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Exact Distribution of the Max/Min of Two Gaussian
Random Variables

Saralees Nadarajah and Samuel Kotz

Abstract—Maximum and minimum of correlated Gaussian random vari-
ables arise naturally with respect to statistical static time analysis. It ap-
pears, however, that only approximations have been used in the recent lit-
erature to study the distribution of the max/min of correlated Gaussian
random variables. In this paper, we would like to point out that the statis-
tics literature has long established simple expressions for the exact distri-
bution of the max/min. We provide some of the known expressions for the
following: the probability density function, moment generating function,
and the moments. We also provide two simple programs for computing the
probability density functions of the max/min and an illustration of the re-
sults to statistical static time analysis.

Index Terms—Maximum, minimum, moment generating function
(MGF), moments, probability density function (pdf), statistical static time
analysis (SSTA).

I. INTRODUCTION

Let (X1; X2) denote a bivariate Gaussian random vector with means
(�1; �2), variances (�21 ; �

2

2), and correlation coefficient �. The distri-
butions of X = max(X1; X2) and Y = min(X1;X2) have a promi-
nent role with respect to statistical static time analysis (SSTA). It ap-
pears, however, that most SSTA researchers use certain approximations
to study the distributions of X and Y (see [1]–[7]).

We would like to point out that simple expressions for the exact dis-
tributions of X = max(X1;X2) and Y = min(X1;X2) have long
been known in the statistics literature, see Basu and Ghosh [8], Na-
garaja and Mohan [9], David [10], and Tong [11]. In this paper, we
provide some of the known properties of X and Y for the use of SSTA
researchers. Section II provides the probability density functions (pdf),
Section III provides the moment generating functions (MGFs), Sec-
tion IV provides some of the moments, and Section V provides two
simple programs for computing the pdfs of X and Y . Finally, an illus-
tration of these results to SSTA is given in Section VI. It is expected
that the results of this paper could be useful with respect to modeling
problems involving maximum and minimum of correlated Gaussian
random variables.

II. PDFS OF X = max(X1;X2) AND Y = min(X1;X2)

It is known that the pdf of X = max(X1;X2) is f(x) = f1(�x)+
f2(�x), where
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where �( � ) and �( � ) are, respectively, the pdf and the cumulative dis-
tribution function (cdf) of the standard normal distribution. It is known
that the pdf of Y = min(X1; X2) is f(y) = f1(y) + f2(y), where
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III. MGFS OF X = max(X1; X2) AND Y = min(X1;X2)

It is known that the mgf ofX = max(X1;X2) ism(t) = m1(�t)+
m2(�t), where
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IV. MOMENTS OF X = max(X1;X2) AND Y = min(X1; X2)

The moments of X = max(X1;X2) and Y = min(X1;X2) of
any order can be obtained by differentiating (5)–(8). For instance, it is
known that the first two moments of X = max(X1;X2) are
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Fig. 1. Comparison of the pdf of X = max(X ;X ) with its Gaussian approximation for: (a) � = � = 0; � = 1, and � = 1; (b) � = � = 0; � = 1,
and � = 5; (c) � = � = 0; � = 1, and � = 10; and (d) � = � = 0; � = 10, and � = 10. The solid and the broken curves correspond to the pdfs of
X = max(X ;X ) and its Gaussian approximation, respectively.

V. PROGRAMS FOR COMPUTING THE PDFS OF X AND Y

Here, two simple functions are given for computing the pdfs, f(x)
and f(y), of X = max(X1; X2) and Y = min(X1;X2), respec-
tively. The call to the function (x, mu1, mu2, sigma1, sigma2,
rho) will return the value of f(x) for given x; �1; �2; �1; �2 and �.
The call to the function (y, mu1, mu2, sigma1, sigma2, rho) will
return the value of f(y) for given y; �1; �2; �1; �2, and �.

fmax<-function (x,mu1,mu2,sigma1,sigma2,rho)
{t1<-dnorm(�x,mean= �mu1,sd=sigma1)
tt<-rho*(mu1-x)/(sigma1*sqrt(1-rho*rho))
tt<-tt-(mu2-x)/(sigma2*sqrt(1-rho*rho))
t1<-t1*pnrom(tt)
t2<-dnorm(�x,mean= �mu2,sd=sigma2)
tt<-rho*(mu2-x)/(sigma2*sqrt(1-rho*rho))
tt<-tt-(mu1-x)/(sigma1*sqrt(1-rho*rho))
t2<-t2*pnrom(tt)
return(t1+t2)}

fmin<-function (y,mu1,mu2,sigma1,sigma2,rho)
{t1<-dnorm(y,mean=mu1,sd=sigma1)
tt<-rho*(y-mu1)/(sigma1*sqrt(1-rho*rho))
tt<-tt-(y-mu2)/(sigma2*sqrt(1-rho*rho))
t1<-t1*pnrom(tt)
t2<-dnorm(y,mean=mu2,sd=sigma2)
tt<-rho*(y-mu2)/(sigma2*sqrt(1-rho*rho))
tt<-tt-(y-mu1)/(sigma1*sqrt(1-rho*rho))
t2<-t2*pnrom(tt)
return(t1+t2)}

Both functions are written in (R Development Core Team [12]) be-
cause, unlike other statistical software, it is freely downloadable from
the Internet (http://www.r-project.org) (see also Ihaka and Gentleman

[13]). The electronic version of the functions can be obtained by con-
tacting S. Nadarajah.

