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"Begin with the tale of MANIFOLD; 

The tail is the natural start. 

But the Devil whoops, as he whooped of old: 

‘It's clever, but is it Art?!" 

Sorry, Rudyard. But we couldn't help it: 

We've spent so much of the past decade... 

on the Road to MANIFOLD Delay 

At some date in 1968, a fledgling mathematical publication nestling 
between bright orange covers came into being. That publication 
was the very first MANIFOLD. The editors had other things on the- 
ir minds, and no one seems to have recorded the exact date. A 
competition in that issue announces its closing date as April lst, 
hurriedly amended in the editorial to August lst: Summer 1968 is 
possibly the best date that historians will have to work with. 
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But if the date is not recorded, the place is firmly fixed: the 
back kitchen of a large house on Gibbet Hill, on the outskirts of 
Coventry. At that time it housed the Mathematics Institute, Univ- 
ersity of Warwick. The Institute, and especially Christopher Zee- 
man, were very much behind the venture. They couldn't let us have 
any money, but... we inferred that they would not object if we used 
duplicator and paper from the Institute's stocks. Zeeman envisaged 
a modest 10-page newssheet: you should have seen his face when we 
showed him the first issue - all 56 pages of it! We printed 200, 
which sold at 2/- (now 10p.) each. They sold so fast that we re- 
printed a further 150, at 1 a.m. in the kitchen where the duplicat- 
or lived. Zeeman saw the lights burning and came to investigate: 
he walked in, assessed the situation, and walked out - all without



a single word of recognition of the event, then or since. 
There was no real shortage of mathematical journals, either in 

1968 or in 1980 when MANIFOLD (now costing 40p. - well below infla- 

tion) finally and gracefully ceased publication. For the main 
part, these were research documents or undergraduate mathematical 
society newsletters. MANIFOLD always defied this sort of classifi- 
cation: it has always been - well, MANIFOLD! 

  

MATHEMATICS INSTITUTE 

UNIVERSITY OF WARWACK 

    

SMALE & THE VIETNAM WAR: Ramesh Kapadia 

THOK OF A NUGER : Peter Wise 

N. BOURBAKI: Elisabeth Campbell 

KNIGHT'S TOURS: Jonathan Britt & Jane Mary Grimes 

GRUPPEN: "Cosgrove" 

INTEGRAL SOLUTIONS: Simon Gaselle 

PICTURES Ii MATHEMATICS: Brunswick Baths. Inst. 

HEX: Michael Jackson 

A NOTE ON RECTANGLES: Jereny Harris 

PHOEBUS - What a Name! Josef Plojher 

CRITIGEE by Coagrove 

AUTHORS & STAFF 

YAGPID is published three times yearly in the Autumn, Spring ani Samer. 

Price per copy, post free in the United <ingdom, as on front cover. Por 
details of reprints see MAJI“OLD': SICK:. This issue, subject to principle 
stated wituin’ is copyrigit.  SUSCCRIPTION AATLY (U.K. only): 19/= for at   least three isswms, anu tucre fer until credit runs out. rrnil 
to USA $3.00 Further ae ils on all matters to “utoematics Institute, University 
of Warwick, Coventry, igcisd. Mentian "ANT LO" in all COrresponsiense . 

The aim of MANIFOLD was to make mathematics accessible: what made 

it unique was its style - the belief that it is possible to be 
serious about mathematics without being solemn. Its closest model 
was probably Martin Gardner's 'Mathematical Games' column in Scient- 
ific American, although MANIFOLD added to this a certain rough-hewn 
production and a racy, cavalier style of journalism. It used the 
broad-brush approach: everything from knitting patterns for a Klein 
Bottle to the Annulus Conjecture. The articles ranged from sur- 
veys of research mathematics to the long-running 'Labyrinth' series 
in which Theseus and the Minotaur debunked some of mathematics's 
most cherished myths. It had crosswords and cartoons; letters; 

and MANIFOLD's SIGNS (a feeble pun) specializing in anecdotes, typo- 

graphical errors, and the occasional piece of lateral thinking, 

like: 
O Why isn't the plural 'vrooves', like 'hooves' and 'rooves'? 
O Has it occurred to you that Concorde is actually longer than 

the original Wright brothers' flight?



MANIFOLD had a number of strengths, besides the consistently 
high standard of contribution: two are worth recording. First, it 

began life in the fertile environment of the Warwick Mathematics 
Institute. One of the founders remarked that ''the environment at 
Warwick (in 1968) was so rich that you felt that anything you plan- 
ted would grow". During its 12-year life, MANIFOLD drew on that 
richness and, until it ceased publication, remained close to the 
roots of Warwick life. 

Its second strength was also its weakness. Most journals of the 
‘undergraduate mathematics society' genre are doubly handicapped in 
that one function is to report the doings of a body that varies in 
health and vitality from year to year, and that their editors are 
drawn from that same body. MANIFOLD was exclusively a magazine. 

It had, from the start, a strong editorial board which did not pass 
on after one year, but stayed with the magazine, nurturing its 
growth and encouraging the development of its style. Mostly, they 
were still around in 1980 as the final issue went to press. And 
that, in the final analysis, was why it closed: the editors had all 
built careers for themselves and had less time for the buccaneering 
spirit that had built MANIFOLD. 

We were often asked: "where does all this invention come from?" 
It is time to reveal the answer: we stole. 

We even stole the title. The New Statesman referred to a poetry 
magazine of the same name in a competition, and we realised that it 
was just what we needed. By the time the competition's results 

        

  

   
    

  
     

      

                

were published, we had conveniently forgotten the theft and felt 

We stole the cartoonist's name, Crrg—e-k , from a calendar ad- 

vertising a local gar- 

Kea ) v4 axing m3 booor! (A Hemtee, 
ARBITRARY 1 THAT sunwe SPEARE ! duplicator room. Such 

iat? Have CAO BEEN A hens! techniques later bec- 
ye WAC A Corned 

A e } Ly x ed them 'taking inspi- 
= ration from the envi- 

\ (aS \ \ ‘aam\ iom\ (—"\ ronment'. 

of one Balkan politic- 
ian and the forename of another to get Jozef Plojhar, a regular but 

sale. It seemed self-evident that an entire issue written by one 
person was a bad thing - so we invented people. We stole Claude 

We stole Barry Pilton, which could have caused problems when he 
went on to become successful as scriptwriter for the BBC's Week 

progression. We invented people so successfully that when Ramesh 
Kapadia joined the editors, most readers spent a profitless ten mi- 

We stole the Guardian's 'Miscellany' column, calling it 
MANIFOLD’s SIGNS; we stole the style of our competitions from 

yes?) and unbiased criticism of the articles, from She (we dropped 
the idea almost immediately); we stole jokes: 

suitably indignant about the poetry magazine stealing our title. 

age, hanging in the 

yee Coeew MIGHT Have al 

ame standard: we call- 

ble > [00 ots [Ea ei We stole the surname 

pseudonymous contributor. In fact, we manufactured names whole- 

Chevalley's surname and created Eve laChyl, our resident algebraist. 

Ending satire show, but we thought that that was probably a natural 

nutes trying to work out who he was an anagram of. 

Punch; we stole the idea of having in each issue an independent (oh 

Q What's purple and commutes?



A An abelian grape. 
But we didn't steal everything: our cartoon strip 'Gruppen', for 

  

example - that was ours, and there's a story behind that too. In 
1968, the Mathematical Institute at Oxford had a large empty glass 
case. The standing joke was that it was built to house the next 
simple group discovered. Not to be outdone, 
some Warwick graduate students invented and 
built a trap for simple groups. It was = 
made out of an old shoe-box and populated > 
with little cardboard figures with the names 
of simple groups written on them. The 
Higman-Sims group looked like the beastie on 
the right. we recall: it's a pity that the 
Fischer-Griess Monster had not been disco- the Higman-Sims 

vered then: the mind boggles! Anyway, simple group. 
based his cartoon characters on 

these Simple groups. 'Groups' sounding too bland, we did as many 
mathematicians before us, changed to German, and plumped for 
'Gruppen'. Cysq@ane still lives, despite erroneous reports of 
his death in MANIFOLD-5 (we had run out of cartoons and needed 
something to fill up the space - an obituary sounded novel). He 

has an uncanny knack of following Ian Stewart around and has appe- 

ared to date in Open University course text margins, a cookery book 
called Simple Scoff, the Mathematical Intelligencer, and a paper- 
back called Nut-Crackers. 

MANIFOLD even had a constitution. The most important rule was 
that there had to be an AGM once a 

VANE OMD year, and it had to be held in a 
Auten OTS 17 pub. 

The cover changed colour each 
TmE CONSENS 1ssue. We began with orange, be- 

OF sLecrms cause that's what the Maths Inst. 
used for preprints, and there wasn't 
anything else. We moved to green, 
which we bought, to avoid being 
orange forever, as Springer Verlag 
is indelibly yellow. Issues 3-8 
were all on quarto paper, but had 
graduated to multilith instead of 
Roneo: yellow, blue, pink, yellow, 

pale green, dark blue. At issue 9 
international paper sizes had come, 
and we became A4, changing printers 
to the University of Nottingham who 

  

  

      ae were cheaper. The colours contin- 
ued: orange, blue, grey, pink, dark 

MANIFOLD seventeen: green, pink, blue (reprinted yellow), 
Ersatz Pooh in sickly green. purple, pale green, orange. But 

by now the energy was running out. 
The schedule was three issues a year: by 1979 we had only reached 
issue 19 (back at Warwick, in blue), and the flow of letters read- 
ing "Dear Sir, I have not received MANIFOLD for seven years; I pre- 
sume my subscription has run out - I enclose $20" was growing stea- 
dily. And so, in 1980, in eyeboggling day-glo lime green, Fast- 
print Ltd. of Streatham Hill, London, saw us to our rest. 

4



  

The original editorial board con- 
sisted of John Jaworski, Ramesh Kap- 
adia, Donal Monaghan, Ian Stewart 

and (no relation) Mark B. Stewart. 
After issue 11, Robin Fellgett 
joined and promptly invented the 
Single ploy that MANIFOLD holds 
most dear: the Overseas Institutio- 
nal Subscription, which probably 
saved it from bankruptcy. 

MANIFOLD enriched all our lives. 
We recall the joys of stapling 600 

copies per issue, using a curious 
device with a big lever and a knob 
that kept falling off. When we 
got fed up we let Nottingham do it 

for an extra £5. This led to the 
termly dash up the Ml to load 
boxes into the boot before they got 
lost. 

There was the one and only 

MANIFOLD Annual Dinner at the West- 

gate arms, Warwick: a meal for nine with all the trimmings for £40, 
marred only by a rapid trip home to get ties and jackets. There 
was the Turkish gentleman with his new theory ("'...I felt dangerous 
part of the theory of gravity... I am glad... to complete the theo- 
ry.'') There was William L. Fischer who sent us proofs of the in- 
consistency of non-Euclidean geometry (with Euclidean geometry, 
which seemed fair enough to us!). There was our first unsolicited 
letter: "Dear Sirs, would it be possible to number the pages?" 

(We did, thereafter, except for issue 20, when Ramesh forgot.) 
There was the annual sale of MANIFOLDs at the British Mathematical 
Colloquium:we left piles on a table, and let people put money in a 
box. We once sold £43 worth in an afternoon (at 15p. each). 
There were the early attempts to become rich and famous. Our stab 
at the first was to court the motor industry for support (offering 
to call our rag ROOTS, after the Rootes firm in Coventry). In 
view of later developments at Warwick, this was probably a narrow 
escape. Our stab at the second was to encourage banning in the 
USA, by sending free copies to Cuba. Neither country seemed espe- 
Cially concerned. 

And that brings us to our final unwillingness to let go. The 
idea of a 'Best of MANIFOLD' collection has been with us since the 
early 1970's; but it has taken until the 80's, with the courage and 
foresight of Biga Weghofer, for this volume to appear. This disti- 
llation from the seven years' worth of MANIFOLD published between 
1968 and 1980 is in no sense a best of MANIFOLD, however. We 
spent a wintry Sunday re-reading from our back numbers to compile 

  

        

this celebration. It was apparent from the start that some of 
MANIFOLD could never be included, simply because mathematics had 
not stayed still. Among our more serious and successful features 
was ‘Mathematics of the Seventies', which surveyed over a period of 
two years exactly where the frontiers of mathematics had got to. 
They have now moved on, and the period charm of those items is not 

enough to counter their irrelevance. We have also decided not to 

5



include anything from our two full issues devoted to Catastrophe 
Theory. That too has not stood still, nor would a selection ade- 
quately represent the wide range of ideas that filled those issues. 

And so, in the following pages, you will find a concentrated 
dose of the 'spirit of MANIFOLD'. We have corrected the misprints, 
invented new ones, done a certain amount of internal editing where 
necessary, provided the briefest of commentaries and then left you 
to yourselves. The shades of Jozef Plojhar and Eve laChyl, who 
have gone to the great printing-press in the sky, watch over you! 

J? + INS 
Potterspury and Barby 1981. 

The penchant of certain literary and 

artistic figures for elaborate crypt- 

ograms and cyphers is well known. 

Schumann used a musical cypher, and 

it is widely believed that Shakespe- 

are's dedications contain the secret 

of "Mr. W.H." Another confessed 

cryptographer was Elgar; his code 

has always defied analysis until rec- 

ently, when Eric Sams published some 

solutions. The one most likely to 

attract popular attention is the sur- 

prising fact that the Enigma Variati- 

ons are variations on no less a theme 

than "Auld Lang Syne". This seems 

to be well substantiated, as the same 

analysis reveals that ENIGMA is a co- 

ded notation for the opening bars of 

the piece; and that EDWARD ELGAR 

gives one of the characteristic melo- 

dies: a fact supported by the observ- 

ation that Elgar signed some of his 

works with the musical notation for 

that melody. M-6   In the same vein: whose musical 

cypher is this? See below for the 
M-20 

answer. 
For any Mediaevalists we may adi M-8 
have among our readers, a 

quote from Prof. D.J.Hinton, 

Professor of Architecture at 
  

        
  

Aston University: "If people - AH] can really be divided into > - 
two catepories they are (a) “fil   

Those who think people can be 

divided into two categories, 

(b) Those who do not.” M-4, 
            8 

*(UOT}eE30U UPUIAD) H’D’/Y/_ are /uOoTRzeROI urI ‘SazOU aus *HOW



Bourbaki. Who are these Frenchman, and why aren't M-1 

he all French? Ungrammatical, but logical: just 

like Bourbaki (t)hi(e)mself (ves). An analysis text 

has the index entry: BOURBAKI - see LANGUAGE, ABUSE 

OF. Quite so. Of mathematics too, some say, but 

that's just abuse... 

BOURBAKI 

ELIZABETH CAMPBELL 

Mention Bourbaki to some mathematicians and you will encourage a 
lengthy discussion; to others and you will be answered with "who?" 
or "what?"'. So for those in the second category an introduction 
to Bourbaki is the place to start. Bourbaki is a name, in full 
"Nicolas Bourbaki"'; however this Bourbaki is not a person, it is a 
pseudonym for a group of people. This group of mathematical writ- 
ers started bringing out publications in the mid 1930's. The 
group of course does not have the same members as at its foundation, 
several having resigned and new recruits having joined. 

Nobody is quite certain why the group adopted the name ''Bourbaki"’ 
The most plausible theory is that it was inspired by a soldier of 
the mid 19th Century who was of some importance in the Franco-Prus- 
Sian War - General Charles Denis Sauter Bourbaki. This explains 
the surname but not the 'Nicolas', and the theory would not hold 
much water except that there is a statue of him in Nancy and that 
several members of the group were, at one time or another, associa- 
ted with the University of Nancy. The General seems a likely cha- 
racter for a piece of fiction; for in 1862 at the age of 46 he tur- 
ned down a chance to become King of Greece; and in 1872, after 

  

Monsieur Nicoras Borapen:, Membre Canonique § Monsisur Eansrs Stammus Pusvicessy, Com- 

de l'Acedémie Royale de Foldivie, Grand Maitre plone de Rercevrement de Premiive Clam on 
de (Ordre des Comparte, Conservateer des retraite, Prénident du Home de Rééducation des 

Unifermes, Lord Pretectour des Vikren, ct  Faibloment Convergente, Chevalier des Quatre U, 

Medeme, ado Barwrvoqoa, ent Mbonncus do veus «Grand Opirateur du Orenge Myperbelique,| 

fawe part du marings do low Giie Berri avec Kaight of tho Tete) Order of iho Golden Moan, 

Moensiser Hecron Péraap, Admiaistreteer-Déltgué 1. UB... .c., B.1.0., 06 Modems, ate Compacresece,| 
an invitation to the do 1o Socies deo Strorturm Induites, Membre cnt Theanser do vou faire part du mariage do 
marriage of Mlle. Dipltens do I'institete of ClassGeld Archece- leur papillo Macros Param eves Madomsisaiio 

° ° lagista, Georéeaizre de I'(Kevre de Sou du Lion. Barn Bovnsani, ancizens Give ds Bencrécunics 
Betti Bourbaki and do Bean. 
M. Hector Pétard 

L'omerphieme trivial leur cera denaé gar lo P. Adique, do l'Ordve des 
Dicphaations, on Ja Cobsmelogio principale de in Variées Univeraiie, te 
3 Cartembre, on VI, a I’hease hebitustic. 

Lcegus ewe tenu per Monsiour Module, Assistant Gieaglese do ie Geaceman- 

alenne (lemme chantés par le Scholle Castancrum). Le predult & be quite 

enre vered intigralsmrat 4 la meiesn de retraite des Pouvres Abstveis. Le 

evnvergence cera essurée. 

ever te conrase do be fanfore de Yo Corps Quetian. 

Tenes eansaque 

(i@teun & gauche 4 ip buwtenniive). C@er.D.      



leaving France with the remains of his army, he tried to shoot him- 
self while imprisoned in Switzerland. He must have been the worst 
marksman in the army, for he is reported to have died in 1899 at 
the age of 83. 

Another story of the origin of the name, probably a rumour star- 
ted by the group themselves, is that about 35 years ago, at the 
Ecole Normale Superieure, annual lectures were given to first-year 
students by a visiting speaker, who was in fact an amateur actor 
in disguise, and whose lecture was just a lot of mathematical dou- 
bletalk. This visiting speaker went. by the name of Nicolas Bour- 
baki... 

This story is typical of the group. They have no oath of sec- 
recy, but do not like their secrets to be known. The pseudonym 
is used as a corporate name rather than as a disguise, and the 
names of most members are known to many mathematicians. The mem- 
bership seems to vary between about 10 and 20. Originally it was 
completely French; but nowadays distinguished mathematicians of 
many nations are included. Michael Atiyah of Oxford is a notable 
English member. The first non-French member was Samuel Eilenberg, 
a Polish mathematician at Columbia University who knew more about 
algebraic topology than any Frenchman. The Frenchmen-only rule 
was waived, and Eilenberg joined the group. 

Bourbaki's first publications appeared in Comptes Rendus, a jou- 
rnal of the French Academy of Sciences. In 1939 he began to pub- 
lish his Elements of Mathematics, and it is this treatise which at- 
tracts the most attention. It is a comprehensive study of mathem- 
atics starting with the most basic principles. An explanation of 
the treatise was given in the American Mathematical Monthly in 1950 
under the title 'The Architecture of Mathematics’. A footnote to 
the article reads: 

Professor N.Bourbaki, formerly of the Royal Poldavian 
Academy now residing in Nancy, France, is the author 
of a comprehensive treatise of modern mathematics, in 

course of publication under the title Eléments de 
Mathématique. (Hermann et Cie., Paris 1939). 

Twenty-six volumes have appeared to date, volume XXVI being Groupes 
et Algébres de Lie published in 1960. The volumes are published by 
Hermann (in paperback), and do not appear in the same order as the 
divisions of the treatise specified by Bourbaki - but they give the 
book and section numbers as in the treatise (which is confusing). 
Translations of some of the volumes published by Addison Wesley can 
be obtained in hardback. 

The way the treatise is written is of as much interest as the 
object itself. Because the treatise starts from basic principles, 

each book assumes only what has been proven in pre- 
vious books. Any example which refers to facts 
which may be known to the reader, but have not yet 

been proved in the text, is put between asterisks. 
All volumes contain many examples and exercises. 
Other peculiarities are the use of a sign in the 
margin ("dangerous turning") to indicate a passage 
warning the reader against a standard error; the 

use of small type for passages that can be omitted on first reading; 
abbreviations with a particular meaning in a limited section of the 
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78... 098 00 20 Paris, le 24 octobre 1967 

Mecsieurs les Professeurs —E. C. 22 

et H. PEITER 

Mathematics Institute Christopher 

University of Varvick Zeeman and Hans 

Coventry Reiter invited 
Mes chers Collcques, Bourbaki to attend 

Je vous remercie vivement de votre invitation. Blle était trés aimab): the Warwl ck Univ- 

et orés flattease, ersity Harmonic 

T'anpais aimé participer A votre svmposivum qui promet 4°@tre fort Anal ysis Symposi um 

incéressant. Mais ma timidité et ma modestie bien connues m'interdisent ¢e in ] 968 . This 

parler en public. D’autre part, avec 1'&ge, je répugne de plus en plus b me . . 

séparer de mes collaborateurs, et ne puis en 464l4quer aucun. was his reply ° 

J*envoie mon cordial souvenir A tous les congressistes, et souhasi te 
° 

que le symposi m fasse naftre teaucoup de théorémes. 

1. BOURRAKY     
  

treatise; and another symbol to mark difficult exercises. 
Bourbaki brought out other publications. One, Foundations of 

Mathematics for the Working Mathematician appeared in the Journal 
of Symbolic Logic for 1949, giving the author's home institution as 
the University of Nancago. This name is built from Nancy and 
Chicago - the latter because one of the founders, Andre Weil, had 
moved there. "Nancago" also appears in a series of advanced math- 
ematical books under the collective heading Publications de 1'Insti- 
tut Mathématique de l'Université de Nancago. 

Bourbaki, for all his impressive publications, could not gain 
membership of the American Mathematical Society. Its officials 
rejected his application and the secretary of the society suggested 
he apply for Institutional Membership. The same secretary appears 
in another tale about Bourbaki. In the late 1940's a paragraph 
about Bourbaki appeared in the Book of the Year of the Encyclopaedia 

Britannica , describing him as a group, and written by Ralph P. Boas, 
then editor of Mathematical Reviews. Soon after, the editors of 
the Britannica received an injured letter, protesting against Boas's 

allegation that Bourbaki did not exist, and signed by the gentleman 
themself. The editors' confusion and embarrassment were heightened 
by a truthful but deceptively worded letter implying that Bourbaki 
did in fact exist. Then the secretary of the American Mathematical 
Society decided to clear the matter up by writing to the editors. 
But Bourbaki remained one up, and started a rumour that Boas did not 
exist: that in fact Boas was the collective pseudonym of a group of 
young American mathematicians who acted jointly as editors of Math- 
ematical Reviews. 

