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1. Introduction. Probability concepts nowadays are usually presented in
the standard framework of the Kolmogorov axioms. A sample space is given
together with a g-field of subsets — the events — and a g-additive probability
measure defined on this o-field. When the study turns to such topics as
stochastic processes, however, the sample space all but disappears from view.
Everyone says “consider the probability that X>0", where X is a random
variable, and only the pedant insists on replacing this phrase by “consider
the measure of the set {weQ: X (w)>=0}". Indeed, when a process is specified,
only the distribution is of interest, not a particular underlying sample space.
In other words, practice shows that it is more natural in many situations to
assign probabilities to statements rather than sets. Now it may be mathe-
matically useful to translate everything into a set-theoretical formulation,
but the step is not always necessary or even helpful. In this paper we wish
to investigate how probabilities behave on statements, where to be definite
we take the word “statement” to mean “‘formula of a suitable formalized
logical calculus™.

It would be fair to say that our position is midway between that of Carnap
and that of Kolmogorov. In fact, we hope that this investigation can eventu-
ally make clear the relationships between the two approaches. The study is
not at all complete, however. For example, Carnap wishes to emphasize the
notion of the degree of confirmation which is like a conditional probability
function. Unfortunately the mathematical theory of general conditional
probabilities is not yet in a very good state. We hope in future papers to
comment on this problem. Another question concerns the formulation of
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interesting problems. So many current probability theorems involve expec-
tations and limits that it is not really clear whether consideration of proba-
bilities of formulas alone really goes to the heart of the subject. We do make
one important step in this direction, however, by having our probabilities
defined on infinitary formulas involving countable conjunctions and dis-
junctions. In other words, our theory is o-additive.

The main task we have set ourselves in this paper is to carry over the
standard concepts from ordinary logic to what might be called probability
logic. Indeed ordinary logic is a special case: the assignment of truth values
to formulas can be viewed as assigning probabilities that are either 0 (for
false) or 1 (for true). In carrying out this program, we were directly inspired
by the work of Gaifman [1964] who developed the theory for finitary for-
mulas. Aside from extending Gaifman’s work to the infinitary language, we
have simplified certain of his proofs making use of a suggestion of C. Ryll-
Nardzewski. Further we have introduced a notion of a probability theory, in
analogy with theories formalized in ordinary logic, which we think deserves
further study.

In Section 2 the logical languages are introduced along with certain syn-
tactical notions. In Section 3 we define probability systems which generalize
relational systems as pointed out by Gaifman. In Section 4 we show how
given a probability system the probabilities of arbitrary formulas are de-
termined. In Section 5 we discuss model-theoretic constructs involving proba-
bility systems. In Section 6 the notion of a probability assertionis defined which
leads to the generalization of the notion of a theory to probability logic. In
Section 7 we specialize and strengthen results for the case of finitary formulas.
In Section 8 examples are given. An appendix (by Peter Krauss) is devoted to
the mathematical details of a proof of a measure-theoretic lemma needed in
the body of the paper.

2. The languages of probability legic. Throughout this paper we will
consider two different first-order languages, a finitary language £ and an
infinitary language . To simplify the presentation both languages have an
identity symbol = and just one non-logical constant, a binary predicate R.
Most definitions and results carry over with rather obvious modifications to
the corresponding languages with other non-logical constants, and we will
occasionally make use of this observation when we give specific examples.

The language %’ has a denumerable supply of distinct individual vari-
ables v, for each n<w, and & has distinct individual variables v,, for each
£ <w,, where w, is the first uncountable ordinal. Both languages have logical
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constants A, v, 71, V, 3, and = standing for (finite) conjunction, dis-
junction, negation, universal and existential quantification, and identity as
mentioned before. In addition the infinitary language £ has logical constants
A and V standing for denumerable conjunction and disjunction respectively.
The expressions of £ are defined as transfinite concatenations of symbols
of length less than w,, and the formulas of Z( and .# are built from atomic
formulas of the forms Ro.v, and v.=v, in the normal way by means of the
sentential connectives and the quantifiers. Free and bound occurrences of
variables in formulas are defined in the well-known way. (For a more explicit
description of infinitary langnages see the monograph Karp [1964].) A sen-
tence is a formula without free variables.

