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Abstract

The anatomical structure of the human brain varies widely, as does individual cognitive behavior. It is important and interesting to
study the relationship between brain structure and cognitive behavior. There has however been little previous work on the
relationship between inhibitory control and brain structure. The goal of this study was to elucidate possible cortical markers
related to inhibitory control using structural magnetic resonance imaging (sSMRI) data. In this study, we analyzed sMRI data and
inhibitory control behavior measurement values from 361 healthy adults from the Human Connectome Project (HCP). The data
of all participants were divided into two datasets. In the first dataset, we first constructed individual brain morphometric similarity
networks by calculating the inter-regional statistical similarity relationship of nine cortical characteristic measures (such as
volume) for each brain area obtained from sMRI data. Areas that covary in their morphology are termed ‘connected’. After that,
we used a brain connectome-based predictive model (CPM) to search for ‘connected’ brain areas that were significantly related to
inhibitory control. This is a purely data-driven method with built-in cross-validation. Two different ‘connected’ patterns were
observed for high and low inhibitory control networks. The high inhibitory control network comprised 25 ‘connections’ (edges
between nodes), mostly involving nodes in the prefrontal and especially orbitofrontal cortex and inferior frontal gyrus. In the low
inhibitory control network, nodes were scattered between parietal, occipital and limbic areas. Furthermore, these ‘connections’
were verified as reliable and generalizable in a cross-validation dataset. Two regions of interest, the right ventromedial prefrontal
cortex including a part of medial area 10 (R.OFCmed) and left middle temporal gyrus (L.MTG) were crucial nodes in the two
networks, respectively, which suggests that these two regions may be fundamentally involved in inhibitory control. Our findings
potentially help to understand the relationship between areas with a correlated cortical structure and inhibitory control, and further
help to reveal the brain systems related to inhibition and its disorders.
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Abbreviations Introduction

CPM connectome-based predictive model

LMTG left middle temporal gyrus Inhibitory control (or response inhibition) is an executive

MAPE mean absolute percentage error function that permits an individual to inhibit their impulses

R.OFCmed right medial orbitofrontal and natural, habitual, or dominant behavioral responses to

sMRI structural magnetic resonance imaging stimuli in order to select a more appropriate behavior that is
consistent with completing their goals, including goals from
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(Morasch and Bell 2011; Watson and Bell 2013; Pires et al.
2014; Maij et al. 2017.

One of the goals of modern neuroscience is to study the
relationship between brain structure and function and the be-
havior of the individual. Technological advances in the field of
brain research have accelerated the study of the relationship
between the human brain and behavior. For example, SMRI
can provide useful information about the anatomical structure
of the brain and its differences in different individuals (Giedd
2004). Structural brain imaging can be used to search for
reliable and stable structural biomarkers, and also to explore
the changes of brain structure that may be produced by cog-
nitive training such as learning (Durston et al. 2001; Sowell
et al. 2007). There have been many studies using structural
imaging data to explore the relationship between brain struc-
ture and cognitive function. For example, a structural imaging
data study showed significant differences in gray matter vol-
umes in some areas of the brain in developing children with
different cognitive functions (Yokota et al. 2015). Another
study showed that changes in gray matter volume in individ-
ual brain regions are related to their social cognitive abilities
(Hoekzema et al. 2016). Geisler et al. showed a significant
correlation between several types of cognitive decline in pa-
tients with schizophrenia and specific patterns of structural
changes in certain brain regions (Geisler et al. 2015). In addi-
tion, many studies provide evidence that many brain regions
in people with cognitive impairment, such as Alzheimer’s
disease, have varying degrees of atrophy compared to normal
controls (Lim et al. 2012; Shimoda et al. 2015; Qi et al. 2017).

There has however been little previous work on structural
correlates of inhibitory control, which is the aim of the present
study. Measures of cerebral structure include regional volume,
surface area, and curvature. Changes in these measures are
usually related to each other, especially for surface area, the
volume of gray matter, and mean cortical thickness (Rimol
etal. 2012; Abé et al. 2016). Beyond this, Seidlitz et al. pro-
posed a novel method for realizing the construction of an
individual-based morphometric similarity matrix through a
combination of morphometric features. Inter-regional ‘con-
nections’ (in fact, similarity of structure) are estimated using
newly introduced feature vectors, namely, the Pearson corre-
lation coefficient of the concatenation of morphometric fea-
tures, instead of one or two anatomical features (Seidlitz et al.
2018). Brain regions in which the feature vectors correlate
when measured across a large set of individuals are said to
have ‘high connectivity’, though in fact this represents covari-
ation of structure (Li et al. 2017). There is emerging evidence
that the combined analysis of multiple indexes is more effec-
tive than that of a single index (Glasser and Van Essen 2011;
Sabuncu et al. 2016; Vandekar et al. 2016; Whitaker et al.
2017; Seidlitz et al. 2018). Further, this method of construct-
ing individual-based morphometric similarity networks has
successfully improved the accuracy of discriminant analysis
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(Yu et al. 2018). Based on the above evidence, we predicted
that the relationship between human inhibitory control and
brain structure could be well studied by the new network
construction method.

