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This article attempts to build a bridge between cognitive psychology and computa-
tional neuroscience, perhaps allowing each group to understand the other’s theoretical
insights and sympathize with the other’s methodological challenges. In briefly discussing
a collection of conceptual demonstrations, neural network and dynamical system sim-
ulations, and human experimental results, we highlight the importance of the concept
of phase transition to understand cognitive function. Our goal is to show that viewing
cognition as a self-organizing process (involving phase transitions, criticality, and auto-
catalysis) affords a more natural explanation of these data over traditional approaches
inspired by a sequence of linear filters (involving detection, recognition, and then response
selection).
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1. The Phase Transition Itself

In a variety of sciences, the identification of a phase transition is often exploited

as evidence for two separate regimes of behavior in the same substrate, each of

which then requires its own independent form of explanatory account.1,2 Overem-

phasizing this divide-and-conquer perspective on the scientific function of phase

transitions could be missing out on an important opportunity to potentially dis-

cover mechanisms that drive those transitions. By also focusing our measurements

on the phase transition itself, to understand the behavior of the system in question

during that interregnum between one stable phase and the other stable phase, a

deeper understanding of the mechanisms may be revealed.
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A phase transition is an impressively sudden shift in a system’s behavior. Take,

for example, water transitioning into vapor. There is a wide range of temperature

increases (from 33◦ to about 211◦ Fahrenheit, depending on the air pressure) where

a body of water’s behavior, i.e. standing still, does not change at all. Then, suddenly,

increasing the temperature by a couple more degrees above 211 causes the water to

take on a life of its own, bubbling and roiling. In the other direction, a few degrees

below 33 causes a rapid restructuring of the body of water, and intricate lattices

of molecules form a solid surface on which hockey can suddenly be played. These

are all one substrate, but vastly different behaviors appear quite suddenly under

different conditions.

Like other signatures of complex dynamical systems that show up in human

data, such as 1/f scaling3 and sensitivity to stochastic resonance,4 exhibiting a

phase transition may also be a prominent signature in human cognition — where

initial increases in some parameter have little or no effect on the system behavior

but at some point a threshold is crossed, and tiny increases in that same parameter

suddenly induce massive changes in system behavior. This article describes experi-

mental laboratory data on phase transitions in human action, perception, language,

and cognition, with an eye toward drawing some parallels with similar swift jumps

in the behavior of complex dynamical systems and simulations.

There indeed appear to be a range of psychological phenomena that exhibit qual-

itative shifts from one stable state to another stable state, almost as if one symbolic

representation of mental contents is being turned off and another turned on.5 At

relatively coarse time scales of measurement, this account may be embraced from

a perspective of explanatory pluralism.6 Nonetheless, such discrete-like behavior

admits of a finer-grain time scale of measurement that exposes details in the tran-

sition itself, uncovering the lower-lever mechanisms that enable the emergence of

symbol-like behavior. If a dynamical system actually allowed extreme parameter

changes from one instant in time to the next (as would be required by genuine sym-

bolic processing) it would run the risk of oscillating around, rather than settling at,

the regime it is moving toward during a phase transition.7 Therefore, most dynam-

ical systems that appear to undergo succinct and sudden phase transitions from

one stable regime to another may actually be functioning on a finer time scale than

is being measured. That is, the mechanisms that are carrying out the transition

itself are doing so at an iteration-by-iteration scale that has the system spending

a number of timesteps in a region of parameter space that is in between the two

identified phases.

The pioneering work of Walter Freeman has served to lead the field toward

this important path of understanding neural dynamics using dynamics. Among his

numerous influential contributions, his work on the phase dynamics of the rabbit’s

olfactory bulb provides perhaps one of the earliest indications of the importance of

this dynamical process (reviewed in Refs. 8 and 9). In these studies, it is found that

the olfactory bulb has a baseline level of neural activity that is chaotic in nature.

Upon receiving afferent sensory input to the bulb, a phase transition can occur,
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where neural firing patterns engage in synchronized waves in the gamma frequency

range, and thus underlie the recognition of some particular known scent. Following

repeated stimulation — such as in conditioning a new scent — a broader change in

the system’s chaotic dynamics can occur, in which the overall baseline activity is

transformed substantially (though still gamma, and chaotic). Still, the animal can

recognize both the previous and new scents. The precise identity of the neural firing

does not manifest the recognition of the odor — it is instead these chaotic dynamics

giving way to context-dependent phase transitions.