We will augment the non-logical vocabulary of our {anguages with various
sets T of new individual constants teT and denote the resulting languages
by Z)(T) and Z(T) respectively. It is then clear what the formulas and
sentences of .#)(T) and .#(T) are. For any set T of new individual con-
stants let . and % (T') be the set of sentences of ¥ and £ (T) respectively,
and let o(T) be the set of quantifier-free sentences of £ (T). We adopt
analogous definitions for the language .#(*.

If X is a set of sentences and ¢ is a sentence, then ¢ is a consequence of X
if ¢ holds in all models in which all sentences of X hold, and we write ZF ¢.
¢ is valid if it is a consequence of the empty set, and we write F ¢. For both
languages £ and % we choose standard systems of deduction, and we
write ZF ¢ if ¢ is derivable from Z. ¢ is a theorem if ¢ is derivable from the
empty set, and we write F ¢. (For details concerning the infinitary language
we again refer the reader to Karp [1964].) By the well-known Completeness
Theorem of finitary first order logic we have for every X <. and every
ee S, Xt ¢ iff ZF . This is not true for the infinitary language .#; how-
ever, we still have “weak’ completeness in the sense that for every pe %,
Fo iff k.

We call two sentences ¢ and r equivalent if F . It is well-known that
this is an equivalence relation, and that the equivalence classes form a
Boolean algebra, the so-called Lindenbaum-Tarski algebra of sentences,
which in the infinitary case is og-complete. By the “weak’ Completeness
Theorem this algebra is isomorphic to a field of sets of models, which in
the infinitary case is a o-field. Let #/F, & (T)/F and 4(T)/+ be the Linden-
baum-Tarski algebras of the respective sets of sentences. Clearly ¥/F and
3(T)/+ are o-subalgebras of #(T)/F. We adopt analogous definitions for the
language Z. For any sentence ¢, let ¢/ be the equivalence class of ¢.
Finally we define some relativized notions. If X is a set of sentences we call
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two sentences ¢ and ¥ equivalent with respect to X if X+ @<y. It is now
clear how the relativized Lindenbaum-Tarski algebras &/2F, . (T)/2}F and
2(T)/ZF are defined. Since the “strong” Completeness Theorem fails for the
infinitary language %, it is not in general the case that .#/XZ} is isomorphic
to a o-field of sets of models. On the other hand #(“/X} is isomorphic to a
field of models. Again, for any sentence ¢, ¢/2t is the equivalence class of
¢ with respect to X, and the mapping which sends ¢/F into ¢@/2F is a a-
homomorphism of ¥’/ onto /2 F.

In general we will present definitions and results for the infinitary language
£, and we will show in Section 7 how these results can be specialized, and
in many cases strengthened, for the finitary language £

3. Probability systems. We start with the definition of a concept which
corresponds to the notion of a relational system in ordinary logic. Recall
that if <7 is a Boolean algebra then a probability on .o/ is a o-additive
probability measure on 7. A finitely additive probability on <7 is a finitely
additive probability measure on ./. For a detailed discussion of these con-
cepts see Halmos [1963] and Sikorski [1964].

DEFINITION. A probability system (or sometimes, a probability model) is a
quintuple {A, R, Id, <7, m), where

(1) A is a nonempty set;

(1) (/. m> is a measure algebra, that is, .« is a Boolean c-algebra and
m is a strictly positive probability on .<f ;

(i) R is a function on A X A into o,

(iv) Id is u function on A x A into & with the substitution property, which
means that for all a, a’, b, b'e A,
(@) 1d(a, a)=1
(b) ~ld(a,a’ Yy ~Id(b, &)U ~1d(a, b)u Id(a’, b")=1
(¢) ~Id(a,aYu ~1d(b,b')U ~ R(a, b)u R(da', b')=1.

It A={A4, R, 1d, .«/, m) is a probability system, then .« is a complete
Boolean algebra (see Halmos [1963] p. 67), and therefore {4, R, Id, &7 is
a Boolean-algebraic model in the ordinary sense (see, e.g., Karp [1964] p. 140).

