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From foraging for food to learning complex games, many 
aspects of human behaviour can be framed as a search prob-
lem with a vast space of possible actions. Under finite search 
horizons, optimal solutions are generally unobtainable. Yet, 
how do humans navigate vast problem spaces, which require 
intelligent exploration of unobserved actions? Using various 
bandit tasks with up to 121 arms, we study how humans search 
for rewards under limited search horizons, in which the spatial 
correlation of rewards (in both generated and natural environ-
ments) provides traction for generalization. Across various 
different probabilistic and heuristic models, we find evidence 
that Gaussian process function learning—combined with 
an optimistic upper confidence bound sampling strategy— 
provides a robust account of how people use generalization 
to guide search. Our modelling results and parameter esti-
mates are recoverable and can be used to simulate human-like  
performance, providing insights about human behaviour in 
complex environments.

Many aspects of human behaviour can be understood as a type of 
search problem1, from foraging for food or resources2 to searching 
through a hypothesis space to learn causal relationships3, or more 
generally, learning which actions lead to rewarding outcomes4. 
In a natural setting, these tasks come with a vast space of possi-
ble actions, each corresponding to some reward that can only be 
observed through experience. In such problems, one must learn to 
balance the dual goals of exploring unknown options, while also 
exploiting familiar options for immediate returns. This frames 
the exploration–exploitation dilemma, typically studied using the 
multi-armed bandit problems5–8, which imagine a gambler in front 
of a row of slot machines, learning the reward distributions of each 
option independently. Solutions to the problem propose different 
policies for how to learn about which arms are better to play (explo-
ration), while also playing known high-value arms to maximize 
reward (exploitation). Yet, under real-world constraints of limited 
time or resources, it is not enough to know when to explore; one 
must also know where to explore.

Human learners are incredibly fast at adapting to unfamil-
iar environments, where the same situation is rarely encountered 
twice9,10. This highlights an intriguing gap between human and 
machine learning, in which traditional approaches to reinforcement 
learning typically learn about the distribution of rewards for each 
state independently4. Such an approach falls short in more real-
istic scenarios in which the size of the problem space is far larger  
than the search horizon and it becomes infeasible to observe all 
possible options11,12. What strategies are available for an intelligent 

agent—biological or machine—to guide efficient exploration when 
not all options can be explored?

One method for dealing with vast state spaces is to use function 
learning as a mechanism for generalizing previous experience to 
unobserved states13. The function learning approach approximates 
a global value function over all options, including ones not expe-
rienced yet10. This allows for generalization to vast and potentially 
infinite state spaces, based on a small number of observations. In 
addition, function learning scales to problems with complex sequen-
tial dynamics and has been used in tandem with restricted search 
methods, such as Monte Carlo sampling, for navigating intractably 
large search trees14,15. Although restricted search methods have been 
proposed as models of human reinforcement learning in planning 
tasks16,17, here, we focus on situations in which a rich model of envi-
ronmental structure supports learning and generalization18.

Function learning has been successfully utilized for adaptive gen-
eralization in various machine learning applications19,20, although 
relatively little is known about how humans generalize in vivo (for 
example, in a search task, but see ref. 8). Building on previous work 
exploring inductive biases in pure function learning contexts21,22 
and human behaviour in univariate function optimization23, we 
present a comprehensive approach using a robust computational 
modelling framework to understand how humans generalize in an 
active search task.

Across three studies using univariate and bivariate multi-armed 
bandits with up to 121 arms, we compare a diverse set of computa-
tional models in their ability to predict individual human behav-
iour. In all experiments, the majority of subjects are best captured 
by a model combining function learning using Gaussian process 
regression with an optimistic upper confidence bound (UCB) sam-
pling strategy that directly balances expectations of reward with the 
reduction of uncertainty. Importantly, we recover meaningful and 
robust estimates about the nature of human generalization, showing 
the limits of traditional models of associative learning24 in tasks in 
which the environmental structure supports learning and inference.

The main contributions of this paper are threefold:

 (1) We introduce the spatially correlated multi-armed bandit as a 
paradigm for studying how people use generalization to guide 
search in larger problem spaces than traditionally used for 
studying human behaviour.

 (2) We find that a Gaussian process model of function learning 
robustly captures how humans generalize and learn about the 
structure of the environment, where an observed tendency  
towards undergeneralization is shown to sometimes be beneficial.

Generalization guides human exploration in vast 
decision spaces
Charley M. Wu   1*, Eric Schulz   2, Maarten Speekenbrink   3, Jonathan D. Nelson   4,5 and  
Björn Meder   1,5

NaturE HuMaN BEHaviour | www.nature.com/nathumbehav

mailto:cwu@mpib-berlin.mpg.de
http://orcid.org/0000-0002-2215-572X
http://orcid.org/0000-0003-3088-0371
http://orcid.org/0000-0003-3221-1091
http://orcid.org/0000-0002-1956-6691
http://orcid.org/0000-0002-9326-400X
http://www.nature.com/nathumbehav


Letters NAtUre HUmAN BeHAviOUr

 (3) We show that participants solve the exploration–exploitation 
dilemma by optimistically inflating expectations of reward by 
the underlying uncertainty, with recoverable evidence for the 
separate phenomena of directed (towards reducing uncer-
tainty) and undirected (noisy) exploration.

results
A useful inductive bias in many real-world search tasks is to assume 
a spatial correlation between rewards25 (that is, clumpiness of 
resource distributions26). This is equivalent to assuming that similar 
actions or states will yield similar outcomes. We present human data 
and modelling results from three experiments (Fig. 1) using uni-
variate (experiment 1) and bivariate (experiment 2) environments 
with fixed levels of spatial correlations, and also real-world envi-
ronments where spatial correlations occur naturally (experiment 3). 
The spatial correlation of rewards provides a context to each arm of 
the bandit, which can be learned and used to generalize to not-yet-
observed options, thereby guiding search decisions. In addition, as 
recent work has connected both spatial and conceptual representa-
tions to a common neural substrate27, our results in a spatial domain 
provide potential pathways to other search domains, such as contex-
tual28–30 or semantic search31,32.