The phase transition is thus a potentially crucial characteristic of an organ-

ism’s perceptual dynamics. Following on this fundamental insight, this paper will

briefly touch on several areas relevant to neural and cognitive processes where the

concept of a phase transition can be especially illuminating, including rhythmic

movement patterns, visual perception, language processing, and problem solving.

The latter portion will focus on some recent experimental results where a phase

transition appears to occur between incoherent and coherent comprehension of

sentences. The key lessons for cognitive science in this exploration are: (i) sharp

transitions in behavior need not be attributed to formally discrete logical pro-

cesses, but instead can emerge from non-linear dynamics in the continuous interac-

tions within an aggregate system, and (ii) finding the appropriate temporal scale

of analysis is crucial for identifying those non-linear (but numerically continuous)

dynamics.

2. Phase Transitions Between Rhythmic Movement Patterns

The phase transition can be demonstrated using surprisingly simple systems. One

dynamical system that demonstrates sharp changes in state is extraordinarily simple

and often used as an illustration of “bifurcation” — points at which stable states

double in number, thus creating a period-doubling regimen under sharp transitions.

This system, known as the logistic map, is an iterated dynamical system given

by the equation: xt = rxt−1 (1 − xt−1). The value r is a control parameter that

can dictate the stable values that the system’s state x can achieve. The system’s

behavior changes dramatically at critical values of r, and the number of stable x

values doubles, or bifurcates. This is shown in Fig. 1. For a range of low r values,

only one stable state occurs after multiple iterations. At a critical juncture in this

control variable, the number of states doubles. Now the system oscillates between

two values. These are visited in alternating order, so the system’s evolution has a

period of two. This period doubles again at a juncture of about r = 3.4. Four stable

states now occur, and are visited in a particular order by the system (thus having

a period of four).

These transitions are often referred to as bifurcations, but they serve as another

demonstration of phase transition behavior, albeit simple. In an animal’s motor

system, a similar transitioning can occur in systematic ways. This is particularly

true of the “modes” of rhythmic behavior that organisms exhibit. Probably the
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Fig. 1. Representation of stable states (x) achieved by logistic map iterations as the control param-
eter (r) increases. At about r = 3, the system bifurcates, and two stable, oscillating values occur.
At approximately 3.4, this phase transition occurs again, and the system occupies 4 states.

most frequent rhythmic movements exhibited by organisms are those involved in

locomotion. Consider the horse’s gait. There are three prominent modes of locomo-

tion that this animal exhibits: walk, trot, and gallop. These terms connote certain

rates of movement, the next being at a faster rate of locomotion than the previ-

ous. The actual locomotory patterns themselves are manifested by differences in

the relative phase of the horse’s limbs. For example, during gallop, the front limbs

bound forward and backward in relative synchrony, while in a trot one forelimb

coordinates with its opposing hind limb. Controlled experiments demonstrate that

these gaits will transition from one to another predictably by the rate at which a

treadmill is moving.10 These rhythmic movements thus exhibit a phase transition,

with distinct changes in limb phase patterns under boundaries of the control param-

eter of movement rate. The same can be shown even in the American cockroach.

At a low rate of movement, the gait of this insect involves all six limbs, moving in

an alternating tripod manner.11 As the rate of movement is increased, the cock-

roach will move into a quadrupedal phase, then even a bipedal locomotory phase

at sufficiently high speeds. This phase transition between modes of locomotion is

predictable by the rate at which the movement is occurring, much as one can predict

bifurcation of the logistic map under changes in the values of r. Interestingly, the

phase transition described in locomotory modes above are also shown by humans

when arms and legs move together, with phase transitions at critical rate points

as well.12

A prominent model for this kind of phase transition in rhythmic movement orig-

inated with the work of Haken, Kelso, and Bunz (HKB) who initially modeled the

biphasic manual coordination present in finger movements.13,14 This classic “finger

twiddling” experiment is quite simple, and demonstrates the exact sort of phase

transition described in non-human animals above. In this experiment, participants
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are instructed, with hands held out together, to move their index fingers rhyth-

mically (side to side) in step with a metronome. At a slow rate, movement has

two stable phases, either antiphase (symmetric muscle groups operating in oppo-

site phase, i.e. fingers moving left or right together) or in phase (muscle groups

acting in the same patterns, i.e. fingers moving outward and inward together).

