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Abstract

This thesis consists of four papers on technology, work, skills, and personality using novel large-scale
data and methods. The first paper (Chapter 1, with Johannes Hirvonen and Aapo Stenhammar)
presents novel evidence on the effects of advanced technologies on employment, skill demand, and
firm performance. The main finding is that advanced technologies led to increases in employment
and no change in skill composition. Our main research design focuses on a technology subsidy
program in Finland that induced sharp increases in technology investment in manufacturing firms.
Our data directly measure multiple technologies and skills and track firms and workers over time.
We demonstrate novel text analysis and machine learning methods to perform matching and to
measure specific technological changes. To understand our findings, we outline a theoretical frame-
work that contrasts two types of technological change: process versus product. We document
that the firms used new technologies to produce new types of output rather than replace workers
with technologies within the same type of production. The results contrast with the ideas that
technologies necessarily replace workers or are skill biased.

The second paper (Chapter 2, with Ramin Izadi) investigates which personality traits and skills
help workers to deal with a changing environment. Labor markets are in constant change. This
paper documents how responses to labor-market shocks vary by individuals’ psychological traits.
We construct measures of cognitive ability, extraversion, and conscientiousness using standardized
personality and cognitive tests administered during military service to 79% of Finnish men born
1962–1979. We analyze establishment closures and mass layoffs between 1995–2010 and document
heterogeneous responses to the shock. Extraversion is the strongest predictor of adaptation: the
negative effect of a mass layoff on earnings is 20% smaller for those with one standard deviation
higher scores of extraversion. Conscientiousness appears to have no differential impact conditional
on other traits. Cognitive ability and education predict a significantly smaller initial drop in
earnings but have no long-term advantage. Our findings appear to be driven directly by smaller dis-
employment effects: extraverted and high cognitive-ability individuals find re-employment faster in
a similar occupation and industry they worked in before. Extraversion’s adaptive value is robust to
controlling for pre-shock education, occupation, and industry, which rules out selection into different
careers as the driving mechanism. Extraverts are slightly more likely to retain employment in their
current establishment during a mass layoff event, but the retention effect is not large enough to
explain the smaller earnings drop.

The third paper (Chapter 3, with Ramin Izadi) explores how different dimensions of personality
predict school vs. labor-market performance, and how the value of these traits changed over time.
We answer these questions using data that includes multidimensional personality and cognitive test
scores from mandatory military conscription for approximately 80% of Finnish men. We document
that some dimensions of noncognitive skills are productive at school, and some dimensions are
counterproductive at school but still valued in the labor market. Action-oriented traits (activity,
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sociability, and masculinity) predict low school performance but high labor market performance.
School-oriented traits, such as dutifulness, deliberation, and achievement striving, predict high
school performance but are not independently valued in the labor market after controlling for school
achievement. We further document that the labor-market premium to action-oriented personality
traits has rapidly increased over the past two decades. To interpret the empirical results, we outline
a model of multidimensional skill specialization. The model and evidence highlight two paths to
labor-market success: one through school-oriented traits and formal skills, and one through action-
oriented traits and informal skills.

The fourth paper (Chapter 4) analyzes the impact of manufacturing decline on children. To
do so, it considers local employment structure—characterizing lost manufacturing jobs and left-
behind places—high-school dropout rates, and college access in the US over 1990–2010. To establish
a basis for causal inference, the paper uses variations in trade exposure from China, following its
entry to the WTO, as an instrument for manufacturing decline in the US. While the literature on
job loss has emphasized negative effects on children, the main conclusion of this research is that
the rapid US manufacturing decline decreased high-school dropout rates and possibly increased
college access. The magnitudes of the estimates suggest that for every 3-percentage-point decline
in manufacturing as a share of total employment, the high-school dropout rate declined by 1
percentage point. The effects are largest in the areas with high racial and socioeconomic segregation
and in those with larger African American populations. The results are consistent with the idea
that the manufacturing decline increased returns and decreased opportunity costs of education,
and with sociological accounts linking the working-class environment and children’s education.

JEL Codes: J00, J24, O33.

Thesis Supervisor: Daron Acemoglu
Title: Institute Professor

Thesis Supervisor: David Autor
Title: Ford Professor of Economics

Thesis Supervisor: Simon Jäger
Title: Assistant Professor of Economics
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Chapter 1

New Evidence on the Effect of Technology
on Employment and Skill Demand

With Johannes Hirvonen and Aapo Stenhammar

1.1 Introduction

A central question in the debate on the future of work is: What are the effects of advanced tech-
nologies on employment and skill demand? Two ideas often dominate the conversation. The first
is that technologies replace workers (the Luddites; Keynes 1931; Brynjolfsson and McAfee 2014).
The second is that technologies increase the demand for skills and can increase inequality—this
is called the skill-biased technological change hypothesis (Griliches 1969; Welch 1970; Tinbergen
1975). Current research suggests that advanced technologies such as robots and ICT have been
skill biased (Katz and Murphy 1992; Krusell et al. 2000; Autor et al. 2003; Acemoglu and Autor
2011; Akerman et al. 2015; Acemoglu and Restrepo 2020). But the evidence is limited because
both measuring and identifying the effects of technologies are difficult.

This paper presents novel evidence on the effects of advanced technologies on employment, skill
demand, and firm performance using new large-scale data and quasi-experimental designs. The
context is manufacturing firms in Finland, 1994–2018. We focus on new production technologies,
such as robots and computer numerical control (CNC) machines. Our novel data directly measure
technologies, employment, and skills and track firms and workers over time. The main research de-
sign focuses on a technology subsidy program that induced sharp increases in technology investment
in specific firms. The program provides direct funding for technology investment and is part of the
European Structural and Investment Funds—one of the world’s largest industrial policy programs.
Our design compares close winners and losers of the technology subsidies using an event-study ap-
proach. We use novel text analysis methods on the application text data to compare close winners
and losers (meaning that the firms had similar evaluation reports) and measure specific techno-
logical changes (Roberts et al. 2020). We complement our quantitative analysis with fieldwork:
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observing factories and interviewing CEOs, managers, workers, and subsidy administrators.
The first part of the paper reports results in sharp contrast with the ideas that technologies

necessarily reduce employment or are skill biased. Technology investments induced by the sub-
sidy program led to a 23% increase in employment, on average. But there were no differential
changes in typical measures of skill bias: share of highly educated workers, average years of ed-
ucation, or production workers’ share of employment. Zooming in to more detailed measures of
skill composition—education and occupation groups, cognitive performance, and personality—we
find generally zero effects. Several observations support the validity of our findings. The subsidy
program induced a strong first stage: the firms showed a sharp rise in investments in technologies
after winning technology subsidies. The firms had similar pre-trends in investment, employment,
and skill composition before applying. Our results are robust to controlling for the evaluation
texts of the subsidy applications using text analysis and other controls, including industry, firm
size, and region trends. The results also hold when using alternative designs: a comparison to
a matched non-applicant control group, a separate regression discontinuity (RD) design based on
changes in the criteria defining a priority for small firms, and an event-study design without the
subsidy program (Bessen et al. 2020). Our fieldwork supports these findings on the factory floor.

The second part of the paper explains the result that technologies did not replace workers
or increase skill demand. To understand the findings, we outline a theoretical framework that
contrasts two types of technological change: process versus product. The framework builds on
Dixit and Stiglitz (1977) and Melitz (2003); we apply the ideas to a new context. Process refers
to a productivity increase within an output variety, whereas product refers to expanding to new
varieties. These two views predict different effects and can be tested empirically. The distinction
is whether firms use new technologies to do the same thing at lower costs or do new things. The
model clarifies that technologies may not necessarily be about changing the production process to
replace workers or increase the demand for skills but creating new types of output. For example,
automation is a process change, while the innovation of new goods is a product change (Klette and
Kortum 2004; Acemoglu and Restrepo 2018).1

Based on the theoretical interpretation, we provide novel evidence documenting that the firms
used technologies to create new products and services, not replace workers. Direct evidence shows
that technology adoption led to more revenue, new products, and export growth. Text data from the
subsidy program show that 91% of the firms described new products, response to changing demand,
and other similar reasons for their technology investment. For example, the piston manufacturer
included in the fieldwork invested in a new CNC machine and a robot to manufacture new, more
effective pistons. Survey data from the EU’s Community Innovation Survey (CIS) corroborate our
observations: typical reasons for firms’ process and product innovations are access to new markets,
expanding product selection, and better quality—not typically to replace workers. We show the

1The concepts of process and product refer to the uses of technologies rather than physical types of technologies.
Process, which is the idea that technological change lowers production costs, embeds the standard versions of labor
replacement and skill bias. Conversely, product, which is the idea that technological change creates new output
varieties, is present in standard growth models (Romer 1990; Grossman and Helpman 1991; Aghion and Howitt
1992) and in the management literature (Utterback and Abernathy 1975; Porter 1985).
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results also hold without the subsidy program, indicating that our results are more general.
To understand when and why to expect process versus product changes, we contrast two types

of manufacturing: mass production (Taylor, 1911; Ford, 1922) versus flexible specialization (Piore
and Sabel 1984; Milgrom and Roberts 1990). Mass production combines standardized products,
high volumes, and process advances. Flexible specialization combines specialized products, low
volumes, and product advances. While the two ideas—labor replacement and skill bias—are widely
accepted and used in the literature, research also recognizes that not all technological changes are
labor replacing or skill biased. Most importantly, Piore and Sabel (1984) argue that a different
set of technology–labor relations emerge in flexible manufacturing, most visible in technologically
advanced small- and medium-sized enterprises that produce specialized products in small volumes to
a changing market. In that context, and ours, the scope for specialization, low production volumes,
and need for adaptation make it less profitable for firms to commit to the long-production runs
of mass production and the fixed costs of process advances.2 But our findings may not apply to
non-specialized commodities, such as cement or steel, or high-volume assembly, where costs are
critical. At the same time, the literature documents that manufacturing has widely evolved from
mass production to flexible specialization (Dertouzos et al. 1989; Berger 2013).3

Two descriptive facts help position our findings into a broader context. First, the backdrop
of our study is that the overall direction of manufacturing, including our treatment and control
groups, is toward greater skill demand, seen in, for example, the rising share of educated workers.
Because the skill trends are consistent with the rest of the world (Acemoglu and Autor 2011), we
could have expected to find that new technologies were driving them at the firm level—but we
did not. Our findings point to explanations for these skill trends other than the direct effects of
adopting new technologies. Second, a critical aspect is that technology adopters are different from
non-adopters. Growing firms typically invest in technologies, with and without subsidies. Our main
design contrasts growing firms that plan to adopt new technologies. One firm gets the subsidy, the
other does not, and that induces differences in technology adoption. This has two implications:
1) Our estimates capture the local average treatment effect (LATE) for firms close to investing
in technologies. 2) Pre-screened but non-winning applicants provide a better control group than
generic non-applicant firms because they have expressed an interest in technology adoption.

How broadly do the results apply? Our evidence is from Finland, where we can quantify the
effects with high-quality data and research design. But the input we received from managers work-
ing in different contexts was that our observations apply more broadly in industrial manufacturing.
There are still limitations. Our results do not directly apply to non-physical technological advances
such as digitization or the internet, management practices such as lean manufacturing, R&D, tech-
nological advances in offices, historical eras, or the future. Our results and explanation focus on a
firm-level mechanism. We do not exclude that micro-level technology could lead to macro-level skill

2Klette and Kortum (2004) and Akcigit and Kerr (2018) also relate the type of firm and innovation.
3Early research noted these changes first in Northern Italy, Germany, and Japan (Piore and Sabel 1984). Cur-

rently, the majority of Northern European manufacturing could be characterized as flexible specialization. For
example, 90% of manufacturing employment in Finland is in non-commodity production under the Rauch (1999)
classification. Bils and Klenow (2001) also document that US consumers have shifted away from standardized goods.
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bias or labor replacement (Oberfield and Raval 2021). We also do not claim that work does not
change: our qualitative evidence suggests it does, but that change does not imply labor replacement
or skill bias by education, occupation, or cognitive performance.

Because our results challenge the two major ideas in the literature—that technologies replace
labor or increase skill demand—it is critical to compare them to earlier research. We make two
methodological contributions: We are the first to study the effects of technologies in manufacturing
using a direct firm-level quasi-experiment, and our measurement is a major advance over earlier
work because we directly measure the critical objects: technology, employment, and skills. Our
results differ from the theoretical literature because it has focused more on process advances in
mass production (Acemoglu and Restrepo 2018), while product advances are more common in our
context. Our results are consistent with the non-quasi-experimental empirical studies that focus
on similar technologies in manufacturing firms (Doms et al. 1997; Bartel et al. 2007; Aghion et al.
2020; Dixon et al. 2021; Koch et al. 2021) and qualitative evidence (Berger 2020). Complementary
and simultaneous work by Curtis et al. (2021) documents that capital tax credits that favor capital
investment raised labor demand in US manufacturing based on industry-level exposure. One inter-
pretation is that their study detects similar local effects in the frontier sectors: their effects appear
the largest in capital-intensive, skill-intensive, and robot-intensive subsectors of manufacturing.
Potentially, capital subsidies made to frontier sectors are generally not applied to labor savings but
rather market-share expansion among differentiated goods producers.4

Our analysis also contributes to the literature on industrial policy. We provide new estimates
for one policy: a lump-sum transfer to increase technology adoption in manufacturing firms. The
estimates help understand the broader question in growth and trade policy: What types of policies
help firms grow? (Rodrik 2007). We find that the firms in our context use subsidies and technologies
to achieve growth. To do so, they often scale up from idea to production. Our quantitative estimates
suggest that 1 euro in technology subsidies led to 1.3 euros of technology investment. A typical
EUR 100K subsidy led to 2.3 new jobs over the next 5 years. The cost per job was EUR 43K, close
to the literature’s average (Criscuolo et al. 2019).5

The paper proceeds in two parts. The first part presents the context, data, empirical strategies,
and key results on employment, skill composition, and firm performance. The second part offers
a theoretical interpretation based on process vs. product advances and then provides theory-
motivated tests of that interpretation. Finally, we analyze robustness and conclude.

4Empirical studies also find different effects when focusing on 1) different types of technologies (especially digital
technologies—the internet in Akerman et al. 2015 and ICT in Gaggl and Wright 2017), 2) replacement effects (Bessen
et al. 2020), and 3) macro-level comparisons (Lewis 2011; Michaels et al. 2014; Acemoglu and Restrepo 2020).

5Recent research on industrial policy include Becker et al. (2010), Cerqua and Pellegrini (2014), Howell (2017),
Criscuolo et al. (2019), Giorcelli (2019), Curtis et al. (2021), Howell et al. (2021), and Lane (2021). Technology
subsidies and taxes are also actively debated (Acemoglu et al. 2020a; Costinot and Werning 2020; Guerreiro et al.
2021). We further review related research in Appendix A.10.

10



1.2 Context

We analyze the effects of advanced technologies in manufacturing firms in Finland, 1994–2018.
Because we study technology investment with and without the subsidy program, we first outline
the context common to all our analyses.

The technologies in our context are standard new production technologies in manufacturing:
new CNC machines, robots, laser cutters, surface-treatment technologies, measurement devices, en-
terprise resource planning (ERP), computer-aided design (CAD) software, and similar technologies.
The workers are primarily production workers (median 70%), for example, machinists, welders, and
machine operators, typically with vocational training. The most represented industries are fabri-
cated metal products and machinery. The firms are typically medium and small-sized (SMEs),
but we also analyze large firms. Most firms are contract manufacturers that produce specialized
intermediate goods in small batches, for example, pistons for engines, for large exporting firms.
Figure 1-1 provides photographs of the typical technologies, workers, and firms in our sample.

Figure 1-2 documents that the overall direction of Finnish manufacturing is towards greater
skill demands, seen in a rising share of educated labor and college income premium and a falling
production-worker share. Finland’s trends are consistent with the rest of the world (Acemoglu and
Autor 2011), and the firm-level mechanisms we document might not be limited to Finland.

“Moore’s Law for Pistons”

We conducted fieldwork to document the sample firms’ technology adoption. The case of an
industrial piston manufacturer clarifies our context.

The firm had invested in a new CNC machine, a robot arm, a measurement device, and new
CAD software. When asked why they adopted the new technologies, the firm wanted to illustrate
what they considered as the big picture of technological change in piston manufacturing: constant
quality improvement. “With the old technologies, we couldn’t make these pistons.” Quality is
essential for the piston manufacturer: pistons are only a fraction of an industrial engine’s price, but
if they break, it is expensive (see Kremer 1993 and Autor 2015 on the O-ring production function).
Figure 1-3 shows the development of piston quality over the last 100 years. The firm called this
the “Moore’s law for pistons.” The main effect of the new technology was that the firm could now
produce new, larger, and more effective pistons. The firm stayed competitive and, as a result, has
increased its revenue and employment.

The technology investment was associated with changes in production and work experience.
Mainly those were “small, but important changes.” For example, the new production design included
a proprietary method of attaching the piston to the machining platform. The new production
required some new skills: production workers needed to learn to use the robot and the CNC
machine, and the R&D team had to learn to program with the new CAD software. The educational
composition did not change as a result of the investment. But the educational composition in the
firm has been increasing secularly over time.

11



The firm described operating in an environment where the market for each specific product is
limited. They are de-facto monopolists (or oligopolists) in that market. They could not expand
substantially within a product but could potentially expand by introducing a new product. All
firms we studied explained essentially the same story, suggesting that the mechanisms could apply
to other industrial and custom manufacturing firms.

1.3 Data

The first challenge in estimating the effects of technology on employment and skill demand is
measurement. We directly measure the critical objects—technologies, work and skills, and firm
performance—using novel high-quality data that track workers and firms over time.6

1.3.1 Technologies

We measure technologies using financial, text, customs, and survey data.

Financial Data7 The primary source for measuring firms’ technology investment is the Finnish
Financial Statement Register. We measure firms’ total investment and separately machinery and
equipment and software. Statistics Finland collects the data directly, and the data cover all Finnish
enterprises in almost all industries and our analysis years 1994–2018.

Text Data We develop a method to measure technologies using text data.8 We measure overall
technology investment, types of technologies, and uses of technologies directly at the firm level.
The information on technologies’ uses allows us to measure process vs. product advances.

The source for our text data is the ELY Center subsidy program, described in Section 1.4.
The text data are unstructured and produced as a side product of the program. A technology
subsidy application typically specifies the technology’s type (e.g., a welding robot) and its use
(e.g., weld longer seams). We focus on summary texts written by the program officers. The texts
provide information on firms’ actual plans because the technology plan is binding; the firms receive
subsidies against verifiable costs. The full data contain 42,909 subsidy applications in different
categories: technologies, exports, R&D, start-up, etc. Our method works in two steps:

Step 1: We code 21,210 randomly selected texts into categories based on pre-determined
criteria, summarized in Table 1.1. We distinguish the type and use of technology because a firm
can use the same technology for multiple purposes. Within technologies’ uses, we code texts

6We provide details on data in Appendix A.5. For consistent measurement, we harmonize the Finnish occupation,
industry, and geography classifications. The novel crosswalks are available at economics.mit.edu/grad/tuhkuri/data.

7We deflate all monetary values in this paper to 2017 euros using the Statistics Finland CPI.
8Many policy programs and firms’ decisions leave a trail of text records. Using this method, researchers can use

text to produce data retrospectively without new data collection and when data would not be available otherwise.
The novel part of our research is to measure technologies directly within firms. Recent research uses text data to
measure technological changes, especially patents, in other ways (Alexopoulos 2011; Atalay et al. 2020; Autor et al.
2021; Dechezlepretre et al. 2021; Howell et al. 2021; Kogan et al. 2020; Mann and Puttmann 2021; Webb 2020).
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into applications intended to improve productivity within the same output variety (process) or
produce new varieties (product). Within technologies’ types, we code texts into automated vs.
non-automated technologies (no active vs. an active user) and hardware vs. software (or both).

Step 2: We use machine learning to code the remaining 21,699 texts. We convert texts into
a clean format, use the bag-of-words representation with TF-IDF weights, and support-vector
machines (SVMs) for prediction. Figure A-46 presents features that best predict the technology
category. Table A.45 provides summary information: our method achieves 95% accuracy in finding
the technology applications from the pool of all applications. For the technology subcategories, we
manually re-code all applications in the analysis sample to maximize precision.

Customs Data To measure the types of technologies, we also use customs data.9 The data
track technologies that firms import. Customs data record 621 different types of technologies in
the 6-digit CN-classification system. We classify these technologies based on the physical type of
machinery. The main distinction is between automated technologies vs. non-automated technolo-
gies. Automated technologies include, e.g., robots and CNC machines. Non-automated technologies
include, e.g., non-automatic and hand-operated tools, hydraulic presses, and lifting equipment.

Survey Data To measure the uses of technologies, we also use survey data. The EU’s Community
Innovation Survey (CIS) provides firm-level information on the importance of different objectives
for product and process innovations.

1.3.2 Work and Skills

We measure employment and wages from the registers maintained by Statistics Finland. The data
allow us to track all individuals in Finland over time independently of their labor-market status.
We link these data to multiple data sources on skills: education (level and type), school grades
(9th grade GPA and high-school exit exam), and cognitive performance and personality (test scores
from universal male conscription). We measure occupations from employment registers at the 3-
digit level in the ISCO classification system. To measure the task content of occupations, we use
the European Working Conditions Survey (EWCS) that provides information on the tasks workers
perform in their jobs, collected through face-to-face interviews every five years. We construct
occupation-level measures of task intensity for routine, manual, cognitive, and social tasks.

1.3.3 Firm Performance

We assemble a large set of data on firm performance, including revenue, productivity, profits,
exports, products, prices, marketing, and patents. The data track all firms over time.

The firm-performance measures, revenue and profits, are obtained from Finnish Financial State-
ment Register. We use two variables to measure productivity: revenue per worker and total factor

9Recent research uses customs data to measure technology adoption; it is one of the few sources that track the
types of technologies firms adopt (e.g., Acemoglu et al. 2020b; Acemoglu and Restrepo 2020, 2021).
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productivity (TFP) estimated using the Cobb-Douglas production function.10 We measure profits
by the profit margin, defined as profits divided by revenue. We define the labor share as the wage
bill divided by revenue. We winsorize firms’ monetary values at the 5% level.

Exports are measured from Finnish Customs’ Foreign Trade Statistics. We measure firms’
products also from the Customs Register at the 6-digit CN classification. We focus on the number
of products per firm and product turnover: introduced and discontinued products. We compute
prices from the Customs Register and the Industrial Production Statistics, defining product-level
prices as the product-level revenue divided by the number of units sold. Marketing expenditure
data comes from the Financial Statement Register and patent data from Finnish Patent Database.

We measure firm subsidies from multiple registers. Two centralized systems (Yrtti 1 and 2)
record the ELY Center subsidies. We gained access to these previously unstudied data that record
the application process from submission to decision. We measure all other firm subsidies using the
Statistics on Business Subsidies.

1.4 Research Design

The second challenge in estimating the effects of technology on employment and skill demand is
identification. Our main research design is based on a technology subsidy program for manufac-
turing firms. Technology subsidies offer a valuable source of variation because they provide firms
with a well-defined shock to the cost of technologies. We implement and validate an event-study
design that compares close winning and losing firms of technology subsidies over time. The basis
of the design is similar to Angrist (1998), Greenstone et al. (2010), and Kline et al. (2019).

A further novel aspect is that we use text data to create comparisons of close winners and
losers. To do so, we use evaluation reports written by the program officers. We map these reports
into propensity scores that reflect the likelihood of receiving a subsidy and control for the scores
to compare close winners and losers. Roberts et al. (2020) discuss text matching.

We present two alternative designs in the Appendix: 1) a regression discontinuity (RD) design
based on a change in the threshold that determines a priority for small firms in the program (to
address internal validity), and 2) a spikes design based on the precise timing of technology adoption
events without the program (to address external validity). These designs complement our overall
argument, and we refer to them in the analysis.

1.4.1 The Subsidy Program

The Program The technology subsidy program is administrated in Finland by the Centers
for Economic Development, Transport and the Environment (the ELY Centers).11 These centers

10We obtain similar estimates using the Olley-Pakes and Levinsohn-Petrin methods (available upon request).
11There are 15 ELY Centers in our data. Until 2009 these centers were called TE Centers. Since 2014, four

RR-ELY Centers have administrated all technology subsidies. ELY Centers are separate from Business Finland
(previously TEKES), which provides funding for R&D.
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promote regional business policy through various activities, including advisory, financing, and de-
velopment services. Technology subsidies are part of a service called the Business Development Aid.
The service provides funding for technology adoption, export promotion, R&D, and several smaller
categories, such as starting a new company. It also supported firms during COVID-19. The service
granted EUR 2 billion over our sample period 1994–2018 and directed EUR 758 million toward
technology subsidies. Technology subsidies were, on average, 0.7% of machinery and equipment
investment in Finland. This paper is the first quantitative evaluation of the program.

EU Context The program is part of the European Structural and Investment Funds (ESIFs),
one of the world’s largest industrial policy programs. ESIFs aim to support economic development
across all EU countries, especially in remote regions. The 2014–2020 program budget was EUR
670 billion.12 The national government and the EU fund technology subsidies together, typically
50/50. Decisions are made locally by the ELY Centers. The EU regulates the budget and rules for
giving subsidies. The study speaks to the firm-level effects of the broader EU program.

The Program’s Objectives The technology subsidies aim to promote the adoption of new
technologies. The agenda behind this objective is to improve firms’ competitiveness. Technol-
ogy subsidies in Finland have a long tradition based on the idea that the government can foster
growth and structural change through industrial and regional policy (Rodrik 2007; Kekkonen 1952;
Mitrunen 2021). The program follows the EU’s technology neutrality principle—firms can choose
their technology as long as it is new—and is not primarily about the direction of technology, e.g.,
automation vs. non-automation (Acemoglu 2002a).13

A Typical Case A typical technology subsidy is a EUR 100K cash grant paid toward technology
costs. The technology is typically a new CNC machine, often combined with a robot, software, or
measurement device. The firms are typically SMEs that manufacture fabricated metal products,
e.g., parts for large industrial machinery. The subsidies provide funding for up to 35% of the
investment, typically 15%. ELY Center pays the grant against verifiable technology costs. Subsidies
of this size are audited, and approximately 30% of all ELY subsidies are audited.

The Selection Process The selection process works in three stages, illustrated in Figure 1-4.

1. Application. Starting from all firms, some firms apply for technology subsidies. For our
research design, it means that we compare firms that all plan a technology investment. Firms
do not apply because a) they do not plan to invest, b) they do not know about the program,
c) anticipate they are not eligible, or d) consider the opportunity cost higher than benefits.

12Source: ESI Funds Open Data Platform.
13The standard economic rationales for the subsidies could be coordination problems, credit and information

frictions, and pure transfers to lower-income regions. However, typically in political discourse, the program is not
assessed in contrast to the free-market benchmark but seen in the context of economic planning.
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2. Pre-screening. In the pre-screening stage, firms contact ELY Centers that pre-screen them
before submitting formal applications. This stage is helpful for our design: after pre-screening,
the centers’ goal is that all firms have a realistic chance of winning the subsidy. The coarse
evaluation criteria are size, industry, and general economic position. The program requires
the firms to be primarily in manufacturing and SMEs, not owned by large firms, not in
financial difficulties and can carry out the technology plan. Firms may decide to skip this
stage, but that does not improve their chances of winning the subsidy (but it creates rejected
applications from otherwise high-performing firms that are not, e.g., SMEs).

3. Decision. In the decision stage, firms submit a formal application explaining the investment
and timeline. Funding is discretionary. Subsidy winners are selected based on the program
rules and local and temporal budget priorities and constraints, and an identical firm could
receive a subsidy in a given year but not the other. ELY Centers do not score the applications
on a formal scale, but we use the evaluation reports to match applicants. In the decision
stage, ELY Centers re-evaluate the coarse criteria: size, ownership structure, industry, and
financial position. ELY Centers make an impact assessment to evaluate the effectiveness of
the subsidy. Cases where the subsidy is more likely to have any impact, are more likely
to receive it. Other priorities also exist: firms satisfying the criteria for small firms and
firms in remote regions are prioritized.14 ELY Centers evaluate potential market distortions
and sometimes reject applications if the subsidy negatively interferes with local competition.
About 15% of applications are rejected.15

What Separates Winners from Losers? Text data allows us to read all evaluations of win-
ning and losing applications. Winning applications’ evaluations state why the project satisfies the
criteria, and the officer recommends a subsidy. Losing applications’ evaluations specify why the
officer does not recommend a subsidy. Typical reasons for rejection are 1) effectiveness: the subsidy
is not expected to affect the project, the project is small and unlikely to have a meaningful effect,
the firm had already started the project or received a subsidy for a similar project, 2) industry,
size, and investment-type restrictions: the firm is not an SME, e.g., owned by a large firm, a par-
ticular industry or investment is not supported at that time or region, the firm proposes to buy
used machinery, which is generally not allowed, 3) budget constraints: subsidy funds are limited
at that region and time, 4) technical issues: the firm did not provide the required information by
the deadline, 5) firm’s financial position and the owners’ history: ongoing corporate restructuring,
foreclosure, or tax liability, and 6) interference with local competition. Employment-related reasons
do not appear as typical reasons for rejection; we address this concern in Section 1.7.

Comparing Subsidy Applicants to Average Manufacturers Table A.1 compares the main
sample to all Finnish manufacturing firms. Technology adopters are different from non-adopters.

14Our regression discontinuity (RD) design is based on changes in the criteria defining a small firm.
15Corruption is unlikely to play a significant role in the process. The Corruption Perceptions Index (CPI) ranked

Finland as having one of the lowest levels of corruption in 2012–2020.
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The subsidy sample firms are larger (despite being SMEs), more productive and profitable, and
more educated. Importantly, technology adopters grow faster than average manufacturers. These
observations highlight that non-winning applicants provide a better control group than average
manufacturers because all applicants have indicated a strong interest in technology adoption. Our
estimates capture the local treatment effect for firms close to investing in technologies.

Expected Effects on Technology Investment We conceptualize the technology subsidy as a
temporary price reduction for technology. If a firm is close to the margin on whether or not to
invest, a temporary price reduction might push it to invest. Firms reported in our interviews that
subsidies affect investment because they lower the price of technology, including the associated
costs and the future risk of debt. Firms’ managers and subsidy officers often mentioned the non-
monetary costs of adopting new technology: mental investment and courage. They see the subsidy
also as a tool to change the mindset to scale up from an idea to production.

We clarify the source of variation using a model adapted from Cooper et al. (1999) in Appendix
A.9. The model maps the price changes induced by the program into the firm’s technology adoption
decision and factor demand. Under the model, the firm’s technology adoption reflects four forces:
1) the replacement cycle, 2) shocks to technologies’ prices, 3) shocks to technological progress, and
4) shocks to productivity. Our design based on technology subsidies isolates the role of technology
price shocks on technology investment.

1.4.2 Winners-Losers Design

Our main empirical strategy is an event-study design that contrasts similar firms, one of which
was approved for technology subsidies while the other was not. The identification strategy is based
on the idea that subsidy decisions are quasi-randomly assigned with respect to the counterfactual
changes in firm outcomes after conditioning on the information used in the screening process. We
assess the comparability of winners and losers and provide several alternative estimation strategies,
including a matched non-applicant control group, and matching with text data in the next section.

We estimate two types of equations. Our main specification is the stacked event study:

Yjt = αj + κt +
∑
τ∈T

[
Iτjt · (γτ + βτ ·Dj)

]
+Xτ

jt + εjt (1.1)

where Yjt is an outcome for firm j in year t, Dj is the treatment indicator, Iτjt is the event-time
indicator for firm j’s decision having occurred τ years ago, and the set T = {−5,−4, . . . , 4, 5}
defines the five-year horizon over which we study dynamics. Our parameters of interest are the
coefficients βτ . They summarize the differential trajectory of mean outcomes for winning and losing
firms by the time relative to their application. Note that event-time is explicitly defined also for the
control group by application year, and firms are only in the treatment or control group for the entire
panel.16 Estimates before the event serve as a test of differential pre-trends between the treatment

16Focusing on a control group that never receives treatment reduces the problems arising in the estimation of
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and the control group. The coefficients γτ capture the common event-time τ effects. The term αj

is the set of firm indicators, κt set of calendar-time t indicators, i.e., cohorts of applicant firms, and
Xτ
jt contains potential pre-period controls interacted with both time indicators (the main figures

are reported without). We designate τ = −3 as our base event period and omit it. We set the
base clearly before the event to avoid contrasting the post-period to any anticipation effects (e.g.,
Ashenfelter’s dip).17 For clarity, we present all main estimates in reduced form (i.e., intention to
treat, ITT).

To summarize the dynamic estimates into a single number, we estimate the stacked first-
differences specifications:

∆Yj = β ·Dj +Xj + εj (1.2)

where ∆Yj is the change in the outcome from the base year τ = −3 to the post period that we
define in each context. The main regressor is Dj , an indicator for whether the firm won the subsidy.
We also estimate continuous versions where Dj refers to the amount of subsidies. The control term
Xj controls for potential differential trends across firm and application characteristics. We report
standard errors that are robust to heteroskedasticity and cluster by firm.

We report the event studies without additional controls. In the first-differences specifications,
we control for the baseline firm characteristics at τ = −3 potentially correlated with subsequent
changes in our variables of interest: the 2-digit industry and firm size, and calendar-time t fixed
effects. We show the results are robust to different controls in the Appendix.

We construct the analysis sample in the following way. We first restrict to technology appli-
cations based on the text data. We then restrict to manufacturing and construction industries for
three reasons: the program targets these industries, they produce physical outputs, and we have a
concrete understanding of what their new technologies are based on our fieldwork.18 We exclude
the largest 5% of applications because they tend to have poor control units. Finally, we restrict
to a balanced sample over the five-year horizon.19 The treatment group is defined by selecting
the largest approved subsidy application for each firm. Event-time indicator τ = 0 refers to the
year the subsidy application was submitted. The control group is defined by the largest rejected
application. Repeated applications for the same project are generally not allowed and untypical.

The ideal experiment that could capture the causal effects of technology on employment, skill
demand, and firm performance would randomly assign technology to firms. While a perfect tech-
nology experiment is hard to engineer, our identification strategy is based on the quasi-random
assignment of technology subsidies, Dj . The identifying assumption is that treatment assignment
is conditionally independent of the outcomes:

dynamic treatment effects when the comparison group consists of units that are treated at a different point in time
and the event time is not explicitly defined for the control group (Sun and Abraham 2021; Goodman-Bacon 2021).

17Our results are robust to the choice of base year.
18This leaves out some technology subsidies, for example, for hotels’ online reservation systems.
19The main reason for this restriction is to ensure that employment and skill estimates come from the same

sample; skill shares are only defined for existing firms. We show the results are robust to a non-balanced sample
(Table A.14).
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Assumption 1 (Rosenbaum and Rubin 1983, CIA): (Y1j , Y0j) ⊥⊥ Dj | Xj ,

where Y1j and Y0j tell what happens if the firm wins or loses a subsidy.
Our identification strategy exploits the fact that the subsidy program induces quasi-exogenous

variation in selection into technology adoption. We compare subsidy-receiving firms to firms that
applied for the subsidy but did not receive it. Because the sample includes only pre-screened
applicants to the subsidy program, these comparisons control for differences between technology
adopters and nonadopters that originate in the decision to apply for technology subsidies. Pre-
screened non-winning applicants probably provide a better control group for technology adopters
than conventional samples because, like subsidy winners, all applicants have indicated a strong
interest in technology adoption. But such comparisons do not control for all criteria used by the
program to decide which applicants to accept. The data analyzed here contain information on most
characteristics used by the program to accept applicants, including the evaluation report itself (next
section). Therefore, the remaining selection bias induced by the decision stage can be eliminated
using regression techniques or matching using the information used in the decision process.

Table 1.2 reports summary statistics for the treatment and the control groups. The groups are
reasonably similar in terms of revenue, employment, and worker composition. The main differences
are that the losing firms are smaller and applied for smaller subsidies. The pre-period differences
between the treatment and control motivate our matching strategy in the next section.

An alternative counterfactual is similar firms that did not apply for subsidies. We use coarsened
exact matching (CEM; Iacus et al. 2012) to define these similar firms. This matching strategy
addresses the concern that the losing firms are not a reasonable counterfactual for what would have
happened if the approved firms had not received the subsidy. We match by revenue, employment,
wages at τ = −3 plus revenue and employment changes in percentages from τ = −3 to τ = −1 and
industries’ main sectors (letter classes). The CEM percentiles are 10, 25, 50, 75, 90, and 99. The
match is 1:1 with replacement. We define matched control samples for both winning and losing
firms; the latter is a placebo test. Tables A.36 and A.37 show the covariate balance for the matched
samples. The matched control group also serves to assess whether the patterns in the losing firms
are typical or specific to the losing applicants.

1.4.3 Text Matching

We demonstrate a novel method of crafting a research design by controlling for program partic-
ipants’ underlying differences using text data. The subsidy records contain a report written by
the officer evaluating the application. Given similar reports, treatment assignment is more likely
to reflect quasi-random variation than systematic differences. The reports record qualitative char-
acteristics potentially related to the firm’s future trajectory. Text matching methods allow us to
control for these characteristics (see, e.g., Romer and Romer 2004; Roberts et al. 2020).

As our main text-matching method, we control for propensity scores computed from evaluation
reports of applications. The propensity score is a predicted probability that conditional on a text
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(Wj), the firm will win a subsidy:

p(Wj) ≡ E [Dj = 1|Wj ] . (1.3)

The propensity score theorem (Rosenbaum and Rubin, 1983) states that, in principle, controlling
for the probability of treatment allows to satisfy Assumption 1. Propensity scores are valuable in
this context as a dimension-reduction tool as directly controlling for texts is not feasible.20

The subsidy records contain three types of texts that track the decision process: 1) application
summary, 2) evaluation, and 3) decision texts. The application summary and evaluation texts are
written by a middle-rank officer responsible for administrating the subsidy and presenting it to a
manager for a decision. We use the evaluation texts to compute the propensity scores. These texts
capture clearest the potential differences between the firms. Based on our interviews, the subsidy
officers’ goal is to present an unbiased evaluation.21

The text propensity score method works in three steps.
Step 1: We represent the text as data. We use a vector representation based on word em-

bedding. In particular, we employ the FastText (Bojanowski et al. 2016) library for the Finnish
language. The advantage of the vector representation is that it captures the semantic meanings of
the text instead of a word collection. This is helpful in our context because our goal is to extract
information from the evaluations beyond clear markers of success or failure.

Step 2: We estimate the propensity scores using the data. We use a machine learning method,
support-vector machines (SVMs), to calibrate the word vectors into probabilities. We train the
model on all subsidy applications. The probabilities are calibrated using Platt scaling: a logis-
tic regression on the SVM’s scores, fit by five-fold cross-validation on the training data (Zhang,
Damerau and Johnson 2002). Figure 1-5 provides the calibration plot for our analysis sample: the
predicted probabilities based on text data are on the x-axis and the probability of subsidy receipt
on the y-axis. The predicted probabilities closely match the empirical probabilities.22

Step 3: We control for confounders using the propensity score. Regression adjustment is our
preferred approach. We compare the estimates to coarsened exact matching (CEM) and inverse
probability weighting (IPW; Hirano et al. 2003).23

As an alternative text-matching method, we use cosine similarity. It measures similarity between
two non-zero vectors of an inner product space:

cosine similarity =
Ā · B̄
‖Ā‖‖B̄‖

=

∑n
i=1AiBi√∑n

i=1A
2
i

√∑n
i=1B

2
i

, (1.4)

where Ai and Bi are components of vector Ā and B̄. Cosine similarity allows us to compute a
20There is only one report for applicant firm j, and hence the propensity score p(Wj) contains only subscript j.
21The evaluation text is available for 89% of the main analysis sample.
22We calibrate the propensity scores with all possible applications, including exports and R&D. The propensity

scores are robust to fully out-of-sample calibration but less precise. We estimate standard errors by bootstrap.
23There are multiple ways to implement these steps: represent the text as data, model and estimate p(Wj), and

use p(Wj) (Angrist and Pischke, 2009; Gentzkow et al., 2019). The results are broadly robust.
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similarity score directly between the texts’ vector representations without projecting them first to a
single-dimensional propensity score.24 We construct a matched sample for the winners by selecting
the nearest-neighbor with replacement from the losing firms. Table A.2 reports the summary
statistics for the cosine-similarity matched sample.

1.5 Estimates

This section provides the reduced-form estimates on employment and wages, skill composition, and
firm performance using the primary research design. The main result is clear: we find no evidence
of employment reduction or skill bias across a comprehensive set of skills and technologies. The
estimates show that after winning a technology subsidy, firms invested sharply more in technologies,
hired more workers, but did not change their skill composition. Before receiving a technology
subsidy, the winning and losing firms had similar trends in technology investment, employment,
and skill composition. The results are robust to controlling for the text propensity score and other
controls. The RD and spikes designs in Appendices A.4 and A.3 confirm the results. The results
are not limited to the subsidy program or SMEs.

The First Stage Figure 1-6 shows the first-stage event-study estimates βτ from Equation 1.1.
The outcome is technology investment. Winning a subsidy is associated with a sharp increase in
technology investment. Before the subsidy application, the groups are on parallel trends. Figure
A-1 shows alternative first-stage estimates with all possible subsidies granted and received. It
shows that winners and losers are granted a different amount of subsidies exactly in the event year,
not before or after. The pattern for received subsidies matches technology investment. Table 1.3
reports the first stage estimates for the main versions of the winners-losers design, with and without
text matching. The outcomes are technology subsidies, technology investment, and capital. The
first stage is robust to controlling for the text propensity score.

Employment and Wages Figure 1-7 displays the event-study estimates βτ from Equation 1.1.
The outcome is employment relative to the base period τ = −3. The estimates indicate that
technology subsidies led to approximately 20% higher employment in the five years after receiving
it. As the figure shows, the employment pre-trends were similar between the treatment and control
groups. Figure 1-10 visualizes and Table 1.4 reports the first-difference estimates from Equation
1.2, with and without the text propensity control, and with the matched non-applicant control
group. These estimates combine the multiple event-study estimates into a single number. Our
preferred specification with the propensity control indicates a statistically precise 23% increase in
employment. The employment estimates are consistent with the idea that the advanced technologies
were a complement to labor in this context.

24A conceptual difference is that the propensity score measures the text’s predictive power on treatment assign-
ment, while cosine similarity measures the overall similarity between evaluation texts.
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Another way of measuring the potential replacement effects of advanced technologies is the labor
cost share. It measures the share of revenue that a firm pays to workers. We find a precise zero
estimate, reported in Table 1.4. We also generally find a zero effect on wages; in some specifications,
there is a small, statistically insignificant negative effect.

The employment estimates are similar when using the matched non-applicant control group
(Table 1.4 and Figures A-29, A-31), regression discontinuity design (Figure A-42 and Table A.44),
and spikes design without subsidies (Figures A-36, A-38). The employment results are also robust
to different text matching versions (Table A.3), different controls (Tables A.4, A.5), and are clearly
present in the mean graphs that compare the treatment and control group over time (Figure A-12).

Skill Composition Figure 1-8 displays the event-study estimates for the main firm-level skill
measures: average years of education, college-educated workers’ share, and the production workers’
share. We find no change in these measures, either before or after the technology subsidy. Figure 1-9
summarizes the estimates and Table 1.4 reports the numerical values. Our 95% confidence interval
excludes over .15 year changes in the average years of education. The results are in contrast with
the view that advanced technologies increase the share of more educated workers and decrease the
share of production workers in manufacturing firms. The main skill-composition estimates hold
in all our research designs and are robust to a variety of controls referenced in the employment
results, including text matching.

We zoom into more detailed skill outcomes: education groups (Figure A-2), occupation groups
(Figure A-3), cognitive performance (Figure A-4), school performance (Figure A-5), personality
(Figure A-6), demographics (Figure A-7), and task composition (Figure A-8). The big picture is
that the effects are primarily skill neutral in the sense that the skill composition does not change.
Another central observation is that the baseline skill levels of workers in the sample firms are well
below the median. For example, the average cognitive performance is .3 standard deviation lower
than the average population, and the average 9th grade GPA is .56 standard deviation below the
population average. The sample workers also score lower in tests designed to measure personality
traits valued by the Finnish Defence Forces, such as achievement aim and dutifulness. The only
personality trait the workers score higher than average is masculinity (+.15 standard deviation).
Finally, there are some patterns of changes in the skill composition that are consistent with the
observations from our fieldwork, while not statistically significant and subject to multiple testing
concerns. The treatment effect on average school GPA is .1 standard deviation (Figure A-5),
and the treatment effects on activity-energy, achievement aim, and sociability are .05 standard
deviation (Figure A-6). These are the traits the managers and workers we interviewed consistently
mentioned to be complementary to new advanced technologies, as opposed to higher education or
non-production occupations.25

25Managers and workers emphasized the non-cognitive skills required: initiative, cooperation, and adaptability,
and that workers perform multiple tasks. One CEO explained: “A company does not just pay a welder to weld.”
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Firm Performance Figure 1-10 visualizes and Table 1.4 reports the first-difference estimates
from Equation 1.2 for measures of firm performance: revenue, labor productivity, total factor
productivity, and the profit margin. We measure labor productivity as revenue per worker and
total factor productivity from Cobb-Douglas production function estimation.26 The robust finding
is that technology subsidies and technology investment led to approximately 30% higher revenue
in the five years after. However, we find no evidence of changes in productivity and the profit
margin. This potentially surprising finding is consistent with Criscuolo et al. (2019), who study an
investment subsidy program in UK manufacturing, and Cerqua and Pellegrini (2014), who focus
on capital subsidies in low-performing regions. We provide an interpretation in Section 1.6.

Magnitudes Table 1.5 reports the first-difference estimates from Equation 1.2 with a continuous
treatment variable, the subsidy granted in EUR. The estimates from our preferred specification
indicate that 1 EUR in subsidies stimulated 1.3 EUR in machinery investment. The firms’ revenue
increased by 5 EUR per 1 EUR of subsidies.

Table 1.6 reports more detailed estimates on financial outcomes. The average profit margin is
5%. Winning a subsidy led to an increase in average gross profit by EUR 24K and financial costs
by EUR 4K. The coefficients from continuous treatment are close to zero. There is a positive .05
effect on financial costs for each subsidy euro granted—that is, the firms carried additional financial
costs as a reaction to the subsidy. Because the baseline profitability is moderate in these firms,
and they increase their revenue and employment in the same ratio and incur additional costs from
the investment, winning a subsidy did not lead to a large increase in profits.

The employment increase is .23 jobs per EUR 10K subsidies, indicating a cost per job of EUR
43K (USD 49K). This number closely matches the numbers managers reported for machinery per
worker in their plant in our interviews. Our estimate is close to the average among the cost-per-job
estimates reviewed by Criscuolo et al. (2019). It is relatively close to the cost per job estimates
of USD 43K by Pellegrini and Muccigrosso (2017) and USD 68K by Cerqua and Pellegrini (2014)
in the context of capital subsidies to businesses in the least developed regions in Italy, and the
estimate of USD 63K by Glaeser and Gottlieb (2008) for the US Empowerment Zones. Criscuolo
et al. (2019) report an estimate of 27K USD at the firm level.

1.6 Mechanism

To recap the results: technology investment led to increases in employment and no changes in skill
composition—in contrast with the ideas that technologies replace labor or are skill biased. This
section offers a theoretical interpretation and then provides novel theory-motivated tests of that
interpretation. We close by explaining when and why we expect to see these results.

26TFP is not ideally suited to measure firm performance in our context because (as we will show in Section 1.6)
the firms introduce new product varieties. Revenue per worker is robust to different production functions.
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1.6.1 Theoretical Framework: Process vs. Product

We outline a framework that contrasts two types of technological change: process versus product.27

Process refers to productivity improvements within an output variety, product to the expansion of
new varieties. The framework is standard (Dixit and Stiglitz 1977; Melitz 2003; Bustos 2011), but
we apply it to a new context. The central element is imperfect substitutability between output
varieties. The intuitive distinction is whether firms use new technologies to do the same thing at
a lower cost or to do new things. We show that these two types of technological change predict
different effects and can be empirically tested.

The core idea of the model can be simplified as a composite function:

F (TE ; f (TI ;L)) . (1.5)

The function highlights two types of technological change:

TI Process (The Intensive Margin): This affects the production “recipe” f of how factors L are
used in production activity. Example: a welding robot replaces human welder’s tasks.

TE Product (The Extensive Margin): This affects the “lens” F through which production is
projected into markets. Example: a welding robot makes longer seams than a human welder.

1.6.1.1 Setup

Our basic setup is based on Melitz (2003) and Melitz and Redding (2014).28 The market structure
is monopolistic competition with product differentiation and increasing returns to scale at the firm
level. The model specifies preference and firm heterogeneity in a differentiated product market.
This structure allows technology to have a role in creating new varieties—as in many standard
growth models (e.g., Romer 1990). We show that the view of new varieties has different implications
than one emphasizing technology’s role in allowing productivity improvements within a variety.

Preferences Preferences over sectors j ∈ {0, 1, ..., J} take the Cobb-Douglas form:

U =
J∑
j=0

βj logQj ,
J∑
j=0

βj = 1, βj ≥ 0. (1.6)

27We use the terms process vs. product, but other terms could convey the same idea: e.g., cost vs. differentiation
(Porter 1985), secondary vs. primary (Saint-Paul 2002), or defensive vs. enterprise (e.g., Boone 2000). The critical
distinction is whether technological change affects how the output is made versus how the customer receives it.

28We aim to introduce the simplest model necessary to explain the findings, which captures the essence of a broad
class of models featuring process vs. product type technological changes. The Melitz (2003) framework allows for a
simple way of introducing imperfect substitutability between varieties. We specifically build on the version by Melitz
and Redding (2014). Related approaches include Hopenhayn (1992), Ericson and Pakes (1995), Klette and Kortum
(2004), Acemoglu et al. (2018), Akcigit and Kerr (2018), and Hemous and Olsen (2021).
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There is a continuum of differentiated varieties within each j ≥ 1 sector, and these preferences take
the Constant Elasticity of Substitution (CES) Dixit and Stiglitz (1977) form:29

Qj =

[∫
ω∈Ωj

qj (ω) (σj−1)/σjdω

]σj/(σj−1)

, σj > 1, j ≥ 1. (1.7)

Sector j = 0 is a homogeneous numeraire good with a unit-input requirement for production.
The upper-tier Cobb-Douglas preferences imply that consumers spend Xj = βjY in sector j,

where Y denotes aggregate income. The lower-tier CES preferences imply that the demand for
each differentiated variety within sector j is:

qj(ω) = Ajpj(ω)−σj , Aj = XjP
σj−1
j , (1.8)

where Pj is the price index:

Pj =

[∫
ω∈Ωj

p (ω) 1−σjdω

]1/(1−σj)

, (1.9)

and Aj is a market demand index, determined by sector spending and the price index. There is a
continuum of firms; each firm is of measure zero relative to the market, and takes Aj as given.

Production Firms produce varieties using a composite input Lj with unit cost wj in sector j.
The firms choose to supply a distinct differentiated variety. Production has a fixed cost fj and a
constant marginal cost, inversely proportional to productivity ϕ. The composite input needed to
produce qj units of a variety is:

lj = fj +
qj
ϕ
. (1.10)

Equilibrium We focus on the equilibrium within a sector (and drop the sector j subscript for
clarity). The firms choose their prices to maximize profits subject to a residual demand curve with
constant elasticity σ. The equilibrium price for each variety is a constant mark-up over marginal
cost derived from the first-order condition for profit maximization:

p(ϕ) =
σ

σ − 1

w

ϕ
. (1.11)

That gives the equilibrium firm revenue:

r(ϕ) = Ap(ϕ)1−σ = A

(
σ − 1

σ

)σ−1

w1−σϕσ−1, (1.12)

29This representation has two interpretations: 1) consumers demand differentiated consumption goods with “love-
for-variety” preferences (e.g., Grossman and Helpman 1991), or 2) final-good firms demand differentiated intermediate
inputs, and a greater variety of inputs increases the “division of labor” (e.g., Romer 1987, 1990). Our context is the
technology adoption of intermediate-good producing firms that sell their outputs to final-good producing firms.
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and the equilibrium firm profit becomes:

π(ϕ) =
r(ϕ)

σ
− wf = Bϕσ−1 − wf, B =

(σ − 1)σ−1

σσ
w1−σA. (1.13)

1.6.1.2 Process

Process advances improve firms’ productivity within a variety. This is the intensive margin: It
allows firms to produce the same thing more efficiently. The change is on the factor-market side.30

We introduce the process advances as in Bustos (2011). The firm has a constant marginal cost
1/ϕ within a variety. It can adopt a technology TI that reduces that cost. Figure 1-11 visualizes
the idea. This choice is a tradeoff between a fixed cost fI and a productivity increase to ιϕ, where
ι > 1. The resulting total cost functions are:

l =

f + q
ϕ if TI = 0

f + fI + q
ιϕ if TI = 1.

(1.14)

Process technology adoption is characterized by sorting according to firm productivity: There is
a productivity cutoff ϕ∗I above which the firm adopts the technology because the adoption choice
involves a tradeoff between a fixed cost and a scaled productivity increase.

The predictions are summarized in Table 1.7.31 Process-type change predicts increases in
revenue, productivity, and profit margin. The intuitive idea is that firms with lower marginal costs
produce more and earn higher revenues due to the CES demand structure. Lower marginal costs
imply higher measured productivity and profits due to the increasing returns to scale. A distinct
prediction from the process-type technological change is zero effect on product composition. There
is no similarly precise prediction on exports, which depends on whether the exports are new varieties
or not. The prediction on prices is negative if the process change is a cost reduction and positive
if it is a quality improvement.

The process view nests several standard models of technology and labor.32 The predictions on
employment, labor share, skill composition, and wages depend on the underlying structure of the
process change. In the basic setup, firms use a composite factor L to produce the varieties. If that
composite factor is only labor, the model predicts a reduction in the labor share as the firm takes
wages as given and revenue per input increases. The models where technological change reduces
costs and affects labor typically assume that technological change is “skill biased” in the sense that
new technologies complement high-skill workers and increase their share of employment. If the
technological change is automation (Acemoglu and Restrepo 2018), it replaces tasks performed by

30The process efficiency motive is present in the models of specialization (Smith, 1776), labor-saving technologies
(Marx, 1867), growth (Solow, 1956), routine-replacement (Autor, Levy and Murnane, 2003), tasks (Acemoglu and
Autor, 2011), automation (Acemoglu and Restrepo, 2018), product and process (Utterback and Abernathy, 1975),
and in the ’Schumpeterian models’ (Grossman and Helpman, 1991; Aghion and Howitt, 1992).

31We derive these predictions in Appendix A.8.
32For example, the canonical (Tinbergen 1975; Katz and Murphy 1992), routine-replacement (Autor et al. 2003),

and automation models (Acemoglu and Restrepo 2018).

26



labor with capital and reduces the labor share.

1.6.1.3 Product

Product advances enable the production of new varieties. This is the extensive margin: It allows
firms to produce new things and switch between varieties. The change is on the product-market
side. Critical to this view of technological change is that outputs with different types are imperfect
substitutes. In our framework, there is only one dimension to improve productivity, but multiple
dimensions to change product attributes. There is only one firm per variety (the most productive),
but firms can differentiate through multiple varieties.33 34 35

We introduce the product advances by adapting from Melitz (2003). The firm can introduce a
new variety by adopting a technology TE . Figure 1-11 visualizes the idea. The technology requires
a fixed entry cost fE . Potential entrants to the new variety, both existing and new firms, face
uncertainty about their productivity in the new variety. After the firm pays the entry cost, it
observes its productivity ϕ for the new variety, drawn from a distribution g(ϕ), with cumulative
distribution G(ϕ). The firm then decides whether to produce or exit the project. Melitz (2003)
shows this decision is characterized by a cutoff productivity ϕ∗E where the firm makes zero profits:

π (ϕ∗E) =
r (ϕ∗E)

σ
− wf = B (ϕ∗E)σ−1 − wf = 0. (1.15)

In equilibrium, the expected ex-ante profits equal zero due to free entry:∫ ∞
0

π(ϕ)dG(ϕ) =

∫ ∞
ϕ∗E

[
Bϕσ−1 − wf

]
dG(ϕ) = wfE . (1.16)

We visualize the relationship between profits and productivity in Figure A-50. Firms with ϕ < ϕ∗E
would lose if they produced. They exit the project, receive π(ϕ) = 0 in that new variety, and
cannot recover their entry cost. The subset of the firms that produce and have π(ϕ) > wfE make
positive profits after the entry cost.

The predictions from the product-type technological change are different from the process type.
As shown in Table 1.7, product-type change predicts an increase in revenue but no changes in
productivity and profit margin. The intuitive idea is that the new variety allows the firm to sell
more, but its productivity and profit margin are still, on average, the same as before due to the

33A new variety has several interpretations: a new product, a quality change not perfectly substitutable with
quantity, re-purposing production to respond to changing demand, expansion to new markets, capturing a larger
share of the value chain, etc. A new variety may be the same product but with an improved process that provides
more reliable scheduling or a faster response time to orders, changing the aspects customers receive.

34The expansion of variety in consumer and intermediate goods plays a central role in many theoretical models of
growth (Romer 1990; Grossman and Helpman 1991). The product view is closely related to Porter (1985): gaining
competitive advantage through a quality-differentiation strategy instead of a cost-leadership strategy.

35We distinguish two directions of change: vertical (within the same variety) vs. horizontal (a new, imperfectly
substitutable variety). In this class of models, vertical cost reductions or quality improvements within the same
variety are essentially equivalent. The reason is that the model assumes perfect substitution between quality and
quantity within the same variety. The productivity term ϕ can be interpreted in terms of costs or within-variety
quality; the interpretations are isomorphic to a change in units of account (Kugler and Verhoogen 2012).
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free-entry condition. Some new varieties are more profitable, some less.
The next distinct prediction from the product-type technological change is the effect on the

product composition. While a new variety does not equal a new product (e.g., it could also be a
faster response time), a new product is a signal of a new variety. Exports are also a signal of new
varieties. If different markets have differentiated preferences, a new variety makes the firm more
likely to export, export a larger share of its revenue, or export to a larger variety of destinations.
If the new variety is a quality improvement, the predicted price effect is positive.

The predictions on employment, labor share, labor composition, and wages again depend on
the underlying structure of the product change. But this time, the critical difference is that there
is no unambiguous basis for expecting a sustained effect on the share or composition of labor.
The skill or task composition might differ for a new variety, but that depends on the particular
context. However, the basic structure predicts an increase in the use of the composite factor,
generally employment (see also Harrison et al. 2014). The model predicts zero wage effects in
a competitive labor market (for both technological advances) since wages are determined in the
sectoral equilibrium and the firm is small relative to the market.

1.6.2 Evidence: Testing Process vs. Product

This section empirically tests whether the technological changes we observe are the process vs.
product type. We document that they are primarily the product type. This observation helps
explain the puzzling results of no labor replacement or skill bias. Firms used new technologies to
create new types of output, not to replace workers.

We proceed in two steps. First, we directly measure the type of technological changes using our
text and survey data. Second, guided by the framework, we consider a new set of outcomes that
are critical signals that contrast process vs. product type change.

1.6.2.1 Directly Measuring the Type of Technological Change

We measure the type of technological change directly using text and survey data.

Text Data Text data allow us to read the sample firms’ technology adoption plans. Based on
our theoretical framework, we code the technology projects into process vs. product. Process refers
to using technologies to produce the same type of output more efficiently, while product refers to
using technologies to produce a new type of output or expand.