VI. ILLUSTRATION

SSTA is a method of computing the expected timing of a digital cir-
cuit without requiring simulation. This requires the distribution of the
arrival time in circuits given the distributions of each block delay in the
circuit. The overall time delay distribution entails consideration of two
operations: 1) if X1 is the input arrival time and X2 is the block delay
then the output arrival time will be X1 +X2 and 2) if X1 and X2 are
two arrival times that merge in a block then the new arrival time will be
max(X1; X2). The most common assumption is that X1 and X2 are
independent Gaussian random variables. In this case, it is well known
that X1+X2 will also have the Gaussian distribution. The distribution
of max(X1;X2), described in Sections II–IV, will not be Gaussian.
However, as mentioned in Section I, often an approximation is used to
study the distribution of X = max(X1;X2). Most commonly, it is
assumed that X = max(X1;X2) is Gaussian distributed with the first
two moments given by (9) and (10), respectively. Here, we would like
to show how poor this approximation can be.

In Fig. 1, we have plotted the pdfs given by (1) and (2) and that of the
Gaussian approximation for a range of values of �1 and �2. We have
used the programs given in Section V. It is clear that the approxima-
tion performs very poorly when the standard deviations are not equal.
It appears that the approximation gets poorer as the difference between
the two standard deviations gets larger. The approximation appears rea-
sonable only when the standard deviations are equal and small.
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In SSTA, one also encounters variables of the form X =
max(max(X1; X2);X3);X = max(max(max(X1;X2);X3);X4),
and so on. The exact distributions of these variables can also be calcu-
lated. For example, if max(X1;X2) and X3 are assumed independent
then the pdf and the cdf of X = max(max(X1;X2);X3) will be

fX(x) = Fmax(X ;X )(x)fX (x) + fmax(X ;X )(x)FX (x)

FX(x) = Fmax(X ;X )(x)FX (x)

respectively. Ifmax(X1;X2) andX3 are not independent then expres-
sions similar to those in Sections II–IV could be obtained by assuming
that (X1;X2; X3) follows the trivariate normal distribution.
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FPGA Implementation(s) of a Scalable
Encryption Algorithm

F. Macé, F.-X. Standaert, and J.-J. Quisquater

Abstract—SEA is a scalable encryption algorithm targeted for small em-
bedded applications. It was initially designed for software implementations
in controllers, smart cards, or processors. In this letter, we investigate its
performances in recent field-programmable gate array (FPGA) devices.
For this purpose, a loop architecture of the block cipher is presented. Be-
yond its low cost performances, a significant advantage of the proposed ar-
chitecture is its full flexibility for any parameter of the scalable encryption
algorithm, taking advantage of generic VHDL coding. The letter also care-
fully describes the implementation details allowing us to keep small area
requirements. Finally, a comparative performance discussion of SEA with
the Advanced Encryption Standard Rijndael and ICEBERG (a cipher pur-
posed for efficient FPGA implementations) is proposed. It illustrates the in-
terest of platform/context-oriented block cipher design and, as far as SEA
is concerned, its low area requirements and reasonable efficiency.

Index Terms—Block ciphers, constrained applications, field-pro-
grammable gate array (FPGA) implementations, modular design.

I. INTRODUCTION

Scalable encryption algorithm (SEA) is a parametric block cipher
for resource constrained systems (e.g., sensor networks, RFIDs) that
has been introduced in [1]. It was initially designed as a low-cost en-
cryption/authentication routine (i.e., with small code size and memory)
targeted for processors with a limited instruction set (i.e., AND, OR,
XOR gates, word rotation, and modular addition). Additionally and con-
trary to most recent block ciphers (e.g., the DES [2] and AES Rijn-
dael [3], [4]), the algorithm takes the plaintext, key, and the bus sizes
as parameters and, therefore, can be straightforwardly adapted to var-
ious implementation contexts and/or security requirements. Compared
to older solutions for low-cost encryption like tiny encryption algo-
rithm (TEA) [5] or Yuval’s proposal [6], SEA also benefits from a
stronger security analysis, derived from recent advances in block ci-
pher design/cryptanalysis.

In practice, SEA has been proven to be an efficient solution for em-
bedded software applications using microcontrollers, but its hardware
performances have not yet been investigated. Consequently, and as a
first step towards hardware performance analysis, this letter explores
the features of a low-cost field-programmable gate array (FPGA) en-
cryption/decryption core for SEA. In addition to the performance eval-
uation, we show that the algorithm’s scalability can be turned into a
fully generic VHDL design, so that any text, key, and bus size can be
straightforwardly reimplemented without any modification of the hard-
ware description language, with standard synthesis and implementation
tools.

In the rest of this paper, we first provide a brief description of the
algorithm specifications. Then, we describe the details of our generic
loop architecture and its implementation results. Finally, we discuss
some illustrative comparisons of the hardware performances of SEA,
the AES Rijndael, and ICEBERG (a cipher purposed for efficient FPGA
implementations) with respect to their design approach (e.g., flexible
versus platform/context-oriented).
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