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ABSTRACT 

We propose a multi-objective method for avoiding premature 

convergence in evolutionary algorithms, and demonstrate a three-

fold performance improvement over comparable methods. 

Previous research has shown that partitioning an evolving 

population into age groups can greatly improve the ability to 

identify global optima and avoid converging to local optima. 

Here, we propose that treating age as an explicit optimization 

criterion can increase performance even further, with fewer 

algorithm implementation parameters. The proposed method 

evolves a population on the two-dimensional Pareto front 

comprising (a) how long the genotype has been in the population 

(age); and (b) its performance (fitness). We compare this approach 

with previous approaches on the Symbolic Regression problem, 

sweeping the problem difficulty over a range of solution 

complexities and number of variables. Our results indicate that the 

multi-objective approach identifies the exact target solution more 

often that the age-layered population and standard population 

methods. The multi-objective method also performs better on 

higher complexity problems and higher dimensional datasets – 

finding global optima with less computational effort. 

Categories and Subject Descriptors 

I.2.8 [Artificial Intelligence]: Problem Solving, Control 

Methods, and Search 

General Terms 

Algorithms, Design, Performance, Reliability 
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1. INTRODUCTION 
A common problem in many applications of evolutionary 

algorithms is when the progress of the algorithm stagnates and 

solutions stop improving. Expending additional computational 

effort in the evolution often fails to make any substantial progress. 

This problem is known as premature convergence [1, 2].   

A common method for dealing with premature convergence is to 

perform many evolutionary searches, randomizing and restarting 

the search multiple times [3]. This approach can be wasteful 

however, as the entire population is repeatedly thrown out. There 

is also the difficulty of deciding when to restart. 

One of the best performing methods in the genetic programming 

literature for addressing premature convergence is the Age-

Layered Population Structure (ALPS) method [4]. ALPS uses a 

special notion of age – how long genotypic material has existed in 

the population – in order to partition the evolving population into 

age layers (see Figure 1). Random individuals are inserted into the 

youngest population layer.  

Here, we consider using the ALPS concept of age as a 

fundamental property in the evolutionary optimization. Rather 

than using age to partition the population into layers, we use age 

as an independent dimension in a multi-objective Pareto front 

optimization. In this context, a solution is selected for if it has 

both higher fitness and lower genotypic age than other solutions.  

As in the ALPS method, random individuals are added into the 

population at each generation. Rather than flowing up the age 

layers, they flow through a two-dimensional space of fitness and 

age (see Figure 1). Young solutions exist in the same population 

as the oldest and most fit, but persist because they are non-

dominated on the age dimension of the Pareto space. 

The following sections describe the proposed method and our 

primary results. See [5] for our complete description and analysis. 

2. ALGORITHM 
The age of a solution is measured in generations. All randomly 

initialized individuals start with age of one. With each generation 

an individual exists in the population, its age is incremented by 

one. During crossover and mutation events, the age is inherited as 

the maximum age of the parents [6].   

The Age-Fitness Pareto Population method uses a single 

population, in contrast to the population layers in the ALPS 

algorithm. The algorithm tracks the fitness of each individual as in 

a normal evolutionary algorithm, and also the genotypic age.  

The individuals in the population can be thought of lying on a 

two-dimensional plane of age and fitness, as in Figure 1. The 

multi-objective optimization task is to identify the non-dominated 

Pareto front of the problem domain [7]; here, the objectives are to 

maximize the fitness with minimum age.  

3. EXPERIMENTAL SETUP 
We perform identical experiments on three algorithms: (1) the 

ALPS algorithm [4], (2) the proposed Age-Fitness Pareto 

algorithm, and (3) the Deterministic Crowding algorithm [8], a 

well established diversity-maintenance method. 

We experimented on the Symbolic Regression problem. Symbolic 

regression [9] is the problem of identifying the simplest equation 

that most accurately fits a given set of data. We used the symbolic 
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regression algorithm described in [10] as the basis for our 

implementation. We simply swap out the population 

representation and selection for the three compared algorithms. 

We tested each algorithm on 1000 randomly-generated symbolic 

regression problems. Each evolutionary search was performed on 

a single quad-core computer. Evolution was stopped if the 

algorithm identified a zero error solution on the validation data set 

(i.e. less than 10-3 normalized mean absolute error), or when the 

algorithm reached one million generations.   

4. EXPERIMENTAL RESULTS 
Figure 2 also shows the rate that each algorithm identifies the 

exact target solution. All algorithms show the standard s-shaped 

convergence rates where computational effort increases greatly for 

the hardest of the test problems. Late in the searches, the 

algorithms begin to diverge at different rates of finding the exact 

solution. The Age-Fitness Pareto algorithm performed the best, 

finding the exact solution approximately 5% more often than the 

ALPS algorithm.  

Importantly, Figure 2 further demonstrates that the hardest 

problems solved by ALPS were solved by the Age-Fitness Pareto 

algorithm using a third of the computational effort. 

The deterministic crowding algorithm, with the added randomized 

individual per generation, performed worst of the three 

algorithms. Here, deterministic crowding identified the exact 

target solution approximately 5% less often than the ALPS 

algorithm, and approximately 10% less often than the Age-Fitness 

Pareto algorithm.   

5. CONCLUSION 
Results on randomly generated symbolic regression problems 

indicate that the age-fitness multi-objective approach finds the 

exact target solution more often than previous methods over a 

range of target problem complexities and dataset dimensions. This 

approach can be readily incorporated into other evolutionary 

algorithms, as it makes no assumptions about the problem or 

solution representations.  
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Figure 1. The two optimization methods compared. (A) The Age-Fitness 

Pareto Population algorithm has a single population of individuals 

moving in a two-dimensional Age-Fitness Pareto space. (B) The Age-

Layered Population Structure (ALPS) algorithm maintains several 

layers of populations for each age group.  
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Figure 2. The convergence rate to the exact solution of the compared 

algorithms versus the total computational effort of the evolutionary 

search. Convergence to the exact solution is percent of the trials which 

reach epsilon error on the validation data set. The error bars indicate 

the standard error. 
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