Experiment 1. Participants (n =  81) searched for rewards on a 1 ×  30 
grid world, in which each tile represented a reward-generating arm 
of the bandit (Fig. 1a). The mean rewards of each tile were spatially 
correlated, with stronger correlations in smooth than in rough 
environments (between subjects; Fig. 1b). Participants were either 
assigned the goal of accumulating the largest average reward (accu-
mulation condition), thereby balancing exploration–exploitation, or 
of finding the best overall tile (maximization condition), an explora-
tion goal directed towards finding the global maximum. In addition, 
the search horizons (that is, number of clicks) alternated between 
rounds (within subject; short =  5 versus long =  10), with the order 
counterbalanced between subjects. We hypothesized that if function 
learning guides search behaviour, participants would perform better 
and learn faster in smooth environments, in which stronger spatial 
correlations reveal more information about nearby tiles33.

Looking first at sampling behaviour, the overall distance between 
sequential choices was more localized than chance (t(80) =  39.8, 
P <  0.001, d =  4.4, 95% CI: 3.7–5.1, Bayes factor (BF) >  100; Fig. 1c; all 
reported t-tests are two sided), as has also been observed in semantic 
search31 and causal learning3 domains. Participants in the accumula-
tion condition sampled more locally than those in the maximization 
condition (t(79) =  3.33, P =  0.001, d =  0.75, 95% CI: 0.3–1.2, BF =  24), 
corresponding to the increased demand to exploit known or near-
known rewards. Comparing performance in different environments, 
the learning curves in Fig. 1d show that participants in smooth 
environments obtained higher average rewards than participants in 
rough environments (t(79) =  3.58, P <  0.001, d =  0.8, 95% CI: 0.3–1.3, 
BF =  47.4), consistent with the hypothesis that spatial patterns in the 
environment can be learned and used to guide search. Surprisingly, 
longer search horizons (solid versus dashed lines in Fig. 1d) did not 
lead to higher average reward (t(80) =  0.60, P =  0.549, d =  0.07, 95% 
CI: − 0.4 to 0.5, BF =  0.2). We analysed both average reward and the 
maximum reward obtained for each subject, irrespective of their pay-
off condition (maximization or accumulation). Remarkably, partici-
pants in the accumulation condition performed best according to 
both performance measures, achieving higher average rewards than 
those in the maximization condition (t(79) =  2.89, P =  0.005, d =  0.7, 
95% CI: 0.2–1.1, BF =  7.9), and performing equally well in terms of 
finding the largest overall reward (t(79) =  − 0.73, P =  0.467, d =  − 0.2, 
95% CI: − 0.3 to 0.6, BF =  0.3). Thus, a strategy balancing explora-
tion and exploitation—at least for human learners—may achieve the 
global optimization goal en passant.

Experiment 2. Experiment 2 had the same design as experiment 1, 
but used a 11 ×  11 grid representing an underlying bivariate reward 
function (Fig. 1, middle panel) and longer search horizons to match 
the larger search space (short =  20 versus long =  40). We repli-
cated the main results of experiment 1, showing that participants 
(n =  80) sampled more locally than a random baseline (t(79) =  50.1, 
P <  0.001, d =  5.6, 95% CI: 4.7–6.5, BF >  100; Fig. 1c), accumulation 
participants sampled more locally than maximization participants 
t(78) =  2.75, P =  0.007, d =  0.6, 95% CI: 0.2–1.1, BF =  5.7), and par-
ticipants obtained higher rewards in smooth than in rough envi-
ronments (t(78) =  6.55, P <  0.001, d =  1.5, 95% CI: 0.9–2.0, BF >  100; 
Fig. 1d). For both locality of sampling and the difference in average 
reward between environments, the effect size was larger in experi-
ment 2 than in experiment 1. We also replicated the result that 
participants in the accumulation condition were as good as par-
ticipants in the maximization condition at discovering the largest 
reward values (t(78) =  − 0.62, P =  0.534, d =  − 0.1, 95% CI: − 0.6 to 
0.3, BF =  0.3); yet, in experiment 2, the accumulation condition did 
not lead to substantially better performance than the maximization 
condition in terms of average reward (t(78) =  − 1.31, P =  0.192, d =  − 
0.3, 95% CI: − 0.7 to 0.2, BF =  0.5). Again, short search horizons led 
to the same level of performance as long horizons, (t(79) =  − 0.96, 
P =  0.341, d =  − 0.1, 95% CI: − 0.3–0.1, BF =  0.2), suggesting that 
learning occurs rapidly and peaks rather early.

Experiment 3. Experiment 3 used the same 121-armed bivariate 
bandit as experiment 2, but rather than generating environments 
with fixed levels of spatial correlations, we sampled environments 
from 20 different agricultural data sets34, in which pay-offs corre-
spond to the normalized yield of various crops (for example, wheat, 
corn and barley). These data sets have naturally occurring spatial 
correlations and are naturally segmented into a grid based on the 
rows and columns of a field, thus requiring no interpolation or 
other transformation except for the normalization of pay-offs (see 
Supplementary Information for selection criteria). The crucial dif-
ference compared to experiment 2 is that these natural data sets 
comprise a set of more complex environments in which learners 
could nonetheless still benefit from spatial generalization.