In this paper, we aimed to study whether individual inhib-
itory control is related to individual brain structure patterns.
Inhibitory control ability was measured using scores on the
flanker inhibitory control and attention test, as used in the
HCP. The neuroanatomical features were measured by
individual-based morphometric similarity networks construct-
ed from nine cortical characteristic indexes between the brain
regions as described by Li et al. (2017). We used a brain CPM
to search for brain ‘connections’ significantly related to indi-
vidual inhibitory control ability, which is a purely data-driven
linear predictive model. It is important to note that this method
uses cross-validation, which makes the inference of results
more conservative and rigorous, thereby rendering our results
more reliable. The results show that individual inhibitory con-
trol ability can be predicted by the morphometric similarity of
brain regions in the prefrontal cortex, especially the
orbitofrontal cortex and the inferior frontal gyrus. People with
high inhibitory control were marked by a higher similarity
measure for prefrontal cortical regions, especially the right
medial orbitofrontal cortex (as defined in the Desikan-
Killiany atlas (Desikan et al. 2006). These findings potentially
help to understand the neuroanatomical basis of human inhib-
itory control, and further help to reveal the relationship be-
tween individual brain structure and inhibitory control ability.

Materials and methods
Participants and data acquisition

Data from the HCP were collected from 361 adult paticipants
(177 males and 184 females), released by the WU-Minn HCP
consortium. Here, we divided all of the subjects’ data into two
datasets. The first dataset consisting of 214 subjects (112
males and 102 females, age mean + std.: 28.7 +3.8) was used
to perform the main prediction analysis, while the second
dataset consisting of 147 subjects (65 males and 82 females,
age mean + std.: 29.2 +3.6)) was used for validation analysis.
All subjects were healthy and had no history of mental or
neurological diseases. The inclusion information is given in
Van Essen et al. (2013). All HCP subjects were scanned on a
customized Siemens 3 T housed at Washington University,
using a magnetization-prepared rapid gradient echo
(MPRAGE) sequence to acquire high-resolution sMRI, with
repetition time =2400 ms, echo time =2.14 ms, inversion
time = 1000 ms, flip angle = 8°, resolution matrix =224 x
224, voxel size=0.7 x 0.7 x 0.7 mm?>. The HCP Consortium
obtained informed consent from all participants, and research
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procedures and ethical guidelines were followed in accor-
dance with the Institutional Review Boards.

We used inhibitory control behavior scores, which measure
participants’ attention and inhibitory control (Smid et al. 1996;
Weintraub et al. 2013; Gershon et al. 2013). The flanker in-
hibitory control and attention test was designed and carried
out by staff in the HCP and the test scores came from the
HCP’s release behavior data (https://db.humanconnectome.
org/). Details on these scores and their interpretation are
available in the NIH Toolbox Scoring and Interpretation
Guide (Weintraub et al. 2013; Lerman-Sinkoff et al. 2017).
In brief, the flanker test was as follows. All of the instructions
were displayed on a computer screen. The participants were
told that there were five arrows and two buttons on the screen.
These five arrows were in a row and pointed in the same or
different directions. The participants were required to select
the button with the same direction as the middle arrow (that is,
the third arrow). Four practice trials were conducted during
the preparatory phase. During the test phase, each participant
took approximately 3 min to accomplish 20 trials. The total
test score was equal to the sum of accuracy score and reaction
time score (http://www.healthmeasures.net/explore-
measurement- systems/nih-toolbox), where the accuracy
score was equal to the number of correct responses divided
by eight, and the reaction time score was computed with the
following formula (Weintraub et al. 2013),

logt—1og500 ) )

reaction time score = 5— (5 *(m

where t represents the reaction time for any experiment, min-
imum reaction time was 500 ms and maximum reaction time
was 3,000 ms. This measure has become established in a
number of other investigations (Zelazo et al. 2013; Zelazo
et al. 2014; Heaton et al. 2014; Lerman-Sinkoff et al. 2017;
Wong et al. 2019). The inhibitory control ability score ranged
from 71 to 121, and the median value was 99.04. Detailed
information on the measured values of the participants is pro-
vided in Fig. S1.