As the rate of movement increases, however, a phase transition occurs if the cur-

rent stable mode is the antiphase pattern: Participants involuntarily switch to the

inphase mode of movement. Shortly before this motoric change in phase takes place,

instabilities in the motor movement itself (and in the accompanying neural syn-

chrony) are detectable, presaging the dissolving of the old phase and assembling of

the new.15

The HKB model characterizes this relative phase of the movements as a differen-

tial equation that describes the potential wells into which the finger movement may

settle (or remain). This function changes according to parameters that essentially

reflect the frequency of the required movements. Figure 2 shows two potential func-

tions, reflecting opposing endpoints in gradual change of this parameter. The phase

shift from antiphase to inphase can thus occur as a relatively rapid shift under this

rate parameter. This has been substantiated thoroughly in a variety of cognitive

and rhythmic motor tasks (see Ref. 24 for review).

These phase transitions in modes of rhythmic movements show what may be

termed an “intrinsic dynamics”16 that an organism’s motor system can naturally

Fig. 2. The Haken-Kelso-Bunz (HKB) model of coordination dynamics. The x-axis shows relative
phases of two-finger movement. The y-axis displays the potential, with wells representing possible
stable phases of finger movement. During slower movement of the fingers (left panel) two basic
stable phases are possible (antiphase or inphase). At higher rates of movement (right panel), there
is only one stable pattern of inphase. As finger-movement rate increases, participants performing
antiphase movement will transition into inphase.
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exhibit. It is possible, however, that these intrinsic dynamics serve as an important

characteristic of a motor system that is coupling to oscillatory perceptual informa-

tion in the environment. A classic experiment by Schmidt, Carello, and Turvey17

has shown that when finger twiddling becomes leg swaying, these phase transitions

between rhythmic modes can even occur between people. They had pairs of par-

ticipants each sway a single leg while seated beside each other. When they were

able to perceive each other’s leg movements, the same phase tendencies as in Fig. 2

were exhibited by this two-person system. Moreover, when subtle modulation of

metronome rate occurs (even unbeknownst to subjects), rapid compensation can

occur in the relative asynchrony of tapping shown by participants.18,19 For exam-

ple, while participants tap to a metronome pulse, inter-pulse intervals that change

by ±10ms can be rapidly compensated for within just 2 or 3 taps. This may be inter-

preted as rapid and “subliminal” phase transitions in sensorimotor coordination. In

fact, the same sorts of phase transition seen in these intrinsic motor dynamics can

also be shown in the dynamics of visual perception.

3. Phase Transitions in Visual Processing

Transitioning from one phasic pattern to another phasic pattern is exactly what

the Lorenz attractor is known for. Edward Lorenz discovered this three-dimensional

strange attractor in 1963 while exploring simplified equations for convection rolls

in the atmosphere. Often described as looking like a butterfly, the Lorenz system

is the result of three simple equations whose products feed into each other. The

typical parameters that produce its famous pattern are as follows:

dx/dt = 10(y − x)

dy/dt = x(28 − z) − y

dz/dt = xy − (8/3)z

The Lorenz attractor is deterministic yet unpredictable, and thus is referred to

as chaotic. It also exhibits sensitivity to initial conditions. In a time series where

each iteration increments the values by 0.01, the trajectory of the system alternates

erratically between two expanding orbits. Figure 3 displays the Lorenz attractor,

starting with random x, y, and z values, and unerringly settling into its butterfly

pattern. We have highlighted in solid lines the transitional portions of the trajectory

as it crosses over from the outer edge of one wing to the inner edge of the other,

20 time-steps before and after the midpoint (x = 0). The transitional sections

are some of the fastest moving sections of the Lorenz trajectory, but they are not

instantaneous.

The x dimension by itself displays quasi-stable activity hovering around x = 8

that suddenly transitions to quasi-stable activity that hovers around x = −8 and

then returns to the x = 8 region, etc. Looking simply at the sign of these x values

produces a series of alternating transitions (Fig. 4) that are similar to the perceptual
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Fig. 3. The Lorenz attractor with transitional sections highlighted as solid lines.

Fig. 4. Sign of x-values over time in the Lorenz attractor.
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Fig. 5. Alternating perspectives over time while viewing the Necker cube.

reversals that people experience when gazing at an ambiguous figure such as the

famous Necker cube (Fig. 5).

The vast majority of research on the Necker cube focuses on what kinds of

contextual perturbations influence which perspective becomes more dominant on

average.20,21 However, some researchers have conducted statistical analyses of the

time series of dwell times, i.e. how long a perspective holds sway each time before

giving way to the alternative, and often find evidence for fractal structure, or 1/f

scaling, in the data22 — suggesting that the human brain is a self-organized system

poised at criticality between stability and chaos.23 In fact, by infusing their neural

network with a self-organized criticality parameter, Aks and Sprott24 were able to

simulate a sequence of dwell times that shared the same statistical structure as

human dwell times (see also Ref. 25 for early work on this).