As in both previous experiments, participants (n =  80) sampled 
more locally than random chance (t(79) =  50.1, P <  0.001, d =  5.6, 
95% CI: 4.7–6.5, BF >  100), with participants in the accumulation 
condition sampling more locally than those in the maximization 
condition (t(78) =  3.1, P =  0.003, d =  0.7, 95% CI: 0.2–1.1, BF =  12.1). 
In the natural environments, we found that accumulation partici-
pants achieved a higher average reward than maximization par-
ticipants (t(78) =  2.7, P =  0.008, d =  0.6, 95% CI: 0.2–1.1, BF =  5.6), 
with an effect size similar to experiment 1. There was no difference 
in maximum reward across pay-off conditions (t(78) =  0.3, P =  0.8, 
d =  0.06, 95% CI: − 0.4 to 0.5, BF =  0.2), as in all previous experi-
ments, showing that the goal of balancing exploration–exploitation 
leads to the best results on both performance metrics. As in the pre-
vious experiments, we found that a longer search horizon did not 
lead to higher average rewards (t(78) =  2.1, P =  0.04, d =  0.2, 95% 
CI: − 0.2 to 0.7, BF =  0.4). Thus, the results of experiment 3 closely 
corroborate the results of experiments 1 and 2, showing that our 
findings on human behaviour in simulated environments are very 
similar to human behaviour in natural environments.

Modelling generalization and search. To better understand how 
participants explore, we compared a diverse set of computational 
models in their ability to predict each subject’s trial-by-trial choices 
(see Supplementary Fig. 1 and Supplementary Table 3 for full results). 
These models include different combinations of models of learning 
and sampling strategies, which map onto the distinction between 
belief and sampling models that is central to theories in statis-
tics35, psychology36, and philosophy of science37. Models of learning 
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form inductive beliefs about the value of possible options (includ-
ing unobserved options) conditioned on previous observations, 
whereas sampling strategies transform these beliefs into probabilis-
tic predictions about where a participant will sample next. We also 

consider heuristics, which are competitive models of human behav-
iour in bandit tasks5, yet do not maintain a model of the world (see 
Supplementary Information). By far the best-predictive models used 
Gaussian process regression38,39 as a mechanism for generalization  
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Fig. 1 | Procedure and behavioural results.  Experiments 1 and 2 used a 2 ×  2 between-subject design, manipulating the type of environment (rough or 
smooth) and the pay-off condition (accumulation or maximization), whereas experiment 3 manipulated only pay-off conditions (between subjects) and 
used a set of natural environments where rewards reflect normalized crop yields from various agricultural data sets. a, Experiment 1 used a 1D array of 30 
possible options, whereas experiments 2 and 3 used a 2D array (11 ×  11) with 121 options. Experiments took place over 16 (experiment 1) or 8 (experiments  
2 and 3) rounds, with a new environment sampled without replacement for each round. Search horizons alternated between rounds (within subject), with 
the horizon order counterbalanced between subjects. L, long; S, short. b, Examples of fully revealed search environments, where tiles were initially blank 
at the beginning of each round, except for a single randomly revealed tile. Rough and smooth environments differed in the extent of spatial correlations, 
whereas crop yield environments have no fixed level of correlation (see Supplementary Information). c, Locality of sampling behaviour compared with 
a random baseline simulated over 10,000 rounds (black line), in which distance is measured using Manhattan distance and the y axis indicates the 
probability density of different distances (with a different maximum range for experiment 1 compared to experiments 2 and 3). d, Average reward earned 
(accumulation goal) and maximum reward revealed (maximization goal), in which the coloured lines indicate the assigned pay-off condition and the  
shaded regions show the standard error of the mean. Black lines indicate a random baseline simulated over 10,000 rounds.
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and UCB sampling40 as an optimistic solution to the exploration–
exploitation dilemma.

Function learning provides a possible explanation of how 
individuals generalize from previous experience to unobserved 
options, by adaptively learning an underlying function mapping 
options onto rewards. We use Gaussian process regression as an 
expressive model of human function learning, which has known 
equivalencies to neural network function approximators41, yet 
provides psychologically interpretable parameter estimates about 
the extent to which generalization occurs. Gaussian process func-
tion learning can guide search by making predictions about the 
expected mean m(x) and the associated uncertainty s(x) (estimated 
here as a standard deviation) for each option x in the global-state 
space (see Fig. 2a,b), conditioned on a finite number of previous 
observations of rewards yT =  [y1,y2,… ,yT]Τ at inputs XT =  [x1,… ,xT]. 
Similarities between options are modelled by a radial basis function 
(RBF) kernel (k):









λ

′ = − ∣∣ − ′∣∣
k x x

x x
( , ) exp (1)RBF

2

where the length-scale parameter λ governs how quickly correla-
tions between points x and x′  (for example, two tiles on the grid) 
decay towards zero as their distance increases. We use λ as a free 
parameter, which can be interpreted psychologically as the extent to 
which people generalize spatially. As the Gaussian process prior is 
completely defined by the RBF kernel, the underlying mechanisms 
are similar to Shepard’s universal gradient of generalization42, which 
also models generalization as an exponentially decreasing func-
tion of distance between stimuli. To illustrate, generalization to the 
extent of λ =  1 corresponds to the assumption that the rewards of 
two neighbouring options are correlated by r =  0.61 and that this 
correlation decays to (effectively) zero if options are further than 
three tiles away from each other. Smaller λ values would lead to a 
more rapid decay of assumed correlations as a function of distance.

Given estimates about expected rewards m(x) and the underlying 
uncertainty s(x) from the function learning model, UCB sampling 
produces valuations of each option x using a simple weighted sum:

β= +m sx x xUCB( ) ( ) ( ) (2)

where β is a free parameter governing how much the reduction of 
uncertainty is valued relative to expectations of reward (Fig. 2c). 
To illustrate, an exploration bonus of β =  0.5 suggests that partici-
pants would prefer a hypothetical option x1 predicted to have mean 
reward m(x1) =  60 and standard deviation s(x1) =  10, over an option 
x2 predicted to have mean reward m(x2) =  64 and standard deviation 

s(x2) =  1. This is because sampling x1 is expected to reduce a large 
amount of uncertainty, even though x2 has a higher mean reward (as 
UCB(x1) =  65 but UCB(x2) =  64.5). This trade-off between exploit-
ing known high-value options and exploring to reduce uncertainty43 
can be interpreted as optimistically inflating expectations of reward 
by the attached uncertainty and can be contrasted to two separate 
sampling strategies that only sample based on expected reward 
(pure exploitation) or uncertainty (pure exploration):