Figure 1-12 shows that 91% of projects in our sample are of the product type. These applica-
tions describe new products, access to new markets, responding to changing demand conditions,
growth, or similar use for the technology. Only 9% of the texts do not describe such reasons. The
technological changes we document are primarily product advances based on this measure, and our
sample contains few purely process-type technological advances.36

36Our interviews suggest that while process-type advances exist, they are less likely to be physical machinery but
new management styles such as lean manufacturing and digitization.
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While the sample is mostly product type, we estimate treatment effects separately for the two
categories. We use the matched control group described in Section 1.4.2 because our control sample
is small for both categories. Table A.8 provides some evidence that product advances led to larger
employment effects and no skill bias. Process advances led to smaller employment effects and some
skill bias, .14 years, significant at the 10% level.

Survey Data We also measure the uses of technologies with survey data. The European Com-
munity Innovation Survey (CIS) asks our sample firms and other firms about the importance of
different objectives for process and product innovations. The options include introducing a more
extensive product selection, quality improvement, and lower labor costs.

Figure 1-13a shows that typical reasons for firms’ process and product innovations are access to
new markets, introducing a larger product selection, better quality, and larger capacity. Lower labor
costs rank the 6th most important: only 20% of firms report that lowering labor costs is important
for process and product innovation. Based on CIS data, we code the firm’s technology project as
the product type if the firm considers one of the product-type reasons (in black) important but does
not consider lower labor costs important. Conversely, we code the technology project as the process
type if lower labor costs (in grey) are important, but none of the product reasons are. Figure 1-13b
shows that 97% of our technology-adoption cases are the product type. These numbers are similar
when considering our spikes design sample, all manufacturing firms, or all Finnish firms, suggesting
that the finding is not limited to the subsidy program. Our interviews with CEOs corroborate the
observation from the survey data.37

1.6.2.2 Testing the Predictions with New Outcomes

Process and product type technological change predict different effects, summarized in Table 1.7.
We use these predictions to distinguish them. So far, we have shown that the technological ad-
vances—either with or without the subsidies—led to increases in employment and revenue, no
change in skill composition, the labor share, wages, productivity, or the profit margin. These
empirical results are consistent with the product-type predictions but not with the process type.
Next, we provide evidence for new outcomes: exports, products, marketing, prices, and patents,
all signals of product-type changes.

Figure 1-14 shows the event-study estimates with exporter indicator as the outcome. Subsidy
winners are more likely to become exporters. Table 1.8 reports a treatment effect of 4 percentage
points from the baseline of 28%. The effect on the exports’ revenue share is .9 p.p. from the
baseline of 5.2%. The winners also start exporting to .2 more regions, from 1.5 baseline.38

Table 1.8 reports the effects on products, measured from the customs data. The treatment effect
is .15 products from the baseline of 1.55. We also observe an increase in the product turnover : the

37Table A.9 shows the estimates by the technology category using the survey data. We use a matched control
group since the original control group’s overlap with the survey is limited. The estimates for the product group are
similar to the overall group. The process group is too small to estimate the results (marked by –).

38The export results are consistent with Lileeva and Trefler (2010) and Koch et al. (2021).
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treatment firms both introduce and discontinue more products.
Figure 1-15 shows that subsidy winners are more likely to increase their marketing expenditure.

The increased marketing signals that the firms intend to change how the customers perceive their
output—a product-type change—not only their production costs.

Table 1.9 reports the treatment effects on prices. We measure prices from the Customs Register
and the Industrial Production Statistics (a survey of manufacturing firms). We focus on product-
level prices’ unweighted average. We find a 29.1% increase in the customs data prices and 30.8%
in the manufacturing survey. Price increases signal potential quality improvements.

Figure A-11 shows the evolution of the subsidy applicant firms’ patenting status. While sugges-
tive evidence, we observe that patenting is concentrated in the periods before applying for subsidies
and technology investment. This pattern of patenting is an additional signal that firms used the
subsidies and technologies to scale up from an idea to production.

Some research proposes that exports and new products are also skill biased (Bernard and Jensen
1997; Xiang 2005; Matsuyama 2007). One reason we do not observe skill bias from exports or new
products is that these changes—which we conceptualize as product advances—are a normal part of
how these firms operate. We observe in our fieldwork that these manufacturers constantly identify
shifts in demand and redeploy their productive resources to new uses using new technologies.
Also the large-scale manufacturers combine economies of scale with flexibility, reflected in short
production runs, product introductions, and sensitivity to customer needs. Earlier fieldwork by
Dertouzos et al. (1989), Berger (2013), and Berger (2020) corroborates these observations.

1.6.3 Two Types of Manufacturing: Mass Production vs.
Flexible Specialization

Our theoretical framework tells a tale of two types of technological change—process vs. prod-
uct—and how they predict different effects that can be empirically distinguished. A central ques-
tion created by our empirical analysis is: when and why is one more likely to occur than another?
The technology adoption events in our data are almost entirely product rather than process-type
changes. But both types may occur in reality, and some studies report examples of the latter
when it comes to automation (e.g., Acemoglu and Restrepo 2020; Restrepo and Hubmer 2021). We
explain next why our findings are distinctive but logical—and applicable to other settings where
similar incentives for process vs. product type technology adoption prevail.

To do so, we contrast two types of manufacturing: mass production (Taylor 1911; Ford 1922)
vs. flexible specialization (Piore and Sabel 1984; Milgrom and Roberts 1990). These two different
contexts affect the incentives for the two types of technological change. Mass production is char-
acterized by standardized products, high volumes, and a stable environment, and it makes process
advances more likely. Flexible specialization is characterized by specialized products, low volumes,
and an unstable environment. It makes product advances more likely.

Our results differ from the two views emphasized in the literature—that technologies replace
labor or are skill biased—because the literature has focused more on process advances in mass
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production (e.g., Acemoglu and Restrepo 2018). In contrast, the flexible manufacturing system is
more common among the firms we study. In our context, both small and large manufacturing firms
produce specialized products in small batches. Examples include defense contractors building
specialized equipment and industrial manufacturing firms producing new wind power stations.
However, the findings may not apply to the mass production of non-specialized commodities, such
as cement or steel, or high-volume assembly, where costs are critical.

A large literature documents that manufacturing has moved from mass production to new, more
flexible, and specialized forms of production since the 1980s (e.g., Dertouzos et al. 1989; Berger
2013). These new forms of production emphasize quality and responsiveness to market conditions
while utilizing technologically advanced equipment. Piore and Sabel (1984) call this change the
second industrial divide, Kenney and Florida (1993) call it moving beyond mass production, and
Milgrom and Roberts (1990) call it modern manufacturing. While different studies approach the
topic from different angles, the common observation is that “the business environment is no longer
conducive to producing standardized products for a stable market” (Piore 1994). One of the
managers in Berger (2020) explained clearly: “American manufacturing has been transformed.
It’s become highly engineered, highly specialized, and highly customized. I see this across all
manufacturing. This is a different country. It’s no longer the mass production of the past.”
Why did this change happen? The research suggests several reasons: consumers shifted away from
standardized goods (Bils and Klenow 2001), globalization reduced the cost of specialization between
firms (Berger and Center 2005), and new technologies reduced setup times and made it less costly
to switch production between products (Bartel et al. 2007).

Next, we help understand when and why process vs. product type technological advances
are more likely, and how this trade-off relates to the type of manufacturing—mass production vs.
flexible specialization. We point out three central factors: scope for specialization, volume, and the
need for adaptation that each affect the incentives for process vs. product type changes.39

Specialization The trade-off between process versus product advances depends on the scope
for specialization. Firms in a sector with a higher scope for specialization are more likely to
implement product advances, and a lower scope for specialization makes process advances more
likely (see also Sutton 1998; Kugler and Verhoogen 2012). Intuitively, in sectors with a higher
scope for specialization, firms may gain a competitive advantage by introducing a new good or
changing their selection of goods. This contrasts with sectors that produce bulk goods, where the
primary source of competitive advantage is cost. Scope for specialization comes most naturally in
the framework from the elasticity of substitution σj in sector j: A higher elasticity magnifies the
effects of productivity improvements on revenue and profitability (Appendix A.8). The intuition
is that when the elasticity of substitution is high, demand is more responsive to price reductions,

39These are not the only factors that may influence the choice. Other relevant factors include: automation
feasibility (Graetz and Michaels 2018; Acemoglu and Restrepo 2020), employment protection (Saint-Paul 2002;
Manera and Uccioli 2021), complementary resources, such as venture capital, trade associations, and suppliers
(Berger 2013; Gruber and Johnson 2019), and skill supply (Dertouzos et al. 1989; Berger 2013).
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making process advances that reduce costs relatively more effective.
One measure to capture the scope for specialization is the Rauch (1999) index based on whether

the good is a commodity.40 Figure 1-16 shows that 91% of the firms are in an industry with a Rauch
index over .5, indicating a high scope for specialization. Our main industries, fabricated metal
products, machinery and equipment, and wood products, have an index of 1 and are fully specialized
based on the Rauch index. Our sample does not include firms in non-specialized industries, such
as cement, steel, or paper.41 Specialized manufacturing is not limited to the subsidies design: the
share of firms (and employees) in specialized vs. non-specialized industries is similar in the spikes
design and Finnish manufacturing overall.

Table A.11 reports further evidence: the number of firms by the scope for specialization and
technology category. Less than 1% of our sample are process advances in non-specialized industries
(e.g., cost reductions in steel manufacturing or automation in the paper industry). Consistent with
our interpretation, product-type projects are more common in specialized sectors.42

Volume The trade-off between process vs. product depends on the production volume. In our
interviews, most managers explained that they are specialized low-volume producers who invest in
advanced technologies to make the products they sell to a few customers with unique demands.
Our theoretical framework rationalizes why technology adoption events are more likely to be the
product than process type in a low-volume context. In the framework, the amount of input required
to produce volume qj of a variety is:

lj = fj +
qj
ϕ
, (1.17)

where f is the fixed production cost and 1/ϕ is the constant marginal cost. The process-type
technology adoption decision TI is a tradeoff between an additional fixed cost fI and a productivity
increase to ιϕ. The high-volume producers benefit more from the productivity increase because the
fixed cost is distributed over the higher volume. The low-volume producers benefit less from the
productivity increase, but not from the introduction of new products. In our model, high-volume
firms are also large firms with low marginal costs because, given the CES demand structure, firms’
relative outputs and revenues inversely depend on their relative marginal costs.

Looking at the evidence, firms in our sample are mainly SMEs, as shown in Table 1.2, consistent
with observing mainly product-type technology adoption events. Tables A.6 and A.7 describe the
matched product and process samples. The groups are similar because our context is relatively
uniform, but there are some relevant differences. Consistent with our interpretation, the product-
type firms are smaller.

40Measures of the scope for specialization also include Gollop and Monahan (1991) and Sutton (1998).
41Dertouzos et al. (1989) emphasize that even in steel manufacturing, quality improvements are crucial.
42Table A.10 provides treatment-effect estimates for specialized vs. non-specialized industries. The estimates are

generally similar in both groups. Our interpretation is that because the clear pattern in our data is product-type
technological change in specialized industries, it is unsurprising that we do not observe different effects in the small
subsample of firms in the non-specialized industries.
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Adaptation Over time, the trade-off between process vs. product depends on the need for adap-
tation. Most firms we interviewed described operating in a changing environment where adaptabil-
ity is important. One manufacturer described they could automate their assembly—currently done
manually—but it would require them to commit to a specific model and set of parts to build it.
This commitment was unattractive as they must update their model and parts frequently to stay
competitive for their customers. In this context, the firm had more substantial incentives to use
technologies to create new varieties than to improve its productivity within a variety. This need for
adaptation arises from, for example, changes in consumer preferences, technological obsolescence,
and cost competition. A firm we interviewed explained: “We cannot compete with the low-cost
competitors. We need to offer unique goods and services.”43

We conceptualize the need for adaptation as a death shock that occurs with an increasing
probability δ ∈ (0, 1), adapted from Melitz (2003):

δ ∈ (0, 1),
∂δ

∂t
> 0. (1.18)

The death shock increases the relative incentives for the product-type technology. It generates a
discount factor for the value computation and reduces the net present value of future revenue in
the given variety and, therefore, reduces the benefits from the process-type technological change.
In contrast, with a new variety, the firm can start with a lower death risk.

Our text data directly records that firms invest in technologies to respond to changing demand.
The need for adaptation also has two key empirical predictions: 1) we will observe a higher product
turnover in addition to new products, and 2) we observe a negative trajectory for those firms that
did not adopt the technology and a higher survival for those firms that did. Our evidence confirms
both predictions (Table 1.8, Figures A-12, A-13).

1.7 Robustness

We conduct several robustness checks to evaluate the internal and external validity of our findings.

1.7.1 Internal Validity

Selection Bias A natural concern when estimating the impact of technology adoption is the bias
due to a potential correlation between the adoption and unobserved characteristics of adopters.
These concerns are less likely to be important in our setting because (as described in Section 1.4)
we focus on variation induced by a technology subsidy program, where comparisons by adopter
status are restricted to a sample of applicants to the program. Non-adopting applicants probably
provide a better control group for adopters than conventional cross-section samples because, like

43Firms with limited capabilities to respond to cost competition may launch new varieties when faced with low-
cost rivals (Porter, 1985; Aghion et al., 2005). This idea is consistent with Bloom et al. (2016) and Fieler and
Harrison (2018), who document that import competition induced innovation and product differentiation. Bernard
et al. (2010) analyze product switching as a source of reallocation within firms.
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adopters, applicants have indicated a strong interest in technology adoption. Moreover, the data
analyzed here contain information on most characteristics used by the subsidy program to screen
applications. The selection bias induced by subsidy program screening can therefore be eliminated
using regression techniques or by matching on the covariates used in the screening process. Our
results are robust to controlling for the pre-application characteristics and the evaluation report
texts (Tables 1.4, 1.5, A.3, A.4, and A.5).

To directly investigate whether the rejected applications are a reasonable counterfactual for
the approved applications, we read through all approved and rejected applications in the analysis
sample. We found only ten rejected applications that did not seem likely to receive subsidies in
any situation: either the entrepreneur had a concerning history or the firm’s financial position
was unstable. Our results are robust to excluding these applications. We also find similar effects
when using a matched non-applicant control group (Appendix A.2). As a placebo test, we contrast
the main control group to a matched non-applicant control group. We find no first stage on
investment and a small positive transitory effect on employment, indicating that the subsidy losers
grew somewhat faster than similar non-applicant firms.

We use three different research designs: 1) the winner-losers design, 2) a regression discontinuity
design using unanticipated changes in the subsidy program rules (Appendix A.4), and 3) an event-
study design focusing on technology adoption events (Appendix A.3). These designs generate
similar results. This suggests that selection bias in any single design is unlikely to drive our results.

The remaining concern is selection bias common to all our research designs. The concern
would be that none of the control groups we analyze here represents a reasonable counterfactual
for technology adopters. To address this concern, we can analyze trends in adopter firms without
any control group. Figure A-12 shows the evolution of treatment group means for machinery
investment, employment, and years of education. Machinery investment increased sharply after
the technology subsidy application; winners increased their employment but did not change their
skill composition disproportionately. Trends in technology adopters do not support the view that
advanced technologies reduced employment or significantly changed skill composition.

Statistical Power A concern particularly relevant to presenting a null result is statistical power.
Are our results precise and technology-adoption events large enough to justify our conclusion about
no significant changes in skill composition measured by education and occupation? The estimates
from our preferred specification indicate a -.004 change in the average years of education at the
firm level, with a standard error of .075 years, meaning that we can exclude over .15 year increases
in the average education. In comparison, the treatment and control firms increase their education
on average over the 5-year event window by .4 years.

The small effects could be driven by small events. Several aspects suggest that this is not the
reason for our findings: 1) A typical technology adoption event in the subsidy sample is EUR 100K,
a doubled investment compared to an average year. The monetary value is a lower bound: the
purchase price of the machinery is only part of the total cost, about 25% in the US manufacturing
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documented by Berger (2020). The rest of the cost is the machine bed, installation, and all the
work needed to integrate the machinery into the plant. 2) The subsidy program requires that the
technology investments represent significant technological advances to the firm. 3) We consider
large technology investment events in the spikes design in Appendix A.3 and find null effects on
skill composition measured by education and occupation.

1.7.2 External Validity

There are several legitimate external validity concerns and alternative explanations for our findings
and interpretation. To repeat here: we do not argue that our results apply everywhere. We
document typical technological advances in manufacturing firms in Northern Europe. While we
acknowledge that other technological advances exist, our fieldwork suggests we do not document a
marginal phenomenon. Next, we respond to specific external validity concerns.

Concern 1: The subsidy program is biased toward employment and low-skill work.
The observation behind this concern is, to some degree, correct. One of the objectives of the ELY
Center subsidy program is to stimulate employment by supporting the adoption of advanced tech-
nologies in manufacturing firms. But several aspects support the view that the program’s biases are
not the primary source of our findings: 1) We find similar results also when evaluating technology
adoption events without the subsidy program. 2) Interviews with managers document that the
subsidy-supported technology adoption events are not notably different from typical technology
adoption events. 3) Interviews with subsidy administrators document that significant technology
projects are unlikely to be rejected because they would not stimulate positive employment effects.44

4) To address this concern systematically, we read all rejected applications and investigated whether
they were rejected for employment-related reasons. In none of the applications was the concern
about employment the main reason. Five reports mentioned employment, but the concerns were
primarily about the potentially low first stage on technology investment; employment was sec-
ondary. Our findings are robust to excluding these applications. Text records also uncover that
ELY Centers often interpret the employment effects compared to the counterfactual where the firm
is not competitive in the market without the technology and would need to reduce employment;
maintaining employment is seen as an increase. 5) The employment effects are not enforced: the
firms are free to make their employment decisions after receiving the subsidy. 6) We have no
evidence that the program intends to increase low-skill jobs; in fact, ELY Centers support hiring
high-skill workers into manufacturing firms.

Concern 2: Workers are already skilled and learn new skills. This alternative explanation
proposes that since workers are already skilled and learn new skills, we do not observe changes in
skill composition even if technologies are skill biased. To some degree, this is true. Most workers

44Some insignificant technology projects get rejected because they are insignificant and unlikely to stimulate
technological advances in production and employment effects.
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in our sample have specialized training in production work and regularly participate in continuing
vocational training (CVTS Survey 2015). All managers we interviewed reported that they combine
technology adoption with worker training. New manufacturing technologies require new skills,
but our observations from the field indicate that production workers are best suited to learn to use
them. At the same time, the debate on skill bias has focused on the idea that advanced technologies
replace production work and increase the relative demand for college-educated workers. We do not
find evidence of either at the firm level.

Concern 3: The technologies are not typical advanced manufacturing technologies. A
natural concern is that our estimates capture something other than the effects of standard advanced
technologies in manufacturing, particularly that we miss the effects of automated technologies. To
address this concern, we classify technologies into automated versus non-automated technologies
using text and customs data, as described in Section 1.3. Automated technologies are considered
automated in everyday language: e.g., robots, CNC machines, and conveyor belts. Non-automated
are manually operated: e.g., non-automatic welding tools, hydraulic presses, and cutting machines.
In our text data, non-automated refers to all applications not classified as automated. Figures A-9
and A-10 show the estimates of firm-level effects for automated vs. non-automated technologies.
The effects are similar in both groups, and we still find employment increases and no changes
in the skill composition from automated technologies. Finally, the spikes design captures major
technology investment events in the industry and size range. While there may be different types
of technology adoption events, our estimates capture the average of these events.

Concern 4: Credit constraints drive the employment and skill effects. One alternative
explanation is that the effects are primarily about access to credit rather than technologies (an
exclusion restriction concern). While credit constraints are likely to play a role in allowing the
subsidies to induce firms to invest more, several arguments work against this explanation for the
employment increases and skill null result: 1) We observe a strong first stage on technology in-
vestment. 2) We do not observe larger effects for the ex-ante more likely credit-constrained firms:
small firms (Table A.12) and firms with higher financial costs (Table A.13). 3) We observe the
same effects without the program in Appendix A.3.

Concern 5: Fixed costs in production lead to skill neutrality. One concern is that these
firms could have non-homothetic production technologies where fixed and variable costs have differ-
ent factor intensities (Flam and Helpman 1987). The fixed costs could be educated managers and
technical staff, while the variable costs could be production workers. If the firms use technologies
to expand, the increase in variable costs could mask the potential skill bias of technologies. This
concern has a testable implication: it should be less important for large firms. Small firms might
primarily increase their variable costs, while we would expect that large firms would also need to
scale their fixed costs. Table A.12 reports the main estimates by firm size. We find no significant
differences, suggesting that non-homothetic production is unlikely to be the cause for our findings.
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Concern 6: Firm-level employment gains replace employment elsewhere. A firm’s tech-
nology adoption may affect other firms, and the total employment and skill effects may differ from
those reported here. Two aspects make estimating these effects challenging: 1) the firms are
relatively small, and 2) they trade globally directly or indirectly through their customers; thus,
externalities are likely to be minor. Theoretically, whether or not the technology adoption events
replace employment elsewhere depends on the type of technology and the kind of externalities
it induces. We document that our technological advances are the product type: the firms use
technologies to produce new output types. These outputs are typically intermediate goods or ma-
chinery for final-good producing firms. In Romer (1990), this type of variety expansion generates
growth—that is, some of the externalities may be positive. At the same time, new intermediate
goods could replace previous vintages of intermediate goods as in the “Schumpeterian models” with
quality improvements and creative destruction as in Grossman and Helpman (1991) and Aghion
and Howitt (1992). Exploring these channels is a promising avenue for future research.45

1.8 Conclusion

This paper provides novel evidence on a classic question: What are the effects of advanced technolo-
gies on employment and skill demand? Our paper is the first to evaluate advanced manufacturing
technologies’ effects using a research design based on direct policy variation. Our novel adminis-
trative data allow us to measure firms’ technology investment and workers’ employment, wages,
and skills precisely over time. To address external validity, we evaluate technology adoption events
also without the program.

Our main finding is that advanced technologies, such as CNC machines, welding robots, and
laser cutters, did not reduce employment, replace production workers, or increase the share of highly
educated workers in industrial and custom manufacturing firms. We find that these technologies
led to increases in employment and no change in skill composition. The findings are consistent
across all estimation methods, with and without the subsidy program.

This paper proposes a simple explanation for the findings. We document that the firms used
new technologies to produce new types of output, not replace workers with technologies. Direct
evidence shows that technology adoption led to more revenue, new products, and new exports.
Text analysis of firms’ technology-adoption plans shows that they adopted new technologies to
introduce new products, access new markets, respond to changing demand, and grow. To explain
our findings, we outline a theoretical framework that contrasts two types of technological change:
process versus product (e.g., Utterback and Abernathy 1975; Porter 1985). Process change refers
to productivity improvements within an output variety; product expanding to new varieties (e.g.,
Dixit and Stiglitz 1977; Melitz 2003). Our evidence indicates that firms invested in advanced
technologies to gain a competitive advantage by introducing new varieties. For example, the piston
manufacturer we observed invested in new technologies to manufacture more effective pistons.

45Acemoglu et al. (2020b), Koch et al. (2021), and Oberfield and Raval (2021) analyze potential externalities.
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The results stand in contrast with the view that new technologies reduce employment or increase
the share of highly educated workers in manufacturing firms. While no single study can be decisive,
we review a body of evidence indicating that technology investments in manufacturing led to
increases in employment and to no detectable changes in skill composition (e.g., Doms et al. 1997;
Koch et al. 2021).

We do not argue that our results apply everywhere. We obtain our findings in a context
where small and large manufacturing firms produce specialized products in small lot sizes. But the
findings may not apply to non-specialized commodities, such as cement or steel, or high-volume
assembly, where prices and costs are critical. Our results differ from the two views emphasized in
the literature because it has focused more on process advances in mass production (e.g., Acemoglu
and Restrepo 2018). In contrast, the flexible manufacturing system is more common among the
firms we study. Qualitative evidence documents that a large part of manufacturing has evolved
from mass production (Taylor, 1911; Ford, 1922) to flexible specialization (Piore and Sabel, 1984;
Milgrom and Roberts, 1990). Currently, a large part of manufacturing is specialized.

Our results do not directly apply to non-physical technological advances, such as ICT or the
internet (e.g., Autor et al. 2003; Akerman et al. 2015; Gaggl and Wright 2017), management
practices, R&D, technological advances in offices, historical eras, or the future. Some technological
advances have also replaced workers (e.g., Acemoglu and Restrepo 2020; Bessen et al. 2020), and
our results do not challenge the view that skills and technologies are related (e.g., Lewis 2011).
Our evidence from the field suggests that work and skill requirements change in subtle ways due
to technology investment (as in Bartel et al. 2007).

Our results provide new evidence on the effects of one type of industrial policy: a lump-sum
transfer to increase technology adoption in manufacturing firms (see also Criscuolo et al. 2019).
Several researchers argue that lack of access to financial support limits the manufacturing sector’s
ability to scale up ideas into production (Dertouzos et al., 1989; Berger, 2013; Gruber and Johnson,
2019). We find that it is possible to stimulate technology investments by targeted subsidies and,
by doing so, induce increases in employment, revenue, exports, and product variety.

Finally, our study makes some methodological contributions. We demonstrate novel methods
to use text data in program evaluation. Many policy programs leave a trail of text records, and
these texts allow measuring things that would otherwise be difficult to measure. We show how to
use text data to measure variables of interest and perform matching. In the spirit of Roberts et al.
(2020) and Mozer et al. (2020), we demonstrate how to craft a research design by controlling for
program participants’ underlying differences using text data. As new technologies have proliferated
across firms, so, too, has the empirical literature on their effects. In light of the results reported
here, some more conventional estimates of the effect of technologies in manufacturing firms do not
appear to be too far off the mark (e.g., Doms et al. 1997).
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Main Figures and Tables

(a) CNC Machine and a Robot.

(b) Inside an Industrial Manufacturing Plant.

(c) Machine Operators and a Milling Machine.

Figure 1-1: Fieldwork: Documenting the Context.

Back to Section 1.2. 39
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Figure 1-2: Manufacturing Skill Trends.

Notes: These figures document trends in Finnish manufacturing over 1994–2018. We restrict to firms with at least
3 workers. We compute the year-level averages from firm-level observations. The numbers are unweighted to match
our research design. The employment-weighted numbers are similar. Back to Section 1.2.
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Figure 1-3: Moore’s Law for Pistons: The Development Trend of Piston Materials Over 100 Years.

Back to Section 1.2.
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Figure 1-4: The Subsidy Application Process.

Notes: Details in the main text. Back to Section 1.4.
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Figure 1-5: The Text Propensity Score Calibration Plot.

Notes: Upper panel: The predicted probabilities of subsidy receipt based on text data are on the x-axis, and the
observed probabilities are on the y-axis. The text data are evaluation reports of the applications written by the
subsidy program officers. The predicted probabilities are calibrated using a vector representation of the text and
SVM. Standard errors are estimated by bootstrap. The predicted probabilities closely match the empirical
probabilities. Lower panel: Distribution of the predicted values. Most of the applications have high predicted
values reflecting the overall acceptance rate. Back to Section 1.4.3.
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Figure 1-6: The First Stage: The Effect of Technology Subsidies on Machinery Investments.

Notes: Event-study estimates from Equation 1.1. The outcome is investment in machinery and equipment (in EUR
1000s) measured from the financial statement register. Event time τ = 0 refers to the application year. The
estimate for τ = 1 indicates that the treatment group invested EUR 60K more than the control group in the year
after subsidy application. The estimates indicate a cumulative EUR 130K effect on machinery investment. This
event-study specification contains no controls in the term Xτ

jt of Equation 1.1. Back to Section 1.5.
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Figure 1-7: Employment Effects: The Effect of Technology Subsidies on Employment (in %).

Notes: Event-study estimates from Equation 1.1. The outcome is employment relative to the base year τ = −3.
Event time τ = 0 refers to the application year. The estimates indicate approx. 20% increase in employment.
This event-study specification contains no controls in the term Xτ

jt of Equation 1.1. Back to Section 1.5.
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(b) College-Educated Workers’ Share.
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(c) Production Workers’ Share.

Figure 1-8: Skill Effects: Event-Study Estimates.

Notes: Event-study estimates from Equation 1.1. The outcomes are relative to the base year τ = −3. Event time
τ = 0 refers to the application year. The estimates indicate approximately zero changes in the main skill measures.
Education years are defined as the average years of education among the workers in the firm (measured in years);
college-educated workers’ and production workers’ shares are the shares of employment of that group (measured in
percentage points). These event-study specifications contain no controls in the term Xτ

jt of Equation 1.1.
Back to Section 1.5.
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Figure 1-9: Skill Effects. The First-Difference Estimates.

Notes: Difference-in-differences estimates from Equation 1.2. The right-hand side reports means at τ = −3.
Education is measured as a relative change (%) in the average years of education in the firm between τ = −3 and
the average of τ ∈ [2, 5]. The shares are measured in percentage-point changes. The estimates indicate no
detectable changes in the skill composition. The specifications include two-digit industry and firm size as controls.
Back to Section 1.5.
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Figure 1-10: Firm-Level Effects.

Notes: Difference-in-differences estimates from Equation 1.2. The right-hand side reports means at τ = −3.
Machine Investment, Employment, Revenue, Wages, and Productivity are measured by relative changes to baseline
at τ = −3. For Machine Investment, the post-period outcome is the sum of investment between τ ∈ [0, 2] and for
other outcomes, the average of τ ∈ [2, 5]. The specifications include two-digit industry and firm size as controls.
Back to Section 1.5.
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Figure 1-11: Process vs. Product.

Notes: Process refers to productivity improvements within an output variety, product to the expansion of new
varieties. Details in the main text. Back to Section 1.6.
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Figure 1-12: Technology Categories Measured from Text Data: Observations by Category.

Notes: Product refers to technology projects that aim to produce a new type of output. Process refers to
technology projects that aim to produce the same type of output. The text data are text records from the subsidy
program’s administration, including each firm’s application and evaluation texts. A trained panel performed the
classification. Details in the main text. Back to Section 1.6.2.
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(b) Aggregated Objectives.

Figure 1-13: Technology Categories Measured from the Survey Data: Observations by Category.

Notes: The European Community Innovation Survey (CIS) reports firms’ views on the importance of different
objectives for process and product innovations, including technology adoption. Panel (a) shows the share of firms
in our main sample that report the objective is highly important. Variables are in thematic order (new varieties,
expansion, costs, environment, and regulations). We use survey years 1996–2008. If the firm has responded to
multiple rounds of CIS, we consider the closest survey to its technology-adoption event. Panel (b): Product refers
to firms that reported that one of the first five objectives was important and lower labor costs were not. Process
refers to firms that reported that lower labor costs were important but did not report any of the first five
objectives as important. N = 510 (i.e., the number of main-sample firms also in CIS). Back to Section 1.6.2.
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Figure 1-14: Export Effects: The Export Status.

Notes: Event-study estimates from Equation 1.1. Event time τ = 0 refers to the application year. The outcome is
the firm’s export status indicator (exporter vs. non-exporter). Exports are measured from the Finnish Customs’
Foreign Trade Statistics. Export status is measured using the definition by Statistics Finland. A firm is defined as
an exporter in a given year if its total export value is over EUR 12K during the calendar year spread over at least
two different months, or a single export event is over EUR 120K in value. This event-study specification contains
no controls in the term Xτ

jt of Equation 1.1. Back to Section 1.6.2.
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Figure 1-15: Marketing Effects: Marketing Expenditure.

Notes: Event-study estimates from Equation 1.1. The outcome is the firm’s marketing expenditure, measured from
the Finnish Financial Statement Register. Event time τ = 0 refers to the application year. This event-study
specification contains no controls in the term Xτ

jt of Equation 1.1. Back to Section 1.6.2.
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Figure 1-16: Specialized vs. Non-Specialized Industries: Observations by Category.

Notes: Specialized refers to industries producing non-commodities and non-specialized refers to industries
producing commodities measured by the Rauch (1999) index. The distribution is similar when using Gollop and
Monahan (1991) and Sutton (1998) indices. Back to Section 1.6.3.
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Table 1.1: Technology Categories.

Classification Description

Technologies All technology investments and projects.

Uses of Technologies
    Process Produce the same type of output using technologies.
    Product Produce a new type of output using technologies.

Types of Technologies
    Automated vs. non-automated Technologies with no active user vs. an active user.
    Hardware and/or software Physical vs. non-physical technologies.

Notes: Technologies are measured from the financial, text, customs, and survey data. Uses of technologies are
measured from the text data of the technology subsidy program and from the Community Innovation Survey
(CIS). Types of technologies are measured from the text data and the customs data. The technology classes are
described in Appendix A.5. Back to Sections 1.3 and 1.6.2.
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Table 1.2: Summary Statistics: The Main Research Design (Winners vs. Losers).

Treatment Group Control Group Both

Variable Mean Std. Dev. Mean Std. Dev. 10p Median 90p

Machinery Inv. (EUR K) 109.93 369.14 82.60 233.11 0.00 27.24 233.80
Revenue (EUR M) 3.20 25.39 1.64 5.29 0.16 0.96 5.67
Employment 17.81 47.16 9.67 21.29 1.40 7.90 37.00
Wages (EUR K) 22.23 9.08 18.40 10.22 11.26 22.30 31.61
Subsidy Applied (EUR K) 112.05 129.25 47.01 81.30 8.89 58.13 290.06
Subsidy Granted (EUR K) 81.77 103.02 0.00 0.00 3.24 35.64 200.23
Educ. Years 11.71 0.99 11.45 1.12 10.50 11.73 12.67
College Share (%) 15.51 16.80 11.63 18.42 0.00 12.50 33.33
Production Worker Share (%) 70.53 21.53 70.37 28.61 42.86 72.73 100.00
Observations 1885 146 2031

Notes: All variables measured at τ = −3. Machinery investment is measured from the financial statement register.
Data on revenue, employment, and wages come from the firm- and worker-level registers. Subsidies applied and
granted are from the subsidy application data. Education years, college share, and production worker share are
measured based on the worker composition within the firm. Back to Section 1.4.2.
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Table 1.3: The First Stage.

(1) (2) (3)
Granted Subsidy Machine Inv. (EUR K) Capital Stock (EUR K)

Treatment 66.06∗∗∗ 70.22∗∗∗ 107.9∗∗∗ 100.4∗∗∗ 49.78∗∗ 41.60
(3.119) (4.907) (17.53) (21.90) (18.26) (23.60)

Propensity Score
Observations 2031 1812 2031 1812 1560 1540
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Difference-in-differences estimates from Equation 1.2 with and without the text propensity control. To
measure capital, we use the official records on firms’ balance sheets. The post-period outcomes are sums between
τ ∈ [0, 2]. The specifications include two-digit industry and firm size as controls. Back to Section 1.5.
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Table 1.4: Firm-Level Effects.

Panel A: Investment, Employment, and Revenue.

Machine Investment (EUR K) Employment Revenue
Baseline Prop. Score Match Baseline Prop. Score Match Baseline Prop. Score Match

Treatment 107.9∗∗∗ 100.3∗∗∗ 127.9∗∗∗ 0.232∗∗∗ 0.234∗∗ 0.217∗∗∗ 0.314∗∗∗ 0.333∗∗∗ 0.261∗∗∗

(17.53) (21.90) (6.556) (0.0614) (0.0746) (0.0183) (0.0779) (0.0958) (0.0232)

Observations 2031 1812 3200 2031 1812 3200 2031 1812 3200

Panel B: Wages, Profit Margin, and Productivity.

Wages Profit Margin Productivity
Baseline Prop. Score Match Baseline Prop. Score Match Baseline Prop. Score Match

Treatment -0.0481 -0.0285 0.00306 0.00121 -0.00791 -0.00685∗ -0.00516 -0.00622 0.0117
(0.0355) (0.0407) (0.00290) (0.00772) (0.00978) (0.00290) (0.0350) (0.0427) (0.0120)

Observations 1952 1738 3080 2031 1812 3200 2031 1812 3200

Panel C: Labor Share and Skill Composition.

Labor Share Education Years College Share Production Worker Share
Baseline Prop. Score Match Baseline Prop. Score Match Baseline Prop. Score Match Baseline Prop. Score Match

Treatment -0.00202 -0.000700 -0.00293 0.0246 -0.00385 0.0303 0.00557 0.00592 0.00542 0.000723 -0.0213 -0.00464
(0.00496) (0.00601) (0.00203) (0.0611) (0.0752) (0.0207) (0.00935) (0.0116) (0.00330) (0.0181) (0.0212) (0.00605)

Observations 2031 1812 3200 1884 1676 2999 1884 1676 2999 1891 1692 3011
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Difference-in-differences estimates from Equation 1.2. The table reports the treatment effects on selected outcomes for the main sample with and without
the text propensity-score control and the matched control sample. “Baseline” refers to a baseline specification with calendar-year indicators, two-digit industry,
and firm size as controls. “Prop. Score” refers to estimation with the text propensity score included as a control. “Match” refers to estimation in the matched
sample, where the control group is formed from matched non-applicant firms. Panel A: Machine investment is in EUR K. Employment and revenue are in
relative changes, e.g., 0.20 would refer to a 20% increase. Panel B: Wages and productivity are relative changes; the profit margin is in percentage points.
Panel C: Education years is in years. The labor, college, and production worker shares are in percentage points. For machinery investment, the post-period
outcome is the sum of investment between τ ∈ [0, 2] and for other outcomes, the average of τ ∈ [2, 5]. Back to Section 1.5.
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Table 1.5: Continuous Treatment Estimates.

(1) (2) (3)
Machine Inv. Employment Revenue

Granted Subsidy 1.321∗∗∗ 1.262∗∗∗ 0.249∗∗∗ 0.230∗∗∗ 5.292∗∗∗ 4.973∗∗∗

(0.0806) (0.0809) (0.0213) (0.0220) (0.468) (0.478)

Propensity Score
Observations 2031 1812 2031 1812 2031 1812
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Difference-in-differences estimates from Equation 1.2. Treatment is the subsidy amount in EUR, scaled to
EUR 10K for employment. For machinery investment, the post-period outcome is the sum of investment between
τ ∈ [0, 2] and for other outcomes, the average of τ ∈ [2, 5]. The specifications include two-digit industry and firm
size as controls. Back to Section 1.5.

Table 1.6: The Effects on Profits and Financial Costs.

Panel A: Win/Lose.

(1) (2) (3) (4)
Profit Margin (%) Gross Profits Net Profits Fin. Costs

Treatment 0.121 24.49∗ 20.35∗ 4.133∗∗

(0.772) (9.941) (10.09) (1.425)
Baseline 5.2 274.0 -16.07 290.1
N 2031 2031 2031 2031

Panel B: Continuous Treatment.

(1) (2) (3)
Gross Profits Net Profits Financial Costs

Granted Subsidy -0.0353 -0.0878 0.0525∗∗∗

(0.0638) (0.0646) (0.00949)
Baseline 274,006 -16,074 290,080
N 2031 2031 2031
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The effects on profits and financial costs. The baseline means are measured at τ = −3. The profit margin is
measured in percentage points. Gross and net profits refer to profits before and after financial costs. Panel A:
The treatment is the win-lose status. The profits and financial costs are measured in EUR 1000s. Panel B: The
treatment is the amount of subsidies the firm was granted. The coefficients are interpreted as the effect of one euro
in subsidies on profits or financial costs, measured in euros. The baseline medians are 5.0% (profit margin), EUR
52K (gross profits), EUR 37K (net profits), and EUR 8.3K (financial costs). The specifications include two-digit
industry and firm size as controls. Back to Section 1.5.
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Table 1.7: Predictions from Process vs. Product Type Technological Changes.

Outcome Process Product
Revenue ↑ ↑
Productivity ↑ 0
Profit margin ↑ 0
Products 0 ↑
Export status and share – ↑
Employment – ↑
Labor share ↓ –
Skill composition ↑ –
Prices ↓ if cost 0

↑ if quality ↑ if quality

Notes: Details in the main text. The symbol – refers to no clear prediction. Back to Section 1.6.1.
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Table 1.8: Export and Product Effects.

(1) (2) (3) (4) (5) (6)
Export Status Export Share Export Regions Products Products Introduced Products Discontinued

Treatment 0.0404∗∗ 0.00935∗ 0.219∗∗∗ 0.155∗∗ 0.0880∗∗ 0.0664∗∗

(0.0134) (0.00451) (0.0568) (0.0599) (0.0282) (0.0223)
Baseline 0.284 0.0523 1.498 1.546 0.498 0.539
N 2031 2031 2031 2031 2031 2031
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Difference-in-differences estimates from Equation 1.2 for the main research design (winners vs. losers). Exports and products are measured from the
Finnish Customs’ Foreign Trade Statistics. Export status is measured using the definition by Statistics Finland. A firm is defined as an exporter in a given year
if its total export value is over EUR 12K during the calendar year spread over at least two different months, or a single export event is over 120K EUR in value.
The specifications include two-digit industry and firm size as controls. Back to Section 1.6.2.
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Table 1.9: Price Effects.

(1) (2)
Price (Exports) Price (Manufacturing)

Treatment 0.291 0.308∗∗

(0.328) (0.102)
N 400 217
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Difference-in-differences estimates from Equation 1.2 for the main research design (winners vs. losers). We
winsorize price data at the 10% level within product and year. Prices are measured as product-level revenue
divided by quantity from the Finnish Customs’ Foreign Trade Statistics and the Industrial Production Statistics (a
survey of manufacturing firms). The specifications include two-digit industry and firm size as controls. Back to
Section 1.6.2.
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Chapter 2

Psychological Traits and Adaptation in
the Labor Market

With Ramin Izadi

2.1 Introduction

Economic research documents that negative labor-market shocks, such as unexpected job loss or
the disappearance of manufacturing work, cause long-lasting adverse effects on workers (Jacobson
et al., 1993; Autor et al., 2014). However, some adapt better than others.1 In particular, a recent
literature demonstrates the predictive power of psychological traits in the labor market (Deming,
2017; Jokela et al., 2017; Edin et al., 2021). But little is still known about the role played by
psychological traits in adaptation in the labor market.

This paper provides novel evidence on the significance of psychological traits in adapting to
mass layoffs and plant closures. How do personality and cognitive characteristics help workers
recover from economic changes? To answer this question, we construct measures of cognitive
ability, extraversion, and conscientiousness by applying exploratory factor analysis to classified
data from the Finnish Defence Forces. These data contain results from a standardized personality
and cognitive ability tests administered to 79% of Finnish men born between 1962 and 1979 (n =
489,252).2 We combine the military data with the register data of Statistics Finland on employment,
wages, education, occupation, and firm performance. Our main empirical results analyze mass
layoffs and plant closures in 1995–2010 and estimate the heterogeneous treatment effects with

1For example, a line of research shows that the magnitudes of the negative effects can depend on family back-
ground and socioeconomic status (Hoynes et al., 2012; Kaila et al., 2021).

2The three distinct factor variables are allowed to correlate with each other (pairwise correlation between all
three is about 0.4). Conscientiousness and extraversion belong to the so-called Big Five personality taxonomy. Each
of the five traits is associated with a group of subtraits or facets. Our underlying test data were not designed with the
Big Five model in mind but do include many of the facets as test items. Conveniently, our factor analysis groups the
test items approximately along the theoretical lines. Namely, outward-oriented items, such as sociability, leadership
ability, activity-energy, and confidence, load onto one factor (which we label “extraversion”), whereas inward-oriented
items, such as deliberation and dutifulness, load onto another factor (which we label “conscientiousness”).
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respect to the measures of cognitive ability and personality.
To set the stage, we document the baseline impact of a mass layoff event on individuals’ labor-

market outcomes. We include all workers of the firm prior to the event in the analysis to allow
the selection into job loss to be part of adaptive behavior. Consistent with literature, we find
long-lasting negative effects on earnings. But in contrast to research that finds mostly transitory
negative effects on employment, in our sample, employment effects also seem to persist, even if
decrease over time (Schmieder et al., 2018; Lachowska et al., 2020).

Our novel main estimates interact the treatment with psychological factors in an event-study
framework. This allows us to see how the treatment effects change for different psychological
profiles. We estimate the interactions jointly in a saturated regression to account for the cross-
correlation of the factors. For each factor, we find a distinct pattern in relation to the treatment
effect. Conditional on other traits, extraversion is the only trait that predicts better recovery even
in the long term. A one standard deviation increase in extraversion predicts a 20% smaller earnings
loss each year. The effect lasts for at least eight years after the event. For the first years after the
shock, high cognitive ability also reduces the earnings loss by 20%, but this boost is short-lived and
fades out after a few years. In contrast, conscientious individuals do no better or worse than the
average individual. We repeat these estimations using employment as the outcome and find that,
across traits, the patterns in the reductions of dis-employment are similar to those of earnings.

To understand the drivers of personality’s adaptive value, we analyze the potentially adaptive
behaviors, such as changing occupation and industry and re-education. Workers who experience
a mass layoff event are also much more likely to change occupation or industry. However, we find
that psychological traits have relatively little predictive power on these margins of adaptation. If
anything, extraverted individuals change occupations and industries less than the average individ-
ual. Extraversion predicts faster re-employment in the same type of job rather than re-allocation
to a different type of job.

One key question arising from our results concerns selection. To what extent do our findings
just reflect differential pre-layoff selection into occupations, industries, and education? Each of
these choices can independently influence adaptation and are likely to be endogenous to earlier-life
psychological traits. For example, due to occupational and educational selection, extraverts could
face less tight labor markets after the shock. To address this, we estimate our main specification
with education, occupation, and industry controls. We find that the addition of controls reduces
the estimate for cognitive ability significantly but does not influence the estimate for extraversion
much. Moreover, extraversion seems to be a better predictor of recovery than years of education.
In summary, occupational or educational selection are not the likely drivers of the positive effects
of extraversion.

Since we study all individuals who were employed in the downsizing establishments, we can
study differential retention rates across traits. Are extraverted or high cognitive ability individuals
more likely to retain their employment in a mass layoff? We find that in the long term, high
cognitive ability individuals are no more likely to remain in the establishments relative to the
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average individual, but they are one percentage point more likely to be “early leavers.” In other
words, they leave the establishments just before the event. At the same time, compared to the
baseline exit rate of 50%, this effect is small. Extraverts, on the other hand, are two percentage
points less likely to leave the establishment relative to the average. This retention effect persists
in the long term and appears to be partly driven by selection into different occupations and tasks
within the firm.

Overall, extraversion and cognitive ability predict smaller scarring effects of mass layoffs by
helping particularly the extraverted to either keep their jobs or find work more quickly once they
are laid off. Of course, in the spirit of heterogeneity analysis, this predictive effect should not be
interpreted as a causal effect of extraversion.

This paper brings together two active lines of economics literature: (1) the importance of
psychological traits in the labor market and (2) the impact of job loss on workers’ outcomes.
Importantly, it also re-visits an earlier primarily theoretical literature on adaptation.

Adaptation. Classic theoretical research in economics (Nelson and Phelps, 1966; Welch, 1970;
Schultz, 1975) emphasizes the value of skills not just applied to production tasks but adapting to
“disequilibria” or changing economic conditions. Empirically, little is known about these adaptation
processes. It is unknown how specific skills and traits, such as personality traits and cognitive
abilities, influence the adjustments to major economic changes. Our paper combines this classic
question in economics with novel psychological measurement. For example, Schultz (1975) leaves
it as an open question of whether the skills needed for adaptation are rooted in education or
psychological traits. Our analysis shows that particularly extraversion helps workers adapt more
than education does, even when controlling for selection into occupations and industry.

Psychological Traits. A large literature analyzes the role of noncognitive skills in the labor mar-
ket. The evidence unambiguously demonstrates that a wide array of noncognitive skills—personality
traits, interpersonal skills, and other features—are important drivers of labor-market success (e.g.,
Heckman et al. 2006; Lindqvist and Vestman 2011; Deming 2017; Jokela et al. 2017).3 One lim-
itation is that these existing results consider labor-market outcomes overall in the cross-section.
Our paper contributes to understanding the importance of these psychological traits specifically
under times of change. An open question is whether the same skills that help people achieve higher
earnings also help adapt and recover from shocks. We show that while returns to education, cog-
nitive ability, and conscientiousness are large in the cross-section, extraversion predicts adaptation
better. This suggests that one mechanism that makes extraversion important could be related to
its value in times of change. The adaptive value of extraversion could be an important source of
its overall value in the labor market. Conversely, conscientiousness does not predict resilience to
labor-market shocks in our context.

Job Loss. A substantial literature studies the effects of job loss in the context of mass layoffs
and establishment closures. Recent research include Lachowska et al. (2020), Schmieder et al.

3Almlund et al. (2011) provide an excellent survey of the evidence on the predictive power of personality in the
labor market.
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(2018), and Huttunen et al. (2011). Several papers have also studied heterogeneous treatment
effects among the displaced. For example, von Wachter and Handwerker (2009) and Hoynes et
al. (2012) find that job loss is less costly for the college educated. More recently, Kauhanen
and Riukula (2019) find that individuals working in occupations with social-intensive tasks before
the shock experience the smallest drops in earnings and employment relative to workers in high
routine, manual, and cognitive occupations. Our findings complement this result: while Kauhanen
and Riukula (2019) compare individuals across occupations, we show that also within occupations,
the more extraverted individuals adapt better. The closest papers to our study are Seim (2019)
and Dahlberg et al. (2021). Seim (2019) documents that cognitive and non-cognitive skills do not
predict faster recovery from job loss using Swedish military-enlistment data. One possibility for the
different result could be that our measures capture more precisely the type of skills that help workers
adapt; for example, we find that conscientiousness does not predict faster recovery from job loss,
while extraversion does. On the other hand, using the same Swedish data but focusing on military
personnel affected by military-base closures, Dahlberg et al. (2021) report that non-cognitive skills
predict shorter unemployment spells.

2.2 Data

This paper combines several data sources using unique person identifiers.4

2.2.1 Psychological Measurement

Data for psychological traits, personality and cognitive skills, are obtained from the Finnish Defence
Forces (FDF), which has tested all military conscripts since 1955. The available data cover 79% of
Finnish men born 1962–1979 (n = 489,252). These data are the basis for our analysis sample. The
FDF data are described in more detail in Appendix B.2.

2.2.1.1 The Data Source

Military conscription in Finland between 1962 and 1979 was universal and granted relatively few
exceptions. Finnish men are drafted in the year they turn 18 and most start their service at age 19 or
20. Military service lasts for 6–12 months. Most conscripts do not stay to serve at the military, but
continue to civil workforce or studies. FDF uses psychological tests to assess conscripts’ suitability
for non-commissioned officer training that takes place during the military service.

Both personality and cognitive ability tests are typically taken in the second week of military
service in a 2-h paper-and-pencil format in standardized group-administered conditions. The per-
sonality test contains 218 statements with a response scale of yes/no. The cognitive test contains
120 multiple-choice questions. The test questionnaires have been unchanged for the timeline of the
study, and the scores are designed to be comparable across cohorts.

4The data are described in more detail in the Appendix B.2.

65



2.2.1.2 Test Content

The raw data provide test scores for 8 personality dimensions and 3 cognitive-skill dimensions.
The measured personality traits are: sociability, activity-energy, self-confidence, leadership mo-

tivation, achievement motivation, dutifulness, deliberation, and masculinity. The personality test is
similar to and based on the Minnesota Multiphasic Personality Inventory (MMPI). The raw scores
of the data are a count of yes/no answers that are consistent with the measured trait. For example,
a “yes” answer to a statement: “I enjoy spending time with other people”, gives a one point toward
the sociability score.

The measured cognitive skills are visuospatial, arithmetic, and verbal reasoning. The visuospa-
tial test is similar to Raven’s Progressive Matrices (Raven and Court, 1938). The FDF cognitive
ability test is similar to the The Armed Services Vocational Aptitude Battery (ASVAB), adminis-
tered by the United States Military Entrance Processing Command. Each correct answer gives a
one point toward each cognitive skill measure.

The Appendix provides basic descriptive statistics on the raw personality and cognitive data.
Figure B-1 shows the density distributions of each personality and cognitive measure. Both cog-
nitive and personality test scores contain ample variation; for example, there are both people
with high and low scores of dutifulness. Table B.1 shows the cross-correlation matrix between the
raw personality measures, cognitive skills, education, and prime-age income measures. Personal-
ity traits and cognitive scores are strongly correlated within their domains. Correlations across
cognitive scores and personality traits are modest.

2.2.1.3 Dimension Reduction

We conduct an exploratory factor analysis to determine a way to reduce dimensionality in our
personality and cognitive data. The aim is to isolate distinct personality traits from the relatively
high-dimensional data (11 psychological variables). To what extent are the measured personality
traits distinct from cognitive skills and each other? The factor-based approach allows us to construct
stable variables, avoid multicollinearity between the traits, and reduce measurement error. Based
on the analysis described below and guided by evidence from personality psychology, we decide to
use a three-factor model, visualized in Figure 2-1. This factorization differentiates between cognitive
ability and two personality factors related to extraversion and conscientiousness (interpersonal vs.
intrapersonal traits).

The eigenvalue plot from our exploratory factor analysis is provided in Figure B-2. The eigen-
value plot supports the idea of dimension reduction: our raw data have 11 dimensions but 5 factors
are enough to account for almost all of the variation. The eigenvalues suggest that we should retain
at most 5 factors. Our decision to use only three factors is based on the objective to reduce the
dimensionality of the data while still retaining interpretability. With three factors, the 11 traits
divide quite cleanly into cognitive ability plus two out of the widely used “Big Five” personality
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traits.5

In psychology research, the Big Five traits are often further divided into subtraits (facets) that
are measured with standard questionnaires (Corr and Matthews, 2020). While our data do not
come from such a standard questionnaire, most traits in our data correspond to a subtrait of one
or more Big Five traits. Sociability, activity, confidence, and leadership are subtraits associated
with extraversion. Deliberation, dutifulness, and achievement motivation are subtraits associated
with conscientiousness. Masculinity is not associated with Big Five traits in any common opera-
tionalization of the Five Factors Model.

The factor loadings from the common factor analysis are reported in Table B.2. We use an
oblique rotation where the factors are allowed to be correlated. In a two-factor model, the cog-
nitive and personality test scores load on distinct factors, as shown in Jokela et al. 2017. In
a three-factor model, the extraversion-related scores (sociability, activity, confidence, leadership)
load onto a separate factor and the conscientiousness-related scores (dutifulness and deliberation)
load onto a separate factor. The remaining two raw measures do not load strongly onto either
factor: Achievement aim loads onto the extraversion-related factor (despite being associated with
conscientiousness) but has the lowest loading within that factor and, at the same time, the third
highest loading on the conscientiousness-related factor. Our interpretation is that the FDF achieve-
ment aim measure combines both external and internal motivations for achievement. Masculinity
has a low factor loading in any of the factors and a high uniqueness score.6

Based on the close grouping of the subtraits (in terms of factor loadings) with their corre-
sponding Big Five domains, we proceed to refer to the two personality factors as extraversion and
conscientiousness. Because our measures do not correspond perfectly with any particular opera-
tionalization or a survey of the Big Five traits, this terminology is not exact. However, Jokela et al.
2017 show that using a separate survey to capture the Big Five traits in convenience sample, the
FDF measures are correlated with extraversion and conscientiousness in the expected directions.

For the main analysis, we construct variables from the three-factor model by estimating the
factor scores for each individual and normalizing the variables to have zero mean and unit standard
deviation.

2.2.2 Labor Market, Education and Demographics

The paper takes advantage of the detailed longitudinal register data on the full Finnish popu-
lation of individuals and firms compiled by the Statistics Finland from multiple sources. Plant,
firm, industry, local-level, and similar measures are computed from the full data, containing all
persons in Finland. We manually harmonize all occupation, education, industry, and geographical
classifications to be consistent over time.

5These traits are extraversion, conscientiousness, neuroticism, openness to experience, and agreeableness.
6Allowing for four factors essentially adds an extra factor for masculinity. To keep the analysis tractable, we

do not include masculinity as a separate factor in our analysis. In a separate paper (Izadi and Tuhkuri, 2021b), we
analyze masculinity in a more detail.
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The register data provide information on demographics, labor market status, earnings, occupa-
tion, industry, firm and establishment identifiers, and county of residence and birth, for all Finnish
residents 1987–2019.

Income data are obtained from the Finnish Tax Authority. The primary earnings measure is the
yearly labor earnings from the primary employment relationship. We measure ’prime-age’ earnings
as the average annual labor-market earnings during ages 35–38. We deflate all values to 2010 Euros
using the Statistics Finland CPI and drop the observations with zero prime-age earnings from the
earnings analyses (less than 1%).

The Register of Completed Education and Degrees contains exact information on the educational
degrees the individual has obtained, including both the level and field, and the date at which
the degree was granted. All degrees completed in Finland are generally recorded in these data.
When we use education just as a control variable, we include only education level and field fixed
effects. Otherwise, we map degrees to years of education according to their official length (e.g.,
a master’s degree equals 17 years of education). GPA at the 9th grade is measured from the
Secondary Education Application Register and high-school graders from the Finnish Matriculation
Examination Board Register.

2.3 Descriptive Evidence

We begin the analysis by relating three psychological factors (cognitive ability, extraversion, and
conscientiousness) and education to labor-market outcomes in the cross-section and demonstrate
their relationships to each other.

This section shows that cognitive ability and education are important in predicting labor market
success relative to extraversion and that conscientiousness has significant predictive power in the
labor market. We later contrast this finding by showing the opposite order of importance in
response to a labor market shock, where extraversion becomes the best predictor of adaptation.

In our measurement, we draw a distinction between interpersonal vs. intrapersonal traits. The
factor variable extraversion measures traits that affect relationships between people. The factor
variable conscientiousness measures traits that work primarily within the person. We also make a
distinction between a person’s type vs. skill. The main difference is that type is a set of attributes
fixed at the point of measurement, while skill is endogenous to the type. We view personality
traits and cognitive ability as a type and education as a skill. Due to this endogeneity, we focus
on regressions where education is excluded, but for a reference, also provide estimates where it is
included.

2.3.1 Cross-Correlations

Table 2.1 presents the cross-correlations between the main factor variables, prime-age earnings, and
the 9th grade GPA. The main observations are: (1) cognitive ability, education, and school GPA
are relatively closely correlated with each other (ρ > .5), (2) extraversion and conscientiousness
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have relatively low correlations with each other and with cognitive ability, education, and GPA
(ρ < .35), and (3) all traits positively correlate with earnings.

2.3.2 Cross-Sectional Evidence on Earnings

Table 2.2 presents the standard cross-sectional estimates of the predictive labor-market returns to
each trait. The cross-sectional estimates are from specification:

Yi = β × Traiti + γi + εi. (2.1)

The outcome is log prime-age earnings, and Trait is a vector of traits.7 The model controls for
birth-year fixed effects (γi). We present three versions: (1) the estimates for each factor variable
separately, (2) with all factor variables, and (3) with all factor variables and education. The first
four columns reveal in regression form the same cross-correlation pattern as in Table 2.1. One
SD increase in extraversion or conscientiousness is associated with about a 20% increase in prime-
age earnings. The same increase in cognitive ability is associated with a 35% increase in earnings.
Column 5 shows that once all three are included in the same regression, coefficients for extraversion
and conscientiousness are halved, but cognitive ability decreases little. When the years of education
are added in Column 6, the coefficient for conscientiousness and cognitive ability decrease, but
extraversion remains unchanged relative to Column 5. The connection between personality traits,
education, and earnings in the cross section is analyzed in Izadi and Tuhkuri (2021b).8

Figure 2-2 visualizes the conditional expectation function (CEF) for each factor. The outcome
is prime-age earnings. The visualization of the CEF groups the x-axis variable into equal-sized
bins, computes the mean earnings within each bin, and creates a scatterplot of these data points.
The visual evidence confirms that cognitive ability, extraversion, conscientiousness, and education
all positively predict prime-age earnings.

2.3.3 Cross-Sectional Evidence on Adaptive Behaviors

Table 2.3 presents the cross-sectional estimates focusing on a wider set of outcomes that measure
potentially adaptive behavior in the labor market. The main set of outcomes measure switching of
occupation, industry, firm, and educational status. We operationalize these measures as the total
count of switches between ages 28–38. We also provide an estimate for employment over time,
operationalized as a yearly indicator for being employed over ages 28–38.9 To preserve space, we
use a single specification that estimates the heterogeneous returns of all factors jointly.