Id is to be interpreted as identity. If 1d(a, 5)=0 for all a, be 4 such that
a#b, we follow a suggestion of Gaifman [1964] and call U a probability
system with strict identity and write W=<{A4, R, .o«Z,m)>. If A is a probability
system with strict identity and m is a two valued probability, then s is the
two element Boolean algebra and {4, R> may be identified with an ordinary
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model. Most concrete examples of probability systems we have encountered
have strict identity. However some intuitively very suggestive model con-
structions, such as the ultraproduct construction and symmetric probability
systems which will be discussed in Section 5, lead beyond the realm of proba-
bility systems with strict identity. For this reason we thought it advisable to
introduce the more general notion of a probability system.

I A=A, R, 1d, o7, m) is a probability system, we define for all @, be 4,

a = biff Id(a,b)=1.

The substitution property of Id implies that = is a congruence relation on
A. The cardinality of A, denoted by || is defined to be the cardinality of the
set of equivalence classes with respect to x. If Wis a probability system with
strict identity then |2[| is the cardinality of the set A. More generally, for any
subset A’ < A the system-cardinality of A, denoted by | 4’|y, is defined to be
the cardinality of the set of equivalence classes with respect to & which have
a non-empty intersection with 4’

4. Probability interpretations. We now interpret the language £ in pro-
bability systems and give a definition of the concept “a sentence ¢ holds
in a probability system W with probability o™, where 0 <a <1 is a real number.
The definition could be given in the traditional way using an analogue of
Tarski’s concept of satisfaction; however, in the context of probability logic
it seems to be more appropriate to use the equally well-known device of new
individual constants.

Let A=<4, R, Id, .«/, m) be a probability system and let Ty={¢,:ae 4}
be a set of new individual constants such that ¢,# ¢, whenever a#b.

We recursively define a valuation function h on ¥ (Ty) into «:

(i) h(t,=t,) =1d(a,b),
(ii) h(Re,t) = R(a,b),
(i) h(m@)=1~h(e),
(iv) h('\/6 @;) = .\</§h((/)i)’
) h(\ 0)= 1 h(o).

(vi) h(Fve) = V h(e(t),

acA

(vii) h(Vve) = AAh(¢(ta))~

The following lemma is well-known and easy to prove:
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LemMa 4.1. (i) For all @, ye S (Ty), if F oy, then h(@)=h(¥);

(ii) h induces a o-homomorphism from & (Ty)/¢ into <.

Proof': By the definition of 4 it suffices to prove that for all pe % (Ty), if
@F then h(p)=1. This can be done by considering a standard system of
deduction for £ (Ty), and showing that & maps all axioms into 1 and that
the property of being mapped into 1 is preserved under all rules of deduction.
For a more detailed presentation see Karp [1964]. (ii) is an immediate conse-
quence of (i).

We identify # with the induced homomorphism and define uy(@/F)=
m(h(¢@)) for all pe.¥’(Ty). Then py is a probability on & (Ty)/F. (This is a
well-known fact in measure theory, and a proof can be found in Halmos
[1963] p. 66.) Since hardly any confusion could arise we write uq(¢) for
pa(e/t), and we read “uy(@)=a" as “¢ holds in the probability system U
with probability o™ .

If A is a probability system with strict identity and m is two valued, then
for every pe. ¥ (Ty), uy(@)=1 iff ¢ holds in the model {4, R>. Thus the
definition of the probability gy is a canonical extension of the ordinary defi-
nition of truth. Moreover, if 9 has strict identity, then pg(?,=1,)=0 for
a, be A where a#b, and therefore gy is two valued on the identity sentences
{the sentences without the predicate R).

The next femma introduces the Gaifman Condition (G).
LemMa 4.2. Whenever Jvpe S (Ty), then

(G) e (Fve) = sup pu(V o(t,);
FeA(o) aecF

where A is the set of all finite subsets of A.
Proof : py(Avep)=m(h(Jve))=m(V h(p(1,))). o/ is a measure algebra and
acA

therefore satisfies the countable chain condition (see Halmos [1963] p. 67).
Thus there exists a countable subset 4’ < A4 such that
V h(e() =V h(e(t).
Thus
i @0p) = m(V h(0(0) = m((V p(t) =l V 0(0).
Since py 18 o-additive,
#‘ll( vV (P(ta)) = Ssup Hﬂu(\/ (P(ta))'
ucA’ FeA{w) acF

