Iterative Widening

Tristan Cazenave
Labo IA, Université Paris 8
2 rue de la Liberté, 93526 Saint Denis, France.
cazenave(@ai.univ-paris8.fr

Abstract

We propose a method to gradually expand the moves to
consider at the nodes of game search trees. The
algorithm is an extension of Abstract Proof Search, an
algorithm that solves more problem than basic Alpha-
Beta search in less time and which is more reliable.
Unlike other related algorithms, iterative widening
adapts to the game via general game definition
functions. In the game of Go, it can solve more
problems than the original non widening algorithm in
approximately half of the time, as shown by
experimental results.

1 Introduction

We propose a method to gradually expand the moves to
consider at the nodes of game search trees. The algorithm
begins with an iterative deepening search using the minimal
set of moves, and if the search does not succeed, iteratively
widens the set of possible moves, performing a complete
iterative deepening search after each widening. Iterative
widening enables to reduce by almost a factor two the time
used for solving capture problems in the game of Go and
solves more problems than the original non-widening
algorithm, as shown by experimental results.

The second section describes the search algorithm and
compares it with related existing algorithms. The third
section explains the game used to perform our experiments.
The fourth section deals with theorem proving in Go. The
fifth section gives hints on how to define and combine the
gradually expanding sets of moves and defines some of these
sets for the capture game in the game of Go. The sixth
section details experimental results.

2 The Search Algorithm

2.1 The Basic Search Algorithm

In this subsection, we describe the initial non-widening
algorithm.

We use Abstract Proof Search [Cazenave, 2000] to
develop AND/OR proof trees for the game of Go. This is an
iterative deepening Null Window Search [Marsland and
Bjornsson, 2000], that uses some game specific functions to
efficiently prove theorems about goals in games. This search
algorithm is much more efficient than a usual alpha-beta

search, and scales well when given more resources.

We do not use forward pruning with null move search
because we are looking for exact results, some of our
experiments show that null move pruning can speed-up the
algorithm with very little drawbacks. However, Abstract
Proof Search often stops searching when alpha-beta
continues searching: it stops searching at AND nodes when
it cannot prove the goal can be reached in less than four plies
after a null move. When the goal can be reached in four plies
or less, it selects the only relevant moves that can prevent
reaching the goal with another small five plies search. So
Abstract Proof Search can be considered as performing a
kind of forward pruning [Smith and Nau 1994] that
improves the quality and the rapidity of the search instead of
making it worse as with usual forward pruning.

We use iterative deepening [Korf, 1990], transposition
tables, quiescence search, null-window search when not at
the root and the history heuristic [Schaeffer, 1989]. We stop
search early when the goal is reached. In the experiments of
this paper, we stop search after the first winning move.

In our tests on the capture game, we also use
incrementality so as not to recalculate all the abstract
properties of the strings after each move. We keep track of
the liberties of the strings, and of the adjacent strings of each
string. Each intersection is associated to a bit in a bit array
so0 as to optimize checking of liberties.

Transposition Tables are used to detect identical positions
and return the associated value if the search depth of the
stored position is greater than the depth of the node or if the
value is +INFINITY or —INFINITY. Transpositions are also
used to recall the best move from previous search in the
position and try it first when searching deeper so as to
maximize cut-off.

The History Heuristic is used to order the moves that are
not given by the transposition table. When all the moves at a
node have been tried, the move that returned the best value,
or the one that caused a cut-off, is credited with 2™, At
each node, the moves are sorted according to their credit,
and tried in this order.

In our experiments in Go, a Quiescence Search is
performed at leaf nodes. The quiescence search alternatively
calls two function QSCapture() that plays on the liberties of
the string to capture if it has 2 liberties, and QSSave() that
plays the liberty of the string to capture and the liberties of
the adjacent strings in atari', if the string to capture is in

1 atari means only one liberty left

atari. This ensures that the Quiescence search returns correct
results on the capture status of the string and quickly reads
simple and deep ladders.

Iterative deepening stops when a winning move is found
or as soon as the maximum processing time has elapsed.