As shown, individuals are employed on average 10 years out of the 11 year period and switch
occupation, industry, and establishment .5–1 times. The results show that conscientiousness is

7We measure ’prime-age’ earnings as the average annual labor-market earnings during ages 35–38. We deflate
all values to 2010 Euros using the Statistics Finland CPI and drop the observations with zero prime-age earnings
from the earnings analyzes (less than 1%).

8We find that specific traits are negatively associated with education but positively with earnings.
9Note that while we observe all our sample persons at the prime age, we do not observe all persons between ages

28–50: our labor-market data are available between 1987–2018 and the sample covers birth cohorts 1962–1979.
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positively associated with employment but negatively with switching: conscientious individuals
find a job and stick to it. This is contrasted by extraversion, which predicts frequent switching
but not particularly high employment. Lastly, high cognitive ability predicts both high cumulative
employment and frequent switching of occupation and firm. We will return to these outcomes in
the last section to show that the patterns are different during times of economic distress.

2.4 Mass-Layoff Evidence

This section analyzes how different dimensions of human capital—personality traits, cognitive
ability, and education—mediate how individuals adapt to a negative labor-demand shock at their
firm. The firm-level shock is a case study that compares stable versus unstable times for an
individual in the labor market. We look at both short and long-term adaptation.

To define and measure a negative firm-level shock, we focus on a mass-layoff event. Mass layoff
is an episode where a firm or an establishment simultaneously lays off a large share of its workers
(see, for example, Jacobson et al., 1993). We analyze the reduced-form effects of a firm-level shock,
and by doing so, depart from the standard focus on (endogenous) job loss. The main reason is
that our focus is on adaptation; selection into exit from the plant is in principle an essential part
of the mechanism. The unit of observation for measuring the mass layoff is the establishment; for
simplicity we refer to it as the firm.

Our main analysis explores how the returns to different dimensions of personality and skills
depend on whether or not the person was subject to the event. This is a heterogeneity-based
approach for analyzing how the effects of a mass-layoff event depend on the characteristics of the
individuals exposed to the event.

We define a treatment group as workers who experienced a mass layoff shock and had a strong
attachment to the labor market before the shock. We construct a counterfactual by matching
workers who experienced a mass layoff in a given year to a comparison group of workers who were
similar based on a rich set of characteristics but did not experience the shock. We compare these
matched workers—the treatment and the control group—using an event study type specification.
The event study shows whether the two groups followed similar trends leading up to the event and
identifies how their outcomes diverged after the mass layoff.

2.4.1 Setup

2.4.1.1 The Mass Layoff Event

We define the mass-layoff event by using the following criterion: The plant reduces its employment
by at least 30% between year t and t+ 1. This definition includes full closures. To reduce measure-
ment error, we require that no more than 50% of the exiting employees continue in the same new
plant after the event (we exclude “false events”). For full closures, we require that the firm does
not re-appear in the data. We use the term “mass layoff” to refer to both mass layoffs where the
plant continues its operations and full plant closures.
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2.4.1.2 The Treatment Group

The basis for the treatment group is the workers exposed to a mass layoff. We define them as a set
of workers that were working at a plant j in year t− 1 when the plant had a mass layoff between
year t and t + 1. The timing is defined this way to ensure that the sample of workers remaining
in the firm before the mass layoff is not excessively selected.10 In the figures, we we label t− 1 as
period zero, and thus the event happens between periods one and two.

The pool of potential treatment units is Finnish men born between 1962 and 1979 that have
military test records available. We consider event years 1995–2010.11 This period includes all
phases of the business cycle. Macroeconomic conditions are shown to have a large influence on
treatment effect estimates in mass-layoff settings (Davis and von Wachter, 2011; Schmieder et al.,
2018). We do not focus on business cycle variation, but our estimates can be viewed as long-term
averages concerning the state of the economy.

To construct the treatment group, we apply a set of sample restrictions. The idea is to focus on
workers that had a strong attachment to the labor market and a stable employment relationship
before the shock. These are workers that switch from a stable to an unstable labor-market situation.
To capture this idea, we focus on prime-age workers and require that the worker is at least 35 years
old in the year before the mass layoff t − 1, has been continuously employed from t − 6, and
continuously employed at the given firm from t− 4.

We restrict the sample to establishments with 5–2000 workers. For the mass-layoff events that
are not full closures, we require that the plant had at least 20 workers in year t − 1. We apply a
floor to the plant size because the concept of a mass layoff or plant closure requires at least a few
workers, for which the event was relatively unanticipated. Micro establishments are also excluded
since we aim to focus on workers that are paid employees rather than entrepreneurs or family
members. We apply a limit to the plant size because plants with over 2000 employees tend to be
outliers or multi-plant firms classified as single plants.

To restrict the influence of outlier observations, we exclude top and bottom 1% of labor-income
earners from the final sample and observations where the earnings are more than 3 times higher
than the base year earnings. We apply no industry or firm-type restrictions. We focus on the
first mass layoff for each individual that satisfies the data restrictions, and require no previous
mass-layoff events between t− 5 and t− 1.

2.4.1.3 The Matched Control Group

To construct a counterfactual for the treatment group, we use coarsened exact matching (CEM).
The pool of potential control units is all male workers with military records but with no mass layoff
event in a window from t − 5 to t + 8, the estimation window. We use the event time t − 1 to
measure the match variables.

10There is a trade-off: The closer we move to the event, the stronger the workers’ attachment to the firm. The
further we move from the event, the less likely the workers will have anticipated the event.

11Before 1995 our first cohort would be too young, and after 2010 our post-period would be too short.
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We perform the match in three steps: (1) We apply the treatment-group restrictions to the pool
of potential control units. (2) We match on exact characteristics: year, age, tenure, industry, and
firm size.1213 (3) We perform a caliper match based on pre-period earnings to select the closest
matches within the set of exact matches. In the case of a tie, we choose the control person with a
non-missing occupational code. We set the ratio of treatment to control units to 1:5.14 The match
is performed with replacement.

Focusing on the matched control group that never receives treatment reduces the problems
arising in estimating dynamic treatment effects when the comparison group consists of units treated
at different points in time (Sun and Abraham, 2021; Goodman-Bacon, 2021).

2.4.1.4 Descriptive Statistics

Table B.3 presents worker-level descriptive statistics, and Figure B-3 compares the distributions
of main outcomes for the treatment and the control groups in the first pre-period. The treatment
group has 18,005 individuals, the control group has 89,360 individuals. The treatment and control
groups are similar on a wide set of outcomes, although similarity in levels is not required in later
analysis.

Table B.4 collects plant-level information. The sample contains 3,639 treatment plants, and
31% of the events are full closures. The treatment firms’ typical employment reduction is 49%,
while the control group firms typically increase employment by 3.7%. The typical industries in
the sample are manufacturing of electronics, machine, paper, and wood; construction; wholesale
trade; and transportation. The typical occupations are machine operators; metal, machinery and
related trades workers; construction and related workers; science and engineering professionals and
associate professionals; and drivers and mobile-plant operators.

2.4.2 Estimates

2.4.2.1 Mass Layoffs’ Effects on All Workers

This section provides the baseline estimates for the effects of the mass layoff event on workers’
labor-market performance. We use three tools: raw means, event-study estimation, and pooled
difference-in-differences estimates.

The design is visualized in Figure B-4, which plots the raw means of employment and earn-
ings for the treatment and the matched control group over the event time. The treatment group
experiences a sharp decline in both outcomes right after the event. The control group displays
mean reversion when sample restrictions are lifted after the event. The figure underscores that

12Coarsened classes: year in years, age in 2-year bins, tenure in years until 7 and then 8-10, 11-20, 20-, industry
in harmonized sectors (7), firm size in 0–25, 26–50, 51–100, 101–250, 251–500, 501–1000, 1001–2000.

13The match on tenure is important: To be subject to a mass layoff or plant closure, the worker needs to be
employed. The longer the worker is employed in a given firm, the higher the likelihood of being subject to a mass
layoff or plant closure event. Compared to the full population, those subject to a mass layoff or plant closure are
positively selected in terms of employment history and income.

1499% of the treatment units have 5 matched control units that fulfill the criteria.
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being continuously employed is unlikely to be the correct counterfactual for the treatment group
(Krolikowski 2018).

To quantify the differences between the treatment and control groups, we estimate the following
event-study specification:

Yijt = αiy + γt +

8∑
t=−5

δt × Treati +Xijtθ + εijt. (2.2)

The main outcomes Yijt are earnings (relative to the base year) and employment (in general and
in the baseline firm j). The index t denotes the event-time, i the individual, j the establishment,
and y the event year. The specification includes fixed effects for the individual × event year (αiy),
and time relative to event (γt). The term Xijt denotes potential other time varying controls such
as age. To account for unobserved common shocks, we cluster standard errors at the establishment
level. We omit event time t − 1 as the reference category. The key identifying assumption is the
parallel trends of potential outcomes. Conditional on parallel trends of potential outcomes, the δt
estimate the causal effects of the shock on earnings and employment at a given time.

Figure 2-3 reports the δt estimates. Pre-trends are absent in the figure (by construction of
the matched control group in the case of employment). Immediately after the event, workers’
earnings decrease by 10% on average relative to the event year. The decrease persists for at least
the following eight years. Employment also decreases by 9% among the affected but regains about
half of that loss during the first five years after the event.

To combine the event-study coefficients into a single treatment effect estimate, we also estimate
a pooled difference-in-differences specification:

Yijt = αiy + δt (Treati × Postt) + γPostt +Xijtθ + εij , (2.3)

where Postt = 0 before the shock (t ∈ [−5, 0]) and Postt = 1 after the shock (t ∈ [2, 8]). Treati main
effect is absorbed by the individual × event year (αiy) fixed effects. We exclude the first period from
these estimations because treatment is defined at period zero, whereas the actual event happens
between periods one and two. The results for earnings and employment are reported in Table 2.4.
On average, earnings fall by 9.8% in the post-period relative to the event year as a consequence of
the event. Employment falls on average by 6.2%.

2.4.2.2 Mass Layoffs’ Effects Depending on Workers’ Characteristics

This section estimates the heterogeneous effects of different psychological traits on workers’ labor-
market performance, conditional on whether the workers were exposed to the mass layoff event. To
approach this goal, we use three tools: raw quantile means, heterogeneous effects in an event-study
framework, and pooled difference-in-differences. The main outcomes Yijt are earnings (relative to
the base year) and employment (in general). We focus on the earnings relative to the baseline
since it (1) captures the idea of adaptation and recovery, (2) allows to use zero-values, and (3) is
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intuitive to interpret in percentages.
To set the stage, we present the raw means in the top and bottom quartile (top vs. bottom 25%

within the mass-layoff sample) of each trait separately for the treatment and control groups. Figure
B-5 visualizes the results for the main outcomes: earnings and employment. The figure shows that
the immediate employment drop for each trait is smaller for the top quartile individuals than for the
bottom quartile individuals. College-educated individuals also suffer a much smaller employment
drop than non-college-educated individuals with a comparable magnitude. The differences between
the top and bottom groups are less clear in earnings due to pre-treatment level differences between
the groups. The raw means also do not consider the partial correlations of the factor variables
between each other. To address these issues and estimate the magnitudes of these differences, we
next estimate the differential effects of the shock in an event-study framework.

We augment Equation 2.2 by adding a triple-difference interaction term for each trait:

Yijt = αiy + γt +
∑
k

8∑
t=−5

δtk × Treati × Traitik +Xijtθ + εijt. (2.4)

The index t denotes the relative event-time, i the individual, j the firm, y the event year. All
lower-order (pairwise) interactions are included in Xijt. To account for the residual correlation
between the factors, we estimate each of the three traits—cognitive ability, extraversion and con-
scientiousness (indexed by k)—jointly in the same regression. Education is estimated in a separate
regression without including traits. We estimate traits separately from education because educa-
tion is potentially influenced directly by traits as shown in Izadi and Tuhkuri (2021b). To account
for unobserved common shocks, we cluster standard errors at the establishment level.

Figure 2-4 presents the results for earnings and employment. Each line shows the δt estimates
for the corresponding trait. For example, the green line in the first panel of Figure 2-4 shows
that in period three, extraverted individuals (one standard deviation above the sample mean) have
about 2 percentage points smaller earnings losses than individuals with average traits. In other
words, the negative effect of the mass layoff on earnings is about two percentage points smaller
for extraverted individuals, holding cognitive ability and conscientiousness fixed. Compared to
the baseline of 10%, this amounts to about a 20% reduction in the effect per standard deviation
of extraversion. For extraversion, this reduction extends to the end of the observation period.
In contrast, while individuals with high cognitive ability also experience a smaller initial hit on
earnings, they are caught up by the average individual by period eight. Finally, conditional on
extraversion and cognitive ability, conscientiousness does not predict adaptation to the shock. In
Figure 2-5, education behaves similarly to cognitive ability. It has a transitory moderating influence
on the magnitude of the earnings reduction, which then fades away in later periods. An additional
year of education is worth about one standard deviation of cognitive ability in terms of reducing
the short-term effect of mass layoff.

The right panels in Figures 2-4 and 2-5 present the δt coefficients for employment as the outcome.
The results are similar to earnings. Extraverted individuals experience a permanently smaller drop
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(up to two percentage points) in employment after the shock relative to the average individual,
whereas high cognitive ability and education predict more transitory reductions in the negative
effects of the shock on employment. Conscientiousness remains a weak predictor of adaptation
conditional on other traits. These results should be compared to the baseline estimate of the
impact of the shock on employment, which is initially about 9 percentage points. Taken together,
the evidence so far suggests that the better adaptation to the unexpected mass-layoff shock, which
is enjoyed by the extraverted, and to a lesser extent, the highly educated and those with high
cognitive ability, is associated with the employment margin.

The quantity of interest can be viewed as a triple differences estimate, where the third difference
comes from the variation in traits. We estimate the following specification, which provides a single
estimate for the trait-dependent differences in response to the shock:

Yijt = αiy +
∑
k

βk (Traitik × Treati × Postt) + γPostt +Xijtθ + εijt (2.5)

where Xijtθ further includes a full set of interaction terms between the Trait, Treat, and Post
indicators. The Traitik and Treati main effects are absorbed by the individual × event year fixed
effects (αiy). The triple-interaction terms correspond to a weighted average of the post-event
estimates in the previous figures. Table 2.5 presents the results for earnings. The first two columns
correspond to the specification used in Figure 2-4, where traits are estimated jointly, but education
is estimated separately. The coefficient for extraversion is 2%, as noted earlier. The coefficients
for cognitive ability and education are lower than in the first post-periods due to their declining
effect. Column 3 estimates education jointly with the psychological traits. In this specification,
the coefficients for cognitive ability and education have decreased relative to Columns 1 and 2,
indicating that they partly capture the same heterogeneity. Including education does not change
the coefficient for extraversion.

An important caveat in this analysis is the causal interpretation of the coefficients in Equation
2.4. Briefly, they do not have one. The arguably exogenous variation in our setting comes from
the unexpected mass layoffs in firms. That gives the baseline estimates in Section 2.4.2.1 a causal
interpretation. However, without additional assumptions, the coefficient of interest in Equation
2.4 is strictly descriptive. In particular, personality traits, cognitive ability, and education can
influence the individual’s response to the shock indirectly through selection on unobservables, such
as occupational choice and selective layoffs. Maybe extraverted individuals work in occupations
or industries with less competitive labor markets where re-employment is easier? Column 4 in
Table 2.5 includes controls for occupation and industry in period 0. The categorical dummies are
fully interacted with Treat and Post to allow the treatment effect to vary across occupations and
industries. Including these fixed effects slightly reduces the coefficient of extraversion, indicating
that a small part of the positive effect of extraversion may be driven by pre-treatment selection
into occupations and industries.

Table 2.6 displays the estimation results for employment, which closely follow the earnings
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estimates. We take this as suggestive evidence that the heterogeneous effects that we find for
psychological traits are primarily mediated by employment opportunities instead of changes in
wages. In the next section, we look at different behaviors which could explain the heterogeneous
effects.

2.4.2.3 Mass Layoffs’ Effects on Outcomes Related to Adaptive Behaviors

This section analyses the potential mechanisms that lead to different adaptive responses between
different kinds of individuals. To explore the potential mechanisms of adaptation—the channels
through which different psychological traits influence recovery and resilience—we look into an
extended set of outcomes. How do people change their labor-market behavior after an unexpected
labor-market shock? Why do extraverted individuals experience smaller drops in earnings and
employment?

We start by estimating the baseline Equation 2.2 for four new outcomes: plant exit, occupation
change, industry change, and re-education. Figure 2-6 presents the results. The first panel shows
the event-study coefficients for plant exit probability, or the “first stage,” of our baseline event study.
Individuals employed in the plant before the mass layoff are 50 percentage points more likely to exit
their plant in period two than the control group. However, as noted earlier, the dis-employment
effect of the event is only 9% in the short term. The vast majority of laid-off individuals find
re-employment during the same year somewhere—most individuals adapt to the shock by finding
new employment soon after.

The second panel shows the probability of changing occupations. Change is measured relative
to period zero. The treatment group has consistently about 9 percentage points higher rate of
occupational change relative to the treatment group. As a benchmark, the occupational change
rate in period two in the control group is about 23%. This shows that occupational change is an
important adaptive margin. However, industry change is even more typical. The effect of a mass
layoff on the probability of changing industry is almost 25 percentage points against a baseline
of 7% for the control group in period two. An important caveat is that the resolution of the
occupation and industry categories influences the baseline magnitudes: We have 45 occupation
categories and 136 industry categories in our sample. The final panel shows the effect of the shock
on the probability of re-education. We determine re-education as obtaining a new degree that
is either from a different field or more advanced than the individuals’ current degree. Over the
long term, the effect of the shock on the re-education rate is 2 percentage points. The baseline
re-education rate in the control group in the last period is 5.5%.

Overall, we have identified four potentially important margins of adaptation: job retentions
at the original establishment, industry change, occupation change, and re-education. Next, we
will analyze how different traits and education levels interact with these margins, and estimate
Equations 2.4 and 2.5 for this new set of outcomes.

We first focus on plant exit. The first panel in Figure 2-7 and Column 4 in Table 2.7 show the
estimates. The green line shows that even in the long term, extraverted individuals are less likely
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to exit their original plant than the average individual in our sample. However, the magnitude is
relatively small: while the baseline exit probability is 50 percentage points higher in the treatment
group, extraversion reduces this at most by two percentage points.

Why are the extraverted individuals more likely to survive the mass layoff and keep their job
at the firm? One possibility is that they are working in different occupations at the firm. Table
2.8 controls for occupation, education, and industry in the pooled triple-difference specification.
Column 4 shows that the differential plant exit rate decreases to less than one percentage point
with the controls included. At least half of the job retention advantage among the extraverted
appears to be explained by selection.

The story for cognitive ability is different (the blue line). High cognitive-ability individuals seem
to anticipate the layoff and are more likely to exit the plant before the layoff (mass layoff happens
between periods one and two). However, the estimate is small in magnitude and not statistically
significant. After the first period, there is no significant difference between the exit rates of high
cognitive ability individuals and the average.

Now we look into industry and occupation changes. The second and third panels in Figure 2-7
show that industry and occupation changes induced by the shock are about 2 percentage points
less common among the extraverted. That is, surprisingly, extraversion does not predict more
frequent re-allocation. Recall that in the cross-sectional estimates presented in Section 2.3 (Table
2.3) we found that extraverted individuals are more likely to work in multiple firms, occupations,
and industries during their careers. But the shock disproportionately induces the extraverted
individuals to adapt by seeking employment in the same type of occupations and industries as
before the layoff. This effect is partly also expected as they retain their job at the firm but the
occupation result is still robust to controlling for baseline occupation and industry in Table 2.7.
The patterns for cognitive ability and education (Figure 2-8) are similar in terms of industry and
occupation changes.

For re-education, both predictors of positive adaptation, extraversion and cognitive ability, pre-
dict lower re-education rates. Some of the effects may be driven by having less room for educational
upgrading because of higher baseline education rates among these individuals, and the effects are
marginally significant.

In summary, the traits that predict adaptation—especially extraversion—seem to help workers
find re-employment faster in a similar occupation and industry they worked in before. This result
is not entirely driven by higher job retention or selection into specific pre-shock careers. Faster
adaptation is associated with lower re-allocation in terms of industry, occupation, and education.

2.5 Conclusion

Labor markets are in constant change. These changes put people in situations that require resilience
and adaptation. This paper analyzes how individuals’ resilience to a labor-market shock varies by
their psychological profiles. We use mass layoffs at their workplaces as a case study. We use
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standardized personality test results from the Finnish military conscription to construct measures
of cognitive ability, extraversion, and conscientiousness. We find that extraversion is a powerful
predictor of recovery. Even in the long term, extraverts experience significantly smaller adverse
effects from this shock. Our results are driven by faster re-employment rather than wage growth
or changing industry and occupation after the shock. Extraverts are slightly more likely to retain
their employment at a mass-layoff establishment, but that is not the primary driver of our result.

Classic theoretical research in economics (Nelson and Phelps, 1966; Welch, 1970; Schultz, 1975)
emphasizes the role of human capital as the capacity to adapt, in contrast to its productive value at
work. We contrast the adaptive vs. productive value by comparing the value of personality traits
and skills in the cross-section vs. labor-market shock. In the cross-section, cognitive ability is
the best predictor of earnings, while conscientiousness and extraversion are approximately equally
important. In contrast, in a mass-layoff situation, extraversion is the best predictor of recovery.
Cognitive ability is still important, but conscientiousness does not predict better adaptation. These
observations demonstrate that the characteristics that predict adaptation are different from those
that predict labor-market success overall. The paper also contributes to the long-standing debate
on person vs. situation as determinants of individual behavior (see, for example, Ross and Nisbett,
1991): Person and situation together matter when estimating the economic benefits of individual
traits.

Recent research in economics analyzes the value of social skills in the labor market (Deming,
2017). We find that the value of extraversion appears to be pronounced in situations that re-
quire resilience and adaptation. This finding provides a new complementary interpretation for the
previously observed economic value of social skills in the labor market (Deming, 2017).

Identifying predictors of adaptation is a first step toward understanding the behaviors and
personal characteristics that make people resilient in the labor market. We showed that some salient
labor market behaviors, such as pre-shock career choices, are not the likely drivers. Likewise, we
showed that extraverts do not markedly differ in post-shock behaviors, such as changing occupations
and industries. Further identifying the behaviors that help the extraverts gain re-employment and
maintain higher earnings is a natural next step for future research. Recovering from a shock can
be related to many skills that are more prevalent among the extraverted. For example, navigating
job search and using personal and professional networks in employment search may be easier for
extraverted persons.

To the extent that adaptation and resilience are individual skills that can be learned or altered,
the findings of this paper could inform policies and research that target the learning of those skills.
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Figure 2-1: Factor Loadings.

Notes: Results from an exploratory factor analysis using three factors with oblique rotation. The numbers on the
left indicate the correlation of the test item with the latent factor. The numbers on the right show the correlations
between factors. For each test item, only the highest factor loading is shown. MR1 (MinRes solution) is labeled
Extraversion, MR2 is labeled Cognitive Ability, and MR3 is labeled Conscientiousness.
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Figure 2-2: Conditional Expectation Functions.

Notes: For the psychological measures, the x-axis is divided in equal-sized bins. Each point represents the mean
earnings in that bin in 2010 euros. Earnings are calculated as the sum of labor, and entrepreneurial income
averaged over age 35-38. The years of education are computed from the degrees’ official lengths (e.g., a high-school
degree is 12 years).
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Figure 2-3: Baseline Event-Study Estimates.

Notes: The figure shows the δt coefficients from the baseline event-study specification in Equation 2.2. The
treatment group consists of workers whose firms experience a mass layoff or closure in period 1. The control group
is constructed by matching to workers in firms that do not experience mass layoffs before period 1. Earnings are
measured by dividing total labor and entrepreneurial income with period 0 earnings. Employment is binary and
takes the value of 1 if the individual is employed during the last week of the year.

81



−0.01

0.00

0.01

0.02

0.03

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
Time relative to event

C
oe

ffi
ci

en
t

Earnings

−0.01

0.00

0.01

0.02

0.03

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
Time relative to event

C
oe

ffi
ci

en
t

Employment

Variable Conscientiousness Extraversion Cognitive ability

Figure 2-4: Heterogeneous Responses by Trait.

Notes: Each point is a δtk coefficient from Regression 2.4 for the indicated factor variable. All three factor
variables are estimated jointly in the same regression. The left panel is estimated using earnings as the outcome.
Earnings are measured by dividing total labor and entrepreneurial income with period 0 earnings. The right panel
uses employment as the outcome. Employment is binary and takes the value of 1 if the individual is employed
during the last week of the year.
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Figure 2-5: Heterogeneous Responses by Education.

Notes: Each point is a δt coefficient from Regression 2.4 where Years of Education is used in place of Traiti. Years
of Education is constructed by mapping degrees to their official length (e.g., a master’s degree equals 17 years of
education). The model is estimated without any of the factor variables. The left panel is estimated using earnings
as the outcome. Earnings are measured by dividing total labor and entrepreneurial income with period 0 earnings.
The right panel uses employment as the outcome. Employment is binary and takes the value of 1 if the individual
is employed during the last week of the year.
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Figure 2-6: Baseline Event-Study Estimates: Adaptive Behaviors.

Notes: The figure shows the δt coefficients from the baseline event-study specification in Equation 2.2. The
outcome used in the estimation is indicated in the panel name. All outcomes are binary and measured relative to
their period 0 value. Re-education takes the value of 1 if the degree does not match the period 0 degree. Industry
and occupation are measured only for the employed, which restricts the estimation sample to those employed in
the post-period. The treatment group consists of workers whose firms experience a mass layoff or closure in period
1. The control group is constructed by matching to workers in firms that do not experience mass layoffs before
period 1.
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Figure 2-7: Heterogeneous Responses by Trait: Adaptive Behaviors.

Notes: Each point is a δtk coefficient from Regression 2.4 for the indicated factor variable. All three factor
variables are estimated jointly in the same regression. The outcome used in the estimation is indicated in the panel
name. All outcomes are binary and measured relative to their period 0 value. Re-education takes the value of 1 if
the degree does not match the period 0 degree. Industry and occupation are measured only for the employed,
which restricts the estimation sample to those employed in the post-period.
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Figure 2-8: Heterogeneous Responses by Education: Adaptive Behaviors.

Notes: Each point is a δt coefficient from regression 2.4 where Years of Education is used in place of Traiti. Years
of Education is constructed by mapping degrees to their official length (e.g., a master’s degree equals 17 years of
education). The model is estimated without any of the factor variables. The outcome used in the estimation is
indicated in the panel name. All outcomes are binary and measured relative to their period 0 value. Re-education
takes the value of 1 if the degree does not match the period 0 degree. Industry and occupation are measured only
for the employed, which restricts the estimation sample to those employed in the post-period.
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Table 2.1: Cross-Correlations: Main Variables.

Earnings at 35−38
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0.12 0.1 0.17 0.24 0.18 1

0.26 0.32 0.64 0.61 1 0.18

0.25 0.28 0.51 1 0.61 0.24

0.35 0.23 1 0.51 0.64 0.17

0.42 1 0.23 0.28 0.32 0.1

1 0.42 0.35 0.25 0.26 0.12

−1

−0.5

0

0.5

1

Notes: Each number is a pairwise correlation coefficient with a person as the unit of observation. Psychological
variables and the school GPA are normalized to have a mean 0 and a standard deviation 1 within cohorts.
Earnings are recorded by the tax authorities and measured by averaging total labor and entrepreneurial income
earned at age 35–38. Years of Education is constructed by mapping degrees to their official length (e.g., a master’s
degree equals 17 years of education).
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Table 2.2: Cross-Sectional Evidence on Earnings.

Dependent Variable: log(Earnings)
Model: (1) (2) (3) (4) (5) (6)

Variables
Extraversion 0.242 0.101 0.096

(0.003) (0.004) (0.004)
Conscientiousness 0.201 0.089 0.023

(0.003) (0.004) (0.003)
Cognitive Ability 0.353 0.297 0.121

(0.003) (0.004) (0.004)
Years of Education 0.210 0.158

(0.001) (0.002)
Outcome mean 9.85 9.85 9.85 9.82 9.85 9.86

Fixed-effects
Birth Year (18) Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 476,195 476,195 476,195 500,123 476,195 474,110
R2 0.01606 0.01187 0.03129 0.05932 0.03653 0.06123
Within R2 0.01351 0.00931 0.02878 0.05641 0.03403 0.05876

Notes: Each column reports the OLS regressions results from Equation 2.1 with log earnings as the outcome. The
unit of observation is the person. Extraversion, conscientiousness, and cognitive ability are constructed using
exploratory factor analysis and normalized to have mean 0 and standard deviation 1 within cohorts. Years of
education is constructed by mapping the highest degree at age 35 to its official length (e.g., a high-school degree
equals 12 years of education). Earnings are measured by averaging total labor and entrepreneurial income earned
at age 35–38.. Heteroskedasticity-robust standard-errors are in parentheses.
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Table 2.3: Cross-Sectional Evidence on Adaptive Behaviors.

Dependent Variables: Total emp. Occupations Industry Establishments
Model: (1) (2) (3) (4)

Variables
Extraversion 0.056 0.105 0.070 0.122

(0.003) (0.004) (0.002) (0.002)
Cognitive Ability 0.313 0.143 0.012 0.061

(0.004) (0.004) (0.002) (0.002)
Conscientiousness 0.189 -0.016 -0.078 -0.101

(0.003) (0.004) (0.002) (0.002)
Outcome mean 9.89 2.17 1.56 2.10

Fixed-effects
Birth Year Yes Yes Yes Yes

Fit statistics
Cohorts available 18 4 18 18
Observations 479,820 101,742 479,820 479,820
R2 0.05448 0.03032 0.01975 0.02430
Within R2 0.04079 0.02950 0.00581 0.00897

Notes: Each column reports the OLS regressions results from Equation 2.1 with different outcomes. The unit of
observation is the person. Total employment is the number years employed at age 28–38. Occupations, Industries,
and Establishments represent the total number of different occupation/industry/establishment codes that the
individual has worked in at age 28–38. Extraversion, conscientiousness, and cognitive ability are constructed using
exploratory factor analysis and normalized to have mean zero and standard deviation 1 within cohorts.
Heteroskedasticity-robust standard-errors are in parentheses.
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Table 2.4: Baseline Difference-in-Differences Estimates.

Dependent Variables: Earnings Employment
Model: (1) (2)

Variables
Post -0.0129 -0.0258

(0.0022) (0.0015)
Post × Treat -0.0987 -0.0617

(0.0074) (0.0043)
Outcome mean 1 0.9700

Fixed-effects
Person×Event Year (82,405) Yes Yes
Age (26) Yes Yes

Fit statistics
Observations 1,349,627 1,349,627
R2 0.43976 0.29319
Within R2 0.00811 0.00818

Notes: Each column reports the OLS regression results from Equation 2.3 with different outcomes. The unit of
observation is the person-year. Earnings are measured by dividing total labor income with period 0 earnings.
Employment is binary and takes the value 1 if the individual is employed during the last week of the year. The
post-period indicator includes 7 years after the event and 5 years before the event. The event year is omitted from
the estimation sample. One-way (Establishment) standard-errors are in parentheses.
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Table 2.5: Triple-Difference Estimates: Earnings.

Dependent Variable: Earnings
Model: (1) (2) (3) (4)

Variables
Post × Treat × Extraversion 0.021 0.021 0.018

(0.004) (0.004) (0.004)
Post × Treat × Conscientiousness 0.0009 -0.0003 0.001

(0.004) (0.004) (0.004)
Post × Treat × Cognitive Ability 0.009 0.005 0.007

(0.005) (0.004) (0.005)
Post × Treat × Age -0.003 -0.003 -0.003 -0.002

(0.001) (0.001) (0.001) (0.001)
Post × Treat × Years of Education 0.008 0.004 0.003

(0.004) (0.004) (0.002)
Outcome mean 1 1 1 0.990

Fixed-effects
Event Year×Person Yes Yes Yes Yes
Post×Treat×Occupation (172) Yes
Post×Treat×Industry (482) Yes

Fit statistics
Event Year×Person 82,405 82,405 82,405 57,129
Observations 1,349,627 1,349,627 1,349,627 945,820
R2 0.44399 0.44532 0.44700 0.45732
Within R2 0.09100 0.09317 0.09591 0.03468

Notes: Each column reports the OLS regression results from Equation 2.5 with earnings as the outcome. The unit
of observation is the person-year. Earnings are measured by dividing total labor income with period 0 earnings.
Extraversion, conscientiousness, and cognitive ability are constructed using exploratory factor analysis and
normalized to have mean zero and standard deviation 1 within cohorts. The post-period indicator includes 7 years
after the event and 5 years before the event. The event year is omitted from the estimation sample. One-way
(Establishment) standard-errors are in parentheses.
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Table 2.6: Triple-Difference Estimates: Employment.

Dependent Variable: Employment
Model: (1) (2) (3) (4)

Variables
Post × Treat × Extraversion 0.013 0.013 0.010

(0.002) (0.002) (0.003)
Post × Treat × Conscientiousness 0.0005 -0.0008 0.0005

(0.002) (0.002) (0.003)
Post × Treat × Cognitive Ability 0.013 0.008 0.007

(0.003) (0.003) (0.003)
Post × Treat × Age -0.001 -0.001 -0.001 -0.0006

(0.0007) (0.0007) (0.0007) (0.0007)
Post × Treat × Years of Education 0.008 0.004 0.004

(0.002) (0.002) (0.002)
Outcome mean 0.970 0.970 0.970 0.960

Fixed-effects
Event Year×Person Yes Yes Yes Yes
Post×Treat×Occupation (172) Yes
Post×Treat×Industry (482) Yes

Fit statistics
Event Year×Person 82,405 82,405 82,405 57,129
Observations 1,349,627 1,349,627 1,349,627 945,820
R2 0.29543 0.29496 0.29586 0.30855
Within R2 0.05453 0.05391 0.05511 0.00670

Notes: Each column reports the OLS regression results from Equation 2.5 with employment as the outcome. The
unit of observation is the person-year. Employment is binary and takes the value 1 if the individual is employed
during the last week of the year. Extraversion, conscientiousness, and cognitive ability are constructed using
exploratory factor analysis and normalized to have mean zero and standard deviation 1 within cohorts. The
post-period indicator includes 7 years after the event and 5 years before the event. The event year is omitted from
the estimation sample. One-way (Establishment) standard-errors are in parentheses.
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Table 2.7: Triple-Difference Estimates: Adaptive Behaviors.

Dependent Variables: Occupation Industry Education Establishment Exit
Model: (1) (2) (3) (4)

Variables
Post × Treat × Extraversion -0.017 -0.012 -0.004 -0.016

(0.006) (0.005) (0.002) (0.005)
Post × Treat × Conscientiousness 0.009 -0.0001 0.001 0.006

(0.006) (0.005) (0.002) (0.005)
Post × Treat × Cognitive Ability -0.011 -0.008 -0.003 -0.002

(0.008) (0.009) (0.002) (0.008)
Post × Treat × Age -0.0005 0.004 0.0009 -0.0005

(0.002) (0.002) (0.0005) (0.001)
Outcome mean 0.290 0.130 0.030 0.220

Fixed-effects
Event Year×Person Yes Yes Yes Yes

Fit statistics
Event Year×Person 57,129 82,405 82,405 82,405
Observations 761,234 1,289,243 1,349,627 1,349,627
R2 0.50543 0.44616 0.41160 0.51031
Within R2 0.17526 0.11556 0.01644 0.26900

Notes: Each column reports the OLS regression results from Equation 2.5 with different outcomes. The unit of
observation is the person times year. All outcomes are binary and measured relative to their period 0 value.
Education takes value 1 if the degree does not match the period 0 degree. Industry and occupation are measured
only for the employed, which restricts the estimation sample to those who are employed in the post-period.
Extraversion, conscientiousness, and cognitive ability are constructed using exploratory factor analysis and
normalized to have mean zero and standard deviation 1 within cohorts. The post-period indicator includes 7 years
after the event and 5 years before the event. The event year is omitted from the estimation sample. One-way
(Establishment) standard-errors are in parentheses.
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Table 2.8: Triple-Difference Estimates: Adaptive Behaviors With Additional Controls.

Dependent Variables: Occupation Industry Education Establishment Exit
Model: (1) (2) (3) (4)

Variables
Post × Treat × Extraversion -0.013 -0.003 -0.0002 -0.005

(0.006) (0.006) (0.002) (0.005)
Post × Treat × Conscientiousness 0.011 -0.006 0.0002 0.0008

(0.005) (0.005) (0.003) (0.005)
Post × Treat × Cognitive Ability 0.004 -0.011 -0.003 -0.002

(0.007) (0.006) (0.003) (0.006)
Post × Treat × Age 0.0005 0.003 0.001 0.002

(0.002) (0.002) (0.0006) (0.002)
Post × Treat × Years of Education -0.005 0.0005 0.002 -0.006

(0.003) (0.004) (0.001) (0.003)
Outcome mean 0.290 0.130 0.030 0.210

Fixed-effects
Post×Treat×Occupation (172) Yes Yes Yes Yes
Post×Treat×Industry (482) Yes Yes Yes Yes
Event Year×Person (57,129) Yes Yes Yes Yes

Fit statistics
Observations 761,234 904,617 945,820 945,820
R2 0.52471 0.48735 0.45917 0.53177
Within R2 0.01026 0.00574 0.07437 0.01516

Notes: Each column reports the OLS regression results from Equation 2.5 with different outcomes. The unit of
observation is the person times year. All outcomes are binary and measured relative to their period 0 value.
Education takes value 1 if the degree does not match the period 0 degree. Industry and occupation are measured
only for the employed, which restricts the estimation sample to those who are employed in the post-period.
Extraversion, conscientiousness, and cognitive ability are constructed using exploratory factor analysis and
normalized to have mean zero and standard deviation 1 within cohorts. The post-period indicator includes 7 years
after the event and 5 years before the event. The event year is omitted from the estimation sample. One-way
(Establishment) standard-errors are in parentheses.
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Chapter 3

School vs. Action Oriented Traits in the
Labor Market

With Ramin Izadi

3.1 Introduction

Extensive evidence shows that noncognitive skills1 improve labor market success (Almlund et al.,
2011; Deming, 2017), but the channel is incompletely understood. Some studies show that noncog-
nitive skills affect labor-market performance indirectly through higher educational aptitude (Cunha
and Heckman, 2007), while other studies emphasize that noncognitive skills affect labor productiv-
ity directly at work (Deming, 2017).

How do different dimensions of personality predict school vs. labor-market performance? How
has the labor-market value of these traits changed over time? We answer these questions using
globally exceptional data that includes multidimensional personality and cognitive test scores,
education, and labor-market records for 79% of Finnish men born 1962–1979 (n = 489,252). The
personality and cognitive test data were collected by the Finnish Defence Forces during mandatory
military service.

This paper shows that some dimensions of noncognitive skills are productive at school and
also valued in the labor market, while other dimensions are counterproductive at school yet still
valued in the labor market. We further document that the labor-market returns to action-oriented
personality traits (traits that predict low school performance) have rapidly increased over the past
two decades. Conversely, the economic returns to school-oriented traits have declined sharply.

Consider the school versus the labor-market. Noncognitive skills related to conscientiousness
have been shown to predict school achievement (Almlund et al., 2011). At the same time, the

1Noncognitive skills are typically defined as all skills not predicted by cognitive test scores. In some contexts,
noncognitive skills specifically refer to socioemotional skills. We adopt the standard definition that noncognitive
skills refer to all potentially economically valuable traits that the cognitive tests do not measure. In this view, we
define some personality traits as noncognitive skills.
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common stereotypes of socially awkward ’nerds’ and outgoing ’jocks’ suggest an inverse relationship
between school achievement and particular dimensions of noncognitive skills.2 High achievers
in school may lack at least in some dimensions of economically valuable personality traits, and
conversely, low-achieving students may have some redeeming qualities that compensate in the
labor market for their lack of academic success. In short, this idea suggests a negative association
between academic performance and outward-oriented social skills.

We present four new descriptive facts. First, we document that one subset of personality traits
positively predicts school achievement, but another critical subset of personality traits negatively
predicts school achievement. These subsets follow the common stereotypes: men, who score highly
in activity-energy, sociability, and masculinity, tend to perform worse in standardized tests. We
label this component as action-oriented traits. The label also reflects the source of measurement:
The Finnish Defence Forces values these traits positively. In contrast, dutifulness, deliberation,
achievement striving, self-confidence, and leadership predict good school performance; we label
this component as school-oriented traits.

Second, the traits that predict low school achievement still predict labor-market success. One
standard deviation increase in action-oriented traits predicts a 5-log point increase in earnings at age
35. The school-oriented traits also strongly predict labor-market success. But the school-oriented
traits are not independently valued in the labor market: their predictive power on labor-market
performance becomes near zero after controlling for school achievement.

Third, we find that the labor-market returns to action-oriented traits that predict low school
performance have rapidly increased over the past 17 years, from 0 to 8 log points per standard
deviation. Men with high activity-energy, sociability, and masculinity measures (but with low
mathematics skills) experienced the highest earnings gains between 1997 and 2017. The returns to
school-oriented traits have declined from 13 to 7.5 log points.

Fourth, specialization of skills has increased over the past two decades: men are more likely to
have either high mathematics skills or action-oriented traits and are less likely to have both.

To understand the empirical results, we outline a model of multidimensional skill specialization.
Intuitively, the model highlights two paths to labor-market success: one through school-oriented
traits and formal skills, and one through action-oriented traits and informal skills. In the model,
the labor market rewards individuals for their formal skills gained through education and for their
informal skills, e.g., initiative, social skills, and charisma. Personality is a fixed endowment for
an individual, but skills are endogenous and require a time investment. At the investment stage,
individuals can allocate their time between study and activities that improve their informal skills,
such as social life. We model personality by two separate dimensions: traits that increase pro-
ductivity in informal-skill formation (action-oriented) and traits that make studying more efficient
(school-oriented). Heterogeneity in the initial endowment of traits generates a comparative advan-
tage in formal or informal skill accumulation. In equilibrium, this comparative advantage drives
individuals to specialize relatively more in the type of human capital where they have pre-existing

2Stereotype accuracy is one of the most replicable findings in social psychology (Jussim et al., 2016). Both
stereotypes we mention can have negative connotations when referring to a person.
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tendencies.
We interpret the findings using the model. First, we demonstrate that both the action-oriented

and school-oriented personality traits have a positive return in an earnings regression. But con-
trolling for standardized test scores, the return for action-oriented traits increases, and the return
for school-oriented traits becomes small. This pattern arises from the intransitivity of correla-
tions between action-oriented traits, test scores, and adult earnings. Our model rationalizes this
intransitivity: higher endowment in action-oriented traits increases investment in informal skills
at the expense of school success. Since test-score performance is endogenous, its inclusion inflates
the returns to action-oriented traits and deflates the returns to school-oriented traits. Our model
allows traits to directly affect earnings beyond their instrumental effects through informal and for-
mal skills (e.g., education). Looking through our model, the low returns to school-oriented traits
when test scores are included suggest that their effect would mostly be mediated by educational
achievement. We cannot similarly disentangle the direct effects of action-oriented traits from the
returns to informal skills because we cannot directly measure informal skills. Therefore, in our
empirical work, a single variable captures both the direct effect of action-oriented traits and the
indirect effects through informal skills.

Next, we explore the channels through which the returns are realized in the labor market by es-
timating a model where personality traits and test scores explain different response variables. The
traits that predict high school achievement (school-oriented traits) appear to affect labor-market
performance mainly through occupational sorting, and the traits that predict low school achieve-
ment (action-oriented traits) primarily through within-occupation effects and work experience. On
average, action-oriented individuals are not more likely to select into high-paying occupations. In-
stead, action-oriented individuals acquire less education and start their careers earlier but with
fewer unemployment spells. Specifically, they are less likely to select into high-paying professional
occupations, typically not available without higher education. But even with lower education, they
are more likely to end up in a managerial position. In contrast, individuals with high school-
oriented traits are more likely to select into high-paying professional occupations. They acquire
higher education, start their careers later, and spend less time in unemployment. Occupational
and educational sorting explains a large part of earnings variations for both types of individu-
als. But when including fixed effects for education and occupation, action-oriented traits become
a significantly larger predictor of earnings than mathematics. In total, we interpret this as evi-
dence that action-oriented traits improve earnings, mainly through experience, job performance,
and/or career progress. In contrast, personality that predicts higher educational attainment helps
individuals start their careers in higher-paying jobs but plays a smaller role afterward.

Finally, we document two novel time trends. First, the return to action-oriented traits has
increased markedly during our 17-year measurement period. The finding is consistent with earlier
studies on the returns to social skills (Deming, 2017) and non-cognitive skills (Edin et al., 2021).
But it also provides a new angle: We observe a similar rise to other action-oriented traits---activity
and masculinity. At the same time, the returns to traits that predict school-performance have
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declined. Second, specialization into two distinct types has become more common: more students
have either low mathematics and high action-oriented traits or high mathematics and low action-
oriented traits. In our model, these trends are consistent with a supply-side response, where the
increasing returns to informal skills reinforce the skill specialization.

This paper contributes to several distinct lines of research.
Multidimensional skills. Re-emerging literature highlights the importance of the multidimen-

sional nature of skills. The idea that skills are multidimensional is not new. For example, the
classic Roy (1951) model formalizes the idea that workers may differ in their types of skills (hunt-
ing vs. gathering), and that this affects the optimizing choices of workers selecting between bundles
of tasks. Gardner (1983) differentiates skills into specific ’modalities,’ imperfectly described by a
unidimensional skill.

An emerging line of economic research, both empirical and theoretical, focuses on the multi-
dimensional match between skills and tasks (Guvenen et al., 2020; Lise and Postel-Vinay, 2020;
Fredriksson et al., 2018; Lindenlaub, 2017; Groes et al., 2015; Gathmann and Schönberg, 2010).
These studies emphasize the potential for skill mismatch: a situation where worker’s bundle of
skills is not well-matched with the distribution of skill-requirements for the set of tasks.

This paper provides novel descriptive facts to advance this literature. It illustrates skill spe-
cialization in the supply side of multidimensional skills. We document that this specialization has
concrete implications on occupational sorting and earnings.

Noncognitive skills. A large literature analyzes the role of noncognitive skills in the labor market.
The evidence unambiguously demonstrates that a wide array of noncognitive skills—personality
traits, interpersonal skills, etc.—are important drivers of labor-market success (Heckman et al.
2006; Lindqvist and Vestman 2011; Weinberger 2014; Deming 2017; Jokela et al. 2017).3 The
research on noncognitive skills emphasizes two channels on how noncognitive skills may affect
labor-market performance: the direct channel, for example, social skills facilitating teamwork in
production (Deming 2017), and the indirect channel, for example, noncognitive skills fostering
cognitive skills and human-capital production (Cunha and Heckman 2007; Borghans et al. 2016).

We complement this literature by showing that the noncognitive skills associated with the
indirect channel are notably different from those associated with the direct channel. That is,
the traits that predict good school performance are different from those that predict good labor-
market performance (e.g. conscientiousness vs. extraversion). In particular, we show that social
skills—while important in the labor market, e.g., for teamwork (Deming, 2017)—are negatively
correlated with academic test-scores.

In this line of work, the most closely related research are Levine and Rubinstein (2017) who show
that the inverse ’combination of ’smart’ and ’illicit’ tendencies as youths’ predict entry into and
success in entrepreneurship, Papageorge et al. (2019) who argue that some childhood misbehavior
represents socio-emotional skills that are valued in the labor market, Lleras-Muney et al. (2020)

3Almlund et al. (2011) provide an excellent survey of the evidence on the predictive power of personality in the
labor market.
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who analyze the dual decision of investment in education and social capital, and Bursztyn et al.
(2019) who highlight the trade-off between social-image concerns and school effort.

Education. Our findings provide an explanation to the ’reading penalty paradox’ documented
by Altonji et al. (2016) and Sanders (2015). Frequently-used US data sets that include information
on test scores and earnings exhibit a negative association between reading scores and earnings once
the researchers control for mathematics test scores. This pattern also arises in our data. But it
goes away once we control for personality traits. The predictive returns to verbal skills are close to
zero with personality controls. These pieces of evidence suggest that the observed ’reading penalty’
emerges from omitted economically valuable noncognitive skills that are negatively correlated with
verbal skills.

Trends in returns to skills. Long-standing literature estimates the returns to skills over time
(Katz and Murphy 1992; Goldin and Katz 2008; Acemoglu and Autor 2011; Deming 2017; Edin et
al. 2021). We show that the returns to those skills that predict low school performance, sociability,
activity, and masculinity, have rapidly increased over the past 17 years in Finland. At the same
time, the returns to cognitive skills has been remarkably stable. In the supply side, we show that
the skill specialization, to school-oriented traits and formal skills and to action-oriented traits and
informal skills, has increased over the past 17 years.

3.2 Data

This project combines several data sources using unique person identifiers.4

Personality and Cognitive Skills Data for personality and cognitive skills are obtained from
the Finnish Defence Forces (FDF), which has tested all military conscripts since 1955. The available
data cover 79% of Finnish men born between 1962 and 1979 (n = 489,252).

The data provide detailed test scores for personality (8 dimensions) and cognitive skills (3
dimensions). The measured personality traits are: sociability, activity-energy, masculinity, du-
tifulness, deliberation, achievement motivation, leadership motivation, and self-confidence. The
measured cognitive skills are visuospatial, arithmetic, and verbal reasoning. The visuospatial test
is similar to Raven’s Progressive Matrices (Raven and Court, 1938).

The personality dimensions are based on the Minnesota Multiphasic Personality Inventory
(MMPI) which predates the Big Five model by several decades. That is why it includes a somewhat
different set of items compared to the Big Five inventory. However, two of the Big Five traits
are represented by their facets (subtraits). Dutifulness and deliberation are subtraits associated
with conscientiousness, whereas the subtraits sociability, activity-energy and self-confidence are
associated with extraversion. Masculinity is not measured in all standard personality inventories
but turns out to be an important predictor in our analysis.

Military conscription in Finland is universal and grants relatively few exceptions. Finnish men
4The data are described in more detail in Appendix C.1.
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are drafted in the year they turn 18 and most start their service at age 19 or 20. Military service
lasts for 6–12 months, and most conscripts do not continue service at the military. FDF uses
psychological tests to assess conscripts’ suitability for non-commissioned officer training.

Both personality and cognitive ability tests are typically taken in the second week of military
service in a 2-h paper-and-pencil format in standardized group-administered conditions. The per-
sonality test contains 218 statements with a response scale of yes/no. The cognitive test contains
120 multiple-choice questions. The test questionnaires have been unchanged for the timeline of the
study, and the scores are designed to be comparable across cohorts. Appendix C.1 includes a more
detailed description of the FDF data.

Education Data on education come from three sources.
The Register of Completed Education and Degrees contains exact information on the educational

degrees the individual has obtained, including both the level and field, and the date at which the
degree was granted. All degrees completed in Finland are generally recorded in these data.

The Secondary Education Application Register contains information on the 9th-grade transcript,
including the GPA. The data are produced as a side product of the centralized application system
for secondary education maintained by The Finnish National Board of Education (FNBE). While
the 9th-grade records are only partly from national standardized tests, the middle schools in Finland
are all public and have low quality variance. Attendance of the 9th grade is near-universal. These
data are only available for cohorts born 1975-1979.

Finnish Matriculation Examination Board Register (FMEB) contains test-score data by aca-
demic subject in the standardized national-level high-school exit examination, The Matriculation
Examination (ME). Independent reviewers grade the test in a double-blind manner, and within
the timeline of this study, the test scores directly correspond to ranks within a subtest and co-
hort. The students choose a minimum of four 6-hour tests in their first language, foreign language,
mathematics, and in the subjects of humanities and natural sciences. The first-language test is
mandatory. Language and mathematics tests have basic and advanced-level versions. When needed
for the analysis, we map the mathematics test scores into a single dimension by weighting the ad-
vanced and basic test scores using their predictive power on the military arithmetic test.5 As an
institutional background, secondary schooling in Finland has two tracks: academic and vocational.
Participation to the academic track increased from 35% to 47% between birth cohorts 1962–1979.
ME is the academic track’s exit exam. A similar standardized test does not exist for the voca-
tional track. ME test scores are partly used in university admissions (most university admissions,
however, were based on a separate admissions exam), but they do not play a meaningful indepen-
dent role in the labor market. The Finnish school system contains relatively few extracurricular
activities (such as sports teams) that could be used to measure non-school human capital, and the
participation or performance in these activities are generally not recorded.

5This procedure is described in more detail in AppendixC.1.
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Labor Market and Demographics The project uses detailed longitudinal register data on the
full Finnish population compiled by Statistics Finland from multiple sources.

The register data provide information on demographics, labor market status, earnings, occupa-
tion, industry, firm and establishment identifiers, county of residence and birth, and the identity
of parents and siblings, for all Finnish residents.

Income data are obtained from the Finnish Tax Authority. We measure ’prime-age’ earnings as
the average annual labor-market earnings during ages 35–38. We deflate all values to 2010 Euros
using the Statistics Finland CPI.

Main Estimation Sample Our main estimation sample consists of the intersection of individuals
with valid (1) military test scores, (2) high school exit exam records, and (3) positive prime age
earnings (over 99%). The sample size is approximately 158,000 containing about 80% of male high
school graduates born in 1962–1979. Potential selection issues are discussed in Appendix C.1.

For our main analysis, we use logarithmic earnings. Figure 3-1 shows their distribution in our
main sample. The long left tail typical for log earnings distributions can raise concerns about
outliers driving our OLS results. These concerns are addressed in section 3.4 and Appendix C.3.

3.3 Model

In this section, we develop a simple model of multidimensional skill specialization that provides
a structure for the relationships between personality, education, and labor-market performance.6

We focus on the distinction between the production of human capital and the productive activities
in the labor market. The personality traits are viewed as a fixed type and skills are viewed as
endogenous. For concreteness, the context can be thought as students in high school and the
labor-market.

At the center of the model, there are two production functions for two types of human capital,
formal skills (’education’, H) and informal skills (’social capital’, S):7

H(h;N, J) = a(N, J)× h (3.1)

S(s;N, J) = b(N, J)× s (3.2)

Formal skills H are produced by time investment h (’studying’) and informal skills S are produced
by time investment s (’socializing’). The productivities of human capital production, a and b,
depend on the endowment of personality traits (N for ’school-oriented’ and J for ’action-oriented’).

In making a decision, the students face a time-allocation constraint:

h+ s = T. (3.3)

6The model is related to Lleras-Muney et al. (2020).
7For simplicity, we consider two ’technologies of skill formation’ (Cunha and Heckman, 2007). The case for n

technologies is analogous.
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Time spent on studying is away from time spent on socializing. We normalize the time endowment
as T = 1.

The objective function is:

U(s;N, J) = H(1− s;N, J) + S(s;N, J) + V (s;N, J) (3.4)

The students value both types of human capital, H and S, but also derive direct utility (or dis-
utility) from studying and socializing, V , that depends on their endowment of traits.8 We further
assume that the direct utility function depends only on the relative allocation between h and s.9

Students choose how much time to spend on socializing (s) to maximize the objective function
under the constraint. With no strategic behavior or dynamics, the optimal time-allocation decision
between studying and socializing is a static individual optimization problem.10 The first-order
condition for socializing is:

∂V (s;N, J)

∂s
= a(N, J)− b(N, J) (3.5)

s∗(N, J) = gs(a(N, J)− b(N, J);N, J) (3.6)

where gs is the inverse function of ∂V (s,N, J)/∂s with respect to s. For an interior solution to
exist, Expression 3.5 must be positive. Intuitively, if at the optimal s∗, socializing is not only more
fun (∂V (s;N, J)/∂s > 0) but also more productive (b(N, J) > a(N, J)), there would be no reason
to study at all.

The theoretical analysis focuses on the decision to socialize, s; the analysis for the inverse
decision of studying, h = 1− s, is symmetric. We provide proofs in Appendix C.2.

This setup provides some flexibility by admitting at least three distinct interpretations. In the
classic view, students gain utility from formal skills H and informal skills S because there is a
return to different human-capital types in the labor market. Students also face a direct cost or
benefit from studying and socializing V that depends on their endowments. In this view, socializing
is an investment: students socialize not just because studying may be laborious but also because
socializing builds people-skills and networks rewarded in the labor market.

From a more modern perspective (see, for example, Lavecchia et al. 2016), students might not
be sufficiently forward-looking to consider their future earnings. However, the terms H and S can
be interpreted as social norms that guide their choices, for example, through parental pressure.

8If U reflects log utility, the objective function arises under the canonical CES preferences. At this point, to
keep the notation clear, we abstract from potential return multipliers for H and S in the objective function.

9Because time is spent between studying and socializing, V captures all direct costs/benefits of study-
ing/socializing. For example, action-oriented students could dislike studying but school-oriented students might
enjoy it.

10The model has an implied timing that corresponds to a typical path from adolescence to adulthood. Students
enter a schooling period with an initial personality endowment (N , J). They then decide how much time to spend
on socializing s. Their H and S are realized at the end of the schooling period. After the schooling period, they
enter the labor market and receive earnings Y .
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In this interpretation, the cost function V is the direct utility of socializing over and above the
social-norm component S.11

Finally, we could abstract entirely from the source of utility derived from either type of human
capital stock. Students simply enjoy the activity of spending time s with their friends. Performing
well in tests requires time to study (h), which may be uninteresting and incurs a cost −V . From
this perspective, V reflects the direct utility of time spent socializing, which may be different for
students with different personality endowments.

Skill Specialization The fundamental trade-off between time investments in this model leads to
skill specialization, where students with a comparative advantage in the action-oriented endowment
invest more time on socializing relative to students with a comparative advantage in the school-
oriented endowment. Taking a derivative of the first order condition in Equation 3.5 and solving
for ∂s∗(N, J)/∂J gives:

∂s∗(N, J)

∂J
= −

∂2V (.)

∂s2︸ ︷︷ ︸
< 0


−1 bJ(N, J) +

∂2V (.)

∂s∂J︸ ︷︷ ︸
marginal benefit of ∆J

− aJ(N, J)︸ ︷︷ ︸
marginal cost of ∆J

 > 0. (3.7)

The first term is the gradient in the marginal direct utility of socializing (or marginal cost of study-
ing). We assume the standard decreasing marginal utility. Hence, for socializing: ∂2V (.)

/
∂s2 < 0.

We also assume that the productivity of informal-skill accumulation b(N, J) is increasing in the
action-oriented trait-endowment J . This assumption is based on the idea that learning social skills,
creating networks, and improving their social hierarchy position is easier for students who already
have sociable and proactive personalities. Likewise, we assume that action-oriented students enjoy
a larger marginal utility of socialization s. Formally, ∂2V (.)

/
∂s∂J > 0. This reflects the idea

that the opportunity cost for studying is higher for action-oriented students who could be having
fun with their friends instead. Finally, we assume that productivity of studying, a(N, J), does not
depend on the action-oriented trait, so that aJ(N, J) = aJ(N) = 0. With these key assumptions,
the right-hand side of Equation 3.7 is positive, and an increase in the action-oriented endowment
leads to an increase in the time spent socializing.

Immediately following from these assumptions we also have:

∂H(1− s;N, J)

∂J
=
∂a(N)(1− s∗(N, J))

∂J
= −a(N)

∂s∗(N, J)

∂J
< 0. (3.8)

In other words, conditional on the school-oriented trait N , more action-oriented students have
worse test scores. It implies that comparative advantage determines the time-allocation decision.

Figure 3-2 simulates the model with a quadratic cost function and linear productivity functions.
Each line represents an isoquant where the optimal time allocation decision s∗ does not change.

