
It Takes Two Neurons To Ride a Bicycle

Matthew Cook∗

Abstract

Past attempts to get computers to ride bicycles have required an inor-
dinate amount of learning time (1700 practice rides for a reinforcement
learning approach [1], while still failing to be able to ridein a straight
line), or have required an algebraic analysis of the exact equations of
motion for the specific bicycle to be controlled [2, 3]. Mysteriously, hu-
mans do not need to do either of these when learning to ride a bicycle.
Here we present a two-neuron network1 that can ride a bicycle in a de-
sired direction (for example, towards a desired goal or along a desired
path), which may be chosen or changed at run time.
Just as when a person rides a bicycle, the network is very accurate for
long range goals, but in the short run stability issues dominate the behav-
ior. This happens not by explicit design, but arises as a natural conse-
quence of how the network controls the bicycle.

1 Introduction

The task of riding a bicycle presents an interesting challenge, whether for human or for
computer. We do not have great insight as to how we ride a bicycle, and we do not have
much useful advice for someone who is learning.

In fact, in the course of this project, I had the chance to ridea “virtual bicycle” on the
computer, and I was surprised to find how counterintuitive itis. I had thought that, knowing
perfectly well how to ride a bicycle in real life, it would be no problem in simulation.
However, in real life there must be additional inertial cuesthat I sense or leaning actions
that I make which are missing from the simulation, since I hadto learn, as if from scratch,
what cues to attend to and how to react to them. I even thought at first that there must be a
bug in the simulator, since to turn right I found I had to push the handlebars to the left. Of
course, if you stop to think about it, that is exactly correct. To turn right, the bicycle has to
leanto the right, and the only way to make that happen2 is to shift the point of contact with
the ground to the left, which requires an initial push to the left. But then, once the bicycle is
leaning to the right, it will itself push the handlebars to the right due to how it is constructed
for stability,3 with a force even greater than your initial push to the left, so maintaining a

∗California Institute of Technology, Mail Stop 136-93, Pasadena, CA 91125 cook@paradise.caltech.edu
1Actually, the title of this paper is unproven. We have not ruled out the possibility that a single

neuron could ride a bicycle.
2This is ignoring the torque effect due to the spinning of the front wheel, but if you take that into

account, it too has exactly the same effect as the effect described above (pushing to the left makes
you lean to the right).

3See footnote 7 on page 6.



constant gentle leftward push does indeed cause the bicycleto turn to the right. Similarly,
to come out of the rightward turn (or even to maintain it), youneed to push the handlebars
gently to theright.

In this paper we outline the various portions of our project,which has led us to find a
surprisingly competent two-neuron network. Different portions of this work are likely to
be of interest to different people. The reader should feel free to skip over sections that are
not of interest—the paper has been organized so that skipping ahead should not result in a
loss of understanding when reading later sections.

2 Methodology: Overview of the Simulator System

2.1 The Physics

In order to allow us to experiment with different bicycle controllers, we first have to set up
a virtual bicycle for them to control. The equations of motion for a bicycle are somewhat
complex [2], so it seems no more complicated and much more useful to just write a general
robot simulator, which can read a description of an arbitrary robot (rigid bodies linked
by hinge-like connections), and simulate how that robot will move given the forces being
applied to it. This entails calculating the moments of inertia for each rigid body, simulating
the motion of a single rigid body given forces acting on it [5], and solving a system of
equations at each step for how the hinge-like connections can apply forces to the parts of
the robot so that the alignment and co-location requirements of the hinges are met.4

2.2 The Bicycle Robot

Once we have such a general purpose physics simulator, then we can turn to setting up a
robot, in this case a bicycle. A bicycle is composed of four rigid bodies: the two wheels,
the frame, and the front fork (the steering column). Each adjacent pair of parts is connected
with a joint that allows rotation along a defined axis, and thewheels are connected to the
ground by requiring that their lowest point must have zero height and no horizontal motion
(no sliding).

Figure 1:The virtual bicycle.