This illustrates the youthful vitality of the group, despite the 
fact that some members remain so until aged about 50. The real 
attraction of Bourbaki, however, is not in the humour of his authors, 

but in the uniqueness of his treatise. It gives the first system- 
atic account of some subjects, and of mathematics in full, not ava- 

ilable in any other publication.



This symbol, inscribed upon coins found M-4 
at Knossos, is thought by some hopefuls 
to be a map of the infamous Labyrinth of 
the Theseus-Ariadne story. Credulity 
is strained: one feels it should have been 
more challenging - enough to inspire: 

a new Introduction to Maze Theory 
STEVEN EVERETT 

Theseus and the Minotaur are to be seen sitting on rocks opposite 
each other in the heart of the Labyrinth. Having found a compani- 
on of no mean intelligence, the Minotaur (bored stiff) is not going 
to waste him as mere nourishment, while Theseus has no option - his 
fabled ball of string was about as long as all other balls of str- 
ing, and gave out well before the second junction of the Labyrinth. 
The conversation has exhausted all the usual mathematics of mazes, 
left hand on wall methods, Eulerian unicursality, and so forth. 
(For anyone who doesn't know about all these, and those for whom 
this whimsical piece is a real introduction to maze theory, Rouse 
Ball's Mathematical Recreations and Essays will give you the best 
grounding.) 

Mino: You know, Theseus, in time they will have machines capable 
of threading labyrinths - I hope they name them after one of 
us ! 

Thes: I don't know, though - most of the fun of this sort of myth 
would be lost if we could get out of here: sort of keeps the 
mystery up, you know? If we ever got out of here, all we 
could do is sell our story to the Weekend Heliograph magazine, 
or VARIFOLD possibly, and then in a couple of weeks all the 
excitement about mazes would be over. 

Mino: Yes, I see what you mean. 
Thes: No books about mazes, mathematical magazines deprived of 

half their contributions... 
Mino: I've got a small work here that I wrote a century or two ago, 

called 'Three Minotaurs in a Boat' - it's got a very funny 
chapter about mazes... 

Thes: Yes, I must read it some time. 
Mino: Aren't there any other theorems about mazes that you mathema- 

ticians have brought up? That ‘left hoof on wall' method 
always confuses me, as I've got two left hooves, and I'm not 
too sure about which hoof I started with - besides, it might 
not work here, you know. 

Thes: There is one little-known theorem about mazes, you know - if 
I can only remember how it goes. 

Mino: Do try to think, Theseus, please - it's frightfully dull in 
here! 

Thes: As I remember, it goes something like this - there exists a 
sequence of left and right turns which will get you out of 
any maze... 
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Mino: 

Thes: 

Mino: 

Thes: 

Mino: 

Thes: 

Mino: 

Thes: 

Mino: 

Thes: 

Mino: 

Thes: 

Mino: 

Thes: 

Mino: 

Thes: 

You mean a sequence like LLRLRRRLLR...? 
Yes, that's right - I don't know the sequence, mind you! 
Have they actually worked the sequence out? 
No, I don't think so - the theorem only tells you that there 
is a sequence, it doesn't help you find it; it's what they 
will be calling an existence proof in Twentieth century math- 
ematics. 
Can't you remember some of the proof? We've got a lot of 
time, perhaps we could work something out? 
Well, I know that to start with you must make a list of all 
the possible mazes - start with the very simplest one and 
call it number one... 
What is the simplest maze? 
A T-shaped one, I suppose - one with a junction, one entrance, 
and two blind alleys. 

Isn't a straight line a simpler maze? An I-shaped maze? 
I suppose so, but I don't think it's important. 
What about a blind alley, though? You can't make a right or 
left turn at the end of a blind alley, can you? 
No, but I think you have to agree to turn back from blind 
alleys, I'm sure you do! 
What about junctions with more than three passages - ones 
where you can go 'half-left' or straight on? 

That's all been sorted out, I'm sure - I can't remember the 
exact details, but don't bother with that now, I'm beginning 
to get myself interested. 
Yes, yes! Go on! 

Well, when you've listed them all like this, you look at the 
first one and choose a place in it and work out the sequence 

 



Mino: 

Thes: 

Mino: 

Thes: 

Mino: 

Thes: 

Mino: 

Thes: 

Mino: 

Mino: 

Thes: 

right 

of right and left turns to get you out from that point. 
Then you choose another place and see where the previous se- 
quence would have got you to if you hadn't been in the first 
place... 

(There is a long pause while Mino digests this - Theseus is 
about to speak ‘again when, surprisingly, Mino interrupts. ) 

And then I suppose you tag on to the first sequence a new se- 
quence to get you out from there? 
Yes, that's right! 

And then go on to do it for all the other places in the 
first maze? 

Yes, and then you go on to the second maze, and then the th- 
ird, and so on. 

(Mino thinks a little before asking slowly:) 

There are an infinite number of positions in these mazes and 
an infinite number of possible mazes, aren't there? 
Yes, but we can still make a list of them, which is what mat- 

ters: there are an infinite number of them, but a countably 

infinite number, which makes it all right mathematically - 

the left-right sequence is going to be infinite, you know. 
Yes, Theseus, I see that. But if I can count this infinite 
set, I can count them in any order, can't I? 

(Thes, sad to relate, is a very bad mathematician, and hasn't 
noticed that this proof works only if mazes are counted in 
order of complexity - or else has failed to distinguish bet- 
ween countable cardinals and ordinals. Poor Theseus.) 

Yes. 

Well then, can't I count them so that all the mazes which 

take left turns to get out of come first? So that my sequ- 
ence begins with an infinite number of left turns: LLLL... 

(Thes doesn't reply, which is a pity: Mino runs off into the 
Labyrinth and his voice is heard getting fainter and fainter) 

(Thes is also a slow mathematician. It is fully thirty sec- 
onds before he rushes off after the Minotaur, calling to him- 
self:) 

After an hour or two of such frivolity, Theseus stops turning 
and looks carefully around to make sure he is not observed, 

before gingerly placing his left hand on the wall and setting off. 
After a while he passes the Minotaur, limping along with both left 
hooves on the opposite wall, travelling in the opposite direction. 
Both look highly embarrassed, and pretend to be deep in thought, 

and oblivious of any other people, as they pass. 

 



One of MANIFOLD’s first ‘breakthrough' articles M-3 

reported an important discovery in topology: the 

long-sought proof of 

the Annulus Conjecture 

BARBARA SANDS 

Topology, the saying goes, is a sort of geometry. It differs from 
ordinary geometry in that it considers many things to be ‘the same' 
which would ordinarily be considered different. More specifically, 
two topological spaces are said to be homeomorphic (or topological- 
ly equivalent) if one can be transformed in a nice, continuous sort 

of way into the other. For example, the circular disc and the sq- 
uare in the plane are homeomorphic: we just round off the corners. 
This is best done by shrinking radial lines from the centre of the 
square until they are all the same length. So far as topology is 
concerned, the disc and square are equivalent; each is called a 

2-dimensional ball, or 2-ball. The n-ball is defined similarly to 
be anything homeomorphic to the n-dimensional disc 

2 2 2 
1 + X + ...4 X < ] 

x 2 n-— 

in n-dimensional space; and by similar reasoning the n-cube 
Ixy] <1,..., [x,| <1, is also an n-ball. 

If an n-ball B contains a subset C homeomorphic to an n-ball B', 
we say that B' is embedded in B. The sort of thing we think of 

1S: 

  

where the shaded part is just a squashed-up disc, and we get a 

2-ball embedded in a larger 2-ball. 
A very entertaining example of an embedding of 3-balls is the 

Alexander horned sphere. It is constructed in stages from a 
standard 3-ball. First two horns are pushed out. [Each horn is 

split in two and the ends are intertwined; then the new horns are 
split in two and intertwined, and so on. Repeating the construc- 
tion indefinitely we obtain as a limit a rather complicated object. 
However, topologically it is just a 3-ball: the method of extruding 
horns defines, in the limit, a homeomorphism between the initial 

3-ball and the final result. The horned sphere is embedded in 
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3-dimensional space by construction: we just restrict things a bit 
and embed it in a 3-ball: 

  
Now consider the space between two balls, one embedded in the 

other. If we put one standard ball inside another, with their 
centres coinciding, the space in between is called an annulus, and 
is just a hollow ball with a thick 'skin'. 

We can parametrize points in the annulus by pairs (x,d) where x 
1S a point on the boundary and d is a radial movement inwards. Twi- 

sting things about a bit doesn't alter much: we can parametrize the 
Same way using the twisted ‘radial lines': 

X 

“ 
d 

This picture suggests the Annulus Conjecture: 

For any 'nice' embedding of an n-ball in another 
n-ball, the space between them is homeomorphic 
to an annulus. 

Before explaining what 'nice' means (the point is that the conjec- 
ture is false for arbitrary embeddings) let's look at the horned 
sphere again. Put a loop L round one horn. Then it's clear (and 
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provable) that we can't pull L off the horn without breaking it, 
to a position L', because it gets ‘tangled up in the horns. On 
the other hand, for the usual embedding of two standard 3-balls, 

any loop L can be pulled off, as in the right-hand diagram above. 
Since the possibility of pulling loops off is preserved by home- 

omorphisms, it follows that the space between the horned sphere and 
its surrounding 3-ball is not an annulus, and the conjecture fails 
in this case. 

So whatever 'nice' means, the embedding of the horned sphere is 
decidedly nasty. The trouble, one suspects, arises because the 
embedding is so tangled up. If we consider a point right at the 
'tip' of the horns, then the embedding looks horribly messy: 

oT™     
\ ff 

cr) 

no matter how closely we look. This suggests that 'nice' is what 
topologists call locally flat: near a boundary point of the inner 

n-ball, it should look like this: 

  

For many years people tried to prove the Annulus Conjecture for 
locally flat embeddings, but without success. The situation is 
now radically different. The young American mathematician Robion 
Kirby (Los Angeles) provided the main ideas that led to the break- 

through, by reducing the problem to a much more special one. It 
transpired that Terry Wall (Liverpool) had already solved the spec- 
ial problem, but not published the proof! Between them, Kirby and 
Wall had cracked the conjecture. The majority of the credit, how- 

ever, must go to Kirby. 
Thus we may state the Annulus Theorem: 

The Annulus Conjecture is true for locally flat 

embeddings of n-balls, provided n # 4. 

(There is something very funny about 4-dimensional space, and very 
nearly everything in topology is unsolved in dimension 4. The re- 

striction n # 4 came as no surprise.) 

Why is the annulus theorem important? One of the long-term 
aims of topology is to classify all possible manifolds. A space M 

is a manifold provided that near each point it looks like Euclidean 
space. If it looks like Euclidean n-space it is an n-manifold. 
For example the 2-sphere S? and the 2-torus T? are 2-manifolds, and 
we can draw a typical point with a little bit of 2-space around it: 
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2-sphere S* 2-torus T? projective plane P? 

Less obvious, but important, is the projective plane P? obtained 
from a disc by 'glueing together' diametrically opposite points. 
It can't be drawn very convincingly because it won't embed in 3- 
Space without crossing itself. 

It turns out that it is possible to build up all 2-manifolds 
(surfaces) from these three types by sticking them together using 
the connected sum #. If M, N are manifolds we get the connected sum 
M#N by removing small discs from M and N and fitting a 'tube' from 
one hole to the other. So 

S*#T? looks like: 

  

The highly important Classification Theorem for 2-manifolds says 
that any 2-manifold (assumed compact) is homeomorphic either to 

S7#T7#T7 4... #T? (n > 0) 
—_—— 

or to S7#P2#PZ#.., HP? (n > 1) 
—_—— 

and all these, as n varies, are different. For a sketch proof, 
Stated in slightly different terms, see [1]. 

If we try to do the same thing for n-manifolds, we find that we 
can define the connected sum the same way. Or can we? I've che- 
ated a bit by calling it the connected sum: how do I know that it 
does not depend on whereabouts I cut out the holes? For 2-manif- 
olds everything's OK, by the classification theorem; but what about 
n-manifolds? 

That's where the Annulus Theorem comes in - as a first step to- 
wards classifying n-manifolds. What we need to prove boils down 
to this: if D and D' are two discs embedded in a manifold M, then 
we can push D around until it coincides with D'. The way to start 
is to shrink D until it is very small, and then slide it across M 
until it gets inside D'. 

But now the Annulus Theo- 
rem lets us draw ‘radial' 
lines in the space between 
D and D', and we can expand 
D along the radii to make 
the two discs coincide. 
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So the Annulus Theorem proves that M#N is well-defined in n-space. 
Finally, the proof. It is extremely long, and uses most of the 

topological machinery available: a list of all discoverers of res- 
ults used in the proof would include all major topologists of the 
present century! 

The way we shrunk D to get it inside D' above suggests that to 
prove the theorem, it should be sufficient to consider only a tiny 
patch of the embedding. This means that something deeper than 
properties of balls is involved; and it turns out that what matters 
is the PL-structure induced by the embedding - a kind of triangula- 
ted grid structure on the space, like a polyhedron. 

Kirby's brilliant idea was to '‘embed' a standard manifold T" 
the n-torus, in the n-ball B" - but allowing the torus to 'overlap' 
itself (technically it is an immersion, and a small disc is removed 
from T? first). This immersion of T™ induces the same PL-struct- 
ure as the embedding of the ball, and we now have the problem of 
uniqueness of PL-structures on T. Now T™ happens to be a very 
nice manifold for a construction known as surgery (cutting and glu- 
eing in n-space) and the surgery problem is what Wall had solved. 
Surgery 1s a useful tool for problems of uniqueness of PL-structure, 
and although Wall had not worked out all of the details for TM, he 
had enough information to complete the proof of what, henceforth, 
must be named the Annulus Theorem. 
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You can lie about statistics, you can lie with M-10 

statistics. But did you realise that it is 

possible to use valid statistics to get a cor- 

rect answer... and still lie? 

Genuine Fakes 

BARRY PILTON 

Throughout history there has been one major problem facing scient- 
ist and mathematician alike. I am referring not to Squaring the 
Circle, but to the more practical problem of Cooking the Books. 

Faking statistical results is a hazardous enterprise; but there 
are times when observations and theory disagree, and the only reco- 
urse is fiddling the results (or similar viol practices). The 

great thing about statistical analyses is that they can be carried 

out years after the figures are produced (indeed this is customary 
in government circles), and advances in statistical technique can 
sometimes reveal faking where no faking was previously observed. 

The 'fit' of experimental theory with actual figures, as well as 
being too bad, can also be too good. If you throw 1000 coins and 
claim to have got exactly 500 heads and 500 tails, don't claim it 
too often: the probability is less than one in a hundred. 

A remarkable instance is that of Mendel, whose experiments with 
plants (the good man was a monk and so confined his genetic experi- 

ments to botany) form the foundation of modern theories of heredi- 
ty. Taken as a whole, Mendel's results are too good to be true. 
No one is suggesting that he knowingly faked them; but it does seem 
that when he was deciding whether a particular plant was 'dwarf' or 
'tall', his judgement was not entirely impartial. Then there was 
a man called Moewus who counted algae, getting results agreeing so 
well with theory that, had the experiment been repeated by the 
whole human race every day for ten billion years, as good a fit 
might happen once. It may have been just luck, but it's not the 

sort of luck to put into a Ph.D. thesis. 
So scientists fake their figures: we mathematicians have always 

suspected as much. But what of mathematical fakery? Not muci 
chance there... but indeed there is: the very famous experiment by 
Lazzerini to evaluate 7 by dropping needles on to ruled lines. 
This has been reported by various eminent authorities with a smidg- 
in of over-respect. That Lazzerini was a successful hoaxer has 
been shown by O'Beirne [4] and Gridgeman [2], independently. 

The theory is due to Count Buffon. Drop a needle of length d 

on to a grid of parallel lines distance a apart, where a > d. 

What is the probability that the needle lands across a line? The 

answer is 2d/ta, so experimental evaluation of the probability as a 

proportion of successful trials can yield an estimate for T. In 

1901 Lazzerini made 3408 tosses, and obtained 7 Vv 3.1415929, in er- 

ror by about 0.0000003. This is remarkably close, but until 
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recently only one authority appears to have smelt a rat. In [1] 

p.176 Coolidge says: '"'...it seems quite likely that Lazzerini 
‘watched his step' and stopped his experiment at the moment he got 
a good result." 

In the wake of these doubts come many more. If the result is 
accurate to one part in a million, presumably so were the measure- 
ments of d and a. If not, the result is presented to ridiculous 
accuracy. 

...and in only 3408 trials...? 
Suppose there are s successes in n trials. The estimate is 7 v 

2dn/as. The ratio d/a is most likely to be chosen as a fairly sim- 
ple fraction, so this expression gives a good approximation to 7 in 
rational numbers. A good approximation is 355/113: the next better 
is 52163/16604. And 355/113 = 3.1415929... which is Lazzerini's 
result. Further, the unusual prime 71 divides not only 355, but 
also 3408. Hence if d/a is a fraction with numerator 5, the most 
likely denominators are 6 or 8, and Lazzerini's results would be 
obtained if the number of successes were 1808 or 1356. 

So O'Beirne reasoned: then he looked up Lazzerini's original pa- 
per [3]. The first discovery was that his name is actually 
Lazzarini, so everyone else had been copying each other. The next 
was that d/a was 5/6; and the number of successes indeed 1808. It 
was then obvious what had happened. Arrange for d/a to be near 
5/6, and assume this figure exact. Count your successes for blocks 
of 213 trials, continue until the number of successes is the same 

multiple of 113, then stop. You ought to get equality somewhere 
before 5000 trials. 

But Lazzarini's fakery doesn't stop there. He also lists res- 
ults after various numbers of trials; again the agreement with the- 
ory is far too good. 

For those who still think this method is worth trying: to have 
confidence in the first n figures for 71 you need to make roughly 

1027*2 trials. 
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* kkk Kk Kk KEK 

Legendre, examining entrants to the Ecole Polytechnique. The 
student: Arago. A question involving double integrals. 

L: That's not how you were taught to do it. 
A: No, I found it in one of your memoirs. 

L: Why did you use it? To butter me up? M-17 
wa A: Nothing was further from my mind. I adopted it 

<a because it seemed preferable. 
= L: If you cannot explain to me why you think it preferable, I 
“2 shall be forced to fail you. 
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Stan Kelly, folksinger and computer consultant, is M-2 

perhaps best known for his Liverpool Lullaby, rec- 
orded by The Spinners. In 1968 he was a graduate 

student at Warwick, and combined his talents with: 

Green Grow the Fibres-0! 

STAN KELLY 

The drunken mathematician is not a pretty sight, but then, who is? 
As the glasses raise on high, and the evening grows merrier, the 
following noise may be heard. 

Smooth flow on the Manifold-O! (Or: Green grow the Fibres-O! ) 

I'll sing you ONE-O! Green grow the fibres-0O! 

What is your ONE-0? 
ONE is my identity, non-trivial to me. 

I'll sing you TWO-O! Green grow the fibres-O! 
What are your TWO-0? 
TWO,TWO, the circular points, way out at infinity; 

ONE is my identity, non-trivial to me. 
and so on, using: 

THREE, THREE, the old triangle... 
FOUR for the colours on the map... 
FIVE for the genus of my vest... 

SIX for the perfect number... 
SEVEN for the sides of a ten-bob note... 
EIGHT for the Ceilidh (Cayley) Numbers... 
NINE for the nine-points circle... 
TEN for the base of common logs... 
ELEVEN for the fifth prime number... 
TWELVE for the eleven-plus... 

Lemma Three 
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Chorus: Lemma 3 very pretty, and the converse pretty too; 
But only God and Fermat know which of them is true. 

When I studied Number Theory, I was happy in my prime; 
And Fermat's wild conjectures, I knocked them two at a time. ([Ch.] 

Black and white together, we shall not be moved; 
But the 4-colour Theorem, it hasn't yet been proved. ([Ch.] 

Now Lemma 3 has puzzled mathematicians by the score, 
But Max Newman has engulfed it and it won't be seen no more. ([Ch. ] 

The axioms of Choice are very clear to me: 
If you want to choose a Lemma, man, well don't choose Lemma 3.[Ch. ] 

kkk kk Kk kK 

Prof. M.H.A.Newman was Stan Kelly's research supervisor. 
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Exponential population growth is generally credited M-1] 

to Thomas Malthus in 1798. Actually, he was anti- 

cipated by some six centuries. Moreover, the ear- 

lier work has potential applications to computing... 

the Good~natured Rabbit-breeder 

JOZEF PLOJHAR 

The breeding of rabbits has brought us a long way. In 1202, Leo- 
nardo of Pisa (who had nothing at all to do with anything called 
the Mona Lisa) was formulating a theory of rabbit-breeding. He 
observed that if one begins with a pair of new-born rabbits, if one 
assumes that rabbits become productive in the second month, and if 

one assumes that thereafter each productive pair gives birth to a 
further pair each month, then the total size (in pairs) of the rab- 
bit colony was given by what is now called the Fibonacci Series: 

1 1 2 a) 8 13.021 34 55 89 144 ... 

At least, as long as no rabbits die. 

Leonardo, in picturesque Pisan fashion, was called 'son of good 
nature', which is fibonacci in Italian, and is not to be confused 
with that well-known mathematical Mafia, The Bernoullis. 

In the Fibonacci series, each term is the sum of the two prece- 
ding. This difference equation can be solved by traditional meth- 
ods, introducing the constant 

d = 3(1+V75) = 1.6180339887498948482045 868343656381... 

The nth Fibonacci number F(n) is given by 

F(n) = (¢" - (-6)")/v5 = [C2 (1+¥5))" - (4 (1-¥5))")/¥5. 
The number > appears in many unusual places. It is the Golden 

Ratio, beloved by mathematical aesthetes; it has the interesting 
property of being 1 greater than its reciprocal; and it is the lim- 
it of the ratios of successive terms of the Fibonacci series. The 
series itself turns up in the botanical study of phyllotaxis - the 
arrangement of leaves and branches around a central stem. 

Many of the more spectacular properties of the Fibonacci series 
depend on the following, easily proved property: every positive in- 
teger N has a unique representation 

N = F(k)) + F(k,) +... + F(k,) 

where k; > ki ,,t2- 

The proof hinges on the fact that the only possible choice for 
F(k1]) is the largest Fibonacci number not greater than N. We can 

then apply the same argument to N-F(kj), and so on. 
One of the more surprising and less well-documented properties 

of ¢ is the following: any positive integer can be expressed as the 
sum of a finite number of distinct integral powers of ¢. To 
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  . , , . ; provide supporting evidence for this 
wre manifold assertion, let us give some examples: 

UA 
oh Bg  % 1 = o° # ¥ 

at i BB 2= 6 + o? 

al aonen 4= o7 + 9 + om, 

A proof is reasonably easy, given a 
little direction in the matter of 
which properties of Fibonacci series 
to look at. We might begin, for 
example, with the representation 
above, coupled with the additional 
result that 

n-l - F(n) = ¢ -oF(n-1). 