11The cost of studying and the direct utility of socializing mirror each other, because students allocate time T
between the two.
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Along each line, as long as the comparative proportion of endowments does not change, the absolute
levels can vary substantially, still resulting in the same optimum allocation. For example, at the
bottom right-hand corner, investment in s is highest; these are students who are high in J but low
in N . At the upper left-hand corner are students high in N but low in J ; their investment in s is
lowest.

Returns to Personality The labor market rewards both types of human capital, H and S, and
also directly the endowments, N and J . Earnings are determined by:

Y = rHH(1− s;N, J) + rSS(s;N, J) + rNN + rJJ (3.9)

= rHa(N)(1− s∗(N, J)) + rSb(N, J)s∗(N, J) + rNN + rJJ (3.10)

where rH and rS are the returns to the respective dimensions of human capital and rN and rJ are
the direct returns to the respective traits.

The marginal returns to the action-oriented trait are:

∂Y

∂J
= rSb

J(J,N)s∗(N, J) + rJ︸ ︷︷ ︸
direct effect of ∆J

+ (rSb(J,N)− rHa(N))︸ ︷︷ ︸
net earnings change for ∆s

∂s∗(N, J)

∂J︸ ︷︷ ︸
∆s

≶ 0. (3.11)

The first term is the direct effect: the effect of the increase in the productivity of informal-skill
production and the direct return from the increase in the action-oriented trait. By assumption,
productivity b(J) is increasing in the action-oriented trait, so this term is positive. The second term
is the indirect effect: the change in earnings due to changes in the optimal time allocation s∗. As
shown earlier, an increase in the action-oriented trait leads to an increase in the time investment
(∆s). This reallocation results in a shift from formal skills to informal skills. However, at the
optimum, as shown in Expression 3.5, the productivity of informal skills must be lower than the
productivity of formal skills. Taken together, the indirect effect is negative.

Intuitively, students with a lower initial comparative advantage in socializing (low action-
oriented trait in relative terms) take a larger hit from investing more in s, because their comparative
advantage is in formal skills (or educational capital), from which they are substituting away by
increasing s. At the same time, ∂s∗(N, J)/∂J is smaller for students with a comparative advantage
in studying.

In total, the sign of Expression 3.11 is ambiguous. If the gains from the direct effect are larger
than the losses from the indirect effect, we should expect a positive return to the action-oriented
trait conditional on the school-oriented trait.
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3.4 Results

3.4.1 Personality and Academic Performance

This section establishes the empirical relationship between academic achievement and our person-
ality measures and uses the results to create a simple ’trait taxonomy’ for subsequent analysis. We
estimate:

Hit = P ′iβ + δt + εit (3.12)

where Hit is a test score measuring academic performance and Pi is a vector of personality traits
for person i in birth cohort t.

Table 3.1 shows the OLS regression results, where the eight personality traits are used as linear
predictors for the high-school test scores. Each test score and personality trait is normalized within
the analyzed sample. The first four columns represent different high-school subjects as outcome
variables. A clear pattern emerges from the partial correlations: sociability, activity-energy, and
masculinity consistently negatively predict academic test scores, while deliberation, dutifulness,
achievement-striving, and leadership motivation positively predict higher test scores.12 The relative
impact varies somewhat by subject, but confidence and achievement-striving are the strongest
positive predictors, whereas sociability is the strongest negative predictor, with the exception of
the verbal test, where all three negative traits have roughly equal importance. Overall, personality
traits explain 9–13% of the variation in high-school test scores.

The pattern holds for a wide set of educational outcomes. Columns 5-7 show that it holds for
9th grade GPA, selection into high school, and years of schooling. At every level, individuals with
high sociability, activity-energy, and masculinity place lower in the intensive margin (grades/test
scores) as well as in the extensive margin (selection into education).

Next, we use the dichotomy of positive and negative traits to reduce individual personality into
just two distinct dimensions: an index that predicts positive test-score performance and an index
that predicts negative test-score performance. For each individual, each index takes a value that is
the weighted average of the corresponding traits. Column 4 of Table 3.1 shows the weights from the
anchoring regression, where the overall test score average is used as the response variable. While
the choice of the response variable is somewhat arbitrary, our analysis is robust to using any specific
test score as the response variable.13 For the rest of the paper, based on their intuitive appeal,
we call the index of positive traits ’school-oriented’ and the inverse of the index of negative traits
’action-oriented’. Note that ’positive’ and ’negative’ are used only to describe their association with
educational outcomes. We do not imply that action-oriented traits in this context are negative in

12In a misspecified model, this pattern could arise incidentally in the presence of multicollinearity between per-
sonality traits. Table C-1 in Appendix C.3 shows a full cross-correlation table that demonstrates the same pattern
with pairwise correlations.

13An alternative weighting scheme is to use component scores from principal component analysis (separately
applied to negative/positive traits). The indices obtained in this manner have a 0.99 correlation with indices
obtained from our preferred anchoring method.
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any other sense.
Our model provides a framework to understand these results. In the model, some personality

traits make social activities more attractive at the expense of studying, and vice versa. This causes
students highly endowed on those traits to allocate their time differently, resulting in the inverse
bundling of those traits with school performance. The strength of the inverse relationship between
school test scores and personality traits depends on the joint distribution of personality traits
(N and J in our model) and the impact of personality on the utility of socializing (V ) and the
productivity of socializing and studying (functions a and b).

In subsequent analysis, we apply a similar anchoring procedure to compare the test scores of
the two different tracks of mathematics, basic and advanced. A single mathematics test score
for each individual is obtained by regressing the military mathematics test results (available for
everyone in the sample) on the test scores from the two high-school mathematics tracks and using
the coefficients to weight the test scores. Appendix C.1 outlines the details of this procedure.

3.4.1.1 Why not Use Factor Analysis and the Big Five Model?

The usual approach to dimension reduction with multidimensional data follows the principles of
Exploratory Factor Analysis (EFA). The idea is to group closely correlated variables into a single
variable---the latent factor. Jokela et al. (2017) and Izadi and Tuhkuri (2021a) conduct EFA using
the psychological traits in the Finnish Defence Force data. Izadi and Tuhkuri (2021a) show that
reducing the eight personality traits into two factors results in a very different grouping in com-
parison to the indices used in this paper. Specifically, in EFA, dutifulness and deliberation mostly
load onto one factor, and sociability, activity-energy, leadership motivation, and self-confidence
load onto the other.14 This division is broadly consistent with the Big Five model of personality.
In the literature, each of the Big Five domains can be further divided into ’facets’, or subgroups of
traits. Deliberation and dutifulness are facets associated with conscientiousness whereas, sociabil-
ity, activity-Energy and self-Confidence are facets associated with extraversion.

Importantly, the patterns we find in this paper do not emerge by replacing the school-oriented
and action-oriented index by the two factors found with EFA. The reason is that, for example, the
factor associated with extraversion assigns positive loadings to both, traits that predict academic
success (self-confidence, leadership motivation, achievement motivations), and traits that predict
bad academic performance (sociability and activity-energy). In other words, the top level Big Five
categorization is too coarse and does not capture the nuanced effects of individual facets/traits
adequately for our purpose. The inadequacy of the Big Five domains in predicting behaviors is not
itself a new finding (Paunonen and Ashton, 2001; Vainik et al., 2019), but it warrants a method
of dimension reduction that is specifically tailored for the behavior that we study: educational
attainment. With this in mind, we purposefully group the traits based on their relation to edu-
cational attainment, even when they belong to different Big Five domains. The indices that arise
from this exercise should not be viewed as factors since they are not constructed based on the

14Achievement motivation loads onto both but masculinity does not load strongly onto either.

106



cross-correlation of individual items with each other, as in factor analysis, but rather on their
correlation with a common outcome: educational attainment. For example, masculinity (which
is a non-standard item in personality questionnaires), is not strongly correlated with any other
trait, but is included in our action-oriented index as a strong predictor of bad school performance.
As such, our composite indices are most closely related to the economic concept of ’types’, which
relate parameters directly to behaviors. This is also reflected in our model. Our approach is in the
spirit of recent discussions in personality psychology that emphasize the importance of the narrower
facets over the broader domains to explain the causal mechanisms of personality on outcomes (see
Mõttus 2016).

3.4.2 Personality and Labor-Market Performance

We estimate an earnings regression where the logarithmic prime-age earnings (Y ) are regressed on
the intensity of action-oriented (J) and school-oriented (N) traits, and in some specifications also
on IQ and high-school test scores (H):

Yit = β1Ni + β2Ji +H ′iβ + δt + εit (3.13)

where i indexes individuals and t indexes birth cohorts. The construction of the school-oriented
and action-oriented trait-indices is described in the previous section. The test-score vector H can
include test scores from mathematics, verbal, and elective subjects. Birth-cohort fixed effects δt
are always included to facilitate pooled cross-sectional analysis. Earnings are calculated from the
tax register as the sum of inflation-adjusted labor and entrepreneurial income averaged over age
35–38. An age interval is used to reduce measurement error and eliminate zeroes. The upper bound
is chosen so that tax records exist for the last cohort (1979) in the last year of our main sample
(2017).

Our main analysis sample includes male high-school graduates born in 1962–1979 for whom
we have military test records. In the baseline estimation, all predictors are normalized to have
zero mean and unit standard deviation within birth cohorts. High-school test scores are from a
nationwide high-school exit exam taken around age 18. The military test is standardized also across
cohorts and completed shortly after high school during basic training. All tests are graded in a
double-blind procedure.

Table 3.2 presents the estimates of the β coefficients at different stages of saturation.15 Col-
umn 1 shows that action-oriented and school-oriented traits have independent predictive power on
earnings. The standardized coefficients of both measures are statistically significant and large in
magnitude. The action-oriented trait has a lower earnings premium at 5.3 log points per standard
deviation increase in the trait, while the premium for the school-oriented trait is almost twice as

15In Appendix C.3, Table C.2 shows the results when the school-oriented and action-oriented indices are replaced
with the original personality measures. Table C.3 shows that the observed patterns are robust to using levels of
earnings. Table C.4 shows that the results are not sensitive to truncating the long left tail in the log earnings
distribution.
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large, 9.6 log points.
Column 2 shows the coefficient for high-school mathematics score without controlling for traits.

The earnings premium for mathematics is 16.4 log points per one standard deviation increase in the
test score. Column 3 estimates the returns to the action-oriented trait, school-oriented trait, and
mathematics in the same regression. Compared to column 1, the action-oriented trait’s coefficient is
almost double and, the school-oriented trait’s coefficient is less than half. In contrast, the coefficient
for mathematics barely moves.

Column 4 displays the estimates with additional high-school test score measures and IQ. The
results reinforce the pattern observed in Column 3: The action-oriented trait coefficient further
increases, and the coefficients for the school-oriented trait and mathematics decrease. The results
imply that conditional on a comprehensive battery of standardized measurements around age 18,
men who rank one standard deviation above the mean in the action-oriented trait earn over 11 log
points more relative to the mean ranked men. This is comparable to men who score one standard
deviation higher in the mathematics test and earn a 13 log point earnings premium. In this
specification, only the test scores for elective subjects hold any non-negligible predictive power over
mathematics scores and the action-oriented trait. For simplicity, in further analysis, we compare
results from specifications 1 and 3.

In view of our model, estimates from Column 1 correspond to the marginal returns of the
endowments (Expression 3.11). Conditional on the school-oriented trait, the returns to the action-
oriented trait comprises of two opposite effects: the positive direct effect of having higher informal
skills and the negative indirect effect due to decreased study effort. The positive sign of the action-
oriented trait implies that the direct effect, on average, dominates the indirect effect. The results
are also consistent with the prediction that the marginal returns to the school-oriented trait are
always positive.

Empirically, the behavior of the action-oriented and school-oriented coefficients is best under-
stood in the light of the results from Section 3.4.1. If academic performance is rewarded in the
labor market, the school-oriented trait should have a positive premium in a regression without test
score controls, because school-orientation is positively correlated with test-score performance. Ad-
ditionally, school-oriented traits could improve earnings more directly if, for example, they foster
noncognitive skills that are not particularly useful in studying but still improve job performance
in some tasks. We do not find that the school-oriented trait is independently valued in the labor
market, as evidenced by the small coefficient in the baseline specification. This is in contrast with
studies that look at the correlation of personality traits with earnings without taking into account
school performance (Almlund et al., 2011).

Our model abstracts from unobserved heterogeneity in students’ preferences. However, an un-
observed component is necessary to make sense of estimating traits and test scores in the same
regression---otherwise there would be no variation in test scores conditional on traits. If the unob-
served tastes are uncorrelated with εi (conditional on N and J), then the coefficient of mathematics
corresponds to the returns rH in our model. The coefficient of J , on the other hand, could be in-
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terpreted as the direct effect in Expression 3.11. The indirect effect is zero, because controlling for
test scores holds socializing constant (∂s∗(N, J)/∂J = 0).

Note that while there is a mechanical aspect to the shrinking of the school-oriented trait due to
its definition, is not mechanically driven to zero if there were to exist a direct channel of influence
(rN > 0). Additionally, IQ behaves in a very similar way to the school-oriented trait in the
regressions. One interpretation is that the labor market rewards IQ and school-orientation because
it enables success in tasks similar to test performance.

The two different estimates for the action-oriented trait can be understood in terms of timing.
The estimate in Column 1 represents the effect of having a different endowment at the beginning of
schooling. The estimate in Column 3, on the other hand, represents what the returns to informal
skills would be if informal skills could be altered independently of educational capital, for example,
after already completing education.

3.4.2.1 Returns to Skills within Occupations and Education

Why is the worse predictor of school performance such a strong predictor of earnings? In this
section, we discuss the potential mechanisms that give rise to these premiums. We analyze selec-
tion into different education paths and occupations, and experience, career advancement, and job
performance within occupations.

Table 3.3 presents results from the baseline regression (3.13) where fixed effects are progressively
added for the level of education, occupation, and firm.16 In column 2, the inclusion of occupation
and education fixed effects shrinks the coefficient of school-oriented from 0.096 to 0.013, over an
85% decrease. Conversely, the coefficient of the action-oriented trait is almost unchanged from 0.53
to 0.51. This suggests that a large part of the premium for the personality that predicts school
performance arises from sorting into profitable education paths and higher-paying occupations. In
contrast, the premium for the action-oriented trait is less affected by sorting.

Are action-oriented men able to sort into higher-paying firms within the same occupation?
Column 6 adds a firm fixed effect in addition to occupation and education fixed effects. This
regression already explains 58% of the variation in adult earnings. While reducing the action-
oriented trait’s coefficient, its premium is still economically significant and almost twice as large
as the coefficient for mathematics. The results imply that action-oriented (one standard deviation
above the mean) employees earn 3.5 log points more relative to their colleagues with the same
occupational and educational background even within the same firm.

Two caveats relate to these regressions. First, due to selection, labor market outcomes such as
firm, education, and occupation are fundamentally ’bad controls’ in an earnings regression. For
example, Column 6 implies a comparison between men with average action-oriented trait and men
with a high action-oriented trait, who are highly educated and working in a high paying occupation.
There are likely to be unobservable reasons why these two different types of men would end up in a

16Some of these variables are included only for a subset of cohorts. This is reflected in the sample size of the
regressions. The resolution of these variables consists of 66 categories for ’level × field of education’ (’master’s in
humanities’) and 80 harmonized occupational categories. The variables are recorded at the age of 35.
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similar job and education. If the same unobservables influence earnings, it would bias the estimate
for the returns to the action-oriented trait even if the action-oriented trait was a randomly assigned
endowment. However, we find it warranted to draw attention to these suggestive results.

Second, the resolution of the fixed-effect variables matters for the size of the coefficients. Com-
paring within ever smaller groups almost necessarily decreases the coefficients by accounting for
unobservable dissimilarities across larger groups. For this reason, we focus the attention to the
relative magnitudes between the action-oriented and the school-oriented traits.

In summary, educational and occupational sorting appear to play an important role in the
channel through which personality and academic achievement influence earnings. However, while
still considerable, their role appears to be less important for determining the returns to the ’action-
oriented’ trait.

3.4.2.2 Occupational Sorting

In this section, we look at occupational sorting in more detail. For the analysis, we estimate
Equation 3.13 with different response variables. We present results with and without mathematics
included. Table 3.5 presents the results when mathematics is included. Column 8 shows that
mathematics score and the action-oriented trait have the opposite impact on years of education.
A one standard deviation increase in the mathematics scores predicts a 0.9 increase in years of
schooling. Conversely, a one standard deviation increase in the action-oriented traits predicts a
-0.3 decrease in years of schooling.

Consistent with higher educational attainment, high mathematics scorers work in professional
occupations. Columns 1-6 of Table 3.5 use occupational indicators as the response variable. One
standard deviation increase in the mathematics test score predicts a 13 percentage point increase
in the probability of working in a professional occupation at age 35. Conversely, a similar increase
in the action-oriented trait predicts a 6 percentage point decrease in the probability of working in
a professional occupation.17 On the other hand, a one standard deviation increases in either the
mathematics test score or the action-oriented trait increase the probability of being a manager by
2 percentage points or 20%, taking into account the 10% baseline fraction of managers.18

Finally, Column 7 uses the average earnings in the individual’s occupation as the response
variable. The results show that a one standard deviation increase in mathematics test scores is
associated with being employed in an occupation with 12 log points higher earnings. Higher action-
oriented traits do not predict working in a high paying occupation. In other words, despite earning
more themselves, action-oriented men do not work in particularly high-paying occupations. This is
consistent with the results from occupational sorting (Columns 1-6). Unlike the mathematics score,
the action-oriented trait shows no clear pattern predicting sorting away from low-skill occupations.

How do men spend their years between high school graduation and age 38? The response
17Relative to the baseline of 42%, these numbers correspond to a 31% increase and a 14% decrease in the likelihood

of working in a high-level professional occupation.
18Our definition of managers excludes small-business owners who perform employee-type work in the firm, such

as, owners of small trucking firms.

110



variables in Table 3.6 are cumulative years spent in the given activity from age 18 to 38. Columns
in Table 3.6 represent the exhaustive and mutually exclusive list of principal activities recorded
by Statistics Finland yearly for each person. By construction, each row sums to zero. The results
indicate that a mathematics test score one standard deviation above the mean is associated with
0.43 years of study, and 0.46 years less nonemployment. Conversely, a one standard deviation
increase in the action-oriented trait is associated with 0.48 fewer years of studying, 0.66 more years
of work experience, and 0.15 fewer years of nonemployment relative to the average individual.
In other words, for high mathematics men, the time spent studying is fully offset by reduced
nonemployment instead of reduced work experience, whereas for the action-oriented men, the offset
for the increase in work experience comes from both less time in nonemployment and less studying.

In summary, men with a personality that predicts low school performance start their careers
earlier, accumulate more work experience by avoiding nonemployment and skipping education, and
are more likely to end up in managerial positions relative to their more average peers. They enjoy
an earnings premium even without placing in particularly high-paying occupations. Conversely,
school achievers manage to educate themselves without compromising work experience. Relative
to the average high school graduate, they are more likely to be employed in high-paying professional
and managerial occupations. Together, we interpret this as suggestive evidence that action-oriented
traits help workers by improving the gradient of their career progress. In contrast, school-oriented
traits and mathematics ability help workers to start higher up on the ladder.

3.4.3 Time Trends in Skill Premiums and Skill Specialization

In the cross-sectional analysis, we show that both the school-oriented and action-oriented traits
have considerable earnings premiums. Figure 3-3 shows how these premiums have changed over
time by estimating Equation 3.13 for each birth cohort separately (omitting the cohort fixed effect).
The results show a striking reversal in the magnitude of the premiums over the 16-year period.
The premium for the action-oriented trait has increased from virtually zero to almost 9 percentage
points per standard deviation. The school-oriented trait has decreased from 0.13 to 0.8 over the
same period. Appendix C.3 Figure C-2 shows the corresponding figure with mathematics included
in the regression.

Our result is consistent with Deming (2017) who finds an increase in the returns to a proxy
of sociability between the NLSY79 and NLSY97 cohorts and with Edin et al. (2021) who find an
increase in the returns to noncognitive skills in Sweden. However, we show that noncognitive skills
are inadequately described by a single dimension, as demonstrated by the opposite trends in the
returns to the action-oriented and school-oriented traits. Furthermore, the action-oriented trait
appears to measure more than just teamwork-based skills as in Deming (2017). We observe that
the increasing trend for the action-oriented trait returns is driven by all three of its components,
sociability, activity, and masculinity, not only sociability.19

Deming (2017) offers a demand-side explanation of the growing importance of social skills:
19Results are available by request.
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changing job requirements increase the demand for social skills. Deming shows how the equilibrium
employment shares have changed to favor socially intensive jobs at the expense of mathematics-
intensive jobs. In the same spirit, but on the supply side, we use tercile cutoffs within cohorts to
group men into four bundles: ’school-specialized’ (high mathematics, low action-oriented), ’action-
specialized’ (high action-oriented, low math), both high (high math, high action-oriented) and both
low (low math, low action-oriented).

Skill specialization implies inverse bundling of action-oriented personality traits and mathe-
matics skills; we should observe relatively fewer men who rank high in both. Figure 3-4 shows the
evolution of the relative shares of each bundle over time. Each cohort is divided into mutually
exclusive groups (bundles) along the tercile cutoffs in their mathematics score and action-oriented
trait. Each line represents the evolution of the size of the bundle. Figure 3-4 shows clearly that
skill specialization has increased over time. The largest divergence happens in the latter half of the
period (individuals for which labor-market earnings are measured after 2005). Before that, the rel-
ative proportions of the bundles are roughly equal. In the last cohort, there are 5 percentage points
more inverse bundles (action-specialized and school-specialized) relative to the ’pooling’ bundles.
From the baseline of 11% share each, this corresponds to 10% increase in the inverse bundles and
a 10% decrease in the pooling bundles.

What is driving the increasing separation of school performance and action-oriented traits?
If specialization is an equilibrating reaction from the supply side to the increased demand for
social skills in the labor market, all students should increase their informal-skill investment. How-
ever, students with higher marginal benefits should do so relatively more. In our model, if the
marginal cost of studying is increasing in the comparative advantage to the action-oriented trait,
we should see the largest time-reallocation towards informal skills for those who already have a
comparative advantage in action-oriented traits. Likewise, earnings gains should be largest for
’action-specialized’ and smallest for ’school-specialized.’ Earnings gains for the separating bundles
should fall somewhere in between.

Figure 3-5 shows the evolution of earnings for each group relative to the cohort born in 1963.20

Changes in earnings have been uneven across the bundles. Those with high ’action-oriented’
traits and low mathematics skills (’action-specialized’) had a 20% increase earnings. The earn-
ings of ’school-specialized’ improved by 10% in the same period. The changes in earnings of high-
math/high-action-oriented individuals and low-math/low-action-oriented individuals place between
the inverse bundles.

In summary, our results are consistent with a supply-side response to the increased returns of
social skills. Simultaneously, we emphasize that while the novel descriptive trends are robust, a
full explanation for the trends requires further research.

20We omit the 1962 cohort because it has substantially fewer observations.
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3.4.4 The Reading Penalty

This section relates our results to the ’reading penalty’ feature found in several US longitudinal
data sets. Sanders (2015) and Altonji et al. (2016) show that in a wage regression that includes
both mathematics and verbal test scores as regressors, the verbal score has a negative coefficient.
Sanders (2015) demonstrates that this is a robust feature of five commonly used US longitudinal
data sets.21 That study controls for occupational and educational sorting and crude measures of
personality but still finds a negative partial correlation between the verbal test scores and wages.

Column 1 of Table 3.7 shows the results of estimating Equation 3.13 in our data with only
high-school test scores as regressors. We also find a small negative coefficient of -0.6 log points for
the verbal test. Similarly, controlling for education and occupation in Columns 2 and 3 only serve
to reduce the math and electives coefficients, but not the one for verbal scores. We also conclude
that differential occupational sorting is not the source of the reading penalty.

Column 4 adds personality and IQ controls to the regression. In this specification, verbal scores
have a slightly positive coefficient of 0.5 log points. While not conclusive, the evidence supports the
hypothesis that inverse bundling of personality and verbal skills contributes to the observed reading
penalty, and that the returns to verbal skills in the labor market are low. In view of our framework,
action-oriented students invest less in verbal skills. If the returns to verbal skills are particularly
low, the only ones investing in them are students who have a high comparative advantage in the
school-oriented trait.22

3.5 Conclusion

This paper analyzes how do different dimensions of personality predict school vs. labor-market
performance, and how the labor-market value of these traits has changed over time. It uses data
that includes multidimensional personality and cognitive ability measures, education, and labor-
market records for 79% of Finnish men.

We demonstrate that to understand the role of noncognitive skills in the labor market it is
essential to consider the multidimensional nature of skills. The key reason is that different dimen-
sions of noncognitive skills appear to have opposite effects in human capital production relative to
the labor market. At its core, the paper considers the distinction between the school versus the
labor-market. We find that high achievers in school lack, on average, at least in some dimensions
of economically valuable personality traits. Conversely, low-achieving students tend to have some
redeeming qualities that compensate in the labor market for their lack of academic success.

We formalize this idea using a model of multidimensional skill specialization. Variation in initial
personality endowments generates differences in comparative advantage that leads to specialization
in ’school-orientation’ and ’action-orientation.’ We explore the empirical implications of this model

21NLSY79, NLSY97, NELS88, ELS88 and Baccalaureate and Beyond (Sanders, 2015).
22In an extension to our framework, productivity for mathematics and verbal skills could depend on different

kinds of traits which we measure imperfectly.
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on educational and occupational sorting and careers. Using the model to structure our analysis,
we provide four new empirical facts.

First, a particular subset of personality traits predicts high educational achievement, but an-
other critical subset of personality traits predicts low achievement. This pattern follows the common
stereotypes: men, who score high in sociability, activity-energy, and masculinity, tend to perform
worse in standardized school tests. Achievement striving, dutifulness, and deliberation predict good
school performance.

Second, the traits that predict low school achievement still predict labor market success. Condi-
tional on test scores, one standard deviation increase in these traits predicts a 10 log point increase
in earnings at age 35. The corresponding returns to mathematics in the same regression is 16 log
points. In contrast, the traits that predict higher school achievement are not independently valued
in the labor market.

Third, the economic returns to traits that predict low school performance have rapidly increased
over the past two decades. Men with high sociability, activity-energy, and masculinity, but with
low math skills, experienced the highest earnings gains. Returns to traits that predict high school
achievement have declined, and cognitive skills returns have been stable.

Fourth, skill specialization has increased over the past two decades: men have become more
likely to possess either good formal or informal skills and are less likely to have both.
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Figure 3-1: Distribution of Log Earnings.

Notes: The histogram shows the distribution of log earnings in the main sample of male high school graduates with
military test scores. In the sample, n = 158,000, mean = 10.5, SD = 0.72.
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Figure 3-2: Comparative Advantage.

Notes: Each line represents an isoquant in a plane where J and N are in the x and y axis and s∗(N, J) is in the z
axis. Darker shades indicate higher values of z. Functional form choices are a(N, J) = N , b(N, J) = J ,
C(1− s,N, J) = (J + (1− s))2.
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Figure 3-3: Time Trends in Returns to Traits.

Notes: Each point in the figure corresponds to a regression coefficient from estimating Equation 3.13 separately for
each cohort, with log earnings as the outcome and person as the unit of observation. The right-hand-side variables
include only the action-oriented and school-oriented traits. The action-oriented trait is a composite of Sociability,
Activity, and Masculinity. The school-oriented trait is a composite of Deliberation, Dutifulness, Achievement aim,
Confidence, and Leadership. All covariates are normalized to have mean 0 and standard deviation 1 within
cohorts. Earnings are recorded by the tax authorities and measured by averaging total labor and entrepreneurial
income earned at age 35-38. Robust standard errors are reported as the shaded area.
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Figure 3-4: Time Trends within Bundles.

Notes: Each point corresponds to the proportion of persons belonging to the indicated group (bundle) within that
cohort. The ’High action, Low math’ bundle includes persons who belong to the top tercile in the action-oriented
trait and the bottom tercile in the math score. The ’Low action, High math’ bundle includes persons who belong
to the bottom tercile in the action-oriented trait and the top tercile in the math score. The ’Both high’ bundle
includes persons who score in the top tercile in both dimensions and vice versa for the ’Both low’ bundle.
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Figure 3-5: Earnings Change within Bundles.

Notes: Each bars corresponds to the change median earnings of that bundle relative to the base year 1963. The
’High action, Low math’ bundle includes persons who belong to the top tercile in the action-oriented trait and the
bottom tercile in the math score. The ’Low action, High Math’ bundle includes persons who belong to the bottom
tercile in the action-oriented trait and the top tercile in the math score. The ’High action, High math’ bundle
includes persons who score in the top tercile in both dimensions and vice versa for the ’Low action, Low math’
bundle.
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Figure 3-6: Earnings Change within Bundles.

Notes: Each point corresponds to the median earnings of that bundle relative to the base year 1962. The ’High
action, Low math’ bundle includes persons who belong to the top tercile in the action-oriented trait and the
bottom tercile in the math score. The ’Low action, High math’ bundle includes persons who belong to the bottom
tercile in the action-oriented trait and the top tercile in the math score. The ’Both high’ bundle includes persons
who score in the top tercile in both dimensions and vice versa for the ’Both low’ bundle.
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Table 3.1: Personality and Academic Performance.

High School Test Scores

Math Verbal Electives HS GPA In HS sample 9th grade GPA Years of Education

Sociability −0.258 −0.162 −0.219 −0.220 −0.054 −0.202 −0.335
(0.004) (0.004) (0.004) (0.004) (0.001) (0.004) (0.006)

Activity −0.122 −0.189 −0.145 −0.215 −0.099 −0.186 −0.448
(0.004) (0.004) (0.004) (0.004) (0.001) (0.004) (0.005)

Masculinity −0.032 −0.147 −0.126 −0.161 −0.059 −0.134 −0.222
(0.003) (0.003) (0.003) (0.002) (0.001) (0.003) (0.004)

Deliberation 0.113 0.081 0.102 0.085 0.005 0.055 0.197
(0.003) (0.003) (0.003) (0.003) (0.001) (0.003) (0.004)

Dutifulness 0.011 0.083 0.068 0.064 0.059 0.164 0.232
(0.004) (0.004) (0.004) (0.004) (0.001) (0.004) (0.005)

Achievement Aim 0.190 0.168 0.198 0.224 0.111 0.301 0.636
(0.004) (0.004) (0.004) (0.004) (0.001) (0.003) (0.005)

Confidence 0.263 0.151 0.181 0.219 0.097 0.249 0.508
(0.004) (0.004) (0.004) (0.004) (0.001) (0.004) (0.005)

Leadership 0.070 0.111 0.142 0.121 0.081 0.091 0.257
(0.005) (0.005) (0.005) (0.005) (0.001) (0.005) (0.006)

Y mean 0.000 0.000 0.000 0.000 0.360 0.000 12.890
Cohort FE yes yes yes yes yes yes yes
Adj. R2 0.090 0.095 0.111 0.128 0.206 0.249 0.190
Observations 157129 157129 150610 162605 459357 119902 457529

Notes: Each column reports the OLS regression results from Equation 3.12. The column name indicates the outcome. The unit of observation is the person. The
standardized high school (HS) tests are administered by the Matriculation Examination Board before military service. Personality traits are measured by the
Finnish Defence Force after high school. Test scores and personality traits are normalized to have mean 0 and standard deviation 1 within cohorts. All models
control for the birth year (cohort) fixed effects. Robust standard errors are reported in parentheses.
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Table 3.2: Returns to Skills.

Dependent variable: log earnings

(1) (2) (3) (4)

Action-oriented 0.053 0.099 0.112
(0.003) (0.003) (0.003)

School-oriented 0.096 0.036 0.018
(0.003) (0.003) (0.003)

Math 0.164 0.160 0.130
(0.002) (0.002) (0.002)

IQ 0.012
(0.002)

Verbal 0.005
(0.002)

Electives 0.052
(0.002)

Outcome mean 10.520 10.520 10.520 10.520
Cohort FE yes yes yes yes
Adj. R2 0.048 0.063 0.093 0.098
Observations 157743 157891 157129 156843

Notes: Each column reports the OLS regression results from Equation 3.13, with log earnings as the outcome. The
unit of observation is the person. ’Action-oriented’ is a composite of Sociability, Activity, and Masculinity.
’School-oriented’ is a composite of Deliberation, Dutifulness, Achievement aim, Confidence, and Leadership. Test
scores and traits are normalized to have mean 0 and standard deviation 1 within cohorts. Earnings are measured
by averaging total labor and entrepreneurial income earned at age 35-38. Robust standard errors are reported in
parentheses.
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Table 3.3: Returns to Skills within Occupation and Education.

Baseline With math control

(1) (2) (3) (4) (5) (6)

Action-oriented 0.086 0.051 0.035 0.097 0.057 0.040
(0.003) (0.002) (0.002) (0.003) (0.002) (0.002)

School-oriented 0.022 0.013 0.011 0.009 0.006 0.007
(0.003) (0.002) (0.002) (0.003) (0.002) (0.002)

Math 0.066 0.035 0.028
(0.002) (0.002) (0.002)

Outcome mean 10.520 10.520 10.790 10.520 10.520 10.790
Cohort FE yes yes yes yes yes yes
Education FE yes yes yes yes yes yes
Occupation FE no yes yes no yes yes
Firm FE no no yes no no yes
Adj. R2 0.171 0.328 0.575 0.177 0.331 0.577
Num. obs. 157743 100472 61224 157129 100003 60940

Notes: Each column reports the OLS regression results from Equation 3.13, with log earnings as the outcome. All
models control for the birth year (cohort) and additional fixed effects as indicated. Sample size varies when
variables are available only for a subset of cohorts. When firm FE is included, public sector employees are
excluded. The unit of observation is the person. The standardized high school (HS) tests are administered by the
Matriculation Examination Board before military service. Personality traits are measured by the Finnish Defence
Force after high school. The action-oriented trait is a composite of Sociability, Activity, and Masculinity. The
school-oriented trait is a composite of Deliberation, Dutifulness, Achievement aim, Confidence, and Leadership.
Test scores and traits are normalized to have mean 0 and standard deviation 1 within cohorts. Earnings are
recorded by the tax authorities and measured by averaging total labor and entrepreneurial income earned at age
35-38. Robust standard errors are reported in parentheses.
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Table 3.4: Occupational Sorting.

Occupations

Managers Professionals Technical/Clerical Service/Sales Production Other Mean Earnings Years of Educ.

Action-oriented 0.014 −0.099 0.027 0.018 0.035 0.005 −0.030 −0.796
(0.001) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.005)

School-oriented 0.027 0.111 −0.038 −0.019 −0.066 −0.016 0.088 1.443
(0.001) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.005)

Outcome mean 0.100 0.420 0.290 0.060 0.100 0.030 10.680 12.890
Cohort FE yes yes yes yes yes yes yes yes
Adj. R2 0.024 0.028 0.004 0.009 0.028 0.006 0.062 0.188
Observations 100472 100472 100472 100472 100472 100472 80186 457529

Notes: Each column reports the OLS regression results from Equation 3.13. The column name indicates the outcome. Each outcome variable is an indicator of
working in the given occupation at age 35 (at the end of the calendar year). The outcome in the last column measures the average earnings of all other men
employed in the same occupation at age 35. ’Action-oriented’ is a composite of Sociability, Activity, and Masculinity. ’School-oriented’ is a composite of
Deliberation, Dutifulness, Achievement aim, Confidence, and Leadership. Test scores and traits are normalized to have mean 0 and standard deviation 1 within
cohorts. Earnings are measured by averaging total labor and entrepreneurial income earned at age 35-38. Robust standard errors are reported in parentheses.
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Table 3.5: Occupational Sorting with Mathematics.

Occupations

Managers Professionals Technical/Clerical Service/Sales Production Other Mean Earnings Years of Educ.

Action-oriented 0.020 −0.060 0.011 0.006 0.021 0.002 0.007 −0.297
(0.001) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.008)

School-oriented 0.019 0.063 −0.018 −0.003 −0.049 −0.012 0.043 0.568
(0.001) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.009)

Math 0.022 0.129 −0.053 −0.042 −0.046 −0.010 0.120 0.929
(0.001) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.006)

Outcome mean 0.100 0.420 0.290 0.060 0.100 0.030 10.680 14.740
Cohort FE yes yes yes yes yes yes yes yes
Adj. R2 0.029 0.091 0.016 0.035 0.050 0.009 0.215 0.211
Observations 100003 100003 100003 100003 100003 100003 79804 156016

Notes: Each column reports the OLS regression results from Equation 3.13. The column name indicates the outcome. Each outcome variable is an indicator of
working in the given occupation at age 35 (at the end of the calendar year). The outcome in the last column measures the average earnings of all other men
employed in the same occupation at age 35. ’Action-oriented’ is a composite of Sociability, Activity, and Masculinity. ’School-oriented’ is a composite of
Deliberation, Dutifulness, Achievement aim, Confidence, and Leadership. Test scores and traits are normalized to have mean 0 and standard deviation 1 within
cohorts. Earnings are measured by averaging total labor and entrepreneurial income earned at age 35-38. Robust standard errors are reported in parentheses.
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Table 3.6: Cumulative activity, Ages 18-38.

Baseline With math control

Work Experience Study Nonemployment Other Work Experience Study Nonemployment Other

Action-oriented 0.647 −0.607 −0.015 −0.024 0.662 −0.477 −0.150 −0.036
(0.015) (0.012) (0.008) (0.005) (0.016) (0.012) (0.008) (0.005)

School-oriented −0.139 0.408 −0.314 0.045 −0.162 0.247 −0.146 0.060
(0.015) (0.011) (0.008) (0.004) (0.016) (0.012) (0.008) (0.005)

Math 0.062 0.432 −0.455 −0.038
(0.011) (0.008) (0.006) (0.003)

Outcome mean 14.360 4.510 1.050 1.080 14.360 4.510 1.050 1.080
Cohort FE yes yes yes yes yes yes yes yes
Adj. R2 0.039 0.033 0.041 0.021 0.039 0.060 0.103 0.022
Observations 98138 98138 98138 98138 97658 97658 97658 97658

Notes: Each column reports the OLS regression results from Equation 3.13. The column name indicates the outcome. The outcome variable is measured in
years. The unit of observation is the person. The standardized high school (HS) tests are administered by the Matriculation Examination Board before military
service. Personality traits are measured by the Finnish Defence Force after high school. The action-oriented trait is a composite of Sociability, Activity, and
Masculinity. The school-oriented trait is a composite of Deliberation, Dutifulness, Achievement aim, Confidence, and Leadership. Test scores and traits are
normalized to have mean 0 and standard deviation 1 within cohorts. Earnings are recorded by the tax authorities and measured by averaging total labor and
entrepreneurial income earned at age 35-38. All models control for the birth year (cohort) fixed effects. Robust standard errors are reported in parentheses.
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Table 3.7: Reading Penalty.

Earnings Earnings Earnings Earnings

Math 0.138 0.056 0.027 0.130
(0.002) (0.002) (0.002) (0.002)

Verbal −0.006 −0.010 −0.004 0.005
(0.002) (0.002) (0.002) (0.002)

Electives 0.056 0.024 0.018 0.052
(0.002) (0.002) (0.002) (0.002)

Action-oriented 0.112
(0.003)

School-oriented 0.018
(0.003)

IQ 0.012
(0.002)

Outcome mean 10.520 10.520 10.520 10.520
Cohort FE yes yes yes yes
Education FE no yes yes no
Occupation FE no no yes no
Adj. R2 0.068 0.158 0.319 0.098
Observations 157605 157605 100031 156843

Notes: Each column reports the OLS regression results from Equation 3.13, with log earnings as the outcome. All
models control for the birth year (cohort) and additional fixed effects as indicated. The unit of observation is the
person. The standardized high school (HS) tests are administered by the Matriculation Examination Board before
military service. Personality traits are measured by the Finnish Defence Force after high school. The
action-oriented trait is a composite of Sociability, Activity, and Masculinity. The school-oriented trait is a
composite of Deliberation, Dutifulness, Achievement aim, Confidence, and Leadership. Test scores and traits are
normalized to have mean 0 and standard deviation 1 within cohorts. Earnings are recorded by the tax authorities
and measured by averaging total labor and entrepreneurial income earned at age 35-38. Robust standard errors are
reported in parentheses.
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Chapter 4

The Surprising Intergenerational Effects
of Manufacturing Decline

4.1 Introduction

This paper is about children of the left-behind places of America—the children of crisis. It asks
what happens to children in the many declining manufacturing towns and cities of the US. The main
focus is whether the local decline in manufacturing employment has increased—or decreased—the
high-school dropout rate. The paper also explores the consequences of manufacturing decline on
educational mobility—that is, the chances that a child born to poor parents enrolls in a college,
and the factors that characterize the places with the largest effects on children.

The American middle class has declined across the country, affecting places from Detroit to
Boston, from Middletown, Ohio to Washington, DC. The main causes of this—technology and
trade—have eliminated a large part of US manufacturing jobs, and plausibly continue to do so
(Acemoglu et al., 2016). The effects are most visible at the geographical level: some places have been
left-behind while some places prosper. The haves and have-nots live in different places (Moretti,
2012; Florida, 2017). This is well documented: geographically uneven manufacturing decline and
shrinking middle incomes are the key factors in America’s deepening divide between rich and poor
(Autor et al., 2015).

The previous research on globalization, technology, and inequality focuses primarily on adult
males’ labor market prospects. While this is undoubtedly important, the long-term effects—the
future of work—depend on children, the next generation. This aspect of labor market adjust-
ment—children—has received surprisingly little attention in the literature. But it could be the
most important margin.

To study this, the paper uses county-level data on the employment structure and children’s
educational outcomes from the U.S. 1990–2010. To establish causal inference, the paper uses
variations in trade exposure from China following its entry to the World Trade Organization (WTO)
as an instrument for local manufacturing decline in the US. The instrument is computed from
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detailed product-level trade data from the UN Comtrade database. To explore the local factors
correlated with the effects, the paper uses a large set of data on community characteristics, from
segregation to educational resources. The idea of the empirical setup is that, conditional on the
instrumental variables strategy, otherwise similar places faced different levels of manufacturing
decline. This identifies the effects on children.

The literature on manufacturing decline of the 21st century paints a bleak picture. In places
that have been hit the hardest, workers—especially adult men—have been slow to adjust (Autor
et al., 2014; Yagan, 2017). These places are characterized by job losses, lower employment and
wages, and increased applications for social assistance (Autor et al., 2013; Balsvik et al., 2013).
Contemporary evidence also suggests that manufacturing decline is a source of social distress.
When factory jobs vanish, men become less desirable partners and divorces more common (Autor
et al., 2017). Violent- and property-crime tend to increase (Pierce and Schott, 2016b; Deiana, 2016;
Feler and Senses, 2017). In places that experienced trade-induced manufacturing decline, children
become more likely to be raised in poor single-headed households, making childhood poverty more
prevalent (Autor et al., 2017). Based on this evidence, it would be reasonable to conjecture that
manufacturing decline could make teenagers more prone to drop out of high-school and direct them
away from college.

This paper finds the opposite. In places where manufacturing has declined, children drop less
out of high-school. The relationship appears to be causal: comparing places within the same US
region, with similar initial share of workers employed in manufacturing, and with similar demo-
graphic characteristics; those places that saw manufacturing decline because they were historically
specialized in the particular industries that China started to export in 2001, saw sizable decreases
in high-school dropout rates—compared to the otherwise similar places that were not exposed
to competition with China. This paper also finds that when manufacturing employment declines,
chances that poor children enroll in college increase. The causal evidence on the second observation
is less conclusive but it is consistent with the first finding.

The paper also analyzes the local characteristics that could mediate, mitigate, or amplify the
effects. To do so, it estimates interactions between manufacturing decline and a large set of factors
that have been discussed in the sociology and economics literature, such as segregation and inequal-
ity. In contrast with the literature on the determinants of upward income mobility, I find that the
effects are larger in areas with higher segregation and with larger African American populations.
Local educational resources, such as school spending or student-teacher ratios show no significant
correlations with the size of the effect. If anything, their predictive effect is negative. These are
new and puzzling findings.

The main results are consistent with the idea that the manufacturing decline increased returns
and decreased opportunity costs of education, and with sociological accounts linking working-class
environment and children’s education. In the classical Becker (1964) model of human capital in-
vestment, the decision-maker—in this case a teenager—compares the marginal costs and benefits
of education. Complementary evidence by Autor et al. (2013) shows that trade-induced US manu-
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facturing decline reduced the wages for individuals with low levels of education, compared to those
with more, plausibly increasing the relative benefits of schooling. On the opportunity cost side,
a reduction in available manufacturing jobs may have reduced the outside options for high-school
dropouts.

From sociological perspective, Willis (1977), in the landmark research “Learning to Labor: How
Working Class Kids Get Working Class Jobs”, highlights how children inherit occupations and class
from their parents and community. In working-class communities, Willis (1977) notes, counter-
school culture of resistance and opposition to academia are prevalent. But possibly a decline in
working-class jobs, as in this paper, could lead to a decline in working-class culture. Following Willis
(1977)’s argument, this could lead to an increase in children’s education. Willis’ theory could also
help reconcile the interaction effects between local segregation and manufacturing decline: more
segregated places could be the ones supporting stronger and more uniform working-class culture.
When factory jobs vanish, the culture fostering high-school dropout behavior could dissolve, espe-
cially so in segregated places where the local culture may have been stronger.

In contrast to the group-level analysis of this study, a body of literature studies the individual-
level effects of parental job loss. Most of it finds negative effects. For example, Oreopoulos et al.
(2008) find that children whose fathers were displaced face long-lasting effects into adulthood: lower
earnings, higher social assistance, and lower college attendance. Other longitudinal studies find that
parental job loss decreases school grades (Rege et al., 2011) and increases grade repetition (Stevens
and Schaller, 2011).1 But these opposite results do not need to be contradictory. Those children
whose parent lost a job tend to be negatively affected, but—at the local level—the other children
could primarily respond to the changed incentives and local environment—returns to education
and the opportunity cost of it—while avoiding the cost of job loss in the family.

When factories closed in the US, some new factories opened in the developing world. In line with
the results of this study, Atkin (2016) finds that local factory openings in export-manufacturing
industries lead to higher school dropout rates in Mexico. Young people dropped out of school to
work in manufacturing. This is a mirror image to what appears to have happened in the US. The
effect is reasonably identified: Atkin (2016) uses the variation in the timing of factory openings
across commuting zones in Mexico during a period of major trade reforms 1986–2000. Atkin (2016)
argues that the effects are driven by the increased opportunity cost of schooling.2

This study’s results are also consistent with the available local evidence from the US. Using
historical data, Goldin and Katz (2000), show that industrialization slowed the growth in high

1Much fewer and less strongly identified studies focus on the community-level effects of job losses. A series
of papers by Ananat et al. (2011) and Ananat et al. (2017) explore this aspect by comparing U.S. states. In line
with individual-level effects, they find large negative effects on student achievement and college mobility from state-
level job losses. The correlations they document at the state level, however, may not need to be causal. Another
interpretation is that they focus on different type of variations in job losses.

2Similarly, Shah and Steinberg (2017) observe that in India children dropped out of school into productive work
when rainfall was higher. In their setting, the opportunity cost of schooling, even for fairly young children, appears
to have been an important factor in determining overall human capital investment. Munshi and Rosenzweig (2006);
Shastry (2012); Jensen (2012) and Oster and Steinberg (2013) provide complementary evidence on the arrival of
high-skill service jobs in India.
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school attendance in the early 20th century United States. Focusing on the Appalachian coal
boom and bust of the 1970s and 1980s, Black et al. (2005) find that the boom lead to increases in
school dropout rates and the bust decreased them.

This analysis on the intergenerational effects of manufacturing decline builds on the work of
Autor et al. (2013)—and related studies by Acemoglu et al. (2016), Pierce and Schott (2016a), and
Bloom et al. (2016)—by using the rapid expansion of China’s exports in manufacturing goods for
empirical identification. Among other results, Autor et al. (2013) confirm the classical prediction
Heckscher–Ohlin model of international trade: there are winners and losers from the geography of
globalization. This research paper expands their work to include analysis on the consequences of
the manufacturing decline more generally, a dimension they do not consider, and by characterizing
the intergenerational effects on children’s education. In short, Autor et al. (2013) focus on the
causes and consequences of the 1990–2007 US manufacturing decline on adult men. This paper
looks at the intergenerational effects of it.

The contribution of this paper is empirical: it answers the question of how children have been
affected by the rapid manufacturing decline of the 2000’s in the US. To date, this question has
had no attention, or an answer in the literature. This research matters because the future of work
critically depends on the labor market prospects of the next generation. The paper provides new
evidence on how people and communities adjust to the structural transformation of work.

The article is organized as follows. Section 4.2 describes the data set and the empirical method-
ology. Section 4.3 reports the primary ordinary least squares (OLS) and two-stage least squares
(2SLS) estimates of the impact of manufacturing decline shocks on high-school dropout rates and
college mobility. Section 4.4 explores the robustness of the main results through several tools.
Section 4.5 takes the analysis further and explores interactions between the effects of children
and observable characteristics of commuting zones. Section 4.6 discusses the findings, provides
interpretations, and connects the results to earlier empirical literature. Section 4.7 concludes.

4.2 Empirical Approach

4.2.1 Local Labor Markets

The unit of the analysis is regional economies—the local labor markets of the United States.
The idea of the geographical analysis is that strong regional variations in the industry specializa-
tion make different places differentially exposed to shocks in manufacturing employment. Decline
in manufacturing has varied by region and over time, not at the individual level, making local
economies a natural observation unit. The operational geographical units are 722 commuting
zones (CZ) developed by Tolbert and Sizer (1996). They approximate the areas where the popu-
lation of interest works.3 The CZ:s cover all metropolitan and nonmetropolitan areas, both urban
and rural, of the mainland United States. The CZ:s are based on economic geography rather than

3Tolbert and Sizer (1996) measure commuting ties between US counties and define commuting zones as collections
of counties with strong commuting ties between them.
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administrative borders, are time-consistent, provide more granular measurement than state-level
analysis, and can be matched to various official statistics (Autor and Dorn, 2013). Table 4.2 sum-
marizes descriptive statistics for the CZs.4 Figure 4-3 displays a map of the CZs, with the key
variables of this study.5

4.2.2 Manufacturing Decline

A. Descriptive Data

The main data source on the US employment structure is the County Business Patterns (CBP) from
1991 to 2011 provided by the US Census Bureau. The CBP provides annual data on employment
and payroll by county and industry. The data cover all US private employment, excluding most
government employees, agricultural workers, self-employment, private household employment, and
railroad workers.6

To complement the employment statistics, the paper uses population data from the Census
Population Estimates. It provides data on the total and working-age (ages 15–64) US population
at the county level. The county level data are mapped to CZs using the matching strategy detailed
in Dorn (2009).

The main explanatory variable is the (annualized) decadal change in the share of manufacturing
employment EMF

i within total employment ETOTi in a CZ i:

∆MFit = ∆

(
EMF
it

ETOTit

)
. (4.1)

Figure 4-1 describes the evolution of the US manufacturing employment based on CBP data.
The US manufacturing employment was approximately constant in 1991–2000, but declined rapidly
by 33.3 percent in 2000–2011.7 Manufacturing’s share of total employment was 19.1 percent in 1991
and fell to 10.4 percent in 2011. The rate of change in the manufacturing employment also had
large variations between CZ:s and over time, as shown in the map of Figure 4-3 and in Table 4.3.
While the manufacturing share of employment decreased on average in the US over 1991–2011,
some places saw even increases in it. Table 4.2 summarizes descriptive statistics of manufacturing-
to-total employment ratios, as well as employment-to-population ratios and the population size of
the CZ—key baseline control variables in the estimation.

4An average CZ had a population of 350,000 in 1991. The largest commuting zone, New York, NY, had a
population of 10.4 million and the smallest had 1,311.

5The object of interest in this study is the childhood environment, and therefore this analysis treats CZ:s as the
observation units of interest without weighting them.

6For confidentiality reasons CBP reports employment by industry as an interval. I compute employment in these
cases using the fixed-point imputation strategy developed by Autor et al. (2013).

7US manufacturing employment was 17.0 million in 1991, 17.1 million in 2000, 13.9 million in 2007, and 11.4
million in 2011, according to CBP data.

132



B. IV Strategy

To identify plausibly exogenous variations in manufacturing decline, I use an instrumental variables
strategy (IV) based on the local industry exposure to China’s imports.8 Between 1990 and 2011,
the share of US manufacturing imports from China increased over four-fold, from 4.5 percent to 23.1
percent (Fig 4-2).9 This increase coincides with a sharp drop in the US manufacturing employment
after 2000 (Fig 4-1).

The general idea is that China’s entry to the world market is close to an exogenous shock to
US manufacturing labor demand (Autor et al., 2013). The increase in China’s exports to the US
originates from China, not the US. It was sparked by China’s large economic reforms in 1980–2000,
and made possible by two sudden policy changes in 2001: China’s accession to the World Trade
Union (WTO) and a change in a US trade policy that eliminated potential tariff increases on
Chinese imports (Pierce and Schott, 2016a; Hanson, 2012; Naughton, 2006). China’s exports to
the US were almost exclusively in manufacturing goods. This translated to a negative shock to US
manufacturing labor demand in the 1999–2011 (Autor et al., 2013).10

The particular implementation of the IV strategy originates from the approach of Autor et
al. (2013) using local labor market variations in the US industry exposure to Chinese import
competition. The measure of exposure to China’s imports leverages the fact that commuting zones
vary in their distribution of industrial employment, making some commuting zones more exposed
to the China’s import competition than others. In the data, these variations are large, as illustrated
in the map of Figure 4-3 and quantified in Table 4.3. The key idea is that each US commuting
zone specializes in a set of industries but not in all of them (Ellison et al., 2010). Similarly, and
centrally to this analysis, China’s opening affected a narrow set of industries more heavily and
much less some (Autor et al., 2013; Pierce and Schott, 2016a) For example, places specialized in
textiles and plastic goods saw sharply larger increases in China’s import competition compared to
places specialized in the steel, chemical, or paper industries (Autor et al., 2013).

The baseline measure of trade exposure at the CZ level (the instrument) is the local employment-
weighted average of changes in the US industry import exposure ratio:

∆IPCZiτ =
∑
j

Lijt
Lit
×

∆MUC
jτ

Mj,t0 − Ej,t0 + Yj,t0
. (4.2)

The key component of this measure is ∆MUC
jτ , the change in imports from China in a US man-

ufacturing industry j over the selected period τ (most estimations are performed in stacked an-
nualized decadal differences 1991–1999 and 1999–2011).11 It is divided by the initial absorption

8The methodology draws from research by Autor et al. (2013), and related studies by Autor et al. (2014),
Acemoglu et al. (2016), Pierce and Schott (2016a), and Bloom et al. (2016). For a review on the identification
strategy and the related literature, see Autor et al. (2016). Dix-Carneiro and Kovak (2017) and Edmonds et al.
(2010) use similar strategies based on geographic variations and trade opening in Brazil and India.

9UN Comtrade Database 1990–2011.
10Autor et al. (2016) provide a comprehensive survey on the factors behind the increase in China’s trade.
11The year 1991 is the earliest where high-quality disaggregated bilateral trade data are available.
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Yj,t0 +Mj,t0 − Ej,t0 at the baseline year; where Mj,t0 is the industry imports, Ej,t0 is the industry
exports, and Yj,t0 is the industry shipments. The industry-measure tracks export supply shocks
from China to US manufacturing output demand in industries where China and the US started to
compete after 2001. The industry-level measure is mapped into geographical commuting zones by
constructing local industry-employment-weighted sums of industry changes: Lijt/Lit is industry j’s
baseline period share of total employment in CZ i. The variations in the geographical instrument
∆IPCZiτ come from variations in the local industry employment structure in the baseline year.

An alternative measure of trade exposure at the CZ level (the alternative instrument) is anal-
ogous but based on China’s imports to eight developed countries excluding the US:

∆IPOCZiτ =
∑
j

Lijt
Lit
×

∆MOC
jτ

Mj,t0−k − Ej,t0−k + Yj,t0−k
, (4.3)

where ∆MOC
jτ is the change in imports from China in the manufacturing industry j in a set of

eight high-income countries that excludes the US.12 The denominator Mj,t0−k − Ej,t0−k + Yj,t0−k
is defined as above but for the eight other countries.13 The trade volumes are simply summed
over the countries. The employment weights refer to the CZ:s industry employment structure as in
the baseline measure. The alternative instrument is motivated by a concern that the baseline US
measure can, in part, reflect US-based shocks to US import demand. The alternative instrument
aims to capture the supply-component of China’s exports to the US, and eventually its impact on US
manufacturing industries. The identifying assumption is that the other high-income economies were
similarly exposed to China’s trade opening and that their industry demand shocks are uncorrelated
with each other.14 Intuitively, the supply component is correlated between the countries, while the
demand component is less so. A large literature, surveyed by Autor et al. (2016), highlights that
still the main source of variations in China’s exports to the US comes from factors internal to
China. But the alternative instrument can potentially clean US industry demand shocks from the
estimation.

Data on international trade for 1991–2011 come from the UN Comtrade Database. It provides
bilateral imports and exports data harmonized at the six-digit HS product level. I match the
product-level data to four-digit SIC industries using the crosswalk of Pierce and Schott (2012).
The crosswalk assigns 10-digit HS products to four-digit SIC industries (at that level each HS
product maps into a single SIC industry). The data from UN Comtrade are at the level of six-digit
HS products. At that level some HS products map into multiple four-digit SIC industries. To weight
product data to industries, I use US import data at the 10-digit HS level, averaged over 1995–2005.

12The countries are Australia, Denmark, Finland, Germany, Japan, New Zealand, Spain, and Switzerland. The
specific set of countries is based on data availability: these are the only high-income countries that have bilateral
trade data available in 1991 at a level that can be harmonized to HS classification.

13The local industry employment data are from 1988 (not 1991) to reduce the error covariance between the
dependent and independent variables.

14This assumption, made in Autor et al. (2013) and Acemoglu et al. (2016), among others, is rather strong, and
unlikely to hold literally. But the alternative instrument can still help overcome some part of the endogeneity issues
regarding US import demand shocks.
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This process aggregates the four-digit SIC industries to 397 manufacturing industries that all have
product codes assigned to them. As in Autor et al. (2013), to match other industry data, I merge a
few industries together, resulting in 392 manufacturing industries. All trade amounts are inflated
to 2007 US dollars using the Personal Consumption Expenditure (PCE) deflator obtained from the
US Federal Reserve. Table 4.3 summarizes the CZ-level changes in exposure to China’s imports.

Intuitively, the main estimates come from comparing changes in high-school dropout rates
between places with different patterns in manufacturing employment share over time. I focus on
the variations in manufacturing employment that come from the exposure to Chinese imports. As
argued earlier, these variations plausibly came from outside the system unexpectedly (Autor et al.,
2013, 2016). This makes the comparisons between changes in CZ high-school dropout rates and
changes in CZ manufacturing employment potentially informative.

To make the comparisons cleaner, I control for a set on baseline characteristics of the places: the
baseline manufacturing share of employment, region of the US,15 employment–to–population ratio,
and the population size of the CZ. The baseline manufacturing share control induces comparisons
between places that had a similar share of manufacturing employment but saw different declines in
it due to differential exposure to China’s opening to the world market. This control is important,
since variations in the instrument are especially pronounced within the manufacturing sector (see,
Tab. 4.4). The regional controls narrow the comparisons to within-region differences, so that
the results are not driven by differential trends between regional areas of the US. The controls for
employment–to–population ratio and the population size of the CZ narrow further the comparisons
to between places with similar employment rates and labor market size. The commuting zone
baseline controls are computed in 1991 for the 1991–99 period and in 1999 for the 1999–2011
periods. In the analysis, treatment is the manufacturing decline, and the comparison group is
the otherwise similar places that had a smaller decline in manufacturing. The specifications also
include a control for a time-trend.