= mx xPureExploit( ) ( ) (3)

= sx xPureExplore( ) ( ) (4)

Figure 2 shows how the Gaussian process–UCB model makes 
inferences about the search space and uses UCB sampling (com-
bined with a softmax choice rule) to make probabilistic predictions 
about where the participant will sample next. We refer to this model 
as the function learning model and contrast it with an option learn-
ing model. The option learning model uses a Bayesian mean tracker 
to learn about the distribution of rewards for each option indepen-
dently (see Methods). The option learning model is a traditional 
associative learning model and can be understood as a variant of 
a Kalman filter in which rewards are assumed to be time invari-
ant6. Like the function learning model, the option learning model 
also generates normally distributed predictions with mean m(x) 
and standard deviation s(x), which we combine with the same set 
of sampling strategies and the same softmax choice rule to make 
probabilistic predictions about search. For both models, we use the 
softmax temperature parameter (τ) to estimate the amount of undi-
rected exploration (that is, higher temperatures correspond to more 
noisy sampling; Fig. 2d), in contrast to the β parameter of UCB, 
which estimates the level of exploration directed towards reducing 
uncertainty.

Modelling results
Experiment 1. Participants were better described by the function 
learning model than the option learning model (t(80) =  14.10, 
P <  0.001 d =  1.6, 95% CI: 1.1–2.1, BF >  100, comparing cross-val-
idated predictive accuracies, both using UCB sampling), providing 
evidence that participants generalized instead of learning rewards 
for each option independently. Furthermore, by decomposing the 
UCB sampling algorithm into pure exploit or pure explore com-
ponents, we show that both expectations of reward and estimates 
of uncertainty are necessary components for the function learning 
model to predict human search behaviour, with the pure exploi-
tation (t(80) =  − 8.85, P <  0.001, d =  − 1.0, 95% CI: − 0.5 to − 1.4), 
BF >  100) and pure exploration (t(80) =  − 16.63, P <  0.001, d =  − 1.8, 
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Fig. 2 | overview of the function learning–uCB model specified using median participant parameter estimates from experiment 2. a, Screenshot of 
experiment 2. Participants were allowed to select any tile until the search horizon was exhausted. b, Estimated reward (the estimated uncertainty is 
not shown) as predicted by the Gaussian process function learning model, based on the points sampled in a. c, UCB of predicted rewards. d, Choice 
probabilities after a softmax choice rule. τ τ= ∕ ∕ ∑ ∕=P xx xx xx( ) exp(UCB( ) ) exp(UCB( ) )j

N
j1 , where τ is the temperature parameter (that is, higher temperature 

values lead to more undirected, noisy sampling). For parameter estimates, see Supplementary Table 3.
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95% CI: − 1.3 to − 2.4, BF >  100) variants each made less accurate 
predictions than the combined UCB algorithm. Because of the 
observed tendency to sample locally, we created a localized vari-
ant of both option learning and function learning models (indi-
cated by an asterisk *; Fig. 3a), penalizing options farther away from 
the previous selected option (without introducing additional free 
parameters; see Methods). Although the option learning* model 
was better than the standard option learning model (t(80) =  16.13, 
P <  0.001, d =  1.8, 95% CI: 1.3–2.3, BF >  100), the standard function 
learning model still outperformed its localized variant (t(80) =  5.05, 
P <  0.001, d =  0.6, 95% CI: 0.1–1.0, BF >  100). Overall, 56 out of 81 
participants were best described by the function learning model, 
with an additional 10 participants best described by the function 
learning* model with localization. Finally, we also calculated each 
model’s protected probability of exceedance44 using its out-of-
sample log-evidence. This probability assesses which model is the 
most common among all models in our pool (among the 12 models 
reported in the main text; see Supplementary Table 3 for a compari-
son with additional models) while also correcting for chance. Doing 
so, we found that the function learning–UCB model reached a pro-
tected probability of pxp =  1, indicating that it vastly outperformed 
all of the other models.

Figure 3b shows simulated learning curves of each model in 
comparison to human performance, in which models were speci-
fied using parameters from participants’ estimates (curves aver-
aged over 100 simulated experiments per participant per model). 
Whereas both versions of the option learning model improve only 
very slowly, both standard and localized versions of the function 
learning model behave sensibly and show a close alignment to the 
rapid rate of human learning during the early phases of learning. 
However, there is still a deviation in similarity between the curves, 
which is partially due to aggregating over reward conditions and 
horizon manipulations, in addition to aggregating over individu-
als, where some participants over-explore their environments, 
whereas others produce continuously increasing learning curves 
(see Supplementary Fig. 6 for individual learning curves). Although 
aggregated learning curves should be analysed with caution45, we 
find an overlap between elements of human intelligence responsible 
for successful performance in our task and elements of participant 
behaviour captured by the function learning model.

We compare participants’ parameter estimates using a Wilcoxon 
signed rank test to make the resulting differences more robust to 
potential outliers. The parameter estimates of the function learn-
ing model (Fig. 3c) indicated that people tend to underestimate 
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the extent of spatial correlations, with median per-participant λ 
estimates significantly lower than the ground truth (λSmooth =  2 and 
λRough =  1) for both smooth environments (Wilcoxon signed rank 
test; �λ = .0 5Smooth , Z =  − 7.1, P <  0.001, r =  1.1, BFZ >  100) and rough 
environments (�λ = .0 5Rough , Z =  − 3.4, P <  0.001, r =  0.55, BFZ >  100). 
This can be interpreted as a tendency towards undergeneraliza-
tion. In addition, we found that the estimated exploration bonus of 
UCB sampling (β) was reliably greater than zero (β ̂ = .0 51, Z =  − 7.7, 
P <  0.001, r =  0.86, BFZ >  100, than the lower estimation bound), 
reflecting the valuation of sampling uncertain options, together 
with exploiting high expectations of reward. Finally, we found rela-
tively low estimates of the softmax temperature parameter (τ ̂= .0 01),  
suggesting that the search behaviour of participants corresponded 
closely to selecting the very best option, once they had taken into 
account both the exploitation and the exploration components of 
the available actions.