However, a good mathematical princi- 
ple is never to bring up heavier ar- 

tillery than we need, and it turns out that we can get well along 
the road to the same result by means of the much simpler observation 
that 

        
N= le+l+1 4+... +1 = 69 + 6? + 6° 4...4 6°. 

So far, this is what we are trying to prove, with the failing that 
the powers do not appear with the coefficients 1 and 0 only. A 
general proof that we can reduce a case such as this to the desired 
result might be rather confusing, so let us look at a specific 
case, say at 4 = 4.6°. We deal with this by noting that 

n+l n n-1 
p =o + 9 (*) 

which follows since $ = 1+(1/$). Rearranging this we get, after a 
little manipulation, 

26” _ gn*l + gnn 2, 

Hence we get 

4 = 2(6 + 977) 
26 + 267° 

=o +o ta gts o4 
= ge 4 go ge oF, 

This is satisfactory, and a little checking with pencil and paper 
should convince those who distrust the manipulations. However, 
this is not the representation of 4 given above. The expansion 
exists, but is not unique! As an exercise: derive one form from 
the other using (*) above. 

Thus we have pointed to a proof that any positive integer can be 
represented as a number to base 6. Looking at things the other way 
round, we can imagine that we are dealing with numbers such as 
101.01 - sequences of position-dependent Os and ls. This corres- 
ponds in a fairly obvious way to the representation of 4 that we 
found above: 

101.01 = 1.67 + 0.6 + 1.69 + 0.67) + 1.672, 
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We shall find this a convenient way to write such numbers, partly 
to avoid layout difficulties on the printed page, but more import - 
antly because such a representation contains all that we need to 
know about the numbers we are discussing. In contexts where we 
might be confused we could emphasize this by writing 101.01). 

Sometimes mathematical tails wag mathematical dogs. This is 
just such a case. Once we begin to think of Fibinaccary numbers 
(there are many possible names, but few have the resonance of this!) 
we make some natural comparisons with the regular binary (base 2) 
representation - in which 101.01, corresponds to 5-25) 4 » and 450 

corresponds to 100... In both cases, binary and Fibinaccary, we 

have a means of representing an integer by a finite string of Os 
and ls. The relevant practical application is, of course, comput- 
ing. In the binary digital computer a collection of bi-stable de- 
vices (capable of recording or registering either of two states: 
on/off; +/-; 0/1) is associated by the design of the computer to 
store a full integer. Interest in binary notations arises because 
bi-stable devices are easier to come by than devices capable of 
distinguishing between a greater range of values. 

There are some problems to be sorted out with the Fibinaccary 
numbers. The first we discovered above: each integer corresponds 
to more than one Fibinaccary. Thus 4 = 101.01 = 101.0011, for 
instance. In fact, any integer has an infinite number of Fibinac- 
cary representations. From (*) above we see that the rightmost 1 
of any Fibinaccary can always be expressed as ...011, and this 
process can be carried on as we please. This is a serious problem, 
should we wish to make use of the Fibinaccaries. 

Curiously, if we insist that no two adjacent 1s occur, this is 
a sufficient requirement to ensure uniqueness. We call such an 
equivalent a proper Fibinaccary. 

We have made an advance on one front - we could restrict attent- 
ion to proper Fibinaccaries - but we have a second major problen: 
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the sequences representing integers are apparently not very differ- 
ent from those that don't represent integers. For instance, 101.0 
is not an integer. How do we tell when a Fibinaccary is an integ- 
er? Eve laChyl is the authoress of an interesting method. 

We can look, in fact, at a rather more general problem (the 
standard Bourbakiste ploy!): if 

f(x) = ) a,x 

as n ranges through a finite set of integers (positive or negative) 
with a, always an integer, when is f(¢) an integer? 

We define a polynomial, the Chylean Polynomial, as follows: 

_ n -n 

-1 COd = Ln>0 a,x * bn<o a, (x-1) 
Since ¢ = o-1 it follows that f(¢) = C(¢) so we may consider C 
instead of f, with the advantage that there are no negative powers. 
By the division algorithm there exists a polynomial q(x) and integ- 
ers a,b such that 

C(x) = q(x). (x?-x-1) + ax + b. 

Then C(>) = q(>).0+ab+b must be an integer, so a = 0 (since 6 is 
irrational). Thus a necessary and sufficient condition for f(d) 

to be an integer is that when the Chylean polynomial is divided by 

x?-x-1, the remainder should have zero coefficient for x. And the 
value of this integer will be given by b. 

Thus, to find out whether $°+6+67!+673 is an integer, we form 

C(x) = x? + x + (x-l) + (x-1)° 

= x? - 2x? + Sx - 2 

and divide by x?-x-1 to get remainder 5x-3. Since the x-coefficient 
is non-zero, the expression is not an integer. 

Arithmetic using Fibinaccaries is unfamiliar, but not appreciably 
more difficult. Let us give an example, say of addition. The 
reader can easily check the steps in: 

101.01 + 
1000.1001 

1101.1101 
10002.0001 4 > 4 
10010.0101 =¢ +o¢+6° +6 = 9. 

Multiplication is a little more difficult, but is aided by the fact 
that, as in any binary system, the partial products, being multiples 
of 0 or 1, are obtained by shifting strings. 

Is there any practical reason why this Fibinaccary system might 
be better than the usual binary system? It is tempting to suggest 
not, especially as with the 9 positions required to represent the 
digit 9 above, a binary computer could represent all integers from 
0 to 511, or from -256 to +255. 

It would, however, be a foolish mathematician who would throw 

away such an unforseen gift as an alternative number system without 
closer investigation. With the increasing interest being shown in 
mechanical logic devices, some points in favour of the Fibinaccary 
representation can be found in the fact that during addition the 
number of binary ls around either remains constant or decreases by 1 

at each stage. In contrast, the change from 15 to 16 in regular 
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binary involves 5 changes of bi-stable units. 
But in practice it seems that Fibinaccary is doomed except as a 

curiosity. The intrigued reader might care to develop his inter- 
est in two ways: he might like to prove that given any Fibinaccary 
number - not just an integer - a sufficient condition for unique- 
ness of representation is that (as before) no two 1s occur together, 
and also that no infinite sequence 010101010101... appears. Alter- 
natively, he might care to perform similar analyses on other binary 
Systems: known systems exist, based on the binomial coefficients, 
and also "Grey Code". Par time for the first of these projects 
should be 15-30 minutes. Are you ready...? 

BIBLIOGRAPHY 

H.S.M.Coxeter Introduction to Geometry pp. 160-172. 
D.E.Knuth The art of computer programming vol. I (1.2.8) 

Addison-Wesley 1968. 
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M-14 

An explorer was captured on a South Sea island by cannibals 
who confined him to a grass hut while they polished the cook- 
ing pot. On consulting his diary, he discovered that at noon 
the following day there was to be a total eclipse of the Sun. 
Thinking to impress the natives with his powers (cf. Rider 

Wa Haggard, Mark Twain) and ensure his release, the explorer con- 
w= sulted the guard-cannibal at the door and asked when he was to 
= be cooked. "At about 11.30," replied the native. "Just be- 
wa fore the eclipse." M-8 
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In solving the following problems, mathematical know- M-2 

ledge will prove less usefui than scientific common 

sense. This is not surprising: we stole them from 

the Engineering Department's prospectus. (Let it 

never be said that MANIFOLD is narrow and sectarian.) 

The answers are given on page 91. 

THIN 2 

10. 

ll. 
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Could you use a suction hovercraft on the ceiling? 

Why do you put your thumb on a hosepipe to make the water squirt 
further? 

Why can't you light a fire with too little fuel, and why do gu- 
inea-pigs eat all the time? 

When a tall brick chimney is 'felled', why does it break in the 
middle before it hits the ground? 

Why do American oil-tankers cruise one knot faster than British 
oil-tankers? 

Why does a steel tape-measure bend more easily one way than the 
other? 

Could a metal cricket bat be as good and effective as a willow 
one? 

How 1s it possible for a yacht to sail upwind? Could a mirror 
in space use radiation pressure from the Sun to sail closer to 
the Sun? 

Why are cooling towers made the shape they are? 

Why are most doors hinged rather than sliding? 

Why don't spanners for small nuts have handles as long as for 
big nuts? 

. A fuel-tank in a spaceship is partially full. What happens to 
fuel under surface tension in the complete absence of gravity? 
Assume that the fuel wets the walls, i.e. contact angle is zero. 

A ternary system of numbers employs the basic symbols 1, 0, -1l. 
The decimal number 76 is therefore the ternary number 10-111, 
and the decimal number -65 is -1ll-1-11. What are the advanta- 
ses of this ternary system over either decimal or binary syst- 
ems for use in digital computers? 

wk kk ke kk Ke Kk 

The paper Bemerkung tiber die Einheitengruppen semilokaler Rin- 

ge (Math.-Phys. Semesterber. 17 (1970) 168-181) by Ginter 
Scheja and Uwe Storch is dedicated: 

"To Euclid on his 2300th birthday." M-11



The validity of a proof is a function of time, no M-18 

matter what Bertrand Russell thought. It is less 

a matter of logic; more of conviction. The 

Clarity of vision within a new paradigm sometimes 

makes previous errors blindingly obvious... 

au Courant with Differential Equations 

TIM POSTON 

Best to reproduce rather than summarize the item from [1], though 
many readers will have met it already, as it is so succinctly put 
as to defy abbreviation. 

suppose a train travels from station A to station B along a 

Straight section of track. The journey need not be of uniform 

speed or acceleration. The train may act in any manner, speed- 

ing up, slowing down, coming to a halt, or even backing up for a 

while, before reaching B. But the exact motion of the train is 

supposed to be known in advance; that is, the function s = f(t) 
is given, where s is the distance of the train from station A 

and t is the time, measured from the instant of departure. On 

the floor of one of the cars a rod is pivoted, so that it may 

move without friction either forward or backward until it touch- 

es the floor. If it does touch the floor, we assume that it 

remains on the floor henceforth; this will be the case if the 

rod does not bounce. Is it possible to place the rod in such 

a position that, if it is released at the instant when the train 

starts and allowed to move solely under the influence of gravity 

and the motion of the train, it will not fall to the floor 

during the entire journey from A to B? 

  

  

fs 
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It might seem quite unlikely that for any given schedule of mot- 

lon the interplay of gravity and reaction forces will always per- 

mit such a maintenance of balance under the single condition that 

the initial position of the rod is suitably chosen. Yet we 

state that such a position always exists. 

Paradoxical as this assertion might seem at first sight, it 

can be proved easily once one concentrates on its essentially 

topological character. No detailed knowledge of the laws of 

dynamics is needed; only the following simple assumption of a 
physical nature need be granted. The motion of the rod depends 

continuously on its initial position. Let us characterise the 

initial position of the rod by the initial angle x which the rod 

2/ 

  
 



makes with the floor, and by y the angle which the rod makes 
with the floor at the end of the journey, when the train reaches 
the point B. If the rod has fallen to the floor we have either 
y= Oorye=T. For a given initial position x the end positi- 
on y is, according to our assumption, uniquely determined as a 
function y = g(x) which is continuous and has the values y = 0 
For x = 0 and y = 7 for x = 7 (the latter assertion Simply exp- 
ressing that the rod will remain flat on the floor if it starts 
in this position). Now we recall that g(x), as a continuous 
function in the interval 0 < x < 7, assumes all the values bet- 
ween g(0) = 0 and g(t) = 7; consequently, for any such value y> 
in particular y = 1/2, there exists a specific value of x such 
that g(x) = ys; so there exists an initial position for which the 
end position of the rod is perpendicular to the floor. (Note: 
in this argument it should not be forgotten that the motion of 
the train is fixed once for all.) 

Of course the reasoning is entirely theoretical. If the 
journey is of long duration or if the train schedule, expressed 
by s = f(t], is very erratic, then the range of initial positi- 
ons x for which the end position g(x) differs from 0 or 7 will 
be exceedingly small, as is known to anyone who has tried to 
balance a needle upright on a plate for an appreciable time. 
Still, our reasoning should be of value even to a practical mind 
inasmuch as it shows how qualitative results in dynamics may be 
obtained by simple arguments without technical manipulation. 

Unfortunately, it is wrong. Not mathematically, but in assuming 
continuity for this problem. Within its spirit, let us neglect 
the probabilistic aspect brought in by, e.g., any realistic model 
of friction effects. Stick with the assumption that the motion of 
the rod when not on the floor is given by a differential equation 
D (time-dependent thanks to the motion of the train). A nice en- 
ough D - say with differentiable coefficients - to guarantee that 
every initial position x determines a unique y = g(x) on arrival at 
B. (For examples without unique solutions, see p.38 of [2], which 
is as cheery and pictorial as MANIFOLD itself.) 

Look first at the version where there is no floor: just a pivoted 
lever free to turn through 360°. The initial angle can be any x 
between -180° and 180°. Then D's niceness lets us prove the stan- 
dard result that y depends continuously on x. This implies, using 
just a bit more topology that the above appeal to the Intermediate 
Value Theorem, that for any y there is at least one initial angle x 
with y = g(x). 

Fig.1 (opposite) shows a typical set of histories, for a general 
D and a rather short trip. Notice that sometimes more than one x 
gives arrival at the same y - with, of course, different velocities. 
(Given 'final conditions' y and angular velocity 5, » 1f D is second 

order we can compute back to find unique x and 6 that would end up 

at (y,6,). But the 'final condition’ y without 8, is not enough, 

even if we stipulate 6 = O as in the figure.) 

The way this plurality begins should be ringing bells in readers 
of MANIFOLD 14 and 15: it is one of the many ways catastrophe theory 
comes into entirely non-'gradient dynamics' situations. That's why 
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it's shown: it has nothing to do with the main point of this note, 
which is:- 

Now put those ‘absorbing boundary conditions' back - the floor 
it stays on if it hits. Then for the same time dependent dynamic D 
in the region -90° < x < 90°, the picture reduces to Fig.2. So 
for the original problem there is a critical angle xc, and g takes 
x to 

-90° if x < X_ 

90° if x > Xe, 
which is not continuous. There is no x for which the rod never 
falls. 

Of course additional hypotheses on D can rescue the original con- 
clusion. For example, one can forbid points like P in Fig.2. But 
to check that D gives no such points, one very definitely needs some 
‘detailed knowledge of the laws of dynamics’. Given the usual laws, 
the only physical assumptions I can find which guarantee a nonfal- 
ling history are that the pivot is perfect with the movement of the 
train perfectly, totally horizontal. (Not just level track: the 
train must have no springs. Why?) 

In some modern uses of differential equations the hypothesis 'no 
points like P' (technically the isolating block condition) can be 
proved under much more reasonable assumptions. For example, it is 
a powerful tool in proving the existence of nerve-impulse-like 
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solutions to equations intended to model the behaviour of nerves 
[3]. But valid qualitative results in dynamics often need not-so- 
simple arguments, with topological technicalities replacing the 
traditional kind. 

Courant and Robbins did not make a silly mistake - but Dynamical 
Systems has progressed in the intervening 1/3 century so as to make 
their error easily visible - it would be silly now. (On the other 
hand Figs. 1 and 2 would probably have convinced them they were 
wrong; imagine going back and trying to dissuade say, Kant of any 
opinion now largely opposed by philosophers. If philosophy pro- 
gresses, it is not in a way that makes anything clearly wrong to 
everybody competent.) More importantly, this progress is reaching 
the original goals of Poincaré: I have heard "practical minds' com- 
ing away from topological talks marvelling at the power of the me- 
thods used. 

BIBLIOGRAPHY 
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Archimedes, so the legend goes, got his inspiration M-19 

in the bath. Henry Squarepoint got his from the 

bath - the taps, in fact. Another impressive example 

of the power of Catastrophe Theory to shed light on 

the most varied and mundane topics. But the real 
reason for this article is that it is a puzzle: WHO IS 

HENRY SQUAREPOINT? * 

my bath-tap is a cusp catastrophe 
HENRY SQUAREPOINT 
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Total flow 1S a nice convex 
function of (8,); opening one 
tap further always gives more 

water. But temperature isn't 
a function of (8,W), i.e. 
single-valued, at all: it's a 
catastrophe. 

The warmth of gentle flow 
is smoothly adjustable, but a 
large flow either freezes or 

  

  scalds. The middle range is 
inaccessible. 
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There really ought to be a Nobel Prize for Mathematics. M-16 
The case is far stronger than for, say, economics - and 
that has a Nobel only because it bought itself one, by 
way of the banking world. Even as we write, the theories 
of one Nobel-winning economist are being tested to dest- 
ruction, along with the British economy. But Mathematics 
has an equally prestigious award, even though, in terms of 
cash value or publicity, it is more modest. It is: 

the Fields medal 

DANIEL DROLET 

When in December of every year, the world's physicists, chemists, 
physiologists, writers, and peace-makers are honoured with Nobel 
prizes, the mathematicians of the world feel a little left out. 
One would think that the great man Nobel would have seen fit to in- 
clude in his list a category for fine work in mathematics. Unfor- 
tunately, he didn't. Why, remains a mystery. There are rumours 
of sharp discord between Nobel and the mathematician Mittag-Leffler, 
even talk of a romantic triangle - although there is no evidence 
for this, or even that either man was ever married. 

Fine work in mathematics deserves world recognition; and the In- 
ternational Congress of Mathematicians makes such an award every 
four years when it meets in convention. A surprising feature of 
this mathematical equivalent of the Nobel Prize is that it was the 
idea of a Canadian mathematician, it is (in universal colloquial 
usage) named after him, the prize money is in Canadian dollars, 
and the medal is minted in Ottawa. 

The award is known as the Fields Medal - though it has no offi- 
cial name and Fields's name does not appear anywhere on it. It 
takes this name from the late J.C.Fields (Toronto). It is fairly 
well known within mathematics, but almost unknown to the ‘outside 
world' - and even mathematicians tend to know very little about J.C. 
Fields. 

John Charles Fields was born in Hamilton, Ontario, on 14th May 
1863. He graduated from the University of Toronto in 1884 with a 
BA in mathematics, obtained a Ph.D. from Johns Hopkins University 
(Baltimore) three years later, and taught in the USA before travel- 
ling to Europe to study. In 1902 he was back at Toronto as a lec- 
turer. He remained there until his death 30 years later, as Asso- 
ciate Professor, Professor, and finally Research Professor. 

He seems to have been a man-about-the-world: he was involved 
with the Royal Societies of both London and Canada, the Coimbra In- 
stitute of Portugal, the Russian Academy of Sciences, the Royal Ca- 
nadian Institute, the International Mathematical Union, and both 
the British and American Associations for the Advancement of Scie- 
nce. He knew many famous mathematicians, including an enduring 
friendship with... Mittag-Leffler. 

In 1924 he persuaded the ICM to meet in Toronto. This was re- 
garded as 'acceptable' because it was in North America, away from a 
Europe fresh from the lst World War. To promote the conference he 
travelled extensively and, thanks to his organizing abilities, the 

32



funds provided by the Ontario and Dominion governments proved more 
than sufficient. 

Shortly before his death on August 9th 1932 he had been promot - 
ing a proposal to the ICM to create an award using these surplus 
funds. This was accepted by the 1932 Congress, and the first Fi- 
elds Medals presented in Oslo in 1936. Originally two medals were 
given at each ICM - every 4 years - but since 1966 the number has 
doubled to four each meeting (except 1974). There are two basic 
criteria for Fields medallists: they must be young (generally 
agreed to mean under 40), and they must have made outstanding con- 
tributions to mathematics. 
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The medal is of gold, 2.5 inches in diameter, and was 
designed by the distinguished Canadian 
sculptor R. Tait McKenzie. On the ob- 
verse is the head of Archimedes, ARCHI- 

8) MEDOUS in Greek capitals, the artist's 

monogram RIM, and the date MCMXXXIII. 

The inscription 'transire suum pectus 
‘ mundoque potiri’ freely translates as 
5 'to transcend one's human limitations 

and master the universe’, a quotation 
from the Roman poet Manilius. The reverse bears the in- 
scription 'Congregati ex toto orbe mathematici ob scripta 

insignia tribuere': 'mathematicians 
gathered together from the whole world 

ap Oe honour noteworthy contributions to a 
b ean Ww ae Knowledge’. Archimedes’ diagram of 

"  CCREREGATI the sphere and circumscribed cylinder 
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The article above first appeared in Carleton Coordinates magazine. 
The cartoon below first appears in Seven Years of MANIFOLD 1968-80. 
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Every so often, MANIFOLD ventured into what can M-19 

only be described as Mathematical Theology. [In 

this article, a worker at the Institute for 

Unsound and Vibration Research (Southampton) 

offers a new use for topological dynamics: 

Sanctification and the Hopf Bifurcation 

PHILIP HOLMES 

Recent speculations on biological oscillations [1] and in particu- 
lar models of brain behaviour involving oscillations [2] have 

  

  
Fig.l St. Sebald 

on the Column, by 

Durer, c. 1501. 
Note vague appear- 

ance of attracting 

orbit and unusual 

radjal flowlines. 
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encouraged the author to reveal a sample of 
his own work. For some years he has been 

interested in the halo as a symbol of holi- 

ness and sanctification: an aura of (inter- 
mittently visible)energy surrounding the 

heads of Saints (Fig. 1). The manner in 

which the halo develops is especially inter- 
esting, since there appear to be few records 
of children born with haloes, excepting, nat- 
urally, the Christ-child (clearly a non- 

generic case). The reasoning is thus: in 

seeking a simple model of mental states, 

represent the brain of the average man as a 
sink Ps in some ambient mental state-space 
M, since it acts as recipient of innumerable 
bits of advice, facts, theorems, etc. 
(Ignore for the moment the case of the obst- 
inate, forgetful fellow, clearly a saddle- 
point pc e€ M.) The mind of a holy man, how- 
ever, is more likely to be a source py « M. 
Now let some flow $¢:M > M, parametrised by 
time t, represent the transfer of mental en- 
ergy (ideas). The problem then reduces to 
that of describing the bifurcation of the 
fixed point ps > py as the potential holy 
man ‘lights up'. The halo provides the ob- 
vious clue: an attracting closed orbit y is 

thrown off by the Saint's mind, which itself 
becomes a source. We therefore have: 

PROPOSITION 1: Sanctification generically 

consists in the creation of an attracting 

closed orbit in a Hopf bifurcation [3]. 

Certain works indicate the existence of mul- 
tiple haloes (Fig. 2), which can be modelled 
by successive Hopf bifurcations, alternating 
attracting and repelling orbits being crea- 
ted (cf. R.Thom's model of the evolution of



Fig. 2 

St. Sebald in the Niche, 

Durer, 1518. 

_
_
 

e 

    
      

a nebula in the material universe, [1] chapter 6. Takens has rec- 
ently published work on generalized Hopf bifurcations [4] but the 
present major application has clearly escaped him. In this resp- 
ect the wide halo of Fig. 1 might be seen as a structurally unstable 
"vague attractor' which subsequently bifurcates to the structurally 
stable triple orbit of Fig.2. Could this be an early example of 
the generic evolution of an attractor? 

