It Takes Two Neurons To Ride a Bicycle

Matthew Cook*

Abstract

Past attempts to get computers to ride bicycles have retjaineinor-
dinate amount of learning time (1700 practice rides for afogcement
learning approach [1], while still failing to be able to ridea straight
line), or have required an algebraic analysis of the exaat®ons of
motion for the specific bicycle to be controlled [2, 3]. Mysbeisly, hu-
mans do not need to do either of these when learning to rideyalbi
Here we present a two-neuron netwbtkat can ride a bicycle in a de-
sired direction (for example, towards a desired goal or glarlesired
path), which may be chosen or changed at run time.

Just as when a person rides a bicycle, the network is veryraiector
long range goals, but in the short run stability issues datrithe behav-
ior. This happens not by explicit design, but arises as arabtonse-
quence of how the network controls the bicycle.

1 Introduction

The task of riding a bicycle presents an interesting chgllenvhether for human or for
computer. We do not have great insight as to how we ride a leicgod we do not have
much useful advice for someone who is learning.

In fact, in the course of this project, | had the chance to ddwirtual bicycle” on the
computer, and | was surprised to find how counterintuitive it had thought that, knowing
perfectly well how to ride a bicycle in real life, it would beorproblem in simulation.
However, in real life there must be additional inertial ctiest | sense or leaning actions
that | make which are missing from the simulation, since | tealéarn, as if from scratch,
what cues to attend to and how to react to them. | even thotdinsethat there must be a
bug in the simulator, since to turn right | found | had to pusé handlebars to the left. Of
course, if you stop to think about it, that is exactly corrdat turn right, the bicycle has to
leanto the right, and the only way to make that happisrto shift the point of contact with
the ground to the left, which requires an initial push to &fé IBut then, once the bicycle is
leaning to the right, it will itself push the handlebars te tight due to how it is constructed
for stability? with a force even greater than your initial push to the ledtpsaintaining a

*California Institute of Technology, Mail Stop 136-93, Pdsaa, CA 91125 cook@paradise.caltech.edu

IActually, the title of this paper is unproven. We have noedubut the possibility that a single
neuron could ride a bicycle.

2This is ignoring the torque effect due to the spinning of ttomf wheel, but if you take that into
account, it too has exactly the same effect as the effectibesicabove (pushing to the left makes
you lean to the right).

3See footnote 7 on page 6.

constant gentle leftward push does indeed cause the biytlen to the right. Similarly,
to come out of the rightward turn (or even to maintain it), ymed to push the handlebars
gently to theright.

In this paper we outline the various portions of our projedtich has led us to find a
surprisingly competent two-neuron network. Differenttpmrs of this work are likely to
be of interest to different people. The reader should fesd fo skip over sections that are
not of interest—the paper has been organized so that skjgiead should not result in a
loss of understanding when reading later sections.

2 Methodology: Overview of the Simulator System

2.1 ThePhysics

In order to allow us to experiment with different bicycle ¢allers, we first have to set up
a virtual bicycle for them to control. The equations of matfor a bicycle are somewhat
complex [2], so it seems no more complicated and much morfelusegust write a general
robot simulator, which can read a description of an arhjtrabot (rigid bodies linked
by hinge-like connections), and simulate how that robol mibve given the forces being
applied to it. This entails calculating the moments of irafidr each rigid body, simulating
the motion of a single rigid body given forces acting on it,[&hd solving a system of
equations at each step for how the hinge-like connectionspaly forces to the parts of
the robot so that the alignment and co-location requireseithe hinges are mét.

2.2 TheBicycle Rabot

Once we have such a general purpose physics simulator, themamvturn to setting up a
robot, in this case a bicycle. A bicycle is composed of fogidribodies: the two wheels,

the frame, and the front fork (the steering column). Eachealjt pair of parts is connected
with a joint that allows rotation along a defined axis, andlieels are connected to the
ground by requiring that their lowest point must have zeilighteand no horizontal motion

(no sliding).

Figure 1:The virtual bicycle.