Experiment 2. In a more complex bivariate environment (Fig. 3a), 
the function learning model again made better predictions than 
the option learning model (t(79) =  9.99, P <  0.001, d =  1.1, 95%  
CI: 0.6–1.6, BF >  100), although this was only marginally the 
case when comparing localized function learning* to localized 
option learning* (t(79) =  2.05, P =  0.044, d =  0.2, 95% CI: − 0.2 to 
0.7, BF =  0.9). In the two-dimensional (2D) search environment 
of experiment 2, adding localization improved predictions for 
both option learning (t(79) =  19.92, P <  0.001, d =  2.2, 95%  
CI: 1.7–2.8, BF >  100) and function learning (t(79) =  10.47, P <  0.001, 
d =  1.2, 95% CI: 0.7–1.6, BF >  100), in line with the stronger ten-
dency towards localized sampling than experiment 1 (see Fig. 1c). 
Altogether, 61 out of 80 participants were best predicted by the local-
ized function learning* model, whereas only 12 participants were 
best predicted by the localized option learning* model. Again, both 
components of the UCB strategy were necessary to predict choices, 
with pure exploit (t(79) =  − 6.44, P <  0.001, d =  − 0.7, 95% CI: − 0.3  
to − 1.2, BF >  100) and pure explore (t(79) =  − 12.8, P <  0.001,  
d =  − 1.4, 95% CI: − 0.9 to − 1.9, BF >  100) making worse predictions. 
The probability of exceedance over all models showed that the func-
tion learning*–UCB model achieved virtually pxp =  1, indicating 
that it greatly outperformed all other models under consideration.

As in experiment 1, the simulated learning curves of the option 
learning models increased slowly and only marginally outper-
formed a random sampling strategy (Fig. 3b), whereas both variants 
of the function learning model achieved performance comparable 
to that of human participants. Median per-participant parameter 
estimates (Fig. 3c) from the function learning*–UCB model showed 
that, although participants generalized somewhat more than in 
experiment 1 (λ ̂ = .0 75, Z =  − 3.7, P <  0.001, r =  0.29, BFZ >  100), 
they again underestimated the strength of the underlying spatial 
correlation in both smooth environments (�λ = .0 78Smooth , Z =  − 5.8, 
P <  0.001, r =  0.88, BFZ >  100; comparison to λSmooth =  2) and rough 
environments (�λ = .0 75Rough , Z =  − 4.7, P <  0.001, r =  0.78, BFZ >  100; 
comparison to λRough =  1). This suggests a robust tendency to under-
generalize. There were no differences in the estimated exploration 
bonus β between experiments 1 and 2 (β ̂ = .0 5, Z =  0.86, P =  0.80, 
r =  0.07, BFZ =  0.2), although the estimated softmax temperature 
parameter τ was larger than in experiment 1 (τ ̂= .0 09, Z =  − 8.89, 
P <  0.001, r =  0.70, BFZ =  34). Thus, experiment 2 replicated the 
main findings of experiment 1. When taken together, results from 
the two experiments provide strong evidence that human search 
behaviour is best explained by function learning paired with an 
optimistic trade-off between exploration and exploitation.

Experiment 3. Using natural environments without a fixed level 
of spatial correlations, we replicated key results from the previ-
ous experiments: function learning made better predictions than 
option learning (t(79) =  3.03, P =  0.003, d =  0.3, 95% CI: − 0.1 to 

0.8, BF =  8.2); adding localization improved predictions for both 
option learning (t(79) =  18.83, P <  0.001, d =  2.1, 95% CI: 1.6–2.6, 
BF >  100) and function learning (t(79) =  14.61, P <  0.001, d =  1.6, 
95% CI: 1.1–2.1, BF >  100); and the combined UCB algorithm per-
formed better than using only a pure exploit strategy (t(79) =  12.97, 
P <  0.001, d =  1.4, 95% CI: 1.0–1.9, BF >  100) or a pure explore 
strategy (t(79) =  5.87, P <  0.001, d =  0.7, 95% CI: 0.3–1.2, BF >  100). 
However, the difference between the localized function learning* 
and the localized option learning* was negligible (t(79) =  0.32, 
P =  0.75, d =  0.04, 95% CI: − 0.4 to 0.5, BF =  0.1). This is perhaps 
owing to the high variability across environments, which makes it 
harder to predict out-of-sample choices using generalization behav-
iour (that is, λ) estimated from a separate set of environments. 
Nevertheless, the localized function learning* model was still the 
best-predicting model for the majority of participants (48 out of 
80 participants). Moreover, calculating the protected probability of 
exceedance over all models’ predictive evidence revealed a prob-
ability of pxp =  0.98 that the function learning* model was more 
frequent in the population than all of the other models, followed 
by pxp =  0.01 for the option learning* model. Thus, even in natu-
ral environments in which the underlying spatial correlations are 
unknown, we were still able to distinguish the different models in 
terms of their overall out-of-sample predictive performance.

The simulated learning curves in Fig. 3b show the strongest 
concurrence out of all previous experiments between the function 
learning model and human performance. Moreover, both vari-
ants of the option learning model learn far slower, failing to match 
the rate of human learning, suggesting that they are not plausible 
models of human behaviour46. The parameter estimates from the 
function learning* model are largely consistent with the results 
from experiment 2 (Fig. 3c), but with participants generalizing 
slightly less (�λ = .0 68aturaln , Z =  − 3.4, P <  0.001, r =  0.27, BFZ =  9.6) 
and exploring slightly more, with a small increase in both directed 
exploration (�β = .0 54natural , Z =  − 2.3, P =  0.01, r =  0.18, BFZ =  4.5) 
and undirected exploration (�τ = .0 1natural , Z =  − 2.2, P =  0.02, 
r =  0.17, BFZ =  4.2) parameters. Altogether, the parameter estimates 
are highly similar to the previous experiments.

