where

$$
\left\langle\alpha_{k}, \phi(t)\right\rangle=\sum_{j=1}^{n} \bar{\alpha}_{j}^{k} \phi_{j}(t), \quad\left\|\alpha_{k}\right\|^{2}=\sum_{j=1}^{n}\left|\alpha_{j}^{k}\right|^{2} .
$$

If $E=\bigcap_{k=1}^{\infty} E_{k}$, then E consists of those $t \in[0,1]$ for which

$$
\left|\left\langle\alpha_{k}, \phi(t)\right\rangle\right| \leqq K\left\|\alpha_{k}\right\|, \quad k=1,2, \cdots
$$

Using the density of the α_{k} this means that $t \in E$ if and only if

$$
\begin{equation*}
\|\phi(t)\|^{2}=\sum_{j=1}^{n}\left|\phi_{j}(t)\right|^{2} \leqq K^{2} . \tag{*}
\end{equation*}
$$

Now for each fixed k the vector $\sum_{j=1}^{n} \bar{\alpha}_{j}^{k} \phi_{j}$ belongs to M and hence for almost all $t \in[0,1]$ we have

$$
\left|\sum_{j=1}^{n} \bar{\alpha}_{j}^{k} \phi_{j}(t)\right|^{2} \leqq K^{2}\left\|\sum_{j=1}^{n} \frac{\bar{\alpha}_{j}^{k} \phi_{j}}{k}\right\|_{2}^{2}=K^{2} \cdot \sum_{j=1}^{n}\left|\alpha_{j}^{k}\right|^{2} .
$$

Thus the sets E_{k} have measure 1 and consequently $m(E)=1$, i.e., $\left(^{*}\right)$ holds for almost all t. Hence

$$
n=\sum_{k=1}^{n}\left\|\phi_{k}\right\|_{2}^{2}=\sum_{k=1}^{n} \int_{0}^{1}\left|\phi_{k}(t)\right|^{2} d t \leqq K^{2} \cdot 1 .
$$

Also solved by Harry Furstenberg and Charles McCarthy, M. A. Malik, M. Rajagopalan and A. Wilansky, and the proposer.

Notes. See also S. Banach, Theorie des Opérations Linéaires, pp. 203-204 for the application of lacunary trigonometric series above.

The proposer settles the case $p<\infty$ with the closed subspaces generated by the Rademacher functions; see Zygmund, Trigonometric Series, 1st ed., pp. 122, ff.

Furstenberg shows that $M\left(\right.$ in $\left.L^{\infty}\right)$ is contained in the eigenspace of a Hilbert-Schmidt operator on $L^{2}(0,1)$ corresponding to the eigenvalue 1 and is, therefore, finite dimensional. He observes, too, that a closed subspace of l^{2} consisting of sequences in l^{1} is finite dimensional.

A New Method of Catching a Lion

In this note a definitive procedure will be provided for catching a lion in a desert (see [1]).
Let Q be the operator that encloses a word in quotation marks. Its square Q^{2} encloses a word in double quotes. The operator clearly satisfies the law of indices, $Q^{m} Q^{n}=Q^{m+n}$. Write down the word 'lion,' without quotation marks. Apply to it the operator Q^{-1}. Then a lion will appear on the page. It is advisable to enclose the page in a cage before applying the operator.
I. J. Good

1. H. Petard, A contribution to the mathematical theory of big game hunting, this Monthly 45 (1938) 446-447.