Still, what researchers have yet to focus on with the Necker cube is the time it

takes to carry out the shift from one stable percept to the other, i.e. the transition

itself. Just like with the Lorenz attractor, this transition is rapid, but not instanta-

neous. Informal inquiry with dozens of observers suggests that the perceived tran-

sition time may average around one-third of a second (see Ref. 26, Chapter 1; also

Ref. 27 for a corresponding numerically derived prediction).

In the field of visual perception, one-third of a second is a substantial amount

of time to be in-between the two possible perceptual states afforded by a stimu-

lus. Interestingly, analyses of multi-cell recordings in the superior temporal sulcus

of the monkey (an object/face recognition area) show a gradual increase, over the

course of about 1/3 to 1/2 of a second, in information content in the firing rates for

discriminating a face or object.28 Much like the generic phase transition pattern,

this information content curve rises quickly at first (over the first couple hundred
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milliseconds; see also Ref. 29) and then the slope shallows as it approaches asymp-

tote (over the next couple hundred milliseconds).

Binocular rivalry, where differing images presented to each eye generate object

representations that compete with one another, also exhibits these alternating

transitions.30 Importantly, a different phase-locked pattern of activity in visual cor-

tex appears to underlie each of the two percepts, and thus the transition between

the two percepts is quite literally a transition between two phasic patterns31 (see

also related work in Ref. 32, showing coordinated phase transitions across various

sensory brain areas). Like the Lorenz system and the Necker cube, these transitions

are not instantaneous, but take at least a couple hundred milliseconds. What this

reveals is that on the way toward achieving a stable percept, the brain spends a

significant amount of its time in regions of phase space that do not neatly corre-

spond to any of the labeled categories that language, or the experimenter, or society

itself, has laid out before it.26 Inside these interregna, we may find the secrets to

understanding the real-time dynamics of cognition.

4. On Finding the Optimal Averaging of Measurements

Importantly, plumbing the insights into the mind that hide inside the phase tran-

sition often requires finding the optimal window of temporal resolution. For exam-

ple, quasiperiodic behavior such as that in logistic map or in the Lorenz attractor

can appear very different to an observer depending on how many time steps the

observer’s measurement is averaging over. This is why one must endeavor to get

one’s epistemic measurement process as close as possible to the raw ontic data

stream itself.33,34 Take, for example, what happens when the Lorenz attractor’s

time series is averaged over a sliding temporal window that is the inverse of the

iterative incrementing amount, in this case 100 times steps. Figure 6 shows what

we call the Mardi Gras Mask version of the Lorenz system with this averaging win-

dow. The figure-eight in the middle of the mask results from portions of the original

trajectory that follow only one orbit around one of the lobes before transitioning

back to the other lobe, whereas the tight loops on the left and right sides are por-

tions of the original trajectory that remained in orbit around one lobe for longer

periods of time.

As further evidence for the need to get closer to the raw ontic stream, not

only can it be misleading to average over chunks of time that are too large, but

it can also be misleading to summarily average over experimental participants or

stimulus items (as is too often done in cognitive psychology experiments). Individual

stimulus items or individual participants in an experiment can often exhibit very

sharp transitions as a function of some continuous manipulation. Note the sharp

transitions from 0 to 1 (dashed lines) in Fig. 7 that occur at a wide variety of

locations along the x-axis (with an even distribution). Each event, in terms of how

it actually occurs, is clearly a sudden phase transition, but when they are averaged

(solid line with asterisks) they produce a steady linear function that can lead the
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Fig. 6. The Lorenz attractor plotted with a sliding averaged-window of 100 time steps.

Fig. 7. When individual step-functions are averaged (multiple dashed lines are level at 0 until they
jump to 1), this average can produce a linear function that will mislead inquiry into the underlying
mechanisms.

observer to assume that the process underlying the transition from 0 to 1 is a

linear process. By examining the phase transitions that take place in individual

participants or in individual stimuli, misleading interpretations such as this can be

avoided.
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5. Phase Transitions in Language Processing

Speech perception is one field where this concern about averaging over experimental

participants has come to the fore of major theoretical debates.35,36 As an idealized

example, if one participant shows a sharp transition between two ways of catego-

rizing a linguistic stimulus when the phonetic parameter is set around 4 in Fig. 7,

another exhibits his sharp transition around 10 on the x-axis, and a third participant

produces her sharp transition around 16 on that x-axis, then averaging across those

three participants would cause one to miss the fact that the categorical transition,

when it actually happens, is quite sharp.

