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SUMMARY

Working memory (WM) enables information storage for future use, bridging the gap between perception and

behavior. We hypothesize that WM representations are abstractions of low-level perceptual features. How-

ever, the neural nature of these putative abstract representations has thus far remained impenetrable. Here,

we demonstrate that distinct visual stimuli (oriented gratings and moving dots) are flexibly recoded into the

same WM format in visual and parietal cortices when that representation is useful for memory-guided

behavior. Specifically, the behaviorally relevant features of the stimuli (orientation and direction) were ex-

tracted and recoded into a shared mnemonic format that takes the form of an abstract line-like pattern.

We conclude that mnemonic representations are abstractions of percepts that are more efficient than and

proximal to the behaviors they guide.

INTRODUCTION

The precise contents of working memory (WM) can be decoded

from the patterns of neural activity in the human visual cortex

(Harrison and Tong, 2009; Serences et al., 2009), suggesting

that the same encoding mechanisms used for perception also

store WM representations (D’Esposito and Postle, 2015). Pre-

sumably, representations decoded during memory and percep-

tion both reflect activities of neurons selective for encoded stim-

ulus features, and therefore, the representational format of WM

is sensory-like in nature (Bettencourt and Xu, 2016; Lorenc

et al., 2018; Rademaker et al., 2019). However, patterns during

perception of a stimulus are often poor predictors of patterns

during WMmaintenance. This is especially true in parietal cortex

where stimulus-evoked activity fails to predict the contents of

WM (Albers et al., 2013; Rademaker et al., 2019). In visual cortex,

stimulus-evoked patterns of activity are worse than memory ac-

tivity at predicting memory content (Harrison and Tong, 2009;

Rademaker et al., 2019). Furthermore, under a range of condi-

tions, WM representations in parietal and sometimes even in vi-

sual cortices are only slightly impacted by visual distractors (Bet-

tencourt and Xu, 2016; Hallenbeck et al., 2021; Lorenc et al.,

2018; Rademaker et al., 2019). Therefore, a reasonable hypoth-

esis is that mnemonic codes are somehow different from

perceptual codes, perhaps abstractions of low-level stimulus

features. However, the format of these putative abstract repre-

sentations has thus far remained impenetrable. Here, we

demonstrate that different types of visual stimuli can be flexibly

recoded into the same WM format when that representation is

useful for memory-guided behavior. Specifically, we found that

the patterns of activity in visual cortex during WM for gratings

and dotmotion, two very different retinal inputs, are interchange-

able when participants were later tested on the orientation of the

grating or the global direction of themotion. Critically, the behav-

iorally relevant feature of the stimuli was extracted and recoded

into a shared mnemonic representation that takes the form of an

abstract line-like pattern within spatial topographic maps.

RESULTS

Working memory representations for orientation and

motion direction share a common format

We measured fMRI brain activity while participants used their

memory to estimate the orientation of a stored grating or the

stored direction of a cloud of moving dots after a 12 s retention

interval (Figure 1A). Focusing on patterns of delay period activity,

we first demonstrate that we could classify both grating orienta-

tion and motion direction in several maps (Figure 1B) along the

visual hierarchy (Figures 2A and S1A: delay epoch, within-stim-

ulus), consistent with previous investigations (Emrich et al.,

2013; Ester et al., 2015; Harrison and Tong, 2009; Riggall and

Postle, 2012; Sarma et al., 2016; Serences et al., 2009; Yu and

Shim, 2017). Perhaps, neurons with orientation (Hubel and Wie-

sel, 1962) or directional motion selectivity (Maunsell and Van Es-

sen, 1983) encode and maintain representations of these as-

pects of the physical stimuli. Alternatively, the format of these

mnemonic representations might reflect efficient abstractions

of the image-level properties of the stimuli. For instance,memory

may take the form of a compressed, low-resolution summary of

Neuron 110, 1–7, June 1, 2022 ª 2022 Elsevier Inc. 1

ll

Please cite this article in press as: Kwak and Curtis, Unveiling the abstract format of mnemonic representations, Neuron (2022), https://doi.org/

10.1016/j.neuron.2022.03.016



the global direction of thousands of dots moving over time akin

to a line-like pointer.

From this hypothesis, we predict a similar pattern of delay

period activity when abstract WM formats match despite entirely

distinct perceptual inputs. In several cortical regions, a classifier

trained on one type of stimulus (e.g., orientation) successfully de-

coded the other type of stimulus (e.g., direction) when angles

matched (Figures 2A and S1A: delay epoch, cross-stimulus).

Critically, evidence for an abstract WM representation that was

shared across stimulus types was limited to the memory delay

period. The lack of cross-stimulus decoding during the time

epoch corresponding to direct viewing of the stimulus

(Figures 2A and S1A: stimulus encoding epoch, cross-stimulus)

indicates that the abstract format is specifically mnemonic in na-

ture and not an artifact inherited from some shared perceptual

feature during encoding. Neither can it be attributed to gaze

instability aswe ruled out eyemovements as the potential source

of significant decoding (see STAR Methods for details). In the

temporal generalization matrix using continuous decoding

(King and Dehaene, 2014), one can clearly see the emergence

and stability of the abstract WM code during the delay period

(Figures 2B, 2C, S1B, and S1C).

Format of recoded working memory representations

unveiled

Although our evidence supported a WM representation that is

abstract in format, we aimed to reveal the latent nature of the

WM representation. We hypothesized that participants recoded

the sinusoidal gratings and dot motion kinematograms into line-

like images at angles matching the orientation and direction,

respectively, of the stimuli. We reasoned that the abstract repre-

sentation might be encoded spatially in the population activity of

topographically organized visual field maps. Specifically, we

predicted that the spatial distribution of higher response ampli-

tudes across a topographic map forms a line at a given angle,

as if the retinal positions constituting a line were actually visually

stimulated.

To test this, we reconstructed the spatial profile of neural ac-

tivity (Kok and de Lange, 2014; Yoo et al., 2022) during WM by

projecting the amplitudes of voxel activity during the delay

period for each orientation and direction condition into visual

field space (Figure 3A) using parameters obtained from models

of each map’s population receptive field (pRF). Using the

following equation, we computed the sum (S) of all voxels’ recep-

tive fields (the exponent, which is a Gaussian) weighted by their

delay period beta coefficients ðbÞ for each feature condition ðqiÞ,

where i and n are indices of voxels and feature conditions,

respectively; xn, yn, and s are the center and width of the pRF;

x0 and y0 are the positions in the reconstruction map at which

the pRFs were evaluated:

Sqi =
XN

n= 1

bi;n 3e
�
ðxn�x0Þ

2
+ ðyn�y0Þ

2

s2 (Equation 1)

Remarkably, the visualization technique confirmed our hy-

pothesis and unveiled a stripe encoded in the amplitudes of

voxel activity at an angle matching the remembered feature in

many of the visual maps (Figures 3B and S2A). This evidence

strongly suggests that the neural representation of orientation/

direction in memory is similar to that which would be evoked

by retinal stimulation of a simple-line stimulus. Interestingly,

these line-like representations had greater activation at the end

of the line corresponding to the direction of motion, akin to an

arrowhead, perhaps allowing for both the storage of the angle

and direction of motion (Figure S4B).

To quantify the extent to which the angled stripes in the recon-

structedmaps aligned with the actual orientation/direction of the

stimuli, we computed filtered responses and associated fidelity

values (Figures 3C, 3D, S2B, and S2C). The significant fidelity

values (Figure 3D) indicate that themechanism by which orienta-

tion and motion direction is stored in WM depends on a spatial

recoding into the population’s topography. We found the same

Figure 1. Neuroimaging experiments

(A) Working memory experiments. Participants maintained the orientation of

gratings or the direction of dot motion over a 12 s retention interval. After the

delay, participants rotated a recall probe to match their memory, and more

points were awarded for more accurate memories.