The validity of the theory sketched here could only be tested by 
a massive survey of the European artistic heritage, with a view to 
investigating the growth in size, with time, of the closed orbits 
(haloes) of given Saints. Hopf's Theorem predicts a growth rate 
proportional to ve where € = time elapsed after bifurcation (sanct- 
ification) [3]. The author has already contacted theological and 
artistic experts and hopes to persuade the appropriate bodies to 
finance an initial sabbatical year in Italy in order to place this 
Study on a firm basis. 

The author would like to thank his colleagues for their infinite 
patience, gentle care, and encouraging suggestions. 
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This, O Best Beloved, is another tale of the High M-18 
and the Far-Off Times. In the blistering midst 

of the Sand-Swept Sahara lived a Pride of Lions. 

There was a Real Lion, and a Projective Lion, and 
a pair of Parallel Lions; and all manner of Lion 

Segments. And on the edge of the Sand-Swept 

Sahara there lived a 'nexorable Lion Hunter... 

1d new ways to catch a Lion 
JOHN BARRINGTON 

I make no apologies for raising once again the problems of the mat- 
hematical theory of big game hunting. As with any branch of math- 
ematics, much progress has been made in the last decade. 

The subject started in 1938 with the epic paper of Pétard [1]. 
The main problem is usually formulated as follows: In the Sahara 
desert there exist lions. Devise methods for capturing them. 

Pétard found ten mathematical solutions, which we can paraphrase 
as follows. 

1. The Hilbert Method. Place a locked cage in the desert. Set 
up the following axiomatic system. 

(i) The set of lions is non-empty. 
(ii) If there is a lion in the desert, then there is a lion in 

the cage. 
Theorem 1: There is a lion in the cage. 

2. The Method of Inversive Geometry. Place a locked, spherical 
cage in the desert, empty of lions, and enter it. Invert with 
respect to the cage. This maps the lion to the interior of the 
cage, and you outside it. 

3. The Projective Geometry Method. The desert is a plane. Pro- 

ject this to a line, then project the line to a point inside the 
cage. The lion goes to the same point. 
4, The Bolzano-Weierstrass Method. Bisect the desert by a line 
running N-S. The lion is in one half. Bisect this half by a 
line running E-W. The lion is in one half. Continue the process 
indefinitely, at each stage building a fence. The lion is enclos- 
ed by a fence of arbitrarily small length. 
9. The General Topology Method. Observe that the desert is a sep- 
arable metric space, so has a countable dense subset. Some seque- 
nce converges to the lion. Approach stealthily along it, bearing 
Suitable equipment. 

6. The Peano Method. There exists a space-filling curve passing 
through every point of the desert. It has been remarked [2] that 
such a curve may be traversed in as short a time as we please. Ar- 
med with a spear, traverse the curve faster than the lion can move 

his own length. 
7. A Topological Method. The lion has at least the connectivity 
of a torus. Transport the desert into 4-space. It can now be 
deformed in such a way as to knot the lion [3]. He is now help- 
less. 
8. The Cauchy Method. Let f(z) be an analytic lion-valued 
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function, with zZ the cage. Consider the integral 

1 f(z) 
2Ti cz 78 dz 

  

where C is the boundary of the desert. Its value is f(T), that is, 
a lion in a cage. 

9. The Wiener Tauberian Method. Procure a tame lion Ly of class 
L(-~,©) whose Fourier transform [Furrier transform?] nowhere vanish- 
es, and set it loose in the desert. Being tame, it will converge 
to the cage. By Wiener [4] every other lion will converge to the 
Same cage. 

10. The Eratosthenian Method. Enumerate all objects in the desert; 
examine them one by one; discard all those that are not lions. A 
refinement will capture only prime lions. 

Pétard also gives one physical method with strong mathematical 
content: 

11. The Schrodinger Method. At any instant there is a non-zero pro- 
bability that a lion is in the cage. Wait. 

The next work of any significance is that of Morphy [5]. I con- 
fess that I do not find all of his methods convincing. The best 
are: 

12. Surgery. The lion is an orientable 3-manifold with boundary 
and sc [6] may be rendered contractible by surgery. Contract him 
to Barnum and Bailey. 

13. The Cobordism Method. For the same reasons the lion is a hand- 
lebody. A lion that can be handled is trivial to capture. 
14. The Sheaf-theoretic Method. The lion is a cross-section [8] 
of the sheaf of germs of lions in the desert. Re-topologize the 
desert to make it discrete: the stalks of the sheaf fall apart and 
release the germs, which kill the lion. 

153. The Postnikov Method. The lion, being hairy, may be regarded 
as a fibre space. Construct a Postnikov decomposition [9]. A 
decomposed lion must, of course, be long dead. 
16. The Universal Covering. Cover the lion by his simply-connect- 
ed covering space. Since this has no holes, he is trapped! 
17. The Game-theory Method. The lion is big game, hence certainly 
a game. There exists an optimal strategy. Follow it. 
18. The Feit-Thompson method. If necessary add a lion to make the 
total odd. This renders the problem soluble [10]. 

Recent, hitherto unpublished, work has revealed a range of new 
methods: 

19. The Field-theory Method. Irrigate the desert and plant grass 
so that it becomes a field. A zero lion is trivial to capture, 
SO we may assume the lion L # 0. The element 1 may be located 
just to the right of 0 in the prime subfield. Prize it apart into 
LL-? and discard L™!. (Remark: the Greeks used the convention 
that the product of two lions is a rectangle, not a lion; the prod- 
uct of 3 lions is a solid, and so on. It follows that every lion 
is transcendental. Modern mathematics permits algebraic lions.) 
20. The Kittygory Method. Form the category whose objects are the 
lions in the desert, with trivial morphisms. This is a small cat- 
egory (even if lions are big cats) and so can be embedded in a con- 
crete category [11]. There is a forgetful functor from this to 
the category of sets: this sets the concrete and traps the embedded 
lions. 
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21. Backward Induction. We prove by backward induction the state- 
ment L({n): "It is possible to capture n lions". This is true for 
sufficiently large n since the lions will be packed like sardines 
and have no room to escape. But trivially L(n+l) implies L(n) 
Since, having captured n+l lions, we can release one. Hence L(1) 
is true. 
22. Another Topological Method. Give the desert the leonine 

topology, in which a subset is closed if it is the whole desert, or 
contains no lions. The set of lions is now dense. Put an open 

cage in the desert. By density it contains a lion. Shut it 
quickly! 

23. The Moore-Smith Method. Like (5) above, but this applies to 
non-separable deserts: the lion is caught not by a sequence, but by 
a net. 
24. For those who insist on sequences. The real lion is non-comp- 
act and so contains non-convergent subsequences. To overcome this 
let & be the first uncountable ordinal and insert a copy of the gi- 
ven lion between a@ and a+l for all ordinals a < 2%. You now have a 
long lion in which all sequences converge [12]. Proceed as in (5). 
25. The Group Ring Method. Let I’ be the free group on the set G 
of lions, and let ZI’ be its group ring. The lions now belong to 

a ring, so are circus lions, hence tame. 
26. The Bourbaki Method. The capture of a lion in a desert is a 
special case of a far more general problem. Formulate this prob- 
lem and find necessary and sufficient conditions for its solution. 
The capture of a lion is now a trivial corollary of the general 
theory, which on no account should be written down explicitly. 

27. The Hasse-Minkowski Method. Consider the lion-catching prob- 
lem modulo p for all primes p. There being only finitely many pos- 
sibilities, this can be solved. Hence the original problem can be 

solved [13]. 
28. The PL Method. The lion is a 3-manifold with non-empty bound- 
ary. Triangulate it to get a PL manifold. This can be collared 
[14], which is what we wish to achieve. 
29. The Singularity Method. Consider a lion in the plane. If it 
is a regular lion its regular habits render it easy to catch (e.g. 
dig a pit). WLOG it is a singular lion. Stahle singularities 
are dense, so WLOG the lion is stable. The singularity is not a 
self-intersection (since a self-intersecting lion is absurd) so it 
must be a cusp. Complexify and intersect with a sphere to get a 
trefoil knot. As in (7) the problem becomes trivial. 

30. The Measure-Theoretic Method. Assume for a contradiction that 
no lion can be captured. Since capturable lions are imaginary, 
all lions are real. On any real lion there exists a non-trivial 
invariant measure UU, namely Haar or Lebesgue measure. Then uxpu is 

a Baire measure on LXL by [15]. Since a product of lions cannot 
be a bear, the Baire measure on LXL is zero. Hence = 0, a contra- 

diction. Thus all lions may be captured. 
31. The Method of Parallels. Select a point in the desert and in- 
troduce a tame lion not passing through that point. There are 
three cases: 

(a) The geometry is Euclidean. There is then a unique parallel 
lion passing through the selected point. Grab it as it passes. 

(b) The geometry is hyperbolic. The same method will now 
catch infinitely many lions. 
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(c) The geometry is elliptic. There are no parallel lions, so 
every lion meets every other lion. Follow a tame lion and catch 
all the lions it meets: in this way every lion in the desert will 
be captured. 

32. The Thom-Zeeman Method. A lion loose in the desert is an obv- 
ious catastrophe [16]. It has three dimensions of control (2 for 
position, 1 for time) and one dimension of behaviour (being param- 
etrized by a lion). Hence by Thom's Classification Theorem it is 
a swallowtail. A lion that has swallowed its tail is in no state 
to avoid capture. 
33. The Australian Method. Lions are very varied creatures, so 

there is a variety of lions in the desert. This variety contains 
free lions [17] which satisfy no non-trivial identities. Select 
a lion and register it as "Fred Lion" at the local Register Office: 
it now has a non-trivial identity, hence cannot be free. If it is 
not free it must be captive. (If "Fred Lion" is thought to be a 
trivial identity, call it "Albert Einstein".) 
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According to The Hitch Hiker’s Guide to the Galaxy, M-3 

the Answer to the Great Question of Life, the 

Universe, and Everything, is 42. Deep Thought 

wasn't far off: the True Answer is 49. 

small world 

BARRY PILTON 

We are going to create a universe. 

Commensurate with our powers as minor deities, it will be a 
small universe; but we shall populate it with particles capable of 
moving about, coalescing, or splitting into several parts. We 

shall study our universe, and from our deductions we shall draw se- 
veral morals for the would-be experimenter or philosopher. 

To business, then. 

To confine our particles to a small space we take a hint from 
plasma physics, and make our universe toroidal in shape. In fact 
we take the set of all ordered pairs (x,y) where x and y are integ- 
ers modulo 7. We can picture this as a 7x7 rectangle, with oppo- 
Site edges identified in the usual manner. There are 49 points in 
our universe. 

This has quantized space - so we will quantize time. Time, in- 
dicated by t, will take only positive integer values. 

Finally, our particles. If P is a particle, we endow it with 
position p P 

(x (t),y (t)) 
and mass 

mp (t). 

The mass will also be a positive integer. 
Any set of particles which is connected (in the sense that 

points next to each other in horizontal or vertical directions are 
connected, but not diagonal ones) will be said to form a molecule. 
Thus 

O—O 
“he or be are molecules, but ho 

is not. 

Heavy particles move slowly; so a particle of mass m will only 
move at time t if m divides t. The Law of Motion will be 

Pit) = Yx2(t-1) + 1 

y(t) = Sy@t-1) +1 
where the summations are over all particles Q not in the same mole- 
cule as P. (The empty sum, of course, is zero.) 

If at time t two particles of masses m, n are both in the same 
place, they coalesce to form a single particle of mass mtn. 

After particles have moved and coalesced, they may also decay. A 

(*) 
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particle of mass m at (x,y) will decay if and only if 
(1) t is a multiple of n, 

(2) x or y = t (mod 7). 
If x = t (mod 7), it decays into two particles, each of mass m, at 
points (xtl,y). If y = t it decays into two particles of mass m 
at (x,ytl). If both x and y = t, it does both, becoming four par- 
ticles at (xtl,yt+l). 

Thus a particle of mass 5 at (1,3) at time 15 will decay into 
a particle of mass 5 at (0,3) and another at (2,3). 

Denoting a particle of mass m at (x,y) by xy™ we can write this 
symbolically as 

13° 
ZON 

15 03° 23°, 
We now start the universe at t = 0 with a particle of mass 1 at 

(3,2), and see what happens. 

  

  

  

  

  

0 32" 

1 11 i mote 

00! ~92! 720! ~22} 

2 55! 53! 41 33! 

553 50! os! ~ ~=0} 
| 1 1 | ] | 1 4 66 644. 464 44. Le 4 
i -—-; - x . =~ ! 

[so 56! 65} 55 [63! S3y 36! 354 33! 

5 00" 422942” a 
oo" 42? 24? 6? “roa Tm 46! aa) 

6 00° 24742702" 20722! 
7 005 243 4237 22) 

Ir t t 4 
8 00& 243 423 

l | 
9 00° 53 353 

| 
12 22 463 64° 

15 296 33 03° 
| 

6 3 3 

‘8 (hi Hing == 83 TS 
33° 356 363 536 633 55° 

21 33° 356 61° 58° 16° 55° 
| 

24 00& 05° 423 50° 24° 55° 
| 

6 6 3 6 3 6 27 00 05° 613.__ 50 16? 55° —_—__ 
  

    

1 

vv “7 wor ~~ t ; foot 01” 103] fos® 153] fos si2] se 
T 9 

303312 31913956 
| | | 

36 4412 469 64? 11% _ _ 
| ~ lo —— 

| | | ~~ ~~ ee 

44°? 469° 64% 008 “02° ~ 208 ~228 

  

4\



A hypothetical scientist or philosopher observing this behaviour 

would probably notice two things: 
The Law of Symmetry: for t > 0, if there is a particle xy™ there 

is also a particle yx". 
The Law of Increasing Mass: the total mass of the universe is an 

increasing function of time. 
It is easy to prove these laws from the full laws of motion (*). 

But observe the danger which the Law of Symmetry may lead the unwa- 
ry cosmologist into: the line of reasoning "The universe is symme- 
tric, and as far as our observations go, it has always been symm- 
etric. Therefore, in a "Little Bang" theory of creation, the ori- 
ginal particle must have been symmetrically placed, at some point 

(x,x)." 
But actually, it wasn't, it was at (3,2). It then went to 

(1,1); and it would have done the same from any other starting po- 
sition. Symmetry need not run backwards, and maybe the Steady 
State Theory holds after all. 

There is something else rather curious. From time 8 onwards, 

all particles have masses divisible by 3. From the laws of motion 
it is clear that if at any time the 'species' of particles of mass 

divisible by some d has achieved total dominance, then it will be 

self-perpetuating. In this case a self-perpetuating species has 
evolved with d = 3. The point is that the number 3 is unexpected: 
it is not clear that 3 plays any special role in the laws of moti- 
on. It turns up more by luck than judgement. But once it has 
turned up it won't go away again. If conditions permit the exis- 
tence of a self-perpetuating species (life) then it is not surpri- 
sing if such lifeforms appear accidentally, nor is it surprising if 

they take an unpredictable form. 
This particular lifeform evolves rather successfully. By time 

48 every particle has mass divisible by 9, and the species has evo- 

lved to a higher level. 
The basic laws governing this universe are extremely simple, and 

the universe itself is small. Despite this, it displays a large 
range of phenomena, some easy to see, others more mysterious. For 
example, up to time 54, only 27 of the 49 points have at any time 
been occupied by particles. Why ? 

Complicated phenomena may be governed by simple laws. But to 
discover what those laws are by analysing observations, even in the 

present case, is very difficult. 
Experimental scientists take heed! 

  

ESCARGOT HYPERBOLIQUE M-19



Look, let's put it this way: Catastrophe Theory M-14 

may not be the Greatest Thing Since Sliced Bread, 

but it's not the Bermuda Triangle either. The 

real question is: how did René Thom think of it 
to begin with? Here's MANIFOLD's theory... 

Portrait of René Thom 

THEQDOR BROCKER 
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"I would draw your attention, Watson, to the strange M-12 
affair of the bishop on square fl." 
"But there is no bishop on fl, Holmes." 

"That," remarked Holmes drily, "is what is so strange." 

the one@-movz mae 

STANLEY COLLINGS 

The following chess problem is particularly delightful, not least 
because every piece makes a contribution to the solution. It is 
not our intention to deprive the dedicated afficianado of the plea- 
sure of puzzling his head at some length over this one, SO we pre- 
Sent only a few hints towards the solution, arranged progressively 
throughout this selection, starting opposite. 

"You may recall, Watson, that I was foolish enough to allow you 
to rush into print in MANIFOLD-2 with an assertion of mine that the 
only respectable move in a chess problem with the instructions 
‘move and mate in one' would be a pawn promotion to knight?" 

‘Indeed, Holmes, a masterly stroke if ever I..." 
"Masterly, perhaps, but erroneous nonetheless!" 
Holmes passed a flimsy sheet of paper across the breakfast table 

to me. "A gentleman by the name of Collings has just sent this to 
me. What do you make of it, Watson?" 

  

  

  

  

    

                              

"You may care to know that this position is one that might arise 
in play, and that in addition white has moved his QRP twice during 
the last ten moves..." 

There elapsed a period of some minutes while I studied the scrap 
of paper. 
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Between 1954 and 1968 the number of infinite families known do- 

ubled from 9 to 18. Between 1964 and 1968 the number of sporadic 

groups increased from 5 to 14. Reluctantly, we will leave the 

infinite families to their own devices (save to remark that the 

names to look out for are Chevalley, Steinberg, Suzuki, and Ree). 

Instead, we shall discuss the sporadic simple groups, which compri- 

se the current area of activity. 
Apart from the Mathieu groups, no other sporadic simple groups 

were known until Zvonimir Janko discovered one in Australia (hop- 

ping about in the bush, no doubt) in 1965. He found it while try- 

ing to characterize the simple groups of a particular special type, 

and discovered that as well as those already known there was this 

extra one - call it J}. In 1967 He published evidence that two 

further groups, J2 and J3, might also exist: in fact he constructed 

a character table. Every group has a character table, but not 

everything that looks like a character table belongs to a group. 

Thus it came as no surprise when Graham Higman (Oxford) received a 

letter from Walter Feit (Yale) showing that J2 did not exist. Ex- 

cept that one the same day he got one from Marshall Hall proving 

that it did exist. The fundamental flaw in mathematics? Not this 

time. Janko had made a mistake in the character table, which is 

what Feit had found. Nevertheless, there was a group. Marshall 

Hall's existence proof was carried out with the help of the comput- 

er TITAN. A computer again played a decisive role when in 1968 

Higman, John MacKay, and ATLAS proved that Jz also existed. Hig- 

man received the news just before giving a lecture titled Does the 

Big Janko Group exist? and started the lecture by writing the word 

'YES' on the blackboard, adding: 'Does anyone want to know any 

more?! 

That made two groups for 1967, but more were to come. Donald 

Higman (% Graham) and Sims stuck a lot of Mathieu groups together, 

and found a new simple group. Graham Higman found one of the same 

order... with the same character table... and indeed it turned out 

to be the same group, looked at in a different way. Suzuki found 

another, using a geometrical method. 

1968 began as 1967 left off, when MacLaughlin found yet another 

simple group, again geometrically. Geometry appeared to be creep- 

in into the subject, even though it started off as algebra. And 

geometry was to play an unexpected part in the most sensational de- 

velopment so far. Up till now, no more than two new groups had 

been found at once (and those by Janko). But between the first 

and final drafts of this article, John Conway (Cambridge) found 

three - it may be more by now, the details are still being worked 

out - the largest of which contains all but two of the known spor- 

adic simple groups. 

The story begins in a totally unrelated part of mathematics: 

sphere-packing. The basic problem here is how to pack large num- 

bers of equal spheres in the 
most economical manner. In 
two dimensions, the answer is 

the packing on the right. 
But in higher dimensions, less 

is known. John Leech disco- 

vered a very economical pack- 
ing in 24 dimensions. He 

 



suspected that the symmetry group of this packing might have inter- 
esting properties, and tried to 'sell' the group to a number of 
mathematicians, meeting much sales resistance, until Conway became 
interested. After a lot of hard work, Conway found that the group had order 2°*.3°.5*.7?.11.13.23, and telephoned John Thompson, one 
of the world's foremost group-theorists, who was in Cambridge at 
the time. 'I've got a subgroup of 024(Z) of order...' said Conway. 
Ten minutes later Thompson rang back. 'It's got a simple quotient 
of half the order.' 

Conway set about discovering more properties of the group, and 
in the process found two more Simple groups as subgroups. There 
may well be more lurking inside it, as yet undiscovered. 

In a subject which starts as algebra and ends up involving 24- 
dimensional sphere-packings, it is hard to predict what will happen 
next. Perhaps the solution to the classification problem is just 
around the corner. Perheps the problem has no sensible solution. 
All that seems certain is that future developments are likely to be 
as peculiar as those of the past. 
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That was 1968. By 1981 so much more has happened 
that we shall provide a brief: 

Update 

The number of sporadic simple groups is now 26; there are no new 
infinite families; the list is complete. According to Michael 
Aschbacher and Daniel Gorenstein, prime movers of a programme to 
classify all finite simple groups, recent results of a number of 
group-theorists have filled the gaps in the programme. 

One striking result is the construction, by R.L.Griess, of the 
Monster, a simple group of order 

27 379 59.78 .117.133.17.19.23.29.31.41.47.59.7] 
whose existence was conjectured by Bernd Fischer. A previously 
conjectured subgroup, Baby Monster, was constructed earlier by 
Sims and Leon. The Monster is currently the subject of several 
wild (and probably justified) conjectures concerning possible links 
with complex analysis and modular functions, and it is clear that 
something pretty deep is going on - even if no one is sure what! 
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‘Twas brillig, and the slithy toves M-13 Did gyre and gimble in the wabe: 
All mimsy were the borogoves, 
And the mome raths outgrabe. 

Lemmawocky 

CAROL LEWIS 

Thus, as educated persons know, runs the first verse of Lewis Car- roll's Jabberwocky. He goes so far, in Alice, as to explain what the words mean. I find his explanation Slightly evasive: it gives a meaning to each word separately, but not a coherent one to the entire stanza. Yet it clearly possesses a coherent Structure, and hence a deeper significance - but not one readily explicable in Alice. Now Carroll was a mathematician - and what could be more difficult to explain to a Victorian child than mathematics? 
Jabberwocky, then, is mathematical in content. The natural break at the end of line two of this first stanza suggests that it be interpreted as a 

THEOREM Suppose (a) it is brillig, and (b) the slithy toves gyre and gimble in the wabe. Then all borogoves are mimsy, and the mome raths outgrabe. 

It remains only to decipher this. It turns out that Carroll had anticipated a considerable part of what, until this article was published, has been thought of as very modern mathematics. This can only lead to a radical reassessment of Carroll's role as a ma- thematician. 
Clue 1 is wabe. Carroll says it derives from "way beyond! and "way before’. The explicit avoidance of ‘way below' makes it cle- ar that the wabe is the Euclidean plane R?. Gyre and gimble refer to motion: one is immediately put in mind of a dynamical system, a flow. 
Slithy toves: what are they? We are told that slithy means ‘slippery and slidy', so the toves must Slide along the flow. They 

are manifestly the tangent vectors 
(see diagram), as borne out by the oc- 
currence of the initial t and ve in 
both words. Indeed, one might specu- 
late that the word was originally tave, 
Short for tangent vector, but that the 
printer misspelt the word out of igno- 
rance. 