For half a century, it has been known that a continuous linear change in certain

phonetic parameters, such as Voice Onset Time (VOT, the latency between when

the air is first released and when the vocal chords begin to vibrate), can produce a

remarkably discontinuous non-linear change in perception.37 When the VOT for the

phoneme /b/ is synthetically altered from, say, 0ms to 50ms in 5ms steps, what

results is a continuum of voicing for that speech sound that steadily spans from

a typical-sounding /b/ to a typical-sounding /p/. However, a listener’s perception

of this continuum is anything but steady. Native English speakers usually perceive

the first five tokens of that voicing continuum as equally acceptable instances of

the phoneme /b/, even the one with 25ms of VOT! Likewise, the last five tokens

of the voicing continuum are usually perceived as equally acceptable instances of

the phoneme /p/. Thus, as one gradually increases VOT in this synthesized speech

sound, at around 30ms of VOT a phase transition occurs where the speech sound

rather suddenly shifts from being confidently perceived as a /b/ to being confidently

perceived as a /p/ (Fig. 8).

Traditional approaches to cognitive psychology tended to interpret this finding

as evidence for speech perception involving a specialized domain-specific neural

mechanism that immediately slotted noisy imperfect acoustic signals into neat and

tidy linguistic categories, such as “voiced” and “unvoiced.” However, the process

itself is not quite immediate. Even when the intermediate speech sounds (with VOTs

of 20 or of 30ms) are systematically perceived as belonging to the same category

trial after trial, the response times on those trials are reliably longer than on trials

with more extreme VOTs.38 That is, despite the fact that a 20ms VOT stimulus

is almost always categorized as a /b/, participants take about 100ms longer to

settle on that categorization. This, in fact, fits perfectly with the predictions of

dynamical neural network simulations in which both category representations are

partially active and compete against one another for the privilege to drive motor

output.39,40

Figure 9 shows activation curves from six simulations of categorical speech per-

ception with a localist attractor network (for details, see Ref. 26, Chapter 6). Each

simulation produces a symmetric bifurcation where one category representation

(corresponding to a particular pattern of neural activity) rises in activation over time

(solid lines) and its competing category representation declines over time (dotted
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Fig. 8. Example categorization function for a phonetic continuum, describable as a phase transition
occurring near a particular phonetic parameter value.

Fig. 9. Activation curves of two categories competing over time. (Each pair of diverging curves
comes from a different simulation.)
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lines). With stimuli that are more ambiguous or intermediate in their classification,

the winning activation pattern takes longer to reach asymptote, hence longer reac-

tion times despite the same categorical result. Importantly, this behavior arises from

a relatively generic interactive dynamical system that spends a notable portion of its

time in regions of state space that are consistent with both possible categories being

treated as partially acceptable simultaneously — not a domain-specific system that

immediately slots its inputs into linguistic categories without being affected by the

idiosyncracies of the original acoustic signal. Eye-movement data show corrobora-

tive evidence for brief simultaneous consideration of both competing alternatives

when the speech stimulus has an intermediate VOT.41

Another area of language research where a sudden shift in cognitive processing

seems to occur is word learning. However, instead of calling it a “phase transition,”

developmental psychologists have taken to calling it a “vocabulary spurt.”42 Around

their second birthday, many children begin to exhibit a dramatic increase in the rate

of new words being learned, more than 10 new words a day, and thus thousands

of new words over the next year of life. In the field of cognitive psychology, this

observation is often attributed in part to hypothesized domain-specific learning

mechanisms that are active during the accelerated learning phase43 or that precede

and follow it.44 However, the natural statistics of a dynamic word-accrual process

that is continuous and parallel can very easily lead to a sudden ramp up in word

accumulation rate all by itself.45 In such a situation, a vocabulary spurt emerges

rather simply from the aggregate behavior of the entire neural system doing the

learning, rather than being caused by some specialized accelerated learning modules

that get turned on and then turned off.

For example, take the simplifying assumption that the majority of words that

a child has to learn are of medium difficulty, and a smaller proportion of words are

very easy to learn or very hard to learn. Accordingly, imagine a normal distribution

for the frequency histogram of “how long it takes” a child to learn her first 10,000

words, where hundreds of words can be learned in several months, thousands of

words can be learned in a dozens of months, and hundreds of words require a few

years or more to learn (Fig. 10(a)). All that we have to do is relinquish the implicit

assumption from traditional word learning theories that a word is either known or

not known, and instead accept the idea that a word can be partially-known. That

is, its attractor basin in the dynamics of the child’s brain can be partly formed. If all

of these words are being learned in parallel, in that the neural activation patterns

that will eventually become their “representations” are all simultaneously finding

their places on the same attractor landscape, then it becomes trivial to see how a

vocabulary spurt would arise.