(B) Population receptive field (pRF) mapping. A separate retinotopic mapping

session was used to estimate voxel receptive field parameters for defining

visual field maps in occipital, parietal, and frontal cortices. Example partici-

pant’s right and left hemispheres are shown.
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pattern of results when reconstructing the maps for orientation

and motion direction trials separately (Figures S2D–S2G), when

controlling for potential biases in pRF structure across the visual

field, and when reconstructing the neural representation with the

weight matrices used to classify orientation and motion direction

instead of the magnitude of delay period activity. Therefore, the

recoded abstract representations we discovered are robust. In

summary, neural representations of gratings and dot motion,

despite distinct retinal stimulation with distinct neural encoding

mechanisms for perception (Cynader and Chernenko, 1976;

He et al., 1998), were recoded in memory into a spatial topo-

graphic format that was line-like in nature with angles matching

the remembered orientation/direction.

Distinct formats of perceptual and mnemonic

representations

Next, we used an image-computable model based on properties

of V1 (Roth et al., 2018; Simoncelli et al., 1992) to simulate a po-

tential neural mechanism of the line-like patterns (Figures 4 and

S3). The topographic pattern of simulated voxel activity when

model inputs were simple-line images (Figure 4, bottom row)

closely resembled the line-like patterns that we observed in

our experimental data in Figure 3B, further strengthening a puta-

tive mechanism involving the maintenance of an imagined line in

WM. Critically, using the gratings from our experiment as inputs

to the model, the reconstructed maps produced line patterns

orthogonal to those observed experimentally (Figure 4, top

row). Such orthogonality for grating images is likely due to aper-

ture bias during perception reported previously, where orienta-

tion preference of voxels in the early visual cortex is affected

by spatial biases induced by stimulus aperture (Freeman et al.,

2011; Roth et al., 2018). The dissociation between the simulated

reconstructions of gratings and lines demonstrates that the

format of the WM representations resembles that of a low-

dimensional line rather than a high-resolution pixel-by-pixel im-

age of a grating (Figure S3B). Therefore, based on the V1 model,

we demonstrated the feasibility of a line-like WM representation.

The model also helped rule out potential confounds specific to

visual cortex, confounds that are unlikely to apply to parietal cor-

tex. Furthermore, although the model does not simulate the ef-

fects of motion, we found striking evidence from our experi-

mental data that the line-like representations during WM for

motion are distinct from those during perception (Wang et al.,

2014; Figure S4).

DISCUSSION

Together, these results directly impact key tenets of the sensory

recruitment theory of WM, which proposes that the same neural

mechanisms that encode stimulus features in sensory cortex

during perception are recruited by higher-level control areas

such as prefrontal and parietal cortices to support memory (Cur-

tis and D’Esposito, 2003; Postle, 2006; Serences, 2016). First,

Figure 2. Working memory representations for orientation and mo-

tion direction share a common format

(A) Both remembered grating orientation and dot motion direction could be

decoded from the pattern of neural activity during the memory delay (blue

bars). We successfully decoded not only within but across stimulus types (e.g.,

training on orientation can decode motion direction; red bars), indicating that

the shared patterns do not represent low-level perceptual details of each

stimulus type. Moreover, no such cross-stimulus decoding existed during the

stimulus encoding epoch (gray bars). *p < 0.05, **p < 0.01, ***p < 0.001, n.s. not

significant, corrected (p values in Table S1). Error bars represent ±1 SEM.

(B and C) Temporal generalization matrix. To evaluate how representations

evolve over the time course of a trial, we trained and tested on all possible

combinations of time points. Abstract WM codes are stable throughout the

delay period. See Figure S1 for other ROIs.

(D) Schematics of the matrix plots. Gray lines denote the actual timing of

events, and blue boxes show each of these events shifted by �4 s assuming

hemodynamic lag.
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our findings indicate that the mechanisms by which WM and

perception are encoded in visual cortex can differ in certain cir-

cumstances. The recoding of gratings and dot motion into line-

like WM representations explains why previous studies have re-

ported null or weaker effects—brain activation patterns during

perception of a stimulus are poor predictors of patterns during

WM, especially when compared with training on patterns

during WM (Albers et al., 2013; Hallenbeck et al., 2021; Rade-

maker et al., 2019; Serences et al., 2009; Spaak et al., 2017).

AlthoughWM representationsmay contain some sensory-like in-

formation, our results provide robust evidence that perceptual

information can be reformatted for memory storage. Second,

the spatial nature of the recoded WM representation offers

intriguing insights into how the parietal cortex, which lacks neu-

rons with clear orientation or motion directional tuning (Kusunoki

et al., 2000), supports WM. Recoding into a spatial format may

exploit the prevalent spatial representations in parietal cortex

(Heilman et al., 1985; Mackey et al., 2016, 2017) and explain

why previous studies have been able to decode features such

as orientation from patterns in parietal cortex (Bettencourt and

Xu, 2016; Ester et al., 2015; Rademaker et al., 2019; Yu and

Shim, 2017). In addition to serving as a mechanism for WM stor-

age, this spatial code in parietal cortex might conceivably reflect

the origins of top-down feedback. Indeed, WM representations

in visual cortex are thought to depend on feedback signals

(van Kerkoerle et al., 2017; Rahmati et al., 2018). This may be

why we found the line-like spatial code in the early visual cortex

despite the abundance of neurons tuned for orientation and mo-

tion (Hubel and Wiesel, 1962; Maunsell and Van Essen, 1983).

Perhaps, the retinotopic organization shared between visual

Figure 3. Unveiling the recoded formats of working memory representations for orientation and motion direction

(A) Spatial reconstruction analysis schematics. Voxel activity for each feature condition (orientation/direction; q) was projected onto visual field space (dva,

degrees of visual angle) by computing the sum (S) of voxels’ pRFs weighted by their response amplitudes during the memory delay (b) (see Equation 1; STAR

Methods for details).

(B) Population reconstructionmaps. Lines across visual spacematching the remembered angles of the stimuli emerged from the amplitudes of topographic voxel

activity. Best fitting lines (white lines) and the size of the stimulus presented during the encoding epoch (black circles) are shown. See Figure S2 for other ROIs.

(C and D) To quantify the amount of remembered information consistent with the true feature, we computed filtered responses and associated fidelity values from

the maps in (B). Filtered responses represent the sum of pixel values within the area of a line-shaped mask oriented �90� to 90� (0� represents the true feature),

and fidelity values are the result of projecting the filtered responses to 0� (STAR Methods). Higher fidelity values indicate stronger representation. **p < 0.01,

***p < 0.001, corrected (p values in Table S1). Error bars represent ±1 SEM.
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and parietal cortices forms an interfacewhere the currency of the

feedback is simple retinotopic space. Alternatively, a more

complicated feedback mechanism may exist that specifically

targets neurons that are both tuned to the memorized feature

and contain overlapping spatial receptive fields. Third, distinct

representational formats for perception and memory solves the

mystery of how visual cortex can simultaneously represent WM

content and process incoming visual information without cata-

strophic loss (Bettencourt and Xu, 2016; Buschman, 2021; Hal-

lenbeck et al., 2021; Rademaker et al., 2019).