2.2 TIterative Widening

We now define how we have applied iterative widening to
our search algorithm.

We define sets of abstract possible moves, that can be
tried at the node of the search tree at a given widening
threshold. Sets are numbered, the following set always
contains the previous set. The algorithm tries the sets of
moves in the same order as their numbers.

For example, if the sets of possible moves to be tried at
different widening threshold are the sets S1, S2,...,Sn. We
have S10S20...00Sn. The algorithm begins with an Abstract
Proof Search, trying the moves in the set S1. If this search
fails, it then makes another search with the S2 set. And so on
until all the possible sets have failed, or the allotted time has
elapsed.

For each problem, two search trees are usually expanded.
The first one with White playing first and the second one
with Black playing first. However, we discard the search
with Black trying to prevent the goal, if the search with
White playing first does not find a winning move. Similarly,
if the problem consists only in finding a winning move, the
search to find the preventing move is not performed.

The iterative widening algorithm consists in calling first
the iterative deepening search algorithm with the first move
function that returns the moves of the first set. If the search
does not succeed, it continues with the following sets until
the search succeeds or the time has elapsed, or the search
eventually fails with the ultimate set.

In our first experiments, when a search fails at a given
widening threshold, the transposition table is reinitialized
and a new search is performed with the next set if possible.
Further experiments have shown that this can be improved
when reusing the same transposition table for all the
widening steps.

2.3 Related Work

After having designed the method, we found that it has
links with Iterative Broadening [Ginsberg and Harvey,
1992]. This method is successful in constraint satisfaction
search [Meseguer and Walsh, 1998]. However, Iterative
broadening is not the same algorithm as ours because it sets
an artificial breadth cutoff ¢, and backtracks at most ¢ times
at any node of the tree. It iteratively increases ¢, and
information can be memorized for the next iteration.
Experiments by Ginsberg and Harvey in applying Iterative
Broadening to Chess gave disappointing results because the
move ordering of current Chess program is already near the
optimum. Another previous related approach was phased
state space search [Marsland and Srimani, 1986], an hybrid
algorithm between SSS* and Alpha-Beta that partitions the
set of all immediate successors of MAX nodes into k groups,
and limits the search to one partition per phase. The

originality of our method is that it is more concerned with
widening at AND nodes, and that it provides game
independent games definition functions that enable large
speed-ups, and adapt to the game and the position at hand to
select the worthwhile moves, rather than setting an artificial
breadth cut-off.

3 The Capture Game

In our experiments, we mainly used the capture game to test
the algorithm. The capture game is the most fundamental
sub-game of Go. It is usually associated with deep and
narrow search trees. It has strong relations with connections,
eyes, life and death, safety of groups and many important Go
concepts.

Figure 1 gives some examples of the capture game. The
first example is called a geta, a white move at A captures the
black stone marked with an x, it can be solved in 5 plies.
The second example is an illustration of the capture game as
a sub-game of the connection game, a white move at B
captures the marked black stone and connects the two white
strings, it requires 9 plies.

Figure 1. Examples of captures

4 Theorem Proving in Go

In this section, we show how to prove tactical goals in the
game of Go. Our method has also proven useful in other
games such as Phutball, Gomoku or Hex.

Let P be a position and m a move. Let play(P,m) be the
function that returns the position after move m on position P.
We can define games:

gi, (P,W)= W can capture in k White moves if W plays
first in position P and if perfect play and
alternated moves are assumed:

Omove { P=play(P,move), g..1(P,W) }.

1pk (PaB) = glk (va)

Sk (P,B) is the set of all black moves that prevent W from
capturing in k white moves in position P if B
plays first when ipy (P,B) is verified.

g (P,W)= Om { mgk, ip, (P,B), 0 move U S, (P,B)

{ P;=play(P,move), Oo {o<k, gi,(P,W) }}}.