This research focuses on manufacturing decline, instrumenting it by changes in China’s import
shares, in contrast with a large research literature initiated by Autor et al. (2013) that studies
the labor market consequences of trade with China. That is, the approach of this study creates
variations in manufacturing rather than only in trade exposure. From this perspective, Autor et al.
(2013) trade exposure estimates depict the reduced form relationship, and my estimates are the IV
estimate of interest, scaling up the trade exposure with the induced variations in manufacturing.
The estimates are interpretable as the local average treatment effects (LATE) of the manufacturing
decline if the China shock works exclusively through its effect on manufacturing employment.
Extensive previous research suggest that this is the case (see, Autor et al. 2016, for a review). To
be clear, the rapid rise in China’s imports to the US had various effects on local labor markets.16 In
the previous literature, these effects have been interpreted to be working through trade exposure’s
effect on manufacturing industry. But with imperfections in labor and other markets, China’s
trade shock may have had an independent effect on manufacturing firm revenues, without working

15The regional controls indicate nine regional census divisions.
16These effects vary from reductions in employment rates to increases crime (Autor et al., 2013; Deiana, 2016).
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through changes in the manufacturing employment, translating to incomes and tax revenues that
can both affect children’s outcomes. While this is unlikely to be qualitatively important, I report
both reduced form and IV estimates.

In terms of interpretation, the analysis at the CZ level jointly estimates the reallocation and
aggregate demand effects of the manufacturing labor demand shock (as pointed out by Acemoglu
et al. 2016). The reallocation effect works through the movement of production factors from
the declining sectors to new sectors. The aggregate demand effect multiplies the negative direct
and indirect effects of the manufacturing decline stemming from import growth from China. The
instrument combines induced employment shifts in both trade-exposed and non-exposed industries.
Put simply, the estimates capture the total effect of China-induced manufacturing decline working
through many potential channels, including employment-, wage-, and public finance effects, and
social and psychological responses within the community.

The IV strategy estimates the local average treatment effect (LATE). It is the effect of treat-
ment on the population of compliers. The compliers are those places that saw a decline in the
manufacturing precisely due to China’s opening to the world market. The effects of manufacturing
decline in these places may differ from the effects in some other places where manufacturing em-
ployment declined for some other reason. But this effect in left-behind places hurt by globalization
is exactly what this study and many policy makers are interested in (see, for example, Economist
2017). In particular, the LATE may reflect the effect of unexpected manufacturing decline, while
the OLS estimates could capture more secular trends. The IV estimates reflect the effect of dif-
ferential exposure to manufacturing decline, which may differ from the effect from aggregate US
manufacturing decline.

Critical threats to the validity of the estimates come from omitted variables correlated with
the instruments. A key threat is selective mobility. That is, the empirical strategy essentially
considers synthetic cohorts over time in different places. But this idea does not work if the cohorts
are significantly unstable over time. Validating this aspect of the identification strategy, evidence
from the US suggests that mobility responses to labor market shocks in 1991–2011 have been small
and incomplete (Glaeser and Gyourko, 2005). Less educated workers and their families—many of
which work in manufacturing and are subject to the largest variations of the treatment—are even
less mobile (Notowidigdo, 2011). In particular, investigating mobility and trade shocks, Autor et
al. (2013) find little impact of regional trade exposure on changes in mobility. Furthermore, Autor
et al. (2014) consider whether workers initially employed in more trade-exposed industries are more
likely to change their place of residence, and find little effects.

In summary, the IV strategy constructs plausibly exogenous variations in manufacturing em-
ployment between places that without being exposed to the instrument could have had similar
trends in educational outcomes. Using this strategy, I can evaluate the effects of trade-induced
manufacturing decline on places and children.
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4.2.3 Education

A. High-School Dropouts

The main educational outcome is the high-school dropout rate. Data on high-school dropout rates
come from the US Census for the years 1990 and 2000, and from the American Community Survey
(ACS) for the year 2011.17 It is defined as the share of civilian 16 to 19 year-old population that is
not enrolled in school nor is a high school graduate. The benefit of high-school dropout rate as an
outcome is that it captures activity rather than a cumulative stock value. The US Census and ACS
report the data at the county level. I match the counts on 16-19 year-old total population and high-
school dropout population to the CZ-level using the matching strategy detailed in Dorn (2009),
and compute the CZ-level high-school dropout rates. The US Census and ACS are particularly
useful data sources for geographical analysis due to their full coverage and large sample size.

For estimation, the main outcome variable is the (annualized) decadal change in the high-school
dropout rate in a CZ i over time period τ :

∆HSiτ = ∆

(
HS16−19

iτ

POP 16−19
iτ

)
(4.4)

where HS16−19
iτ is the number of 16 to 19-year-old residents of the commuting zone (CZ) i that are

not in high school nor high-school graduates, and POP 16−19
iτ is the population of 16 to 19-year-olds

in the same CZ. Most analyses focus on time period τ over 1990–2011.
Table 4.1 shows descriptive statistics for high-school dropout rates in CZs. On average, high-

school dropout rate was 10.3 percent in 1991 and decreased to 6.0 percent in 2011. These averages
mask large geographical variations in the trends. A map in the Figure 4-3 visualizes the geography
of changes in high-dropout rates, and compares it to the changes in the manufacturing employment
share. A simple visual comparison suggests that places where high-school dropout rates declined
are also places where manufacturing declined.

B. College Mobility

As an alternative measure, I use the college-income gradient developed by Chetty et al. 2014.18

This outcome variable—college mobility—measures the degree to which a child’s college attendance
at age 19 is predicted by parental income. It captures one aspect of college access of the young
people who were born in a given commuting zone.

College mobility is computed from the restricted access universe of individual tax returns from
the U.S. Internal Revenue Service (IRS). In the underlying data, college attendance is defined as an
indicator whether the child has a 1098-T form filed on her behalf when she is 18–21. All colleges and

17Starting in 2010, the Census stopped using the long form survey and reports education data in the American
Community Survey. The American Community Survey measure is computed as a five-year average over 2009–2013.
Additional analyses use high-school dropout rates over 1970–1990 from the US Census.

18No publicly available US database captures college attendance by the place of birth, previous schooling location,
or parental place of residency.
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universities, vocational schools, and other postsecondary institutions that are eligible for student
aid—are require to file 1098–T forms that report the tuition payments or scholarships received
by the student. The 1098-T forms are reported by the universities independently of individual
tax returns and plausibly cover the college attendance for all US children. Chetty et al. (2014)
document that the tax records capture college attendance quite accurately. The parental income
data come similarly from the US tax records, and is defined as the pre-tax adjusted gross income plus
tax-exempt interest income and the non-taxable portion of Social Security and Disability (SSDI)
benefits. The income measure includes labor earnings, capital income, unemployment insurance,
Social Security, and disability benefits, but excludes nontaxable cash transfers, such as food stamps.

This paper uses the public-use summary statistics on intergenerational mobility at the CZ-level
provided by Chetty et al. (2014) with an agreement from the IRS. The data are available by CZ for
cohorts born between 1984 and 1993.19 The data include two summary statistics for each CZ and
cohort: the estimated slope of a linear equation that predicts college attendance based on parental
income, and an intercept. In particular, Chetty et al. (2014) estimate the slope and the intercept
of the conditional expectation that a child is attending college given her parents’ national income
rank for each CZ i and cohort c:

Cjic = αic + βcPic + εic (4.5)

where C is an indicator for a child j being enrolled in college at age 19. The slope of the col-
lege–income relationship (βc) measures the degree of relative college mobility in CZ i and for
cohort c.20 The linear conditional expectation fits the data remarkably well (Chetty et al., 2014).

For the analysis of this paper, I construct a measure of “absolute upward mobility” (Chetty et
al., 2014) at percentile p in CZ i for cohort c, as the expected probability of attending college for a
child who grew up in CZ i with parent who have a national income rank of p: c̄pic = αic+βicpc. In
particular, I focus on the CZ-cohort average of college attendance of children with parents at the
25th percentile in the national distribution, c̄25,ic = αic + 0.25βic.

As the outcome variable, I use an annualized decadal change in the 25th percentile college
mobility (CM) between the cohorts born in 1984 and 1993 in the CZ i:

∆CM25,iτ = ∆ (αiτ + 0.25βiτ ) . (4.6)

The idea behind using changes between cohorts 1984 and 1993 is that most of the manufacturing
decline and increase in the China’s imports began after 2001, the year the cohort born in 1984 turned
17, and a year before the median starting-age of college. In contrast, the cohort born in 1993 turned
17 in 2010, a year before the end-line of our analysis period. While the control group may also
have been affected by the manufacturing decline, the difference between the cohorts captures the

19To preserve confidentiality, values for CZ-cohort cells with fewer than 250 observations are omitted.
20Note that this reverses the notation of Chetty et al. (2014) to maintain consistency with respect to other

notation in this paper.
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change in treatment intensity.21 In line with this idea, I define this measure as the change in college
mobility over 1999–2011, the college starting years of each cohort. Tables 4.1 and 4.3, and the map
in Figure 4-3 report descriptive statistics on college mobility over 1999–2011.

The drawback of the college mobility data is that it is only available for a single 9-year change.
This reduces statistical power and prevents from including controls for time-trends and the pre-
period evolution of college mobility. For data confidentiality reasons, the measure is only available
for 616 CZs.

4.3 Estimates

The main specification is a stacked first-difference model for annualized decadal changes in the
CZ-level variables 1991–2011:

∆Y CZ
iτ = ατ + β∆MFCZiτ + γXi0 + eiτ (4.7)

The dependent variable is either ∆HSit, the annual change in the high-school dropout rate in CZ
i over time period τ , or ∆CM25,i, the annual change in the 25th percentile college mobility (CM)
between the birth cohorts of 1984 and 1993 in CZ i. The term Xi0 is a set of CZ start-of-period
controls; ατ is the time effect; and eiτ is the error term. The key explanatory variable in this model
is ∆MFCZiτ , the annual change in the manufacturing–to–total employment ratio over period τ in
CZ i. The coefficient β reveals the impact of manufacturing decline on educational outcomes. The
standard errors are clustered by commuting zone to allow for over-time error correlations.

To establish plausibly causal interpretation, I instrument for the decline in manufacturing em-
ployment share using the contemporaneous growth of China’s imports to the US, ∆IPCZiτ , as
specified in Section 4.2.2, or alternatively using the growth of China’s imports to the eight other
high-income countries, ∆IPOCZiτ , specified in Section 4.2.2. The variations in the instrument come
from variations in local industry employment structure, making some places more exposed to rise
in China’s exports. Table 4.3 summarizes the CZ-level changes in the key variables: manufacturing
share, import exposure, high-school dropout rate, and college mobility.

A. The First Stage

The analysis begins by estimating a first stage relationship between the commuting zone exposure
to China’s imports and manufacturing decline. The first stage is estimated from stacking changes
in CZ manufacturing-to-total employment ratio and exposure to Chinese imports within local
industries over the periods 1991–99 and 1999–2011:

∆MFCZiτ = ατ + β∆IPCZiτ + γXi0 + eiτ (4.8)
21Research by Chetty et al. (2014) and Chetty and Hendren (2017a,b) suggests that the effects from the exposure

to local conditions come mostly when the children are young. This supports the approach of comparing these cohorts.
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The term Xi0 is a set of CZ-by-sector start-of-period controls, ατ is the time effect; and eiτ is the
error term. Table 4.4 details the estimates obtained with this approach. The sizable F-statistics
for the excluded instruments indicate that regional variations in import exposure have a strong
influence on the likelihood of manufacturing decline for CZ:s. The columns 1–3 are estimated
without the control for the baseline manufacturing employment share, while the columns 4–6 include
that control. Within the CZ:s with the same start-of-period share of manufacturing employment
and other baseline controls, the coefficient of trade exposure variable is smaller (-.87 vs. -2.18) but
its explanatory power is larger (adjusted R2 of 0.40 vs. 0.29).

As a visual illustration of the first stage relationship, Figure 4-4 plots the value of the instrument,
import exposure as detailed in the Equation 4.2, against the value of the explanatory variable,
manufacturing decline as in Equation 4.1, for all US commuting zones over 1991–2011, which is
equivalent to the first-stage regression in Table 4.4 but without additional controls and performed
in single annual change over 1991–2011. The slope coefficient is –2.80 with standard error 0.21
and t-statistic –13.4. The regression has an R-squared of 0.35, again indicating a relatively strong
predictive power of import growth from China for the US manufacturing decline (as also reported
by Autor et al. 2013).

B. High-School Dropout Rate Estimates

The OLS and 2SLS estimates of manufacturing decline effects on commuting zone high-school
dropout rates 1991–2011 are presented in Table 4.5.

Columns 1–4 present the OLS estimates, progressively including additional baseline controls in
the specification. These estimates do not have a causal interpretation, but show a negative relation-
ship between manufacturing decline and high-school dropout rates. In places where manufacturing
has declined, high-school dropout rates have declined, too. In columns 1–3, the estimates of the
predictive effect vary from –.109 to –.0733 with p < 0.01. However, including regional controls for
nine US Census divisions make the effect smaller and in the most restrictive model the coefficient
is statistically insignificant.

Columns 5–8 present the 2SLS estimates. Column 5 of Panel A considers the relationship
between CZ manufacturing decline and changes in CZ high-school dropout rates without additional
controls, except for a control for a time trend. The strongly negative and statistically significant
point estimate in this column indicates that a 1 percentage point decrease in the manufacturing
share of total employment decreases the high-school dropout rate among CZ’s 16- to 19-year-old
population by .227 percentage points. The OLS and IV estimates are different possibly because the
IV estimates capture the effect of unexpected manufacturing decline, while OLS estimates reflect
the more predictable secular decline in manufacturing that may have had less impact.

The last three columns of Panel A and Panel B, refine the estimates and explore the robustness,
by controlling for the initial manufacturing employment share in a local labor market (Panel B),
the initial population (col. 6), the employment-to-population ratio at the baseline (col. 7), and for
nine census divisions (col. 8).
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By controlling for local manufacturing intensity in Panel B, I allow for differential employment
trends in the manufacturing and non-manufacturing sectors. This creates (thought) comparisons
between with places with the same manufacturing intensity but saw different changes in it, due
to exposure to China’s trade. The control for initial population allows for different time trends in
local labor markets with different sizes. Similarly, the control for employment-to-population ratio
allows for separate trends for labor markets with different levels of activity. The controls for census
divisions allow for heterogeneity in regional time trends. The control for the baseline manufacturing
employment share has a sizable impact on the estimates. It increases the estimate from –.227 to
–.433, without additional covariates. Adding the other covariates has a modest impact on the
manufacturing decline coefficient. Among these covariates, the regional controls seem to matter
the most. The most restrictive, and preferred, estimate remains sizable and statistically significant
at –.366 in column 8 of Panel B.

Taking together the OLS and 2SLS estimates suggests that manufacturing decline is associated
with a reduction in high-school dropout rates. In this data, this effect varies between –.16 and –.37
percentage points per a 1 percentage point decrease in the manufacturing share of total employment.
In terms of magnitude, the average high-school dropout rate in 1991 was 10.3 percent; and the
decline in manufacturing share of total employment across CZs was 7.9 percentage points over
1991–2011. Using the preferred estimate of –.366, this translates to a 2.9 percentage point reduction
in the commuting zone high-school dropout rate over 1991–2011—a large but reasonably sized effect.

C. College Mobility Estimates

The OLS and 2SLS estimates of manufacturing decline effects on commuting zone college mobility
1999–2011 are presented in Table 4.6. As described in detail in Section 4.2.3, college mobility is
CZ-level average of college attendance of children with parents at the 25th percentile in the national
distribution. The college mobility measure comes from Chetty et al. (2014) and is based on the US
tax records.

Columns 1–4 present the OLS estimates. They show that, on average, places that saw declines
in manufacturing as a share of total employment were also the places that saw increases in college
mobility. The predictive effect is smaller but stays statistically and economically significant after
controlling for a set of baseline characteristics of these places. The estimates of the predictive effect
vary from .397 to .254 with p < 0.05.

Columns 5–8 present the 2SLS estimates. In Panel A, without additional controls, the estimate
in the column 5 considers the relationship between CZ manufacturing decline and changes in CZ
college mobility. Consistent with the results of the high-school dropout rate analysis, the 2SLS
estimate in column 5 implies a positive and statistically significant effect from manufacturing
decline to college mobility. In particular, the estimate in this column indicates that a 1 percentage
point decrease in the CZ’s manufacturing share of total employment increases the CZ average of
college attendance of children with parents at the 25th percentile in the national distribution by
.36 percentage points. Controlling for the baseline population size and employment-to-population
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ratios leaves the 2SLS estimates largely unchanged. Including the nine regional census indicators
makes the estimate insignificant, but keeps its sign unchanged and the magnitude in the ballpark.

In Panel B, focusing on the variations within a set of places with similar manufacturing start-of-
period share of total employment, the estimates are not anymore statistically significant. However,
most coefficients do have the same sign and, while smaller, fit into the range of the estimates of Panel
A. The college mobility variable covers only a one observation per CZ. A plausible interpretation is
that including the manufacturing share control leaves too few degrees of freedom to produce precise
estimates.

Although, in general, the estimates highlight a negative descriptive relationship between man-
ufacturing share of employment—working class jobs—and college mobility, the most restrictive
causal estimates are inconclusive.

In terms of interpretation, a drawback of the college mobility measure is that it leaves a few
possibilities for the mechanism driving the increases (or decreases) in it.22 The simple case is that
relatively poorer children enroll more in college. However, the focus on the national distribution
creates a complication when looking at changes over time. A decline in local income moves the
residents left in the national income distribution. But if income is not an important determinant
of college access in that place, this decline in incomes translates to an increase in the college
mobility measure: now poorer children (that were previously rich) are more likely to go college.
The drawback aside, supporting a non-mechanical interpretation, Chetty and Hendren (2017a,b)
provide evidence that the given college mobility rates of a CZ are largely interpretable as causal
effects of the place. While the most restrictive estimates are inconclusive, the research of this paper
suggest a potential causal chain from lost manufacturing jobs to a place that provides higher college
access to poor children. To establish or dispute the causal chain, more research is needed.

4.4 Robustness

A. Pretrends

US high-school dropout rate has been declining since the 1970s,23 and manufacturing as a share of
employment has also trended downward since the 1950s.24A visual inspection of the maps in Figure
4-3 suggest that in the period 1991–2011, these trends tended to be stronger in the same places.
This association could, however, be a result of a long-standing secular trend. The correlation
this study documents between declining manufacturing share of employment and contemporaneous
declines in high-school dropout rates during 1991–2011 could potentially predate the recent decline
in manufacturing. In that case, the estimates would likely overstate the impact of manufacturing
decline in the current period. To address this concern, I include measures of pretrends in high-school

22This complication is not highlighted in Chetty et al. (2014). Unfortunately, the raw data on college attendance
by place of birth, or similar data, are not available.

23Source: US Census.
24Source: Community Business Patterns.
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dropout rates in Table 4.7, specifically two terms for the change in the CZ high-school dropout
rates, measured over the intervals 1970–80 and 1980–1990.25

Formally, the pre-trend controls mean including lagged dependent variables to the stacked first-
difference specification:

∆Y CZ
iτ = ατ + β∆MFCZiτ + γXi0 + δ1∆Y CZ

i1980–90 + δ2∆Y CZ
i1970–80 + eiτ (4.9)

Table 4.7 replicates the main set of results on high-school dropout rates but including the
pretrends. The pretrend variables have no important effect on the magnitude or precision of the
coefficient of interest: the estimates are close to that found in the main Table 4.5. The measured
effects are slightly larger, increasing from –.366 to –.418 with p < 0.01 in the preferred and most
restrictive specification. However, this hints that even with the IV strategy, there is some temporal
dependence left in the local high-school dropout series.

B. Falsification Test

As a falsification test, Table 4.8 reports results from a 2SLS regression of changes in high-school
dropout rates in earlier decades on the instrumented manufacturing decline between 1999 and 2011.
For the identification strategy, it would be a concern if future declines in CZ manufacturing due
to China’s trade opening predicted past changes in local high-school dropout rates—in the time
periods before China had affected US manufacturing. Operationally, I estimate a set of models:

∆MFCZiτ = αi + β∆IPCZi1999–2011 + γXi0 + eiτ , (4.10)

where τ takes four different values: 1970–80, 1980–90, 1990–2000, and 1999–2011.
In Panel A, the first row performs the estimation without additional controls. The rows 2–4

go through combinations of regional controls and the controls for baseline share of manufacturing
in total employment. The results from the specifications that include baseline controls, either
the regional controls or manufacturing share, show largely that future instrumented manufacturing
decline does not predict past changes in high-school dropout rates. Conversely, the estimate is large
and significant in the contemporaneous period 1999–2011 where it should be. Adding demographic
covariates keep the estimates essentially unchanged (not reported). This pattern of results is
consistent with the identifying assumption that the within-industry and CZ correlation between
declining manufacturing employment and import penetration from China in 1991–2011 that seems
to translate to reductions in high-school dropout rates, originates from trade shocks rather than
long-term secular trends between manufacturing employment and high-school dropout rates.

However, the specifications that do not include any covariates show some evidence of temporal
dependence in the high-school dropout rate series. The predictive effect is visible for the 1970–1980

25Data on college mobility are only available over 1999–2011 and thus does not allow for testing pretrends in that
outcome variable.
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period.26 But including heterogeneous regional trends makes this effect disappear. This pattern
of findings suggests that the regional baseline covariates are necessary for the identification of the
empirical results. In either pretrend analysis or falsification test, the most restrictive manufacturing
employment control does not make a difference.

C. Alternative IV

A reasonable concern is that the measured US imports from China, used to construct the main
instrument, could be correlated with domestic US demand shocks rather than reflecting external
supply factors external to the US labor and product markets, possibly resulting in biased estimates.
As detailed in Section 4.2.2, an alternative instrument uses China’s import growth in eight other
high-income countries as detailed in Equation 4.3. The idea is that the other high-income face
a similar supply shock from China, while are possibly subject to different idiosyncratic industry-
specific demand shocks. Intuitively, China’s trade flows to other countries than the US are plausibly
less determined by factors internal to the US and more by factors related to China’s opening to
the world market.

The alternative instrument is explored by estimating the main specification,

∆Y CZ
iτ = ατ + β∆MFCZiτ + γXi0 + eiτ (4.11)

but instrumenting the changes the manufacturing as a share of total employment, ∆MFCZiτ , with
the contemporaneous change in China’s imports elsewhere, ∆IPOCZiτ .

Table D.1 reports the results from the alternative IV estimation both for high-school dropout
rates 1991–2011 and college mobility 1999–2011. The point estimates are almost identical to the
main estimates of Tables 4.5 and 4.6. The first stage relationship is equally strong with F-statistic
155.0 and adjusted R2 of .22 without baseline controls, and F-statistic 71.7 and adjusted R2 of .39
with a full set of baseline controls.

D. Reduced Form Estimates

Interpreting the IV estimates as the effect of manufacturing decline requires assuming that China’s
trade exposure affected educational outcomes exclusively through its effect on manufacturing em-
ployment. Recall, that the variations in the instrument come exclusively from differential manu-
facturing industry compositions between places. Therefore, from this perspective, the assumption
is not unreasonable (see Section 4.2.2 for further discussion). But although most of the effect
are likely to translate through the manufacturing industry, the increased competition could affect
the community and thus education through manufacturing industry profits and reduced demand
for suppliers rather than employment. Based on other studies these income- and public finance
effects would likely reduce human capital investment, and bias the estimates downwards (see, for

26A significant predictive effect for 1970–1980 from China’s imports to manufacturing employment is similarly
found in Autor et al. (2013), p. 2135.
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example, Davis and von Wachter 2011, for a review).27 For conceptual clarity, in addition to main
IV estimates, I provide the reduced form estimates from trade to educational outcomes, both for
high-school dropout rates and college mobility.28 In particular, I estimate the following model:

∆Y CZ
iτ = ατ + β∆IPCZiτ + γXi0 + eiτ (4.12)

where the dependent variable is either ∆HSit, the annual change in the high-school dropout rate
in CZ i over time period τ , or ∆CM25,i, the annual change in the 25th percentile college mobility
(CM) between the cohorts of 1984 and 1993 in CZ i. The term Xi0 is a set of CZ-by-sector start-
of-period controls; ατ is the time effect; and eiτ is the error term. The explanatory variable in this
model is ∆IPCZiτ , the annual change in exposure to Chinese imports within local industries over
period τ in CZ i. The coefficient β reveals the impact of trade exposure on educational outcomes.
The standard errors are clustered by commuting zone to allow for over-time error correlations.
Table D.2 presents the results.

In Columns 1 and 2, the reduced form estimates have the same signs and similar magnitudes
than the IV estimates for both high-school dropout rates and college mobility. As before, including
baseline control for the manufacturing employment share makes the college mobility coefficient
insignificant. However, the coefficient is still large, positive, and significant when including all
other baseline controls.

In Columns 3 and 4, the import exposure instrument itself is instrumented with the alternative
instrument constructed from Chinese imports to eight other high-income countries, as in Autor
et al. (2013). This specification produces larger results, the estimates increase almost by a factor
of two. This suggests that quantitative results are somewhat sensitive to the choice of particular
instrument, but qualitatively show the same pattern.

E. Log-Log Specification and Baseline Education

So far, the analysis has adjusted for the baseline differences by considering first differences of the
variables, controlling for some baseline characteristics of the places, and using the IV strategy.
A concern might be still that the places with initially higher high-school dropout rates might
have larger response to manufacturing decline. And these places could be the same places where
manufacturing declined due to exposure to China’s trade. This could bias the results upwards.
Now, I consider two extensions to address this. The following discussion focuses on the high-school
dropout rates, because the college mobility results with this research design were inconclusive.

First, I estimate the main specification in logarithms:

log(∆HSCZiτ ) = ατ + βlog(∆MFCZiτ ) + γXi0 + eiτ , (4.13)
27The reduced form estimates are also less sensitive to measurement error.
28Note that simply controlling for, say changes in the unemployment rate would be bad control, since those

changes would most likely be caused by the manufacturing industry exposure to China’s trade.
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with the same notation, variables, and instrumentation as earlier. This specification considers rela-
tive changes in manufacturing and the high-school dropout rate. Table D.3 reports the results. The
estimates are similar in sign, significance, and magnitude to the main results that were estimated
in percentage points. The estimate –.498 in column 2 means that a 1 percentage (relative) decline
in the manufacturing share of total employment decreases the high-school dropout rate among a
CZ’s 16- to 19-year-old population by .498 percentages.

Second, I control for the baseline high-school dropout rate:

∆HSCZiτ = ατ + β∆MFCZiτ + γXi0 +HSCZit + eiτ , (4.14)

where HSCZit controls are computed in 1991 for the 1991–99 period and in 1999 for the 1999–2011
period. Now initial high-school dropout rate is used both to compute the dependent variable and
as a control variable. While this is a different model than the main specification, the key idea is
making treated and control units comparable on lagged outcomes.29 Table D.3 reports results from
this specification. The estimates show more dispersion, but are in line with the earlier results. The
preferred estimate with full set of baseline controls is almost unchanged.

4.5 Exploring the Mechanism

A. Rural vs. Urban

Are the effects of manufacturing decline on children’s education similar around the US, or are the
effects different in rural versus urban America? To study this, I estimate interactions between CZ
manufacturing decline and the CZ being located in a rural part of the US. The US Census measures
the share of rural population in each US county based on where people work (Ratcliffe et al., 2016).
I match this data to CZs weighting by the population of each county. I define a rural CZ as a place
where more than 50 percent of the population lives in a rural setting, and compute an indicator
variable for it. I explore different thresholds up until 90 percent, with no large impact on results.

Table 4.9 presents the results for rural-urban interaction analysis. The rural-interaction co-
efficient is small, insignificant, and has only a minor effect on the main coefficient. While not
decisive, the results suggest the rural-urban distinction does not play a key rule in channeling the
effect. This is a substantial finding: many commentators feel that manufacturing decline and the
issues associated with it are particularly an issue of rural America (Economist, 2017). But the
implications for children’s education appear similar in both.

B. Correlates of the Intergenerational Effects

What characterizes the places where manufacturing decline tends to lead to lower high-school
dropout rates? One would expect that some place-based characteristics would matter. For example,
places with high income- and racial segregation might not be able to channel students to high-school

29Imbens and Wooldridge (2009) provide an informed discussion on the details of this.
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after a decline in manufacturing employment. Again, places equipped with generous educational
resources might see larger decreases in high-school dropout rates after manufacturing jobs have
declined. But the following results show that neither is true—the opposite is.

To produce these results, I estimate interactions between CZ manufacturing decline and a large
set of CZ’s baseline community factors that have been discussed in the sociology and economics
literature, such as segregation and inequality. Because most of these factors are relatively stable
over time, and I only have data for essentially one period, I focus on cross-sectional characteristics.
The estimation is in stacked annualized decadal differences over 1991–2011:

∆HSCZiτ = ατ + β1∆MFCZiτ + β2(∆MFCZiτ ×Ki) + β3Ki + γXi0 + eiτ (4.15)

The outcome variable is ∆HSit, the annual change in the high-school dropout rate in CZ i; Ki is
the time-invarying interacted community variable included in each model one at a time, Xi0 is a
set of CZ start-of-period controls; ατ is the time effect; and eiτ is the error term. Again, the main
explanatory variable in this model is ∆MFCZiτ , the annual change in the manufacturing–to–total
employment ratio over period τ in CZ i. The key parameter of interest in this model is β2, the
coefficient of the interaction term. With two endogenous variables, I instrument for the decline in
manufacturing employment share using the contemporaneous growth of China’s imports to the US,
∆IPCZiτ , as specified in Section 4.2.2, and with the interaction term between the fixed community
variable and China’s imports, ∆IPCZiτ ×Ki. The analysis of community characteristics is limited to
the 2SLS estimates on high-school dropouts since the estimates for college mobility are considerably
more sensitive to specific controls and regional trends.

Tables D.4 and D.5 describes the set of interacted variables and their sources. The data on
local factors was compiled by Chetty et al. (2014). The authors provide a comprehensive overview
on variable definitions and measurement.

Two main results emerge (Tab. 4.10). First, segregation and share of black population strongly
interact with the positive effects of manufacturing decline on education. That is, the effects of
manufacturing decline are largest in the areas with high segregation and in those with larger
African American populations. This is true for several different measures of segregation. While
the risk of false rejections of the null is present with multiple testing, the fact that many different
measures of segregation produce a similar result supports this finding.

Second, educational resources—student-teacher ratio and school expenditure per student—do
not significantly interact with the main effects. An exception is the number of colleges in CZ,
which has a predictive effect of making the manufacturing effect smaller. Additionally, some other
insignificant coefficients are noteworthy. For example, religion and social capital (Putnam 1995;
measured as activities related to civil society) are both strong predictors of upward income mobility
(Chetty et al., 2014). However, they do not interact with the effects of manufacturing decline on
children’s education.

What the main results seem to suggest is that manufacturing jobs—or a broader working-
class community—keep a pathway open for teenagers to drop out of high school. When those jobs
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decline, the pathway declines, too. Now this effect appears to be stronger in more segregated places.
Perhaps the factors behind segregation, or segregation itself, support the pathway. Sociological
work by Willis (1977), among others, supports this hypothesis.

Compared to the previous literature on the determinants of children’s outcomes, these interac-
tions show significance for very different factors than, for example, for which Chetty et al. (2014)
find positive predictive power. In particular, segregation strongly correlates with low upward mo-
bility in a cross section of CZs. And educational resources strongly predict high mobility (Chetty
et al., 2014). Perhaps surprisingly, manufacturing decline has the highest effect in those places that
on average fail to produce upward mobility of income.30

The results suggest that trade-induced manufacturing decline leads to lower high-school dropout
rates—especially so in segregated places and those with larger share of black residents. As matter
of correlation, local investment level in schooling does not predict the effect. These are new and
puzzling findings.

4.6 Discussion

What explains the main results? The standard Becker (1964) human capital investment model
compares the marginal costs and benefits of education. The key primitive is the economic returns
to education. The model has lead many labor economists to argue that educational investment
would increase vis-à-vis increasing income inequality (Ananat et al., 2017). The simplest model
argues that manufacturing workers’ children would notice that manufacturing no longer offers stable
jobs, and would obtain higher education than what their parents had.31

The sociological account of Willis (1977) offers a complementary view, highlighting how chil-
dren inherit occupations and class from their parents. It argues that predominantly working class
communities—places where the share of manufacturing employment is high—help children embrace
an anti-school mentality and prepare them for low-education working-class employment. For ex-
ample, Willis (1977) argues, working-class fathers may act as role-models to their children and
through that channel affect the children’s educational choices. Extrapolating from Willis (1977)’s
observations in working-class communities, a decline in manufacturing could lead to a decrease in
such role models and translate to an increase in children’s education. The results suggests that this
may have been the case.32 Willis’ theory could also help reconcile the interaction effects between

30In the cross-sectional evidence of Chetty et al. (2014), the share of manufacturing employment only weakly and
negatively correlates with upward mobility.

31Goldin and Katz (2000) describe the lack of manufacturing jobs and its consequences on education—in the US
prairie states of 1910: “Youths in these states could not have worked in industry, for there was scant manufacturing
– –. And although many farmers would have preferred that their children remain on the land, most knew it would
prove impossible for all but one. The best they could do was to endow their children with education to be mobile.”

32Commenting on the work in the line of Willis (1977), Vance (2016), pp. 246, confirms this observation in his
personal memoir of growing up in rural America: “working-class boys like me do much worse in school because
they view schoolwork as a feminine endeavor.” Vance (2016), pp. 244, also suggests—from his own experience and
observations—that psychological and social factors could be much more important than traditional economic factors:
“My elementary and middle schools were entirely adequate – –. I had Pell Grants and government subsidized low-
interest student loans that made college affordable. The real problem for so many of these kids is what happens (or
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local segregation and manufacturing decline. Perhaps working-class culture was stronger in the
areas with higher segregation.

In contrast, available evidence on job loss and income shocks indicates that negative shocks
lead to negative effects on children’s education (Davis and von Wachter, 2011). This is clearly seen
in the scarring effects of parental job loss observed by Oreopoulos et al. (2008). That literature
suggests that education investment benefits from the resources that are available to the child. In
addition to parental effects, Wilson (1996) in “When Work Disappears” and earlier Whyte (1943)
point to the loss of jobs, fuelled by decline in manufacturing, as a driver of social anomie and
community-level distress in poor neighborhoods and increasing childhood poverty (Autor et al.,
2017).

These two lines of thinking—positive factors of Becker (1964) and Vance (2016), and the neg-
ative factors of Oreopoulos et al. (2008) and Wilson (1996)—highlight a tension between income
and opportunity shocks. In the empirical literature, this tension is perhaps clearest in the case
of Indian casino openings. Federal legislation in 1988 allowed Indian tribes to open casinos in
many states, leading to the opening of nearly new 400 casinos in the US. It had both components:
the income shock—the casino openings initiated a government transfer scheme giving a portion
of the casino profits to individuals with preexisting American Indian status—and the opportunity
shock—change in the local employment opportunities. The two components appear to have had
opposite effects (Akee et al., 2010; Evans and Kim, 2008). Akee et al. (2010) find that children
in the households affected by the the government income transfer program had higher levels of
education in their young adulthood. In contrast, Evans and Kim (2008) find that—within the
same communities—young adults responded to the increased employment and wages of low-skilled
workers by dropping out of high school and reducing college enrollment rates. This was despite
presence of the income transfer scheme and additional college tuition subsidy programs of many
tribes. This paper and a larger literature suggest that both results could be true at the same time
(see, for example, Black et al. 2005; Atkin 2016; Shah and Steinberg 2017).33

In summary, while places experiencing manufacturing job losses face reductions in the mon-
etary and social resources available to children, perhaps changing incentives and social structure
counteract that effect to produce the positive results on education found in this paper. This ad-
justment, however, may be incomplete. This paper contributes to the growing evidence on the
interplay between local labor-market conditions and educational decisions (Atkin, 2016; Shah and
Steinberg, 2017), going beyond the direct effects of parental job loss.

Looking from a different perspective, a large literature discusses regional divergence of the US
(Ganong and Shoag, 2017), and why we tend to observe a permanent decline in a place hit by a
negative economic shock (Blanchard and Katz, 1992; Dix-Carneiro and Kovak, 2017). Previous
scholars have investigated the role of social distress (Wilson, 1996; Ananat et al., 2017), imperfect

doesn’t happen) at home.”
33The tension between income and opportunity shocks has not been generally clear in the research literature.

For example, Akee et al. (2010) suggest that the contrary results by Evans and Kim (2008) arise from identification
issues from focusing on community-level variations (this is possible). But local employment opportunity effects exist
at the community level and therefore the natural observation unit is the community, not the individual.
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mobility, declining housing prices, generous social welfare payments (Ganong and Shoag, 2017),
and human capital externalities (Dix-Carneiro and Kovak, 2017). The evidence is inconclusive.
This paper explores a new channel: human capital investment of the next generation. Local job
destruction could lead the youth off the path to high school and college. In the long run, this could
lead to lower local productivity and long-term decline. But the results of this research suggest
otherwise: a decline in formal education after an economic shock does not seem to be a channel
for local long-term decline and regional divergence. Something else is.

4.7 Conclusion

This paper provides new evidence on the impact of manufacturing decline on children. To do so,
it considers variations in local employment structure—characterizing left-behind places and lost
manufacturing jobs—high-school dropout rates, and college access in the US over 1990–2010. To
establish causal inference, the paper uses variations in trade exposure from China following its
entry to the WTO as an instrument for local manufacturing declines in the US.

The results suggest that negative shocks to manufacturing labor demand, measured at the local
labor market level, had large positive effects on children’s education, decreasing high-school dropout
rates and possibly increasing college access. The magnitudes of the estimates suggest that for every
3-percentage-point decline in manufacturing as a share of total employment, high-school dropout
rate declined by 1 percentage point. These findings contrast with the literature on job loss that has
emphasized negative effects from economic shocks on children. The results are consistent with the
idea that the manufacturing decline increased returns and decreased opportunity costs of education,
and with sociological accounts linking working-class environment and children’s education. These
effects perhaps counteract the negative effects from income loss. The effects are largest in the areas
with high segregation and in those with larger African American populations. This set of findings
is new—and a first step in quantifying the intergenerational effects of lost manufacturing jobs due
to technological change and globalization.

Children face the collateral damage from the adults’ world. And the long-run consequences
depend on them. That’s why this research matters.
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Figure 4-1: Changes in US manufacturing and non-manufacturing employment, 1991–2011. Em-
ployment data are normalized to 1991. Source: CBP.
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Figure 4-2: US-China bilateral trade flows, 1991–2011. Source: UN Comtrade Database. Trade
volumes are deflated to 2007 US dollars using the PCE price index. China’s import penetration
is defined as China’s manufacturing imports to the US divided by US domestic manufacturing
output plus imports minus exports. Export data are available only from 1992 onward. The import
penetration ratio series ends in 2009 because the NBER-CES Manufacturing Industry Database
ends in 2009.
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(a) Decline in Manufacturing Share of Employment (–) (CBP, US Census). (b) Increase in Import Exposure from China (+) (UN Comtrade).

(c) Decline in High-School Dropout Rate (–) (US Census, ACS). (d) Increase in College Mobility (+) (US Tax Records via Chetty et al. 2014).

Figure 4-3: Maps. All variables are in 100 × annual changes 1991–2011, except college mobility 1999–2011. The (+) and (−) signs
indicate whether the heat map refers to increases or decreases in the variable. The variables are constructed as detailed in text.
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Figure 4-4: First-stage regression, 1991–2011. Each point represents a commuting zone (N = 722).
Manufacturing employment is computed from the CBP; population data come from the Census
Population Estimates. The annual change in commuting zone exposure to Chinese imports is a
weighted average of changes in US import exposure in 392 four-digit manufacturing industries,
where the weights are start-of-period employment shares within the commuting zone. Imports
are deflated to constant dollars using the PCE price index. Lines are fitted by OLS regression.
The 95 percent confidence interval is based on standard errors clustered on 722 commuting zones.
The slope coefficient is –2.80 with standard error 0.21 and t-statistic –13.4; the regression has an
R-squared of 0.35.
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Table 4.1: Descriptive Statistics for Manufacturing, Employment, and Population in CZs.

Mean Std. Dev. Min Max

Manufacturing–to-Total Employment Ratio (%) 1991 21.9 12.8 .10 61.4

1999 19.3 11.3 .13 57.7

2011 13.9 8.7 .26 51.3

Employment-to-Population Ratio (%) 1991 42.1 10.6 11.0 76.8

(Working age) 1999 48.01 11.8 16.3 83.0

2011 44.9 10.4 16.5 80.0

Population 1991 350,000 .95 M 1311 10.4 M

(Total) 1999 380,000 1.04 M 1213 16.6 M

2011 430,000 1.16 M 1017 18.1 M

Notes: N = 722 commuting zones. Manufacturing employment is computed from the CBP; population data come from
the Census Population Estimates. Working-age population is those between the ages of 15 and 64.

Table 4.2: Descriptive Statistics for Education in CZs.

Mean Std. Dev. Min Max

High-School Dropout Rate 1990 10.3 4.2 .36 31.7
2000 9.2 3.9 .41 22.4
2011 6.0 3.3 .38 30.2

College Mobility 2002 32.5 8.4 13.7 61.2
2011 33.2 7.7 12.1 58.2

Notes: N = 722 commuting zones for high-school dropout rates, 616 for college mobility,
The variables are expressed in percentages. High-school dropout rate is computed from the
US Census for 1990 and 2000, and from the ACS for 2011 as a five-year average. College
mobility is CZ-level average of college attendance of children with parents at the 25th
percentile in the national distribution of income. The college mobility measure comes from
Chetty et al. (2014) and is based on the US tax records. The years 2002 and 2011 refer to
the standard college-starting years of cohorts born in 1984 and 1993.
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Table 4.3: Changes in Commuting Zone Manufacturing Share, Import Exposure, High-School Dropout Rate, and College Mobility.

1991–99 1999–2011

Mean Std. Dev. Min Max Mean Std. Dev. Min Max

∆ in Manufacturing-to-Total Employment Ratio -.31 .57 -5.34 3.14 -.45 .43 -2.83 .97

∆ in Exposure to China’s Imports .06 .08 .00 .95 .09 .09 .00 .69

∆ in High-School Dropout Rate -.10 .29 -1.96 1.43 -.30 .35 .35 1.58

∆ in College Mobility – – – – .11 .75 -3.12 2.38

Notes: N = 1444 = 2 × 722 commuting zones. All variables are 100× annual change in the measure. Manufacturing employment is computed from
the CBP; population data come from the Census Population Estimates. The annual change in commuting zone exposure to Chinese imports is a
weighted average of changes in US import exposure in 392 four-digit manufacturing industries, where the weights are start-of-period employment
shares within the commuting zone. Imports are deflated to constant dollars using the PCE price index. High-school dropout rate is computed from
the US Census for 1990 and 2000, and from the ACS for 2011 as a five-year average. College mobility is CZ-level average of college attendance of
children with parents at the 25th percentile in the national distribution of income. The college mobility measure comes from Chetty et al. (2014) and
is based on the US tax records. The annual change in college mobility in 1999–2011 refers to the annual change in college mobility between cohorts
born in 1984 and 1993.
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Table 4.4: The First Stage: Estimates of China’s Import Effects on Commuting Zone Manufacturing Decline over 1991–2011.

Manufacturing Share (1) (2) (3) (4) (5) (6)

Commuting zone import exposure -2.58*** -2.54*** -2.18*** -1.25*** -.91*** -.87***

(.23) (.24) (.24) (.24) (.23) (.22)

F-Statistics 117.4 76.5 36.1 216.4 180.6 70.5

Adjusted R2 0.21 0.21 0.29 0.32 0.33 0.40

Time effect controls – Yes Yes – Yes Yes

Baseline controls – – Yes – – Yes

Manufacturing share baseline – – – Yes Yes Yes

Notes: First stage regression. Each column reports results from stacking changes in commuting zone manufacturing-to-total employment ratios and in exposure
to Chinese imports within local industries over the periods 1991–99 and 1999–2011. The dependent variable is the annual change in the manufacturing-to-total
employment ratio (N = 1,444 = 722 commuting zones × 2 periods). The explanatory variable an employment-weighted average of annualized changes in
exposure to Chinese imports within local industries, as detailed in the text. Manufacturing employment is computed from the CBP; population data come from
the Census Population Estimates. Baseline controls include population counts, employment-to-population ratios, and region controls for nine regional census
divisions. The commuting zone baseline controls, including the manufacturing share control, are computed in 1991 for the 1991–99 period and in 1999 for the
1999–2011 periods. Standard errors are clustered by commuting zone.

∗p < 0.10

∗ ∗ p < 0.05

∗ ∗ ∗p < 0.01
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Table 4.5: OLS and 2SLS Estimates of Manufacturing Decline Effects on Commuting Zone High-School Dropout Rates 1991–2011.

High-School Dropout Rate OLS 2SLS

(1) (2) (3) (4) (5) (6) (7) (8)

A. Excluding Manufacturing Share Control at the Baseline

Commuting zone manufacturing decline -.109*** -.107*** -.107*** -.044** -.227*** -.228*** -.232*** -.162***
(.018) (.018) (.018) (.021) (.031) (.030) (.030) (.034)

Time effects Yes Yes Yes Yes Yes Yes Yes Yes

Population counts at the baseline – Yes Yes Yes – Yes Yes Yes

Employment-to-population ratios at the baseline – – Yes Yes – – Yes Yes

Census division indicators – – – Yes – – – Yes

B. Including Manufacturing Share Control at the Baseline

Commuting zone manufacturing decline -.082*** -.075*** -.0733*** -.030 -.433*** -.416*** -.415*** -.366**
(.021) (.021) (.021) (.025) (.131) (.132) (.130) (.125)

Time effects Yes Yes Yes Yes Yes Yes Yes Yes

Population counts at the baseline – Yes Yes Yes – Yes Yes Yes

Employment-to-population ratios at the baseline – – Yes Yes – – Yes Yes

Census division indicators – – – Yes – – – Yes

Notes: Each column reports results from stacking changes in commuting zone high-school dropout rates and declines in manufacturing-to-total employment
ratios over the periods 1991–99 and 1999–2011. The dependent variable is the annual change in the high-school dropout rate (N = 1,444 = 722 commuting
zones × 2 periods). The manufacturing decline is instrumented with the commuting zone import exposure from China’s imports. The instrument is an
employment-weighted average of annualized changes in exposure to Chinese imports within local industries, as detailed in the text. High-school dropout rate is
computed from the US Census for 1990 and 2000, and from the ACS for 2011 as a five-year average. Manufacturing employment is computed from the CBP;
population data come from the Census Population Estimates. The commuting zone baseline controls are computed in 1991 for the 1991–99 period and in 1999
for the 1999–2011 periods. Census division indicators control for nine regional census divisions. Standard errors are clustered by commuting zone.
∗p < 0.10

∗ ∗ p < 0.05

∗ ∗ ∗p < 0.01
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Table 4.6: OLS and 2SLS Estimates of Manufacturing Decline Effects on Commuting Zone College Mobility 1999–2011.

College Mobility OLS 2SLS

(1) (2) (3) (4) (5) (6) (7) (8)

A. Excluding Manufacturing Share Control at the Baseline

Commuting zone manufacturing decline .397*** .409*** .407*** .316*** .360*** .378*** .329*** .232

(.076) (.076) (.076) (.082) (.124) (.123) (.124) (.142)

Population counts at the baseline – Yes Yes Yes – Yes Yes Yes

Employment-to-population ratios at the baseline – – Yes Yes – – Yes Yes

Census division indicators – – – Yes – – – Yes

B. Including Manufacturing Share Control at the Baseline

Commuting zone manufacturing decline .387*** .361*** .395*** .254** .236 .138 .122 -.122

(.101) (.101) (.102) (.103) (.278) (.285) (.283) (.301)

Population counts at the baseline – Yes Yes Yes – Yes Yes Yes

Employment-to-population ratios at the baseline – – Yes Yes – – Yes Yes

Census division indicators – – – Yes – – – Yes

Notes: Each column reports results from regressing changes in commuting zone measures of absolute college mobility on decline in manufacturing-to-total
employment ratios over the period 1999–2011. The dependent variable is the annual change in college mobility between cohorts born in 1984 and 1993 (N = 616
commuting zones). College mobility is CZ-level average of college attendance of children with parents at the 25th percentile in the national distribution. The
college mobility measure comes from Chetty et al. (2014) and is based on the US tax records. The manufacturing decline is instrumented with the commuting
zone import exposure from China’s imports. The instrument is an employment-weighted average of annualized changes in exposure to Chinese imports within
local industries, as detailed in the text. Manufacturing employment is computed from the CBP; population data come from the Census Population Estimates.
The commuting zone baseline controls are computed in 1991 for the 1991–99 period and in 1999 for the 1999–2011 periods. Census division indicators control
for nine regional census divisions. Standard errors are clustered by commuting zone.
∗p < 0.10

∗ ∗ p < 0.05

∗ ∗ ∗p < 0.01

159



Table 4.7: Pretrends: 2SLS Estimates of Manufacturing Decline Effects on High-School Dropout Rates over 1991–2011.

High-School Dropout Rate (1) (2) (3) (4) (5) (6)

Manufacturing decline -.227*** -.216*** -.172*** -.433*** -.481*** -.418***
(.031) (.034) (.036) (.142) (.126) (.129)

Pretrend controls – Yes Yes – Yes Yes

Baseline controls – – Yes – – Yes

Manufacturing share baseline – – – Yes Yes Yes

Notes: Pretrends. Each column reports results from stacking changes in commuting zone high-school dropout rates and declines in
manufacturing-to-total employment ratios over the periods 1991–99 and 1999–2011. The dependent variable is the annual change in the
high-school dropout rate (N = 1,444 = 722 commuting zones × 2 periods). The manufacturing decline is instrumented with the commuting
zone import exposure from China’s imports. The instrument is an employment-weighted average of annualized changes in exposure to
Chinese imports within local industries, as detailed in the text. High-school dropout rate is computed from the US Census for 1990 and
2000, and from the ACS for 2011 as a five-year average. Manufacturing employment is computed from the CBP; population data come from
the Census Population Estimates. All models include a control for time trend. Pretrend controls are annual changes in the high-school
dropout rate over 1970–80 and 1980–90 computed from the US Census. Baseline controls include population counts,
employment-to-population ratios, and region controls for nine regional census divisions. The commuting zone baseline controls, including
the manufacturing share control, are computed in 1991 for the 1991–99 period and in 1999 for the 1999–2011 periods. Standard errors are
clustered by commuting zone.
∗p < 0.10

∗ ∗ p < 0.05

∗ ∗ ∗p < 0.01
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Table 4.8: Falsification Test: 2SLS Estimates of Manufacturing Decline Effects on High-School
Dropout Rates over 1970–2011.

High-School Dropout Rate 1970–80 1980–90 1991–99 1999–2011

(1) (2) (3) (4)

A. Excluding Manufacturing Share Control

Manufacturing decline 1999–2011 -.314*** .016 -.088** -.288***
(.055) (.058) (.042) (.045)

With regional controls -.044 .048 -.062 -.179***
(.055) (.060) (.046) (.050)

B. Including Manufacturing Share Control

Manufacturing decline 1999–2011 -.080 -.213* -.145 -.487***
(.141) (.126) (.107) (.138)

With regional controls .206 -.091 -.111 -.361***
(.131) (.126) (.114) (.141)

Notes: Falsification test. Each column reports results from a separate specification regressing changes in
commuting zone high-school dropout rates in the specified decade and declines in manufacturing-to-total
employment ratios over the period 1999–2011. The dependent variable is the annual change in the
high-school dropout rate (N = 722 commuting zones over one decade). The manufacturing decline is
instrumented with the commuting zone import exposure from China’s imports. The instrument is an
employment-weighted average of annualized changes in exposure to Chinese imports within local
industries, as detailed in the text. High-school dropout rate is computed from the US Census for
1970–2000, and from the ACS for 2011 as a five-year average. Manufacturing employment is computed
from the CBP; population data come from the Census Population Estimates. The commuting zone
baseline manufacturing controls are computed in 1999 for the 1999–2011 period. Region controls control
for nine regional census divisions. Panels A and B contain no additional controls. Standard errors are
clustered by commuting zone.
∗p < 0.10

∗ ∗ p < 0.05

∗ ∗ ∗p < 0.01
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Table 4.9: Rural vs. Urban: 2SLS Estimates of Trade Exposure Effects on High-School Dropout
Rate 1991–2011 and College Mobility 1999–2011.

Rural vs. Urban 2SLS

(1) (2)

A. High-School Dropout Rate

Commuting zone manufacturing decline -.224*** -.407***

(.048) (.129)

Interaction: manufacturing decline × rural -.027 .029

(.061) (.067)

Baseline manufacturing emp. share – Yes

Other baseline controls – Yes

B. College Mobility

Commuting zone manufacturing decline .566*** .100

(.142) (.261)

Interaction: manufacturing decline × rural -.167 -.21

(.235) (.235)

Baseline manufacturing emp. share – Yes

Other baseline controls – Yes

Notes: Rural vs. Urban. In Panel A, each column reports results from stacking the logarithms of changes in
commuting zone high-school dropout rates and declines in manufacturing-to-total employment ratios over the
periods 1991–99 and 1999–2011. The dependent variable is the annual change in the high-school dropout rate (N
= 1,444 = 722 commuting zones × 2 periods). High-school dropout rate is computed from the US Census for
1990 and 2000, and from the ACS for 2011 as a five-year average. In Panel B, each column reports results from
regressing changes in commuting zone measures of absolute college mobility and declines in
manufacturing-to-total employment ratios over the periods 1991–99 and 1999–2011. The dependent variable is
the annual change in college mobility between cohorts born in 1984 and 1993 (N = 616 commuting zones).
College mobility is CZ-level average of college attendance of children with parents at the 25th percentile in the
national distribution. The college mobility measure comes from Chetty et al. (2014) and is based on the US tax
records. In both Panels A and B, manufacturing decline is instrumented with the commuting zone import
exposure from China’s imports. The instrument is an employment-weighted average of annualized changes in
exposure to Chinese imports within local industries, as detailed in the text. Both panels include interaction
terms with US Census rural area indicator as in text. The commuting zone baseline controls are computed in
1991 for the 1991–99 period and in 1999 for the 1999–2011 period. Manufacturing employment is computed from
the CBP; population data come from the Census Population Estimates. The other baseline controls include
population counts, employment-to-population ratios, and region controls for nine regional census divisions. All
models include a time trend. Standard errors are clustered by commuting zone.
∗p < 0.10

∗ ∗ p < 0.05

∗ ∗ ∗p < 0.01
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Table 4.10: Geographical Correlates of the Intergenerational Effects of Manufacturing Decline.

2SLS

Interaction term Main effect Interaction

Segregation and Race

Fraction Black -0.213* (0.112) -0.820** (0.363)

Income Segregation -0.311** (0.131) -2.239* (1.177)

Segregation of Affluence (>p75) -0.308** (0.131) -2.154** (1.063)

Fraction with Commute < 15 Mins -0.596*** (0.143) 0.851*** (0.243)

Income Inequality

Household Income per Capita -0.190 (0.242) -0.000 (0.000)

Gini coefficient -0.281 (0.192) -0.214 (0.331)

Fraction Middle Class (between p25 and p75) -0.573** (0.280) 0.472 (0.427)

K-12 Education

School Expenditure per Student -0.465** (0.200) 0.021 (0.034)

Student Teacher Ratio -0.053 (0.251) -0.021 (0.015)

Test Score Percentile (Income adjusted) -0.300*** (0.110) -0.002 (0.004)

College

Number of Colleges per Capita -0.577*** (0.156) 5.757*** (1.823)

College Tuition -0.458*** (0.164) -0.000 (0.000)

College Graduation Rate (Income Adjusted) -0.483*** (0.161) -0.000 (0.000)

Social Capital

Social Capital Index -0.362*** (0.126) 0.038 (0.029)

Fraction Religious -0.427** (0.167) 0.107 (0.292)

Violent Crime Rate -0.317** (0.139) -42.456 (36.070)

Local Labor Market

Teenage (14-16) Labor Force Participation -0.475*** (0.162) 39.034* (23.495)

Notes: Each column reports results from stacking the logarithms of changes in commuting zone high-school
dropout rates and declines in manufacturing-to-total employment ratios over the periods 1991–99 and
1999–2011, and including an interaction term and main effect for the indicated variable (N = 1,444 = 722
commuting zones × 2 periods). The baseline controls include manufacturing share of employment, population
counts, employment-to-population ratios, and region controls for nine regional census divisions. All models
include a time trend. Standard errors are clustered by commuting zone. The variables are detailed in Tables D.4
and D.5. Further details are provided in text.
∗p < 0.10

∗ ∗ p < 0.05

∗ ∗ ∗p < 0.01 163
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A.1 Winners-Losers: Supplementary Figures and Tables
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Figure A-1: The First Stage: The Effect of Winning a Subsidy on Granted and Received Subsidies.

Notes: Event-study estimates from Equation 1.1. Panel (a): The outcomes are (a) any subsidy granted and (b)
received, measured from the Finnish Statistics on Business Subsidies. Event time τ = 0 refers to the application
year. Back to Section 1.5.
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Figure A-2: Skill Effects: Education Groups.

Notes: Difference-in-differences estimates from Equation 1.2. The right-hand side reports means at τ = −3. The
data are from Finnish educational registers. Education groups are defined in Appendix A.5. Back to Section 1.5.
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Figure A-3: Skill Effects: Occupation Groups.

Notes: Difference-in-differences estimates from Equation 1.2. The right-hand side reports means at τ = −3. The
data are from the Finnish occupation registers. Occupation groups are defined in Appendix A.5. The shares do not
sum to 100% because some workers do not have occupational info, i.e., the denominator includes all workers in the
firm. Back to Section 1.5.
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Figure A-4: Skill Effects: Cognitive Performance.

Notes: Difference-in-differences estimates from Equation 1.2. The right-hand side reports means at τ = −3.
The estimates are in percentages of standard deviations. The data are from the Finnish Defence Forces.
Back to Section 1.5.
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Figure A-5: Skill Effects: School Performance.

Notes: Difference-in-differences estimates from Equation 1.2. The right-hand side reports means at τ = −3. The
estimates are in percentages of standard deviations. The data are from the Secondary Education Application
Register and the Finnish Matriculation Examination Board Register. Back to Section 1.5.
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Figure A-6: Skill Effects: Personality.

Notes: Difference-in-differences estimates from Equation 1.2. The right-hand side reports means at τ = −3.
The estimates are in percentages of standard deviations. The data are from the Finnish Defence Forces.
Back to Section 1.5.
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Figure A-7: Skill Effects: Demographics.

Notes: Difference-in-differences estimates from Equation 1.2. The right-hand side reports means at τ = −3. The
data are from the Finnish worker and population registers. Back to Section 1.5.
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Panel A: Above Median.
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Panel B: Below Median.
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Figure A-8: Skill Effects: Tasks.

Notes: Difference-in-differences estimates from Equation 1.2. The right-hand side reports means at τ = −3.
Median refers to the median task intensity in the Finnish labor force. For example, the first row indicates that
74.9% of workers in our sample firms are in an occupation times industry cell that is above the median in routine
task content. The treatment group increases the share of these workers by a statistically insignificant 1% compared
to the control group. The shares do not sum to 100% because some workers do not have occupational info (the
denominator includes all workers in the firm). The data are from the Finnish occupation registers and the
European Working Conditions Survey (EWCS). Back to Section 1.5.
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Figure A-9: Automated (left) vs. Non-Automated (right) Technologies from Text Data.

Notes: Difference-in-differences estimates from Equation 1.2. Automated vs. non-automated technologies are measured from text data as described in Section
1.3 and Appendix A.5. Automated (N): Treatment 678, Control 30. Non-Automated (N): Treatment 1207, Control 116. Back to Section 1.7.
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Figure A-10: Automated (left) vs. Non-Automated (right) Technologies from Customs Data.