Data pre-processing

All subjects’ sMRI data were pre-processed using FreeSurfer
5.3.0 (http://surfer. nmr.mgh.harvard.edu/), which is a
magnetic resonance data processing software developed by
MIT Health Sciences &Technology and Massachusetts
General Hospital in the United States (Fischl 2012). It pro-
vides a full processing stream for structural MRI data. First,
skull stripping, B1 bias field correction, and gray-white matter
segmentation were performed; then, cortical gray-white
boundary surface and pial surface models were constructed.
Next, regions on the cortical surface and subcortical brain
structures were labeled. Finally, nonlinear registration of the

cortical surface of an individual was performed with a stereo-
taxic atlas and the regional measurements (described in Dale
et al. 1999).

A total of nine brain morphological indexes were extracted,
and each index depicted different cortical characteristics (Li
et al. 2017). These were the number of vertices, the surface
area, the volume of gray matter, the average and standard
deviation of cortical thickness, the mean curvature, the
Gaussian curvature, the curvature index, and the folding in-
dex. The number of vertices and the surface area were mea-
sured using the surface model. In the surface model, the cor-
tical surface was divided into a small adjacent triangle; the
number of vertices and the surface area were calculated by
calculating the number of vertices and the area of triangles,
respectively (Panizzon et al. 2009). The volume of gray matter
was measured using the volume model. In the volume model,
the cortex is divided into a cube, each representing an individ-
ual element, and the volume of gray matter is calculated by
calculating the number of voxels within the region. The mean
cortical thickness was the average of the distance between the
cortical inner surface and the white matter surface at all verti-
ces. The folding index was calculated by calculating the ratio
of the sulcus-occluded cortex to the apparent cortex (Schaer
et al. 2008; Schaer et al. 2012). The measurement of curvature
represented the degree of curvature at a point in different di-
rections (Pienaar et al. 2008; Li et al. 2014).

Brain morphometric similarity network construction

In this study, we used the Desikan-Killiany atlas (Desikan
et al. 2006), which is based on the gyri and sulci and divides
the brain into 68 brain regions (34 brain regions per hemi-
sphere). For each subject’s brain imaging, we first obtained
data from 68 brain regions applying the above template. After
data pre-processing, we next obtained nine morphological in-
dexes for each brain region. To construct the brain network,
we also defined the brain region as the nodes and the Pearson
correlation coefficient between these morphological indexes
of two brain regions as edges. Specifically, let V;=[A;;, A,
...,Ap] be a brain region with nine cortical indexes A;{, Ap,
< Api=1,2, ..., 68. What is worth mentioning is that each
index was standardized to eliminate dimensions. Then, the
bivariate correlation coefficientsp(V;, V;)were calculated be-
tween each pair of brain regions,

cov(V;, V;
p<Vi7 Vj) = ( ‘]) )
Var(V:)y/Var(V))

where cov(V;, V;) denote the covariance between the indexes
of brain region V; and V;j=1, 2, ..., 68; it reflects the vari-
ability among the indexes; Var (V;) denote the variance of the
indexes of brain region V;. Finally, an individual brain
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morphometric similarity network consisting of 68 brain re-
gions (nodes) and 2278 edges (‘connections’) was obtained.
We repeated the above steps and finally obtained each sub-
ject’s individual brain morphometric similarity network.