In some previous research [Cazenave, 1998], we have

shown it is possible to generate programs for the game
definition functions using the rules of the game defined in a
logic language, and a metaprogramming system. The
generated programs select the same moves as our search
based game definition functions. They can be generated
dynamically by safely generalizing trace of proofs on
examples [Cazenave, 1996], or statically by specializing the
definitions of the games functions on the rules of the game
[Cazenave, 1998].

Recently, we defined an equivalent search based
algorithm that selects the same moves using small game
definition functions based on abstract properties of the
games [Cazenave, 2000]. The algorithm is more concise and
easier to program than our previous metaprogramming
system. It needs to know the complete set of abstract moves
that can change the outcome of a fixed depth small search.
For example, in the leftmost diagram of figure 2, the black
stone has only one liberty and can be captured in one white
move at A, i.e. in a 1 ply search. The only abstract black
moves to prevent the capture are the liberty of the stone and
the liberties of its adjacent strings in atari. Based on the
logic of our previous system, we have designed complete
sets of abstract moves that can prevent one, three and five
plies search.

|
1
A — — E— -

TOOOT — TO@AT —
1

I [1
g1 for White

gil for White
ip1 for Black

gi2 for White
ip2 for Black

g2 for White

Figure 2. Examples of games

In the following we will give names to the different
games, according to their possible outcomes. The names of
the games are usually followed by a number that indicate the
minimum number of white moves in order to reach the goal.
A game that can be won if White moves first is called 'gi', a
game where White wins unless Black plays first is called 'ip',
it is the almost the same as 'gi' except that it is associated to
black moves. A game that White can win even if Black plays
first is called 'g'. A game is always associated to a player, the
g and gi games are associated to the player that can reach the
goal, the ip games are associated to the player that tries to
prevent the opponent from reaching the goal. The gi and ip
games are also associated to a set of moves. The ipn moves
are the moves that prevent a string to be captured in n moves
by the opponent. For example, the ipl moves are the moves
that may prevent a string in atari to be captured in one move
(i. e. playing the liberty, or capturing an adjacent string).

—P =isused to define

Figure 3. The dependencies between games

A forced move is a move associated to an ip game. For
example, when the program checks whether a game is ip2, it

begins with verifying that White can capture in two moves if
he/she plays first (a gi2 game, associated to a three plies
search). The forced ip2 moves are the black moves that
prevent White from capturing the string in two moves once
one of the Black ip2 moves has been played (we can say that
the gi2 game has been invalidated by the black move, for
example the move at A in the third diagram of figure 2 is an
ip2 move for Black and a gi2 move for White).

Figure 3 gives the dependencies between games
definitions. A game can be defined using the games for the
lower number of plies, for example, the gl game for White
is defined as: the game is ipl for Black, and all the forced
black moves lead to a gil game for White after the black
move (as in the second diagram of figure 2). So the gl game
is defined using the definitions of the gil and of the ipl
games, as it is shown in figure 3 where arrows go from the
gil and ipl games to the gl game. Another example is the
gi3 game for White: a white move leads to a g2 game for
White. So the gi3 game depends on the g2 game only. In
order to make things clear some examples of games are
given in the figure 2.

The gi2 game relies on the gl game as shown by the
arrow between gl and gi2 in the figure 3. A gi2 game can be
tried if the string to capture has two liberties. For each of the
two liberties, the program tries to fill the liberty, and verifies
that the game is gl after the liberty is filled, using the gl
game definition function.

The function defining the ip2 game and its associated
moves is equivalent to finding the forced moves that prevent
the string to be captured in 3 plies. It is checked at every
AND nodes of the Abstract Proof Search tree provided the
ipl function has not been verified before.

The ip2 game definition function is defined using simple
concepts and the functions corresponding to other games.
Here again, as shown in the figure 3, the ip2 function relies
on the functions defining the gil and gi2 games. The
function adds the forced moves to prevent a 3 plies capture
(the ip2 moves). The function begins with verifying that the
string can be captured in two moves if White plays first, by
calling the gi2 game definition function. If it is the case, the
function finds the complete set of black moves that may
change the issue of the gi2 game. Then, for each move of
this set, it plays it and checks whether the game is not gil
and not gi2 after the move. If it is the case, then the move
has been successful in preventing the gi2 game, and is
therefore an ip2 black move, so it adds the move to the set of
forced ip2 moves.