During the first couple of years, the easy words are being acquired, such that

a few of those attractors per day become sufficiently well-formed enough to allow

the child to correctly produce those words, and the parent then writes them down

as a “learned words.” During the next couple of years, the medium-difficulty words
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Fig. 10. (a) A hypothetical normal distribution of learning-times for 10,000 words. (b) The resulting
logistic curve where the slope indicates the rate of accrual.

begin to accrue, and since there are many more of them, the rate of accrual cannot

help but increase sharply at around 24 months and continue until at least 48 months

(Fig. 10(b)). For the next couple of years after that, there are relatively few difficult

words to be had, among these first 10,000, so the accumulation rate would slow down

again (but, of course, words beyond those first 10,000 are also being learned at that

time). For an in-depth treatment of this general argument, see Ref. 45.

As can be seen, despite its not always using the terminology, language research

is no stranger to the phase transition. In wider support of the view of language pro-

cessing as a complex dynamical system in the human brain (rather than a sequence

of encapsulated modules), it exhibits a variety of recognized “signatures” of self-

organized criticality, in addition to phase transitions. For example, the pattern of

data over the course of many trials in a categorical speech perception task clearly

show hysteresis effects.46 Moreover, when the same spoken word is uttered sev-

eral hundred times, the statistical variation across frequency bands in the spectral

patterns exhibit unmistakable 1/f scaling properties.47

6. Phase Transitions in Problem Solving

Compared to language research, the field of problem solving is even further from the

rising tide of dynamical system frameworks and neuroscientific evidence. However,

this does not protect the data from exhibiting dynamical phenomena — they just

rarely get analyzed as such. Take, for example, what cognitive psychologists call

“insight problem solving.” While standard linear problems, such as arithmetic or

certain puzzles, imbue the solver with a sense of steady gradual effortful approach

to the solution, insight problems usually cause the solver to go through a period

of impasse, where (after some failed proposed solutions) no viable option seems

forthcoming, and then suddenly out of nowhere (with an “Aha!”) some portion

of solvers experience the correct solution popping into their minds all by itself.
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Knoblich, Ohlsson, and Raney describe this as a “restructuring of the problem

representation.”48

The actual process of this restructuring, however, does not quite arise “out of

nowhere.” There are intriguing laboratory hints of the gradual build up to the

insight itself. For example, to test for evidence of partial activation of an “insight,”

researchers presented participants with a pair of remote-associate word triplets.49

One of them would have a coherent solution and the other would not. For example,

“What one word makes a compound with the words still, pages, and music?” and

“What one word makes a compound with the words playing, credit, and report?”

Participants were asked to find the solution to the coherent triplet that actually

has a solution, and barring that, at least guess which word triplet has a solution

at all. In trials where participants could not find the solution to the coherent word

triplet, they could still nonetheless identify, more often than not, which triplet

had a solution. Thus, some form of implicit knowledge was present in their brains,

a subtle suspicion that playing/credit/report somehow was more likely to be the

triplet that had a coherent solution — even when that coherent solution itself was

not forthcoming. In fact, using the same kind of remote-associates task, Bowden and

Jung-Beeman50 have recorded lexical decision times to reveal significant priming for

the undiscovered correct answers to remote-associate problems, such as “What one

word makes a compound with the words back, step, and screen?”

As a further example of hints that precede a phase transition in reasoning,

shortly before achieving the correct insight in a diagram-based version of Duncker’s

notoriously difficult tumor-and-lasers radiation problem, participants showed an

increase in eye movements to a particular portion of the diagram51 — and when

the display lured their eyes to that region, solution rates doubled. In fact, even when

a secondary task happened to force participants to move their eyes in that pattern,

solution rates increased.52

Even outside of the realm of “insight problem solving,” standard problem

solving can sometimes show sudden realizations of how to streamline a solution.

When participants are looking at displays of sequentially connected gears, and

trying to determine what direction the last one goes, they often start out men-

tally animating each gear, meticulously reversing the rotation each time, and often

assisting their mental animation with finger and eye movements.53 After several

such trials, participants suddenly realize that an even number of gears always

reverses the initial gear’s direction and an odd number of gears always main-

tains it. Importantly, shortly before they achieve this realization, while they are

still using their mental animation strategy, the data reveal detectable instability

in that strategy, as if it is beginning to dissemble to make way for the impend-

ing new strategy.54 During the five trials that precede this cognitive phase tran-

sition in strategies, the records of their hand and eye movements show a reliable

increase in entropy. Thus, even though they are still using this inefficient strategy