What was brillig? It can only be 
the dynamical system itself! SO we 
can paraphrase Carroll's Theorem as 
follows. Consider a brillig dynamic- 

toves (taves?) al system whose tangent vectors flow 

49



in the plane. 
raths outgrabe. 

Then all of its borogoves are mimsy, and its mome 

I stood awhile in uffish thought, thumbing through Smale's sur- 

very article [3] on differentiable dyn amical systems... and found 

a theorem of Peixoto [1]: any structurally stable system in R? has 

finitely many singularities, and the a- and w-limit sets of every 

trajectory are singularities or closed orbits... 

So brillig means ‘structurally stable' and borogoves are singu- 

larities. 
ries; rath is a misprint for 'path'. 

Mome, far-from-home, refers to limit sets of trajecto- 

Outgrabe is a verb which 

must correspond to 'tend to a closed orbit or singularity', perhaps 

grow out gradually (i.e. stay within a bounded set). Now the who- 

le picture emerges, and we render a tentative translation of the 

entire poem. 

'Twas brillig, and the slithy toves 

Did gyre and gimble in the wabe: 
All mimsy were the borogoves, 

And the mome raths outgrabe. 

Beware the Jabberwock, my son! 

The jaws that bite, the claws that 

catch! 
Beware the Jubjub bird, and shun 
The frumious Bandersnatch! 

He took his vorpal sword in hand: 

Long time the manxome foe he 

sought - 

So rested he by the Tumtum tree, 

And stood awhile in thought. 

And, as in uffish thought he stood, 

The Jabberwock, with eyes of flame, 

Came whiffling through the 
tulgey wood, 

And burbled as it came! 

One, two! One, two! And through 

and through 

The vorpal blade went snicker-snack! 

He left it dead, and with its head, 

He went galumphing back. 

And hast thou slain the Jabberwock? 

Come to my arms, my beamish boy! 
O frabjous day! Callooh! Callay! 

He chortled in his joy. 

'Twas brillig... (reprise) 

A structurally stable dynam- 

ical system in the plane has 

finitely many singularities, 

and the limit sets are clos- 

ed orbits or singularities. 

The hero, a research stu- 

dent, is cautioned by his 

supervisor against pitfalls, 

and the work of certain mat- 

hematicians, especially those 

who might ‘snatch’ his ideas. 

He sets to work, but meets 

no success. He pauses to 

let his subconscious function. 

An idea forms and 'burbles’ 

up to the surface of his mind. 

(Compare with Poincaré’s [2] 
discussion of the role of the 

subconscious in mathematics. ) 
He realises how to solve 

the problem by a method inv- 

olving a double induction, 
and cutting up the plane. 

Having found a proof, he rus- 

hes off to tell his supervi- 

sor the main idea. 

"You've proved it? Oh, 

well done, lad! You'll get 

a Ph.D. out of this! And 

I’11 get my NSF grant renew- 

ed!” 
(Restatement of Theorem.) 

It is intriguing to speculate on the advances that might have 

been made, had Carroll's Theorem been deciphered earlier. 
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MANIFOLD had a minor obsession with Jabberwocky. M-6 A translation into Latin elegiacs, from the 
Lewis Carroll Picture Book of 1899, was kindly 
communicated to us by Gaberbocchus Press (we were 
not alone), now associated with De Harmonie 
(Singel 390, 1016 AJ Amsterdam - DO write for a 
catalogue if you like the unusual). And so: 

Slythaeia Tova 
the late Mr. HASSARD DODGSON (after Lewis Carroll) 

Hora aderat briligi. Nunc et Slythaeia Tova 
Plurima gyrabant gymbolitare vabo; 

Et Borogovorum mimzebant undique formae, 
Momiferique omnes exgrabuere Rathi. 

‘Cave, Gaberbocchum moneo tibi, nate cavendum 
(Unguibus ille rapit. Dentibus ille necat.) 

Et fuge Jubbubbum, quo non infestior ales, 
Et Bandersnatcham, quae fremit usque, cave.’ 

Ille autem gladium vorpalem cepit, et hostem 
Manxonium longa sedulitate petit; 

Tum sub tumtummi requiescens arboris umbra 
Stabat tranquillus, multa animo meditans. 

Dum requiescebat meditans uffishia, monstrum 
Praesens ecce! oculis cui fera flamma micat, 

Ipse Gaberbocchus dumeta per horrida sifflans 
Ibat, et horrendum burbuliabat iens! 

Ter, quater, atque iterum cito vorpalissimus ensis 
Snicsnaccans penitus viscera dissecuit. 

Exanimum corpus linquens caput abstulit heros 
Quocum galumphat multa, domumque redit. 

‘Tune Gaberbocchum potuisti, nate, necare? 
Bemiscens puer! ad brachia nostra veni. 

Ah! frabuisce dies! iterumque caloque calaque 
Laetus eo' ut chortlet chortla Superba senex. > 

Hora aderat briligi. Nunc et Slythaeta Tova 
Plurima gyrabant gymbolitare vabo; 

Et Borogovorum mimzebant undique formae, 
Momiferique omnes exgrabuere Rathi. 
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Topology. To the modern mathematician, a powerful M-2 

and indispensable tool. To many "practical" people, 

a pointless abstraction. But significant ideas are 

never pointless; and lack of imagination is never truly 

practical. As the century unfolds, we are witnessing 

the rise of: 

Topology in the Scientist’s Toolkit 

CHRISTOPHER ZEEMAN 

Topology is a sort of geometry, so let me start right away with a 
theorem. Imagine a ball, covered all over with hair, and then try 
to comb the hair down smoothly. The theorem says that you can't - 

just that. There's got to be a tuft or a whorl somewhere. For 

example, a coconut is covered with hair and it has a tuft at the 
‘op and a parting at the bottom. Alternatively, if we tried to 
comb the coconut round sideways, then there'd be a whorl at the top 

and a whorl at the bottom. 
I admit that this sounds a rather whimsical theorem, but it does 

have practical applications, and it can be generalized to deep and 
powerful theorems in higher dimensions. But before we go into hi- 
gher dimensions, let me mention a couple of applications. 

The first one is about the weather. There can never be a stable 
weather situation with the wind blowing smoothly all over the Earth, 

otherwise we could imagine the Earth to be our hairy ball and comb 

the hair down in the direction the wind was blowing, which would be 

a contradiction. So there must always be some whorls or cyclones, 

and consequently unstable weather. The second application is in 
nuclear energy. If we are trying to create nuclear fusion, we 
have got to contain the whole process in a magnetic bottle, and on 
the surface of the bottle the magnetic field has to be everywhere 
tangential to the surface. Now if we had a spherical shaped bott- 
le then we could comb the hair down in the direction of the magnet- 
ic field, which would again give us a contradiction. So it's no 
good having a spherical bottle. Nor is it any good having an egg- 
shaped bottle, because we can't comb a hairy egg smooth either. We 
must have a completely different type of bottle, because it must 
have a surface that can be combed smooth. For example, a doughnut 
would do. The surface of a doughnut, the topologists like to call 
a torus. In other words the torus is the same as a rubber ring or 
inner tube. Now a hairy torus can be combed smooth by merely run- 
ning one's hand around it. Therefore a magnetic bottle shaped 

like a torus will be all right for nuclear 
fusion. Alternatively we could have a 

knotted torus, got by tying the ends of a 
piece of hosepipe in a loose knot and then 
joining the ends together. Another exam- 
ple of a bottle, which I don't think the 
physicists have tried out yet, is obtained 

by taking a ball and boring out a knotted 
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hole through it - the sort of hole that one would imagine a drunken 
woodworm might make by mistake. 

So much for a magnetic bottle. But, aS you can see, we've al- 
ready begun to look at geometry from a completely fresh viewpoint. 
We are no longer interested in size, or straight lines, or in the 
difference between a sphere and an egg. We're interested in dif- 
ferences that seem much more basic, like the difference between a 
torus and a sphere. The torus has a hole and the sphere hasn't. 
The torus can be combed smooth and the sphere cannot. These diff- 
erences are so basic that they persist even when the two surfaces 
are subjected to the most drastic type of deformation. And this 
is the secret of topology, and why it is sometimes called rubber- 
sheet geometry. Two objects are said to be topologically the same 
if, when we imagine them made of rubber, we can deform one continu- 
ously into the other. But no cutting or tearing is allowed. For 
example, we can deform a sphere into an egg, and so they are topo- 
logically the same. More surprisingly, we can deform a cube into 
a sphere: imagine the cube to be made of rubber and then pump it 
up. But a torus is not the same as a sphere because, however much 
we bend it about or pump it up, we can never get rid of the hole. 
Topology is the study of properties that are preserved under these 
continuous deformations. For example, whether or not a surface 
can be combed smooth. 

Another good example of a topological property is the linking 
of circles. It's a favourite trick of conjurors to take a pair 
of metal circles and suddenly link them together. Of course they 
cheat by slipping one of the circles through a little hidden catch 
in the other. But the trick is always very effective because it 
shocks our intuition to the core. We know intuitively that even 
if two linking circles are made of string, then however much we 
waggle them about, they always remain linked. The intuition is 
very deep, because children acquire it before they can talk. I 
remember my son discovering he could link a red plastic ring on his 
arm one day in the bath when he was about six months old: both he 
and I sat entranced while he put it on and off his arm about twenty 
times. At that moment his intuition about linking was born. So- 
metimes our intuition creeps into our language: for instance we say 
that we've walked in a circle when we really mean that we've walked 
in a closed loop, which is topologically the same as a circle. And 
when we talk about inside and outside, we are intuitively affirming 
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the famous Jordan Curve Theorem, which says that any closed curve 

has an inside and an outside. 

To the early mathematicians these 'facts' like curves having in- 

sides and outsides or circles being able to be linked, were intuit- 

ively so obvious that they never thought of proving them. And 

when people came to prove them, the proofs turned out to be surpri- 

singly hard. 
Here's a nice example: construct three circles such that any two 

are mutually unlinked, but the three together are linked. It's 

quite easy to construct the three circles... 

  

. but how do we actually prove that they are linked? Of course 

the scientists would make them out of wire or string and fiddle ab- 

out for a few minutes, and then say "there you are: they're linked", 

and this would be a valid scientific proof - but no good as a math- 

ematical proof, because it would be open to later refutation, if 

some genius came along and showed us how to unlink them. No, a ma- 

thematical proof must be a watertight argument holding for all 

time. And to show our three circles are linked, a topologist has 

to use quite sophisticated group theory. 

This, of course, is one of the delights of topology: the use of 

sophisticated algebra to prove geometrical things. It all began 

with Euler in the 18th century, who discovered an interesting for- 

mula for polyhedra. He showed that in any polyhedron like a pyr- 

amid or a cube, the number of 
corners, minus the number of ed- 

ges, plus the number of faces, 

always comes to 2. Very remark- 

able. For example, in the cube, 

there are 8 corners, 12 edges, 
and 6 faces; and so 8-12+6 = 2. 

But what Euler didn't realise, 

and what Poincaré discovered 
pT eee just before the beginning of 

yy this century, was that Euler's 
formula only worked for polyhed- 
ra that were topologically equal 

to a sphere. If we chop a torus up into vertices, edges, and 

faces, then we don't get 2 but 0. And if we chop up a double dou- 

ghnut, then we get -2. And so on. In each case, the number that 

we get depends only on the surface and is independent of the way 

in which we chop it up. Moreover, the number remains the same 
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when we subject the surface to all these drastic topological defor- 
mations, and so we call it invariant. In honour of Euler, Poinca- 
ré called this number the Euler invariant. 

This is the secret of algebraic topology: the discovery and use 
of invariants. If two figures have different invariants then we 
cannot deform one into the other, even if we try for a million yea- 
rs. Consequently we can prove two figures topologically different. 
In this way we can prove mathematically that the sphere is differe- 
nt from the torus, and with another invariant we can prove that lin- 
ked circles cannot be unlinked, and so on. When Poincaré discover- 
ed the Euler invariant, he couldn't have dreamt of the wealth of 
invariants and theorems that have since sprung from that small seed. 
Poincaré's work around 1899 was so Significant that topologists 
generally honour him as the father of the subject. 

You may ask why we need this luxury of mathematical proofs for 
things whose scientific proof is so obvious. In the three-dimens- 
ional world, it's a matter of taste which type of proof one prefers; 
but in four or five dimensions or up in 101 dimensions the mathema- 
tical proof is a necessity, because the scientific proof just does 
n't exist. It's in the higher dimensions that topology really 
gets interesting - because then we can prove theorems that we cann- 
ot quite visualize, and there are all sorts of surprises and new 
phenomena. It's a mysterious and beautiful world. 

But what are these higher dimensions, and why do we bother with 
them? Let's agree right away that they are figments of our imagi - 
nation - nobody is trying to say they exist in the same way that 
length, breadth, and height exist in our three-dimensional world. 
Nor are we trying to say that time is the fourth dimension, althou- 
gh in physics it is sometimes convenient to treat it so. It's 
beast to look at it from another angle, the business of solving eq- 
uations. 

All sorts of scientific problems are continually coughing up equ- 
ations to solve. For example, suppose we are trying to make an 
economic model of the country: we might have a hundred and one var- 
lables: xj] might be the gross national product, x2 the price of pe- 
trol, x3 the unemployment rate, and so on. And all these variables 
and their rates of change might be connected by many equations and 
differential equations, and having got this huge long list of equa- 
tions, what on earth are we to do with them? We can't solve them 
because they are too complicated. But we can attack them either 
quantitatively or qualitatively. The quantitative approach is to 
put the whole thing on to a computer. The computer will tell us 
the precise answer in any one instance or any number of instances. 
But it will not give us any intuitive grasp of the problem as a 
whole. The qualitative approach on the other hand is quite differ- 
ent: it is geometrical and aims to give us a global picture, to see 
the problem in a Gestalt way, to visualize all the solutions at 
once and their interrelations with one another - without bothering 
about the detailed answer in any one instance. We go about it as 
follows: for each variable x], x2, etc. we invent a new dimension, 
and so we get a 101 dimensional space. The equations then repres- 
ent some geometrical figure in this space, or a manifold as the 
topologists like to call it. The differential equations give rise 
to flow lines on the manifold. If you like, you can think of the 
manifold as being hairy, and all the hairs lying down in the 
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direction of the flow lines. Any point on the manifold will rep- 
resent a state of the whole economic system. And as time progres- 
ses, this point will flow along the flow lines. It may flow round 
and round in a closed loop or it may spiral off to infinity, or it 
may flow to en attractor point where it settles. Going back to 
the familiar homely examples of manifolds in three dimensions, nam- 

ely the surfaces that we had before, the flow on a torus would go 

round and round in closed loops with no attractor points. The 
flow on a coconut would be all towards the tuft at the top which 
would be the only attractor point. 

  

So you can see that these whimsical theorems about hairy surfaces 
do give our intuition something to cling on to while we grapple 
with the flow on a 101-dimensional manifold. In our economic 
problem the flow round a closed loop might represent periodic booms 
and recessions, and the spiral off to infinity might represent chro- 
nic inflation, and the attractor point might represent a steady but 
stagnant economy. Qualitatively we would want to understand the 
manifold as a whole, so as to avoid these perils and steer the eco- 

nomy into a safe flow pattern. 
So much for the economy. Let's consider another example: the 

famous three body problem, the study of the motions of the Sun, 

Earth, and Moon. It was probably this problem that originally sti- 
mulated Poincaré to invent topology in the first place. Nowadays 
it has become a pressing practical problem of how to put a satellite 
into orbit between the Earth and Moon. Mathematicians have become 
a dab hand at the quantitative approach, using computers to predict 
particular orbits - but as yet they still don't properly understand 
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the qualitative aspect. Each of the three bodies has three coord- 
inates of position and three of momentum, so that altogether we 
have 18 variables, and so it's a geometrical problem in 18-dimensio- 
nal space. If we take coordinates at the centre of gravity of the 
three bodies, this has the effect of removing 6 dimensions and 
brings us down to 12; if we fix the energy level this brings us 
down to an 1l-dimensional manifold. Each point of the manifold 
represents a state of the dynamical system, and as time progresses 
the point flows along flow lines in the manifold, and represents 
the way the three bodies revolve around one another. 

I've described these two examples in economics and astronomy to 
illustrate how often problems in many dimensions crop up in mathen- 
atics. The topologist, however, is generally less interested in 
the applications than in the manifolds themselves. He likes to 
Study the manifolds, to classify them, and investigate the number 
of different dimensional holes they have. He likes to classify 
the way they can be linked or knotted, and embedded in one another. 
He studies flows on manifolds and classifies the different types of 
flow lines. Since 1960 we have witnessed the greatest development 
in the theory of manifolds that there has ever been. 

In a way it's art for art's sake: it is the intrinsic elegance 
of the subject rather than the applications that dictates the way 
the subject grows, and the direction of research in topology. 
Like all branches of pure mathematics, it paradoxically becomes 
both simpler and more complicated at the same time. Every day we 
discover more and more theorems, and so topology becomes more com- 
plicated; but at the same time new underlying patterns reveal them- 
selves and so it becomes simpler. We develop a confidence in han- 
dling problems that were previously beyond Man's comprehension. At 
first topology was strictly for topologists, but now it is rapidly 
becoming part of the toolkit of many scientists. 

Personally, one of the most exciting developments that I forsee 
in the next twenty years will be the increasing use of topology in 
biology, and even the creation of a subject called theoretical bio- 
logy analogous to theoretical physics. Up to now biology has nee- 
ded to use very little mathematics, because most of the interesting 
experiments could be done without bothering with it (apart from a 
little statistics). But now biology is hitting problems that may 
need really sophisticated mathematics before we understand them. 
Let me mention two examples in particular. The first is the global 
activity of the brain. I have worked on this myself, in terms of 
the flow on a 10,000,000,000-dimensional manifold. The second 
area is in morphogenesis - how the egg develops into an embryo and 
eventually into an adult animal. The structural stability of spe- 
cies, that is to say why all the animals in one species more or 
less look alike and have the same organs, is the greatest unsolved 
problem in biology today. It's all very well to say that we have 
discovered the code of life, the sequence of DNA molecules in the 
genes; but nobody yet has a clue to how this code actually works. 
Eventually we have got to explain how the code instructs the embryo 
to grow and develop folds and to differentiate into the multifari- 
ous different organs of the body. One of the leading pioneers in 
describing these changes (not explaining them yet) has been the em- 
bryologist C.H.Waddington of Edinburgh. Today we witness a fasci- 
nating development: one of the world's greatest topologists, René 
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Thom of Paris, has taken up Waddington's work and applied topology 
to biology to push the description one stage further towards an ex- 
planation. He has written a book shortly to be published. 

Thom describes the chemistry of the embryo in terms of a high 
dimensional manifold, and visualizes the chemical changes being 
controlled by a flow pattern which is itself caused by chemical gr- 
adients set up by the genes. At each point of the embryo the che- 
mical state is flowing towards its attractor. So, as Thom rather 
poetically puts it, the whole embryo is being blown towards its at- 
tractor surface by the metabolic wind. At the same time, and the 

understanding of this point is one of Thom's strokes of genius, 
the flow causes the attractor surface itself to develop folds or 
Singularities. It is these folds which cause the precise nature 
of the morphogenetic changes such as limb bud growing into two 
bones. The surprising thing is that there are only seven possible 
types of fold. So these seven types are responsible for all sim- 
ple growth changes in all living things. Suddenly amidst the ap- 
parent complexity of life, we glimpse just a few simple controls. 
It is a classic example of a piece of knowledge developed by pure 
mathematicians for its own sake, and suddenly used to explain son- 

ething that had previously looked quite hopeless. It pierces to 
the heart of the matter. 

k* kK Kk kK Ke kK Kk Kk 

HET a DO NOT READ THIS NOTE UNTIL YOU 

HAVE READ PAGE 45. 

"There are of course Watson, two possible mating moves, both requi- 
ring some knowledge of how the play has proceeded. There are a 
number of potentially useful observations that we can make immedi- 
ately." 
"Tl fail to see anything useful, Holmes." 
"IT commend to your attention the strange affair of the Bishop on 
fl, Watson." 
"But there is no Bishop on that square!" 
"Precisely, Watson! We may then ask rather pertinently... where 
did the Bishop on dS come from, then?" 
"Holmes! And the Bishop on e5 also?" 

"Indeed, Watson." 

The Bishops are of course promotees. Bishops do not change the 
colour of their squares during play, and neither of the Bishops 
on squares fl and f8 at the start of the game can have moved. 
Also, the Bishop now on eS can easily be seen to have been the pro- 
motion of a pawn that captured as it was promoted... 

The next hint is on page 84, 

xk kek kK kK Kk Kk Kk Ok 

A MANIFOLD reporter, walking through one of our more establi- 
shed universities, came across a sign bearing the legend: 
CONTROL ENGINEERING. Being the purest of pure mathematici- 
ans, he heartily agrees! M-3 
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Tt all began with Von Neumann and Morgenstern's 
‘Theory of Games and Economic Behaviour’. But 
in mathematics, as in real life, many questions 
of strategy more resemble: 

A Pandora’s Box of non-Games 

ANATOLE BECK and DAVID FOWLER 

In the study of Games, as in many other intellectual pursuits, one 
of the important problems is to Find The Question. When the ques- 
tion has been found, the answer may be sought in good time. In 
Game Theory, there are simple games, like the matrix games, and 
very, very complex games. Today, the centre of Game Theory is oc- 
cupied by the theory of cooperative games, in which it is not yet 
known what an answer would be, much less how to find one. We will 
include below a few simple cooperative games. In addition, we 
will exhibit some things which are almost certainly games, except 
that they are so ephemeral, so indistinct, that they still defy an- 
alysis. Unlike Chess or Go, where the complexity arises from the 
multiplicity of possible strategies, the difficulty here arises be- 
cause of the great simplicity. No doubt if the games were more 
complex, the difficulties would be hidden. Let's start with an 
English game: 

1. Finchley Central. Two players alternate naming the stations on 
the London Underground. The first to say 'Finchley Central' wins. 
It is clear that the 'best' time to say ‘Finchley Central' is exac- 
tly before your opponent does. Failing that, it is good that he 
should be considering it. You could, of course, say 'Finchley Cen- 
tral' on your second turn. In that case, your opponent puffs on 
his cigarette and says 'Well,...'. Shame on you. 

2. Penny Pot. Players alternate turns. At each turn, a player 
either adds a penny to the pot or takes the pot. Winning player 
makes first move in next game. Like F.C., this game defies analy- 
Sis. There is, of course, the stable situation in which each play- 
er takes the pot whenever it is not empty. This is a solution? 