The g2 game definition is a little more complex than the
previous ones because there are two possibilities:

Either the function ipl is verified, the black string can be
captured in one move by White, so it has only one liberty.
After playing on its liberty the string can still be captured in
two white moves (the gi2 function applies).

Or the function ip2 is verified, but all the moves that
could prevent the game to be gi2 do not work, so the ip2
function returns an empty set of forced moves. In that case,
the game is won for White because none of the black moves
to prevent gi2 works. The rightmost diagram of figure 2 is an

example of this kind of g2 game.

The gi3 and ip3 game definition functions use the same
kind of definitions as the gi2 and ip2 functions.

At each node and at each depth of the Abstract Proof
Search, the game definition functions are called, they are
equivalent to the development of small search trees. So
Abstract Proof Search is a search algorithm that can be
considered as developing small specialized search trees at
each node of its search tree. At OR nodes, the program first
checks if the position is gil, if it is not, it checks if it is gi2
(equivalent to a three plies deep search tree), and if it is not,
it checks if it is gi3 (equivalent to a five plies deep search
tree). As soon as one of the gi games is recognized, the
program stops searching and returns Won. Otherwise it tries
the OR node moves associated to the position. At AND
nodes, the same thing is done for ipl, ip2 and ip3 games, if
none of them is verified, the programs returns Lost,
otherwise it tries the moves associated to the verified ipl,
ip2 or ip3 game.

5 Designing the Gradual Sets of Moves

It is quite important to carefully choose the sets of moves.
The first set is better if it contains the moves that are likely
to reach the goal. Typically, the last set contains all the
moves worth trying. We have separated the sets for the OR
nodes and the AND nodes of the tree, as they have
completely different properties.

We have defined two sets of moves at OR nodes: ORI is
constituted by the liberties of the string to capture only. OR2
is constituted by all the moves worth trying, including the
liberties of the string to capture, the liberties of the liberties
of the string to capture and the liberties of the adjacent
strings that have less liberties than the string to capture.

Similarly, we have defined two sets of moves at AND
nodes : ANDI is constituted by the ipl and ip2 moves,
AND? is constituted by the ipl, ip2 and ip3 moves.

There are different orders in which the widening can be
performed. Each order is called a widening strategy, each
widening strategy has a number and a name:

1. OR2-2AND2-2: This is the original non-widening,

iterative deepening Null Window Search algorithm.
The OR2 set of moves is used at OR nodes, and the
AND?2 set of moves is used at AND nodes.

2. ORI-2AND2-2: The algorithm begins with the OR1
and AND2 sets of moves, and if the search fails, it
searches again with the OR2 and AND2 sets of
moves.

3. OR2-2ANDI1-2: The algorithm begins with the OR2
and ANDI sets of moves, and if the search fails, it
searches again with the OR2 and AND2 sets of
moves.

4. ANDI-20R1-2: The algorithm begins with the OR1
and ANDI sets of moves, and if the search fails, it
searches again with the ORI and AND2 sets of
moves. If the search fails again, it searches again with
the OR2 and AND?2 sets of moves.

5. ORI1-2ANDI1-2: The algorithm begins with the OR1
and ANDI sets of moves, and if the search fails, it

searches again with the OR2 and ANDI sets of
moves. If the search fails again, it searches again with
the OR2 and AND2 sets of moves.

6. ORANDI1-2: The algorithm begins with the OR1 and
ANDI1 sets of moves, and if the search fails, it
searches again with the OR2 and AND2 sets of
moves.

7. ORI1-2ANDORI1-2: The algorithm begins with the
OR1 and ANDI1 sets of moves, and if the search fails,
it searches again with the OR2 and ANDI1 sets of
moves. If the search fails again, it searches again with
the OR1 and AND?2 sets of moves. If the search fails
again, it eventually searches with the OR2 and AND2
sets of moves.