on those trials, the neural pattern that generates this strategy is clearly becoming

unstable.
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Clearly, the data in the problem solving literature are in fact replete with phase

transitions, even including some of the dynamical properties that go along with

them, such as preparatory instabilities.15,54 As the brain begins to shift from one

task strategy to another, the phasic neural patterns associated with the to-be-

discarded strategy begin to decohere, and different phasic patterns for the new

strategy begin to take form.55

7. Phase Transitions Between Incoherence and Coherence

In this section, we introduce new data suggesting a phase transition between coher-

ent comprehension and incoherent failure to comprehend. Let us start with an

idealized simulation of a phase transition that Erdös and Renyi introduced 50 years

ago.56 In their random graph theory, one starts with a set of nodes and then one

adds edges that connect those nodes (a little bit like a neural connection between

a pair of units). If you start with 100 nodes, then the maximum number of edges

possible (if you exclude edges that loop onto the node itself) is 9,900. However,

it takes far fewer than that number of edges to have all 100 nodes form a single

connected whole, such that every node is (at least) indirectly connected to every

other node. Such a “giant component” in the network can, in principle, arise with

as few as 99 edges. But if you added edges randomly from the start, how many

would it take for that giant component to emerge?

As it turns out, that function is the phase transition that Erdös and Renyi dis-

covered. The smooth curve in Fig. 11 shows the average of 10 runs of this simulation,

where the largest connected component of nodes resulting from randomly placing

edges / nodes
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Fig. 11. Erdös and Renyi’s phase transition showing the sudden emergence of a giant connected
component among nodes being connected by randomly placed edges.
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40 edges among those 100 nodes was a mere 15 nodes in size, but adding 20 more

edges expands that component to about 40 nodes, and adding another 20 edges

expands it to about 60 nodes. This elegant demonstration of structure arising quite

abruptly out of a random serial accumulation process is often used as a keystone

example of the concept of emergence.57,58

A strikingly similar emergence of meaning comprehension appears to take place

with sentences that have had their characters and spaces randomly scrambled. By

drawing an analogy between the accrual of randomly placed edges in a graph and

the accrual of correctly placed characters in a sentence, we can predict an abrupt

transition from scrambled gibberish to interpretable sentence (containing perhaps

a handful of only mildly distracting typos remaining). Take, for example, the fol-

lowing four different sentences, with 21, 15, 9, and 3 characters randomly relocated,

respectively.

(i) Noahr would iit e possble in many csaei aflor t hem io vebann eaaltt or y

efectivenes on hhst thir wouncftersparts broad aere pid.

(ii) He flew abut tghew lace tmaksigou thtese andjents and t was obvious hat hiat

hie was doin was the fr uitmof lpnocg experene.

(iii) H cuouoraeosly defendeed the rights of smal dnaions, ang he stood his grunda-

galinst tt hesavage attacks of the Communist bloc.

(iv) t weighs n the tons, so the proximity of factory and exhibitiotn area makeIs it

possible foir an outstanding exhibi each year.

Forty-seven undergraduates from the University of Memphis and Cornell Uni-

versity participated in the experiment for payment or extra course credit. Forty

sentences were randomly selected from the online Brown Corpus59 of written lan-

guage use, with the following constraints: all had between 120 and 140 characters

and spaces, and contained no more than one proper noun, no apostrophes, and no

numerical digits. These sentences were then run through a Matlab script that ran-

domly relocated between 3 and 21 (in increments of two) of its characters, creating

ten scrambled versions of each of the original sentences. Ten lists were created, such

that each participant saw all 40 sentences, but only one scrambled version of each.

Participants were told that they would be reading sentences full of varying degrees

of typos, and that their job was to try to figure out what each sentence was intended

to convey before the typos were introduced. For each sentence, they were asked to

answer two yes/no questions. First, they were asked whether they could tell what

the basic topic of the sentence was. Second, they were asked if they thought they

could correctly answer a comprehension question about the content of the sentence.

For the present report, we focus on the result from this second more stringent

question. The experiment took between 5 and 10 minutes.

Since each participant was only able to see one level of coherence for any given

sentence, and participants have varying degrees of self-confidence, there is unavoid-

ably a substantial amount of noise in the data. This resulted in a few instances

of non-monotonic functions, such that slightly less coherent versions of a sentence
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showed slightly higher comprehension rates. It is expected that further data collec-

tion with additional participants will smooth out those non-monotonicities.