Notes: Difference-in-differences estimates from Equation 1.2. Automated vs. non-automated technologies are measured from customs data as described in
Section 1.3 and Appendix A.5. A project is classified as automated if over 50% of the imported machinery are automated technologies. A project is classified as
non-automated if over 50% of the imported machinery are non-automated technologies. Automated (N): Treatment 220, Control 146. Non-Automated (N):
Treatment 319, Control 146. Back to Section 1.7.
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Figure A-11: Patents: Share of Patenting Firms.

Notes: The share of patenting firms by year among subsidy applicant firms. Patent information comes from the
Finnish Patent Database. Event time τ = 0 refers to the subsidy application year. Back to Section 1.6.2.
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(a) Machinery Investment.
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(b) Employment.
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Figure A-12: Raw Means: Machinery Investment, Employment, and Education.

Notes: Means over time for the main treatment and control groups (winners vs. losers). Machinery investment in
EUR, employment in % relative to τ = −3, and education in years. The patterns in the main control group are
similar to the patterns in a matched non-applicant control group as shown by Figure A-29. Back to Section 1.7.
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(a) Firm Survival Based on the Firm Register.
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(c) Firm Survival Based on the Firm Register.
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(d) Firm Survival Based on Worker Flows.

Figure A-13: Firm Survival Effects.

Notes: Group means and event-study estimates from Equation 1.1. Panels (a, c): Survival is measured from
whether the firm ID exists in the firm register. Panels (b, d): Survival is extended to include mergers and
acquisitions (and other cases the firm ID changes), where at least 50% of workers continue under the same firm ID.
The main estimates are reported for a balanced sample over the 5-year window. The estimates are robust to a
non-balanced sample, shown in Table A.14. Back to Section 1.7.
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Table A.1: Summary Statistics: Benchmarking to All Manufacturing.

Subsidy Sample Finnish Manufacturing

Variable Mean p10 Median p90 Mean p10 Median p90

Revenue (EUR M) 2.66 1.96 2.56 3.77 2.03 1.89 2.01 2.27
Employment 16.25 12.76 16.11 19.07 12.35 11.63 12.52 13.06
Wages (EUR K) 26.25 19.98 25.88 32.83 26.95 21.13 26.94 32.16
Labor Productivity (EUR K) 150.30 131.20 147.80 171.08 140.55 125.82 142.72 152.31
Profit Margin (%) 5.55 3.10 5.56 7.63 4.47 2.94 4.56 5.84
Employment Change (%, Five Year) 57.72 40.70 50.81 84.15 48.11 34.52 44.24 82.17
Revenue Change (%, Five Year) 74.62 44.66 74.76 96.19 59.87 30.25 54.83 101.80
Subsidy Applied (EUR K) 110.48 86.74 107.61 149.45 4.80 3.38 4.68 6.20
Subsidy Granted (EUR K) 79.53 49.82 78.51 109.14 2.58 2.13 2.62 3.27
Educ. Years 11.79 11.57 11.77 12.07 11.64 11.49 11.60 11.84
College Share (%) 15.36 13.38 15.37 17.94 14.56 13.33 14.78 15.45
Production Worker Share (%) 70.70 66.37 69.99 74.87 69.33 66.76 69.12 72.67
Number of Observations 2031 260,220
Number of Unique Firms 2031 18,501
Number of Years 16 16

Notes: Manufacturing firms include all firms that satisfy the subsidy sample’s balance-sheet-based restrictions and have over two full-time employees. The
subsidy sample is measured at event-time τ = −1. Manufacturing means are measured for each firm in a given year and collapsed to a year-level mean for all
manufacturing. These year-level means are averaged over 1994–2018. The median and the percentiles are at the year level. Subsidy applied, subsidy granted,
college share, and production worker share are not winsorized, but all other outcomes are (at top and bottom 5% level). Back to Section 1.4.1.
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Table A.2: Summary Statistics: Text Matching using Cosine Similarity.

Treatment Group Control Group Both

Variable Mean Std. Dev. Mean Std. Dev. 10p Median 90p

Revenue (EUR M) 2.26 4.44 1.68 3.85 0.13 0.72 4.68
Employment 15.77 26.04 11.15 24.65 1.10 5.90 27.40
Wages (EUR K) 21.24 8.15 19.28 10.29 6.73 21.27 29.23
Subsidy Applied (EUR K) 110.02 128.33 64.64 105.44 4.60 38.35 241.32
Subsidy Granted (EUR K) 78.31 99.14 0.00 0.00 0.00 0.34 124.65
Educ. Years 11.67 0.98 11.42 1.04 10.50 11.63 12.50
College Share (%) 15.18 16.75 11.05 16.30 0.00 10.30 33.33
Production Worker Share (%) 70.62 22.17 72.65 27.18 40.00 75.00 100.00
Observations 1508 1508 3016

Notes: All variables measured at τ = −3. Back to Section 1.4.3.
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Table A.3: Firm-Level Effects: Different Text Matching Versions.

Panel A: Coarsened Exact Matching (CEM).

(1) (2) (3) (4) (5) (6)
Machine Inv. (EUR K) Employment Revenue Educ. Years College Share Production Worker Share

Treatment 93.10∗∗∗ 0.242∗∗∗ 0.313∗∗ -0.0480 -0.000144 -0.00883
(19.93) (0.0712) (0.0956) (0.0661) (0.0105) (0.0207)

Observations 1256 1256 1256 1160 1160 1161
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Panel B: Inverse Probability Weighting (IPW).

(1) (2) (3) (4) (5) (6)
Machine Inv. (EUR K) Employment Revenue Educ. Years College Share Production Worker Share

Treatment 159.6∗∗∗ 0.359∗∗∗ 0.458∗∗∗ -0.0441 0.00547 -0.0276
(22.81) (0.0911) (0.117) (0.0848) (0.0162) (0.0300)

Observations 1812 1812 1812 1676 1676 1692
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Panel C: Cosine Similarity.

(1) (2) (3) (4) (5) (6)
Machine Inv. (EUR K) Employment Revenue Educ. Years College Share Production Worker Share

Treatment 103.9∗∗∗ 0.169∗∗∗ 0.195∗∗∗ 0.0133 -0.00224 -0.00769
(14.90) (0.0249) (0.0335) (0.0219) (0.00542) (0.00896)

Observations 3016 3016 3016 2678 2678 2678
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Difference-in-differences estimates from Equation 1.2 with different text matching versions. Back to Section 1.5.
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Table A.4: Firm-Level Effects: Different Controls.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Machine Inv. (EUR K) Employment Revenue Wages Productivity Labor Share Educ. Years College Share Prod. Work. Share

No Controls 140.9∗∗∗ 0.185∗∗ 0.261∗∗∗ -0.0553 -0.00559 -0.00242 0.0225 0.00480 -0.0235
(25.76) (0.0606) (0.0770) (0.0353) (0.0341) (0.00492) (0.0599) (0.00927) (0.0359)

Controls 1 132.4∗∗∗ 0.219∗∗∗ 0.302∗∗∗ -0.0499 -0.00379 -0.00247 0.0252 0.00587 -0.0263
(26.17) (0.0615) (0.0779) (0.0356) (0.0351) (0.00496) (0.0611) (0.00936) (0.0357)

Controls 2 114.8∗∗∗ 0.232∗∗∗ 0.314∗∗∗ -0.0481 -0.00516 -0.00202 0.0246 0.00557 -0.0256
(23.99) (0.0614) (0.0779) (0.0355) (0.0350) (0.00496) (0.0611) (0.00935) (0.0357)

Controls 3 105.0∗∗∗ 0.249∗∗∗ 0.327∗∗∗ -0.0385 -0.00670 -0.000862 0.0252 0.00572 -0.0255
(23.96) (0.0609) (0.0773) (0.0350) (0.0349) (0.00490) (0.0612) (0.00942) (0.0363)

Controls 4 41.02 0.210∗∗∗ 0.284∗∗∗ -0.0344 -0.00658 -0.000101 0.0247 0.00509 -0.0268
(22.92) (0.0607) (0.0770) (0.0351) (0.0350) (0.00493) (0.0614) (0.00946) (0.0363)

Controls 5 36.43 0.221∗∗∗ 0.299∗∗∗ -0.0319 -0.00474 -0.000143 0.0168 0.00482 -0.0275
(22.65) (0.0613) (0.0776) (0.0352) (0.0350) (0.00494) (0.0619) (0.00951) (0.0366)

Observations 2031 2031 2031 1952 2031 2031 1884 1884 821

Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Difference-in-differences estimates from Equation 1.2 with different controls.
Controls 1: industry (2-digit).
Controls 2: industry (2-digit), employment (at the base year).
Controls 3: industry (2-digit), employment (at the base year), ELY Center indicators.
Controls 4: industry (2-digit), employment (at the base year), ELY Center indicators, applied subsidy amount.
Controls 5: industry (2-digit), employment (at the base year), ELY Center indicators, applied subsidy amount, text category indicators.
Back to Section 1.5.
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Table A.5: Continuous Treatment Estimates Controlling for the Subsidies Applied.

(1) (2) (3)
Machine Inv. (EUR K) Employment Revenue

Granted Subsidy 0.589∗∗∗ 0.613∗∗∗ 0.129∗∗ 0.140∗∗ 1.546 2.074∗

(0.153) (0.163) (0.0464) (0.0500) (0.960) (1.038)

Applied Subsidy
Propensity Score
Observations 2031 1812 2031 1812 2031 1812
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Difference-in-differences estimates from Equation 1.2. Treatment is the received subsidy amount in EUR.
Treatment is scaled to EUR 10K for employment. Applied subsidy is the applied subsidy amount in EUR.
Machinery investment is the sum over τ ∈ [0, 2]. Other outcomes are averages over τ ∈ [2, 5]. Back to Section 1.5.
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Table A.6: Product: Matched Sample Summary Statistics.

Treatment Group Control Group Both

Variable Mean Std. Dev. Mean Std. Dev. 10p Median 90p

Revenue (EUR M) 3.65 33.13 6.42 23.70 0.16 1.02 7.52
Employment 18.65 55.00 30.54 87.85 1.50 8.50 43.30
Wages (EUR K) 22.23 8.27 22.74 8.68 12.95 23.05 31.17
Subsidy Applied (EUR K) 111.99 128.51 3.13 23.43 0.00 4.03 182.69
Subsidy Granted (EUR K) 83.63 104.87 1.87 13.83 0.00 2.94 131.11
Educ. Years 11.71 1.00 11.62 1.04 10.50 11.70 12.67
College Share (%) 15.38 16.94 16.05 18.42 0.00 12.50 35.23
Production Worker Share (%) 70.81 21.92 67.97 24.67 37.50 72.34 100.00
Observations 1023 1023 2046

Notes: All variables measured at τ = −3. The treatment group is subsidy-winning firms that described
product-type technological advances in their application text. The matched control group is searched from all
non-applicant firms with balance sheet data. In this table, the subsidy applied and granted refer to all recorded
subsidies; the matched control group does not apply or receive ELY Center subsidies. Back to Section 1.6.2.

Table A.7: Process: Matched Sample Summary Statistics.

Treatment Group Control Group Both

Variable Mean Std. Dev. Mean Std. Dev. 10p Median 90p

Revenue (EUR M) 3.06 6.22 3.18 5.29 0.16 1.02 8.14
Employment 21.61 38.00 21.85 37.54 1.30 8.80 46.50
Wages (EUR K) 23.67 8.34 23.95 8.71 14.68 24.19 33.67
Subsidy Applied (EUR K) 77.50 95.55 13.12 59.09 0.00 4.16 141.99
Subsidy Granted (EUR K) 52.94 72.32 8.22 35.42 0.00 3.49 90.19
Educ. Years 11.57 0.95 11.53 0.93 10.50 11.68 12.52
College Share (%) 14.45 15.99 14.50 16.75 0.00 12.50 30.60
Production Worker Share (%) 69.48 20.42 70.32 22.70 50.00 71.43 100.00
Observations 99 99 198

Notes: All variables measured at τ = −3. The treatment group is subsidy-winning firms that described
process-type technological advances in their application text. The matched control group is searched from all
non-applicant firms with balance sheet data. In this table, the subsidy applied and granted refer to all recorded
subsidies; the matched control group does not apply or receive ELY Center subsidies. Back to Section 1.6.2.
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Table A.8: The Effects by Technology Categories Measured from Text Data.

Panel A: Investment, Employment, Wages, and Firm Performance.

(1) (2) (3) (4) (5)
Machine Inv. (EUR K) Employment Revenue Wages Productivity

Product 142.7∗∗∗ 0.210∗∗∗ 0.262∗∗∗ -0.00270 0.0222
(9.964) (0.0235) (0.0320) (0.0122) (0.0154)

Process 77.66∗∗∗ 0.0905 0.0783 -0.00154 -0.0515
(22.95) (0.0779) (0.0759) (0.0324) (0.0483)

N, Product 2046 2046 2046 1963 2046
N, Process 198 198 198 192 198

Panel B: Skill Composition and The Labor Share.

(1) (2) (3) (4)
Labor Share Educ. Years College Share Production Worker Share

Product -0.00474 0.0227 0.00691 -0.0110
(0.00264) (0.0269) (0.00422) (0.00742)

Process 0.00583 0.137 0.00497 0.0101
(0.00765) (0.0809) (0.0135) (0.0211)

N, Product 2046 1905 1905 1921
N, Process 198 186 186 186
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Difference-in-differences estimates from Equation 1.2. Product (the extensive margin) refers to technology projects that aim to produce a new type of
output. Process (the intensive margin) refers to technology projects that aim to produce the same type of output with new technologies. Panel A: Column 1 is
in EUR K. Columns 2, 3, 4, and 5 are relative changes, e.g., 0.20 would refer to a 20% increase. Panel B: Columns 1, 3, and 4 (shares) are in percentage points.
Column 2 (education) is in years. We use coarsened exact matching (CEM) to construct the control group. N refers to the number of matched observations. For
machine investment, the post-period outcome is the sum of investment between τ ∈ [0, 2] and for other outcomes, the average of τ ∈ [2, 5]. Back to Section 1.6.2.
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Table A.9: The Effects by Technology Categories Measured from Survey Data.

Panel A: Employment, Wages, and Firm Performance.

(1) (2) (3) (4) (5)
Machine Inv. (EUR K) Employment Revenue Wages Productivity

Product 311.5∗∗∗ 0.235∗∗ 0.364∗∗∗ -0.00137 0.154∗

(62.75) (0.0812) (0.101) (0.0296) (0.0620)
Process - - - - -

- - - - -
N, Product 164 164 164 164 164
N, Process 6 6 6 6 6

Panel B: Skill Composition and the Labor Share.

(1) (2) (3) (4)
Labor Share Educ. Years College Share Production Worker Share

Product -0.0169∗ 0.0758 0.00812 -0.00478
(0.00737) (0.0679) (0.0107) (0.0184)

Process - - - -
- - - -

N, Product 164 163 163 163
N, Process 6 6 6 6
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Difference-in-differences estimates from Equation 1.2. The technology categories are measured from the European Community Innovation Survey (CIS).
Product (the extensive margin) refers to technology projects that aim to produce a new type of output. Process (the intensive margin) refers to technology
projects that aim to produce the same type of output with new technologies. The process sample is too small to perform estimation (denoted by –). Panel A:
Column 1 is in EUR K. Columns 2, 3, 4, and 5 are relative changes, e.g., 0.20 would refer to a 20% increase. Panel B: Columns 1, 3, and 4 (shares) are in
percentage points. Column 2 (education years) is in years. We use coarsened exact matching (CEM) 1:1. N refers to matched observations. Machine investment
is the sum over τ ∈ [0, 2], other outcomes are averages over τ ∈ [2, 5]. Back to Section 1.6.2.
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Table A.10: The Effects by Context Measured from the Rauch Index.

Panel A: Employment, Wages, and Firm Performance.

(1) (2) (3) (4) (5)
Machine Inv. (EUR K) Employment Revenue Wages Productivity

Specialized 147.9∗∗∗ 0.188∗∗∗ 0.216∗∗∗ -0.00748 0.00401
(8.141) (0.0213) (0.0272) (0.0113) (0.0134)

Non-Specialized 86.61∗ 0.132 0.171 0.0334 0.0122
(42.06) (0.0965) (0.114) (0.0386) (0.0612)

N, Specialized 2704 2704 2704 2606 2704
N, Non-Specialized 248 248 248 242 248

Panel B: Skill Composition and the Labor Share.

(1) (2) (3) (4)
Labor Share Educ. Years College Share Production Worker Share

Specialized -0.00184 0.0247 0.00281 -0.00350
(0.00219) (0.0218) (0.00361) (0.00637)

Non-Specialized -0.00149 -0.00469 -0.00735 0.0399
(0.00988) (0.107) (0.0192) (0.0251)

N, Specialized 2704 2539 2539 2584
N, Non-Specialized 248 236 236 239
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Difference-in-differences estimates from Equation 1.2. Panel A: Column 1 is in EUR K. Columns 2, 3, 4, and 5 are relative changes, e.g., 0.20 would
refer to a 20% increase. Panel B: Columns 1, 3, and 4 (shares) are in percentage points. Column 2 (education years) is in years. N refers to matched
observations. We use coarsened exact matching 1:1 (CEM). Machine investment is the sum over τ ∈ [0, 2]. Other outcomes are averages over τ ∈ [2, 5]. Details in
the main text. Back to Section 1.6.3.
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Table A.11: Technology Categories from Text Data vs. Rauch Index.

Class Product Process Total
High Rauch Index 1019 89 1108
Low Rauch Index 98 15 113
Total 1117 104 1221

Notes: This 2x2 table reports the number of firms in the text categories and Rauch Index combinations. Product
refers to technology projects that aim to produce a new type of output. Process refers to technology projects that
aim to produce the same type of output with new technologies. High Rauch Index refers to specialized industries,
Low Rauch Index refers to non-specialized industries. Back to Section 1.6.3.
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Table A.12: The Effects by Firm Size.

Panel A: Large Firms.

(1) (2) (3) (4) (5) (6)
Machine Inv. (EUR K) Employment Revenue Productivity Labor Share College Share

Treatment 83.88 68.81 0.305∗∗∗ 0.309∗∗ 0.264 0.494∗∗ -0.136 0.0236 0.0133 -0.00853 -0.00893 -0.0159
(69.06) (88.72) (0.0722) (0.104) (0.137) (0.160) (0.0834) (0.0967) (0.00981) (0.0111) (0.0167) (0.0201)

Propensity Score
Observations 676 609 676 609 676 609 676 609 676 609 675 608

Panel B: Medium-Sized Firms.

(1) (2) (3) (4) (5) (6)
Machine Inv. (EUR K) Employment Revenue Productivity Labor Share College Share

Treatment 76.82∗ 87.38∗ 0.296∗∗∗ 0.280∗ 0.467∗∗∗ 0.399∗∗ 0.0707 0.0193 -0.0104 -0.0124 0.0185 0.0200
(33.67) (41.97) (0.0858) (0.113) (0.114) (0.150) (0.0551) (0.0718) (0.00856) (0.00969) (0.0162) (0.0213)

Propensity Score
Observations 685 603 685 603 685 603 685 603 685 603 683 601

Panel C: Small Firms.

(1) (2) (3) (4) (5) (6)
Machine Inv. (EUR K) Employment Revenue Productivity Labor Share College Share

Treatment 31.99∗ 28.23 0.330∗∗ 0.373∗∗ 0.355∗∗ 0.370∗ -0.0410 -0.0956 0.00216 0.0162 0.00334 0.00373
(13.48) (18.09) (0.103) (0.121) (0.125) (0.148) (0.0526) (0.0615) (0.00781) (0.00927) (0.0158) (0.0192)

Propensity Score
Observations 670 600 670 600 670 600 670 600 670 600 526 467
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Difference-in-differences estimates from Equation 1.2. Large Firms (FTE > 13.3; Median 25.8, Mean 41.7), Medium-Sized Firms (FTE >= 4.6 & FTE
<= 13.3; Median 7.9, Mean 8.2), Small Firms (FTE < 4.6; Median 2.3, Mean 2.3). Back to Section 1.6.3.
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Table A.13: Credit Constraints: Robustness Checks.

Panel A: Effects by Average Financial Costs.

(1) (2) (3)
Machine Inv. (EUR K) Employment Revenue
High Costs Low Costs High Costs Low Costs High Costs Low Costs

Treatment 113.3∗∗∗ 91.37∗∗∗ 0.276∗∗∗ 0.194∗ 0.313∗∗ 0.326∗∗

(25.88) (23.11) (0.0793) (0.0959) (0.105) (0.114)
Observations 1016 1015 1016 1015 1016 1015
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Panel B: Effects by Relative Debt.

(1) (2) (3)
Machine Inv. (EUR K) Employment Revenue
High Debt Low Debt High Debt Low Debt High Debt Low Debt

Treatment 121.9∗∗∗ 78.93∗∗∗ 0.0676 0.384∗∗∗ 0.151 0.486∗∗∗

(25.97) (23.58) (0.0965) (0.0687) (0.125) (0.0820)
Observations 1016 1015 1016 1015 1016 1015
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Panel C: Controlling for Credit Constraint Measures.

(1) (2) (3)
Machine Inv. (EUR K) Employment Revenue

Treatment 107.9∗∗∗ 107.8∗∗∗ 108.3∗∗∗ 0.232∗∗∗ 0.242∗∗∗ 0.232∗∗∗ 0.314∗∗∗ 0.342∗∗∗ 0.314∗∗∗

(17.53) (17.54) (17.59) (0.0614) (0.0597) (0.0614) (0.0779) (0.0721) (0.0778)

Relative Debt
Average Financial Costs
Observations 2031 2031 2031 2031 2031 2031 2031 2031 2031
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The sample is the main analysis sample (subsidies design). Estimated effects on selected outcomes by the cost of capital (Panel A) and
debt level (Panel B), and with credit-constraint controls (Panel C). We measure baseline levels at τ = −3. Average financial costs are financial
expenses divided by non-current liabilities. Relative debt is the sum of current liabilities, non-current liabilities, and obligatory reserves divided
by revenue. We divide the sample into two groups by whether the firms’ average financial costs (Panel A) or relative debt (Panel B) are below or
above the median in the sample. Panel C controls directly for the baseline value.
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Table A.14: Robustness to a Non-Balanced Sample: Firm-Level Effects Allowing for Firm Exit.

Panel A: Investment, Employment, Wages, and Firm Performance.

(1) (2) (3) (4) (5)
Machine Inv. (EUR K) Employment Revenue Wages Profit Margin

Treatment 93.16∗∗∗ 103.4∗∗∗ 0.310∗∗∗ 0.268∗∗∗ 0.400∗∗∗ 0.364∗∗∗ -0.0371 -0.0442 0.000834 -0.0125
(17.22) (20.09) (0.0547) (0.0694) (0.0667) (0.0849) (0.0372) (0.0445) (0.00782) (0.00996)

Propensity Score
Observations 2118 1880 2118 1880 2118 1880 1977 1754 2060 1831
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Panel B: Skill Composition, Labor Share, and Productivity.

(1) (2) (3) (4) (5)
Productivity Labor Share Educ. Years College Share Production Worker Share

Treatment -0.00742 -0.0148 0.000989 0.00210 -0.0338 -0.0610 -0.00531 -0.00562 0.00735 -0.00679
(0.0345) (0.0417) (0.00500) (0.00620) (0.0513) (0.0649) (0.00836) (0.0106) (0.0181) (0.0213)

Propensity Score
Observations 2056 1828 2060 1831 1953 1733 1912 1697 1896 1708
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The sample is the main analysis sample (subsidies design) without the balanced-panel requirement. For the firms that exited, the first three outcomes in
Panel A are defined as zero, all others are defined as missing.
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Figure A-14: Predictive Features for Winning a Technology Subsidy.
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Notes: The features (words) are plotted from top and bottom SVM coefficients predicting treatment status. The
y-axis refers to the coefficient size and indicates the relative importance of each feature. Positive (negative) values
indicate that the word is typically (not) associated with applications winning a subsidy. The sample is the main
analysis sample (subsidies design).
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(a) Share of Applications. (b) Applications per Capita. (c) Acceptance Rate.

Figure A-15: Maps of Application Statistics.

Notes: The maps visualize descriptive statistics of sample applications (firms) at the subregion level: (a) distribution of the sample over subregions, (b) sample
firm count per capita over subregions, i.e., adjusting for the population in each subregion, (c) the win rate by subregion. The sample is the main analysis sample
(subsidies design). Applications are more represented in areas with a large manufacturing industry (e.g., the Lahti region). The acceptance rates do not vary
significantly by region, barring some outliers with only few applications.
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Table A.15: Predicting Treatment.

(1) (2) (3)
Treatment Treatment Treatment

Employment (Log) 0.0287∗∗∗ 0.0340∗∗∗ 0.0248∗∗∗

(0.00613) (0.00738) (0.00706)

Revenue per Worker (EUR 100K) -0.00850 -0.00924 -0.00462
(0.00496) (0.00517) (0.00456)

Average Wage (EUR 100K) -0.0251 -0.120 -0.0958
(0.111) (0.124) (0.118)

Profit per Worker (EUR 100K) -0.108∗ -0.127∗ -0.0524
(0.0508) (0.0546) (0.0491)

Value Added per Worker (EUR 100K) 0.129∗ 0.145∗ 0.0570
(0.0636) (0.0686) (0.0625)

Propensity Score 0.494∗∗∗

(0.0645)
Observations 2031 2031 1812

Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Coefficients for different variables measured at τ = −3 from OLS estimation, where treatment status is the
dependent variable. The sample is the main analysis sample (subsidies design). The propensity score is based on
the application texts. The first column reports the coefficients without any controls, the second with a basic set of
controls (year indicators and 2-digit industry), and the third when adding text-based propensity score to the
controls. Log employment is most predictive of receiving a subsidy: the coefficient is between 0.025-0.034 and is
significant in all specifications. Still, the effect is very small, as holding all else equal, doubling the employment of a
firm would result in only a 2.0-2.4 percentage points increase in its probability of receiving a subsidy. Interestingly,
the first two columns imply that increasing the profit per worker by 10K euros would reduce the probability of a
successful application by about 1.1-1.3 percentage points, but a similar increase in value added per worker would
increase the probability by about 1.3-1.5 percentage points. Based on these numbers, it seems that high profits
themselves would not increase the chances of a successful subsidy application, but a high conversion rate of money
spent on materials to value-added increases the probability. Adding the propensity score in Column 3 as a control
eradicates the significance of both of these coefficients, leaving only log employment as statistically significant at
any of the conventional levels. This implies that the propensity score captures firm characteristics correlated with
both profits and value added. Since the coefficient of log employment is so small, and we control for baseline
employment in all of our estimates, together with the propensity score, year indicators, and industry controls, the
remaining selection bias in our specification and context is potentially minor. The propensity score itself has a
highly significant and large coefficient, about 0.49. Thus the score is not perfect in predicting treatment (as it
would be if the coefficient were to be unity) but performs reasonably well.
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Table A.16: Controlling for the Propensity Score from the Register Data.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Machine Inv. Employment Revenue Wages Profit Productivity Labor Share Educ. Years College Share Prod. Worker Share

Treatment 54.72∗∗ 0.310∗∗∗ 0.386∗∗∗ -0.000362 -0.00297 -0.00571 0.000597 0.0288 0.00657 0.000871
(17.44) (0.0594) (0.0777) (0.0347) (0.00788) (0.0353) (0.00498) (0.0616) (0.00936) (0.0182)

Propensity Score 2224.7∗∗∗ -3.276∗∗∗ -3.017∗∗∗ -2.127∗∗∗ 0.175∗∗ 0.0229 -0.109∗∗∗ -0.267 -0.0643 -0.00860
(181.1) (0.469) (0.533) (0.282) (0.0575) (0.200) (0.0320) (0.524) (0.0745) (0.151)

Observations 2031 2031 2031 1952 2031 2031 2031 1884 1884 1891

Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: First-difference estimation results on selected outcomes with balance sheet-based propensity score controls. The sample is the main analysis sample
(subsidies design). The propensity scores are constructed by first estimating a logit model based on average wages, employment, revenue at τ = −3, and
employment and revenue trends from τ = −3 to τ = 1. The predicted treatment probability is then used as the propensity score. Machine investment is summed
over τ = 0 to τ = 2 in EUR K. We find qualitatively similar effects as in our baseline estimation: the first stage on machinery investment is clear, employment
and revenue grow significantly, but there is no evidence of skill-bias, with fairly precise zeros in most of the other outcomes. Interestingly, the first stage effect is
around half in size of that in our preferred estimates (55K vs. 103K EUR). On the other hand, the employment and revenue effects are somewhat larger (about 6
and 14 percentage points respectively) than without the control.
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Table A.17: Controlling for Selection Bias Using Qualitative Evaluations.

(1) (2) (3) (4) (5) (6)
Machine Inv. (EUR K) Employment Revenue Productivity Labor Share College Share

No good 103.2∗∗∗ 95.38∗∗∗ 0.234∗∗∗ 0.238∗∗ 0.298∗∗∗ 0.315∗∗ -0.0104 -0.0122 -0.000850 0.000771 0.00382 0.00329
(18.43) (23.23) (0.0645) (0.0790) (0.0823) (0.102) (0.0357) (0.0429) (0.00509) (0.00617) (0.00988) (0.0123)

No jobs 106.8∗∗∗ 99.24∗∗∗ 0.225∗∗∗ 0.224∗∗ 0.306∗∗∗ 0.321∗∗ -0.00710 -0.0109 -0.00240 -0.00110 0.00592 0.00638
(17.94) (22.54) (0.0628) (0.0768) (0.0799) (0.0990) (0.0353) (0.0432) (0.00507) (0.00620) (0.00966) (0.0121)

Propensity Score
N, No-good 2021 1803 2021 1803 2021 1803 2021 1803 2021 1803 1875 1668
N, No jobs 2026 1807 2026 1807 2026 1807 2026 1807 2026 1807 1879 1671

Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The effects on selected outcomes when dropping losing (control) firms deemed to not satisfy basic financial requirements (“no-good,” n = 10) and not
produce enough jobs (“no jobs,” n = 5) by the administrative evaluator. The sample is a subset of the main analysis sample (subsidies design). The table
addresses the concern of bad counterfactuals explaining our results. As the set of control firms (i.e. those not receiving a subsidy despite applying for one) in our
baseline sample is relatively small (n = 146), we are able to read through the evaluation texts written by the program officers for each firm and determine
potentially bad counterfactuals. “No-good” refers to the applications where the rejection is due to the firm’s poor financial health or other factors indicating that
the firm is likely to sustain its business in the long term. “No-jobs” refers to the cases where the officer rejected the application due to it not creating new jobs, a
condition not required for acceptance, but in some cases detrimental to the decision. Dropping these potentially problematic control firms does not change the
results in any meaningful way.
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Table A.18: Propensity-Score Trimmed Samples.

Panel A: Investment, Employment, Wages, and Firm Performance.

(1) (2) (3) (4) (5)
Machine Inv. (EUR K) Employment Revenue Wages Profit Margin

5% 112.3∗∗∗ 107.5∗∗∗ 0.245∗∗ 0.248∗∗ 0.301∗∗ 0.327∗∗ -0.0124 -0.00497 -0.00420 -0.00628
(24.97) (25.36) (0.0815) (0.0828) (0.116) (0.118) (0.0439) (0.0441) (0.0118) (0.0119)

10% 127.4∗∗∗ 123.7∗∗∗ 0.251∗∗ 0.254∗∗ 0.313∗ 0.324∗ -0.00737 -0.00578 -0.00304 -0.00472
(28.57) (28.65) (0.0953) (0.0956) (0.132) (0.133) (0.0472) (0.0473) (0.0134) (0.0134)

20% 91.05∗ 91.01∗ 0.188 0.188 0.242 0.242 0.00738 0.00652 0.000227 0.000249
(37.71) (37.74) (0.124) (0.125) (0.174) (0.174) (0.0561) (0.0559) (0.0151) (0.0152)

Propensity Score
N, 5% 1631 1631 1631 1631 1631 1631 1570 1570 1631 1631
N, 10% 1449 1449 1449 1449 1449 1449 1395 1395 1449 1449
N, 20% 1088 1088 1088 1088 1088 1088 1049 1049 1088 1088
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Panel B: Skill Composition, Productivity, and The Labor Share.

(1) (2) (3) (4) (5)
Productivity Labor Share Educ. Years College Share Production Worker Share

5% -0.0311 -0.0203 0.00105 0.000261 -0.0636 -0.0499 0.00144 0.00226 -0.0316 -0.0309
(0.0489) (0.0494) (0.00677) (0.00686) (0.0900) (0.0911) (0.0136) (0.0138) (0.0227) (0.0229)

10% -0.0314 -0.0294 0.000653 0.000813 -0.0273 -0.0251 0.00519 0.00449 -0.0496∗ -0.0489
(0.0553) (0.0554) (0.00759) (0.00765) (0.102) (0.103) (0.0154) (0.0154) (0.0252) (0.0253)

20% -0.0193 -0.0193 0.00113 0.00106 -0.0281 -0.0286 0.00570 0.00562 -0.0128 -0.0125
(0.0681) (0.0682) (0.00924) (0.00927) (0.128) (0.128) (0.0180) (0.0181) (0.0296) (0.0296)

Propensity Score
N, 5% 1631 1631 1631 1631 1519 1519 1519 1519 1533 1533
N, 10% 1449 1449 1449 1449 1352 1352 1352 1352 1366 1366
N, 20% 1088 1088 1088 1088 1018 1018 1018 1018 1030 1030
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The estimated effects for the main sample with top and bottom 5%, 10%, and 20% of propensity score values dropped. The results are robust to
excluding firms with small and large values of the propensity score. The sample is a subset of the main analysis sample (subsidies design).
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Figure A-16: Placebo Test: The Effects of Insignificant Subsidies.

Notes: Event-study estimates for the effects of insignificant (to the firm) subsidies. The sample includes firms that
applied for a subsidy that was less than 10% of their capital stock three years before application. This “placebo
test” investigates whether these small subsidies also create treatment effects on machinery investment, employment,
and revenue. One concern would that the observed effects in the main sample are coming from the facts winning
firms are positively selected: e.g., they are likely to perform better in the future and thus would grow even without
the subsidy. If this were true, we would be likely to find positive effects on employment and revenue also in firms
where the subsidy itself plays a small role. Reassuringly, we find zero effects on both for all post-application years.
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Figure A-17: Log Effects.

Notes: The sample is the main analysis sample (subsidies design). Event study graphs of log employment and
revenue. The results are very similar to the baseline versions in relative units.
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Figure A-18: Without Controls: Event-Study Estimates of Winners vs. Losers.

Notes: The sample is the main analysis sample (subsidies design). Event study estimates for machinery
investment, employment (% relative to τ = −3 ), average years of education, the employment share of
college-educated workers, and the employment share of production workers. No additional controls.
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Figure A-19: With Controls: Event-Study Estimates of Winners vs. Losers.

Notes: The sample is the main analysis sample (subsidies design). Event study estimates for machinery
investment, employment (% relative to τ = −3 ), average years of education, the employment share of
college-educated workers, and the employment share of production workers. The specification controls for the
firm’s employment at τ = −3 interacted with the event-time indicators, 2-digit industry interacted with the
calendar-time indicators, and for the text-based propensity score interacted with event-time indicators.
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Figure A-20: Raw Means: Winners vs. Losers

Notes: The sample is the main analysis sample (subsidies design). Mean graphs of machinery investment,
employment (relative to t = −3 level), years in education, the employment share of college-educated workers, and
employment share of production workers. Production workers’ share is calculated only for firms with more than
two full-time employees in a given year.
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Table A.19: The Subsidy Program’s Maximum Allowed Rates by Area.

Panel A: Years 2000-2006.

Region Small firm Medium-sized firm Large firm
I 40 40 30
II 34 34 25
III 25 25 20
IV 15 0 0

Panel B: Years 2007-2003.

Region Small firms Medium-sized firms Large firms
I 35 25 15
II 25 15 10
III 15 7.5 0
IV 0 0 0

Panel C: Years 2014-2020.

Region Small firms Medium-sized firms Large firms
I 35 25 15
II 30 20 10
III 20 10 0
IV 0 0 0

Notes: The numbers refer to the maximum subsidy rate (%) by area and year. The maximum subsidy rate means
the recommended maximum share of the project that the ELY center can subsidize. Source: Finnish Law, sections
1200/200, 1/2007, 675/2007. Accessible at finlex.fi.
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Table A.20: Firm Size Definitions.

Size Workers (M EUR) Turnover (M EUR) Balance sheet total (M EUR)
Micro-firm < 10 and either ≤ 2 or ≤ 2

Small firm (-2007) < 50 and either ≤ 7 or ≤ 5

Small firm (2007-) < 50 and either ≤ 10 or ≤ 10

Medium-sized firm < 250 and either ≤ 50 or ≤ 43

Large firm ≥ 250 or both ≥ 50 and ≥ 43

Notes: The firm size definitions by the EU, used in the subsidy program rules.
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Table A.21: Investment and Subsidy Statistics.

Sample Firm Subsidies Share of Manufacturing Investment (All Years) 0.5%
Sample Firm Investment Share of Manufacturing Investment (All Years) 6.9%
Sample Firm Subsidies Share of Manufacturing Investment (Panel Years) 0.4%
Sample Firm Investment Share of Manufacturing Investment (Panel Years) 3.2%
Sample Firm Subsidies Share of Manufacturing Investment (t = 0-2) 0.3%
Sample Firm Investment Share of Manufacturing Investment (t = 0-2) 1.6%
Sample Investment in Total 2,872 M EUR
Manufacturing Investment in Total 93,171 M EUR
Sample Subsidies in Total 320 M EUR
Program Technology Subsidies in Total 758 M EUR
Program Subsidies in Total 2,015 M EUR

Notes: The sample is the main analysis sample (subsidies design). Sample firms are measured at τ = −3, all
manufacturing firms cover all possible firm-year combinations that satisfy similar restrictions as the sample firms.
The first two numbers represent shares of sample firms appearing in any year, the next two over panel years only
(τ = −5 to τ = 5) and the next three over the application year and the two following years (τ = 0 to τ = 2).
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Figure A-21: Sample Worker’s Occupations and Education.

Notes: The figures show the distribution of sample workers’ 1-digit occupations, and education levels and types. The sample is the main analysis sample
(subsidies design). The shares are unweighted means of the sample firms at τ = −3. We study production work: a vast majority of the workers in the sample
firms are craftworkers, operators, and assemblers. The mean share of production workers in the sample firms is approximately 70% of all workers. Notably, the
share of clerks and other operation support workers and workers in sales is low. Most workers in the sample hold a vocational school degree or only a primary
school degree. The share of workers with a bachelor’s degree or higher is low, accounting for less than 20%. A majority, over 50%, of the degrees the workers in
the sample firms hold are in STEM fields. Note that the shares in each subfigure do not add up to hundred percent because not all workers have data on
occupation or education.
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Figure A-22: Skill Effects: Education by Level and Type.

Notes: The sample is the main analysis sample (subsidies design). The types of education are grouped into science,
technology, engineering, mathematics (STEM); business and law; humanities, arts, social sciences (HASS); and
others. The levels of education are grouped into lower (high-school or equivalent), mid (BA or equivalent), and
high (MA or PhD). We find no economically significant skill composition effects in any of the subgroups of workers.
The winning firms increase the share of STEM-educated workers with a Master’s or PhD by about 0.15 percentage
points. While the effect is very small in the absolute sense, it is significant and translates to around a 20% increase
in the group’s employment share. There is also a similar effect, about 0.17 percentage points, in the share of
HASS-educated workers with a mid-level degree.
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Table A.22: Wage Effects by Occupation and Education.

Occupation Education

Prod. Workers Non-Prod. Low Non-Prod. High No Education Low Education Mid Education High Education
Treatment -0.0342 -0.0746 -0.00812 -0.00776 -0.00774 -0.0428 0.259∗

(0.0237) (0.0812) (0.0491) (0.0470) (0.0263) (0.0677) (0.130)
Baseline 27423.7 25030.4 39791.4 23829.5 24868.1 32054.7 47541.5
N 1833 883 1233 1455 1797 1217 236

Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The estimated effects on average wages for different occupation and education groups. The group definitions are given in the main text. The sample is
the main analysis sample (subsidies design). The second to last row shows the average levels of wages three years prior to the application for sample firms. The
effects are zero for all subgroups of workers other than highly-educated workers (those with MA or PhD degrees). As only 236 firms employ at least one
highly-educated worker, the 25.9% positive effect is not necessarily representative of the whole sample. Nonetheless, it could hint toward skill-bias in a subset of
the sample firms or rent sharing—part of the increased profits being directed to the owners and executives of the firm, who often are highly educated. In many
of the smaller firms, the owners are also employees of the firm.
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Table A.23: Wage Effects: Different Wage Outcomes.

Panel A: Level (EUR K).

(1) (2) (3) (4)
Wages (SF; EUR K) Wages (EUR K) Wages (Excl. Highest; EUR K) Highest Wage (EUR K)

Treatment 0.110 0.340 -0.358 0.217 -0.117 0.386 3.015∗∗ 4.250∗∗∗

(0.495) (0.590) (0.451) (0.527) (0.461) (0.555) (0.931) (1.091)

Propensity Score
Baseline 21.95 22.55 25.36 25.61 23.59 23.84 44.92 45.73
N 2031 1812 1884 1676 1766 1577 1884 1676
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Panel B: Relative (%).

(1) (2) (3) (4)
Wages (SF; %) Wages (%) Wages (Excl. Highest; %) Highest Wage (%)

Treatment -0.0481 -0.0285 -0.0293 -0.0000285 -0.0238 0.00106 0.0578∗ 0.0927∗∗

(0.0355) (0.0407) (0.0239) (0.0278) (0.0280) (0.0341) (0.0288) (0.0332)

Propensity Score
Baseline 21.95 22.55 25.36 25.61 23.59 23.84 44.92 45.73
N 1952 1738 1884 1676 1766 1577 1884 1676
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The estimated effects on wage outcomes, both in levels (Panel A) and relative % compared to τ = −3 (Panel B). The baseline means are measured at
τ = −3. Treatment is the win-lose indicator. The sample is the main analysis sample (subsidies design). Column 1 wage measure is computed from the firm-level
records of Statistics Finland (SF), and the other wage measures are from the worker-level records. The discrepancy between the two wage measures in Columns
1 and 2 are due to the first being the average wage per full-time employee, and the latter per employee headcount. The wage effect is zero in general, but top
earner wages appear to grow by about 3 to 4.3 K EUR (or 5.8 to 9.3 percent). Similar to the positive wage effects of highly-educated workers (see Table A.22),
one potential reason is that the monetary benefits of the subsidy are directed partly to the wages of the owners and top executives of the firm.
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(d) Income Relative to Baseline.

Figure A-23: The Effects on Baseline Workers: Event Studies.

Notes: The sample is the baseline workers (employed at the firm from τ = −5 to τ = −1) in the main analysis
sample (subsidies design). The first two and the last outcomes are in percentage points, the third in euros. The
baseline workers in treatment group firms are slightly more likely to be employed in general, but less likely to be
employed in the baseline firm after the event. The same workers also receive extra income of about 1,000 euros in
total in the three years around the application. This corresponds to a salary of about two weeks. One potential
reason for this is that the employees could work more hours during the new technology adoption.
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Figure A-24: Skill Effects: Cognitive Performance Event Studies.

Notes: Event study estimates for the average cognitive performance in the firm in standard deviations. The sample
is the main analysis sample (subsidies design).
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Wood and products of wood and cork

General and special purpose machinery

Treatment and coating of metals

Figure A-25: Sample Firm’s Industries.

Notes: The sample firms’ top eight industries. The sample is the main analysis sample (subsidies design). The
shares are unweighted means of the sample firms at τ = −3. Most firms in the sample operate in metal-related
industries, machinery, and construction. Note that the shares do not add up to hundred percent because the
industries figure shows only the top eight industries.
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(b) Levinsohn-Petrin.

Figure A-26: Total Factor Productivity: Alternative Versions.

Notes: The sample is the main analysis sample (subsidies design). Event study graphs of log total factor
productivity, estimated as in Olley and Pakes (1992) (a) and Levinsohn and Petrin (2003) (b). The results are in
line with the Cobb-Douglas version, showing no effect.
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Table A.24: The Effects on Capital per Worker.

(1) (2)
Capital per Worker (Win/Lose) Capital per Worker (Continuous)

Treatment -84.81 0.00216
(86.83) (0.0883)

Baseline 23.85 23845.9
N 1550 1550
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The estimates on capital per worker. Treatment is win/lose status in Column 1 and the amount of subsidies
the firm was granted in Column 2. The sample is the main analysis sample (subsidies design). We find no effects.
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Table A.25: The Estimated Returns to Capital.

2SLS, Capital Stock Instrumented with Subsidies.

(1) (2) (3)
Gross Profits Net Profits Financial Costs

Capital Stock 0.637∗ 0.256 0.380∗∗∗

(0.297) (0.285) (0.0539)
Baseline 274006.2 -16074.0 290080.1
N 1560 1560 1560
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The sample is the main analysis sample (subsidies design). 2SLS estimated effects on profits and financial
costs. The instrument, dependent value, and outcomes are in EUR. Each column specifies the outcome. Gross and
net profits refer to profit before and after financial costs are deducted. The capital stock in euros is instrumented
with the amount of subsidies in euros. In principle, the coefficients are interpreted as the response in profits or
financial costs.
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Table A.26: The Effects of Specific Uses of Technologies on Specific Occupations.

(1) (2) (3) (4)
Worker Share Wages Educ. Years Labor Share

Machining- 0.0454∗∗∗ 0.0753 -0.00340 0.0360∗

Machinists (0.0106) (0.0816) (0.0179) (0.0158)

Baseline 0.0227 25751.0 11.78 0.107
N 554 51 51 51
Welding- 0.0135 0.0598 0.0295 0.00971
Welders (0.00995) (0.0938) (0.0214) (0.00839)

Baseline 0.0683 25831.3 11.48 0.0594
N 300 88 88 88
Painting- 0.00518 0.0114 0.0258 0.00825
Painters (0.00358) (0.0750) (0.0279) (0.00590)

Baseline 0.0250 21076.8 10.58 0.0411
N 307 65 65 65
Logistics- -0.000775 -0.0936 0.0413 -0.00759
Logistics (Non-Office) (0.000488) (0.144) (0.0524) (0.00699)

Baseline 0.0120 25330.9 10.76 0.0191
N 799 58 58 58
Logistics- 0.0000555 0.298 -0.0884 -0.000707
Logistics (Office) (0.000246) (0.301) (0.112) (0.00189)

Baseline 0.00399 29623.5 11.70 0.00696
N 799 40 40 40

Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The effects of specific technologies on specific workers. The technologies refer to the description of the
technology in the subsidy application text. The idea is to see whether a specific technology affects a specific set of
workers associated with the technology. The occupations are from the worker’s occupational records. The
technology-to-worker pairs are: (1) machining-machinists, (2) welding-welders, (3) painting-painters, and (4-5)
logistics words (e.g. "driving," "hoisting") to logistics occupations (non-office and office). N refers to the sample
size (number of firms) where the given outcome is defined. Note that employment shares are defined for all firms
with the given technology, but the other three outcomes require at least one worker with the given occupation,
hence the smaller sample size. We find positive effects on the employment share and the wage-bill (labor) share of
machinists when the firm has applied for a subsidy specifying the intended use to be an investment in technologies
associated with machining. These effects are sizable, considering the relatively small baseline share of workers with
the occupational title "machinist" employed. The sample is winners matched to non-applicants (the matching
procedure described in the paper).
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Table A.27: The Effects of Specific Types and Uses of Technologies Measured from the Text Data.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Machine Inv. Employment Revenue Wages Productivity Labor Sh. Educ. Years College Sh. Prod. Sh. Obs.

Types of Technology

CNC 158.0∗∗∗ 0.168∗∗∗ 0.180∗∗∗ 0.0367 -0.0100 0.00299 -0.0331 0.00304 -0.0211 628
(11.76) (0.0398) (0.0492) (0.0212) (0.0266) (0.00498) (0.0513) (0.00771) (0.0144)

Robot 294.4∗∗∗ 0.233∗ 0.416∗∗ -0.0380 0.0124 -0.0133 0.0311 0.00256 0.0198 232
(53.60) (0.0921) (0.136) (0.0291) (0.0593) (0.00787) (0.0581) (0.00961) (0.0192)

Laser 164.1∗∗∗ 0.322∗∗ 0.313∗ -0.0272 -0.0831 0.000777 0.0578 0.0180 0.0139 224
(38.69) (0.0979) (0.132) (0.0415) (0.0501) (0.0101) (0.0919) (0.0157) (0.0286)

Uses of Technology

Machining 227.7∗∗∗ 0.246∗∗∗ 0.276∗∗∗ -0.00449 -0.0187 -0.00126 0.0136 0.00862 -0.0121 584
(22.60) (0.0471) (0.0663) (0.0227) (0.0302) (0.00514) (0.0505) (0.00899) (0.0137)

Welding 109.1∗∗∗ 0.352∗∗∗ 0.385∗∗∗ -0.00611 -0.0146 -0.0100 0.0185 -0.00120 0.00966 312
(18.61) (0.0835) (0.0821) (0.0352) (0.0431) (0.00760) (0.0700) (0.0122) (0.0218)

Painting 161.9∗∗∗ 0.267∗∗∗ 0.318∗∗∗ -0.0223 0.00608 -0.00591 -0.0112 -0.00147 -0.00148 312
(28.80) (0.0634) (0.0836) (0.0302) (0.0396) (0.00636) (0.0627) (0.00946) (0.0193)

Logistics 162.2∗∗∗ 0.304∗∗∗ 0.404∗∗∗ 0.00781 0.0348 -0.00659 0.0207 0.0148∗ -0.0106 822
(16.02) (0.0404) (0.0544) (0.0171) (0.0255) (0.00388) (0.0370) (0.00611) (0.0108)

Automation 177.2∗∗∗ 0.178∗∗∗ 0.217∗∗∗ 0.00216 0.0249 -0.00237 0.0546 0.00942 0.000592 678
(22.54) (0.0350) (0.0446) (0.0189) (0.0259) (0.00422) (0.0391) (0.00650) (0.0113)

Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The effects of specific types and uses of technology on selected outcomes for the relevant subsets of treatment firms matched to non-applicant control
firms. The first three rows show the effects for treatment firms that intend to buy the given technology, and the latter four are the firms that specify the listed
uses for the technologies. The “Obs.” column refers to the sample size: the number of firms with subsidy application texts containing keywords associated with
the given technology or its use. Machine investment is in EUR K. The broad interpretation of the results is that the firm-level effects do not vary significantly
across the specified technologies or their uses. The sample is the winners matched to non-applicants (the matching procedure described in the paper).

213



Table A.28: Hardware vs. Software Events.

(1) (2) (3) (4) (5) (6) (7)
Machine Inv. (EUR K) Employment Revenue Productivity Labor Share College Share Obs.

Hardware (Register) 81.52∗∗∗ 80.72∗∗∗ 0.216∗∗∗ 0.212∗∗ 0.299∗∗∗ 0.308∗∗ -0.000775 -0.00660 -0.00138 -0.0000368 0.00390 0.00548 1,726
(15.60) (20.05) (0.0625) (0.0754) (0.0791) (0.0970) (0.0354) (0.0433) (0.00502) (0.00607) (0.00946) (0.0118)

Software (Register) 281.8∗∗∗ 260.1∗∗∗ 0.296∗∗∗ 0.330∗∗ 0.361∗∗∗ 0.388∗∗ -0.0584 -0.0553 -0.00298 -0.00132 0.0189 0.0109 451
(30.10) (38.55) (0.0826) (0.105) (0.102) (0.134) (0.0431) (0.0534) (0.00585) (0.00741) (0.0115) (0.0148)

Hardware (Text) 105.7∗∗∗ 99.68∗∗∗ 0.234∗∗∗ 0.238∗∗ 0.312∗∗∗ 0.337∗∗∗ -0.0137 -0.0101 -0.00151 -0.000185 0.00527 0.00599 1,971
(18.13) (22.49) (0.0634) (0.0761) (0.0804) (0.0979) (0.0360) (0.0435) (0.00506) (0.00610) (0.00959) (0.0116)

Software (Text) -19.96 -9.464 0.329 0.450 0.573 0.873 -0.113 0.00135 0.00929 -0.0168 -0.0286 -0.0212 107
(178.3) (207.5) (0.253) (0.371) (0.392) (0.584) (0.237) (0.277) (0.0264) (0.0308) (0.0457) (0.0580)

Propensity Score

Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The effects of hardware and software events. The sample is a subset of the main analysis sample (subsidies design). The first two rows include the
treatment firms that have software purchases in the three-year period after the application (software row) and those that did not (hardware row). These groups
are mutually exclusive. The latter two rows include firms stating the intention to purchase hardware or software technologies in the application texts. They both
include all losing (control group) firms. The text-based categories are not mutually exclusive, so that an application can include both intended hardware and
software investments and thus appear in both categories. The results for text-based software events are highly imprecise, largely due to the small sample size (n
= 107). The register-based classification implies that subsidies associated with software purchases induce larger investment and lead to larger employment and
revenue effects.
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Table A.29: The Effects by Industry Type: Automation, Skill-Level, and Tradability.

Panel A: High vs. Low Automation.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Machine Inv. Employment Revenue Wages Productivity Labor Share Educ. Years College Share Prod. Work. Share

High Automation 115.8∗∗∗ 0.189 0.212 -0.0369 -0.0900 0.00405 0.0675 0.000842 -0.00197
(25.96) (0.104) (0.122) (0.0481) (0.0516) (0.00702) (0.0866) (0.0149) (0.0246)

Low Automation 143.0∗∗∗ 0.277∗ 0.295 -0.0000105 -0.0568 0.00835 0.0687 0.0211 -0.00410
(31.95) (0.109) (0.156) (0.0695) (0.0805) (0.00907) (0.121) (0.0166) (0.0451)

N, High Automation 1223 1223 1223 1179 1223 1223 1136 1136 1142
N, Low Automation 474 474 474 457 474 474 448 448 443

Panel B: High vs. Low Skill.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Machine Inv. Employment Revenue Wages Productivity Labor Share Educ. Years College Share Prod. Work. Share

High Skill 114.4∗∗∗ 0.255 0.445∗∗∗ -0.121 -0.0881 -0.00237 0.225 0.0526∗ 0.0438
(31.79) (0.130) (0.100) (0.0901) (0.0790) (0.0103) (0.127) (0.0224) (0.0472)

Low Skill 103.1∗∗∗ 0.225∗∗ 0.282∗∗ -0.0263 0.0148 -0.00143 -0.0289 -0.00680 -0.00962
(20.32) (0.0699) (0.0946) (0.0380) (0.0393) (0.00571) (0.0690) (0.00985) (0.0195)

N, High Skill 532 532 532 511 532 532 499 499 497
N, Low Skill 1499 1499 1499 1441 1499 1499 1385 1385 1394

Panel C: Tradable vs. Non-Tradable Industries.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Machine Inv. Employment Revenue Wages Productivity Labor Share Educ. Years College Share Prod. Work. Share

Tradable 130.0∗∗∗ 0.230∗∗ 0.298∗∗ -0.0430 -0.0451 0.00132 0.0852 0.00939 0.0146
(22.86) (0.0837) (0.101) (0.0474) (0.0436) (0.00637) (0.0747) (0.0128) (0.0239)

Non-Tradable 70.58∗∗ 0.234∗∗ 0.334∗∗ -0.0537 0.0525 -0.00632 -0.0480 0.00113 -0.0186
(26.59) (0.0902) (0.123) (0.0533) (0.0573) (0.00791) (0.103) (0.0136) (0.0280)

N, Tradable 1509 1509 1509 1450 1509 1509 1402 1402 1404
N, Non-Tradable 522 522 522 502 522 522 482 482 487
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The sample is a subset of the main analysis sample (subsidies design). Estimated effects on selected outcomes for firms in high vs. low automation (Panel
A), high vs. low skill industry (Panel B), and tradable vs. non-tradable output industry (Panel C). The division with respect to automation level is defined by
using classifications in Acemoglu and Restrepo (2020) harmonized to the Finnish industries. An industry is classified into high skill if it is above the median
industry in average years of education of its workers, and low skill if below. Tradability is defined by using classifications in Mian and Sufi (2014) harmonized to
the Finnish industries. Machine investment is in EUR K.
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Table A.30: The Effects by Industry Type With Propensity Score Controls: Automation, Skill-Level, and Tradability.

Panel A: High vs. Low Automation.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Machine Inv. Employment Revenue Wages Productivity Labor Share Educ. Years College Share Prod. Work. Share

High Automation 101.1∗∗ 0.114 0.213 -0.0217 -0.0337 0.000346 0.0656 0.00420 -0.0292
(32.45) (0.124) (0.146) (0.0509) (0.0574) (0.00827) (0.110) (0.0190) (0.0291)

Low Automation 135.3∗∗ 0.385∗∗ 0.370∗ -0.00960 -0.136 0.0155 -0.0423 0.0146 -0.0253
(43.81) (0.129) (0.186) (0.0892) (0.111) (0.0115) (0.148) (0.0186) (0.0561)

N, High Automation 1098 1098 1098 1055 1098 1098 1016 1016 1026
N, Low Automation 414 414 414 399 414 414 391 391 390

Panel B: High vs. Low Skill.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Machine Inv. Employment Revenue Wages Productivity Labor Share Educ. Years College Share Prod. Work. Share

High Skill 102.5∗ 0.415∗ 0.624∗∗∗ -0.0660 -0.129 0.00306 0.379 0.0802∗ 0.0252
(45.34) (0.180) (0.177) (0.113) (0.106) (0.0136) (0.198) (0.0331) (0.0657)

Low Skill 95.39∗∗∗ 0.197∗ 0.278∗ -0.0163 0.0175 -0.000739 -0.0796 -0.00951 -0.0277
(24.74) (0.0830) (0.111) (0.0434) (0.0464) (0.00671) (0.0796) (0.0116) (0.0220)

N, High Skill 461 461 461 442 461 461 431 431 433
N, Low Skill 1351 1351 1351 1296 1351 1351 1245 1245 1259

Panel C: Tradable vs. Non-Tradable Industries.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Machine Inv. Employment Revenue Wages Productivity Labor Share Educ. Years College Share Prod. Work. Share

Tradable 121.4∗∗∗ 0.190 0.283∗ -0.0409 -0.0476 -0.000244 0.0813 0.00877 -0.0220
(29.74) (0.107) (0.132) (0.0538) (0.0559) (0.00784) (0.0987) (0.0168) (0.0285)

Non-Tradable 62.85 0.293∗∗ 0.387∗∗ -0.00810 0.0505 0.000338 -0.102 0.00436 -0.0201
(32.72) (0.100) (0.135) (0.0653) (0.0663) (0.00942) (0.117) (0.0160) (0.0323)

N, Tradable 1344 1344 1344 1289 1344 1344 1243 1243 1254
N, Non-Tradable 468 468 468 449 468 468 433 433 438
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The sample is a subset of the main analysis sample (subsidies design). Estimated effects on selected outcomes for firms in high vs. low automation (Panel
A), high vs. low skill industry (Panel B), and tradable vs. non-tradable output industry (Panel C). The division with respect to automation level is defined by
using classifications in Acemoglu and Restrepo (2020) harmonized to the Finnish industries. An industry is classified into high skill if it is above the median
industry in average years of education of its workers, and low skill if below. Tradability is defined by using classifications in Mian and Sufi (2014) harmonized to
the Finnish industries. Machine investment is in EUR K. Propensity score is included as control.
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Table A.31: The Effects by Management Scores.

Panel A: Investment, Employment, Wages, and Firm Performance.