Robustness and recovery. We conducted both model and param-
eter recovery simulations to assess the validity of our modelling 
results (see Supplementary Information). Model recovery consisted 
of simulating data using a generating model specified by participant 
parameter estimates. We then performed the same cross-validation 
procedure to fit a recovering model on this simulated data. In all 
cases, the best-predictive accuracy occurred when the recovering 
model matched the generating model (Supplementary Fig. 2), sug-
gesting robustness to type I errors and ruling out model overfit-
ting (that is, the function learning model did not best predict data 
generated by the option learning model). Parameter recovery was 
performed to ensure that each parameter in the function learning–
UCB model robustly captured separate and distinct phenomena. In 
all cases, the generating and recovered parameter estimates were 
highly correlated (Supplementary Fig. 3). It is noteworthy that we 
found distinct and recoverable estimates for β (exploration bonus) 
and τ (softmax temperature), supporting the existence of explora-
tion directed towards reducing uncertainty12 as a separate phenom-
enon from noisy, undirected exploration47.

The adaptive nature of undergeneralization. In experiments 1 and 
2, we observed a robust tendency to undergeneralize compared to 
the true level of spatial correlations in the environment. Thus, we 
ran simulations to assess how different levels of generalization influ-
ence search performance when paired with different types of envi-
ronments. We found that undergeneralization largely leads to better 
performance than overgeneralization. Remarkably, undergeneraliza-
tion sometimes is even better than exactly matching the underlying  
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structure of the environment (Fig. 4). These simulations were per-
formed by first generating search environments by sampling from 
a Gaussian process prior specified using a teacher length-scale (λ0), 
and then simulating search in this environment by specifying the 
function learning–UCB model with a student length-scale (λ1). 
Instead of a discrete grid, we chose a set-up common in Bayesian 
optimization48 with continuous bivariate inputs in the range x, 
y =  [0,1], allowing for a broader set of potential mismatched align-
ments (see Supplementary Fig. 4 for simulations using the exact 
design of each experiment).

We find that undergeneralization largely leads to better per-
formance than overgeneralization and that this effect is more pro-
nounced over time t (that is, longer search horizons). Estimating the 
best-possible alignment between λ0 and λ1 revealed that underesti-
mating λ0 by an average of about 0.21 produces the best scores over 
all scenarios. These simulation results show that the systematically 
lower estimates of λ captured by our models are not necessarily a 
flaw in human cognition, but can sometimes lead to better perfor-
mance. Indeed, simulations based on the natural environments used 
in experiment 3 (which had no fixed level of spatial correlations) 
revealed that the range of participant λ estimates were highly adap-
tive to the environments they encountered (Supplementary Fig. 4c). 
Undergeneralization might not be a bug, but rather an important 
feature of human behaviour.

Discussion
How do people learn and adaptively make good decisions when the 
number of possible actions is vast and not all possibilities can be 
explored? We found that function learning, operationalized using 
Gaussian process regression, provides a mechanism for generaliza-
tion, which can be used to guide search towards unexplored yet 
promising options. Combined with UCB sampling, this model navi-
gates the exploration–exploitation dilemma by optimistically inflat-
ing expectations of reward by the estimated uncertainty.

Although Gaussian process function learning combined with a 
UCB sampling algorithm has been successfully applied to search 
problems in ecology49, robotics50,51 and biology52, there has been 
little psychological research on how humans learn and search in 
environments with a vast set of possible actions. The question of 
how generalization operates in an active learning context is of great 
importance, and our work makes key theoretical and empirical con-
tributions. Expanding on previous studies that found an overlap 
between Gaussian process–UCB and human learning rates8,23, we 
use cognitive modelling to understand how humans generalize and 
address the exploration–exploitation dilemma in a complex search 
task with spatially correlated outcomes.

Through multiple analyses, including trial-by-trial predic-
tive cross-validation and simulated behaviour using participants’ 

parameter estimates, we competitively assessed which models best 
predicted human behaviour. The vast majority of participants were 
best described by the function learning–UCB model or its localized 
variant. Parameter estimates from the best-fitting function learn-
ing–UCB models suggest that there was a systematic tendency to 
undergeneralize the extent of spatial correlations, which we found 
can sometimes lead to better search performance than even an exact 
match with the underlying structure of the environment (Fig. 4).

Altogether, our modelling framework yielded highly robust and 
recoverable results (Supplementary Fig. 2) and parameter estimates 
(Supplementary Fig. 3). Whereas previous research on exploration 
bonuses has had mixed results6,12,47, we found recoverable param-
eter estimates for the separate phenomena of directed exploration, 
encoded in UCB exploration parameter β, and the noisy, undi-
rected exploration, encoded in the softmax temperature parameter 
τ. Even though UCB sampling is both optimistic (always treat-
ing uncertainty as positive) and myopic (only planning the next 
timestep), similar algorithms have competitive performance guar-
antees in a bandit setting53. This shows a remarkable concurrence 
between intuitive human strategies and state-of-the-art machine 
learning research.

Limitations and extensions. One potential limitation is that our 
pay-off manipulation (maximization versus accumulation) failed 
to induce superior performance according to the relevant perfor-
mance metric. Although participants in the accumulation condition 
achieved higher average reward, participants in the maximization 
condition were not able to outperform with respect to the maxi-
mum reward criterion. The goal of balancing exploration–exploi-
tation (accumulation condition) or the goal of global optimization 
(maximization condition) was induced through the manipulation 
of written instructions, comprehension check questions and feed-
back between rounds (see Methods). Although this may have been 
insufficient for observing clear performance differences (but see 
Supplementary Table 1), the practical difference between these two 
goals is murky even in the Bayesian optimization literature, in which 
the strict goal of finding the global optimum is often abandoned 
based purely on computational concerns54. Instead, the global opti-
mization goal is frequently replaced by an approximate measure of 
performance, such as cumulative regret53, which closely aligns to 
our accumulation pay-off condition. In our experiments, remark-
ably, participants assigned to the accumulation goal pay-off condi-
tion also performed best relative to the maximization criterion.