Beyond specifying the construction and connections tham e bicycle, we need to de-
cide what sensory input should be available to the conttoied how the controller’s
outputs should be converted into forces on the bicycle (fotios terms, what the sensors

“Even the support of the wheel by the ground counts as a hikgednnection for this purpose.

and actuators should be for this non-holonomic under-é&tusystem). For our bicycle,
we allow all the easily perceivable quantities to be avédldb an interested controller:
Position, heading, speed, angle of the handlebars (anat&sf change), and the amount
the bicycle is leaning (and its rate of change). For actsatee allow a torque on the back
wheel and a torque on the handlebars. Humans also make gead lesning to one side
or the other when they ride, but we will not have such a cordrothe riderless bicycle.
Also, we do not allow the controller to know the specifics & thicycle, such as its exact
proportions or the masses of its parts.

2.3 TheController

Once we have set up the robot bicycle, we can turn to the tagkt@rfest: Designing a
controller for the bicycle. We want the controller to solte same problem that a human
solves when riding the bicycle. The human knows where theyahich way they are
going, how fast they are going, how the bicycle is leaningl, smon, but as we know from
experience the human does not need to know the specifics obtistruction of the bicycle.

Here we are finally faced with a problem that we do r@opriori, know how to solve. So
we stare at the ceiling for a while, and whenever we are stwittksome inspiration, we
quickly write a controller based on it.

There are three main styles of controller (prescient, hyraad two-neuron) that have led
us to interesting results or observations, and we will disebem in the next three sections.
None of them made significant use of the speed—they all mah@ageontrol the bicycle
using just the handlebars. We will not discuss here thoseatars which did nothing but
crash the bicycle at every opportunity.

3 ThePrescient Controller: A Look at Reinforcement Learning

One interesting idea for a controller, given that the erdystem is being simulated, is to
let the controller cheat by giving it access to the simulaldnis could not be done with a
controller for a bicycle in the real world, so it is not of inést for applications, but we can
certainly try it in the simulated world to see what happens.

In particular, we can try the following algorithm for the dooller: At each step, first
simulate and compare three actions. The actions only diiférow the handlebars are
pushed at the first instant: pushed left, pushed right, otmumthed. The remainder of each
of the three actions is to do nothing until the bicycle crasfighese three actions can then
be compared on the basis of which one causes the bicycle &imemright for the longest
time, which one results in the most progress to the right, loattever other criterion one
decides to optimize. After simulating the results of theethactions, the controller decides
what to do at this instant based on those results. (Eachrd@ifferiterion is thus the basis
for a different controller.)

These simulations were tried with and without random miltés (“wind”) being applied
to the bicycle. The original motivation for this was so tha tontroller would not be able
to rely on an absolutely perfect prediction of the futuremight also help the controller to
have a more “continuous” behavior, since over the coursewdral consecutive instants, it
would be getting a rough estimation of the probability dlsttion for success of each of its
actions, leading to the controller taking a similarly distited action. However, such wind
turned out in fact to have no significant effect on the results

In the language of reinforcement learning, such a contradlexactly what you would
get after one step of policy iteration, if you start with thallrpolicy of never touching
the handlebars, and allow yourself three actions at eagh(ptesh left, push right, or no

Figure 2:Instability of an unsteered bicycle. This shows 800 runs loicgicle being pushed to the
right. For each run, the path of the front wheel on the grownshiown until the bicycle has fallen
over. The unstable oscillatory nature is due to the subatfiipeed of the bicycle, which loses further
speed with each oscillation.