Predicting inhibitory control ability by the brain
connectome

In this study, we used the brain CPM, which is a data-driven
approach to establish a brain-behavioral relationship prediction
model from brain connection data using cross-validation (Shen
et al. 2017). In the first dataset, the goal was to establish a linear
relationship between brain connectivity data and behavioral
measurements, which included five steps: 1) Data set partition:
we used the leave-one-out cross-validation method. (To illus-
trate the stability of the method, we also used 10-fold cross-
validation. Detailed descriptions are included in the supplemen-
tal material). For each iteration, one participant was cyclically
retained as the test set, and the others were used as the training
set. 2) Feature selection, which involved searching for all 2278
connections and selecting those connections associated with the
behavioral measurements. To be specific, we first calculated the
correlation coefficient between each connection and the behav-
ioral score across the subjects in the training set. We selected
those connections whose p value was smaller than a given
threshold. There has been no uniform standard for the selection
of this threshold (Rosenberg et al. 2018; Shen et al. 2017; Beaty
et al. 2018), so we decided to select a threshold range 0.01 to
0.05 with a step of 0.01, which was used to identify those con-
nections significantly associated with the behavioral score. 3)
Feature summation, which involved generalizing the magnitude
of'those connections significantly associated with the behavioral
score and ensuring that the next step was modeled. For each
morphometric similarity network in the training set, we summed
the magnitude of those connections with significantly positive
correlation and negative correlation, respectively. We usedxpos-
Aandxneg to represent the summation of the significantly positive
and negative correlation connection set of the i’th morphometric
similarity network. 4) Model building, which assumed that there
was a linear relationship between the generalized value of the
brain connection (independent variable, that is, xpos; and xneg;)
and the behavioral variable (dependent variable, we denoted it
as y; that is the 1’th subject’s behavioral score in the training set).
The linear regression model was as follows, which included the
age and gender of each subject as covariates.

Y = By + Bi *Xpos + B, *Xneg + B3 *age 4 Bs*gender + ¢, (a)

where Y=[y1, s, ..., val"s Xpos = [xposy, xpos, ..., xpos,]’,
xposepresented the sum of the magnitude of the positively
correlated connections of the i’th subject; Xneg = [xneg, xneg,,-

s xnegn]T, xneg; represented the sum of the magnitude of the
negatively correlated connections of the i’th subject; n was the
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number of the subject in the training set. B;, i =0, ..., 4 were the
regression coefficients to be estimated. ewas the noise term. The
regression coefficients of this multiple linear regression were
estimated by a least squares method. We obtained the evaluation

values ZA?I., i=0, ..., 4 5) Model assessment, which involved
comparing the prediction values with the observed values. In
the previous step, we obtained the linear prediction model,

Y= Bo+ B *Xpos + B *Xneg + B *age + Bs *gender  (b)

‘We then applied this model to the test set. Firstly, we found
those significantly positive and negative correlation connec-
tions in the morphometric similarity network of subjects in the
test set and summed them, respectively. Then, we substituted
them into the above regression equation to get the predicted

behavioral scores Y. To assess the prediction results, we cal-
culated the correlation coefficient between the predicted be-

havioral scores and the observed behavioral scores p(Y, )A’),

and performed a hypothesis test of the correlation coefficient.
Concurrently, the mean absolute percentage error (MAPE) of
the prediction model was calculated (Tofallis 2015), which
was equal to the average of the absolute value of the residuals
of real observation values and the predicted values of the
model, and the formula is as follows,

n |y, il

=1 yl

MAPE =

SRS

where n was the number of the model (that is, the number of all
subjects because of the leave-one-out cross-validation); y; was
the observed behavioral score; and »; was the predicted behav-
ioral score. Using each of the feature selection thresholds, we
obtained a regression model and its predictive evaluation indi-

cators, which were the correlation coefficient p(Y , IA/) and

MAPE of the model. Corresponding to five thresholds, we
obtained a total of five prediction models. The optimal model
was selected according to the predictive evaluation indicators.
A flowchart of the process of constructing the prediction model
from the raw data is shown in Fig. S2.

Considering that there were two kinds of relationship
between brain connections and inhibitory control ability,
positive correlations and negative correlations, we also
performed the above model construction and evaluation
process by taking the summation of the positive or neg-
ative correlation connection set as an independent vari-
able, respectively, under the optional feature selection
threshold.

In addition, due to cross validation, it was possible to
select a slightly different connection set in each iteration
under the optimal feature selection threshold, but the
connections most related to the behavior measurement
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value should appear in different iterations, so we iden-
tified these connections selected in all iterations which
formed a shared connection set. Similarly, the summa-
rized values of the shared positive connections and
shared negative connections were calculated and then
used as independent variables to fit the linear prediction
model,

Y = By + B1*SXpos + B, *SXneg + Bs*age + Bs*gender + ¢, (c)

where Y=[y, s, "',y,,]T, SXpos = [sxposy, sxpos,, " ",
sxpos,]’, sxposxepresented the sum of the magnitude
of the shared positive connections of the i’th
subject;SXneg = [sxneg,, sxneg,, -, sxneg,|’, sxneg;.
represented the sum of the magnitude of the shared
negative connections of the i’th subject; nwas the num-
ber of the subject. B, i=0, --, 4were the regression
coefficients to be estimated. ewas the noise term.
Subsequently, we used leave-one-out cross-validation to
estimate the model parameters on the training set and
predict the inhibitory control ability score on the test
set. Finally, the prediction results were evaluated.