In addition to providing the best model of human behaviour, the 
function learning model also offers many opportunities for theory 
integration. The option learning model can itself be reformulated as 
a special case of Gaussian process regression55. When the length scale 
of the RBF kernel approaches zero (λ →  0), the function learning  
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model assumes state independence, as in the option learning model. 
Thus, there may be a continuum of reinforcement learning models, 
ranging from the traditional assumption of state independence to 
the opposite extreme of complete state interdependence. Moreover, 
Gaussian processes also have equivalencies to Bayesian neural net-
works41, suggesting a further link to distributed function learning 
models56. Indeed, one explanation for the impressive performance 
of deep reinforcement learning14 is that neural networks are specifi-
cally a powerful type of function approximator57.

Finally, both spatial and conceptual representations have been 
connected to a common neural substrate in the hippocampus27, sug-
gesting a potential avenue for applying the same function learning–
UCB model for modelling human learning using contextual28–30, 
semantic31,32 or potentially even graph-based features. One hypoth-
esis for this common role of the hippocampus is that it performs 
predictive coding of future state transitions58, also known as ‘succes-
sor representation’24. In our task, in which there are no restrictions 
on state transitions (that is, each state is reachable from any previous 
state), it may be the case that the RBF kernel driving our Gaussian 
process function learning model performs the same role as the tran-
sition matrix of a successor representation model, in which state 
transitions are learned via a random walk policy.

Conclusions
We present a paradigm for studying how people use generalization 
to guide the active search for rewards and found a systematic—yet 
sometimes beneficial—tendency to undergeneralize. In addition, 
we uncovered substantial evidence for the separate phenomena 
of directed exploration (towards reducing uncertainty) and noisy, 
undirected exploration. Even though our current implementation 
only grazes the surface of the types of complex tasks people are able 
to solve—and indeed could be extended in future studies using tem-
poral dynamics or depleting resources—it is far richer in both the 
set-up and the modelling framework than traditional multi-armed 
bandit problems used for studying human behaviour. Our empirical 
and modelling results show how function learning, combined with 
optimistic search strategies, may provide the foundation of adaptive 
behaviour in complex environments.

Methods
Participants. Participants (n =  81) were recruited from Amazon Mechanical Turk 
for experiment 1 (25 female; mean ±  s.d. age: 33 ±  11 years), 80 for experiment 
2 (25 female; mean ±  s.d. age: 32 ±  9 years) and 80 for experiment 3 (24 female; 
mean ±  s.d. age: 35 ±  10 years). In all of the experiments, participants were paid a 
participation fee of US$0.50 and a performance contingent bonus of up to US$1.50. 
Participants earned on average US$1.14 ±  0.13 and spent 8 ±  4 min on the task in 
experiment 1, earned US$1.64 ±  0.20 and spent 8 ±  4 min in experiment 2, and 
earned US$1.53 ±  0.15 and spent 8 ±  5 min in experiment 3. Participants were only 
allowed to participate in one of the experiments and were required to have a 95% 
human interaction task (HIT) approval rate and 1,000 previously completed HITs. 
No statistical methods were used to pre-determine sample sizes, but our sample 
sizes are similar or larger to those reported in previous publications6,12,23,28,29. The 
Ethics Committee of the Max Planck Institute for Human Development approved 
the methodology and all participants consented to participation through an online 
consent form at the beginning of the survey.

Design. Experiments 1 and 2 used a 2 ×  2 between-subjects design, in which 
participants were randomly assigned to one of two different pay-off structures 
(accumulation condition versus maximization condition) and one of two 
different classes of environments (smooth versus rough), whereas experiment 3 
used environments from real-world agricultural data sets and manipulated only 
the pay-off structure (random assignment between subjects). Each grid world 
represented a (either univariate or bivariate) function, with each observation 
including normally distributed noise, Nɛ ~ (0, 1) . The task was presented over 
either 16 rounds (experiment 1) or 8 rounds (experiments 2 and 3) on different 
grid worlds, which were randomly drawn (without replacement) from the same 
class of environments (that is, same length-scale parameter λ). Participants had 
either a short or long search horizon (short =  5 and long =  10 trials in experiment 
1; short =  20 and long =  40 trials in experiments 2 and 3) to sample tiles on 
the grid, including repeat clicks. The search horizon alternated between rounds 
(within subject), with initial horizon length counterbalanced between subjects by 

random assignment. Data collection and analysis were not performed blind to the 
conditions of the experiments.

Materials and procedure. Before starting the task, participants observed four 
fully revealed example environments and had to correctly complete three 
comprehension questions. At the beginning of each round, one random tile was 
revealed and participants could click any of the tiles in the grid until the search 
horizon was exhausted, including re-clicking previously revealed tiles. Clicking 
an unrevealed tile displayed the numerical value of the reward along with a 
corresponding colour aid, in which darker colours indicated higher point values. 
Per round, observations were scaled to a randomly drawn maximum value in the 
range of 65–85, so that the value of the global optima could not be easily guessed 
(for example, a value of 100). Re-clicked tiles could show some variations in the 
observed value due to noise. For repeat clicks, the most recent observation was 
displayed numerically, whereas hovering over the tile would display the entire 
history of observation. The colour of the tile corresponded to the mean of all 
previous observations.

Pay-off conditions. We compared performance under two different pay-off 
conditions, requiring either a balance between exploration and exploitation 
(accumulation condition) or corresponding to consistently making exploration 
decisions (maximization condition). In each pay-off condition, participants 
received a performance contingent bonus of up to US$1.50. Accumulation 
condition participants were given a bonus based on the average value of all clicks 
as a fraction of the global optima, ∑ ( )*T

y
y

1 t , where y* is the global optimum, 
whereas participants in the maximization condition were rewarded using the 
ratio of the highest observed reward to the global optimum, ( )*

y
y

max 4
t , taken to 

the power of 4 to exaggerate differences in the upper range of performance and 
for between-group parity in expected earnings across pay-off conditions. Both 
conditions were equally weighted across all rounds and used noisy but unscaled 
observations to assign a bonus of up to US$1.50. Subjects were informed in dollars 
about the bonus earned at the end of each round.