(1) (2) (3) (4) (5)
Machine Inv. (EUR K) Employment Revenue Wages Productivity

High Score 465.5∗∗∗ 0.476∗∗∗ 0.644∗∗∗ -0.0316 0.0700
(97.44) (0.0953) (0.128) (0.0231) (0.0454)

Low Score 298.6 0.518∗∗ 0.425∗ 0.0112 -0.00715
(188.7) (0.180) (0.174) (0.0363) (0.0819)

N, High Score 184 184 184 184 184
N, Low Score 80 80 80 80 80
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Panel B: Skill Composition and The Labor Share.

(1) (2) (3) (4)
Labor Share Educ. Years College Share Production Worker Share

High Score -0.0113 -0.0215 -0.00426 0.0140
(0.00723) (0.0478) (0.00870) (0.0157)

Low Score 0.000285 -0.132 -0.00919 -0.0117
(0.0106) (0.109) (0.0168) (0.0248)

N, High Score 184 184 184 184
N, Low Score 80 80 80 80
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The sample is a subset of the main analysis sample (subsidies design). Estimated effects on selected outcomes for firms with high vs. low management
score, measured using the FMOP as surveyed and defined in Ohlsbom and Maliranta (2021).

217



Figure A-27: Predictive Features for Text Categories: Process and Product

Panel A: Process.
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Notes: The features (words) are plotted from top and bottom SVM coefficients predicting the two uses of
technologies. The y-axis refers to the coefficient size, and it measures the relative importance of each feature.
Positive (negative) values indicate that the word is typically (not) associated with applications in the category.
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Table A.32: Continuous Treatment Estimates by Text Categories.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Machine Inv. Employment Revenue Wages Productivity Labor Share Educ. Years College Share Production Share

Product 1.323∗∗∗ 0.194∗∗∗ 4.585∗∗∗ -1.663 150.7 -0.000345∗ 0.000338 0.000296 -0.0000846
(0.0865) (0.0239) (0.613) (9.767) (124.2) (0.000130) (0.00113) (0.000192) (0.000323)

Process 1.243∗∗∗ 0.194 1.115 26.97 -359.8 0.000615 -0.00567 -0.00138 0.00123
(0.216) (0.109) (2.399) (40.53) (603.8) (0.000534) (0.00739) (0.00144) (0.00135)

N, Product 2046 2046 2046 2046 2046 2046 1905 1905 1921
N, Process 198 198 198 198 198 198 186 186 186
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The sample is a subset of the main analysis sample (subsidies design). Product type changes refers to technology projects that aim to produce a new type
of output. Process type change refers to technology projects that aim to produce the same type of output with the new technologies. Columns 1 and 3 are in
EUR. Treatment is scaled to EUR 10,000 for rest of the columns. Columns 6, 8, and 9 (shares) are in percentage points. Column 7 (education years) is in years.
Machine investment is the sum over τ ∈ [0, 2]. Other outcomes are averages over τ ∈ [2, 5]. N refers to matched observations (matching procedure is described in
the paper).
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Table A.33: Export Products’ and Regions’ Skill Intensity.

(1) (2)
Product Skill Intensity Region Skill Intensity

Treatment -0.0267 -0.00139
(0.0599) (0.0316)

Baseline 12.64 12.87
N 401 401

Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The effects on export product and region skill intensity for the sample firms that export. The sample is a
subset of the main analysis sample (subsidies design). To construct the outcomes, we first take the average worker
education years for each export product and region by taking the average over all years from firms that export the
given product and export to the given region. Then for each exporting firm in our sample, we calculate the skill
intensity each year by taking the unweighted average of the skill intensities of the products the firm exports that
year or the regions it exports to. Export regions and products are measured from the Finnish Customs’ Foreign
Trade Statistics. A concern about the lack of skill-bias effects in our sample is that it exists, but is subtle and hard
to find empirically. One way to explore this possibility is to estimate whether, after adopting new technologies, the
firms export products which require more skills or export to regions that do. If this is true, the firms are likely also
to exhibit an increased need for skills, even if we do not detect these effects in the short term. This table explores
these effects on export products’ and regions’ skill intensity. The coefficients on both outcomes are fairly precise
zeros, implying that the hypothesis of undetected skill bias through this channel does not receive support.
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Table A.34: Exporter and Non-Exporter Firms’ Skill Intensity.

Sample; Non-Exporters Sample; Exporters Manufacturing; Non-Exporters Manufacturing; Exporters
Educ. Years 11.66 12.03 11.54 12.30
Firm-Year Observations 1,390 641 218,945 41,275
Firm Observations 1,390 641 16,437 2,102

Notes: Descriptive statistics on the exporter and non-exporter firms’ skill intensity. The sample is the main analysis sample (subsidies design) and Finnish
manufacturing. The table reports mean worker education years for (1) sample firms that do not export, (2) sample firms that export, (3) all manufacturing firms
that do not export, and (4) all manufacturing firms that export. Sample firms are measured at τ = −3, all manufacturing firms cover all possible firm-year
combinations that satisfy similar restrictions as the sample firms. Export status is measured using the definition by Statistics Finland. A firm is defined as an
exporter in a given year if its total export value is over 12K EUR during the calendar year spread over at least two different months, or a single export event is
over 120K EUR in value. Exporting firms in both groups employ more educated workers, confirming a common proposition that exporting firms are more skill
intensive. Notably, this difference is smaller in the analysis sample than in manufacturing.
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Table A.35: Import and Input Outcomes.

(1) (2) (3) (4) (5) (6)
Import Value (EUR K) Import Share Machine Import Value (EUR K) Machine Import Share Input Value (EUR K) Input Share

Treatment 20.60∗∗∗ 0.00287∗ 3.437∗∗∗ 0.000452 -115.6 -0.0521
(5.989) (0.00136) (1.031) (0.000249) (663.6) (0.0438)

Baseline 152.9 0.0203 27.80 0.00373 3457.9 0.292
N 2031 2031 2031 2031 321 321

Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The sample is the main analysis sample (subsidies design). Effects on total value and shares (total value share of revenue) for imports and inputs.
Machinery imports include only imports we classified as machinery based on customs codes. The baseline means are measured at τ = −3. The results show that
the effects on both machinery imports and all imports (including machinery imports) are positive and significant: machinery imports increase by about 3.4K
euros and all imports by about 20.6K euros. While these effects are small, it is important to note that only a small fraction of the sample firms import at all
during the panel years. Thus it is less surprising that the average effect is smaller. Similarly, we detect small effects on import share of revenue: about 0.3
percentage points for all imports and zero on machinery import share. The estimated effects on input outcomes (including non-imports) are imprecise, but close
to zero. This is partly due to a small sample size (n = 321), as we only observe input outcomes for a subset of firms that have answered the manufacturing
survey issued by Statistics Finland.
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Figure A-28: R&D Expenditure.

Notes: The raw means of R&D expenditure for the subsidy applicant firms, both treatment and control. The
sample is the main analysis sample (subsidies design).
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A.2 Winners-Losers: Matched Control Group
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Machinery Investment.
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(b) Winners vs. Matched Control:
Employment.
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(c) Losers vs. Matched Control:
Machinery Investment
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(d) Losers vs. Matched Control:
Employment.

Figure A-29: The Matched Control Groups: The First Stage and Employment Effects.

Notes: Event-study estimates from Equation 1.1. Panels (a, b): Treatment group is the subsidy winners (the
main treatment group), and control group is constructed via matching. Panels (c, d): Treatment group is the
subsidy losers (the main control group), and the control group is constructed via matching, i.e., comparing two
different control groups. We use coarsened exact matching (CEM). We match by revenue, employment, wages at
τ = −3 plus revenue and employment changes in percentages from τ = −3 to τ = −1 and industries’ main sectors
(letter classes). The CEM percentiles are 10, 25, 50, 75, 90, and 99. The match is 1:1 with replacement. Event
time τ = 0 refers to the application year. Back to Section 1.5.
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Figure A-30: The Matched Control Group: Skill Effects.

Notes: Difference-in-differences estimates from Equation 1.2. The estimates compare the main treatment group
(“winners”) to a matched control group. The right-hand side reports means at τ = −3. Back to Section 1.5.
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Figure A-31: The Matched Control Group: Firm-Level Effects.

Notes: Difference-in-differences estimates from Equation 1.2. The estimates compare the main treatment group
(“winners”) to a matched control group. The right-hand side reports means at τ = −3. Back to Section 1.5.
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Table A.36: The Matched Control Group: Balance Table A (Winners vs. Matched Control).

Treatment Group Control Group Both

Variable Mean Std. Dev. Mean Std. Dev. 10p Median 90p

Revenue (EUR M) 3.06 26.57 3.09 9.15 0.17 0.96 6.26
Employment 17.46 46.27 18.03 38.79 1.60 8.20 37.70
Wages (EUR K) 21.60 8.08 22.06 8.36 12.15 22.43 30.56
Subsidy Applied (EUR K) 108.52 126.79 0.00 0.00 0.00 0.86 172.15
Subsidy Granted (EUR K) 78.62 100.55 0.00 0.00 0.00 0.49 122.38
Educ. Years 11.68 0.98 11.56 1.04 10.50 11.67 12.63
College Share (%) 15.24 16.84 15.39 18.45 0.00 12.50 34.62
Production Worker Share (%) 70.96 21.53 68.43 25.11 37.50 72.73 100.00

Observations 1600 1600 3200

Notes: All variables measured at τ = −3. Back to Section 1.4.

Table A.37: The Matched Control Group: Balance Table B (Losers vs. Matched Control).

Treatment Group Control Group Both

Variable Mean Std. Dev. Mean Std. Dev. 10p Median 90p

Revenue (EUR M) 1.62 5.52 1.27 2.71 0.10 0.43 2.71
Employment 9.02 18.56 8.81 15.12 1.00 3.90 20.00
Wages (EUR K) 17.81 7.95 18.01 8.79 5.50 18.80 27.82
Subsidy Applied (EUR K) 47.47 76.19 0.00 0.00 0.00 0.00 65.59
Subsidy Granted (EUR K) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Educ. Years 11.34 1.12 11.42 1.23 10.00 11.50 12.56
College Share (%) 10.50 15.47 15.41 21.76 0.00 6.90 33.33
Production Worker Share (%) 74.25 25.39 70.77 27.93 30.95 79.63 100.00

Observations 123 123 246

Notes: All variables measured at τ = −3. Back to Section 1.4.

226



0
20

40
60

80

-5 -4 -3 -2 -1 0 1 2 3 4 5
Years Relative to Event

95% CI Low/High Difference in Differences

(a) Machinery Investment.

-.1
0

.1
.2

.3

-5 -4 -3 -2 -1 0 1 2 3 4 5
Years Relative to Event

95% CI Low/High Difference in Differences

(b) Employment.

-.0
4

-.0
2

0
.0

2
.0

4
.0

6

-5 -4 -3 -2 -1 0 1 2 3 4 5
Years Relative to Event

95% CI Low/High Difference in Differences

(c) Education Years.

-.0
1

0
.0

1
.0

2

-5 -4 -3 -2 -1 0 1 2 3 4 5
Years Relative to Event

95% CI Low/High Difference in Differences

(d) College-Educated Workers’ Share.
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(e) Production Workers’ Share.

Figure A-32: The Match Control: Event-Study Estimates.

Notes: The sample is winners matched to non-applicants (matching procedure is described in detail in the paper).
The figures show event study graphs of machinery investment, employment (relative to τ = −3 level), years in
education, the employment share of college-educated workers, and the employment share of production workers.
The treatment group is the subsidy winners (the main treatment group), and the control group is constructed via
matching. We use coarsened exact matching (CEM). We match by revenue, employment, wages at τ = −3 plus
revenue and employment changes in percentages from τ = −3 to τ = −1 and industries’ main sectors (letter
classes). The CEM percentiles are 10, 25, 50, 75, 90, and 99. The match is 1:1 with replacement. Event time τ = 0

refers to the application year. Calendar year indicators are included as controls.
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Figure A-33: Raw Means: Winners vs. Matched Control.

Notes: The sample is winners matched to non-applicants (the matching procedure described in the paper). The
figures show mean graphs of machinery investment, employment (relative to t = −3 level), years in education, the
employment share of college-educated workers, and the employment share of production workers.
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Table A.38: The Effects on Export Outcomes for the Matched Sample.

(1) (2) (3) (4) (5) (6)
Export Status Export Share Export Regions Products Products Introduced Products Discontinued

Treatment 0.0351∗∗∗ 0.00707∗∗∗ 0.206∗∗∗ 0.172∗∗∗ 0.0686∗∗∗ 0.0698∗∗∗

(0.00849) (0.00175) (0.0245) (0.0247) (0.0112) (0.0109)
Baseline 0.261 0.0466 1.353 1.622 0.527 0.578
N 3200 3200 3200 3200 3200 3200
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The estimated effects on export outcomes. The sample is the matched control sample to explore robustness of the export results on the
particular sample.
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A.3 The Spikes Design

To explore external validity, we consider technology adoption without the subsidy program. This
design exploits the precise timing of technology investment events, which we call spikes, to analyze
technologies’ short-term effects at the firm level. The second design is valuable because the subsidy-
based design is subject to two external validity concerns: 1) subsidy program as variation source,
2) program participants’ representativeness. The spikes design complements the subsidy design by
using a different variation source and a different sample. The spikes design is similar to a mass-
layoff design (Jacobson et al., 1993) as it uses the precise event timing for identification and builds
on the work of Hawkins et al. (2015) and Bessen et al. (2020). The design detects distinct events
because technology investments tend to be temporally concentrated (e.g., Doms and Dunne 1998;
Caballero and Engel 1999; Cooper et al. 1999; Nilsen and Schiantarelli 2003).

The Treatment Group We define the technology investment event, the spike, as an indicator
that equals 1 when a firm’s technology expenditures are significantly above average for the firm:

Djt = 1
{
Technology Expenditurejt > Threshold · Technology ExpenditurejT /∈t

}
The average expenditure is computed over timeline T leaving out the current year t. For our main
specification, we use the threshold of 4 (robust to different thresholds). We measure technology
expenditure as investment in machinery and equipment from the financial statement register.

The sample design is the following. We consider years 1994–2018 and restrict the sample to
manufacturing, warehouse and retail, transportation industries, and firms with full-time equivalent
employees (FTE) between 10 and 750 at time τ = −1 relative to the event. We focus on a
balanced sample and require that the firms operate at least starting from time τ = −9. With
these restrictions, we can exclude new rapidly growing firms that are not relevant to our research
questions and event definition and ensure comparability with the subsidies design. Very large firms
tend to have several units or plants, which obscures the evaluation of the spike.

The treatment group is the firms that experience a technology investment event and satisfy the
sample-design criteria. In the case of multiple spikes, we choose the largest spike and require no
other spikes in window τ ∈ [−5, 8]. Figure A-35 shows the treatment group’s average technology
expenditure by year. The event time is normalized around the event (τ = 0). There is a clear
investment spike: a significant fraction of technology investment at the firm level is associated with
significant variations.

The Matched Control Group To construct the control group, we match the spiking firms to
non-spiking firms. To construct a control group, we match the spiking firms to non-spiking firms.
The matched control group serves as a counterfactual for what would have happened in the short
term had the spiking firms not invested. We provide a theoretical basis for this comparison in
Appendix A.9. We use coarsened exact matching (CEM). We match by revenue, employment, and
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wages at τ = −3 and industries’ main sectors (letter classes). The CEM percentiles are 10, 25,
50, 75, and 90. The final caliper match is the propensity score based on the same CEM variables.
The match is up to 1:5 with replacement. Table A.39 shows the covariate balance for the matched
samples. We match only in the pre-period cross-section to ensure that the pre-trend comparison
between the treatment and control is informative.

Estimation The empirical strategy contrasts the treatment group with a spike to the matched
control group that did not have a spike within the same 5-year window using a dynamic difference-
in-differences design. To do so, we estimate Equations 1.1 and 1.2 from Section 1.4.2.

The First Stage Figure A-35 shows the first stage. The outcome is technology investment.
Treatment group firms invested 2 million EUR more in technologies than the control firms in the
event year. Before and after it, the groups invested similar amounts and were on parallel trends.

Variation We outline a theoretical framework that clarifies the source of variation in Appendix
A.9, adapted from Cooper et al. (1999). The same model provides the basis also for the subsidies
design, and we refer to it in Section 1.4.1. The main result of the model is that with adjustment
costs, firms may experience low technology-investment activity periods followed by bursts of in-
vestment activity. The model produces a cutoff rule for the firm’s optimal policy, where the firm
adopts the technology if and only if the propensity H ≥ H∗ for a cutoff H∗ (Figure A-51).

This result clarifies that the treatment and the matched control group could be comparable
in the short run because minor initial differences may lead to significant variations in technology
investment. For example, in the model, one reason a firm invests and the other similar firm does
not is that they have a different replacement cycle. Our estimates from the spikes design exploit
the precise timing of technology investment events.

Robustness The estimates are robust to excluding firms that simultaneously start exporting,
change their management, make significant investments in buildings and property, or open a new
plant before the event, and to different controls (not reported).
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Figure A-34: The Spikes Design. Machinery Investment.

Notes: Machinery investment in EUR 1000s. Event time is normalized to zero in the year of the largest machinery
investment. The sample is restricted to manufacturing, retail, transportation industries and firms with employment
10–750 for comparability with the subsidies design. Consistent with the theoretical framework in Appendix A.9,
technology investment is typically a spiky activity. Back to Section A.3.
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Figure A-35: The Spikes Design. First Stage: Machinery Investment.

Notes: Event-study estimates from Equation 1.1. The outcome is machinery investment in EUR 1000s. Event time
is normalized to zero in the year of the largest machinery investment. Back to Section A.3.
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Figure A-36: The Spikes Design. Employment Effects.

Notes: Event-study estimates from Equation 1.1. Event time is normalized to zero in the year of the largest
machinery investment. Employment is in % relative to the base year τ = −3. Entry rate is defined as the number
of entering workers divided by employment in the base year τ = −3. Exit rate is defined as the number of exiting
workers divided by employment in the base year. Back to Section A.3.
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Figure A-37: The Spikes Design: Skill Effects.

Notes: Difference-in-differences estimates from Equation 1.2. The estimates compare the spikes treatment group to
a matched control group. The right-hand side reports outcome means at τ = −3. Back to Section A.3.
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Figure A-38: The Spikes Design: Firm-Level Effects.

Notes: Difference-in-differences estimates from Equation 1.2. The estimates compare the spikes treatment group to
a matched control group. The right-hand side reports outcome means at τ = −3. Back to Section A.3.
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Table A.39: The Spikes Design: Balance Table.

Treatment Group Control Group Both

Variable Mean Std. Dev. Mean Std. Dev. 10p Median 90p

Machinery Inv. (EUR K) 271.21 858.93 376.70 999.26 6.96 109.55 770.54
Revenue (EUR M) 14.48 30.10 14.12 69.98 1.29 4.85 26.97
Employment 51.66 68.29 53.67 71.11 11.10 28.30 119.20
Wages (EUR K) 33.68 9.26 33.75 8.21 25.12 32.56 43.20
Subsidy Applied (EUR K) 72.40 339.62 25.23 119.99 0.00 0.00 45.37
Subsidy Granted (EUR K) 41.15 173.02 16.07 81.71 0.00 0.00 23.17
Educ. Years 11.89 0.91 11.86 0.87 10.88 11.78 12.94
College Share (%) 21.24 16.70 20.90 14.95 5.56 17.65 40.91
Production Worker Share (%) 58.90 30.95 63.68 25.79 14.29 71.43 88.89
Observations 450 1593 2043

Notes: All variables measured at τ = −3 relative to the event. We use coarsened exact matching (CEM) with
replacement. Back to Section A.3.

235



Table A.40: The Effects by Firm Size for Spikes Design.

Panel A: Large Firms.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Machine Inv. Employment Revenue Wages Productivity Labor Sh. Educ. Years College Sh. Prod. Work. Sh.

Treatment 7235.1∗∗ 0.325∗ 0.240∗∗ 0.00368 -0.00122 -0.000446 -0.0372 -0.00826 0.0284
(2430.8) (0.153) (0.0893) (0.0174) (0.0343) (0.00504) (0.0412) (0.00847) (0.0146)

Obs. 368 368 368 368 368 368 368 368 345

Panel B: Medium-Sized Firms.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Machine Inv. Employment Revenue Wages Productivity Labor Sh. Educ. Years College Sh. Prod. Work. Sh.

Treatment 1015.6∗∗∗ 0.0681∗ 0.0981∗ 0.0400 0.0141 0.000103 0.0136 0.00387 0.00949
(149.4) (0.0319) (0.0411) (0.0340) (0.0261) (0.00393) (0.0274) (0.00466) (0.00707)

Obs. 788 788 788 788 788 788 788 788 727

Panel C: Small Firms.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Machine Inv. Employment Revenue Wages Productivity Labor Sh. Educ. Years College Sh. Prod. Work. Sh.

Treatment 391.3∗∗∗ 0.156∗ 0.160 -0.0256 0.00889 -0.00359 -0.00782 0.00970 -0.00517
(46.69) (0.0667) (0.0895) (0.0157) (0.0297) (0.00492) (0.0415) (0.00680) (0.00852)

Obs. 887 887 887 887 887 887 887 887 830
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The sample is the spikes design sample. Estimated effects on selected outcomes for different firm sizes. Large firms (FTE > 75), Medium
Firms (FTE >= 25 & FTE <= 75), Small Firms (FTE < 25). Machine investment is in EUR K. The effects are qualitatively similar in firms of
all sizes.
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A.4 The Regression Discontinuity Design

Design We use a regression discontinuity (RD) design generated by a change in the rules used to
evaluate the applications as one tool to address internal validity. Buri (2017) discusses the policy
change and the RD strategy. The advantage of the RD design is that the estimates are likely to
reflect a causal relationship and satisfy Assumption 1. The disadvantages of the RD design in this
context are statistical power, that the treatment is less precisely defined, and that it does not allow
a natural way to use the text data to measure different types and uses of technology.

The EU expanded the definition of a small firm in 2005. Our RD design uses the fact that firms
just below the new threshold were prioritized for subsidies but were otherwise similar to those just
above it. Before the policy change, upper thresholds for small firms were 50 for employment, EUR
5M for the balance sheet, and 7M for turnover. The EU raised the thresholds for balance sheet
and turnover to 10M. We use the balance sheet’s total value as our running variable because it
measured most precisely and had the most significant change; this gives us the statistical power to
conduct the analysis.

The critical part is that the new rule was applied using retrospective data for firms. Thus firms
could not immediately manipulate their size. However, as shown in Figure A-39, firms adjusted
their size later. This evidence leads us to focus only on the first year of the policy change when
manipulation at the threshold was unlikely. Finland implemented the change in 2007 but considered
retrospective data from 2004–2006. Our estimates use 2004 data as the running variable to avoid
selection bias.

The policy change potentially affected firms’ self-selection into the program, the likelihood of
winning the subsidy, and the levels of subsidies. While being a small firm is not a strict criterion
for receiving subsidies, the ELY Centers prioritize small firms (e.g., Takalo et al. 2013). The firms
know this and are potentially more likely to apply for subsidies when the expected benefits are
more significant. These facts and statistical precision lead us to focus on the reduced-form effects.
There were no simultaneous policy changes at the same margin.

To produce the RD estimates, we use the following specification:

Yi = α+ βEi + f(zi,2004) + εi (A.1)

where Yi is outcome for firm i, f(zi,2004) is a function of the running variable (balance sheet in
2004) and Ei is the cut-off indicator (balance sheet under 10M in 2004). We use the bandwidth
of 5 million, triangular kernel, and first-order polynomial (Gelman and Imbens, 2019) in our main
specification. We cluster the standard errors at the 3-digit industry.

Results Table A.42 shows the summary statistics for the RD sample firms.1 As expected, the RD
sample firms are larger than in the main design because, by definition, their revenue is around EUR

1We exclude agriculture and forestry, the public sector, transportation, and finance since these sectors are
generally not eligible for these ELY Center subsidies.
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10M. Figure A-39 documents firms starting to bunch around the new threshold after the change
comes into effect. Figure A-40 formally shows by a McCrary test (McCrary 2008; implemented as
in Cattaneo et al. 2018) that this is not yet the case in the pre-change year of 2004, which is the
relevant year for our identification. Table A.42 tests whether firms are different on different sides
of the cutoff before the treatment and finds no statistically significant differences.

Next, we describe the first stage. Figure A-41 shows a jump in the received subsidies at the
new cutoff of EUR 10M. The running variable (x-axis) is the balance sheet in 2004; the outcome
variable (y-axis) is the total received subsidies in EUR 10K The received subsidies are larger on the
left side of the cutoff, likely because those firms became small under the new classification. Figure
A-41 also shows that these subsidies stimulated new investments: The linear graphs show a clear
jump at the cutoff. Table A.43 quantifies the same jumps using Equation A.1 for subsidies received
and investments made in 2007. Becoming a small firm increased the subsidies by EUR 38K and
investments by EUR 188K. Both estimates are significant at the 5% level.

Table A.44 presents the primary outcomes of the RD design. These results broadly confirm our
main results of firm growth in employment and revenue but no skill bias. Being re-classified as a
small firm increased employment by 9% and revenue by 25%. We see no changes in average wages,
years of education, or the share of college-educated workers or production workers. The estimation
is done by setting the average of 2003–2006 as a baseline value and comparing each observation
from 2010 to 2015 separately to the baseline to increase statistical power. These differences are the
outcomes in the estimation. Figure A-42 visualizes a similar estimation for each year separately.
We observe an increase of 8–10 employees from 2010 onwards.

We run multiple robustness and placebo tests for our estimates. Figure A-43 explores robust-
ness to the choice of bandwidth: Our results are not sensitive to it. Figure A-44 runs our main
specification with different thresholds: We cannot replicate our results with the placebo thresholds.
Figure A-45 run the estimation with placebo years’ balance sheets: We observe no effect.
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Figure A-39: RD: The Number of Firms at the Balance-Sheet Threshold.

Notes: This figure shows the number of firms around the balance-sheet threshold for small firms announced in
2003, which came into effect in 2007. Back to Section A.4.
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Figure A-40: RD: The Density of Firms at the Balance-Sheet Threshold.

Notes: This figure visualizes the McCrary-test for our RD year. The horizontal axis is the firms’ balance sheet in
2004 in millions of euros. The vertical axis denotes the density of observations. Back to Section A.4.
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Figure A-41: RD: The First Stage.

Notes: This figure shows the discontinuity at the balance-sheet threshold for 2007 investment subsidies (left) and
total investment (right). The vertical axis is in thousands of euros, and the horizontal axis is in millions of euros.
Back to Section A.4.
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Figure A-42: RD: Employment.

Notes: The estimates are from Equation A.1. The outcome is the employment difference to base year 2006. The
explanatory variable is the balance-sheet RD threshold indicator. In all regressions, we cluster the standard errors
by three-digit industry, the kernel function is triangular, and the polynomial order is one. Back to Section A.4.
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Figure A-43: RD: Different Bandwidths.

Notes: The estimates are from Equation A.1. The horizontal axis indicates the size of the estimation window. In
all regressions, we cluster the standard errors by three-digit industry, the kernel function is triangular, and the
polynomial order is one. Back to Section A.4.
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Figure A-44: RD: Placebo Thresholds.

Notes: The estimates are from Equation A.1. The outcome is investment subsidies in the upper panel and
investment in the lower panel. The explanatory variable is the balance-sheet threshold indicator. The indicator
equals one if the balance sheet is lower than the number indicated on the horizontal axis. The effect should be at
the real threshold of 10. In all regressions, we cluster the standard errors by three-digit industry, the kernel
function is triangular, and the polynomial order is one. Back to Section A.4.
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Figure A-45: RD: Placebo Years.

Notes: This figure shows the discontinuity at the balance-sheet threshold for investment subsidies (top) and total
investment (bottom). The vertical axis is in thousands of euros, and the horizontal axis is in millions of euros. In
all versions, we consider the 2004 balance sheet. The discontinuity should be exactly in 2007. Before 2007, there
should not be a discontinuity since the new balance-sheet criterion was not yet in place. After 2007, there should
not be a discontinuity since the balance sheet 2004 value was no longer relevant. Back to Section A.4.

242



Table A.41: RD: Summary Statistics.

Mean Std. Dev N
Employment 65.75 76.93 1269
Revenue (EUR M) 16.7 16.5 1273
Wages 34,700 16,900 1269
Production Worker Share 0.40 0.32 1271
College Share 0.37 0.26 1273
Total Investment 377,600 579,000 1273
Investment Subsidies 16,200 127,600 1273
Total Subsidies 23,900 124,600 1273
Subsidized Loans 168,500 1,055,500 1273

Notes: Summary statistics for the RD sample, with balance sheet between 5 to 15 million EUR. Back to Section
A.4.

Table A.42: RD: Pre-Treatment Covariate Balance.

Investment Subsidy Revenue Employment
Small 2004 5.771 16.17 -4.296 -7.745

(88.22) (19.03) (2.849) (10.37)
N 1273 1273 1273 1270

Notes: The estimates are from Equation A.1. The outcomes are pre-period averages over years 2000–2004.
Standard errors in parentheses, clustered by three-digit industry. * p < 0.10, ** p < 0.05, *** p < 0.01. Back to
Section A.4.

Table A.43: RD: The First Stage.

(1) (2)
Subsidy Investment

Small 2004 38.07∗ 188.5∗

(16.44) (86.53)
N 1273 1273

Notes: The estimates are from Equation A.1. The outcomes are 2007 investment subsidies (left) and 2007 total
investment (right). The values are in EUR K. Standard errors in parentheses, clustered by three-digit industry. * p
< 0.10, ** p < 0.05, *** p < 0.01. Back to Section A.4.
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Table A.44: RD: The Reduced-Form Estimates.

(1) (2) (3) (4) (5) (6)
Employment Revenue Wages College Share Educ. Years Producion Worker Share

Small 2004 0.0899∗ 0.251∗∗∗ 0.0214 -0.00108 -0.00902 0.00613
(0.0417) (0.0435) (0.0208) (0.0106) (0.0625) (0.0119)

N 6005 6006 6003 6012 6012 6012

Notes: The estimates are from Equation A.1. The outcomes are defined in first differences. Standard errors in parentheses, clustered by three-digit industry.
* p < 0.10, ** p < 0.05, *** p < 0.01. Back to Section A.4.
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A.5 Data and Fieldwork

A.5.1 Data on Technologies

This section reports details on the technology categories primarily based on the text data.

A.5.1.1 Uses of Technologies

Process This category contains cases where the firm intends to use the technology to produce
the same output type. The use of technologies to automate processes or increase automation in
production is part of this category. Typical descriptions: an investment that makes operations more
efficient, a productivity-enhancing investment, an investment that increases automation. These de-
scriptions often include details, for example, which part of the production the firm intended to make
more efficient. Some applications describe these advances as “solving bottlenecks,” complementary
to the other elements in the production.

Product This category contains cases where the firm intends to use the technology to produce
a new output type. Typical descriptions: diversification of production, e.g., a new product, a
new service, or a more comprehensive selection of services; improved production capabilities, e.g.,
the ability to work with or to manufacture larger items (very common), development of product
features, such as increasing quality or the degree of processing, and transitioning to more environ-
mentally sustainable production. This category also contains cases where the firm intends to use
the technologies to expand or grow, as most of these cases also explicitly include a description of
new types of customers, new output, or new capabilities.

Product and process are two opposites as to whether the improvement is within or between varieties.
If the text does not specify the use of the technology on this margin, we code it as NA. Typical
NA cases only specify the technology (e.g., a CNC machine) or provide limited information.

A.5.1.2 Types of Technologies

Automated vs. non-automated This category classifies cases where the technology requires
no active user (automated) vs. an active user (non-automated). The classification is based on the
specific technology or machinery described in the text and customs data. Automated machinery
includes robots, CNC machines, automated conveyor belts, automated welding tools, etc. Non-
automated machinery includes not explicitly automated machinery, for example, hand-operated
tools, non-automatic welding tools, hydraulic presses, non-automatic machine tools, cutting ma-
chines, lifting equipment, pumps, furnaces, and sprayers.

Hardware vs. software This category classifies cases where the technology is physical (hard-
ware) or not physical (software). Typical hardware includes CNC machines, welding robots, laser
cutters, bending presses, surface-treatment technologies, robot arms, conveyor belts, sensors, and
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measurement devices. Typical software includes enterprise resource planning (ERP), computer-
aided design (CAD), and production-control software.

Table A.45: Summary Statistics: Text-Category Predictions using SVM.

Class Precision Recall F1-score Test Support Number of Cases

Not Technology (0) 0.97 0.96 0.96 1550 31022
Technology (1) 0.88 0.92 0.90 571 11887

Accuracy 0.95 2121 42909
Balanced Accuracy 0.94 2121 42909

Macro Avg. 0.93 0.94 0.93 2121 42909
Weighted Avg. 0.95 0.95 0.95 2121 42909

Notes: Test Support refers to the 10% random out-of-sample of the applications classified by hand, from which
accuracy measures are computed. The number of cases refers to the total number of subsidy applications with
labels (both classified by hand and predicted). Precision is the ratio of correctly predicted positive observations to
the total predicted positive observations. Recall (Sensitivity) is the ratio of correctly predicted positive
observations to all observations in the category. F1 Score is the harmonic mean of Precision and Recall. Accuracy
is the ratio of correctly predicted observations to the total observations. Back to Section A.5.

Figure A-46: Predictive Features for Technology in the Text Data.
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Notes: Top features for predicting technology texts. The y-axis refers to the feature weights from the SVM
prediction. The features are translated into English from Finnish. Features in <> refer to compound terms
combining similar spelling versions of the same term. Back to Section A.5.
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A.5.2 Data on Work and Skills

We directly measure individual workers’ employment, wages, education, grades, occupations, tasks,
cognitive performance, and personality.

Employment and Wages We obtain employment and wage data from the registers maintained
by Statistics Finland. The data contain the employment status, wages, and other income and
a link to the firm. The data allow us to track all persons in Finland over time, independent of
their labor-market status. The data are combined from multiple government sources (including
the social security system and the tax authorities) and direct data collection by Statistics Finland.
These registers also record the individuals’ age and gender.

Education We measure education and school grades. Education is measured from The Register
of Completed Education and Degrees. It provides exact information on the educational degrees
the individual has obtained. We measure the level of education in four categories: 1) very low
(no recorded degree), 2) low (high school), (3) medium (BA or equivalent), and 4) high (MA or
PhD). We measure the type of education also in four categories: 1) STEM (science, technology,
engineering, and mathematics), 2) HASS (humanities, arts, and social sciences), 3) business and
law, and 4) other types. We map degrees to years of education based on their official length.

School grades are measured from the Secondary Education Application Register and the Finnish
Matriculation Examination Board Register. We focus on the 9th-grade GPA and the standardized
scores in the national high-school exit exam (12th grade).2 We normalize both grade measures to
have mean 0 and standard deviation 1 within cohorts.

Occupations and Tasks We measure occupations from the employment registers at the 3-digit
level in the ISCO classification system. We harmonize the occupation classifications, resulting
in 48 consistently defined occupations. For most analyses, we focus on three broad occupational
categories: production workers (craft workers, operators, assemblers, and elementary occupations),
non-production workers in lower-level positions (clerical, service, and sales workers), non-production
workers in higher-level positions (technicians, associate professionals, professionals, and managers).

To measure the task content of the occupations, we use the European Working Conditions
Survey (EWCS). The survey provides information on the tasks workers perform in their jobs. The
data are collected through face-to-face interviews every five years. Using these data, we construct
occupation-level measures of task intensity for routine, manual, cognitive, and social tasks (see,
Autor et al. 2003).3 For example, an occupation is classified as highly routine if the workers in that
occupation describe they often perform repetitive and monotonous tasks. The advantage of the
EWCS data is that it is based on workers’ descriptions of their work; it is available for a specific
country and time and is consistent with the European occupational classification.

2We use 9th-grade GPA because only approximately 50% of Finns take the high-school exit exams.
3We use similar classifications as Kauhanen and Riukula (2019).
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Cognitive Performance and Personality We obtain data for cognitive performance and
personality from the Finnish Defence Forces (FDF). The data cover 79% of Finnish men born
1962–1979, and are measured because of universal conscription. The cognitive-performance mea-
sures are visuospatial, arithmetic, and verbal reasoning. The visuospatial test is similar to Raven’s
Progressive Matrices (Raven and Court, 1938). The personality-trait measures are sociability,
activity-energy, self-confidence, leadership motivation, achievement motivation, dutifulness, delib-
eration, and masculinity. The personality test is based on the Minnesota Multiphasic Personality
Inventory (MMPI). We normalize all measures to have a mean 0 and standard deviation of 1 within
cohorts. The FDF data are described in Izadi and Tuhkuri (2021a,b).

A.5.3 Data on Firms

We assemble a large set of data on firms, including the revenue, profits, exports, products, prices,
and patents. The data track all firms over time.

Firm Performance The firm-performance measures, revenue, value-added, and profits, are ob-
tained from the Finnish Financial Statement Register. We use two variables to measure produc-
tivity: revenue per worker and total factor productivity (TFP) estimated using the Cobb-Douglas
production function. We measure profits primarily by the profit margin, defined as profits divided
by the revenue. We define the labor share as the wage bill divided by the revenue. We winsorize
firms’ monetary values at the 5% level.

Exports Exports are measured from the Finnish Customs’ Foreign Trade Statistics. We focus
on the firms’ export status (exporter vs. non-exporter), exports’ share of the total revenue, and
export destinations.

Products We measure firms’ products from the Customs Register at the 6-digit CN classification.
We focus on the number of products per firm and product turnover: the number of products
introduced and discontinued.

Prices We compute firms’ product-level prices from the Customs Register and Industrial Produc-
tion Statistics. We define product-level prices as the product-level revenue divided by the number
of units sold. We harmonize the product categories to be consistent over time. We focus on firm-
level average prices computed as an unweighted average. We winsorize price data at the 10% level
within product and year.

Patents Patent information comes from the Finnish Patent Database. We focus on the number
of new patent applications per firm.

Capital We measure capital from the official records on firms’ balance sheets.
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Industries We measure industries at a harmonized 2-digit level classification (based on NACE
Rev. 2). Our primary industry-level variable is the industry’s scope for quality differentiation,
which we measure using Rauch (1999), Gollop and Monahan (1991), and Sutton (1998) indices.
We also measure industries’ automation intensity (Acemoglu and Restrepo, 2020), tradability (Mian
and Sufi, 2014) and education level (similar to Ciccone and Papaioannou, 2009).

Subsidies We measure firm subsidies from multiple registers. Two centralized systems (Yrtti 1
and 2) record the ELY Center subsidies. We gained access to these previously unstudied data,
which record the application process from submission to decision. We measure other firm subsidies
using the Statistics on Business Subsidies data.

A.5.4 Fieldwork

We conducted fieldwork to understand the changes we document at the level of specific firms and
workers. We visited our sample manufacturing plants and interviewed CEOs, technology managers,
production workers, and subsidy administrators.

Firm Visits and Interviews We chose five manufacturing firms for in-depth case studies. The
primary purpose of the case studies was to observe the technologies, production, and work firsthand.
We spent on average 4 hours at each manufacturing plant observing the production and conducting
interviews. We also conducted five separate firm interviews (a total of 10 firms).

Our qualitative research method was open-ended interviews, building on prior qualitative re-
search on technologies in firms (e.g., Piore 1979; Dertouzos et al. 1989; Berger 2013; Piore 2006).
This method is helpful because it allows us to identify the prevalence of mechanisms we had pos-
tulated ex-ante and uncover new mechanisms that we had not anticipated. We asked the firm
representatives about their production, technology adoption, motivations behind adopting tech-
nologies, the observed effects, and government subsidies.

We selected the firms to be representative of the sample and different from each other. We
visited and interviewed firms with employment from 30 to 18,000 workers; subsidy winners, subsidy
losers, and non-applicants; firms in rural and urban areas; privately owned and publicly traded
firms; firms with high levels of own capital and firms in the corporate restructuring. All firms were
in the fabricated metal product, machinery, and wood product industries.

Worker Interviews We separately interviewed five production workers using similar in-depth
interviews as in our firm visits. In all interviews, we asked the respondents broadly about their work
and skills, technologies they use at work, other technologies at their workplace, and the effects of
technologies they had observed. Our qualitative methods draw from a long social sciences tradition
to directly ask the respondents how they perceive the cause and effect. We used a semi-structured
approach to interviewing that uses open-ended questions to allow a wide range of responses to
emerge (see, e.g., Piore 1979; Boyd and DeLuca 2017; Bergman et al. 2019). We recruited the
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interview respondents in collaboration with the Finnish Industrial Union, the largest Finnish union
representing industrial workers.

Subsidy Program Interviews and Text Data To understand the subsidy program, we in-
terviewed 1) officers in all four main ELY Centers, 2) program administrators at the Ministry of
Economic Affairs and Employment, 3) an external program auditor at the Ministry of Finance,
and 4) a consulting firm that assists firms in subsidy applications (a total of 18 interviewees in 7
groups). We also used text records from the administrative system of the subsidy program to track
the applications and qualitatively understand how the subsidy program works.4

4In addition, we studied the relevant legislature, ELY Centers’ relevant strategy documents, and the official
reports of the subsidy program (e.g., Ritsilä and Tokila 2005; Pietarinen 2012; Aaltonen 2013; Ramboll 2013; Auri
et al. 2018; Heikkinen et al. 2019; Ilmakunnas et al. 2020, and TEM 2020).
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A.6 Text Analysis

This section presents details on the text analysis performed in the paper.5

Preprocessing We apply similar preprocessing steps both to the description texts (used in clas-
sifying the type and use of the technology) and the evaluation texts (used in constructing the
propensity scores and cosine similarity matching). These steps are:

1. All text is converted to lowercase.

2. Non-letter symbols are removed.

3. Common “stop words” are removed using the Finnish corpus in the Natural Language Toolkit
(Bird et al., 2009).

4. Words are returned to their base form (also known as lemmatization) using Voikko.6

5. Single-character words are removed, as there are none in Finnish.

6. Words indicating firm type are removed (such as “Oy”, which translates to “LLC”).

7. Countries, cities, municipalities, known firm names, and technology-related words are changed
to generalized versions.7

8. Different versions of words associated with technology are replaced with generalized versions
of those words. This is mainly to generalize compound words, which are common in Finnish.8

Classification After the pre-processing, we turn to scikit-learn (Pedregosa et al., 2011) to per-
form the classification. We first transform the texts into a Bag of Words (BoW) representation,
where each application text corresponds to a vector of the length of the corpus (containing all the
words appearing in any texts). Then, the corresponding indices of the vector mark the number of
occurrences of each word appearing in the application’s text. The vectors are then transformed
using term frequency-inverse document frequency (TF-IDF) weights (Salton and Buckley, 1988).
The general idea of TF-IDF is to give higher weights to informative words appearing often within
an application text. These weighted vectors are finally used in training a support vector machine
(SVM) classifier.9 We also performed the classification using other classifiers than SVMs, such

5All text-related data work is done using Python 3.7.
6Voikko performs a variety of NLP preprocessing tasks for Finnish text (https://voikko.puimula.org/).
7The generalized versions of the words are inside the symbols “<” and “>”. For example, the word “Helsinki”

(the capital of Finland) is changed to “<City>”.
8For example, after each prior preprocessing step, the word “hitsausrobotti” (welding robot in English) is

a distinct word from both “welding” and “robot”. After the last preprocessing step, the word is replaced with
“<Weld><Robot>” to capture its similarity to the words “<Robot>” and “<Weld>”.

9SVMs divide the n-dimensional space of vectors (where n is equal to the length of the corpus) with a (n− 1)-
dimensional hyperplane. In the case of a binary classification problem, points on one side of the hyperplane are
classified as belonging to one category, and points on the other side to the other category.
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as boosting algorithms and neural network variants, but the SVMs performed the best for our
purposes. To cross-validate the classifier’s performance, we use K-fold cross-validation with five
splits. We search the grid for optimal hyperparameters in the learning rate (or alpha), the penalty
function, and several other parameters used in vectorization.10 The score to be optimized is the
F1-score, which gives equal importance to minimizing both false negatives and false positives, as
neither one is more crucial in our classification problem. The optimized parameters are (for both
technology and automation classification):11

1. Learning rate set to .00001

2. Penalty function set to elastic net.

3. Words appearing in more than 50% of application texts are removed.

4. In addition to single words, combinations of two and three words are also used as elements
in the training vectors.

This training procedure attains around 90% F-score and 95% accuracy for both technology and
automation classification in our out-of-sample tests. We classify manually the applications in our
sample into the remaining categories to maximize precision.

Word Vectors Word Vectors are an increasingly popular method of transforming text into nu-
merical form to use in natural language processing tasks, as they have been shown to outperform
other text presentation models in multiple different applications (Pennington et al., 2014). Word
Vectors are also capable of capturing word semantics, something that simpler transformation meth-
ods are not able to do. Put simply, word vectors represent individual words as vectors, often in
high dimensions. The similarity of different words can therefore be measured as the distance of
their respective vectors: the closer they are in the metric space, the more similar they are.

We construct word vectors using FastText by Facebook (Bojanowski et al., 2016). FastText
builds on a model by Mikolov et al. (2013) which creates vector representations of words by predict-
ing “context words” (e.g. words appearing before or after a given word). A key feature that makes
FastText attractive for our purposes is its skip-gram approach to building the word vectors: the
model creates word vectors of combinations of characters also appearing inside words. That allows
the model to capture better the semantic meaning of two forms of the same word. For example, the
words “technology” and “technologies” both have essentially the same meaning in many contexts,
but simpler models would require enough training data containing both words to construct their
word vectors accurately. That is because these models treat them as entirely separate words (at
least before constructing the word vectors). FastText overcomes this limitation by constructing
a word vector for the common sequences of characters in both words, such as “technolog,” that

10These include the n-gram range and the threshold for corpus specific stop words.
11All other parameters are set to default ones in the SGDClassifier estimator in the scikit-learn library. We tested

optimizing other parameters as well using randomized search, but find virtually no improvements in accuracy.
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contribute to the word vector values of all words containing the same sequence. Hence, words
containing a common sequence that captures most of the semantic meaning all have similar vec-
tor representations. This aspect is especially important in morphologically rich languages such as
Finnish, where various case suffixes are common.

In our application, the words appearing in the description text of each application (i.e., in our
corpus) are first transformed into 100-dimensional vectors. We highlight the fact that we use the
corpus of subsidy application texts to train the model, rather than using pre-trained models of
the Finnish dictionary, for example. The reason for this is that words appearing in the subsidy
application texts are likely to hold different semantic meanings than the same words in more
general contexts. After constructing the initial word vectors, each of them is weighted by the term
frequency-inverse document frequency (TF-IDF). Finally, another 100-dimensional vector is built
for each application text by taking the average over each of the TF-IDF weighted word vectors
in the text. Hence, we end up with each firm in our main analysis sample having one “sentence
vector” giving its application texts contents in 100 dimensions. We then use these sentence vectors
to build propensity score measures and match recipients to non-recipients with replacement.

Propensity Score The procedure is explained in more detail in Section 4.3 of the main text.
We use the CalibratedClassifierCV estimator in the scikit-learn library to calibrate the linear SVM
model, as it is not by default a probabilistic classifier. The sentence vectors are used as features and
the model outputs the estimated probability of the application being successful (i.e. probability of
treatment assignment).

Cosine Similarity Matching The procedure is explained in more detail in Section 4.3 of the
main text. Cosine similarity gives a similarity metric between two vectors. We calculate this metric
for each winner-loser pair in our main analysis sample using the sentence vectors. The match is
1:1 with replacement, so we keep only the matched loser firm with the highest similarity with a
given winning firm. After manual inspection of the match quality, we also discard all matched
pairs where the similarity metric between the texts is less than .85, where unity reflects identical
documents.
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A.7 Context Details

The Economy Finland is an industrialized, small open economy and part of the EU. The GDP
per capita is similar to other northern European economies such as Germany and the UK. The
industry’s employment share was 21% in 2019 (OECD: 23.0%, US: 20%; ILO 2021). Finnish labor
costs are close to the Euro area average and the US (Eurostat 2020; BLS 2020). Labor-market
flexibility is higher than OECD average: short-term contracts are typical and authorized, but
regulations constrain dismissals of regular contracts (OECD 2020). Union membership is common:
70% of workers reported being union members in 2018 (Statistics Finland 2019). Sectoral bargaining
agreements set wage floors, but unions do not directly negotiate about technology adoption.

Skills Education attainment in Finland is above the OECD average: 46% of adults had obtained
tertiary education in 2019 (OECD 2020). Skill measures, such as PISA for school-age students
and PIAAC for adult skills, rank Finland among the world’s highest (PISA 2018, PIAAC 2018).
Secondary vocational education is common in Finland: it enrolls 46.5% of 17-year-olds, near the
European average (OECD 2017; Silliman and Virtanen 2021). Continuous training in manufactur-
ing firms is also common: 46.3% of manufacturing workers participated in continuing vocational
training courses in 2015 (Eurostat 2021).

Trends The recent economic trends in Finland, such as manufacturing employment decline
(Statistics Finland 2020), job polarization (Kerr, Maczulskij, and Maliranta 2020), and regional di-
vergence (Böckerman and Maliranta 2001) have been similar to the US. We document the relevant
trends in manufacturing firms over 1994–2018 in this Section’s figures. The average education level
(measured in years of education) increased from 11.5 to 12.5 years. The college-educated workers’
employment share increased from 18% to 24%. The production-worker employment share declined
from 68% to 62%. Similar trends apply to the wage-bill shares. The average wages increased
from 22,500 EUR to 35,000 EUR per year (all monetary values are in 2017 euros). The college to
non-college wage ratio increased from 1.3 to 1.37, and the production vs. non-production workers’
wage ratio declined from 1.08 to .90. Productivity has increased from 120K to 180K per worker.
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Figure A-47: Manufacturing Skill Composition Trends.

Notes: Trends in Finnish manufacturing over 1994–2018. We restrict to firms with at least 3 workers. We compute
year-level averages from firm-level observations. The numbers are unweighted to match our research design. The
employment-weighted numbers are similar.
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Figure A-48: Manufacturing Wage Trends.

Notes: Trends in Finnish manufacturing over 1994–2018. We restrict to firms with at least 3 workers. We compute
year-level averages from firm-level observations. The numbers are unweighted to match our research design. The
employment-weighted numbers are similar.
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Figure A-49: Manufacturing Productivity and Labor Share Trends.

Notes: Trends in Finnish manufacturing over 1994–2018. We restrict to firms with at least 3 workers. We compute
year-level averages from firm-level observations. The numbers are unweighted to match our research design. The
employment-weighted numbers are similar.
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A.8 Mechanism: Predictions

In this Appendix, we collect the predictions from process and product type technological change,
adapted from Melitz and Redding (2014).

A.8.1 Predictions from the Process Type

Process-type technological change has several specific and measurable implications.

Revenue Firms with lower marginal costs produce more and earn higher revenues. The CES
demand structure predicts that the relative outputs and revenues of firms depend on their relative
productivities:

q (ϕ1)

q (ϕ2)
=

(
ϕ1

ϕ2

)σ
,

r (ϕ1)

r (ϕ2)
=

(
ϕ1

ϕ2

)σ−1

, ϕ1, ϕ2 > 0 (A.2)

Productivity Lower marginal costs imply higher revenue-based productivity because of the fixed
production cost:

r(ϕ)

l(ϕ)
=

wσ

σ − 1

[
1− f

l(ϕ)

]
, (A.3)

where input use l(ϕ) is increasing in ϕ.

Profits Lower marginal-cost firms earn higher profits. As shown in the main text:

π(ϕ) =
r(ϕ)

σ
− wf = Bϕσ−1 − wf, B =

(σ − 1)σ−1

σσ
w1−σA. (A.4)

Prices The price effect depends on whether the productivity improvement refers to lower marginal
costs or a higher quality within the variety. That comes from the fact that the CES preference
representation implicitly imposes a choice of units to measure the quantity of each variety. Quantity
and quality are perfect substitutes within a variety, and a marginal-cost reduction is equivalent to a
quality improvement, up to a new price vector. Firms with lower costs charge lower prices because
the equilibrium price for each variety is a constant mark-up over marginal cost, and firms with
higher quality charge higher prices because the price for each variety can equivalently be expressed
in terms of quality c:

p(ϕ)cost =
σ

σ − 1

w

ϕ
, p(ϕ)quality =

σ

σ − 1
cw. (A.5)
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Labor Share If the composite factor of production contains only labor, the structure of the
model implies that lower marginal costs reduce the labor share because the firm takes wages w as
given and revenue per input increases:

wl(ϕ)

r(ϕ)
=
σ − 1

σ

[
1− f

l(ϕ)

]−1

. (A.6)

If the technological change is specifically automation as in Acemoglu et al. (2020b), it substitutes
capital for tasks previously performed by labor and reduces the labor share of value added.

Employment and the Labor Composition The firms use a composite factor of production
L to produce. The underlying structure of the process change determines how it affects factor
composition, including employment. The literature specifies different versions process-type change
(Tinbergen 1975; Katz and Murphy 1992; Autor et al. 2003; Acemoglu and Restrepo 2018).12

In the models where technological change simultaneously reduces marginal costs and affects
labor composition, technological change is typically assumed to be “skill biased,” in the sense that
new technologies are more complementary to high-skill workers.13 The central prediction from
these models is that if the firm adopts the technology (TI = 1), the employment share of low-skill,
routine, and production workers decreases:

slL (TI = 1) < slL (TI = 0) , where slL = lL/
L∑
i
li. (A.7)

12The distinction between cost and quality within the variety—while isomorphic in this framework—becomes rel-
evant when considering the factor content of technologies. While the canonical, routine replacement, and automation
models can be re-written so that instead of costs, technological change affects quality, their motivation is based on
firms’ cost-reduction intentions.

13In Autor et al. (2003) and Acemoglu and Autor (2011) the effect is mediated through tasks: technologies
substitute for a set of tasks (e.g., routine or lower-complexity tasks), in which a set of workers (e.g., lower-skill
workers) have a comparative advantage.
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A.8.2 Predictions from the Product Type

Product-type technological change produces a set of distinct observable implications. For clarity,
we consider a simplified case of two products.

Revenue Firms that introduce a new variety produce more and earn higher revenues:

q =

q (ϕ0)

q (ϕ0) + q (E [ϕ])
r =

r (ϕ0) if TE = 0

r (ϕ0) + r (E [ϕ]) if TE = 1
(A.8)

Products Firms that introduce a new variety produce a larger number of products:

∣∣Ωi
TE=1

∣∣ > ∣∣Ωi
TE=0

∣∣ , ω ∈ Ω (A.9)

where
∣∣∣Ωi

TE

∣∣∣ denotes the number of elements in the set of varieties produced by the firm i (measured
as produced or exported products or, for example, patents).

Exports If different markets have differentiated preferences, a new variety makes it more likely
that the firm starts exporting, exports a larger share of its revenue, or exports to a larger variety
of destinations:

EXP iTE=1 > EXP iTE=0, (A.10)

where EXP iTE denotes the a measure of exporting activity by the firm i.

Inputs Firms that introduce a new variety use more inputs, such as labor:

l =

f + q0
ϕ0

if TE = 0

2f + fE + q0
ϕ0

+ q1
E[ϕ] if TE = 1

(A.11)

Productivity, Profits, and Prices The product-type technological change predicts, on average,
zero effects on productivity, the profit margin, and prices because the expected productivity in the
new variety is equal to the productivity in the existing variety. The new variety is not uniformly
better than an existing variety but new and an imperfect substitute for the existing varieties. In
our monopolistic-competition market structure, firms can expand either by improving productivity
within a variety or by introducing a new variety, but the firms cannot expand without either action.
On average, introducing a new variety appears as if the firm only scales proportionally in size. Zero
effects on productivity, prices, and the profit margin combined with a positive effect on revenue
are consistent with the new-varieties view.

Labor Composition, Labor Share, and Wages One critical difference between the process
and product-type changes is whether technological change is likely to have distributional effects.
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The product view has no unambiguous basis for expecting a sustained effect on the labor com-
position or the labor share. The task or skill composition might be different for the new variety,
but this likely depends on the particular context.14 The model predicts zero effects on wages in a
competitive labor market because wages are determined in the sectoral equilibrium, and the firm
is small relative to the market.

fE

−f

π(φ)
w

= B
w

φσ−1 − f

φσ−1(φ*)σ−1

π
w

π(φ) < wfE π(φ) > wfE

Figure A-50: The Product Cutoff.

Notes: Adapted from Melitz and Redding (2014). Back to Section 1.6.

14In the Nelson and Phelps (1966) view, skills are complementary to the adoption of new technologies: New
technologies could induce a temporary increase in skill demand, before or after the adoption event.
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A.9 Research Design: Theoretical Framework

To clarify the source of variation in our identification strategies, we consider the forces that influence
a firm’s technology adoption and its factor demand. We proceed in two steps. In Step 1, we focus
on the firm’s technology-adoption decision. In Step 2, we consider the firm’s conditional factor
demand, treating the technology as a quasi-fixed factor; the idea is to show that we can trace the
implications of the technology adoption problem for factors’ relative demand. The framework is
general to allow for the analysis of multiple types of technologies and factor inputs. The adoption
model is adapted from Cooper et al. (1999).

A.9.1 Step 1: Technology Adoption

In Step 1, we model the general technology-adoption problem of an individual firm. In the model,
the firm makes the discrete choice between replacing existing technology with a new technology or
continuing to use the old technology for another period. Consider a firm i that maximizes:

E0

∞∑
t=0

BtY
i
t (A.12)

subject to
Y i
t = Aitθ

i
tF
(
T it ;L

i
t

)
−Di

tΘ
i
t (A.13)

T it+1 =

{
(1− δ)T it if Di

t = 0

τ it+1 if Di
t = 1

(A.14)

where τ it+1 = µitτ
i
t and µit ≥ 1 is the rate of exogenous technological progress.15 The choice

variable in this problem is Di
t where Di

t = 1 if the new technology T is adopted in period t.

The first equation (A.12) is the firm’s objective function. The firm maximizes the discounted
present value of profits, which are defined as output minus the adjustment costs. The discount rate
is Bt ∈ (0, 1).

The second equation (A.13) describes the production process and the adjustment costs. The
function F (·) is increasing and concave in the level of technology. The output also depends on the
state of productivity Ait. We assume that A follows a first-order Markov process Φ(A′|A). The
model has two types of adoption costs. The first is a fixed adjustment cost (Θi

t). If the firm adopts
the new technology (Di

t = 1), it has to incur a cost Θi
t. It reflects the direct cost of the technology,

its installation costs, other fixed adjustment costs, and a temporary output loss. We assume that
Θi
t is i.i.d. The second is the opportunity cost that is proportional to the production volume. It is

characterized by θit that equals λit ≤ 1 during an adoption period and 1 otherwise.16 The intuition
15We allow the technological progress to contain an idiosyncratic and a deterministic common component to

clarify the potential mechanisms. That is, we assume µit = µt + εit.
16This implies that adjustment costs are heterogeneous across firms even if λit = λ < 1, i.e., equal for all firms i

and periods t.
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is that investment temporarily diverts resources away from production.
The third equation (A.14) describes the time path of the given technology. The technology

frontier is τt. The firm’s actual technology that is in-use is T it . The in-use technology is typically
less productive than the latest version because technology depreciates at an exogenous rate δ and
because the latest technologies improve at rate µit. The firm can decide to adopt the latest version
of the technology (Di

t = 1); in that case its technology will be equal to τ it+1 in the next period.
The gains to adoption reflect both technological progress (µit) and the rate of depreciation (δ).

Under this framework, the firm’s technology adoption reflects several forces:

1. Replacement cycle: The underlying deterministic replacement cycle—driven by depreciation
of capital δ and the common exogenous technological progress µit—will imply that the older
vintage of the capital, the more likely is replacement.

2. Shocks to technologies’ costs: Idiosyncratic shocks to costs Θi
t affect the investment in a

straightforward way: lowering the costs and increasing the likelihood of the investment.