Validation analysis on an independent dataset

We used the second independent dataset to verify the
reliability of the above model performed on the first
dataset. Specifically, taking the first dataset as the train-
ing set, we fitted a brain connection prediction model
using shared connections identified in the previous sec-
tion, with age and gender as covariates. After that, with
the second data set as the testing set, we used the pre-
diction model to predict the inhibitory control ability
scores of all 147 subjects. We calculated the correlation
coefficient between the predicted behavioral scores and
the observed behavioral scores to assess the prediction
results.

Permutation test

After calculating the correlation coefficient between the ob-
served behavior score and the predicted behavior score obtained
by the model, a non-parametric permutation test was performed
to test whether the relationship was significantly better than
random. Specifically, we first randomly redistributed the behav-
ior scores across all subjects, which broke the real brain
connection-behavior relationship. We then used CPM to estab-
lish a linear relationship between brain connectivity data and
random behavioral measurements. The process was repeated
1000 times and then we obtained the empirical distribution of
the correlation coefficients, which was used to test the signifi-
cance of the correlation coefficients with the real data.

Results

Prediction of inhibitory control ability with positive
and negative connection sets

Based on the purely data-driven method, we first calculated
the correlation coefficient of each of the 2278 edges with the
inhibitory control ability scores. Given the threshold, we next
selected edges whose p values were smaller than the threshold
value and then used the selected edges to construct the predic-
tion model. Because there is no unified standard for the selec-
tion of the threshold value in the previous literature, we se-
lected a threshold range from 0.01 to 0.05. The results showed
that when the threshold value was 0.01, the correlation coef-
ficient between the observed and predicted inhibitory control
ability scores obtained by using prediction model B was 0.32
(p=1.31x10"%, Fig. 1). After a non-parametric permutation
test, it was observed that the real brain connection-inhibitory
control ability relationship was significantly better than that of
the random ones (permutation test, n =1000,p < 0.001). The
MAPE of the prediction model was 8.5%, indicating that the
accuracy of the model was 91.5%. When the threshold value
was equal to 0.02, the correlation coefficient between the ob-
served and predicted inhibitory control ability scores was 0.25
(p=2.9x10"%, and the accuracy of the model was 91.1%.
For the other threshold values, the prediction result of model B
was slightly worse than the results when using 0.01 as the
threshold. The detailed results are included in Fig. S3. Our
results show that the optimal threshold was equal to 0.01, that
is, the connections selected by the optimal threshold were
those most related to inhibitory control ability. Fig. S4 showed
the prediction results of the models obtained by using the
positive or negative connection set under the optimal
threshold.

optimal threshold p=0.01

R=0.3237 .
P=1.3129x10° .. . .
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Fig. 1 The result of predicting inhibitory control ability score with the
positive and negative connection set under the optimal threshold. All
subjects’ observed and predicted inhibitory control ability scores are
plotted in this figure. The correlation coefficient between the observed
scores and the predicted scores was 0.32, which was significantly better
than chance (permutation test, n =1000,p < 0.001)
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Results of the shared connections set

Under the optimal feature selection threshold, we defined those
edges that were selected using model A in all iterations of cross
validation as shared connections. The results revealed that a
total of 48 edges were defined as shared connections; 25 shared
connections were positively correlated and 23 shared connec-
tions were negatively correlated with inhibitory control ability
scores. They comprise what we term the high and low inhibi-
tory control networks, respectively, which are shown in Fig. 2
https://bioimagesuiteweb.github.io/webapp/connviewer.htm.
The network module in Fig. 2 was defined by the Power atlas
(Power et al. 2011), and by the Desikan-Killiany atlas (Desikan
et al. 2006). In Table S2, we list all 68 brain regions and the
networks to which each brain region belongs. In the high

Fig. 2 Visualization of shared
connections. The positive shared
connections are shown in red (a,
¢) (the negative shared
connections in blue (b, d)). At the
same time, these shared
connections are shown in a 3D
view (¢, d). The two histograms
show the degree of the brain
regions in the high and low
inhibitory control networks (e, f).
See Table S4 for abbreviations