These results also impact how we think about the nature of

WM representations, especially when we consider the larger

constraints and goals of the memory system. A line is an efficient

summary representation of orientation and motion direction

compared with the complexity of the sensory stimuli from which

it is abstracted and may provide a means to overcome the hall-

mark capacity limits of WM (Miller, 1956). Compare in bits of in-

formation the hundreds of dots displaced each frame over

several seconds to a single line pointing in the direction of mo-

tion. But why a line? The immediate behavioral goal—the ‘‘work-

ing’’ part of WM—may largely determine the nature of the code.

Consistent with the idea of WM as a goal-directed mechanism,

previous studies have found that only the task-relevant feature,

but not those irrelevant to the task, is retained in WM (Serences

et al., 2009; Yu and Shim, 2017). Therefore, we note that the cur-

rent experimental task, in which participants were asked to

remember orientation and direction among many other visual

properties of the stimuli, could have encouraged the recoding

into the spatial line representation, a format most proximal to

the specific mnemonic demands of the task. In fact, the flexible

nature ofWMmight lead to different representational formats de-

pending on the stimulus being remembered and the task at hand.

Written letters or words are converted from a visual into a phono-

logical or sound-based code when stored in WM (Baddeley,

1992). Prospective motor codes are possible when memory-

guided responses can be planned or anticipated (Boettcher

et al., 2021; Curtis and D’Esposito, 2006; Curtis et al., 2004).

When appropriate, WM representations can take the form of

the categories abstracted from perceptual exemplars (Lee

et al., 2013). On the other hand, it is likely that memory for a stim-

ulus feature in its simplest form, such as visual location that

cannot be simplified any more than its spatial coordinates,

does not undergo recoding (Hallenbeck et al., 2021; Li

et al., 2021).

The idea that memory representations can take a form other

than the perceptual features of the stimulus is not new. Our re-

sults are striking, however, because they both clearly establish

the existence of abstract WM codes in the visual system and

more importantly unveil the nature of these WM representations.

Visualizing the abstractions of stimuli in the topographic patterns

of brain activity is powerful evidence that visual cortex acts as a

blackboard for cognitive representations rather than simply a

register for incoming visual information (Roelfsema and de

Lange, 2016).
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Figure 4. Model simulation for orientation: distinct formats for perceptual and mnemonic representations

(A) Gratings identical to the ones used in the experiment and lines oriented at 15�, 75�, and 135� clockwise from vertical were fed into an image-computablemodel

of V1 to simulate the population response.

(B) We repeated the spatial reconstruction analysis in Figure 3A with simulated V1 voxel amplitudes acquired through sampling the model output neuronal

responses (Figure S3A) with pRF parameters (STAR Methods). The simulated topographic patterns when model inputs are lines, but not gratings, closely match

our experiment data (Figure 3B), suggesting that mnemonic representations of oriented gratings are similar to perceptual representations of simple line.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Clayton

Curtis (clayton.curtis@nyu.edu).

Materials availability

This study did not produce new materials.

Data and code availability

The processed fMRI data generated in this study have been deposited in the Open Science Framework https://osf.io/t6b95. Pro-

cessed fMRI data contains extracted beta coefficients from each voxel of each ROI. The raw fMRI data are available under restricted

access to ensure participant privacy; access can be obtained by contacting the corresponding authors. All original code for data

analysis is publicly available on GitHub https://github.com/clayspacelab and https://github.com/yunakwak as of the date of

publication.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Eleven neurologically healthy volunteers (including the 2 authors; 6 females; 25-50 years old) with normal or corrected-to-normal

vision participated in this study. They gave informed consent approved by New York University IRB (protocol IRB-FY2016-852).

Each participant completed 2 experimental sessions (�2hrs each) and 1-2 sessions of retinotopic mapping and anatomical

scans (�2hrs).

METHOD DETAILS

Experimental stimuli and task

Participants performed a delayed-estimationWM taskwhere they reported the remembered orientation ormotion direction. Each trial

began with 0.75s of central fixation (subtended 0.7� diameter) followed by the presentation of a target stimulus for 3.75s (presented in

donut-shaped circular aperture with 1.5� inner and 15� outer diameter). The stimulus was a drifting grating (contrast = 0.6, spatial fre-

quency = 0.1 cycle/�, phase change = 0.12�/frame) or a random dot kinematogram (RDK; number of dots = 900, size of each dot =

0.12�, speed of each dot = 0.08�/frame, initial coherence = 0.91), presented in blocked designs and in interleaved order. After a

12s delay period, they rotated a recall probewith a dial tomatch the remembered orientation/directionwithin a 4.5s responsewindow.

The recall probe matched the target stimulus type presented during encoding (e.g., target and recall probe were both gratings for

orientation), instead of line bars for example, to prevent from enforcing participants to represent the two stimulus types in an abstract

manner. However, there were two exceptions: the recall probe for orientation was a static grating without drifting motion, and the

coherence of RDK dots was fixed at 1 throughout the whole response period (see below for adjusting dot coherence level in the stim-

ulus encoding epoch). Participantswere providedwith feedback on themagnitude of error (�) and the points earned based on the error

they made on each trial (40 points for error less than 3�, 30 points for error between 3�-12�, 20 points for error between 12�-21�, 10

points for error between 21�-30�, and no points for error exceeding 30�). The feedback display lasted for 2.25s and was followed

by an inter-trial-interval of 7.5s or 9s. All stimuli were presented in a circular aperture spanning the whole visual field.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

fMRI data This paper https://osf.io/t6b95/(https://doi.org/10.17605/OSF.IO/T6B95)

Software and algorithms

MATLAB MathWorks https://www.mathworks.com/products/matlab.html

Custom code and algorithm This paper https://github.com/yuna.kwak and https://github.com/clayspacelab

(https://doi.org/10.5281/zenodo.6342189)

Image-computable model of V1 Roth et al., 2018 https://github.com/elifesciences-publications/stimulusVignetting

Decoding Princeton MVPA toolbox https://github.com/princetonuniversity/princeton-mvpa-toolbox
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Data were collected across two sessions for each participant resulting in 22 runs (10 orientation, 12 motion direction) for 8 partic-

ipants and 21 runs (10 orientation, 11 motion direction) for 3 participants. Each run consisted of 12 trials. For the orientation runs, the

target orientations were 15�, 75�, and 135� clockwise from vertical with random jitters (<5�), each repeated 4 times within a run. For

motion direction runs, the target directions were 15�, 75�, 135�, 195� (180� apart from 15� and thus opposite in direction from 15�),

255� (180� apart from 75�), and 315� (180� apart from 135�) clockwise from vertical with random jitters (<5�), each repeated 2 times

within a run. We collected 1-2 more runs for the motion direction for each participant because we collapsed across the opposite di-

rection trials and labeled them as the same condition for decoding. The orientation/direction of the recall probewas randomized, with

the constraint that the direction difference between the target and probe RDKs was less than 90� to match with the orientation trials.