3. Shocks to technological progress: Idiosyncratic shocks to technological progress, that is shocks
to µit, increase the benefits from the technology investment and increase the likelihood of the
investment.17

4. Shocks to productivity: The response of investment to Ait depends on both the nature of the
adjustment costs (λit and Θi

t) and the persistence of the shock (Φ(A′|A)). The firm would
prefer to replace machinery during a period where inputs are not very productive (reflecting
λit < 1) and would also prefer to have a new machine available when productivity is high.
To build intuition, suppose that adjustment costs are fixed. If A is i.i.d., investment is
independent of A. But if a shock to A is informative of similar shocks in the future, then
the investment is more likely when A is high—the firm invests now to benefit from the high
productivity in the future.

We provide proofs and more detailed exposition in Section A.9.3. In the detailed version, we
characterize the solution by a hazard function H(t, A), the probability of adoption if the current
technology stock is t and the state of productivity is A.

In words, two forces determine a technology’s productivity: the technology’s ’age’ and a shock
to total factor productivity. Given the state of productivity, the producer compares the discounted
expected benefits of more productive technology relative to the current adoption costs. The gain
to adoption is that a new version of the technology is more productive as it reflects some aspects
of technological progress. There are two types of costs for replacement. First is the direct loss of
output associated with the acquisition and installation of new capital goods. Second is that the
process of installing the new machinery and retraining workers reduces productivity in the firm.

17Within the framework, this mechanism works analogously to the aging of technology.

263



The nature of the adjustment costs and the structure of the stochastic process governing the shocks
jointly determine adoption timing.

The model assumes that small adjustments of technologies are either infeasible or undesirable.
In particular, many technology-investment projects (e.g., the purchase of large machinery) are
not possible in small quantities. In addition, the model assumes that the costs of adjusting the
technologies stock may be nonconvex. Consequently, at the firm or plant level, we may see periods
of low technology investment activity followed by bursts of investment activity, i.e., investment
spikes. Empirical observations support this view of technology adoption: we find that a significant
fraction of technology investment activity at the firm level is associated with large variations in the
technology stock: i.e., technology investment is typically a lumpy activity.

A.9.2 Step 2: Conditional Factor Demand

In Step 2, we consider the firm’s conditional factor demand, treating the technology as a quasi-fixed
factor. This approach is closely related to the work by Berman et al. (1994) who treat machinery
investments as quasi-fixed and invoke Shephard’s lemma to justify their empirical specification.
Cost-function estimates with quasi-fixed capital trace back to Caves et al. (1981). Our aim is
to trace the implications of the technology adoption problem for factors’ relative demand. The
intuition is that technology is relatively more costly to adjust than labor.18

The firm’s production function is written as:

Y = F (T ;L) (A.15)

where T is the technology of our focus and L is a vector of multiple other factors. An element
Li is the quantity of factor i used in the production of a quantity Y of output. We assume F is
strictly increasing with each of its arguments and strictly concave. We denote the relative price
of factor i by Wi > 0. For the purposes of this analysis, these relative prices reflect potential
relative productivity effects from technology T . The conditional factor demands are characterized
as solutions to the cost-minimization function:

min
(L1...Ln)

n∑
i=1

WiLi subject to F (T ;L1...Ln) > Y (A.16)

The minimum value of the total cost is the cost function C (W1...Wn, Y ). Under this framework, it
satisfies the standard properties of a cost function. It is increasing, homogeneous of degree 1, and
concave in (W1...Wn), and it satisfies the Shephard’s lemma.

The Shephard’s lemma gives us an analytical tool to interpret the relationship between factor
demands and their prices. It states that:

L̄i = CWi (W1...Wn, Y ) (A.17)
18Hamermesh 1989analyzes the costs firms face in adjusting labor demand to exogenous shocks. The study argues

that adjustment costs could be viewed as fixed and documents that labor adjustment tends to be lumpy.
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where L̄i denotes the factor demand for the factor Li and CWi denotes the partial derivative of the
cost function C with respect to priceWi. In other words, the cost function says that the conditional
factor demands can be characterized through a shock to the price vector (W1...Wn).

The expression (A.17) allows us to provide a theoretical basis for analyzing the effects of tech-
nology adoption on the demand for different types of labor. In this framework, technology’s effect
on labor demand is translated through its effect of the (potentially unobserved) prices of labor,
which reflect the productivity of labor combined with the technology. For example, complemen-
tarity between technology and skills would mean that technology T would change the price vector
(W1...Wn) in a way that the factor demands L̄i would shift toward high-skill labor LH ∈ L.

A.9.3 Details on Step 1: Technology Adoption

We consider the technology adoption (or replacement) problem of an individual firm with a given
stock of technologies. This treatment is closely based on Cooper et al. (1999). The underlying
technological progress in this economy makes the problem nonstationary. To analyze the problem,
we normalize it to a stationary version. Define xt = Xt/τ

i
t so that lowercase roman letters represent

values which are normalized by the current value of the technology frontier. For simplicity, assume
that the fixed adjustment cost is proportional to the technology frontier, i.e., Θi

t = Θiτ it and that
F (·) exhibits constant returns to scale. The problem is normalized as:

E0

∞∑
t=0

βity
i
t (A.18)

subject to:
yit = Aitθ

i
tt
i
t −Di

tΘ
i (A.19)

tit =

{
ρtit if Di

t−1 = 0

1 if Di
t−1 = 1

(A.20)

In this normalized version, the discount rate (βit) equals Btµit. We assume that the technological
progress (µit) is not too fast so that βit < 1. We define ρit = (1− δ) /µit ∈ [0, 1] that reflects both
depreciation and obsolescence. With this normalization, technology adoption (Di

t = 1) implies that
the state of the technology is 1 in the next period and a fraction ρit of its size in the previous period
otherwise.

To analyze this problem, we use a dynamic programming approach. The states are the age of
the technology stock (t) and the productivity shock (A). The value function V (t, A) satisfies the
functional equation:19

V (t, A) = max
[
V Y (t, A), V N (t, A)

]
(A.21)

where
V N (t, A) = AF (t) + βEA′|A,ε′V (ρt, A′)

V Y (t, A) = AF (t)λ−Θ + βEA′|AV (1, A′)
(A.22)

19For expositional clarity, we drop the subscript t and the superscript i.
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The superscript Y refers technology adoption (Di
t = 1) and N to no technology adoption (Di

t = 0).
The expectation over A′ is taken using the conditional distributions Φ(A′|A). We assume shock
follows a first-order Markov process. The productivity shock has two effects: a direct effect on
current productivity and an indirect effect through information about future productivity shocks
through Φ(A′|A). We assume shocks to Θi are i.i.d.

The solution to the functional equation leads to adoption if and only if V Y > V N given the
state vector, h = (t, A). We characterize the solution by a hazard function H(t, A) ∈ [0, 1], the
probability of adoption if the current technology stock is t and the state of productivity is A. The
cutoff is visualized in Figure A-51.20

Proposition 1. There exists a solution to the functional equation.

Proof. The solution’s existence follows from Theorem 9.6 in Stokey et al. (1989) if β < 1.

Proposition 2. H(t, A) is decreasing in t.

Proof. For a given value of productivity A let t∗(A) satisfy V N (t, A) = V Y (t, A) where

V N (t, A) ≡ At+ βV (ρt, A′) (A.23)

V Y (t, A) ≡ Atλ−Θ + βEV (1, A′) (A.24)

Define ∆ (t, A) = V Y (t, A) − V N (t, A). Using this object, it is sufficient to show that ∆ (t, A) is
decreasing in t. From (A.23) and (A.24):

∆ (t, A) = At(λ− 1)−Θ + βEA′
[
V (1, A′)− V (ρt, A′)

]
(A.25)

where V (t, A) ≡ max
{
V Y (t, A), V N (t, A)

}
. The first term is decreasing in t. The last part of

this expression is also decreasing as t increases since V (t, A) is an increasing function of t. Thus
∆(t, A) is decreasing in t. This proves that given the state of productivity A, the hazard H(t, A)

is decreasing in t.

Proposition 3. H(t, A) is decreasing in Θ.

Proof. Using the definition of ∆ (t, A; Θ), we have

∆ (t, A; Θ) = At(λ− 1)−Θ + βEA′
[
V (1, A′; Θ)− V (ρt, A′; Θ)

]
(A.26)

The term ∆ (t, A; Θ) is decreasing in Θ and thus the result is immediate.

Proposition 4. H(t, A) is independent of A if Θ > 0, λ = 1, and A is i.i.d.
20While given the state vector, the probability of an investment spike is deterministically either zero or one, this

hazard is a useful object because the idiosyncratic shocks are generally not measured in the data.

266



Proof. Using the definition of ∆ (t, A), for the case of Θ > 0 and λ = 1, we have

∆ (t, A) = −Θ + βEA′
[
V (1, A′)− V (ρt, A′)

]
(A.27)

Since A is i.i.d., the right side is independent of the current realization of the shock. Thus the
gains to replacement are independent of A.

Proposition 5. H(t, A) is increasing in A if Θ > 0, λ = 1, and Φ(A′|A) is decreasing in A.

Proof. Using the definition of ∆ (t, A), for the case of Θ > 0 and λ = 1, we have

∆ (t, A) = −Θ + βEA′|A
[
V (1, A′)− V (ρt, A′)

]
(A.28)

The expectation over A′ is conditional on A so that the current state of productivity does influence
the replacement choice even though λ = 1. Since high values of A put, by assumption, more weight
on high values of A′, it is sufficient to show that V (1, A)−V (t, A) is increasing in A for any t. This
is, in turn, equivalent to the condition that∫ 1

t
VtA(z,A)dz > 0 (A.29)

for all t. This condition is satisfied if VtA(t, A) > 0 for all (t, A). From (A.23) and (A.24) this
positive cross-partial condition holds when Θ > 0 and λ = 1. To see this, note that by assumption,
replacement will eventually occur so that (A.23) is a sequence of current period returns with positive
cross partials between t and A. From (A.24), V Y (t, A) has a positive cross partial since the second
term is independent of t.

D = 1

H(t, μ, θ, Θ, A)H *
D = 0

Figure A-51: The Cutoff.

Notes: Threshold model. The technology adoption model rationalizes firms’ spiky investment behavior. In the
model, the firm makes a technology investment D = 1 if adoption likelihood H crosses a threshold.
Back to Sections 1.4, A.3, and A.9.
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A.10 Related Research

The Effect of Technology on Employment and Skill Demand This paper contributes to
the active literature on the effects of technologies on employment and skill demand, surveyed by
Acemoglu (2002b), Card and DiNardo (2002), and Acemoglu and Autor (2011), and specifically to
the evidence on the effects of advanced technologies in manufacturing firms.

The closest papers to our research report similar findings. Doms et al. (1997) report little cor-
relation between technology adoption and skill upgrading in US manufacturing, focusing on similar
technologies (e.g., CNC machines and robots) and industries (e.g., fabricated metal products) as
we do. Bartel et al. (2007) show that valve plants that adopted new IT-enhanced equipment shifted
their business strategies toward producing more customized products, consistent with our inter-
pretation and evidence. They report changes in machine operators’ skill requirements, not in the
traditional sense of replacing production workers or increasing the demand for formal education,
but, for example, increased focus on setting up, monitoring, and correcting the new machinery,
consistent with what we find in our fieldwork. Weaver and Osterman (2017) emphasize that most
manufacturing work does not require high levels of formal education.

Additionally, Criscuolo et al. (2019) analyze the effects of an investment-support program in
UK manufacturing using an instrumental variables (IV) strategy, and find evidence for a positive
treatment effect on employment. Similarly, Curtis et al. (2021) find positive employment effects
and no skill bias from a capital-investment tax policy in the US. Pavcnik (2003) documents that
plants’ adoption of foreign technology is not associated with skill upgrading, and Nilsen et al.
(2009) find no evidence that investment spikes are associated with changes in the composition
of the workforce. In recent work, Genz et al. (2021) report that the adoption of CNC machines
and industrial robots led to increases in employment, including production workers, and did not
coincide with a higher demand for more educated workers, and Koren et al. (2020) report positive
wage effects on machine operators exposed to imported machinery. Extensive qualitative evidence
corroborates these observations (e.g., Sohal 1996; Small 1999; Berger 2013, 2020).

Contemporary evidence on effects of robots and automation in firms supports our findings
(Acemoglu et al., 2020b; Aghion et al., 2020; Bonfiglioli et al., 2020; Dixon et al., 2021; Eggleston
et al., 2021; Koch et al., 2021; Stapleton and Webb, 2020). Most of it finds positive effects on
employment, no negative effects on low-skill workers, and no major changes in skill composition.21

Dixon et al. (2021) document that robot adoption is motivated by improving product and service
quality, not reducing labor costs. Koch et al. (2021) report that the employment increases applied to
all types of workers and provide evidence supporting the idea that exports facilitate the expansion
effects of technologies. Aghion et al. (2020) report no different effects across skill groups. In
contrast, Acemoglu et al. (2020b) estimate 0–1.6% declines in the production employment share
while focusing on unskilled industrial jobs. The most significant difference between these studies is
the result on the labor-cost share: e.g., Acemoglu et al. (2020b) and Koch et al. (2021) find labor

21Humlum (2019) provides a contrasting view that robot adoption affects firm-level skill composition.
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share declines (3–5% and 5–7%), but Aghion et al. (2020) find no change. One way to reconcile
these estimates is that the former two focus exclusively on robots, while the latter uses a broader
measure of technologies. Robots specifically appear to reduce the labor share, while other advanced
technologies appear to have neutral effects.22

Our results are different from some firm-level studies that focus on different types of tech-
nologies. Generally, the evidence suggests that investments in digital technologies may have been
skill biased—in contrast to typical physical technology investments in manufacturing. For ex-
ample, Akerman et al. (2015) study the regional rollout of broadband internet in Norway using
a difference-in-differences design. More effective internet is a critical technological advance, but
different from new manufacturing technologies, and we would expect potentially different effects.
The estimates indicate that college-educated workers’ wages and employment increased modestly
in places that received faster internet. There were, on average, no negative effects on non-college
and manual workers, but a small negative effect on high-school dropout and routine (cognitive)
workers’ wages. In another example, Gaggl and Wright (2017) estimate the effects of a temporary
tax allowance on ICT investments, primarily software, in the UK using an RD design. They find
that ICT subsidies induced increases in employment and wages. Workers performing non-routine
cognitive tasks experienced the increases, routine cognitive workers experienced modest declines,
and manual workers experienced no change. Furthermore, Bresnahan et al. (2002) report comple-
mentarities between skill and IT equipment, such as computers. Caroli and Van Reenen (2001)
document that organizational change, Boler (2015) that R&D, and Leiponen (2005) and Lindner et
al. (2021) that innovation is complementary to skills. The contrast to these papers highlights that
distinct technological advances may induce distinct effects. Specifying the technologies in focus, as
these papers do, is valuable for building cumulative evidence.

Our results are also different from studies that specifically focus on the replacement effects
of technologies. These papers’ results highlight that some technological changes may also replace
workers. Bessen et al. (2020) study the effects of automation events on incumbent workers, mea-
suring automation from firms’ expenditures on third-party automation services. Our event-study
design builds on their approach. The main difference is that their approach is designed to capture
the replacement effects; they isolate what happens to the incumbent workers when firms automate.
They find that a large increase in automation expenditure makes workers more likely to separate
from the firm. The effects are meaningful but modest in size: the average earnings loss is 2%. They
detect no differences by wage groups, often used as a proxy for skill. In another study, Feigen-
baum and Gross (2021) analyze the replacement of telephone operators for mechanical switching
by AT&T in 1920–1940. This eliminated most of these jobs, did not reduce future cohorts’ overall
employment, but caused adverse effects on incumbent operators.

Our results are different from several macro-level studies. We organize the macro evidence into
indirect and direct approaches. The indirect approaches include Katz and Murphy (1992); Beaudry
et al. (2010); Lewis (2011); Acemoglu and Restrepo (2020); Dauth et al. (2021). These papers report

22Similarly to Koch et al. (2021), we find zero effects on the labor share from advanced technologies.
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skill bias from technological advances, partly for different reasons. The main argument in Katz and
Murphy (1992) is that to reconcile the increased college wage premium with the increased supply
of college-educated workers, substantial growth in the demand for more-educated workers is neces-
sary. This demand growth is sometimes interpreted as skill-biased technological change. Similarly,
Beaudry et al. (2010) and Lewis (2011) evaluate technology-skill complementarity using variation
in skill supply. They find that the local skill supply predicts increases in technology adoption. This
observation is consistent with our results, despite the seeming contradiction: Technology adoption
may be easier in places with more high-skill workers, even if technologies do not directly affect skill
composition within firms.23 Acemoglu and Restrepo (2020) and Dauth et al. (2021) also analyze
technology-skill complementarity indirectly at the local level in the US and Germany. They focus
on the places’ exposure to robots based on their pre-existing industry structure. This exposure ap-
proach has many clear advantages, including the possibility to analyze equilibrium effects, but the
focus on variation stemming from pre-existing industries may leave out technologies’ other effects
than replacement, such as using technologies to launch new products.

The direct approaches include Berman et al. (1994); Autor et al. (1998); Krusell et al. (2000);
Autor et al. (2003); Spitz-Oener (2006); Michaels et al. (2014), and Graetz and Michaels (2018).
These papers also report skill bias from technological advances. Part of the direct macro evidence
considers different technologies. Berman et al. (1994); Autor et al. (1998); Spitz-Oener (2006);
Autor et al. (2003), and Michaels et al. (2014) focus on the effects of ICT, especially computers.
Another part, e.g., Krusell et al. (2000) and Graetz and Michaels (2018), considers similar tech-
nologies to our study and still finds skill bias. While we do not have a complete explanation for
the difference, micro and macro estimates may be different and still consistent with each other for
several reasons, for example, due to externalities (see, e.g., Oberfield and Raval 2021) or if tech-
nologies induce broad economy-wide changes.24 Exploring these channels is a promising avenue for
future research.

To summarize the evidence from the prior literature, we make six observations:

1. According to contemporary evidence, technology investments in manufacturing have not ap-
peared to cause adverse effects to workers generally.

2. Advanced technologies in manufacturing, such as CNC machines, appear to have caused
increases in employment and no changes in the skill composition at the firm level.

23This interpretation is consistent with the technology view emphasized by Nelson and Phelps (1966); Welch
(1970); Schultz (1975), where education fosters the process of technology adoption and with models of directed
technological change (Acemoglu, 1998, 2002a). The interpretation is also consistent with Doms et al. (1997), who
find that plants that adopted more technologies employed more educated workers before adoption.

24These reasons include: 1) externalities, e.g., in the product market, the intermediate input market, the factor
market, or due to technological externalities, 2) compositional effects, e.g., through expansion and contraction of
firms and industries, 3) technologies creating new areas in the economy, e.g., video games, the Apollo program,
or Google, and 4) technologies directly inducing macro-level changes, e.g., self-booking platforms displacing travel
agents, the internet changing job search, or technologies inducing broad organizational and cultural changes. The
papers addressing externalities and compositional effects include Acemoglu et al. (2020b); Aghion et al. (2020);
Humlum (2019); Koch et al. (2021); Restrepo and Hubmer (2021), and Oberfield and Raval (2021).
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3. Robots, specifically, also appear to have caused increases in employment and no significant
skill bias at the firm level but may have reduced the labor-cost share.

4. Digital technologies—ICT, computers, software, and the internet—appear to have been skill
biased for cognitive work at the micro and macro levels.

5. Some technological advances, such as automation consulting services, appear to have caused
some worker displacement.

6. Local skill supply appears to foster technology adoption.

Our results corroborate 1–3 and are consistent with 4–6. These conclusions are tentative due to
the still limited evidence.

The Effects of Industrial Policy Our analysis contributes to the literature on industrial policy.
By industrial policy, we refer to policies that stimulate specific economic activities and promote
economic development. These policies are common. For example, EU countries spent EUR 134.6
billion on government subsidies to the private sector (designated as state aid) in 2019, about .81 %
of the EU’s GDP (The EU State Aid Scoreboard, 2020). The objectives and effects of industrial
policy are debated (Lane, 2020).

This paper focuses on a particular type of firm subsidy: a lump-sum transfer to increase tech-
nology adoption in manufacturing. Manufacturing subsidies are widespread (see, e.g., Gruber and
Johnson 2019) but understudied. Berger (2013) argues that these types of programs have con-
tributed to the productivity and growth opportunities in German SME manufacturing, and lack of
them may contribute to the relatively low productivity growth of US manufacturing. Our evidence
from Finland shows that it is possible to increase technology adoption by targeted subsidies and,
by doing so, induce increases in the subsidized firms’ employment, revenue, and exports.

Empirical challenges in the industrial policy literature are similar to those in the literature on
technology and work. There are different types of industrial policies in different contexts, and
evaluating them is challenging. This paper provides new quasi-experimental estimates of firm
subsidies’ effects in a specific context. In addition to the research we mentioned earlier, Takalo et
al. (2013) and Einio (2014) analyze Finnish R&D subsidies.

Production and Innovation Our analysis relates to the research on firms’ product and export
choices, intermediate inputs, and innovation.

Recent research documents that becoming an exporter stimulates technology adoption and
product-quality upgrading in firms (Verhoogen, 2008; Lileeva and Trefler, 2010; Bustos, 2011; Ku-
gler and Verhoogen, 2012). Our research finds that technology adoption also induces firms to
become exporters and introduce new product varieties—the complementarity between technology
and exporting appears to operate in both directions.
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Access to new machinery is an example of access to new intermediate inputs. Existing research
finds that access to new imported inputs fosters introducing new product varieties and productivity
(Goldberg et al., 2010; Koren et al., 2020). Our research corroborates the result on product varieties.
In related work, Bernard et al. (2010, 2011) analyze the role of product switching as a source of
reallocation within firms, and Hausmann et al. (2007) consider product-specialization patterns’
implications for growth.

Our theoretical framework builds on the literature on heterogeneous firms and trade, reviewed
by Melitz and Redding (2014). We use modeling techniques from Bustos (2011) to capture the
technology-adoption decisions by heterogeneous firms. We find that the monopolistic competition
view of the industrial manufacturing market is consistent with our quantitative and qualitative
evidence. More generally, our research provides empirical evidence to enrich the models of firm-
level technological change and innovation (e.g., Hopenhayn 1992; Ericson and Pakes 1995; Klette
and Kortum 2004; Acemoglu et al. 2018; Kerr et al. 2020).25

25Back to Section 1.1.
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Appendix to Chapter 2

B.1 Supplementary Figures and Tables
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Figure B-1: Density Plots of the Raw Test Scores.
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Figure B-2: Scree Plot of the Eigenvalues from Exploratory Factor Analysis of the Personality and
Cognitive Test Data.
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Figure B-4: Baseline Raw Means for the Mass-Layoff Design.
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Figure B-5: Multidimensional Raw Quartile Means.

Notes: The figure shows the labor market outcomes for workers who experience a mass layoff or plant closure event
and those who do not. The dashed lines correspond to workers who experienced an event between periods 1 and 2,
while the solid lines correspond to the matched control group with no event. Within those groups, the blue line
corresponds to workers in the top quartile of the indicated trait, while the red line corresponds to the bottom
quartile. 277



Table B.1: Cross-Correlations: Raw Traits.

Correlations (Full Sample)
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Table B.2: Factor Loadings.

Factor Loadings
Variable MR1 MR2 MR3 h2 u2 com
Sociability 0.91 -0.05 -0.14 0.71 0.29 1.06
Leadership 0.87 0.05 -0.01 0.79 0.21 1.01
Activity-Energy 0.74 -0.07 0.14 0.62 0.38 1.10
Confidence 0.69 0.10 0.12 0.62 0.38 1.10
Achivement Aim 0.54 0.17 0.19 0.53 0.47 1.46
Masculinity 0.20 -0.05 0.02 0.04 0.96 1.14
Deliberation -0.03 -0.02 0.94 0.86 0.14 1.00
Dutifulness 0.34 0.08 0.53 0.60 0.40 1.76
Arithmetic -0.02 0.88 -0.02 0.76 0.24 1.00
Verbal 0.01 0.81 0.00 0.66 0.34 1.00
Visuospatial 0.00 0.75 -0.01 0.55 0.45 1.00

SS loadings 3.24 2.09 1.41

MR1 1.00 0.35 0.43
MR2 0.35 1.00 0.24
MR3 0.43 0.24 1.00

Notes: Oblique rotation is used to obtain loadings. MR1 (MinRes solution) is labeled Extraversion, MR2 is labeled
Cognitive Ability and MR3 is labeled Conscientiousness.
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Table B.3: Balance Table: Workers.

Variable Treat. Mean Control Mean Mean Dif. t stat. Treat. N Control N

Earnings 41, 600 41, 100 540.6 -4.4 17, 581 86, 373
Age 39.2 39.2 -0.02 0.9 17, 581 86, 373
Tenure 9.3 9.5 -0.2 4.4 17, 581 86, 373
Plant size 296.8 276.4 20.4 -6.1 17, 581 86, 373
Years of Education 12.7 12.7 0.03 -1.6 17, 581 86, 373
College Educated 0.4 0.3 0.01 -3.8 17, 581 86, 373
Extraversion -0.02 -0.1 0.04 -5.1 17, 581 86, 373
Conscientiousness 0.1 0.03 0.03 -3.2 17, 581 86, 373
Cognitive ability 0.1 0.002 0.1 -7.1 17, 581 86, 373

Notes: Each column reports a summary number of the indicated variable across all establishments in period zero. The first three report the total number of
closures and mass layoffs occurring in the treatment group. Plant Size is the average number of employees in period zero.
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Table B.4: Balance Table: Firms.

Group Events Closures Mass Layoffs Aveg. Emp. Change Plant Size

Treatment 3, 535 1, 118 2, 417 0.50 68.3
Control 0 0 0 1.04 51.7

Notes: Columns indicate the means of the row variables in the treatment and control groups in period zero. The
mean difference between the treatment and the control groups and its associated t-statistic is also shown. Firm’s
Employment Change is the average firm growth from period 0 to period 1. Plant Size is the average number of
employees in period zero. Tenure is the number of consecutive years employed in the period zero establishment.
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Table B.5: Cross-Sectional Estimates: Matched Sample, Pre-Period.

Dependent Variable: log(Earnings)
Model: (1) (2) (3) (4) (5)

Variables
Extraversion 0.086

(0.003)
Conscientiousness 0.048

(0.003)
Cognitive Ability 0.119

(0.004)
Years of Education 0.066

(0.002)
Age 0.026

(0.001)
Outcome mean 10.6 10.6 10.6 10.6 10.6

Fixed-effects
Birth Year (13) Yes Yes Yes Yes Yes

Fit statistics
Observations 103,954 103,954 103,954 103,954 103,954
R2 0.08060 0.03606 0.13453 0.19735 0.05829
Within R2 0.06584 0.02058 0.12063 0.18446 0.04317

Notes: Each column reports the OLS regressions results from Equation 2.1 with log earnings as the outcome in the
matched sample in the pre period. The unit of observation is the person. Extraversion, conscientiousness, and
cognitive ability are constructed using exploratory factor analysis and normalized to have mean 0 and standard
deviation 1 within cohorts. Years of education is constructed by mapping the highest degree at age 35 to its official
length (e.g., a high-school degree equals 12 years of education). Heteroskedasticity-robust standard-errors are in
parentheses.
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B.2 Supplementary Data Description

B.2.1 The Finnish Defence Forces (FDF) Test Data

B.2.1.1 Background

Military conscription in Finland is universal and grants relatively few exceptions. The available
data cover 80% of Finnish men born between 1962 and 1979 (n = 489,252). Finnish men are drafted
in the year they turn 18 and most start their service at age 19 or 20. Military service lasts for 6–12
months, and most conscripts do not continue service at the military.

FDF uses psychological tests as of the criteria to assess conscripts’ suitability for non-commissioned
officer training. FDF conducted psychological tests on all conscripts since 1955. Between 1955 and
1982, FDF used one test that measured cognitive skills: logical, mathematical and verbal skills.
From 1982, the FDF has used two tests: a cognitive and a personality test. The content of each
test is described in the sections below.

The test data have been described in Jokela et al. (2017) and validated in FDF’s internal reports
summarized in Nyman (2007).

B.2.1.2 Administration of the Tests

The cognitive ability test and the personality test are typically taken in the second week of military
service in a 2-h paper-and-pencil format in standardized group-administered conditions. The per-
sonality test contains 218 statements with a response scale of yes/no. The cognitive test contains
120 multiple-choice questions. The test questionnaires have been unchanged from 1982 to 2000
(the data available to this study), and the scores are designed to be comparable across cohorts.
The main change in the test administration during the timeline of this study is that between 1995
and 2000, the personality test was administered already at the conscription, on average 18 months
before entering the FDF service. The administration of the cognitive test has been unchanged
1982–2000.

B.2.1.3 Selection Concerns

The data are subject to two selection concerns. The first concern is selection into military service:
Only those that enter the FDF service take the tests. It is possible to be exempted from the
military service due to severe health conditions, most often related to mental health problems, or
due to religious or ethical convictions. For the analysis, this means that the sample is generally
more representative of men with relatively higher labor-market prospects. Over the timeline of this
study, selection into military service has been stable (Jokela et al., 2017). The second concern is
the selective test performance. The military uses the test results for selecting conscripts to officer
training. To some extent, this feature is likely to induce higher performance from those that would
like to be selected and lower performance that would like to avoid it. For personality data, the
concern is alleviated by the fact that the scoring rules are not revealed to the conscripts. For
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cognitive data, test performance may reflect, to some extent, motivation-related factors, as is the
case for most cognitive tests. Finally, the data excludes The Finnish Defense Forces personnel as
well as Finnish Border Guard soldiers.

B.2.1.4 The Cognitive Ability Test

The cognitive ability test has three subtests: visuospatial, arithmetic and verbal reasoning. The
FDF cognitive ability test is similar to the The Armed Services Vocational Aptitude Battery
(ASVAB), administered by the United States Military Entrance Processing Command. Each sub-
test has 40 multiple-choice questions. FDF reports test-retest reliabilities of the subtests between
0.76 and 0.88 (Nyman, 2007). The descriptions of tests are based on Nyman (2007) and Jokela et
al. (2017):

1. The visuospatial subtest is similar to Raven’s Progressive Matrices Raven et al. 2000. The
test shows a set of matrices, each with one removed part, and the participant choose a figure
that completes the matrix.

2. The arithmetic subtest contains different tasks: computing arithmetic operations, complet-
ing a series of numbers that follow a pattern, solving short verbal problems, and noticing
similarities in relationships between numbers.

3. The verbal subtest requires choosing synonyms or antonyms, selecting a word that belongs to
the same category as the given pair of words, choosing which word on a list does not belong
in the group, and detecting similar relationships between two pairs of words (Jokela et al.,
2017).

B.2.1.5 The Personality Test

The personality test aims to measure 8 personality traits. The test is similar to and partly based
on the Minnesota Multiphasic Personality Inventory (MMPI). It contains 218 statements with a
yes/no response scale—between 18 and 33 items for each personality trait. The test score for each
personality trait is the sum of the binary answers aligned with the trait (for example, in reverse-
coded statements, cases where the task-taker disagrees). The data available to this study contain
these sums of scores. FDF reports that internal reliability varies between 0.6 and 0.9 by trait and
that the average Cronbach alpha is 0.75 (Nyman, 2007).

The 8 personality traits measured in the test are, as described by Jokela et al. (2017):

1. Sociability : the person’s level of gregariousness and preference for socializing with others (33
items; e.g., whether the person likes to host parties and not withdraw from social events).

2. Activity–energy : how much the person exerts physical effort in everyday activities and how
quickly the person prefers to execute activities (28 items; e.g., whether the person tends to
work fast and vigorously and prefers fast-paced work).
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3. Self-confidence: the person’s self-esteem and beliefs about his abilities (32 items; e.g., whether
the person feels to be as good and able as others and can meet other people’s expectations).

4. Leadership motivation: how much the person prefers to take charge in groups and influence
other people; it includes 30 items.

5. Achievement motivation: how strongly the person wants to perform well and achieve impor-
tant life goals (24 items; e.g., whether the person is prepared to make personal sacrifices to
achieve success).

6. Dutifulness: how closely the person follows social norms and considers them to be important
(18 items; e.g., whether the person would return money if given back too much change at a
store).

7. Deliberation: how much the person prefers to think ahead and plan things before acting (26
items; e.g., whether the person prefers to spend money carefully).

8. Masculinity : the person’s occupational and recreational interests that are traditionally con-
sidered as masculine (27 items; e.g., whether the person would like to work as a construction
manager).

Dutifulness, deliberation, achievement striving are all related to the higher order personality factor
conscientiousness.

The FDF personality test also includes questions about mental health and questions targeted
at evaluating the answers’ validity. The mental health part has four mental health sub-scales from
the Minnesota Multiphasic Personality Inventory (MMPI) as described by Psych Central (retrieved
2020):

1. Psychopathic deviate: General social maladjustment and the absence of pleasant experiences.
Associated with narcissism, externalization of blame, exploitativeness, and hostility.

2. Psychasthenia: Person’s inability to resist specific actions or thoughts, regardless of their
maladaptive nature. “Psychasthenia” is an old term used to describe a phenomenon that is
currently called obsessive-compulsive disorder (OCD).

3. Schizophrenia: Bizarre thoughts, peculiar perceptions, social alienation, poor familial rela-
tionships, difficulties in concentration and impulse control, lack of deep interests, disturbing
question of self-interest and self-worth, and sexual difficulties.

4. Hypochondriasis: Wide variety of vague and non-specific complaints about bodily functioning.
Complaints tend to focus on back and abdomen, and they persist in the face of negative
medical tests.

The validity part has three sub-scales as:
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1. L-scale: Attempts to give an overly favorable impression of one’s conduct; persons’ test-
taking attitude and approach to the test: intended to identify people who deliberately try to
avoid answering the test honestly and in a frank manner.

2. K-scale: Persons’ test-taking attitude and approach to the test: designed to identify psy-
chopathology in people who otherwise would have profiles within the normal range. A subtle
measure: high scores combined with prior information on psychological problems are inter-
preted as a signal of defensiveness. High-scores without previous psychological problems tend
to be observed with confident individuals.

3. F-scale: Attempts to give unusual, for example, random or contradictory answers; persons’
test-taking attitude and approach to the test: intended to detect unusual or atypical ways of
answering the test items.

B.2.1.6 Exploratory Factor Analysis

The raw data provide test scores for 8 personality dimensions, 3 cognitive-skill dimensions, 4 psy-
chopathological dimensions, and 3 test validity measures. We first consider only the personality and
cognitive-skill test scores. The cross-correlation matrix in Table B.1 shows that both personality
and cognitive measures are correlated within their domains. Within personality scores, the cross-
correlation matrix suggests that the traits with labels related to extraversion (sociability, activity,
confidence, and leadership) and conscientiousness (deliberation and dutifulness) have relatively
higher correlations within their subdomains.1 Achievement aim is traditionally associated with
conscientiousness but in the FDF test, it has relatively high correlations also with the extraversive
traits. Masculinity has low correlations with other personality traits and cognitive measures.

We also expanded the set of variables by including the psychopathological dimensions and test
validity measures, each in turn. In the expanded four-factor model, the psychopathological dimen-
sions load together into single factor, separate from cognitive, extraversive, and conscientiousness-
related factors. However, self-confidence now loads into the psychopathological factor with a nega-
tive loading, and we note that the psychopathological factor is relatively strongly correlated (ρ = .6)
with the extraversive factor. We infer that the psychopathological factor captures many aspects of
the extraversion-related factor. This observation is also supported by regression evidence, where
including both in a regression typically leads to a coefficient of close to zero for the other. We
decide not to include the psychopathological measures in our main factorization because (1) it
contains limited variations, (2) the evidence indicates that it is uncertain whether the measure is
sufficiently separate from the extraversion-related factor, and (3) we want focus on the distinction
between interpersonal and intrapersonal skill.

1Extraversion and conscientiousness are elements of the Big Five and five-factor personality models. Extraversion
is also one of the three personality dimensions in Eysenck’s dimensions.
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Appendix C

Appendix to Chapter 3

C.1 Data

C.1.1 The Finnish Defence Forces (FDF) Test Data

Background Military conscription in Finland is universal and grants relatively few exceptions.
The available data cover 80% of Finnish men born between 1962 and 1979 (n = 489,252). Finnish
men are drafted in the year they turn 18 and most start their service at age 19 or 20. Military
service lasts for 6–12 months, and most conscripts do not continue service at the military.

FDF uses psychological tests as of the criteria to assess conscripts’ suitability for non-commissioned
officer training. FDF conducted psychological tests on all conscripts since 1955. Between 1955 and
1982, FDF used one test that measured cognitive skills: logical, mathematical and verbal skills.
From 1982, the FDF has used two tests: a cognitive and a personality test. The content of each
test is described in the sections below.

The test data have been described in Jokela et al. (2017) and validated in FDF’s internal reports
summarized in Nyman (2007).

Administration of the Tests The cognitive ability test and the personality test are typically
taken in the second week of military service in a 2-h paper-and-pencil format in standardized
group-administered conditions. The personality test contains 218 statements with a response scale
of yes/no. The cognitive test contains 120 multiple-choice questions. The test questionnaires have
been unchanged from 1982 to 2000 (the data available to this study), and the scores are designed
to be comparable across cohorts. The main change in the test administration during the timeline
of this study is that between 1995 and 2000, the personality test was administered already at the
conscription, on average 18 months before entering the FDF service. The administration of the
cognitive test has been unchanged 1982–2000.

The Cognitive Ability Test The cognitive ability test has three subtests: visuospatial, arith-
metic and verbal reasoning. The FDF cognitive ability test is similar to the The Armed Services
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Vocational Aptitude Battery (ASVAB), administered by the United States Military Entrance Pro-
cessing Command. Each subtest has 40 multiple-choice questions. FDF reports test–retest relia-
bilities of the subtests between 0.76 and 0.88 (Nyman, 2007). The descriptions of tests are based
on Nyman (2007) and Jokela et al. (2017):

1. The visuospatial subtest is similar to Raven’s Progressive Matrices (Raven and Court, 1938).
The test shows a set of matrices, each with one removed part, and the participant choose a
figure that completes the matrix.

2. The arithmetic subtest contains different tasks: computing arithmetic operations, complet-
ing a series of numbers that follow a pattern, solving short verbal problems, and noticing
similarities in relationships between numbers.

3. The verbal subtest requires choosing synonyms or antonyms, selecting a word that belongs to
the same category as the given pair of words, choosing which word on a list does not belong
in the group, and detecting similar relationships between two pairs of words (Jokela et al.,
2017).

The Personality Test The personality test aims to measure 8 personality traits. The test
is similar to and partly based on the Minnesota Multiphasic Personality Inventory (MMPI). It
contains 218 statements with a yes/no response scale—between 18 and 33 items for each personality
trait. The test score for each personality trait is the sum of the binary answers aligned with the
trait (for example, in reverse-coded statements, cases where the task-taker disagrees). The data
available to this study contain these sums of scores. FDF reports that internal reliability varies
between 0.6 and 0.9 by trait and that the average Cronbach alpha is 0.75 (Nyman, 2007).

The 8 personality traits measured in the test are, as described by Jokela et al. (2017):

1. Sociability : the person’s level of gregariousness and preference for socializing with others (33
items; e.g., whether the person likes to host parties and not withdraw from social events).

2. Activity–energy : how much the person exerts physical effort in everyday activities and how
quickly the person prefers to execute activities (28 items; e.g., whether the person tends to
work fast and vigorously and prefers fast-paced work).

3. Masculinity : the person’s occupational and recreational interests that are traditionally con-
sidered as masculine (27 items; e.g., whether the person would like to work as a construction
manager).

4. Dutifulness: how closely the person follows social norms and considers them to be important
(18 items; e.g., whether the person would return money if given back too much change at a
store).

5. Deliberation: how much the person prefers to think ahead and plan things before acting (26
items; e.g., whether the person prefers to spend money carefully).
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6. Achievement motivation: how strongly the person wants to perform well and achieve impor-
tant life goals (24 items; e.g., whether the person is prepared to make personal sacrifices to
achieve success).

7. Leadership motivation: how much the person prefers to take charge in groups and influence
other people; it includes 30 items.

8. Self-confidence: the person’s self-esteem and beliefs about his abilities (32 items; e.g., whether
the person feels to be as good and able as others and can meet other people’s expectations).

Dutifulness, deliberation, achievement striving are all related to the higher order personality factor
conscientiousness.

The FDF personality test also includes questions about mental health and questions targeted
at evaluating the answers’ validity. The mental health part has four mental health sub-scales from
the Minnesota Multiphasic Personality Inventory (MMPI), hypochondriasis, psychopathic deviate,
psychasthenia, and schizophrenia. The validity part has three sub-scales: lie (attempts to give an
overly favorable impression of one’s conduct), fix (attempts to give an overly unfavorable impression
of one’s conduct), and validity (attempts to give unusual, for example, random or contradictory
answers).

Selection Concerns The data are subject to two selection concerns. The first concern is selection
into military service: Only those that enter the FDF service take the tests. It is possible to be
exempted from the military service due to severe health conditions, most often related to mental
health problems, or due to religious or ethical convictions. For the analysis, this means that the
sample is generally more representative of men with relatively higher labor-market prospects. Over
the timeline of this study, selection into military service has been stable (Jokela et al., 2017). The
second concern is the selective test performance. The military uses the test results for selecting
conscripts to officer training. To some extent, this feature is likely to induce higher performance
from those that would like to be selected and lower performance that would like to avoid it. For
personality data, the concern is alleviated by the fact that the scoring rules are not revealed to the
conscripts. For cognitive data, test performance may reflect, to some extent, motivation-related
factors, as is the case for most cognitive tests. Finally, the data excludes The Finnish Defense
Forces personnel as well as Finnish Border Guard soldiers.

C.1.2 Anchoring High-School Test Data

In high school, students can select between two tracks of mathematics; basic and advanced. The
exit exams are different for both tracks and a small fraction opts out from both. Our aim is
to construct a single measure of mathematics test scores that is commensurable across the three

289



options. We do this by regressing:

MilitaryMathScoreit = δ1D
BasicMath
i + δ2D

AdvancedMath
i (C.1)

+ δ3D
BasicMath
i BasicMathScorei

+ δ4D
AdvancedMath
i AdvancedMathScorei + δt

where D indicates that person i has participated in the exam. The indicator is interacted with
the normalized test score. For those who did not participate, number -1 is imputed for the test
score (the scalar used here does not matter for the estimation). Finally, δt is a fixed effect for the
test-taking year.

The left-hand side variable is the military arithmetic test score. We use the fact that this
standardized test is administered to everyone in our data. The military test is low stakes, relatively
easy, and only moderately correlated with the high-school test scores (less than 0.4 with either
track). While it does not share the same patterns as our main results (results not shown), it is a
reasonable tool for this purpose.

Table C.1 shows the estimation results. The marginal weights for better test scores are similar
in both tracks. Both predict around 0.26 standard deviation increase in the military test for each
standard deviation increase in the high school score. The differences arise from a mean shift in
the military arithmetic test. The mean performance of students taking the advanced mathematics
track is almost 0.5 standard deviations higher than the mean performance of students taking the
basic track (δ2− δ1). The ’math’ variable in all results except for Table 3.1 is the weighted average
of the right hand side variables, where the weights are given by the δ values. The cohort fixed
effects are not included.
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Table C.1: Math Anchoring Regressions.

Outcome: Military Arithmetic Test

δ1 0.334

(0.006)

δ2 0.810

(0.005)

δ3 0.255

(0.003)

δ4 0.270

(0.002)

Num. obs. 165934
Adj. R2 (full model) 0.269

Adj. R2 (proj model) 0.255

Notes: Robust standard errors are in parentheses.
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C.2 Proofs

Optimal time allocation s∗

Proof. Using equation 3.5:

∂U(s;N, J)

∂s
= −a(N, J) + b(N, J) +

∂V (s;N, J)

∂s
= 0

∂C(s;N, J)

∂s
= a(N, J)− b(N, J)

s∗ = gs(a(N, J)− b(N, J);N, J)

Comparative static: Optimal response of s to a change in J

Proof. Differentiate with respect to J from both sides of equation 3.5:

∂2V (.)

∂s2

∂s∗

∂J
+
∂2V (.)

∂s∗∂J
= aJ(N, J)− bJ(N, J)

−∂
2V (.)

∂s2

∂s∗

∂J
= bJ(N, J) +

∂2V (.)

∂s∗∂J
− aJ(N, J)

∂s∗

∂J
= −

[
∂2V (.)

∂s2

]−1 [
bJ(N, J) +

∂2V (.)

∂s∗∂J
− aJ(N, J)

]

Comparative static: Marginal returns to a change in J

Proof. Earnings are given by

Y = rHH(1− s;N, J) + rSS(s;N, J) + rNN + rJJ

= rHa(N, J)(1− s∗(N, J)) + rSb(N, J)s∗(N, J) + rNN + rJJ

= rHa(N)− rHa(N)s∗(N, J) + rSb(J)s∗(N, J) + rNN + rJJ

Differentiate with respect to J :

∂Y

∂J
=− rHa(N)

∂s∗(N, J)

∂J

+ rS

[
b′(J)s∗(N, J) + b(J)

∂s∗(N, J)

∂J

]
+ rJ

= rSb
′(J)s∗(N, J) + rJ︸ ︷︷ ︸

direct effect

+ (rSb(J)− rHa(N))︸ ︷︷ ︸
net earnings change

∂s∗(N, J)

∂J︸ ︷︷ ︸
change in s
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C.3 Robustness

Correlations (HS Sample)

Earnings at 36
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Figure C-1: Cross-correlations.

Notes: Each number is a pairwise correlation coefficient with person as the unit of observation. All variables are
normalized to have mean 0 and standard deviation 1 within cohorts. Earnings are recorded by the tax authorities
and measured by averaging total labor and entrepreneurial income earned at age 35-38. The data includes only
persons for which we have high-school data.
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Figure C-2: Trends in Trait Premia with Mathematics.

Notes: Each point in the figure corresponds to a regression coefficient from estimating Equation 3.13 separately for
each cohort, with log earnings as the outcome and person as the unit of observation. The right-hand-side variables
include only the action-oriented and school-oriented traits. The action-oriented trait is a composite of Sociability,
Activity, and Masculinity. The school-oriented trait is a composite of Deliberation, Dutifulness, Achievement aim,
Confidence, and Leadership. All covariates are normalized to have mean 0 and standard deviation 1 within
cohorts. Earnings are recorded by the tax authorities and measured by averaging total labor and entrepreneurial
income earned at age 35-38. Robust standard errors are reported as the shaded area.

294



Table C.2: Returns to Skills.

Dependent variable: log earnings

(1) (2) (2)

Sociability 0.019 0.065
(0.003) (0.003)

Activity 0.023 0.047
(0.003) (0.003)

Masculinity 0.023 0.035
(0.002) (0.002)

Deliberation 0.041 0.021
(0.002) (0.002)

Dutifulness −0.032 −0.037
(0.003) (0.003)

Achievement aim 0.050 0.017
(0.002) (0.002)

Confidence 0.037 0.000
(0.003) (0.003)

Leadership 0.038 0.021
(0.003) (0.003)

Math 0.138 0.135
(0.002) (0.002)

Verbal −0.006 0.005
(0.002) (0.002)

Electives 0.056 0.052
(0.002) (0.002)

Outcome mean 10.520 10.520 10.520
Cohort FE yes yes yes
Adj. R2 0.050 0.068 0.099
Observations 157743 157605 156843

Notes: Each column reports the OLS regression results from Equation 3.13, with log earnings as the outcome. The
unit of observation is the person. ’Action-oriented’ is a composite of Sociability, Activity, and Masculinity.
’School-oriented’ is a composite of Deliberation, Dutifulness, Achievement aim, Confidence, and Leadership. Test
scores and traits are normalized to have mean 0 and standard deviation 1 within cohorts. Earnings are measured
by averaging total labor and entrepreneurial income earned at age 35-38. Robust standard errors are reported in
parentheses.
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Table C.3: Returns to Skills: Levels.

Dependent variable: Earnings (2010 euros)

(1) (2) (3) (4)

Action-oriented 1051.077 2939.034 3678.742
(77.473) (76.447) (78.739)

School-oriented 4816.418 2367.299 1461.602
(77.647) (76.984) (79.139)

Math 6829.824 6480.433 5102.159
(55.925) (56.176) (66.391)

IQ 52.229
(58.347)

Verbal 690.042
(63.882)

Electives 2539.078
(73.595)

Outcome mean 44325 44290 44328 44350
Cohort FE yes yes yes yes
Adj. R2 0.076 0.105 0.150 0.160
Observations 157743 157891 157129 156843

Notes: Each column reports the OLS regression results from Equation 3.13, with earnings in 2010 euros as the
outcome. The unit of observation is the person. ’Action-oriented’ is a composite of Sociability, Activity, and
Masculinity. ’School-oriented’ is a composite of Deliberation, Dutifulness, Achievement aim, Confidence, and
Leadership. Test scores and traits are normalized to have mean 0 and standard deviation 1 within cohorts.
Earnings are measured by averaging total labor and entrepreneurial income earned at age 35-38. Robust standard
errors are reported in parentheses.
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Table C.4: Returns to Skills: Truncated Sample.

Dependent variable: log(Earnings)

(1) (2) (3) (4)

Action-oriented 0.034 0.078 0.092
(0.002) (0.002) (0.002)

School-oriented 0.101 0.044 0.026
(0.002) (0.002) (0.002)

Math 0.156 0.150 0.122
(0.001) (0.001) (0.002)

IQ 0.007
(0.002)

Verbal 0.009
(0.002)

Electives 0.051
(0.002)

Outcome mean 10.570 10.570 10.570 10.570
Cohort FE yes yes yes yes
Adj. R2 0.065 0.090 0.127 0.134
Observations 155704 155840 155097 154822

Notes: Each column reports the OLS regression results from Equation 3.13, with log earnings as the outcome. The
model is estimated with truncated data using log earnings > 8 as the threshold. ’Action-oriented’ is a composite of
Sociability, Activity, and Masculinity. ’School-oriented’ is a composite of Deliberation, Dutifulness, Achievement
aim, Confidence, and Leadership. Test scores and traits are normalized to have mean 0 and standard deviation 1
within cohorts. Earnings are measured by averaging total labor and entrepreneurial income earned at age 35-38.
Robust standard errors are reported in parentheses.
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Table D.1: Alternative IV: 2SLS Estimates of Manufacturing Decline Effects on High-School
Dropout Rate 1991–2011 and College Mobility 1999–2011.

Alternative 2SLS Estimates (1) (2) (3)

A. High-School Dropout Rate

Commuting zone manufacturing decline -.270*** -.166*** -.441*

(.038) (.053) (.235)

Other baseline controls – Yes Yes

Baseline manufacturing emp. share – – Yes

B. College Mobility

Commuting zone manufacturing decline .562*** .438*** .587

(.125) (.151) (.393)

Other baseline controls – Yes Yes

Baseline manufacturing emp. share – – Yes

C. 2SLS First Stage Estimates†

Commuting zone import exposure -2.29*** -1.87*** -.63***

(.23) (.13) (.016)

F-statistic 155.0 48.4 71.7

Adjusted R2 0.22 0.27 0.39

Notes: Alternative IV specification. In Panel A, each column reports results from stacking changes
in commuting zone high-school dropout rates and declines in manufacturing-to-total employment
ratios over the periods 1991–99 and 1999–2011. The dependent variable is the annual change in the
high-school dropout rate (N = 1,444 = 722 commuting zones × 2 periods). High-school dropout
rate is computed from the US Census for 1990 and 2000, and from the ACS for 2011 as a five-year
average. In Panel B, each column reports results from regressing changes in commuting zone
measures of absolute college mobility on declines in manufacturing-to-total employment ratios over
the period 1999–2011. The dependent variable is the annual change in college mobility between
cohorts born in 1984 and 1993 (N = 616 commuting zones). College mobility is CZ-level average of
college attendance of children with parents at the 25th percentile in the national distribution. The
college mobility measure comes from Chetty et al. (2014) and is based on the US tax records. In
Panels A and B, manufacturing decline is instrumented with an alternative measure of the
commuting zone import exposure, constructed from Chinese imports to eight other high-income
countries, excluding the US, as in Autor et al. (2013) and detailed in the text. The commuting zone
baseline manufacturing controls are computed in 1991 for the 1991–99 period and in 1999 for the
1999–2011 period. Manufacturing employment is computed from the CBP; population data come
from the Census Population Estimates. Other baseline controls include population counts,
employment-to-population ratios, and region controls for nine regional census divisions. All models
in Panel A include a time trend. Standard errors are clustered by commuting zone.
† For manufacturing share over 1991–2011.
∗p < 0.10

∗ ∗ p < 0.05

∗ ∗ ∗p < 0.01
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Table D.2: The Reduced Form: OLS and 2SLS Estimates of Trade Exposure Effects on High-School
Dropout Rate 1991–2011 and College Mobility 1999–2011.

Reduced Form Estimates OLS Combined 2SLS

(1) (2) (3) (4)

A. High-School Dropout Rate

Commuting zone import exposure -.357*** -.338*** -.543*** -.656**

(.082) (.106) (.171) (.295)

Baseline manufacturing emp. share – Yes – Yes

Other baseline controls Yes Yes Yes Yes

B. College Mobility

Commuting zone import exposure .674* .016 1.41*** 1.23

(.392) (.474) (.493) (.815)

Baseline manufacturing emp. share – Yes – Yes

Other baseline controls Yes Yes Yes Yes

Notes: Reduced form regression. In Panel A, each column reports results from stacking changes in
commuting zone high-school dropout rates and changes in exposure to Chinese imports within local
industries over the periods 1991–99 and 1999–2011. The dependent variable is the annual change in the
high-school dropout rate (N = 1,444 = 722 commuting zones × 2 periods). High-school dropout rate is
computed from the US Census for 1990 and 2000, and from the ACS for 2011 as a five-year average. In
Panel B, each column reports results from regressing changes in commuting zone measures of absolute
college mobility on changes in exposure to Chinese imports within local industries over the period
1999–2011. The dependent variable is the annual change in college mobility between cohorts born in
1984 and 1993 (N = 616 commuting zones). College mobility is CZ-level average of college attendance of
children with parents at the 25th percentile in the national distribution. The college mobility measure
comes from Chetty et al. (2014) and is based on the US tax records. In Panels A and B, the explanatory
variable is an employment-weighted average of annualized changes in exposure to Chinese imports within
local industries, as detailed in the text. In Columns (3) and (4), the import exposure is instrumented
with the alternative instrument constructed from Chinese imports to eight other high-income countries,
as in Autor et al. (2013). The commuting zone baseline manufacturing controls are computed in 1991 for
the 1991–99 period and in 1999 for the 1999–2011 period. Manufacturing employment is computed from
the CBP; population data come from the Census Population Estimates. Other baseline controls include
population counts, employment-to-population ratios, and region controls for nine regional census
divisions. All models include a time trend. Standard errors are clustered by commuting zone.
∗p < 0.10

∗ ∗ p < 0.05

∗ ∗ ∗p < 0.01
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Table D.3: Log-Log Specification and Baseline Control for Outcome: 2SLS Estimates of Trade
Exposure Effects on High-School Dropout Rate 1991–2011.

High-School Dropout Rate 2SLS

(1) (2)

A. Log-Log Specification

Commuting zone manufacturing decline -.865*** -.498***

(.392) (.111)

Baseline manufacturing emp. share – Yes

Other baseline controls – Yes

B. Baseline Control for High-School Dropout Rate

Commuting zone import exposure -.120*** -.397***

(.029) (.117)

Baseline Control for High-School Dropout Rate .039*** .042***

(.0023) (.0030)

Baseline manufacturing emp. share – Yes

Other baseline controls – Yes

Notes: Log-Log Specification and Baseline Control for Outcome. In Panel A, each column reports results from
stacking the logarithms of changes in commuting zone high-school dropout rates and declines in
manufacturing-to-total employment ratios over the periods 1991–99 and 1999–2011. The dependent variable is
the annual change in the high-school dropout rate (N = 1,444 = 722 commuting zones × 2 periods). High-school
dropout rate is computed from the US Census for 1990 and 2000, and from the ACS for 2011 as a five-year
average. In Panel B, each column reports results from stacking the logarithms of changes in commuting zone
high-school dropout rates and declines in manufacturing-to-total employment ratios over the periods 1991–99
and 1999–2011, including controls for the start-of-period high-school dropout rate. In Panels A and B, the
manufacturing decline is instrumented with the commuting zone import exposure from China’s imports. The
instrument is an employment-weighted average of annualized changes in exposure to Chinese imports within
local industries, as detailed in the text. The commuting zone baseline controls are computed in 1991 for the
1991–99 period and in 1999 for the 1999–2011 period. Manufacturing employment is computed from the CBP;
population data come from the Census Population Estimates. The other baseline controls include population
counts, employment-to-population ratios, and region controls for nine regional census divisions. All models
include a time trend. Standard errors are clustered by commuting zone.
∗p < 0.10

∗ ∗ p < 0.05

∗ ∗ ∗p < 0.01
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Table D.4: Correlates of the Intergenerational Effects: Variable Definitions, Part I.

Interaction term

Segregation and Race

Fraction Black Number of individuals who are black alone divided by total population. US Census 2000.

Income Segregation Rank-Order index estimated at the census-tract level using equation (13) in Reardon (2011); the δ vector is given in

Appendix A4 of Reardon’s paper. H(pk) is computed for each of the income brackets given in the 2000 census. See

Appendix D for further details. US Census 2000.

Segregation of Affluence (>p75) H(p275) estimated following Reardon (2011); we compute H(p) for 16 income groups defined by the 2000 census. We

estimate H(p75) using a fourth-order polynomial of the weighted linear regression in equation (12) of Reardon (2011). US

Census 2000.

Fraction with Commute < 15 Mins Number of workers that commute less than 15 minutes to work divided by total number of workers. Sample restricts to

workers that are 16 or older and not working at home. US Census 2000.

Income Inequality

Household Income per Capita Aggregate household income in the 2000 census divided by the number of people aged 16-64. US Census 2000.

Gini coefficient Gini coefficient computed using parents of children in the core sample, with income topcoded at $100 million in 2012

dollars. Tax Records, Core Sample.

Fraction Middle Class Fraction of parents (in the core sample) whose income falls between the 25th and 75th percentile of the national parent

income distribution. Tax Records, Core Sample.

K-12 Education

School Expenditure per Student. Average expenditures per student in public schools. NCES CCD 1996-1997 Financial Survey.

Student Teacher Ratio Average student-teacher ratio in public schools. NCES CCD 1996-1997 Universe Survey

Test Score Percentile Residual from a regression of mean math and English standardized test scores on household income per capita in 2000.

George Bush Global Report Card.

Notes: These covariates are compiled by Chetty et al. (2014). The descriptions come from that source. See the reference for further details.
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Table D.5: Correlates of the Intergenerational Effects: Variable Definitions, Part II.

Interaction term

College

Number of Colleges per Cap. Number of Title IV, degree offering institutions per capita. IPEDS 2000

College Tuition Mean in-state tuition and fees for first-time, full-time undergraduates. IPEDS 2000.

College Graduation Rate Residual from a regression of graduation rate (the share of undergraduate students that complete their degree in 150% of

normal time) on household income per capita in 2000. IPEDS 2009.

Social Capital

Social Capital Index Standardized index combining measures of voter turnout rates, the fraction of people who return their census forms, and

measures of participation in community organizations. Rupasingha and Goetz (2008).

Fraction Religious Share of religious adherents. Association of Religion Data Archives

Violent Crime Rate Number of arrests for serious violent crimes per capita. Uniform Crime Reports.

Local Labor Market

Teenage (14-16) LFP Fraction of children in birth cohorts 1985-1987 who received a W2 (i.e. had positive wage earnings) in any of the tax years

when they were age 14-16. Tax Records, Extended Sample.

Notes: These covariates are compiled by Chetty et al. (2014). The descriptions come from that source. See the reference for further details.
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