R.OFCmed
LMTG
L.Trans
R.PCC
R.PHG
L.IPG
L.PFG
L.SPG
L.CUN
R.ICC
R.STS
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inhibitory control network, it was clear that R.OFCmed had
the highest degree. Eight of the 25 connections were connected
to R.OFCmed, which was mostly connected to the nodes in the
prefrontal cortex. In the low inhibitory control network, we
observed that L.MTG had the highest degree and R.OFCmed
had the second highest degree. The nodes connected to R.
OFCmed were scattered between parietal, occipital, and limbic
modules. LMTG was mostly connected to the nodes in the
limbic module. The connection patterns were completely dif-
ferent between high and low inhibitory control networks. For
clarity, we have drawn R.OFCmed and L.MTG on inflated
surfaces (Fig. 3). It is important to make it clear that OFCmed
in the Desikan-Killiany atlas (Desikan et al. 2006) includes the
gyrus rectus (area 14), the anterior cingulate cortex area 32
below the level of the genu of the corpus callosum but not

IPGI
Ttrans/|
TPO
STG

v

Degree
w »

R.SPG
R.OFClat
R.OFCmed
R.PHG
L.Trans
R.CUN
R.ITG
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Fig. 3 Visualization of the medial orbitofrontal cortex (OFCmed, green,
which can be described as the ventromedial prefrontal cortex) and middle
temporal gyrus (MTG, purple) on an inflated cortical surface

24, and cortex anterior to this including 10r, 10 m and part of
10p according to the definition of Ongiir et al. (2003). These
areas are sometimes described as the ventromedial prefrontal
cortex. OFCmed in this atlas does not include any of the medial
orbitofrontal cortex areas 11 and 13 (Rolls 2019). Detailed
information on shared connections is listed in Table S1.

Prediction of inhibitory control ability with shared
connections

Using model C (of section 2.4) to explore the relationship
between brain shared connections and inhibitory control abil-
ity, we found that the correlation coefficient between the ob-
served and predicted scores was 0.54 (p < 10°°, Fig. 4). The
results of the non-parametric permutation test showed that this
relationship was significantly superior to random (permuta-
tion test, 7= 1000, p <0.001). In addition, the MAPE of the
prediction model was 7.3%. Compared with the prediction
results of model A, we found that using shared connections
as the predictor could improve the prediction accuracy.

shared-connectivity-model
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Fig. 4 The result of predicting inhibitory control ability scores with
shared connections. Shared connections are those connections selected
in all iterations in cross-validation under the optional feature selection. All
subjects’ observed and predicted inhibitory control ability scores were
plotted. The correlation coefficient between the observed scores and the
predicted scores was 0.54, which was significantly better than random
(permutation test, n = 1000, p <0.001)

Results of cross-validation analysis

We explored the generalization of the prediction model by
predictions on the second (testing) dataset from the first
(training) dataset. The correlation coefficient between the ob-
served and predicted scores was 0.46 (p=6.36 x 107°). The
results of the non-parametric permutation test showed that this
relationship was significantly superior to random (permuta-
tion test, n= 1000, p <0.001).

Discussion

In this study, we have shown that morphometric similarity of
brain regions is a good predictor of individual inhibitory control
ability. This new network construction method provided us
with a new perspective to study the relationship between brain
and individual cognitive behavior. Using a recently developed
and data-driven prediction method, we found that the score of
individual inhibitory control ability increased as the increasing
similarity of prefrontal cortex. As theoretically predicted, indi-
vidual differences in inhibitory control ability are related to
individual differences in the morphometric similarity network.

Brain morphometric similarity network

In this work, nine indexes for characterizing cortical proper-
ties were extracted from the standard structural T1-weighted
MRI data. Then, for each individual, the covariance between
brain regional morphometric features was calculated for each
possible pair of brain regions. After that we obtained the indi-
vidual morphometric similarity network. Most of the morpho-
metric similarity networks constructed in previous studies
were based on single index and group level. However, differ-
ent indexes depict different characteristics of the cortex. It is
necessary to consider the cortical features in an all-round way.
Li et al. (2017) proposed that the morphometric similarity
network can be constructed by the above nine indexes and
verified the feasibility of the method and the stability of the
network. In this paper, we compared the predictive power of a
single morphometric feature to the combination of 9 features.
By using a single measure (such as the volume of each region)
instead of the above morphological combination of features as
the independent variable in the regression model, we found
that the predictive power of a single morphometric feature was
not quite as good as the combination (Table S4). The number
of vertices, the surface area and the volume of gray matter
have similar predictive power (= 0.26~0.27), which is a little
less than the predictive power of the combination of nine
features (r=0.32). The optimal prediction results for each
measure are shown in Table S4. The results of this study
showed that the combination of multiple indexes may be used
as a new way to construct the individual morphometric
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similarity network. It also implies that the basic organizational
principle of the anatomical networks of the human brain is
consistent with previous research on functional networks
(He et al. 2007; Seidlitz et al. 2018).