To address the difference in task difficulty across the two stimulus types, dot coherence for the RDK target was staircased. The first

trial of each motion direction run began with the coherence of 0.91, and the coherence of the following trials followed a 1-up 2-down

staircasemethodwith reference to the performance of the previous orientation run (median of error in trials of the previous orientation

run). Although we tried to match the task difficulty across the two stimulus types, performance was significantly lower (t(10)= 2.525,

p = 0.023) for the motion direction trials (mean = 9.26�, s.d. = 3.307�) compared to the orientation trials (mean = 7.72�, s.d. = 2.681�).

fMRI data acquisition

BOLD contrast images were acquired usingMultiband (MB) 2DGE-EPI (MB factor of 4, 44 slices, 2.5 x 2.5 x 2.5mm voxel size, TE/TR

of 30/750ms). We also acquired distortion mapping scans to measure field inhomogeneities with normal and reversed phase encod-

ing using a 2D SE-EPI readout and number of slices matching that of the GE-EPI (TE/TR of 45.6/3537ms). T1- and T2-weighted im-

ages were acquired using the Siemens product MPRAGE (192 slices for T1 and 224 slices for T2, 0.8 x 0.8 x 0.8mm voxel size, TE/TR

of 2.24/2400ms for T1 and 564/3200ms for T2, 2563 240 mm FOV). We collected 2-3 T1 images and 1-2 T2 images per participant.

fMRI data preprocessing

We used intensity-normalized high-resolution anatomical scans as input to Freesurfer’s recon-all script (version 6.0) to identify pial

and white matter surfaces, which were converted to the SUMA format. This anatomical image processed for each subject was the

alignment target for all functional images. For functional preprocessing, we divided each functional session into 2 to 6 sub-sessions

consisting of 2 to 5 task runs split by distortion runs (a pair of spin-echo images acquired in opposite phase encoding directions) and

applied all preprocessing steps described below to each sub-session independently.

First, we corrected functional images for intensity inhomogeneity induced by the high-density receive coil by dividing all images by

a smoothed bias field which was computed by a ratio of signal acquired with the head coil to that of the body coil. Then, to improve

co-registration of functional data to the target T1 anatomical image, transformation matrices between functional and anatomical im-

ages were computed using distortion-corrected and averaged spin-echo images (distortion scans used to compute distortion fields

restricted to the phase-encoding direction). Then we used the distortion-correction procedure in afni_proc.py to undistort and mo-

tion-correct functional images. The next step was rendering functional data from native acquisition space into un-warped, motion

corrected, and co-registered anatomical space for each participant at the same voxel size as data acquisition (2.5mm iso-tropic

voxel). This volume-space data was projected onto the reconstructed cortical surface, which was projected back into the volume

space for all analyses.

We linearly detrended activation values from each voxel from each run. These values were then converted to percent signal change

by dividing by the mean of the voxel’s activation values over each run.

Regions-of-interest definition

For identifying regions of interest (ROIs) and acquiring voxels’ population receptive field (pRF) parameters (Figure 1B), we collected

data from a separate retinotopic mapping session for each participant (8-12 runs). Participants ran in either one of the two types of

attention-demanding tasks: RDKmotion direction discrimination task (6 participants) (Mackey et al., 2017) or a rapid serial visual pre-

sentation (RSVP) task of object images (5 participants).

In each trial of the RDK motion discrimination task, a bar with pseudo-randomly chosen width (2.5�, 5.0�, and 7.5�) and sweep di-

rection (left-to-right, right-to-left, bottom-to-top, top-to-bottom) swept across 26.4� of the visual field in 12 2.6s steps. Each bar was

divided into 3 equal-sized patches (left, center, right). In each sweep, the RDK direction in one of the peripheral patchesmatched that

of the central patch, and participants reported which peripheral patch had the same motion direction with the central patch. The

coherence of the RDK in the two peripheral patches was fixed at 50%, and the coherence of the RDK in the central patch was

adjusted using a 3-down 1-up staircase procedure to maintain 80% accuracy.

In each trial of the object image RSVP task, a bar consisting of 6 different object images (each image subtended 4.6� x 4.6�) swept

across 26.4� of the visual field in one of the 4 sweep directions (left-to-right, right-to-left, bottom-to-top, top-to-bottom) in 12 steps. In

each sweep, participants reported whether the target object image existed among the 6 images. The target image was pseudo-

randomly chosen in each run and was shown at the beginning of each run at 5 locations in the visual field (center, left, right, up,

down). Presentation duration of the object images was set to 400ms on the first trial of each run but was adjusted according to

the accuracy on the previous trial. Duration increased with accuracy below 70%, decreased with accuracy above 85%, and stayed

the same for accuracy values in between.
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BOLD contrast images were acquired using MB 2D GE-EPI (MB factor of 4, 56 slices, 2 x 2 x 2mm voxel size, TE/TR: 42/1300ms).

Similar to the main experimental scans (see fMRI data preprocessing), we collected distortion mapping scans to measure field in-

homogeneities with normal and reversed phase encoding using a 2D SE-EPI readout and number of slices matching that of the

GE-EPI (TE/TR: 71.8/6690ms). The same preprocessing steps used for the main experimental data were applied to the retinotopic

mapping data with one exception. Because the experimental and retinotopy scans were acquired with different voxel grid resolution,

we projected the retinotopy time series data onto the surface from its native space resolution (2mm), then from the surface to volume

space at the task voxel resolution (2.5mm) to compute pRF properties in the same voxel grid as the experimental data.

Using the averaged time series across all retinotopy runs for each participant, we fit a pRF model using vistasoft (github.com/

clayspacelab/vistasoft; Dumoulin and Wandell, 2008; Mackey et al., 2017). After estimating the pRF parameters for all the voxels,

we projected the best-fit polar angle and eccentricity parameters onto each participant’s inflated brain surface map via AFNI and

SUMA. ROIs were drawn on the surface based on established criteria for polar angle reversals and foveal representations (Mackey

et al., 2017; Wandell et al., 2007), with the variance explained threshold set to�10%. We defined ROIs V1-V3, V3AB, TO1/2, IPS0/1,

IPS2/3, and PCS. Wemerged ROIs for V1-V3, TO1/2, IPS0/1, IPS2/3, and PCS (sPCS/iPCS) which was justified as the regions being

grouped belong to the same cluster defined by overlapping foveal representations (Wandell et al., 2007). For merged ROIs, the voxels

were concatenated before multivariate analysis.

fMRI data analysis: Decoding accuracy

All decoding analyses were performed using the multinomial logistic regression with custom code based on the Princeton MVPA

toolbox (github.com/princetonuniversity/princeton-mvpa-toolbox) which uses the MATLAB Neural Network Toolbox. ‘Softmax’

and ‘cross entropy’ were used as activation and performance functions. These two functions are reasonable choices for multi-class

linear classification problems because they normalize the activation outputs to sum to 1. The scaled conjugate gradient method was

used to fit the weights and bias parameters.

Our main analysis was performing decoding on the delay epoch representation. Within-stimulus decoding on the delay epoch was

performed by training and testing on the same stimulus type (e.g., training and testing on orientation). Cross-stimulus decoding on the

delay epochwas conducted by training and testing on the delay representation of different stimulus types (e.g., training on orientation

and testing on motion direction). We were mostly interested in the cross-stimulus decoding results on the delay epoch data as we

aimed to examine whether a common representational format existed in WM across different stimulus types with similar nature.

Classification was performed on the beta coefficients acquired from running a voxel-wise general linear model (GLM) using AFNI

3dDeconvolve, on all the runs acquired for each participant. We used GLM to estimate the responses of each voxel to the stimulus

encoding, delay, response, feedback, and the inter-trial-interval epochs. Each epoch wasmodeled by the convolution of a canonical

model of the hemodynamic impulse response function with a square wave (boxcar regressor) whose duration was equal to the dura-

tion of the corresponding epoch. Importantly, we estimated beta coefficients for every trial independently for the epoch that was of

main interest (e.g., delay epoch) in performing a particular decoding analysis. Other epochs were estimated using a common regres-

sor for all trials (Rissman et al., 2004). This method was used to capitalize on the trial-by-trial variability of the main epoch of interest

(e.g., delay epoch) and prevent the trial-by-trial variability of other epochs soaking up a large portion of variance which could poten-

tially be explained by the epoch of interest. Six motion regressors were also included in the GLM. Each voxel’s beta coefficients were

z-scored across each run independently for decoding.