Penny Pot has an interesting variant: 
3. Penny Pot with Interest. The Pot is a bank account, on which 
the players draw interest, which they share. 

The next game is a three-person Symmetric game. 
4. Lucky Pierre. Each of the three players chooses a positive in- 
teger. If all three numbers are different, then the one in the 
middle collects a franc from each of the others. If two are the 
same, the odd man out collects. If all are the same, then no dice. 
This game has some interesting analysis. If two of the players 
gang up on the third, then they can take 4 and 5S. No matter what 
happens, one of them wins. They share the loot. To make the 
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game have meaning, there has to be some sort of real bar to collus- 

ion. If there is, and if all the players are thought of as intel- 
ligent (where did that hypothesis come from?), then we have the 
following chain of theorems. 
Theorem 4.1 No one ever plays l. 
Proof There is almost no hope of winning when you play 1. Only 
if the other two tie, can you get anything. And then not much. 
QED (7). 
Theorem 4.2 No one ever plays 2. 
Proof Since no one ever plays 1, by the previous theorem, the 

same reasoning applies to 2. QED (??). 
Theorem 4.3 No one ever plays 3. 
Proof Obvious (27777727???) ! 

There are other theorems, too numerous to mention, and which to- 

gether imply: 
Theorem No one ever plays. 

Proof Left to the reader as an exercise (!!). 

This analysis is similar to that of the Surprise Examination, 
for those of you who know it. Another game with the same analysis 

is: 

5. Big Number. Two players. Each chooses a positive integer. 

The owner of the smaller integer pays a rupee to the owner of the 

larger. Theorems 5.1,5.2,5.3, etc. are left for formulation to 
the reader. 

Big Number differs sharply from 
6. More Money. Two players with literally infinite resources. 
Each bets an amount of money. The larger bettor wins the stake of 
the smaller (see Marx, passim). Here, it is common to see players 
betting pennies, except from time to time. Similar to F.C. and 
Penny Pot, in some ways. The object, of course, is to win, rather 

than come out winning. Only when you have infinite resources can 

there be a distinction between these. 

7. Come to Dinner. Two players, Source and Sink. Mr. Source of- 
fers dinner to Mr. Sink ('Come to dinner'). Mr. Sink refuses, in- 
dicating that he would like dinner, but courtesy forbids (e.g. ‘It 
is late, and your wife is not expecting me"). Source insists ('We 

have Stroganoff tonight, and Denise always makes plenty'). Sink 
ducks again. Finally Source says 'Very well, some other time.' 
Or Sink says 'All right, since you insist’. Whoever says this 
line WINS. The game is played for two prizes, Dinner and Honour. 
The principal object is to get (resp. avoid giving) Dinner, and to 
do so while obtaining as much Honour (measured in rounds) as possi- 
ble. Both players accrue Honour, but no amount of Honour can com- 

pensate for the loss of Dinner. The payoff is non-Archimedean. 

Note the similarity of this game to F.C. and P.P. 

8. Tweedledum and Tweedledee. The Red Queen offers 1000 marks to 
Tweedledum and Tweedledee if they will agree how to share it; time 
limit. Tw-m offers 50-50, but Tw-e holds out for DM 650: 

Tw-m: If you don't take this, you'll get nothing. Come on, 
it's DM 500 or nothing! 

Tw-e: Same goes the other way: do you want the DM 350 or not? 
If you think this is a simple game, imagine the inventor who has a 

device which can save the telephone company $ 1,000,000 a year. 
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The device is patented, and no one but the telephone company can 
use it. How much is his share of the take? 

9. Winken, Blinken, and Nod. Same Red Queen, having failed to di- 
spose of her swag to Tw&Tw Ltd., offers same to Wn, Bn + N on the 
following terms. If they all will agree on the mode of sharing, 
they get DM 1000. If two agree without the third, they get the 
following, depending on which two they are; odd man gets nothing: 
Wn+Bn S500, Wn+N 750, Bn+N 600. No agreements mean no dough. Who 

gets how much? Shame on you if you don't hit the patsy for the 
whole grand. 

Tw&Tw and Wn,Bn+N are called cooperative games. If you think 

these are screwy, you should see what happened the day the Red Que- 
en offered some cash to Haupt, Voll, Blut, and Wunden. 

10. An Infinite Game. A real mathematician's game with a real 
mathematician's solution. A and B alternate choosing positive 
(4 0) real numbers to form a decreasing sequence; they play forever. 
At the Trump Of Doom they add up their choices (infinitely many). 
If the sum is infinite or rational, A wins. Otherwise B. How 
does it come out? 

kek Kk kK eK Kk OK OK 

The ubiquitous Eve LaChyl gave the answer in M-4: B wins. This is 

because the rationals are countable. By making his choices decre- 

ase faster than 2™", B can ensure convergence. By imposing other 

conditions he rules out the n-th rational in an enumeration as a 

possible sum. Details left to the reader. 

The article provoked some correspondence, duly recorded in M-4. 

Additional games included: 

Miss Take. A panel of judges view a selection of distinct but un- 
distinguished young women. This preliminary is traditional but 
unnecessary to what follows, when the judges each nominate one of 
the women as being the one most likely to be chosen by all the oth- 
er judges. All judges have this criterion, and no other, in mind. 

One Arm Band-Aid. A solitaire game. The player pays sixpence to 

pull a handle, when pretty coloured symbols flash before his eyes. 
There is no other penalty for losing. No one ever wins. 

In M-5 M.Henton of New Addington noted with horror that there is an 

isomorphism between Finchley Central and the game commonly known as 

"Nuclear Deterrent’. "It occurs to me that we should work very 

fast to analyse the non-games, before we are left with a non-world." 

Which reminds us of Larry Markus's favourite non-game. Two play- 

ers play chess (normal rules). Afterwards, they toss a coin to 

see whether checkmate means ‘'win' or ‘lose’. There is again a 

real-world isomorph, called 'Advanced Technology’. There is anot- 

her one, called 'Lack of Advanced Technology’. 

kk kK kk wk kK KR OK 

The longest known sequence of primes in arithmetical progres- 

Sion, consisting of 16 primes, has been found by S.C.Root of 
Massachusetts. The first in the progression is 2236133941, 
and the common difference is 223092870. (As a check, the 
16th prime is 5582526991.) M-6 
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A proof, in practice, is seldom a series of logically M-16 
connected steps like the textbooks say. Life is too 

short. The main point is to be convincing. There 

are many ways to add conviction to an argument: we 

look at one that is widely popular... 

the MANIFOLD guide to Handwaving 

Cosgrove 

THE ONLY 

METHOD TO 

PROVE THIS 

THEOREM... 

wy VA 
oe 

    

«»-l AM ABSOLUTELY SURE... 

---IS TO PROCEED AS FOLLOWS...   
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BUT BEFORE GOING 
ANY FURTHER... 

2» WE MUST CHECK THE 
HYPOTHESES OF THE 

LEMMA ARE 
SATISFIED! 

     
UNFORTUNATELY, 
THEY AREN'T. 

  
». BUT WE CAN EASILY 
AVOID THIS DIFFICULTY... 

    
«.-BY MAKING 

SOME... -« MINOR 

ADJUSTMENTS 
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Despite - or possibly because of - their excursion M-10 

into Maze Theory, Theseus and the Minotaur have not 

managed to travel more than the odd mile or so from 

the centre of the Labyrinth; and they now tend to 

spend their time in mathematical pastimes. We 

eavesdrop once more... 

Meanwhile, back in the Labyrinth... 

STEVEN EVERETT 

Theseus: 1152! 

Minotaur: Was that a factorial or an exclamation mark? 

Thes: Oh, an exclamation mark - I'm nowhere as high as 1152! 

Mino: What are you doing, then? 

Thes: The four fours problem - trying to represent numbers by four 

4s combined using mathematical symbols. 1152 is 4!4!+4!4! - 
and I do mean ! 

Mino: (Checking first) Yes, that's right. That doesn't seem bad 
at all - isn't 1152 terribly good? 

Thes: Well, it would be if I had all the numbers up to 1152, but 
so far I've only got an unbroken sequence as far as 873. 

Mino: What's the highest that you have? 

Thes: 1152. 

Mino: Surely you can keep going to as high a number as you please? 

I mean, isn't 1152! just (4!4!+4!4!)! and so on - just add- 
ing factorial signs? 

Thes: (Slowly - which gives you an idea of the abilities of this 
pair) Yes. 

Mino: 873 seems reasonable, though. 

Thes: It's not bad. Rouse Ball won't be able to do any better 
than this until 1912. 

Mino: Who's Rouse Ball? 

Thes: Oh, he's someone who hasn't been Bohrn (sic) yet! 

Mino: What's sic mean? 

Thes: Oh, that's to mark a horrible pun, because of what's coming 
later in this script. 

Mino: I'm doing all right so far - I'm as far as 12, but I can 
only use three 4s - either as 4+4+4, or as 4x4-4. How can 
I get to use four? 

Thes: Well, you could use V/4xv4x4 - 4, but there's another way 
which is just to multiply one of your answers by 1, using 
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Mino: 

Thes: 

Mino: 

Ghes: 

Mino: 

Thes: 

Mino: 

Thes: 

Mino: 

Thes: 

Mino: 

Thes: 

Mino: 

Thes: 

Mino: 

Thes: 

Mino: 

Thes: 

Mino: 

Thes: 

Mino: 

Thes: 

Mino: 

Thes: 

only a single 4. One way of getting unity with a single 4 
is 1 = [vY/4] where the brackets mean integer part of. 

Ah, I see - that's quite good. 

(There is a pause - Minotaur is clearly working through the 
integers. ) 

Can you do 1153? 

No, not yet. 

(Pause. ) 

I can: look! 1153 = -y4 log, log yvWVWWWVWVWV¥.. VV. 
I'm sorry, I wasn't following that too closely - could you 
be more precise? 

Mmmmm - there were 1153 square root Signs, in case you 
didn't count. 

It's still a bit unclear, though. 

Well: WWWWWV7...~WV74 is 4 to the power 1/21153. ox? 
Yes - so that log, of it is just 1/2it>5, 

That's right, and log, of that is... 

-1153/2 which gives, on multiplying by -v4,... 

1153! 

You know something - I can do 1154. 

And 1155, and 1156,... 

We've pretty much sewn up the integers, haven't we? 

We have, rather - have we reached the sic joke yet? 

Oh, yes - this is going to be invented by Niels Bohr in the 
20th century after Christ. 

Who's Christ going to be? 

Ah, shaddup! What are we going to do now? There's noth- 
ing left of the integers. 

Well, we could try some irrational numbers - 7 or e, for 
example. 

Oh, that's transcendental, man! Anyway, I can do e, sort 
of. 

What do you mean, sort of? 

1 A.4ttlitio.. . . . Well, (+g-armit 1S a good approximation to 

e, but you have to take an infinite number of ! Signs. 

I see - you're looking at the limit as n tends to ~ of 

+5)", Gee, Theseus, you are clever. NOW what will we 

do? 

™ probably - but let's leave that to the reader! 
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BBC Television has a very popular programme called M-12 

The Multicoloured Swap Shop. Below, MANIFOLD pre- 

sents the Multicoloured Theorem Shop, running the 

gamut of the integers from 1 to 5... 

the 1-colour Theorem 

JOZEF PLOJHAR { 

The little-known one-colour theorem is due to the persistence of a 
long-since forgotten cartographer of about 3 years of age, who 
like all children of such an age covered his maps in a single wash 
of colour. His father immediately realised the significance of 
this, and burst into the mathematical journals with: 

THEOREM All coloured maps are coloured with a single colour. 

Before reprinting the proof, a comment is surely due on the power 
of this theorem - unlike later chromatic theorems, it does not ass- 
ert that the map may be so coloured, but rather, that it IS! 

Proof (By Mathematical Induction). Let P(n) be the proposition 
"all maps with n regions are 1-coloured". 

P(1) is trivially true. We show that P(n) implies P(m+l). Con- 
Sider a map with ntl regions. Remove one region: by induction the 

resulting map is l-coloured, with colour C, say. 

Again consider the map with n+l regions, but now remove a diffe- 
rent single region. The remaining n are l-coloured, with colour K, 
say. But K = C as there are some regions which have been 1-colou- 
red twice (if you see what we mean!). 

Hence all n regions are coloured with colour C, and P(n+l) is 

true. Hence, by induction, P(n) is true for all n - and all maps 

are one-coloured! 

the 2-colour Theorem Me12 

VIVIENNE HATHAWAY 

The infamous 4-colour problem asks, as you are no doubt aware, whe- 
ther any map on the plane can be coloured using 4 colours so that 
no two adjacent regions have the same colour. It 1s not our pur- 
pose to go into this question here: we set our sights lower and aim 
at a theorem about two colours. Until MANIFOLD produces a colour 

supplement, this 1S more appropriate! 
The theorem occurred to me some years ago, but subsequent delv- 

ing into the literature revealed that it is well known. The res- 

ult is this: 
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Suppose a finite number of circles is drawn on the plane. Then 
the resulting map can be coloured with two colours so that adjacent 
regions have distinct colours. 

The theorem generalizes to closed curves rather than circles: 

Vey 
How do we go about proving such a theorem? If we try colouring a given circle-map, it becomes clear that as soon as one region is 

coloured the rest follow automatically. A proof based on this 
would have to show that all regions are reached, and that there are 
no contradictory choices of colour. This boils down to consider- 
ing circuits of regions (regions each touching the next along an 
edge, starting and finishing at a given region). Only if all such 
circuits contain an even number of regions will the method work. 
They do, and it does, but that's not the best way to prove the the- 
orem! 

  

a circuit of 8 

regions. Is the 

number always 

even? 

  

It occurred to me that the theorem is accessible by Mathematical 
Induction on the number n of circles. If n= 1 it is easy to 
colour the map: 

So now we assume we can two-colour any map with n circles, and try 
to prove that we can two-colour a map with n+l. Now any n+l circle 
map comes by adding a circle to an n-circle map. The diagram on 
the next page is typical. If we can work out how to perform ? in 
general, we can prove the theorem. Inspection of the diagram rev- 
eals that: 
(a) Each region outside the new circle retains its colour, 
(b) Each region inside the new circle changes colour. 

To see that this works in general, note that the colours 
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v3 
obviously change across boundary-lines outside or inside the new 

circle (as they did on the old map: though inside, the colours are 

reversed). And across the new circle's boundary, what was once a 
single-coloured region divides into two, of opposite colours. QED! 

This is all very well - though not a very practical way to per- 
form the colouring - try it - but by analysing the proof, we can 
find something better. Every time we add a new circle, points 

inside it change colour. So points inside an odd number of circ- 
les end up black; points inside an even number (or none) white. 

This gives us a rule: assign to each region an integer, equal to 

the number of circles that contain it. Tf this number is even, 

colour the region white; if odd, colour it black. It is obvious 

that this number changes by 1 from a region to the next: this gives 
an independent proof. Here's an example of the rule in operat- 

ion: 

  
The proof obviously generalizes - e.g. to convex curves rather than 
circles. If a moral to the tale is needed, it is presumably that 
our first ideas of how to solve a problem, based on direct solutio- 
ns of special cases, may not be the best way to proceed in general; 
and that analysis of a successful method can lead to improvements. 

M-9 

the [(7+41+48p )/2]-colour Theorem 

Sorry about that. That's what the Heawood Conjecture suggests as 
the precise bound on the number of colours needed for maps on a 
surface of genus p > 1 (a torus with p holes, or its non-orientable 

analogue). It was proved by Ringel and Youngs in 1968. 
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the 3-colour Theorem 

Now, that's a puzzle! MANIFOLD-12 set it as a competition: Find 
the 3-colour theorem. Although there are standard 3-colour theo- 
rems in graph theory, they all have rather artificial hypotheses. 
We're still waiting... 

the 5-colour Theorem 
was until very recently the best that was known towards that doyen 
of mathematical intractability, the 4-colour problem. Which could 
have caused us headaches with headlines (in contrast to our custom- 
ary neckaches with necklines...). Fortunately, two Illinois math- 
ematicians, assisted by a whacking great computer, arrived in the 
nick of time with: 

the 4-colour Theorem M19 

DOUGLAS WOODALL 

In July of 1976, K.Appel and W.Haken, two mathematicians at the 
University of Illinois in America, announced the solution of what 
was probably the best-known unsolved problem in the whole of math- 
ematics: the four-colour map problem. This asks whether the reg- 
ions of a map can always be coloured with four colours in such a 
way that no two neighbouring regions have the same colour. (Neig- 
hbouring here means ‘having a length of common border’. We do not 
insist on giving two regions different colours if they meet only at 
a finite number of points, like regions D and F in Fig.1.) 

Fig.1 > 

FRE < 
This problem was first proposed in 1852 by a London student, Fran- 
cis Guthrie, who is reported to have thought of it while colouring 
a map of the counties of England. He noticed that four colours 
are sometimes needed (e.g. for regions A,B,C, and D in Fig.l) and 
conjectured that four colours always suffice, but was unable to 
prove this. The first serious attempt at a proof seems to have 
been made in 1879 by A.B.Kempe, a barrister and keen amateur math- 
ematician who later became President of the London Mathematical So- 
ciety. In that year he published a 'proof' in the American Jour- 
nal of Mathematics which seems to have been generally accepted. 
But in 1890 P.J.Heawood, Professor of Mathematics at Durham, 

69



pointed out that the 'proof' contained a flaw. For some years af- 
ter that the flaw seems not to have been regarded as serious, and 
the theorem was thought to be ‘essentially proved'. However, as 
the years went by and nobody found a satisfactory way round the di- 
fficulty, it gradually became realised that the problem was much 
deeper than had been supposed. Since then, almost every mathema- 
tician of repute has probably dabbled with the problem at some time 

or other, so Appel and Haken's achievement in solving it (in the 
affirmative) is a very fine one. 

As might be expected of such a refractory problem, the proof is 

long. It runs to 100 pages of summary, 100 pages of detail, and a 
further 700 pages of back-up work, plus about 1500 hours of comput- 
er time. (For comparison, the average proof presented in first 
year lectures probably coes not last more than one page. In the 

published literature I would regard a 20-page proof as quite long.) 

Preparatory Moves   

In common with most recent workers, Appel and Haken tackled the 
problem in the form 'show that the vertices of every planar graph 

can be coloured with four colours so that no two adjacent vertices 
have the same colour’. A planar graph is a graph (= network) 

drawn in the plane without edges crossing: see Fig.2. It is easy 

to show that this version is equivalent to the original map problem 

(stick a vertex in the middle of each region of the map, and join 
vertices whose corresponding regions are adjacent). It is also 
easy to show that it suffices to consider plane triangulations, i.e. 

graphs that divide the plane into regions bordered by exactly three 

edges (can you see why?). Fig.2 shows the graph corresponding to 
the map in Fig.l, and the same graph made into a triangulation. 

Lh 
In order to understand Appel and Haken's proof, it will be helpful 
to start by translating Kempe's attempted proof into the language 
of plane triangulations. Kempe started with Euler's polyhedron 
formula, which states that a plane triangulation T satifies the 
relation V-E+F = 2, where V,E,F are the number of vertices, edges, 
and faces (regions) of T. (Can you prove this?) Since every 
face of a triangulation is bordered by three edges, and every edge 
borders two faces (the "outside'' is thought of as one huge face), 

we must have 2E = 3F (why?). If Vz denotes the number of vertices 
of valency i (the valency of a vertex is the number of edges incid- 
ent with it) then clearly ‘V4 = V and LiV; = 2E (every edge has 2 
ends). Substituting these in Euler's formula now gives 

)(6-i)V; = 12 (1) 

or, more longwindedly, 
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Kempe's "Proof"  



AV 9+ 5V 242V ,+Ve-V-2V0-3Vq-... = 12. 

It follows immediately that at least one of Vo; Va; Va> and Ve is 
positive; so T must contain at least one of the four configurations 
in Fig. 3. 

p q 
Vv 

mig-3  &0=p A [| 
r Ss 

(b) (c) (d) (a) 

Now suppose there exists a counterexample to the 4-colour conject- 
ure, and let T be a triangulation that is a minimal counterexample, 
so that every graph with fewer vertices than T is 4-colourable, but 
T itself is not. We naturally hope to prove this is impossible by 
obtaining a contradiction. 

If T contains Fig.3(a) or 3(b), we need only remove v from T 
(together with the incident edges), 4-colour what is left, and res- 
tore v: since v is adjacent to at most 3 vertices, we can find a 
colour for it. Thus we have 4-coloured T, a contradiction. So T 
cannot, in fact, contain 3(a) or 3(b). 

For 3(c) we try the same thing, but this time we are in trouble 
if p,q,r, and s all have different colours; in this case we cannot 
colour v. However, Kempe ingeniously showed, using what is now 
called a Kempe-chain argument, that here we can modify the colour- 
ing scheme so that either p and r, or q and s, have the same colour. 
Then we can find a colour for v, and again obtain a contradiction. 
(You can probably see how this can be done. If p,q,r,s are blue, 
green, red, and yellow respectively, then the graph T with v removed 
cannot contain both a chain of connected vertices from p to r, all 
blue or red, and a chain from q to s, all green or yellow; for these 
chains have to cross somewhere, and they can't.) Thus Kempe showed 
that T cannot contain 3(c) either. 

If he could have shown that 3(d) was also ruled out, he would 
have completed his proof. Unfortunately, he tried to use the same 
trick for 3(d) as he had for 3(c), and thereby made his mistake, 
because the argument breaks down. 

Nevertheless he made a very fine contribution towards the solu- 
tion of the problem, often underestimated by later writers. Alth- 
ough his "proof" was fallacious, and hence technically worthless, 
the slightest modification of his urgument yields a valid demonstra- 
tion that five colours suffice; and his arguments have formed the 
foundation for most subsequent work on the problem. 

The two main steps 

To summarize Kempe's argument in modern terminology, he attempted to 
exhibit a set U of configurations (3(a)-(d)) such that: 

(i) U is unavoidable: every plane triangulation contains one of 
the configurations in U; 

(ii) Every configuration in U is reducible: it cannot be contain- 
ed in a minimum counterexample to the 4-colour conjecture (i.e. any 
counterexample containing it also implies the existence of a smaller 
counterexample). 

If his attempt had succeeded, it would certainly have provided a 
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proof. It failed, because he did not show satisfactorily that (d) 
is reducible. Appel and Haken have been successful with exactly 
the same approach. But while Kempe's unavoidable set contained 4 
configurations, theirs contains about 1930. (I say 'about' becau- 
se they keep managing the reduce the number by 1 or 2.) The proof 
that these are all reducible involves massive reliance on the compu- 
ter. One of their configurations is shown in Fig.4, and it is 

bordered by a circuit of 12 edges. All of 
their configurations are bordered by circu- 
its of 14 or fewer edges. If they had 
used configurations larger than this, they 
would probably not have been able to prove 
them reducible with the present generation 
of computers. 