High and low inhibitory control networks

On the basis of the method of brain CPM, we used connec-
tions that were selected for all iterations in cross validation
under the optional feature selection threshold to build a pre-
diction model. The results showed that the prediction model
based on shared connections was better than the model based
on positive and negative connections. Similar to the indepen-
dent variable selection, we believe that shared connections are
the best independent variables; i.e., the inhibitory control abil-
ity of the subjects could be best explained by high and low
inhibitory control networks. We emphasize here that ‘connec-
tions’ refers here to correlations between the structure of dif-
ferent brain regions assessed across a group of participants.

We interpret some of the findings as follows. The measure
used here of the similarity of a pair of cortical regions is
whether the nine morphometric features are correlated with
each other when measured across a large group of individuals.
A high correlation of morphometric features might reflect a
shared contribution of heredity in organising a group of brain
areas that develop together in evolution perhaps as parts of a
processing system, or might reflect common experience-
related plasticity of a set of brain areas. In most cases in this
investigation, a positive correlation with inhibitory control
measured in the flanker task reflected a high positive correla-
tion between the covariation of morphometric features of two
brain areas, and inhibitory control ability, and vice versa. An
implication from the network with positive correlations with
inhibitory control ability (Fig. 2) is that when parts of the
orbitofrontal cortex and the cortex in the bank of the superior
temporal sulcus (STS) covary, and the middle temporal and
middle frontal gyri, and some parietal areas and the posterior
cingulate (PCC), covary in their morphology, then there is
high inhibitory control ability. An implication from the net-
work with negative correlations with inhibitory control ability
(Fig. 2) is that when parts of the orbitofrontal cortex have a
negative covariation with the postcentral gurus (PoCG) and
visual areas in their morphology, then there is high inhibitory
control ability. That would imply that separation as a result of
the effects of evolution or experience between these areas
would facilitate inhibitory control.

Previous studies have emphasized the importance of the
prefrontal region in inhibitory control, especially the inferi-
or frontal gyrus and lateral orbitofrontal cortex
(Metzuyanim-Gorlick and Mashal 2016; Rolls 2017; Deng
et al. 2017; Rolls 2018). In our study, most of the brain
areas involved in high inhibitory control network are locat-
ed in prefrontal regions. In particular, we found that 13 of
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the 25 connections in this network involved prefrontal
nodes. On the other hand, we found that the brain regions
involved in the low inhibitory control network are scattered
between parietal, occipital, and limbic modules. The con-
nection pattern of the low inhibitory control network is
quite different from the high inhibitory control network.
We can view these results as low inhibitory control ability
may be marked by increased connections (covariation in
morphology) between brain regions that do not support
inhibitory control. According to previous studies based on
functional imaging data, the prefrontal cortex is responsible
for advanced cognitive function including working memory
and attention (Luo 2001; Rolls 2016), and if a region with-
in this module is damaged or cut off from other regions,
cognition will be affected (Fuster 2001). In a task-fMRI
study, regions within the prefrontal cortex showed increased
activation during inhibitory control tasks such as playing a
violent game (Hummer et al. 2010). A meta-analysis of the
various modules of functional connectivity networks found
that the frontoparietal module focused on cognitive execu-
tive function (Crossley et al. 2013). The results provided
evidence that high inhibitory control ability may be accom-
panied by highly developed prefrontal regions. In addition,
prior functional connectivity MRI (fcMRI) studies have
suggested that functional connectivity between the dorsolat-
eral prefrontal cortex, inferior parietal lobule and dorsal
anterior cingulate may have utility as a biomarker for indi-
vidual differences in inhibitory control performance
(Niendam et al. 2012; Stange et al. 2017). There is also
growing evidence to support the hypothesis that changed
functional connectivity within inhibitory control networks is
associated with impaired inhibitory control in cannabis-
dependent users (Filbey and Yezhuvath 2013) and major
depressive disorder (Stange et al. 2017). The above
fcMRI studies investigated the inhibitory control network,
which mainly revealed functional connectivity between
brain regions in the prefrontal cortex and other regions.
These results are consistent with the morphometric findings
in our paper. Thus, better understanding of neural connec-
tions and neural networks in the brain will help to under-
stand the mechanisms underlying diseases caused by their
changes (Rolls 2016).