push). Then if the controller learns the value function fas tpolicy (which in practice
would require lots of experience with not touching the habdrts, but which we simulate
by giving the controller access to the simulator), it camthet greedily with respect to that
value function. This amounts to one step of policy iteratenmd at least for the goal of not
falling over, an optimal policy is indeed obtained afterragh iteration (i.e., it successfully
doesn't fall down). However, it does not do this in a convemdl way, say by riding in a
straight line, but rather manages to maintain stability edrreero speed by doing stunts
with the front wheel, for example by spinning the handlebarsircles (the handlebars
and front wheel do not bump into the frame for our bicycle, H#rete are no cables to get
twisted, so why not?). A movie of this bizarre behavior carsben at:

http://ww. par adi se. cal t ech. edu/ ~cook/ War ehouse/ Recur si veBi ke. avi

Despite many attempts at formulating a sensible value fomctve found it difficult to
get sensible behavior out of the bicycle. By rewarding upngss, the bicycle would stop
riding normally and start doing stunts as described abdwee ltried to discourage this by
rewarding speed, the bicycle would swoop from side to sidesre each swoop results in a
temporary increase in speed. If we tried to discourage thigWwarding going in a straight
line, the bicycle would do this very nicely, but of course buwid fall over right away, as
avoiding the fall would have required deviating from thegght line. Of course, one could
try weighted combinations of these or other ideas, but thenquestion starts to be not
how long it will take the controller to learn to ride the bidgcbut how long it will take us
to learn how to program the controller to get it to ride nofyals has been pointed out
by people who have worked with reinforcement learning, it ba a very tricky business
trying to pick a good value function.

Even if we had had marvelous success with this method, it dvook be immediately
applicable to a more realistic situation, due to its rel@aion getting answers from the
simulator to “what if?” questions, effectively having asseto an oracle. However, it
would have provided a hint that reinforcement learning ddug used effectively. As it
was, the hint we got was that reinforcement learning wouldlaahard time of it. This is
also the hint we were getting from Randlgv and Alstrgm’s ipiaper [1], where they tried
various reinforcement learning methods to get their cdietrto learn to ride a bicycle, but
even with the best methods it took thousands of practicesriddearn not to fall down,
and thousands more to learn to ride towards a goal, and etemtaving “learned,” the

controller appeared to have a rather drunken behavior at bes

4 TheHuman Controller

One venerable method of learning is to be taught by an experaps by example. The
obvious expert in this case would be a skilled human. To enidlid, we had the computer
present a real-time graphical display of the bicycle, alllmpa human to use the keyboard
to control the pedaling and the pushing of the handlebarsfoAmyself, this led to the
experience described in the introduction (on page 1), whdigcovered that controlling
the bicycle is quite counter-intuitive.

The human controllers who tried to learn to drive the virtoial/cle found subjectively that
it was important to pay attention to the angle at which thgdlewas leaning, and to con-
centrate on manipulating this angle. This observationineche basis for the two-neuron
controller described below. None of the humans became pofiat getting the bicycle to
travel in a precise direction, a skill demonstrated nicsfyte two-neuron controller. One
cannot rule out the possibility that the humans might haveeghthis skill with further
practice.

There are two ways in which we tried to use the human expef@iae way was by record-
ing what was going on during one of their rides. Collecting ttata and then analyzing it
for pertinent correlations yielded surprisingly littletime way of useful information.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

16 16

15 15 1t

14 14 2: X

13 13 3y

12 12 4: o (heading)

1 " 5: s (speed)

0 0 6: v (angle with vertical)

9 9 7: «a (handl ebar angl e)

s o 8: sj (intended speed)

7 ; 9: th (torque on handl ebars)
10: ¢t

. : 11: x

4 4 12: y

s 5 13: &
14: s

2 2 15: ¥

* : 16: &

12 3 45 6 7 8 9 1011 12 13 14 15 16

Figure 3: The covariance between many of the quantities availabl&docontroller. The main
diagonal has been set to zero so as not to be so visuallyatistgaThere is good correlation between
the controller's output;, (9) and the amount of turning(13), which might seem to solve the problem
immediately, but unfortunately the causality in this rielaship goes the wrong way: the controller
needs to adjust, in response tey to maintain stability, where (6) andé (13) happen to be strongly
correlated. (This correlation between(6) andéd (13) can be immediately understood based on the
simplest physics of centrifugal force, but we do not want camtroller to need knowledge of any
physical laws.) The quite useful causal relation betweg(®) andy (15) is visible, but there is little
here to clue one in to its importance for successful control.

