is a 
description of those differences.

procedure environment; (* pipeline operations version *) 
begin

modelhandler; (* seasons, leaks, time of day, year *) 
evalkeyboard; (* keyboard commands and evaluation *) 
loadclac; {* load calculation *) 
pipel; (* pipe model calculations *) 
evaluation; {* automatic evaluation procedure at

specified intervals *) 
display; (* update display *) 

end;
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