Beyond specifying the construction and connections that form the bicycle, we need to de-
cide what sensory input should be available to the controller, and how the controller’s
outputs should be converted into forces on the bicycle (in robotics terms, what the sensors

4Even the support of the wheel by the ground counts as a hinge-like connection for this purpose.



and actuators should be for this non-holonomic under-actuated system). For our bicycle,
we allow all the easily perceivable quantities to be available to an interested controller:
Position, heading, speed, angle of the handlebars (and its rate of change), and the amount
the bicycle is leaning (and its rate of change). For actuators, we allow a torque on the back
wheel and a torque on the handlebars. Humans also make good use of leaning to one side
or the other when they ride, but we will not have such a controlon the riderless bicycle.
Also, we do not allow the controller to know the specifics of the bicycle, such as its exact
proportions or the masses of its parts.

2.3 The Controller

Once we have set up the robot bicycle, we can turn to the task ofinterest: Designing a
controller for the bicycle. We want the controller to solve the same problem that a human
solves when riding the bicycle. The human knows where they are, which way they are
going, how fast they are going, how the bicycle is leaning, and so on, but as we know from
experience the human does not need to know the specifics of theconstruction of the bicycle.

Here we are finally faced with a problem that we do not,a priori, know how to solve. So
we stare at the ceiling for a while, and whenever we are struckwith some inspiration, we
quickly write a controller based on it.

There are three main styles of controller (prescient, human, and two-neuron) that have led
us to interesting results or observations, and we will discuss them in the next three sections.
None of them made significant use of the speed—they all managed to control the bicycle
using just the handlebars. We will not discuss here those controllers which did nothing but
crash the bicycle at every opportunity.

3 The Prescient Controller: A Look at Reinforcement Learning

One interesting idea for a controller, given that the entiresystem is being simulated, is to
let the controller cheat by giving it access to the simulator. This could not be done with a
controller for a bicycle in the real world, so it is not of interest for applications, but we can
certainly try it in the simulated world to see what happens.

In particular, we can try the following algorithm for the controller: At each step, first
simulate and compare three actions. The actions only differin how the handlebars are
pushed at the first instant: pushed left, pushed right, or nottouched. The remainder of each
of the three actions is to do nothing until the bicycle crashes. These three actions can then
be compared on the basis of which one causes the bicycle to remain upright for the longest
time, which one results in the most progress to the right, or whatever other criterion one
decides to optimize. After simulating the results of the three actions, the controller decides
what to do at this instant based on those results. (Each different criterion is thus the basis
for a different controller.)

These simulations were tried with and without random mild forces (“wind”) being applied
to the bicycle. The original motivation for this was so that the controller would not be able
to rely on an absolutely perfect prediction of the future. Itmight also help the controller to
have a more “continuous” behavior, since over the course of several consecutive instants, it
would be getting a rough estimation of the probability distribution for success of each of its
actions, leading to the controller taking a similarly distributed action. However, such wind
turned out in fact to have no significant effect on the results.

In the language of reinforcement learning, such a controller is exactly what you would
get after one step of policy iteration, if you start with the null policy of never touching
the handlebars, and allow yourself three actions at each step (push left, push right, or no



Figure 2:Instability of an unsteered bicycle. This shows 800 runs of abicycle being pushed to the
right. For each run, the path of the front wheel on the ground is shown until the bicycle has fallen
over. The unstable oscillatory nature is due to the subcritical speed of the bicycle, which loses further
speed with each oscillation.

push). Then if the controller learns the value function for this policy (which in practice
would require lots of experience with not touching the handlebars, but which we simulate
by giving the controller access to the simulator), it can then act greedily with respect to that
value function. This amounts to one step of policy iteration, and at least for the goal of not
falling over, an optimal policy is indeed obtained after a single iteration (i.e., it successfully
doesn’t fall down). However, it does not do this in a conventional way, say by riding in a
straight line, but rather manages to maintain stability at near-zero speed by doing stunts
with the front wheel, for example by spinning the handlebarsin circles (the handlebars
and front wheel do not bump into the frame for our bicycle, andthere are no cables to get
twisted, so why not?). A movie of this bizarre behavior can beseen at:
http://www.paradise.caltech.edu/∼cook/Warehouse/RecursiveBike.avi