We performed a 3-way classification to decode 3 target orientations and 3 motion directions. The orientation conditions were 15�,

75�, and 135� clockwise from vertical, and in themotion direction trials, the two opposite direction conditions sharing the same orien-

tation axis were combined (e.g., 15� and 195� combined into 15�). Therefore, there were 3 target conditions for both stimulus types.

For within-stimulus decoding, we implemented the leave-one-run-out cross-validation procedure in which one run was left out on

each iteration for testing the performance of the classifier and the rest of the runs were used for training. The decoding accuracies

were averaged across all the iterations. For cross-stimulus decoding, the classifier was trained on beta coefficients of all trials in one

stimulus type and tested on all other trials in the other stimulus type.

For the temporal generalization decoding analysis, we used z-scored percent signal change values for each TR. A 3TR sliding win-

dow was used, meaning that the training and the test data were each voxel’s activity values averaged across 3TRs including the TR

being trained or tested.

fMRI data analysis: Spatial reconstruction

To visualize neural activity during the delay period, voxel amplitudes for each orientation/direction condition were projected onto the

2D visual field space (Kok and de Lange, 2014). The same GLM beta coefficients (b) extracted for the decoding analysis were aver-

aged across trials for each feature condition and voxel, and were used for weighting the voxels’ pRFs in Equation 1. The recon-

structed maps reflect aspects of the pRF structure such as increase in size with eccentricity (Dumoulin and Wandell, 2008; Mackey

et al., 2017), resulting in a dumbbell shape of the reconstructed line patterns.

Furthermore, to take into account the potential bias from the individual difference in pRF structure, we generated a pRF normalized

version of the reconstruction maps. More specifically, the pRF bias map for each participant was computed by summing up all
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voxels’ pRFswithout anyweighting. Then, the original reconstructionmaps (Equation 1) were divided by the pRF biasmap separately

for each participant. With this procedure, we aimed to examine whether the underlying pRF structure influences the reconstruction

patterns for the different orientation/direction conditions.

We also repeated the same reconstruction analysis with classifier weights, instead of beta coefficients, to weigh the voxel’s pRFs.

With the same classification algorithm used for the decoding analysis, we estimated the classifier weights of all voxels for each ROI

separately for each participant, using GLM beta coefficients. No trials needed to be held out for cross-validation because the main

purpose of this analysis was to train the classifier for weight estimation and not to test its performance. Note that no voxels were left

out in the weight estimation step but only for computing the weighted sum of pRFs (eccentricity% 20� of visual angle). As a result, for

each participant and ROI, we had a i (number of target orientation/direction conditions) x n (number of voxels in an ROI) weight

matrix w. Therefore, Equation 1 was modified as below.

Sqi =
XN

n= 1

wi;n 3 e
�
ðxn�x0Þ

2
+ ðyn�y0Þ

2

s2 (Equation 2)

We confirmed that the classifier weights of the voxels had the same spatial structure as the beta coefficients.

For generating all the spatial reconstruction maps, we down-sampled the resolution of the visual field space such that each pixel

corresponded to 0.1� of visual angle (10 pixels/�). Only voxels whose pRF eccentricities were within 20� of visual angle were included

in the reconstruction.

To better visualize the line format (white lines in Figure 3B), we fit a first-degree polynomial to the X and Y coordinates of the

selected pixels with top 10% image intensity, with the constraint that the fitted polynomial passed through the center. To take

into account the difference in magnitude of the image intensity of the selected pixels, we conducted a weighted fit with the weight

entry for each pixel corresponding to its rank in terms of image intensity.

Model simulation: Image-computable model of V1

We used the image-computable model to both simulate a putative neural mechanism of maintaining a line in WM, and to rule out the

alternative account that the reconstructed lines were caused not by line-like WM representations but by topographic biases in orien-

tation tuning. Previous studies have reported that during perception of oriented gratings, orientation decoding in V1may depend on a

coarse-scale topographic relationship between a voxel’s preference for a spatial angle relative to fixation (e.g., 45�, up and to the

right) and the matching orientation of the grating (e.g., tilted 45� clockwise from vertical), as well as biases induced by the apertures

bounding the stimulus grating (Freeman et al., 2011; Roth et al., 2018). For example, a neuron may exhibit ostensible orientation tun-

ing because of its receptive field overlapping with stimulus edge or change in contrast due to aperture. A neuron may even be orien-

tation-selective, but its orientation selectivity could change depending on stimulus aperture. Therefore, we aimed to compare the

model simulation results to gratings used in the present experiment and simple line images (Figure 4).

The image-computable model is based on the steerable pyramid, a subband image transform that decomposes an image into

spatial frequency and orientation channels (Roth et al., 2018; Simoncelli et al., 1992). Responses of many linear receptive fields

(RFs) are simulated, each of which computes a weighted sum of the stimulus image. The weights determine the spatial frequency

and orientation tuning of the linear RFs, which are hypothetical basis sets of spatial frequency and orientation tuning curves of

V1. For the model simulation, we used 16 subbands comprised of 4 spatial frequency bands (spatial frequency bandwidth = 0.5

octave) and 4 orientation bands (orientation bandwidth = 90�), which were parameters that could be chosen flexibly. The number

of the spatial frequency bands is determined by the size of the stimulus image and the spatial frequency bandwidth parameter.

Also, using more than 4 orientation bands (e.g., 6 orientation bands; bandwidth = 60�) corresponding to narrower tuning curves

did not change the results.

The inputs to the model were our 1280 x 1024 stimulus images: grating or line images oriented 15�, 75�, 135� clockwise from ver-

tical (Figure 4A; images are shown square for the purpose of illustration to match with the spatial reconstruction maps). Only for the

grating images there were 15 phases evenly distributed between 0 and 2 p. The input images had the same configuration as the stim-

uli in the actual experiment (size of fixation, inner aperture, outer aperture, etc), and the outputs of themodel were images of the same

resolution as the input images. Each pixel of the output image corresponded to the simulated neuron in the retinotopic map of V1.We

first measured the model’s responses to each stimulus image separately. Then, for the grating images, we averaged across the

model responses to 15 different phases for each orientation condition. As a result, we had 3 (number of orientation conditions)

neuronal response output images for 16 different subbands. For model outputs to grating images, we present the sum of two sub-

bands whose center spatial frequencies are closest to the spatial frequency of the grating stimulus, one of which is the subband with

the maximal response (Figures 4 and S3A). This is a reasonable choice because the grating is a narrow-band stimulus. For model

outputs to line images, we present the sum of all subbands instead (Figures 4 and S3A). For completeness, the sum of all subbands

for the grating images and the subband with the maximal response for line images are shown in Figures S3C and S3D.

To simulate voxel-level responses based on themodel outputs, we conducted a pRF sampling analysis (Roth et al., 2018). For each

subband and orientation condition, each participant’s pRF gaussian parameters of V1 voxels were used to weigh the model outputs,

computing a weighted sum of neuronal responses corresponding to the voxels’ pRFs. This sampling procedure resulted in one

simulated beta coefficient for each voxel. Therefore, we generated 3 (number of orientation conditions) x N (number of voxel) beta
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coefficients for each subband and participant, separately for the grating and line images. We pushed these simulated beta coeffi-

cients into the same spatial reconstruction analysis in Figure 3A after z-scoring.