The other way in which we tried to use human expertise was ybahe humans subjec-
tively describe how they were trying to control the bicynce they had just gone through
the experience of having to learn how to do it, they were neally well able to describe

5This at least explains in part why it takes a certain amoumtragtice for a human to become a
proficient bicycle rider in the real world.

what their algorithm was, and as it turned out they had d@esisimilar techniques, based
on carefully adjusting the angle at which the bicycle is lagn

Based on the reports of the humans, the two-neuron netwartkader was implemented,
and it worked almost immediately, having few parameterd, ot being overly sensitive
to any of them. This method is the subject of the next section.

5 The Two-Neuron Network

Here we present a two-neuron network which can operate tyelbicompetently over a
range of speeds. The output of the first neuron is fed intogbersd neuron, whose output
is connected to an actuator which applies the specified ahodtwrque to the handlebars.
As inputs to the network, we provide the desired headin@s well as the current heading
0 andsthe degree to which the bicycle is currently leanjnglong with their derivatived
and~.

Due to the nature of the problem, we will use a network thadigiouous both in time and
in values. A unit's output is determined simply by a threslired function of a weighted
sum of the unit’s inputs. If necessary, this can be integateis a mean-firing-rate model,
but we will not explore issues of network realism here. Gitleat such a small network
of this type suffices, there seems little doubt that moreséainetworks could solve the
problem as well.

The task for the network will be to make the bicycle travelhie tlesired direction. This
can then be used by higher-level planning systems to maksdiele head towards a goal,
or to follow a path by heading towards a sequence of waypoints

In order to set the bicycle’s headifigas desired, we need to be able to confrdlVe know
from figure 3 that is strongly related ta, the amount the bicycle is leaning, so we can try
to controld indirectly by simply controllingy.”

To controlvy, we need control ovey. And indeed, our actuator, which can exert a desired
torque on the handlebars, happens to have reasonable laoiniro There is not a direct
or fixed correspondence, but as a general rule, during statifey, a higher clockwise
torque on the handlebars will cause the bicycle to startilgamore to the left. Thus, by
setting the torque according to how we would ltkéo change, we should be able to have
converge towards its desired value. (Note that it doesniktenaebig difference if the actual
convergence is just towards some approximatiory’sfdesired value—the exact desired
value is not critical for this method of control to succeed.)

The first neuron in our circuit will output the desiredwith the nonlinearity being applied
so that the bicycle doesn't try to lean too far o¥€Fhe second neuron in our circuit will
output the desired torque to be applied to the handlebars.

The first neuron will take as inputsandd, (which one can assume to be withirr of 6,

SActually, as we will see, the network does not even need t@use

"One of the reasons that controllingvorks is due to the realistic bicycle geometry. Real bicgcle
are designed to be stable, which allows a rider to ride withhmlding the handlebars, simply by
controlling the amount the bicycle is leaning. We note thwa typical important factor in stability is
that the axis of rotation of the front fork should pass belb& hub of the front wheel but above its
point of contact with the ground, a feature we have duplitatethe virtual bicycle.

8Although most of us do not have direct experience with thisyddes can become quite unstable
if they are in a state of extreme leaning. In real life, ugutile wheels skid out from under us before
this point is reached. In this simulator, skidding does remu, but since this controller specifically
avoids states of extreme leaning, it thereby avoids thelpnokentirely, regardless of whether the
problem is that of slipping or that of becoming unstable.

although this is not essential), and simply calculate treérdd change in headirfty — 6,
multiply by a constant, apply a threshold, and then outpairésult, which we will denote

by va-

The second neuron will take as inputg -, 7, and its own output, which we will denote
by ¢. It will calculate the amount by whick should be changed, — «, and compare that
to a constant times the current rgtat which~ is changing. The difference between these,
how much? should be adjusted by, is then scaled and sent as the cenautputr;, of
how much torque to apply to the handlebars.

Yo = o(c16q— c16)
Th = €274 — C27y — €37

Figure 4:The equations for the two-neuron netwotkdenotes a thresholding function. The three
constants:; need to be set by the implementor in light of the bicycle'b#ity characteristics, but
the network’s behavior is not too sensitive to their presgies, so it is actually quite easy to get a
working network.