Despite many attempts at formulating a sensible value function, we found it difficult to
get sensible behavior out of the bicycle. By rewarding uprightness, the bicycle would stop
riding normally and start doing stunts as described above. If we tried to discourage this by
rewarding speed, the bicycle would swoop from side to side, where each swoop results in a
temporary increase in speed. If we tried to discourage this by rewarding going in a straight
line, the bicycle would do this very nicely, but of course it would fall over right away, as
avoiding the fall would have required deviating from the straight line. Of course, one could
try weighted combinations of these or other ideas, but then the question starts to be not
how long it will take the controller to learn to ride the bicycle, but how long it will take us
to learn how to program the controller to get it to ride normally. As has been pointed out
by people who have worked with reinforcement learning, it can be a very tricky business
trying to pick a good value function.

Even if we had had marvelous success with this method, it would not be immediately
applicable to a more realistic situation, due to its reliance on getting answers from the
simulator to “what if?” questions, effectively having access to an oracle. However, it
would have provided a hint that reinforcement learning could be used effectively. As it
was, the hint we got was that reinforcement learning would have a hard time of it. This is
also the hint we were getting from Randløv and Alstrøm’s nicepaper [1], where they tried
various reinforcement learning methods to get their controller to learn to ride a bicycle, but
even with the best methods it took thousands of practice rides to learn not to fall down,
and thousands more to learn to ride towards a goal, and even after having “learned,” the



controller appeared to have a rather drunken behavior at best.

4 The Human Controller

One venerable method of learning is to be taught by an expert,perhaps by example. The
obvious expert in this case would be a skilled human. To enable this, we had the computer
present a real-time graphical display of the bicycle, allowing a human to use the keyboard
to control the pedaling and the pushing of the handlebars. Asfor myself, this led to the
experience described in the introduction (on page 1), whereI discovered that controlling
the bicycle is quite counter-intuitive.5

The human controllers who tried to learn to drive the virtualbicycle found subjectively that
it was important to pay attention to the angle at which the bicycle was leaning, and to con-
centrate on manipulating this angle. This observation became the basis for the two-neuron
controller described below. None of the humans became proficient at getting the bicycle to
travel in a precise direction, a skill demonstrated nicely by the two-neuron controller. One
cannot rule out the possibility that the humans might have gained this skill with further
practice.

There are two ways in which we tried to use the human expertise. One way was by record-
ing what was going on during one of their rides. Collecting this data and then analyzing it
for pertinent correlations yielded surprisingly little inthe way of useful information.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1: t
2: x
3: y
4: Θ HheadingL
5: s HspeedL
6: Γ Hangle with verticalL
7: Α Hhandlebar angleL
8: si Hintended speedL
9: Τh Htorque on handlebarsL
10: t

 

11: x 

12: y 

13: Θ
 

14: s 

15: Γ 

16: Α 

Figure 3: The covariance between many of the quantities available to the controller. The main
diagonal has been set to zero so as not to be so visually distracting. There is good correlation between
the controller’s outputτh (9) and the amount of turninġθ (13), which might seem to solve the problem
immediately, but unfortunately the causality in this relationship goes the wrong way: the controller
needs to adjustτh in response toγ to maintain stability, whereγ (6) andθ̇ (13) happen to be strongly
correlated. (This correlation betweenγ (6) andθ̇ (13) can be immediately understood based on the
simplest physics of centrifugal force, but we do not want ourcontroller to need knowledge of any
physical laws.) The quite useful causal relation betweenτh (9) andγ̇ (15) is visible, but there is little
here to clue one in to its importance for successful control.