When all the data are averaged, the result is a linear function of steady increase

in coherence as more and more of the letters are left intact — looking quite similar

to that in Fig. 7. However, much like the lesson embedded in the discussion of that

figure, the proper analysis of these data requires examining individual stimulus

items. The reason the overall averaged data produce a linear function of increasing

coherence is because some sentences begin their abrupt rise in coherence with many

characters out of place (Fig. 12, upper middle panel) and others do not begin their

abrupt rise in coherence until rather few characters are out of place (Fig. 12, bottom

right panel).

When stimuli are analyzed individually, the data reveal clear phase transi-

tions for the vast majority of sentences. Figure 12 shows several examples of these

individual-stimulus results, where each one exhibits a rather abrupt phase transition

much like that seen in Erdös and Renyi’s random graph analysis (Fig. 11). Thus,

for any given sentence, as more characters and spaces are correctly positioned, in

increments of 2, there tends to be a point at which meaning suddenly begins to be

Fig. 12. Results from nine representative stimuli where the sentence is more and more coherent left
to right, from 21 characters randomly relocated to 3 characters randomly relocated, in steps of 2.
Along the y-axis is shown the proportion of participants who reported successful comprehension.
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extractable, and coherent comprehension rises very quickly with just a few addi-

tional characters and spaces put in their proper locations. By noting the rapidity

of this shift, we can see how sentence meaning exhibits the complex dynamical

property of emergence. At the same time, by looking closely at the phase transition

itself, we can see the gradations in this emergence, where the arrival of meaning

clearly has an analog (non-binary) underlying nature.

8. Conclusion

For decades, human cognitive phenomena that exhibit sharp sudden transitions

(nearly step-functions) from one state to another have captured the attention of

cognitive scientists and lured many to proclaim that human mental functioning is

purely instantiated in discrete and logic-based operations.60–63 Indeed, some con-

tinue today with new versions of such proclamations: “Computational nativism is

clearly the best theory of the cognitive mind that anyone has thought of so far”

(Ref. 64, p. 3). Unfortunately for these proclaimers, it is quite easy to examine neu-

ral systems and conclude that no such capability for genuinely discrete logic exists.

One is still left with the question of how neural systems are in fact responsible for the

nearly-discrete properties of behavior that exhibit phase transitions. By examining

the non-linear dynamics of these systems, a number of cognitive scientists26,65–68

with Walter Freeman leading the tip of the spear, have begun to provide insight

into how populations of neurons (acting as dynamic resonators) can give rise to

cognitive processes that provide very close approximations to discrete categorical

shifts in processing modes.

From a broader perspective, this phase transition behavior may permit a “rap-

prochement” between these two schools of thought.69 The epistemological value

of discrete computational descriptions in many ways continues in high-level cogni-

tive domains, though our understanding of the low-level dynamics of neural sys-

tems is gradually scaling up. When such accounts meet in the middle, dynamical

descriptions may show how discrete-like modes emerge, while discrete computational

descriptions may finally be provided a solid anchor in neural dynamic processes —

yet retaining their own unique epistemological value at certain temporal and spatial

scales.70−73 In this sense, the phase transition may be a fundamental aspect of an

integrative approach to this puzzle of cognitive science. The extent to which such

accounts could “co-exist” in explanations of cognitive phenomena of vast spatial

and temporal scales is still under debate in the field.6,74

The foregoing simulations and empirical review demonstrate the range of appli-

cation of this fundamental concept. Nevertheless, it is not the first time anyone

has noted the commonality between findings like these. In fact, in the 1950s, the

famous Gestalt psychologist Wertheimer was already drawing connections between

sudden insight during problem solving and the sudden shifts in perspective dur-

ing viewing of bistable figures.75 Only recently has cognitive science, by looking to

dynamical formalisms in other disciplines, been able to characterize and quantify
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the underlying mechanisms of the phase transition and other surprisingly general

dynamical phenomena that cognition exhibits. Such developments have also accom-

panied the growth of computer-based methods for applying dynamical systems to

analyzing data76 as well as laboratory equipment that allows a more continuous-time

data stream such as recording EEG or eye movements or reaching movements.26

There has also been a recent move in cognitive science to integrate neural networks

and dynamical systems as closely related frameworks for uncovering mechanisms

driving cognition.77

The new century therefore holds much promise to expand and integrate dynam-

ical systems with our understanding of the mind and brain. We anticipate that

Walter Freeman’s pioneering approach to the mind8,9 by way of dynamics of the

brain, having already changed the field, still has much to say in this respect. This

explicit focus on neural dynamics as a means to understanding complex human

cognition is therefore a “frontier” issue. We hope this review encourages those with

interest in this domain to contribute to the exploration of these new territories.
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