6 Results

The two-neuron network controller does remarkably wellaitmlling the bicycle, as we

can see in figure 5.

Figure 5:The path taken by the bicycle when told to aim at the sucoesgaypoints shown. Each
time the bicycle got within a certain distance of its curremget waypoint, the target would change
to become the next waypoint in the sequence. This distanteeaeen as the distance between the
last waypoint and the end of the bicycle’s path shown. Thegirtarity in the writing is due to the
author’s messy handwriting when trying to write with a mquesad is not the fault of the bicycle.

Although the two-neuron network controller works well forange of speeds, one thing
the controller doesiotdo is to try to dampen the instabilities that can arise whdmgi
too slowly or in too sharp of a turn. (This would probably r&gua third neuron that is
dedicated to this task.)

7 Future Directions: More Automated L earning

The future directions of interest to us have to do with ushig $ystem to understand more
about learning. There are other interesting future dioesti such as building a real bicycle
robot, which we probably will not pursue.

One obvious thing to do with this system is to have it learn tume its parameters with
experience. ldeally, if the system is placed on a slightifiedant bicycle, it should quickf/
learn how to successfully operate the new bicycle.

This network was designed in an ad-hoc, if traditional, wayst, a human tried to control

the bicycle with the simulator. After many attempts, the lnrfinally became a somewhat
skilled operator of the bicycle, able to avoid falling dowut btill not able to head reliably

towards a desired goal. Nonetheless, the human at this wamtble to describe the key
parameters which were being attended to, and based onhaisyb-neuron network was

designed. The skill of this network immediately exceededhtttiman’s skill.

However, we would like to take the human out of this loop. Waulddike the computer
to be able to figure out on its own what simple network mightkyaising a minimum of
experience (i.e., a minimum number of crashes before nmyasfahe bicycle), and using
no detailed knowledge of the physical system. Our attenpfarshave been statistically
based, and have not been very successful. We feel that wetodwde a causal model
for what is observed, where the direction of causality ig pawhat is observed. Causal
networks (belief propagation networks) might be a goodasgntation for such knowledge,
but the real issue is how to have such a network be autonigtazdigned for us. It is our
opinion that a general solution to this problem would haveyragpplications.

Acknowledgments

I would like to thank Shuki Bruck and Erik Winfree for many p&ll discussions. This
work was supported in part by the “Alpha Project” that is faddoy a grant from the
National Human Genome Research Institute (Grant No. P5023@0).

References

[1] Learning to Drive a Bicycle using Reinforcement Learningd @@haping Jette
Randlgv and Preben AlstrgmRBCEEDINGS OF THEFIFTEENTH INTERNATIONAL
CONFERENCE ONMACHINE LEARNING, (ISBN:1-55860-556-8), 1998, pp. 463—
471.

[2] Control for an Autonomous BicycléNeil H. Getz and Jerrold E. Marsden, IEEE
INTERNATIONAL CONFERENCE ONROBOTICS AND AUTOMATION, 1995.

[3] Descriptor Predictive Control: Tracking Controllers forRiderless BicycleD. von
Wissel, R. Nikoukhah, F. Delebecque, and S. L. Campbel® COMPUTATIONAL
ENGINEERING IN SYSTEMS APPLICATIONS Lille, France, 1996, pp. 292—-297.

[4] Steering Control System Design and Implementation of arR&keBicycle Chi-Da
Chen, and C. C. TsaiQURNAL OF TECHNOLOGY, vol. 16, no. 2, pp. 243-251 (July
2001). NSC89-2213-E-005-0%Hote: | have been unable to locate a copy of this paper,
but I am including the information | have on it here anyway.]

[5] Accurate and Efficient Simulation of Rigid Body Rotatiddamuel R. Buss,QUR-
NAL OF COMPUTATIONAL PHYSICS, vol. 164, no. 2, pp. 377-406 (November 2000).

®Before falling over even once, one would hope.