The other way in which we tried to use human expertise was by having the humans subjec-
tively describe how they were trying to control the bicycle.Since they had just gone through
the experience of having to learn how to do it, they were reasonably well able to describe

5This at least explains in part why it takes a certain amount ofpractice for a human to become a
proficient bicycle rider in the real world.



what their algorithm was, and as it turned out they had developed similar techniques, based
on carefully adjusting the angle at which the bicycle is leaning.

Based on the reports of the humans, the two-neuron network controller was implemented,
and it worked almost immediately, having few parameters, and not being overly sensitive
to any of them. This method is the subject of the next section.

5 The Two-Neuron Network

Here we present a two-neuron network which can operate the bicycle competently over a
range of speeds. The output of the first neuron is fed into the second neuron, whose output
is connected to an actuator which applies the specified amount of torque to the handlebars.
As inputs to the network, we provide the desired headingθd, as well as the current heading
θ and the degree to which the bicycle is currently leaningγ, along with their derivativeṡθ
andγ̇.6

Due to the nature of the problem, we will use a network that is continuous both in time and
in values. A unit’s output is determined simply by a thresholding function of a weighted
sum of the unit’s inputs. If necessary, this can be interpreted as a mean-firing-rate model,
but we will not explore issues of network realism here. Giventhat such a small network
of this type suffices, there seems little doubt that more realistic networks could solve the
problem as well.

The task for the network will be to make the bicycle travel in the desired direction. This
can then be used by higher-level planning systems to make thebicycle head towards a goal,
or to follow a path by heading towards a sequence of waypoints.

In order to set the bicycle’s headingθ as desired, we need to be able to controlθ̇. We know
from figure 3 thatθ̇ is strongly related toγ, the amount the bicycle is leaning, so we can try
to controlθ̇ indirectly by simply controllingγ.7

To controlγ, we need control oveṙγ. And indeed, our actuator, which can exert a desired
torque on the handlebars, happens to have reasonable control of γ̇. There is not a direct
or fixed correspondence, but as a general rule, during stableriding, a higher clockwise
torque on the handlebars will cause the bicycle to start leaning more to the left. Thus, by
setting the torque according to how we would likeγ to change, we should be able to haveγ
converge towards its desired value. (Note that it doesn’t make a big difference if the actual
convergence is just towards some approximation ofγ’s desired value—the exact desired
value is not critical for this method of control to succeed.)

The first neuron in our circuit will output the desiredγ, with the nonlinearity being applied
so that the bicycle doesn’t try to lean too far over.8 The second neuron in our circuit will
output the desired torque to be applied to the handlebars.

The first neuron will take as inputsθ andθd (which one can assume to be within±π of θ,

6Actually, as we will see, the network does not even need to useθ̇.
7One of the reasons that controllingγ works is due to the realistic bicycle geometry. Real bicycles

are designed to be stable, which allows a rider to ride without holding the handlebars, simply by
controlling the amount the bicycle is leaning. We note that one typical important factor in stability is
that the axis of rotation of the front fork should pass below the hub of the front wheel but above its
point of contact with the ground, a feature we have duplicated on the virtual bicycle.

8Although most of us do not have direct experience with this, bicycles can become quite unstable
if they are in a state of extreme leaning. In real life, usually the wheels skid out from under us before
this point is reached. In this simulator, skidding does not occur, but since this controller specifically
avoids states of extreme leaning, it thereby avoids the problem entirely, regardless of whether the
problem is that of slipping or that of becoming unstable.



although this is not essential), and simply calculate the desired change in headingθd − θ,
multiply by a constant, apply a threshold, and then output the result, which we will denote
by γd.

The second neuron will take as inputsγd, γ, γ̇, and its own output, which we will denote
by φ. It will calculate the amount by whichγ should be changed,γd − γ, and compare that
to a constant times the current rateγ̇ at whichγ is changing. The difference between these,
how muchγ̇ should be adjusted by, is then scaled and sent as the controller’s outputτh of
how much torque to apply to the handlebars.

γd = σ(c1θd − c1θ)

τh = c2γd − c2γ − c3γ̇

Figure 4:The equations for the two-neuron network.σ denotes a thresholding function. The three
constantsci need to be set by the implementor in light of the bicycle’s stability characteristics, but
the network’s behavior is not too sensitive to their precisevalues, so it is actually quite easy to get a
working network.