Eye tracking analysis and results

Eye positions were monitored throughout the entire experiment to ensure that participants maintained fixation particularly during the

delay epoch. 95.74% of the total number of eye position sample points in the delay epoch across all participants were within 2� ec-

centricity from the center (the fixation and the stimulus subtended 0.7� and 15� diameter, respectively). Circular correlation between

the polar angle of the target orientation/direction and the polar angle of the eye coordinates suggest that the polar angle of the stim-

ulus was not predictive of eye movements (mean = 0.03, s.d. = 0.080, t (10) = 1.24, p = 0.118).

Apparatus

All stimuli were generated via PsychToolBox (Brainard, 1997) in Matlab 2018a and presented via ViewPixx PRoPixx projector (screen

resolution: 1280 x1024 for experimental task and RDK retinotopic mapping task, 1080 x 1080 for object image retinotopic mapping

task; refresh rate: 60Hz for all tasks). The viewing distance was 63cm, and the projected image spanned 36.1cm height and 45.1cm

width. All functional MRI images were acquired at the NYUCenter for Brain Imaging 3T Siemens Prisma Scanner with the Siemens 64

channel head/neck coil. Eye tracking data were acquired using an MR-compatible Eye link 1000 infrared eye tracker (SR Research).

X, Y coordinates of the eye positions were recorded at 500 or 1000 Hz.

Glitches

For S02, S03, and S07, fMRI data from one of the 22 experimental task runs was not saved due to the computer freezing at the end of

the runs. Eye tracking data for one of the experimental task runs was lost for S02 and S08 due to file corruption. Eye positions were

not monitored for S07 during one of the two experimental task sessions due to technical issues, and in the session in which eye po-

sitions were recorded, eye data for one of the runs was lost due to file corruption.

QUANTIFICATION AND STATISTICAL PROCEDURES

The statistical results reported here are all based on permutation testing over 1000 iterations with shuffled data (see Table S1).

P values reflect the proportion of a metric (F scores, t scores, reconstruction fidelity) in the permuted null distribution greater than

or equal to the metric computed using intact data. Note that the minimum p value achievable with this procedure is 0.001. P values

were FDR corrected when applicable (Benjamini and Hochberg, 1995).

For statistical testing of fMRI decoding accuracy, we generated permuted null distributions of decoding accuracy values for each

epoch (delay/stimulus encoding), decoding type (cross/within), stimulus type (orientation/direction), ROI, and participant. On each

iteration, we shuffled the training data matrix (voxels x trials) across both dimensions so that both voxel information and orienta-

tion/direction labels could be shuffled. This procedure was conducted for each of the 11 participants resulting in 11 null decoding

accuracy estimates per one iteration of permutation. Depending on the statistical tests being performed, we calculated null t scores

or F values for each iteration of permutation.

For the spatial reconstruction analysis, we computed reconstruction fidelity to quantify the amount of remembered orientation/

direction feature information present in the reconstruction maps (Hallenbeck et al., 2021; Rademaker et al., 2019). Line filters with

orientations evenly spaced between -90� and 90� in steps of 1� were used to sum up pixels of the z-scored reconstruction maps

within the masked area of the maps. More specifically, a line filter oriented q� includes pixels with coordinates that form an acute

angle to q� (dot product > 0) and that have a projected distance squared less than 1000. Using different width parameters (projected

distance squared) of the orientation filters did not change the results. For each participant, feature condition, and ROI, we generated a

tuning curve-like function where x-axis and y-axis represent the orientation of each line filter and the z-scored sum of pixel values

masked by the filters, respectively. The filtered responses for each condition were aligned to the true orientation/direction (0�) and

then averaged. To compute fidelity, we projected the filtered responses at each orientation filter onto a vector centered on the

true orientation (0�) and took the mean of all the projected vectors. Conceptually, this metric measures whether and how strongly

the reconstruction on average points in the correct direction. The real fidelity value was compared against the distribution of null fi-

delity values from shuffled data. To generate the null distribution, the matrix of beta coefficients was shuffled across both the voxel

and orientation/direction condition label dimensions, and the shuffled beta coefficients were used to weight the voxels’ pRF param-

eters. The same logic applied to calculating reconstruction fidelity from direction filters, with the exception that the filters were evenly

spaced between -90� and 270� in steps of 1� and the filtered responses were aligned so that the true direction peaked at

90� and 180�.
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Figure S1. Working memory
representations for orientation and
motion direction share a common
format, related to Figure 2. Decoding
analysis was performed for other ROIs.
(A) In WM, there are robust
representations of orientation and
motion direction information (blue bars),
and these representations share a
common format (red bars). The shared
representational format is not observed
during stimulus encoding (gray bars).
(B-C) The temporal generalization matrix
was generated by training and testing on
each time point.
(D) Schematics of the matrix plots. Gray
lines denote the actual timing of events,
and blue boxes show each of these
events shifted by ~4s assuming
hemodynamic lag. *p < 0.05, **p < 0.01,
n.s. not significant, corrected (p values in
Table S1). Error bars represent ±1 SEM.
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Figure S2. Unveiling the recoded formats of working memory representations for
orientation and motion direction, related to Figure 3. The spatial reconstruction
analysis was performed for other ROIs.
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(A) Population reconstruction maps for orientation and motion direction combined. Best
fitting lines of the reconstruction are plotted in white. The size of each map is from -20°
to 20° of visual angle (dva), and the stimulus size is shown for reference in black circles.
(B) Filtered responses from reconstruction maps in (A).
(C) Reconstruction fidelity calculated from filtered responses in (B). **p < 0.01, n.s. not
significant, corrected for multiple comparisons (p values in Table S1). Error bars
represent ±1 SEM. For more information on filtered responses and fidelity, see STAR
Methods.
(D-E) Reconstruction maps during the stimulus encoding epoch, separately for
orientation and motion direction. For grating orientation, no line format is observed,
likely due to a combination of orthogonal drifting motion and aperture bias during
perception, alongside the emergence of orientation representation to be maintained in
memory. For motion direction, we do observe a line-like format in some areas, mostly
due to the emergence of motion direction representation to be maintained during the
delay period.
(F-G) Reconstruction maps during the delay epoch, separately for orientation and
motion direction. Both stimulus types were represented as a line format in WM across a
wide range of brain regions.
For all figures, the size of each map is from -20° to 20° of visual angle (dva), and the
stimulus size is shown for reference in black circles.