Appel and Haken's proof thus involves 
the above two steps: the construction of U, 

Fig.4 and the proof that everything in U is redu- 

cible. Each step is comparatively straig- 

htforward on its own: it is the interplay between them that is so- 
phisticated, and in which Appel and Haken's work goes qualitatively, 
and not just quantitatively, way beyond anything that had been done 
before. 

Contruction of an Unavoidable Set 

To illustrate the first step, we show how Appel and Haken's method 
proves the set of configurations in Fig.5 unavoidable. The idea 
is due to Heesch. 

eo A 
(a) (b) (c) (d) (e) 

Fig.5 

Suppose there exists a triangulation T not containing any of these. 
Assign to each vertex of T of valency i the number (6-i). Appel 
and Haken like to think of this as (6-i) units of electrical charge; 
sO a 5-valent vertex receives charge +l, a 7-valent vertex charge 
-1, an 8-valent vertex charge -2, and so on. By (1), the total 

charge is positive (12 units). 
We now redistribute the charge round T, without creating or des- 

troying any, according to the following simple discharging algorithm: 
move 1/3 unit of charge for each vertex of valency 5 to each adjac- 
ent vertex of valency 7 or more. T still has positive total char- 
ge. But it is easy to check, using the fact that T contains none 
of 5(a)-(e), that no vertex of T can have positive charge! For T 
has no vertex of valency < 4; any vertex of valency 5 is adjacent 

to at least three of valency 7 or more, so loses all its unit of 

positive charge; vertices of valency 6 are unaffected, ending up 
with charge 0, where they began; a vertex of valency 7 can have at 
most three neighbours of valency 5 (or two of them would be adjacent) 
and so recieves at most 1 unit of charge, remaining negative; and so 
on. This is a contradiction, so T must contain one of 5(a)-(e). 
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(Strictly speaking, this does not prove that one of 5(a)-(e) occurs 
in T with all of its vertices distinct. It is easy to get round 
this for small configurations, but for larger ones it is a serious 
technical problem, the immersion problem, and Appel and Haken had 
to deal with it.) 

Appel and Haken proved their much larger set U unavoidable in 
this way, but using a more complicated discharging algorithm. 

Reducibility 

To illustrate this step we again take an example, showing that 6(a) 
is reducible. 

b b 

a Cc 

aqgc 

f 4 f d 

e e 

(b) (c) (d) (a) 

Fig.6 

Let T be a triangulation that is a minimal counterexample to the 
conjecture, and suppose T contains 6(a). Let T' be the graph ob- 
tained from T by removing the four vertices inside the hexagon in 
6(a); that is, replace 6(a) by 6(b). By minimality of T, T' is 
4-colourable. List the possible colour schemes for the vertices 
abcdef. There are 31 of them: 

121212 121213G 121232 121234G 121312G 121314 121323G 
121324G ) 121342G 121343G 123123 123124 123132G 121313 
123134 123142 123143 123212G 123213G 123214G 123232G 
123234 123242 123243 123412 123413 123414G 123423 
123424G 123432G 123434G. 

(Here the numbers 1234 are the colours, listed in order on vertices 
abcdef. The G will be explained below. Note that 121211 and 
121231 are not listed, since they give adjacent vertices the same 
colour (1); and 121214 is not listed since it comes from 121213 by 
permuting colours. Possibly not all of these can actually occur 
in T', but we don't know which do, so we have to consider them all.) 

Some of these colour schemes can be extended to colourings of 
6(a), so giving rise to 4-colourings of T. Call these good (which 
1s what the G stands for). If all colour schemes are good, then 
6(a) is clearly reducible (because we can 4-colour T, a contradic- 
tion). However, this never happens in practice. 

The next step is to try to use Kempe-chain arguments to convert 
bad schemes into good ones. For example, 121232, which is bad, 
can always be converted by [13][24] interchanges into one of 121434, 
121234, 121432, or 123232 - all good. If every bad colour scheme 
converts to a good one like this, then again 6(a) is reducible: we 
Say a configuration that can be proved reducible this way is 
D-reducible. 

The first thing the computer checks for is D-reducibility. (You 
should now see why the size of the outer ring is crucial!) If not, 
the next step is to note that we don't actually have to consider 
all 31 schemes on the list. By mininality, we can replace 6(a) by 
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any configuration with fewer vertices, such as 6(c): the result T" 
must be 4-colourable. The effect of this substitution, here, is 
that we need consider only colour schemes where a and c have the 
same colour, and d and f are different: this rules out all but 6 
of the schemes listed. If (as in this case) all the remaining sch- 
emes are good, or can be made so by Kempe-chain modifications, 

then again we get reducibility. There are many choices in place 
of 6(c) - another example is 6(d), which shows we need consider 
only schemes using 3 or fewer colours on abcdef. If any such 
substitution works, we call the original configuration C-reducible. 

The program used by Appel and Haken, largely written by a post- 
graduate student John Koch and using algorithms of H.Heesch, first 
checked for D-reducibility; if this failed, it tried a few ways of 
proving C-reducibility. If these didn't work it was abandoned and 
the unavoidable set U modified appropriately. This may seem a 
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very cumbersome approach - especially since circuits like abcdef 
but with up to 14 vertices were involved. (Appel estimates that 
the amount of work goes up by a factor of 4 for each extra vertex 
in the circuit.) It might seem that it is better to test for 
C-reducibility first. But in practice this involves a lot of dup- 
lication of effort if the first substitute configuration doesn't 
work; and it is quicker to start by listing all the colour schemes 

to see which can be made good. 

{i
 

              
  

Conclusion 

The main point I have not explained is the method by which the dis- 
charging algorithm and the unavoidable set were modified every time 
a configuration could not quickly be proved reducible. These mod- 

ifications relied on a large number of empirical rules which have 
still not been given adequate theoretical justification, discovered 
in the course of a lengthy process of trial and error lasting over 
a year. By then Appel and Haken had developed such a good feeling 
for what was likely to work (even though they couldn't always expl- 
ain why) that they were able to construct the final unavoidable set 
without using the computer at all. This is the crux of their 
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achievement. Unavoidable sets had been constructed before, and 
configurations proved reducible; but no one could complete the mon- 
umental task of constructing an unavoidable set consisting entirely 
of irreducible configurations. 

The length of the proof is unfortunate, for two reasons. First, 
it makes it hard to verify. A long proof may take a long time to 
check, and be intellectually accessible to only a few people. This 
is particularly true if a computer is involved. Before the intro- 
duction of computers into mathematics, every proof could be checked 
by anyone possessing the necessarymental apparatus. Now an expen- 
Sive computer may be needed too. Appel estimates that it would 
take 300 hours on a big machine to check all the details. Few 
mathematicians in Britain have access to this much machine time. 

The other big disadvantage of a long proof is that it tends not 
to give much understanding of why the theorem is true. This is 
exacerbated if the proof involves numerous separate cases, whether 
it needs a computer or not. Lecturers may tend to give students 
the impression that proving theorems is the objective of pure math- 
ematics; but I am sure that many of us agree that proofs are only 
a means to an end - understanding what is going on. Sometimes a 
proof is so illuminating that one feels immediately that it explains 
the 'real reason' for the result being true. It may be unreasona- 
ble to expect every theorem to have a proof of this sort, but it 
seems nonetheless to be a goal worth aiming for. So undoubtedly 
much work will be done in the next few years to shorten Appel and 
Haken's proof, and possibly find a more illuminating one. (It is 
doubtful that their method can be shortened enough to avoid massive 
use of the computer. ) 

In fact, there remain a number of conjectures that would imply 
the truth of the 4-colour theorem, but do not follow from it. One 
of these in particular (Hadwiger's Conjecture) is (in my opinion) 
most unlikely to be provable by the sort of technique that Appel 

and Haken have used: possibly a shorter proof of the 4-colour theo- 
rem may be found from an attack on Hadwiger's Conjecture. None 
of this, of course, detracts in any way from Appel and Haken's 
magnificent achievement. 

BIBLIOGRAPHY 

A slightly expanded version of this article, with references, appe- 
ared in the Bulletin of the IMA 14 (1978) 245-299. It also formed 
the basis for the article The Appel-Haken proof of the Four-Colour 

Theorem which formed chapter 4 of Selected Topics in Graph Theory, 

ed. L.W.Beineke and R.J.Wilson, Academic Press 1978. 
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Early news of Appel and Haken's achievement was greeted by the math- 

ematical community with less than unrestrained enthusiasm. One 

reason for caution is of course the computer involvement: it is ex- 

tremely easy to make slips in long and involved programs. Now, 5 

years later, no such slips have been found; and the program has 

been checked by a great many people. The expert view is that, if 

there are any errors, they do not occur in the computer part of the 

proof. As for the lack of elegance, MANIFOLD-19 remarked: "maybe 

most theorems are true for rather arbitrary and complicated reasons. 

Why not?" 
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1970 was a remarkable year. The young Russian mathe- M-7 

matician Matijasevié solved Hilbert's 10th Problem on 
the decidability of Diophantine Equations (negatively) 

and found a polynomial formula for primes. And, in 

the same year, MANIFOLD tackled a related problem: 

Another Formula not Representing Primes 

MATTHEW PORDAGE 

Fermat thought that Fy, = 22741 is always prime, which ought to be 
an object lesson to everyone, seeing that Fs = 641.6700417. Many 
ingenious tests have been devised to decide whether such numbers are 

prime: thus it is known that F73, which has about 3.107! digits, is 

divisible by 5.27°+1. Many, also, are the ingenious formulae 
which have been suggested in the search for large prime numbers. 

High in the charts are the Mersenne Numbers M, = 2P-1; the present 
world record for the largest known prime is held by the United Sta- 
tes (who else) with Mj1213 [Now improved]. 

Then there are the repunit numbers 111...1 = (10"-1)/9, which 
are prime for n = 2, 19, 23; the smallest undecided value is 47. 

There is also 

10°" - 10" + 1 
2,4,6,8 but not 10 (another object lesson!), which is prime for n 

and 
1027 + 1 

which is prime for n = 0,1 and composite for n = 2,3,4,5,6. Nob- 

ody knows about n = 7. 
I was glancing through a table of prime numbers some time ago, 

and I noticed that each of 19, 109, 1009, 10009 is prime. Modest - 
ly defining the nth pordage number P(n) to be 

P(n) = 10" + 9 

I immediately met the same fate as Fermat, since P(5) = 77 13.157. 
Empiricism is all very well, but a general theory is more satis- 

fying; and with a very small amount of theory we can make the Pord- 
age numbers reveal many (alas! not all) of their secrets. Similar 
methods will work for numbers represented by any EPIC (Exponential 
Plus Integer Constant) formula ANM+B., 

The key is Gauss's modular arithmetic. Given integers m,n,r we 
say that m is congruent to n modulo r, written 

m =n (mod r), 

if m-n is a multiple of r. Such congruences can be added, subtrac- 

ted, and multiplied as if they were equalities (but care is needed 
for division!). For example 17 = 2 (mod 5) since 17-2 = 15 = 3.5. 
Also 6 = 1 (mod 5). Adding we get 23 = 3 (mod 5); subtracting we 

get 11 1 (mod 5); multiplying, 102 = 2 (mod 5). All of these 

are correct. Modular arithmetic begins to show its power with 
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reasoning like: 

10 =1 (mod 3) 

SO 107 = 1 ~ (mod 3) 

10? = 1 ~~ (mod 3) 

10" = 1 (mod 3). 
So 10'’-1 = 99999999999999999 is a multiple of 3. On second thou- 
ghts, this example is a bit obvious: less obvious is that 8!3-1 = 
549755813887 is a multiple of 7. And it is less obvious still 
that 1000000000000000000000000000000000009 is a multiple of 47. 
We'll see in a minute how to prove that (without doing the division) 
using congruences. 

For a simple case, we'll work mod 7. We have 

10 = 3 (mod 7) 

107 = 2 (mod 7) 
10°? = 6 (mod 7) 
10° =4 (mod 7) 

10° =5 (mod 7) 
10° = 1 = (mod 7). 

Hence 

P(6k+5) = 10°K*>49 = (10°). 10949 = 1k.5+9 = 14 = 0 
(mod 7). That is, for any integer k > 0, P(6k+5) is divisible by 
7. Thus P(5), P(11), P(17), P(23),... are composite. 

If we try the same trick (mod 5) we don't get anywhere, since 
always P(n) = 4 (mod 5). Thus 5 never divides a Pordage number. 
Similarly with 2,3,...,ll. With 13, similar reasoning shows that 
P(6k+5) is always a multiple of 13. It seems to be a coincidence 
that these are precisely the Pordage numbers that are divisible by 
7. At any rate, when we try 17 it is P(16k+14) that is always a 
multiple of 17. For primes < 100 we obtain the following table, 
where p denotes a prime and n shows the P(n) divisible by p. 

Pp n p n p n 

7 6k+5 23 22k+7 59 58k+35 
13 6k+5 29 28k+12 61 60k+54 
17 16k+14 47 46k+13 89 44k+2]1 
19 18k+1 53 13k+11 97 96k+52 

No other prime < 100 divides any P(n). 
When working these out we generally have to do two things: find 

r such that 10° = 1 (mod p), and then s such that 10S = -9 (mod p). 
Then, for any k > 0, P(rk+s) = (10%)K.10S +9 = 0 (mod p). 

We can always find r (unless p = 2 or 5); indeed r = p-1 will 
do, by a theorem of Fermat which states: 

if a prime p does not divide a then aP-1 = 1 (mod p). 

And for certain p we can find smalier values of r (e.g. r = 6 when 
p = 13). In general r divides p-1l. 

The real crunch comes in finding s. There seems to be no exp- 
licit method apart from trial and error. If 10 is what is known 
as a primitive root mod p then s exists; but s can exist when 10 

is not a primitive root - and anyway, there is no explicit way to 
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find those p for which 10 is aprimitive root. 

There is a sort of criterion, though: s exists only when p div- 
ides some Pordage number. For 105 = -9 (mod p) if and only if p 
divides 10S+9 = P(s). This implies: if p is a prime dividing P(s) 
then it divides P(k(p-l)+s)for all k > 0. In particular if a 
prime divides one Pordage number, it divides infinitely many. 

As an example, P(10008k+4) is always divisible by 10009. In 
particular, P(100084) is a multiple of 10009. It would be futile 
to verify this by long division: 'long' would be the word! 

At this stage of my researches there was a tantalizing gap at 
P(6). This is about a million, so lies well within the range of 

computed tables. Unfortunately I was staying with a lady-friend 
and had carelessly omitted to bring my extensive collection of fac- 
tor tables with me! By pure chance, though, I did have 

(a) A table of primes up to 55079, 
(b) Barlow's Tables of squares of integers up to 12500. 

I resolved to make do with these. A theorem which seemed apposite 
was: a prime of the form 4k+l is a sum of two squares in only one 

way. Now P(6) = 10007+3*; so if I could find another representati- 

on as a sum of two squares, P(6) would be composite! And if not, 
another theorem says it must be a power of a prime, which in this 

case I could trade up into a proof that P(6) is prime! 
One of the endearing things about mathematicians is the extent 

to which they will go to avoid doing any real work. I wasn't too 
happy about all those squares, and resolved to cut the number down 
drastically. Squares can end only in certain pairs of digits; so 
sums of them can end ...09 only for certain pairs. The only 
cases are ...00+...09 and ...25+...84. So I only had to look up 
squares ending 00, 09, 25, 84. A rapid expedition through the 
tables (it took about 3 minutes!) produced: 

2357+9727 = 55225+944784 = 1000009 = P(6). 

Thus P(6) is composite. 
Next job: f find the factors. Yet another theorem says that if 

  

N = a*+b* = c*+d? then 

N = (actbd) (ac-bd) 
(a+d) (a-d) 

and after all the factors in the denominator are cancelled, N is 

expressed as a product of two integers. 

So I tried a = 235, b = 972, c = 1000, d = 3, and got 

N = 237916.233084 _ 293.58271 _ 
232.238 - Wo 
  

which doesn't look too good, since 17 divides neither 293 nor 

58271. Something had gone wrong! I rechecked my calculations; 
I even squared 235 and 972 by hand in case the tables were wrong, 
but no! Finally in despair I tried dividing 1000009 by 293; it 
went exactly and gave 3413. So now I knew the factors, although 

something was rather fishy about the method! 
Working backwards: 3413.17.4 = 232084 - and that was my error. 

ac-bd = 235000-2916 = 232084, not 233084. The calculation now 
proceeded: 

N = 237916.232084 
232.238 
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THE COMPUTERIZED ARMY: M-14 

MARK III 
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(27.7.29.293) (22.17.3413) 
  

(2°.29) (2.7.17) 

293.3413. 

This is the complete factorization of P(6). 
Anyone like to try P(8)? 

BIBLIOGRAPHY 

Alfred H. Beiler Recreations in the Theory of Numbers, Dover. 
L.J.Comrie Barlow's Tables, Spon. 

D.N.Lehmer Factor Tables for the first ten million, Hafner. 
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In M-8 Rear Admiral Sir Charles Darlington pointed out some errors 
in Matthew Pordage's tables (corrected above) and claimed that P(8) 

was prime. A second letter from him corrected this: he showed 

that P(8) = 149.671141 is the complete factorization. 

Hilbert's 10th Problem, alluded to above, was tackled in M-8 and 

again in M-13. Space forbade its inclusion; but two delightful re- 
ferences are 

J.P.Jones et al. Diophantine representation of the set of prime 

numbers, American Mathematical Monthly 83 (1976) 449-464, 
M.Davis et al. Hilbert's Tenth Problem, in Proceedings of Sympos- 

ia in Pure mathematics 28, American Math. Soc. 1976, 323-378. 
A crucial ingredient of Matijasevité's solution was the Fibonacci 

series - yet another triumph for the good-natured rabbit-breeder! 
P(9) is still going begging; but the exercise is of questionable 

value... 
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"I dreamt the year was 1984, and I was passing a 

Children were singing large comprehensive school. 

in the playground: 

‘Ringrose, Ringrose, Ringrose. 

Pascal, Krull, Apostol. 

Atiyah! Atiyah! Ahlfors, Dold. 

So said SIGNS in MANIFOLD-2. 

It never got any better. 

ew 

come hack, McGonagall, all is forgiven... 

12 
10 

9 
I like twelve 

It's got more factors 
I like ten 
It's easy 
I like nine 

It's round and square 
At the same time. 

(Ann M.Atkin.) 

Mirror, mirror on the wall, 

Who is most symmetrical? 

Solomon Grundy 
Conjectured on Monday 
Hypothesized Tuesday 

Existed on Wednesday 
Constructed on Thursday 
Uniquely on Friday 
Contradicted on Saturday 
Disproved on Sunday 
And that was the end 

of Solomon Grundy. 

The grand old Duke of York, 
He had ten thousand men: 

He marched them up to the top of the hill 
And he marched them down again. 
And when they were down, they were up; 
And when they were up, they were down. 
It all depends on your point of view 

If you turn the coordinates round. 

Little Jack Horner 

Sat in the corner 

Trying to work out T. 
He said 'It's minus the logarithm 
Of minus one to the i.' 
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I had a nice conjecture 
Nothing would it yield 
But a minor theorem 
About a finite field. 
Andre Weil's students 
Came along to hear: 

Why any of them bothered 
I've really no idea. 

Twenty grammes of twopenny rice, 
A kilogramme of berets. 
Isn't the metric system nice? 

Pop! go the ferrets. 

Oh... 
We know it's true for 1 
So we'll use induc-ti-on 

Roll me over 

Lay me down 
And prove it for n. 

I do not like thee, decibel! 
The reason why: I cannot hear. 
But this I know, and know full 

well - 

I do not like thee, decibel! 

Twinkle, 

Little 
Empty set: 

Have you 

Any 
Members 
Yet? 

Top, Top, Topology! 
Holes are found by homology! 
Orientations 
Cause complications; 
So use Z. on all occasions.



MANIFOLD was intrigued not just by mathematics, 
but by the mentality of mathematicians. 
it like to be a research mathematician? 

What is 

Here's 
one answer: 

AN ODD EVENING 

IAN STEWART 

As dusk settles gently over the undulating English countryside we 
find our hero Rosen Crantz, research student, discussing his latest 
ideas with his supervisor, Prof. Guilden Stern, a none-too-success- 
ful number-theorist. 

Crantz: 

Stern: 

Crantz: 

Stern: 

Crantz: 

Stern: 

Crantz: 

Stern: 

Crantz: 

Stern: 

Crantz: 

Stern: 

Crantz: 

Stern: 

Crantz: 

Stern: 

Crantz: 

Stern: 

Crantz: 

Guilden, I'm stuck on my research problem. 
What, the one about prime numbers? 
Yes. I was going to prove it for each prime number in 
turn, using that paper of Randy and Hartlisnujam... 
You mean A Complete List of all Prime Numbers, Journal of 
Infinity, volumes 173 onwards? 
Yes, but they've only published the even primes so far - I 
think they got stuck somewhere. 
I had a letter from Hartlisnujam a few weeks ago. He 
said they'd started off well with 2 - that's prime, of 
course - and they decided to run through all the even num- 
bers first in hope cf finding some more. He said they'd 
got up to about 1355579014264890988 but hadn't found any. 
Perhaps there aren't any other even primes. 
But what about that theorem of Dirichlet's - you know, the 
one that says there are an infinite number of primes in 
any arithmetical progression. The even numbers form an 
arithmetical progression, don't they? 
I guess so. I've forgotten most of what I did at school. 
It's very puzzling. 
Perhaps Dirichlet made a mistake? 
ciple, you know. 
Wasn't that Riemann? Anyhow, it seems unlikely. Maybe 
we could prove there exist infinitely many even primes? 
By modifying Euclid's proof for arbitrary primes, you 
mean? 
Exactly. We'll work with just even primes and see what 
happens. Suppose there's only a finite number... 
We can miss out 2, we know about that... 
So let's suppose there are only finitely many even primes 
greater than 2, say pj,...,Dn. Now what? Euclid forms 
P = pj...pntl and... 

He did with his prin- 

That won't work: it's odd. 

Very odd. 

Ha. So why not define P = pj...pn + 2? 
OK. Then P is even so it must be divisible by some even 
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Stern: 

Crantz: 

Stern: 

Crantz 

Stern: 

ee
 

Crantz: 

Stern: 

Crantz: 

Stern: 

Crantz: 

Stern: 

Crantz: 

Stern: 

Crantz: 

Stern: 

CrantzZ: 

Stern: 

Crantz: 

Stern: 

Crantz: 

Stern: 

Crantz: 

Stern: 

Crantz: 

Stern: 

CrantzZ: 

Stern: 

Crantz: 

Stern: 

Crantz: 

Stern: 

Crantz: 

Stern: 
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prime, say q. And q can't be any of the p's since they 
leave a remainder 2 when you divide P by them... 

and it can't be 2, since if 2 divides P then it divid- 
€S Pj...Pn as well, so it divides one of the p's... but 
that p is prime and greater than 2 so it can't be divisib- 
le by 2. 
So q is an even prime not equal to 2, pj,...,ppn-.- 
Contrary to our assumption. So there must be an infinite 
number of even primes altogether. 