8. ORANDI-2ANDI1-2: The algorithm begins with the
OR1 and ANDI1 sets of moves, and if the search fails,
it searches again with the OR1 and AND?2 sets of
moves. If the search fails again, it searches again with
the OR2 and ANDI1 sets of moves. If the search fails
again, it eventually searches with the OR2 and AND2
sets of moves.

9. Brute Force : The algorithm always tries all the
possible moves. It is intended to compare our
selective search algorithm based on game definition
with a brute force approach. Note that our quiescence
search is responsible for most of the problems solved
by the brute force approach.

6 Experimental Results

This section gives experimental results on a standard test set
for capturing strings in Go: we call them ggvl [Kano,
1985a], ggv2 [Kano, 1985b] and ggv3 [Kano, 1987]. These
books are regarded by Go players as a well balanced
collection of problems that cover the essential problems that
arise in real games. The first book contains very simple
beginner’s problems, the second book requires more
knowledge of the game, and the third book contains
problems that average players can find interesting. We have
selected all the problems involving a capture of a string,
including semeai and some connection problems. There are
114 capture problems in ggvl, 144 in ggv2 and 75 in ggv3.
Experiments were performed on a Pentium III 600 MHz
microprocessor.

Problems are counted as solved only when the search
returns Won (in some case it may be useful to consider the
preventing moves associated to the Unknown value as they
are not refuted due to a lack of search, but may be
preventing moves, however the brute force algorithm returns
Unknown for many bad moves, therefore they should not be
considered as correct answers).

A maximum processing time is set for each search, as
soon as the time has elapsed, the search is stopped, and the
status is set to 0 (Unknown) on remaining leaves. Two
searches are performed for each problem, one with Black
playing first, the other with White playing first.

For each book and each maximum processing time per
search, a table gives the widening strategy used, the time in
seconds used to search all the problems, the number of

nodes including leaf nodes, the minimum number of nodes
(when the best move is always tried first at each node), and

the percentage of solved problems.

Time Nodes Minimum Solved
1 0.63s 4404 4017 99.12 %
2 0.54s 2123 1857 99.12 %
3 0.45s 4268 3844 99.12 %
4 0.65s 2484 2299 99.12 %
5 0.70s 2494 2279 99.12 %
6 0.48s 2036 1848 99.12 %
7 0.80s 2430 2257 99.12 %
8 0.79s 2582 2404 99.12 %
9 26.40 890256 761161 78.07 %
Table 1. Results for ggv1, Search Time < 1 second.
Time Nodes Minimum Solved
1 11.39s 50968 41751 88.19 %
2 9.68s 36619 29909 89.58 ¥
3 7.44s 49304 41479 89.58 %
4 10.25s 38476 32132 88.89 ¥
5 8.52s 45365 37788 89.58 ¥
6 7.84s 32102 26588 89.58 ¥
7 9.19s 46859 38785 88.89 ¥
8 10.40s 46540 38244 88.19 %
9| 102.09s 4533217 4275396 30.56 %
Table 2. Results for ggv2, Search Time < 1 second.
Time Nodes Minimum Solved
1 11.86s 52173 42140 80.00 %
2 8.73s 32837 27412 84.00%
3 6.38s 37953 32335 84.00%
4 9.11s 33860 28402 84.00%
5 6.79s 34706 29401 84.00%
6 7.38s 30783 24931 84.00%
7 7.39s 34140 30159 84.00%
8 8.28s 37723 33325 84.00%
9 53.28s 2259720 2140103 29.33%
Table 3. Results for ggv3, Search Time < 1 second.
Time Nodes Minimum Solved
1 4.40s 22782 20634 75.00%
2 3.63s 13297 11745 83.33%
3 2.92s 25107 22355 85.42%
4 3.75s 12834 11834 84.03%
5 3.41s 16183 14681 85.42%
6 3.02s 13234 11770 84.03%
7 3.40s 15988 14467 86.81%
8 3.58s 14190 12973 85.42%
9 11.20s 488576 465145 25.00%

We have also tested the algorithm with a lower maximum
processing time, closer to current limitations of Go

Table 4. Results for ggv2, Search Time < 0.1 second.

programs, the one second limit may be interesting for
programs that spend more time on tactical analysis than on
global search. It can also figure the possible improvements
due to search in the near future as computers get faster. Each
search was stopped as soon as it took more than 100 ms. The
results for ggvl are not given as they are similar to table one,
except for the brute force algorithm that solves 74.56% of
the problems in 3.21s and 142276 nodes. The results
on more complex problems is different, as shown in tables
four and five.