3



Figure S3. Spatial reconstruction analysis with simulated neuronal responses
from the image-computable model of V1, related to Figure 4.
(A) The output neuronal responses from the image-computable model for grating and
line images are plotted in log scale. Inputs to the model were grating and line images
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oriented 15º, 75º, 135º clockwise from vertical (Figure 4A). For grating images, we
present the sum of two subbands of which the center spatial frequencies are the closest
to the spatial frequency of the grating stimulus. One of the two chosen subbands
corresponds to the subband with the maximal response. For line images, we present
the sum of all subbands to be more conservative. For completeness, we also present
the sum of all subbands for grating images in (C) and the maximal subband for line
images in (D) (See STAR Methods for details on the model). These model output
neuronal responses were later used to simulate V1 voxel amplitudes by summing up the
neuronal responses within each voxel’s pRF. These simulated voxel responses were fed
into the spatial reconstruction analysis in Figure 3A which resulted in the reconstruction
maps in Figure 4B.
(B) Filtered responses and associated fidelity were computed from the spatial
reconstruction maps in Figure 4B for quantification. The filtered responses when input to
the model were line images (bottom row of (A) and Figures 4A-B) peak at the true
orientation, suggesting that simulated V1 responses are highest along the actual
remembered orientation (positive fidelity value). Filtered responses computed from the
grating image reconstruction maps (top row of (A) and Figures 4A-B) show an opposite
pattern (negative fidelity value). Since the output model responses were identical for all
participants and only the pRF parameters differed, statistical analyses were not
performed on the model simulations.
(C-D) Neuronal output responses and the reconstruction maps for the sum of all
subbands when inputs to the model were grating images in (C) and for the maximal
subband when inputs were simple line images in (D). These results resemble the model
outputs in (A) and the reconstruction maps in Figure 4B. Therefore, our results are not
an artifact of the chosen subband.
(E) For sanity check, we modified our grating stimulus images by increasing the size of
the inner aperture (6.75º diameter; corresponding to the inner black circle in the
reconstruction maps) to test whether stimulus aperture influences the spatial
reconstruction maps. The model outputs and spatial reconstructions maps are shown in
(F-G).
(F) The sum of two subbands with the spatial frequency centered on the spatial
frequency of the grating stimulus. The spatial reconstruction maps exhibited a slightly
different pattern from those in Figure 4B as they were a mixture of patterns parallel and
orthogonal to the remembered orientation.
(G) The sum of all subband levels. A larger inner aperture did not change the pattern of
reconstruction maps, as it was still orthogonal to the remembered orientation, similar to
those from our original stimuli (Figure 4B).
All neuronal output response plots are presented in log scale. For all reconstruction
maps, the size of each map is from -20° to 20° of visual angle (dva), and the stimulus
size (inner and outer apertures) is shown in black circles for reference.
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Figure S4. Distinct formats for perceptual and working memory representations
of motion direction, related to Figures 3 and 4. Spatial reconstruction was performed
on 6 direction conditions separately, as the previously reported aperture bias in
perception makes different predictions for opposite motion directions with the same
orientation axis (Wang et al., 2014).
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(A-B) Reconstruction maps and associated filtered responses for the stimulus encoding
in (A) and delay epochs in (B). The direction conditions from which the reconstruction
maps are generated are shown in circles (red for downward directions and blue for
upward directions). The size of all reconstructed maps is from -20° to 20° of visual
angle. Each ROI’s filtered response curves were generated by aligning and averaging
the individual filtered responses for each of the 6 direction conditions. The first and
second bumps at 0º and 180º in the filtered response curves correspond to the
information captured by direction filters spanning the lower and upper visual field (360º
of polar angle, to quantify whether the representation of remembered direction differs in
strength between locations in the topographic map corresponding to the terminus and
inception of motion direction). See (C) for a detailed description.
(C) Interpretation of filtered response curves in (A-B). Schematics is shown for the
pattern of filtered response curves for most visual maps in the delay epoch in (B). For
example, the red curve shows that memory representations for downward direction
conditions form a line in topographic space corresponding to the orientation axis of the
remembered direction (two bumps), but the portion of the line representation in the
lower visual field (terminus of moving dots for downward direction conditions; a) is
stronger than that of the upper visual field (inception of the moving dots for downward
direction conditions; b). The blue curve shows that memory representations for upward
direction conditions show higher response in the upper visual field (terminus of moving
dots for upward direction conditions; d), compared to the lower visual field (inception of
moving dots for upward direction conditions; c). We additionally computed the sum of
field fidelity differences which quantifies the difference in activation between the portion
of the topographic maps corresponding to the terminus and the inception of dot motion.
Taking into account how the sum of field fidelity differences is computed ( (a-b)+(d-c) ),
larger values indicate greater activation near the terminus of moving dots compared to
the inception of moving dots.
(D) As previously reported during dot motion perception (Wang et al., 2014), the line-like
patterns we observed early and time-locked to the visible motion stimulus (stimulus
encoding epoch) were biased with more activation in the portion of the topographic map
near the inception of the moving dots (gray bars and asterisks). During memory (delay
epoch) we found the opposite; in most visual maps, there was greater activation near
the terminus (yellow bars and asterisks). The difference between these biases during
the stimulus encoding and delay epochs was statistically significant in many of the ROIs
(black asterisks), demonstrating differences in the representational formats of
perceiving and remembering dot motion. The only exception was TO1/2 where the
reconstruction patterns observed during stimulus encoding and delay were similar. *p <
0.05, **p < 0.01, ***p < 0.001, n.s. not significant, corrected for multiple comparisons; †p
< 0.05 uncorrected (p values in Table S1).
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Supplementary Table

Table S1.

Decoding accuracy for the delay epoch1.

3-way ANOVA. Decoding type x ROI x Stimulus type

Decoding type
df: (1,10)

F = 7.061
p = 0.017

p
2 = 0.414η

ROI
df: (5,50)

F = 9.965
p = 0

p
2 = 0.499η

Stimulus Type
df: (1,10)

F = 4.001
p = 0.063

p
2 = 0.286η

Decoding type x
ROI
df: (5,50)

F = 3.039
p = 0.020

p
2 = 0.233η

Decoding type x
Stimulus Type
df: (1,10)

F = 0.691
p = 0.439

p
2 = 0.065η

ROI x Stimulus
Type
df: (5,50)

F = 3.576
p = 0.006

p
2 = 0.263η

Decoding type x
ROI x
Stimulus Type
df: (5,50)

F = 2.987
p = 0.023

p
2 = 0.230η

Post-hoc 2-way ANOVA. Decoding type x Stimulus type for each ROI (FDR thres =
0.005 for decoding type, 0 for stimulus type and decoding type x stimulus type)2.

V1-V3 V3AB TO1/2 IPS0/1 IPS2/3 PCS

Decoding type
df: (1,10)

F = 5.505
p = 0.040

p
2 = 0.351η F = 13.948

p = 0.005
p

2 = 0.582η F = 1.508
p = 0.232

p
2 = 0.131η F = 2.015

p = 0.194
p
2 = 0.168η F = 4.254

p = 0.065
p
2 = 0.298η F = 6.470

p = 0.022
p
2 = 0.393η

Stimulus type
df: (1,10)

F = 6.059
p = 0.049

p
2 = 0.377η F = 6.969

p = 0.028
p
2 = 0.411η F = 0.708

p = 0.405
p
2 = 0.066η F = 1.685

p = 0.220
p
2 = 0.144η F = 0.618

p = 0.428
p
2 = 0.058η F = 0.046

p = 0.832
p
2 = 0.005η

Decoding type
x Stimulus type
df: (5,50)

F = 1.477
p = 0.263

p
2 = 0.129η F = 3.614

p = 0.088
p
2 = 0.265η F = 0.006

p = 0.941
p
2 = 0η F = 0.033

p = 0.865
p
2 = 0.003η F = 1.807

p = 0.195
p
2 = 0.153η F = 0.104

p = 0.762
p
2 = 0.010η

One-sample t tests against chance (FDR thres = 0.006 for within-stimulus, 0.029 for
cross-stimulus)3.

8



V1-V3 V3AB TO1/2 IPS0/1 IPS0/2 PCS

Within-
stimulus
df: 10

t = 4.138
p = 0
d = 1.354

t = 4.880
p = 0.001
d = 1.196

t = 3.537
p = 0.005
d = 1.324

t = 3.591
p = 0.004
d = 1.471

t = 3.117
p = 0.006
d = 1.066

t = 3.432
p = 0.003
d = 1.083

Cross-
stimulus
df: 10

t = 3.584
p = 0.002
d = 1.081

t = 3.203
p = 0.002
d = 0.966

t = 2.097
p = 0.029
d = 0.632

t = 2.767
p = 0.008
d = 0.834

t = 2.261
p = 0.015
d = 0.682

t = 2.309
p = 0.020
d = 0.696

3-way ANOVA. Decoding type x ROI x Stimulus type, after matching the training and
testing procedures across decoding types.