Environments. In experiments 1 and 2, we used two classes of generated 
environments corresponding to different levels of smoothness (that is, spatial 
correlation of rewards). These environments were sampled from a Gaussian 
process prior with a RBF kernel, in which the length-scale parameter (λ) 
determines the rate at which the correlations of rewards decay over distance. 
Rough environments used λRough =  1 and smooth environments used λSmooth =  2, with 
40 environments (experiment 1) and 20 environments (experiment 2) generated 
for each class (smooth and rough). In experiment 3, we used environments defined 
by 20 real-world agricultural data sets, where the location on the grid corresponds 
to the rows and columns of a field and the rewards reflect the normalized yield of 
various crops (see Supplementary Information for full details).

Search horizons. We chose two horizon lengths (short =  5 or 20 and long =  10 or 
40) that were fewer than the total number of tiles on the grid (30 or 121) and varied 
them within subject (alternating between rounds and counterbalanced). Horizon 
length was approximately equivalent between experiment 1 and experiments 2 and 
3, as a fraction of the total number of options ≈ ≈( )short ; long1

6
1
3

.

Statistical tests. All reported t-tests are two sided. We also report Bayes factors 
(BF), quantifying the likelihood of the data under HA relative to the likelihood 
of the data under H0. We calculate the default two-sided Bayesian t-test using 
a Jeffreys–Zellner–Siow prior with its scale set to ∕2 2, following ref. 59. For 
parametric tests, the data distribution was assumed to be normal, but this was 
not formally tested. For non-parametric comparisons, the Bayes factor BFZ is 
derived by performing posterior inference over the Wilcoxon test statistics and 
assigning a prior by means of a parametric yoking procedure60. The null hypothesis 
posits that the statistic between two groups does not differ, and the alternative 
hypothesis posits the presence of an effect and assigns an effect size using a Cauchy 
distribution with the scale parameter set to ∕1 2 .

Localization of models. To penalize search options by the distance from the 
previous choice, we weighted each option by the inverse Manhattan distance 
(IMD) to the last revealed tile ′ = ∑ ∣ − ′∣=

−( )x xx xIMD( , ) i
n

i i1
1
, prior to the softmax 

transformation. For the special case where x =  x′ , we set IMD(x, x′ ) =  1. Localized 
models are indicated by an asterisk (*).

Model comparison. We performed model comparison using cross-validated 
maximum likelihood estimation, in which each participant’s data were separated 
by horizon length (short or long) and we iteratively formed a training set by 
leaving out a single round, compute a maximum likelihood estimation on the 
training set and then generate out-of-sample predictions on the remaining round 
(see Supplementary Information for further details). This was repeated for all 
combinations of training set and test set, and for both short and long horizons.  
The cross-validation procedure yielded one set of parameter estimates per round, 
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per participant, and out-of-sample predictions for 120 choices in experiment 1 and 
240 choices in experiments 2 and 3 (per participant). Prediction error (computed 
as log loss) was summed up over all rounds and is reported as predictive accuracy, 
using a pseudo-R2 measure that compares the total log loss prediction error for 
each model to that of a random model:

L M

L M
= −R 1

log ( )
log ( )

(5)k2

rand

where L Mlog ( )rand  is the log loss of a random model and L Mlog ( )k  is the model 
k’s out-of-sample prediction error. Moreover, we calculated each model’s protected 
probability of exceedance using its predictive log evidence44. This probability 
is defined as the probability that a particular model is more frequent in the 
population than all of the other models, averaged over the probability of the null 
hypothesis that all models are equally frequent (thereby correcting for chance 
performance).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability. The code used for all models and analyses is available at https://
github.com/charleywu/gridsearch.

Data availability
Anonymized participant data and model simulation data are available at https://
github.com/charleywu/gridsearch.
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Study description The studies presented here were conducted online using Amazon Mechanical Turk (MTurk). Each experiment took the form of an online 
game, where performance was incentivized through a paid bonus. We collected quantitative data based on each individual's choice at 
each trial.  Participants were first given instructions for the task along with several examples of fully revealed environments. Then 
participants were asked to first complete a set of comprehension questions before starting the experiment. Between rounds, participants 
were informed in dollar amounts (USD) how well they performed on the previous round. At the end of the task, participants were asked 
to provide demographic information and to confirm their MTurk worker id that was used to assign them their performance bonus.

Research sample Participants were recruited on Amazon MTurk (see Recruitment section below for exclusion criteria).  We recruited 81 participants for 
Experiment 1 (25 Female; mean age ± SD 33 ± 11), 80 for Experiment 2  (25 Female; mean age ± SD 32 ± 9), and 80 for Experiment 3 (24 
Female; mean age ± SD 35 ± 10)

Sampling strategy The sample size was pre-determined such that the 2x2 cross-over design would allow for about 40 participants in each between-group.  
Since the focus on the quantitative analysis was on computational modeling, rather than purely behavioral analysis, our sample size 
determination was not focused on achieving the necessary power to observe a specific effect size.

Data collection All experiments were collected online, with experiment code available freely online at https://github.com/charleywu/gridsearch

Timing Participants were given 1 hour to complete the experiment, before the HIT expired and would be re-published to another MTurk worker. 
This was well beyond the typically completion time (Experiment 1: 8±4 minutes; Experiment 2: 8±4 minutes; Experiment 3: 8±5 minutes) 

Data exclusions No collected data was excluded from any experiments. 

Non-participation We had no non-participants
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Recruitment Participants were recruited on Amazon MTurk, requiring a 95% HIT approval rate and 1000 previously completed HITs. 
Participants who completed one of the experiments in this paper were excluded from subsequent experiments by granting them 
a qualification, which was then used as an exclusion criteria. 
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