6 Results

The two-neuron network controller does remarkably well at controlling the bicycle, as we
can see in figure 5.

Figure 5:The path taken by the bicycle when told to aim at the successive waypoints shown. Each
time the bicycle got within a certain distance of its currenttarget waypoint, the target would change
to become the next waypoint in the sequence. This distance can be seen as the distance between the
last waypoint and the end of the bicycle’s path shown. The irregularity in the writing is due to the
author’s messy handwriting when trying to write with a mouse, and is not the fault of the bicycle.

Although the two-neuron network controller works well for arange of speeds, one thing
the controller doesnot do is to try to dampen the instabilities that can arise when riding
too slowly or in too sharp of a turn. (This would probably require a third neuron that is
dedicated to this task.)

7 Future Directions: More Automated Learning

The future directions of interest to us have to do with using this system to understand more
about learning. There are other interesting future directions, such as building a real bicycle
robot, which we probably will not pursue.



One obvious thing to do with this system is to have it learn andtune its parameters with
experience. Ideally, if the system is placed on a slightly different bicycle, it should quickly9

learn how to successfully operate the new bicycle.

This network was designed in an ad-hoc, if traditional, way.First, a human tried to control
the bicycle with the simulator. After many attempts, the human finally became a somewhat
skilled operator of the bicycle, able to avoid falling down but still not able to head reliably
towards a desired goal. Nonetheless, the human at this pointwas able to describe the key
parameters which were being attended to, and based on this, the two-neuron network was
designed. The skill of this network immediately exceeded the human’s skill.

However, we would like to take the human out of this loop. We would like the computer
to be able to figure out on its own what simple network might work, using a minimum of
experience (i.e., a minimum number of crashes before mastery of the bicycle), and using
no detailed knowledge of the physical system. Our attempts so far have been statistically
based, and have not been very successful. We feel that we needto have a causal model
for what is observed, where the direction of causality is part of what is observed. Causal
networks (belief propagation networks) might be a good representation for such knowledge,
but the real issue is how to have such a network be automatically designed for us. It is our
opinion that a general solution to this problem would have many applications.

Acknowledgments

I would like to thank Shuki Bruck and Erik Winfree for many helpful discussions. This
work was supported in part by the “Alpha Project” that is funded by a grant from the
National Human Genome Research Institute (Grant No. P50 HG02370).

References

[1] Learning to Drive a Bicycle using Reinforcement Learning and Shaping, Jette
Randløv and Preben Alstrøm, PROCEEDINGS OF THEFIFTEENTH INTERNATIONAL
CONFERENCE ONMACHINE LEARNING, (ISBN:1-55860-556-8), 1998, pp. 463–
471.

[2] Control for an Autonomous Bicycle, Neil H. Getz and Jerrold E. Marsden, IEEE
INTERNATIONAL CONFERENCE ONROBOTICS AND AUTOMATION, 1995.

[3] Descriptor Predictive Control: Tracking Controllers for aRiderless Bicycle, D. von
Wissel, R. Nikoukhah, F. Delebecque, and S. L. Campbell, PROC. COMPUTATIONAL
ENGINEERING IN SYSTEMS APPLICATIONS, Lille, France, 1996, pp. 292–297.

[4] Steering Control System Design and Implementation of a Riderless Bicycle, Chi-Da
Chen, and C. C. Tsai, JOURNAL OF TECHNOLOGY, vol. 16, no. 2, pp. 243-251 (July
2001). NSC89-2213-E-005-052[Note: I have been unable to locate a copy of this paper,
but I am including the information I have on it here anyway.]

[5] Accurate and Efficient Simulation of Rigid Body Rotations, Samuel R. Buss, JOUR-
NAL OF COMPUTATIONAL PHYSICS, vol. 164, no. 2, pp. 377–406 (November 2000).

9Before falling over even once, one would hope.