Decoding type
df: (1,10)

F = 7.061
p = 0.027

p
2 = 0.414η

ROI
df: (5,50)

F = 9.965
p = 0

p
2 = 0.499η

Stimulus Type
df: (1,10)

F = 4.000
p = 0.077

p
2 = 0.286η

Decoding type x
ROI
df: (5,50)

F = 3.039
p = 0.019

p
2 = 0.233η

Decoding type x
Stimulus Type
df: (1,10)

F = 0.691
p = 0.419

p
2 = 0.065η

ROI x Stimulus
Type
df: (5,50)

F = 3.576
p = 0.007

p
2 = 0.263η

Decoding type x
ROI x
Stimulus Type
df: (5,50)

F = 2.987
p = 0.018

p
2 = 0.230η

Decoding accuracy for the stimulus encoding epoch4.

3-way ANOVA. Decoding type x ROI x Stimulus type.

Decoding type
df: (1,10)

F = 19.957
p = 0.002

p
2 = 0.666η

ROI
df: (5,50)

F = 6.825
p = 0

p
2 = 0.406η
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Stimulus type
df: (1,10)

F = 1.126
p = 0.314

p
2 = 0.101η

Decoding type x
ROI
df: (5,50)

F = 10.876
p = 0

p
2 = 0.521η

Decoding type x
Stimulus type
df: (1,10)

F = 1.503
p = 0.273

p
2 = 0.131η

Post-hoc 2-way ANOVA. ROI x Stimulus type for each decoding type (FDR thres = 0 for
ROI, Stimulus type, ROI x Stimulus type)5.

Within-
stimulus

Cross-
stimulus

ROI
df: (5,50)

F = 15.011
p = 0

p
2 = 0.600η F = 0.753

p = 0.605
p
2 = 0.070η

Stimulus type
df: (1,10)

F = 1.319
p = 0.279

p
2 = 0.117η F = 0.015

p = 0.908
p
2 = 0.002η

ROI x Stimulus
type
df: (5,50)

F = 9.007
p = 0

p
2 = 0.474η F = 2.192

p = 0.067
p
2 = 0.180η

One-sample t tests against chance for cross-stimulus decoding accuracy (FDR thres =
0)6.

V1-V3 V3AB TO1/2 IPS0/1 IPS2/3 PCS

Cross-
stimulus
df: 10

t = 0.304
p = 0.378
d = 0.092

t = 0.057−
p = 0.510
d = 0.017− t = 1.945−

p = 0.956
d = 0.586− t = 0.264

p = 0.413
d = 0.079

t = 0.122
p = 0.473
d = 0.037

t = 0.772
p = 0.244
d = 0.233

Reconstruction fidelity for the delay epoch7.

Orientation and direction trials combined (FDR thres = 0.006).

V1-V3 V3AB TO1/2 IPS0/1 IPS2/3 PCS

Fidelity
df: 10

t = 16.597
p = 0
d = 5.004

t = 9.742
p = 0
d = 2.937

t = 3.133
p = 0.006
d = 0.945

t = 4.379
p = 0.001
d = 1.320

t = 1.686
p = 0.067
d = 0.508

t = 0.605−
p = 0.278
d = 0.182−

Reconstruction fidelity on the sum of field reconstruction fidelity
differences, for the direction trials8.

2-way ANOVA. Epoch x ROI.
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Sum of
field
fidelity
difference
s

Epoch
df: (1,10)

F = 33.953
p = 0

p
2 = 0.773η

ROI
df: (5,50)

F = 1.990
p = 0.088

p
2 = 0.166η

Epoch x ROI
df: (5,50)

F = 3.380
p = 0.007

p
2 = 0.253η

One-sample t tests on sum of field reconstruction fidelity differences, separately for delay
epoch and stimulus encoding epoch (FDR thres = 0.002 for delay epoch, 0.036 for
stimulus encoding epoch).

V1-V3 V3AB TO1/2 IPS0/1 IPS2/3 PCS

Delay epoch
df: 10

t = 3.190
p = 0.002
d = 0.962

t = 2.068
p = 0.048
d = 0.623

t = 0.232−
p = 0.030
d = 0.613− t = 1.710

p = 0.055
d = 0.516

t = 1.117
p = 0.147
d = 0.337

t = 2.194
p = 0.028
d = 0.662

Stimulus encoding
epoch
df: 10

t = 3.251−
p = 0.001
d = 0.980− t = 2.985−

p = 0.009
d = 0.900− t = 1.935−

p = 0.036
d = 0.583− t = 2.354−

p = 0.020
d = 0.710− t = 1.470−

p = 0.079
d = 0.443− t = 2.288−

p = 0.017
d = 0.690−

Paired-sample t tests on sum of field reconstruction fidelity differences: delay epoch vs
stimulus encoding epoch (FDR thres = 0.015).

V1-V3 V3AB TO1/2 IPS0/1 IPS2/3 PCS

Difference
between epochs
df: 10

t = 3.558
p = 0.002
d = 1.073

t = 5.293
p = 0
d = 1.596

t = 0.069
p = 0.474
d = 0.021

t = 2.779
p = 0.007
d = 0.838

t = 2.395
p = 0.015
d = 0.722

t = 4.421
p = 0
d = 1.333

Table S1. Non-parametric p values.
1 Significant tests (p < 0.05, FDR corrected if applicable) are marked in bold. Factors are decoding type
(within-/cross-stimulus), ROI (V1-V3, V3AB, TO1/2, IPS0/1, IPS2/3, PCS), and stimulus type (train on
orientation/train on direction). To generate the null distribution, classifiers were trained on data shuffled
across both the trial label and voxel dimensions. If applicable, p values were FDR corrected across the
horizontal dimension of each table.
2 A post-hoc 2-way ANOVA with decoding type and stimulus type as factors was conducted to examine
whether the two stimulus types (train on orientation/train on direction) could be combined for further
analyses.
3 To quantify whether orientation/motion direction information could be decoded from ROIs
(within-stimulus) and whether the two features share the same neural representation during WM
(cross-stimulus), decoding accuracy averaged across the orientation/direction trials, was compared
against the null distribution.
4 Significant tests (p < 0.05, FDR corrected if applicable) are marked in bold. Factors are decoding type
(within-/cross-stimulus), ROI (V1-V3, V3AB, TO1/2, IPS0/1, IPS2/3, PCS), and stimulus type (train on
orientation/train on direction). To generate the null distribution, classifiers were trained on data shuffled
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across both the trial label and voxel dimensions. If applicable, p values were FDR corrected across the
horizontal dimension of each table.
5 The main purpose of this analysis was to determine whether cross-stimulus decoding accuracies could
be combined across the two stimulus types (train on orientation/train on direction). As there was neither
the main effect of stimulus type nor an interaction for cross-stimulus decoding, data were combined for
further analyses.
6 To examine whether the representational formats for orientation and direction were shared during
stimulus encoding, cross-decoding accuracy averaged across the train-on-orientation and
train-on-direction conditions was compared with the null distribution.
7 Significant tests (p < 0.05, FDR corrected if applicable) are marked in bold. To generate the null
distribution, fidelity values were calculated from reconstruction maps computed from shuffled beta
coefficients (shuffled across trial label and voxel dimensions). If applicable, p values were FDR corrected
across the horizontal dimension of each table.
8 Significant tests (p < 0.05, FDR corrected if applicable) are marked in bold. For the null distribution,
fidelity values were calculated from reconstruction maps generated from shuffled beta coefficients
(shuffled across trial label and voxel dimensions). If applicable, p values were FDR corrected across the
horizontal dimension of each table.
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