The role of R.OFCmed and L.MTG in inhibitory control

The findings in this work highlight that inhibitory control can
reliably be related to certain brain regions. We found that 22 of
all 48 shared connections were related to R.OFCmed and
L.MTG. The region of interest, R.OFCmed, had the highest
degree of connectivity in shared connections, suggesting that
it may be the target area that we were looking for that was
closely related to inhibitory control. Previous evidence sug-
gests that the lateral frontal cortex is responsible for high-level
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cognitive activity, which was more connected to other regions
of the brain and determined the transmission of information
and execution of cognitive functions (Neubert et al. 2014). A
number of studies have found that damage to R.OFCmed
leads to an inability to inhibitory control (Szatkowska et al.
2007; Walton et al. 2010; Izquierdo and Jentsch 2012). An
experimental study showed that the removal of gyrus rectus
in the R.OFCmed cortex resulted in poor performance in tests
that measured the inhibitory response and switching of
stimulus and attention (Szatkowska et al. 2007). Another
task-based study found that OFCmed cortex was necessary
for evaluating and favouring future rewards to make a
choice (Sellitto et al. 2010). Consistent with this, impaired
OFCmed cortex rendered patients more likely to be dis-
tracted by unrelated choices (Noonan et al. 2017). This
ventromedial prefrontal cortex region is also implicated
in decision-making between different rewards (Rolls
2017, 2019). Therefore, we conclude that R.OFCmed cor-
tex and its morphological connections to other brain re-
gions provide an anatomical basis of inhibitory control
ability. Another region of interest is L.MTG. It is worth
noting that there was no overlap between the regions con-
nected to L.MTG and the regions connected to R.OFCmed
(Table S1). This suggests that they deal with different as-
pects of inhibitory control. The results of this paper em-
phasize the importance of these two brain regions to inhib-
itory control, which are shown from two perspectives in
Fig. 3. The results of this study provide evidence for the
role of L.MTG in inhibitory control. Dong et al. (2012)
found that internet addiction disorder demonstrated signif-
icantly greater ‘Stroop’ effect-related activity in the anteri-
or and posterior cingulate cortices, as well as LMTG com-
pared with their healthy peers, which may suggest dimin-
ished efficiency of response-inhibition processes in the in-
ternet addiction disorder group. Another study suggested
that activation reductions were seen in bilateral MTG of
patients with transitioning to heavy use of alcohol at base-
line during response inhibition (Norman et al. 2011). A
functional MRI study suggested that activation reductions
were seen in bilateral MTG of patients transitioning to
heavy use of alcohol at baseline during the task of inhibi-
tory control (Norman et al. 2011). Moreover, Hampshire
and Sharp (2015) reviewed that response inhibition is a
broader class of control processes that are supported by
the same set of frontoparietal networks and these domain-
general networks exert control by modulating local lateral
inhibition processes, which occur ubiquitously throughout
the cortex. It suggested that inhibitory control requires
functional integration or separation of different brain re-
gions rather than a single region and we postulate that the
two regions (i.e., R.OFCmed and L.MTG) found in our
paper might be key regions involved in the process of in-
hibitory control and this deserves further investigation.

Conclusions

Two important results were obtained in this study. The first
was that all connections of the high inhibitory control network
involved prefrontal cortex regions, which suggests that the
prefrontal cortex may be related to inhibitory control ability.
Secondly, we were interested in shared connections. We found
that R.OFCmed had the highest degree of connections. These
results emphasize the localization of inhibitory control func-
tion in brain networks and imply that R.OFCmed may be
involved in inhibitory control. It may also be a target area
closely related to inhibitory control, and dysfunction in this
region may underlie the pathology of cognitive disorders in
for example Alzheimer’s disease.

Limitations

The study has some limitations. First, theoretically speaking,
each calculation method of morphometric features has a cer-
tain degree of measurement error, and there may be room for
improvement in the algorithms used in the Freesurfer soft-
ware. Second, we only considered a linear relationship be-
tween brain connections and behavioral values, but complex
brain networks may require nonlinear explanations.
Furthermore, in the process of feature combination, we
adopted a simple summation calculation, which may affect
the generalization value. Third, the use of the brain regions
template by the Freesurfer software did not allow precise iden-
tification of which parts of the orbitofrontal cortex are related
using this morphology measure to inhibitory control.
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