I guess that does it. Dirichlet was right after all. 
I'll write to Hartlisnujam about it. 
I wonder if it'll help my problem? 

What is your problem? 

Uh... well... I think my girlfriend is... 
Your research problem. 
Oh, yeah. It's a sort of converse to Goldbach's Conjec- 
ture. 

You mean "'every even number is the sum of two primes''? 
Yes. I want to prove that every prime is the sum of two 
even numbers. You see, if I could prove that, then... 
But it's false, surely? What about 3? If 3 is a sum of 

two even numbers, then one of them is 2... so the other is 

1. And that's odd. 
Very odd. 
Ha. You need extra hypotheses. 
prime is even? 
I thought of that. But suppose we take an even prime q 
and assume that q = x+y where x and y are even - say x=2u 
and y=2v. Then q = 2(u+v) so 2 divides q. But q is 

prime - contradiction. 
So that disproves it for even primes. 
Does it? I never realised... 

Which means you need only look at odd primes. 
But I can't wait for Randy and Hartlisnujam to get to 
them... 

Well, anyway, you've disposed of half the possible cases. 
Plus 3, which you did. 
Then write it up and publish it. That way, if you do 
work out the odd ones, you get two papers out of it. 

I thought they weighed publications, rather than counting 
them? 

No, that was before they started printing Mosaic on stone 

Why not assume your 

tablets. No; five papers and you're a lecturer, fifteen 
a senior lec- 
Wait! Wait! Where in the proof have we assumed that q 
is even? 
Oh, where we - no. We didn't. We haven't! The same 

proof works for odd primes too! 

I can see it now! Falsity of the Converse Goldbach Con- 

jecture by R.Crantz - 
And G.Stern... 
Yes. We could publish it in the Notices... 
The Journal... 
The Bulletin... 
The Proceedings...



Crantz: 

Stern: 

Crantz: 

Stern: 

Crantz: 

Stern: 

Crantz: 

Stern: 

Crantz: 

Stern: 

Crantz: 

Stern: 

Crantz: 

Stern: 

Crantz: 

Stern: 

Crantz: 

Stern: 

CrantzZ: 

Stern: 

Crantz: 

Stern: 
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The Transactions... 
The Annals! 
----Ivanov Gos. Ped. Inst. Uc. Zap. Fiz.-Mat. Nauki - 
(Thumping him on the back) Nasty cough you've got there. 

What a reference! 
Fame! Fame at last! Oh, wait till I see Stevie Smale... 
We can present it at the International Congress of Mathem- 
aticians. We might get a Fields Medal. 
Two Fields Medals. 
I'll be a Professor in no time. They make thousands, you 
know. Absolutely rolling in it. I hear one of them rec- 
ently sold his 13th century cellar... 
No! Really? 
And I won't even have to write thirty-one papers and two - 
I could do a lecture tour of the USA! 
A sort of Malcolm Muggeridge? 
Not exactly; more a Charles Dickens or a - what was that 
American chap's name? 
Twain? 

No, I'll hire a car. 
And I could do a tour of Paris - lunch at the Sorbonne, 
dinner at the Institut - I might even get to meet Bourbaki! 
Yes! Yes! (He pauses, suddenly puzzled.) Wait a min- 
ute. What about 2? 
2? 
2. 

What of it? Go on, go on! 
2 = O+2. 
Brilliant. 
2 iS prime. QO and 2 are even. 
Oh, BOTHER! 
Maybe we could patch it up... 
But where have we assumed things are non-zero? I don't 
see it. It's odd. 
Very odd. 
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WO NPANTEO ID " 

knit yourself a KLEIN BOTTLE 

JANIS WANSTALL 

Using three size 10 needles, cast on 90 stitches (30 to each needle). 

@® Knit straight until work measures 4 inches (10 cm.). 

@ At beginning of next round, knit 90 stitches, turn and purl 90 
(so as to leave a hole in the work). 

@ Repeat these two rows until hole measures one and a half inches 

(4 cm.). Join round for one row. 

@ Decrease 1 stitch at both ends of each needle on every alternate 

row until 27 stitches remain (9 to each needle). 

@® Knit straight for a further 12 inches. 

@® Pass work through hole. 

@ Increase one stitch at each end of every needle until there are 

90 stitches (30 to each needle). 

@ Knit straight for 6 rows. 

@ Using a fourth needle, take one stitch from needle and one from 

cast-on edge and knit together - repeat for 90 stitches. 

@ Cast off. 

@ This uses approximately 3 oz. (100 gm.) of double-knitting wool. 

kk Kk kK Ke ek Ke 

HAT di DO NOT READ THIS NOTE UNTIL YOU 

HAVE READ PAGE 58, 

The essence of a problem of this nature is to prove that certain 
superficially possible moves are in fact illegal, or rather impos- 
Sible. 

As pointers to the satisfactory solution of the problem, we rem- 
ark that a certain number of pieces have left the board. Every 
time a pawn moved sideways, it could only have done so by capturing. 
Hence the pawn moves and the missing pieces are somehow connected. 

The full solution, by Stanley Collings, appears on page 93. 
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"The smallest number that cannot be defined in M-12 
fewer than fourteen English words" has just been 

defined in thirteen. There's something very 

funny about big numbers. Maybe there aren't any. 

Beyond the Bounds of Possibility 

MICHAEL FORRESTER 

Kronecker maintained that 'God made the integers, all else is the 
work of Man'. This epigram expressed his belief that all of math- 
ematics should be based on properties of the integers, a system 
which he felt to be free of contradictions. He was particularly 
suspicious of Cantor's Set Theory, which he criticized roundly, on 
the philosophical grounds that the notion of a set is far too vague 
to be suitable as a mathematical foundation stone. 

With the discovery of Russell's Paradox (is the set of all sets 
that are not members of themselves a member of itself?) came the end 
of the naive period of Set Theory, which led to the introduction of 
complicated axiom systems. The Hilbert programme for proving ari- 
thmetic consistent ran into fundamental trouble in the form of the 
Godel Incompleteness Theorem, which implies (a) that if arithmetic 
is consistent then there are theorems in it that can neither be pro- 
ved or disproved, and (b) it can never be proved consistent. 

Attempts made so far to circumvent this problem rely on using a 
purely constructivist approach to mathematics - saying for example 
that a set is not defined unless (a) a rule is given for construct- 
ing all its elements, and (b) a procedure is given to decide algo- 
rithmically whether a given element belongs to it. 

My thesis is that all of these attempts, far from being overcau- 
tious, have in fact not been drastic enough; and that instead of a 
constructivist approach to arithmetic, it is necessary to adopt a 
finitistic theory. Kronecker believed in the infinitude of the 
integers. I find it hard to see why, once you allow one infinite 
set, you should not be able to allow other infinite sets. The pro- 
blem is the notion of infinity, rather than any special infinite 
set; and Godel's Theorem demonstrates the problem clearly. What 
makes arithmetic incomplete is simply that statements about all in- 
tegers, if sufficiently complex, can only be proved by an examinat- 
ion of infinitely many cases; and this is impossible. 

One of the lessons that physics has painfully learned over the 
past few centuries is that our intuition is not to be trusted out- 
side the sphere in which it was formed. Primitive observations of 

stones bouncing off rocks need not apply to electrons bouncing off 
nuclei. Although there is no intuitive barrier preventing arbitra- 
rily large speeds, it appears that in reality the speed of light is 
an upper limit. 

Another of the lessons that physics is beginning to learn is that 

it is best not to put unphysical assumptions into the mathematical 
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language being used. Poston [2] has attacked the use of the real 
number continuum and the idea of ‘arbitrary smallness' on just 
these grounds; if it is not possible to measure a distance smaller 
than 0.0000000000001 cm., then why use mathematics that says that 
you can? 

In decimal notation the largest number that can be printed on 
one page of an average-sized book is about 

192200 

so that in 400 pages the largest number we can write in decimal 
is 10° 

10°." —w 
Such a book would occupy a volume of about 20 cubic inches. A 
cube of side one light year will contain at most 

54 
10 

such books, so the largest number capable of being written in deci- 
mal notation within such a cube is at most 

10 = A, Say. 
This may help put in perspective certain results in number theory, 
such as that of Skewes that if 7(x) is the number of primes less 
than x and 1li(x) is the logarithmic integral function, then 
™(x)-li(x) is positive for some x less than 

10°" 
1019 

10 , 
a figure he later improved to 

ilo” 

10 . 
It also shows the advantage of a compact notation such as repeated 
exponentials. However, even using such notation, the best we can 
do within our light-year cube is 

iol 
10 

with A exponentiations, A being as above. Call this number B. 
Certainly, by improving our notation, we could write down numbers 
bigger than B. But imagine, if you will, all the mathematicians 
of all time (for the next 100000000000000 years, say) writing out 
definitions for a highly compact notation for the integers. By 
the end of it, they will have written out only finitely many inte- 
gers; the set of integers they have written out will therefore be 
bounded above by some integer C. 

And yet, almost all integers are bigger than this C. 
Now it seems to me that most of the properties we expect from 

integers are based on ideas got from counting spearheads, wives, or 
apples or the like. Commutativity of addition, for example, rests 
on the fact that if we have m apples and another n apples it doesn't 
matter which way we put them together. The idea that n+l is always 
bigger than n rests upon the feeling that if we have n apples, we 
can always add another apple. 

This is grand for n = 2,3,4,5,... or so apples; and good old 
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Hindu-Arabic arithmetic checks it out for numbers of apples up to 
millions. We expect it always to be true; and we build it into 

our axioms for the integers. But as I said above, our intuition 
1s not to be trusted outside the sphere in which it was formed. 
And our conceptual Hindu-Arabic arithmetic is not to be trusted 
either, given that the whole concept of decimal notation and mani- 
pulation rests in the end on intuitions about breaking sets up in- 

to smaller sets. By the time we get up to numbers like A our de- 
cimal notation does not apply in any real sense; by the time we 
reach B the multiple exponentials have broken down; and by the time 
we get to C any conceivable system of notation has broken down. 

I have never seen A apples; you have never seen A apples; it is 
questionable whetherthe universe contains A apples - indeed if 
Eddington [1] is right it can't even contain 

2 
191° 

apples, let alone A. By what superhuman leap of faith do we then 
assume that numbers as large as A behave just like small ones? 

That they mean anything at all? What makes us think that A+l is 
bigger than A? We can't even get A apples, let alone another one 
to add on! 

Of course, at first sight it is eminently reasonable to assume 

that A+l is greater than A. We have all the beautiful apparatus 
of mathematical logic to prove it. But our logic is full of nasty 
holes. We only believe it because it supports our naive view of 
what numbers are and what they do, based on known properties of 
small numbers. And even if the mathematical system of integers is 
OK, there is no guarantee whatever that it applies to the real 
world. 

What would happen if we based our intuition on the real world, 
instead of an airy-fairy version of Pythagorean mysticism? Let's 
take a crate of a apples for some fixed a and do some mental expe- 
riments. Our numbers would be 1,2,3,..., @ and no more. Now, in 
the mathematical integers, to add two integers we take disjoint 
sets with the right cardinalities, form the union, and take the car- 

dinality of that. With apples, we may not be able to make the 
sets disjoint (e.g. adding 2 to a-l, or 1 to a) so we must do the 
best we can and make them as disjoint as possible. If we denote by 
® the resulting 'addition' we find that 

a@®b=a+b ifa+b<a 
a@®@b=a ifa+boa. 

     

02 
2)
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Similarly multiplication becomes 

a ® b = ab if ab<a 
a®b=a if ab>a 

where we understand the symbols on the right as ordinary integer 
arithmetic. 

The resulting algebraic system, which we denote by Zho (the int- 
egers Z truncated at a) shares many of the usual properties of Z. 
It is a semiring (in the sense that addition is commutative and 
associative; so is multiplication; and the distributive laws hold). 
Indeed, Zia is the quotient semiring of the positive integers by 
the ideal of all integers greater than or equal to a. It is 
therefore mathematically respectable. 

Systems like Zlo do crop up. The Hottentots count "one, two, 
three, many" and effectively work in Z|4. With a crate of apples, 
the arithmetic is Z/a. In a universe which contains at most 8 
things (and no amount of experiment can ever demonstrate that it 
contains infinitely many things) the arithmetic will be something 
like Z|B. [Other systems occur. My young son was once heard 
counting one caravan, ‘nother caravan, ‘nother caravan; lots of 
Caravans - working in something like a one-point compactification 
of a non-Hausdorff version of Z|2, or maybe Z]3.] 

Nor do we lose much by working in Z\o.. Ifa > 3, it is still 
true that 29 2 = 4, Prime factorization and uniqueness thereof 
holds for all numbers except a. Subtraction is possible to an 
extent limited bya; if we make a very large, none of our cherish- 
ed beliefs will be disturbed except the one about n+l being bigger 
that n; and even this only goes wrong for n =q. By making & suf- 
ficiently large that we can never write it down (e.g. =C) we 
obtain a finite arithmetical system agreeing experimentally with 
all the evidence that can ever be accumulated about integers in the 
real world. But as a mathematical system it has the advantage of 
finiteness, and its consistency is not in doubt (to a mathematici- 
an), as is that of Z. (However, in a mathematics based on Z| 0 , 
the problem might arise once more...) 

It will of course be necessary to define Z/a without recourse 
to Z, but this can be done. We shall have to re-orientate the 
whole of mathematics to accommodate Zia, find replacements for the 
rationals and reals... but if we wish to work with a mathematics 
based on sound intuition the step must be taken. I look forward 
to the brave new future when all this infinitistic nonsense is 
thrown overboard once and for all. 
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There is a superstition on the island of Corfu that if you see 
a praying mantis, it brings either good luck - or bad luck... 
...depending on what happens. 
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"Hit is opunly puplysschid", say the Paston Letters M-19 

of 1452. But sometimes the way hit gets puplysschid 

is not quite so opun - as a distinguished but semi- 

anonymous topologist describes in: 

the Publication System: 

a daundiced View 

dedicated to KATY ADAMS and ANDREW MAY 

This is the paper X wrote. 

This is the editor, all distraught 
Who tore his hair at the horrible thought 
Of printing the paper X wrote. 

This is the friend whose help was sought 
By E, the editor all distraught 

Who tore his hair and groaned at the thought 

Of the horrible paper X wrote. 

This is the proof, all shiny and new, 
Of 2.1 and 2.2 
Conceived by F, whose help was sought 
By E, the editor all distraught 
Who tore his hair and groaned at the thought 
Of the terrible paper X wrote. 

This is the Referee's Report 

Which says SUCH THINGS ARE BETTER SHORT 

And gives the proof, all shiny and new, 
Of 2.1 and 2.2 

Proposed by F, whose help was sought 
By E, the editor all distraught 
Who tore his hair and groaned at the thought 
Of the odious paper X wrote. 

This Covering Note pretends to be 
Detached about the referee. 
(''He doesn't tell you how to fix 
The proof of Theorem 2.6.'') 

It quotes the Referee's Report 
Which says Such Things Are Better Short 
And gives the proof, all shiny and new 
Of 2.1 and 2.2 

Proposed by F, whose help was sought 
By E, the editor all distraught 
Who tore his hair and groaned at the thought 
Of the pitiful paper X wrote. 

"But still we're sure it can be mended; 

If wholly changed it could be splendid." 
Typing on a new machine 
F answers for his magazine. 
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Daisy, Daisy, give me your answer, do: M-2 
I'm half crazy, all for the love of you. 

It won't be a stylish marriage: 

I can't afford a licence... 

THON 12: solutions 

1. No. It would be unstable, because a small upward displacement 
would cause it to clamp to the ceiling, and a small downward displ- 
acement would cause it to lose suction and fall. 

2. The flow of water is reduced, giving less frictional loss of pr- 
essure in the pipe. More pressure is available to accelerate the 
water. 

3. There is a critical minimum size of fire in which the rate of 
heat release by combustion equals the rate of heat loss to the sur- 
roundings. Similarly, small animals have to eat more to keep warm. 
An atomic reactor is also critical only if it is large enough for 
the neutron release to balance neutron loss. 

4. High bending moments occur in the middle because of dynamic loa- 
ds and the axial thrust (which enables the brickwork to withstand 
bending) is reduced. The combined effect produces tensions in the 
brickwork which it cannot support. 

5. American labour charges are higher, and the economies of design 
dictate shorter journey times at the expense of bigger engines in 
American vessels. For the same reason, filter-tipped cigarettes 
are cheaper in this country than non-tipped ones, while the reverse 
is true on the continent. 

6. A bent beam fails due to buckling on the side which is in compr- 
ession. Buckling is easier to produce in the unsupported edges 
than in the curved back. 

7. Probably not. There would be no difficulty in achieving the 
correct intertial and elastic properties and outside shape; but con- 
Siderable difficulty would be encountered in reproducing the correct 
damping properties. (Denis Lillee, are you listening?) 

8. The action of wind on sails gives rise to a force on the yacht 
approximately perpendicular to the wind direction. By sailing at 
a small angle to the wind, this force has a component in the direc- 
tion of motion. But the process depends upon balance of the larg- 
er lateral component by a force on the keel. Radiation pressure 
could not be used because there could be no equivalent to the yacht 
keel in space. 

9. Chiefly because the shape is easy to build (it is composed of 
straight lines) and make strong. 
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10. The in-out motion required to open or close a hinged door is 
physically less exacting than lateral movement (generally involving 
abdominal muscles) as required by a sliding door. But it is doubt- 
ful if this is the main reason. It is more likely that hinges are 
easier and cheaper to make than sliding door gear that dissipates 
the same energy. Which sort of door involves more kinetic energy 
when opened in a given time? 

11. If a nut is overtightened the threads can be stripped or the 
bolt-shank sheared. This occurs at a torque that increases with 
nut size. Assuming the fingers exert a constant force, some safe- 
guard is established by making spanner-length proportional to nut 
size. 

12. No one is quite sure! If relatively little fuel has been used, 
it may enclose a bubble of gas. The free bubble will probably be 
an unstable state and will attach itself to the fuel tank wall. 
The shape of the interface will be such that the sum of the curva- 
tures in two perpendicular directions at all points is a constant, 
and the bubble is tangential to the wall at points of contact. 

13. Some advantages of the ternary system are that the leading dig- 
it indicates the sign, so a special symbol for the sign is not re- 

quired; that correct rounding off is achieved simply by truncating; 

that to represent numbers of given size, the measure "(number of 
digits / sign digits)x(possible values of digits)" is less than for 
any other number base; and that addition and multiplication tables 
are trivially simple. But ternary digital computers are not used, 
chiefly because it is easier to build 2-state elements than 3-state 
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DO NOT READ THIS NOTE UNTIL YOU HAVE READ PAGE... M-13 

but then, it won't make sense unless you have, 

will it? 

one-move mata: solution 

STANLEY COLLINGS 

Holmes got straight down to the solution. 
"Only one Black pawn is missing, and this became the Bishop on 

es. I shall show that on its promotion route it checked the White 
King, thereby causing it to move; thus 'White castles' is not a 

legal move. More strictly, I shall suppose that the pawn avoided 
giving check, and then demonstrate that the board position is im- 
possible on this hypothesis. 

"The natural and obvious candidate for promotion is Black's QP. 
To avoid giving check, this must have promoted on cl (having cap- 
tured from b2) or on al. In either case 3 pawn captures are re- 
quired. In addition, the Bishop originally on fl must have been 
captured by a Knight, and this accounts for all 4 captures by Black. 

The obvious candidate for the White promotion is the QKtP, and 
this must have captured three times to bypass the Black pawns and 
reach a White promotion square. Thus the tally of White captures 
is: 

by QKtP 3 
by P (e6) 1 creating the doubled pawns 
by P (f5) 2 creating the pawn inversion 
by Kt (say) 1 capturing B (f8) 

7 

But this is impossible as White only made 6 captures in all." 

"That completes it," I exclaimed. "So Black's QP must have 
checked the White King, and castling is illegal. The solution 
must therefore be P x P e.p. A wonderful exhibition of your ana- 
lytical skills!" 

Holmes was displeased rather than flattered. "When have you 
known me satisfied by the superficially obvious? Besides, if you 
had more of the analytical prowess you keep extolling in me, you 
would not have overlooked an essential part of the data. White's 
QRP moved twice in the course of the last ten moves." Holmes con- 
tinued with his exposition. 

"It is natural to suppose that Black's QP promoted, but it is 
not certain that it did so. It could, prima facie, have captured 

its way to bS, leaving the QKtP to promote on al. If the KtP cap- 
tured away from the b file before the QP captured on to it, White's 

QKtP would have had a clear run to b7, and the earlier deductions 
would not hold. The captured White pieces consist of the Bishop 
on fl (taken by a Knight), a black-square Bishop which could not 
have been taken by the supposed QP at bS, and two Knights. 
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"Therefore the QP took both Knights and the QKtP took White's 
black-square Bishop... but where? It must have been after White's 
QRP reached a4 but before White's QKtP reached b4. Furthermore, 
P (bS) must have captured from c6 after White's QKtP got past. 

"Counting 10 White moves back from the board position gives: 
1. P(aS) - a4 

2. B(dS) - a8 = P 
3. P(a8) - b7 uncapturing a rook. Black P(bS5) 

uncapturing Kt. 
4. P(b7) - b6 Meanwhile B(eS) unpromotes 
5. Kt(bS5) clears out of way on al to a pawn which ret- 
6. Q(b4) clears out of way racts to a3. The Black 
7. P(b6) - bS King has to move aside to 
8. P(bS) - b4 let this happen. 
9. P(b4)- b3 Black P(a3) - b4 uncapturing B. 

10. B(a3) clears out of way 
11. P(a4) - a3. 

Thus QRP can have moved twice in the last 11 moves, but not in the 
last 10. Hence it was Black's QP which promoted... and so the 
White King has moved." 

Holmes sat back in his chair, but was still brooding. "The 
position is still interesting. If we make the simplest of changes, 
moving P(c7) to d7, White again has a mate in 1: but now the out- 
come is different. I wonder whether that fellow Collings is aware 
of this final twist....2?" 
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mean 
Have you heard the one colour theorem? 
Who was the Good-natured rabbit-breeder? 

How many rabbits did he breed? 

Why wasn’t Courant and Robbin’s mistake silly then, and why 

would it be silly now? 

What was Holme’s answer to the one-move mate? 

Why isn’t 1000009 prime? 

In this selection from the seven years’ worth of MANIFOLD 

magazine, published between 1968 and 1980, you will find 

everything vou ever wanted to know about mathematics without 

even having asked for it. 

MANIFOLD aimed to make mathematics accessible. It carried 

serious articles too; and you’ll find some here: 

The four colour theorem 

Simple groups 

Topology in the scientist’s toolkit 

    This is MANIFOLD’S global synthesis of the way mathematics 
developed over the past decade and a half; presented in its inimitablé 
style, in non-technical language, sprinkled with songs, poems and 

cartoons. 

WHETHER YOU LOVE MATHEMATICS, OR HATE IT, THIS 

BOOK IS DESIGNED WITH YOU ALONE IN MIND. 

ISBN 0-906812-07-0