Time Nodes Minimum Solved
1 3.00s 13005 11474 65.33%
2 2.78s 10776 10050 69.33%
3 2.04s 18817 17207 78.67%
4 2.78s 11681 10862 69.33%
5 2.39s 14023 12909 77.33%
6 2.39s 9626 8858 73.33%
7 2.55s 13280 12328 74.67%
8 2.99s 13439 12730 69.33%
9 5.87s 313009 292004 24.00%

Table 5. Results for ggv3, Search Time < 0.1 second.

The brute force approach is clearly much worse than all
other strategies. Almost all the problems it can solve are
solved by our quiescence search. Considering than the
problems in our test set are setup on small boards (9x9 or
13x13 boards), it would be even much worse in a full Go
playing program (19x19 board).

Many widening strategies gives speed-ups compared to
the original algorithm, except for some very simple
problems of volume one where some widening strategies
slightly increase the solving time which is more than
compensated by more difficult problems. All the widening
strategies both decrease the time to solve problems and
increase the percentage of solved problems on average. They
do not only reduce significantly the computation time, they
also solve more problems than the original non iterative
widening algorithm (OR2-2AND2-2).

In the original non widening algorithm, the liberties of the
string are tried first, and the order of the moves at each node
is the same as in the iterative widening algorithm, therefore
the observed speed-ups are due to the iterative widening, not
to another factor such as move ordering. Moreover, the
number of nodes is close enough to the minimum number of
nodes to consider that the move ordering is not bad. And
even with the perfect move ordering, we can see that
iterative widening is still clearly better than the non
widening algorithm.

The OR2-2AND1-2 strategy is quite efficient and it is
domain independent. There is no widening at OR nodes, and
the widening at AND nodes is performed only by the
selection of some specified game definitions functions. As
game definition functions can be defined similarly for many
games, this widening strategy is both effective and general.

We can also observe in table four and five that the OR2-
2ANDI1-2 strategy searches more nodes that the non

widening algorithm, but only takes two third of its time and
solves significantly more problems. This apparent anomaly
may be due to the cost of the ip3 game definition function,
that is higher that the cost of the ipl and ip2 functions.
Therefore searching less nodes using the ip3 function can
take more time than searching more nodes only using the ip2
function. In other experiments [Cazenave, 2000], we have
already shown that the non widening algorithm based on the
ip3 function solves more problems in much less time than
the same selective Alpha-Beta Null-Window Search
algorithm that uses the same set of moves, without
performing the ip3 tests.

We performed tests in another game to assess the
generality of iterative widening. We chose Phutball [Conway
& al., 1982], as it also falls in the class of games that benefit
from theorem proving and selectivity. Other games in this
class are Gomoku, mate search in Chess and Hex for
example. Generally these games have a high branching
factor and a simple and well defined goal. Phutball is played
on a Go board, a black stone represents the ball, and players
are represented by white stones. A player tries to put the ball
on the first line of its opponent. A move consists in moving
the ball by jumping over a player, or in putting a new stone
on an empty intersection. In Phutball, using iterative
widening with the OR2-2AND1-2 combination enabled a
speed-up by a factor greater than two.

In these experiments, the transposition table was
completely initialized before each widening. It would be
more clever to keep the same transposition table, and to put
a flag on the transpositions, memorizing the widening step of
the transposed board, in order to reuse the information from
the previous and narrower search so as to save computation
time. Another optimization is to reuse the stored score at OR
nodes to update alpha. The results of the experiments that
use the enhanced transposition tables, performing the two
previously mentioned optimizations, are given in table 6. It
appears that it enables to solve roughly 1% more problems
in 5/6™ of the time. The OR2-2ANDI-2 (3") widening
strategy is used.

Book | MaxTime Time | Nodes| Minimum Solved
ggvl Is | 0.30s 4469 4342 | 99.12%
ggv2 Is| 7.48s | 63266 58024 | 88.89%
ggv3 Is| 5.10s | 43166 38909 | 84.00%
ggvl 0.1s| 0.30s 4469 4342 | 99.12%
ggv2 0.1s| 2.41s | 29038 27159 | 86.81%
ggv3 0.1s| 1.74s | 21822 20225 | 80.00%

Table 6. OR2-2AND1-2 with an enhanced transposition table

7 Conclusion

Gradually widening the sets of moves in some complex
game search trees enables to reduce significantly the search
time when performing an iterative deepening Null Window
Search. It also appears that more problems can be solved by
using this technique. A general widening strategy relevant to
many complex games such as Go, Phutball, Hex and Chess

has been experimentally proven useful. It consists in
iteratively increasing the order of the game definitions
functions used to select forced moves at the AND nodes of
the search trees. Results are slightly better when reusing
transposition table information from the previous and less
wide search.

Acknowledgements
Thank you to J. Méhat and J.-P. Vesinet for proof reading.

References

[Cazenave, 1996] Cazenave T.: Systeme d Apprentissage
par Auto-Observation. Application au Jeu de Go. Ph.D.
diss., Université Paris 6. 1996.

[Cazenave, 1998] Cazenave T.: Metaprogramming Forced
Moves. Proceedings ECAI98 pp. 645-649, Brigthon,
1998.

[Cazenave, 2000] Cazenave T.: Abstract Proof Search.
Proceedings of CG2000. Published in LNCS 2001.

[Conway et al., 1982] Conway J., Berlekamp E., Guy R.:
Winning ways, Tome 1 and 2, Academic Press, 1982.

[Ginsberg and Harvey, 1992] Ginsberg M. L., Harvey W.
D.: Iterative Broadening. Attificial Intelligence 55 (2-3),
pp- 367-383. 1992.

[Kano, 1985a] Kano Y.: Graded Go Problems For
Beginners. Volume One. The Nihon Ki-in. 1985.

[Kano, 1985b] Kano Y.: Graded Go Problems For
Beginners. Volume Two. The Nihon Ki-in. 1985.

[Kano, 1987] Kano Y.: Graded Go Problems For
Beginners. Volume Three. The Nihon Ki-in. 1987.

[Korf, 1990] Korf R. : Depth-first iterative-deepening : An
optimal admissible tree search. Artificial Intelligence 27,
N°1, pp 97-109, North-Holland 1990

[Marsland and Srimani, 1986] Marsland T. A., Srimani N.:
Phased State Space Search. ACM/IEEE Fall Joint
Computer Conference, Dallas, Nov. 1986, pp 514-518.

[Marsland and Bjornsson, 2000] Marsland T. A., Bjérnsson
Y.: From Minimax to Manhattan. Games in Al Research,
pp. 5-17. Edited by H.J. van den Herik and H. lida,
Universiteit Maastricht. ISBN 90-621-6416-1. 2000.

[Meseguer and Walsh, 1998] Meseguer P., Walsh T. :
Interleaved and Discrepancy Based Search. Proceedings
ECAI98 (ed. H. Prade). John Wiley & Sons Ltd.,
Chichester, England. ISBN 0-471-98431-0. 1998.

[Schaeffer, 1989] Schaeffer J.: The History Heuristic and
Alpha-Beta Search Enhancements in Practice. 1EEE
Transactions on Pattern Analysis and Machine
Intelligence 11, N° 11, pp. 1203-1212, 1989.

[Smith and Nau, 1994] S.J.J. Smith and D.S. Nau. 4n
Analysis of Forward Pruning. In AAAI-94, 1994.