Condition (G) now follows from the choice of 4".
We now present the preceding ideas from a slightly different point of view
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to see that the probability system W may be identified with the restriction of
the probability uy to o(Ty)/F. We first observe that from the definition of 4
and the countable chain condition in o7 it follows that for the purpose of
our probability interpretation we may assume that .7 is the ¢-algebra gener-
ated by the union of the images of 4 x 4 under Id and R respectively. If the
definition of k is restricted to clauses (i)-(v), then obviously Lemma 4.1
holds with % (Ty) replaced by 4(Ty). Since m is strictly positive on .« we

have {peo(Ta):nulp) = 0} = {pes(Ta):h(p) = 0}

Thus the quotient algebra of 4(Ty)/t modulo the o-ideal {¢/Fes(Ty)/t:
py(@)=0} is isomorphic to &7, and it is a well-known fact that the proba-
bility m on &/ may be uniquely recaptured from the probability uy on
s(Ty)/t. (See, e.g., Halmos [1963] pp. 64ff.) Thus the probability system U
is, up to the obvious isomorphism, determined by the ordered pair { Ty, iy,
where py is restricted to 4(Ty)/F.

In general any ordered pair {7, u>, where T is a set of new individual
constants and g is a probability on s(T')/, uniquely determines a probability
system . Indeed let A==T, let .« be the quotient algebra of 4(T')/F modulo
the g-ideal {@/F:@es(T), n(@)=0}, let m be the probability on .« induced
by u, and let Id (¢, ¢') and R(¢, ¢') be the image of t=¢'/F and R(z, ¢')/F under
the canonical homomorphism of 4(T)/; onto 7. Then N={A4, R, Id, o/, m)
clearly is a probability system; it is easy to check that the valuation homo-
morphism # is the canonical homomorphism, and p is the restriction of pg
to s(T)/F. Moreover, if u(t=1)=0 for all 1, t'eT where 11, then U has
strict identity.

Thus we may also regard a probability system as an ordered pair (T, m),
where T is a set of new individual constants, and m is a probability on
s(T)/t. The probability systems with strict identity are then characterized
by the condition m(r=1¢")=0 for all ¢, ¥ €T where 7#¢". This is the form in
which Gaifman [1964] introduces the concept of a probability model and,
whenever convenient, we will also adopt this terminology.

From this new point of view we have the following extension theorem:
THEOREM 4.3. Let {T, m) be a probability system. Then there exists a unique
probability m* on & (T)[v which extends m and satisfies the Gaifman Condition:
whenever Jvpe S (T), then
(G) m*(Jvp) = sup m*(V (1))
FeT(®) teF

where T is the set of all finite subsets of T.
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Proof: The existence of m* is clear from our considerations above. The
uniqueness of the extension will be proved by transfinite induction. During
the course of our proof we will make use of analogues of Lemma 7.9 which
will be established separately, and of course independently, for the finitary
language £ (T in Section 7 of this paper.

For every ordinal £ <w,, we shall define sets of sentences o.(T)= ¥ (T) <
S(T) by recursion: First let 5o(T)=us(T). Then if £>0, let 4,(T) be the
closure of {J ¢, (T) under denumerable propositional combinations. For

n<é
every {<w, let /(T) be the closure of .,(T') under quantification and
finite propositional combinations. Then obviously whenever n<¢<w,,

w(T) €S (T) < 3(T) = S(T)
and
S (T)= U 5(T)= U 4(T).
S<w S<wy

Now suppose n; and #n, are both c-additive probability measures on
S (T)/F which extend m and satisfy condition (G). We shall prove by trans-
finite induction that for every £ <w, and every ¢ ¥ (T}, we have n,(¢)=
(@)

In case ¢=0 and @€ 4o (T), then n, (¢p)=n,(¢) by hypothesis. If pe.%,(T),
then ¢ may be written in prenex normal form QM, where Q is a string of
quantifiers and M is an 5o (T)-matrix of ¢; that is, every substitution instance
of M belongs to .,(T). By an obvious analogue of Lemma 7.9 we have
1y (@)=n,(¢). In case £>0, first observe that ({_J ., (T))/F- is a subalgebra

n<g

of . (T')/F that o-generates 5,(T)/F. By way of an induction hypothesis, we
assume that n, (¢)=n,(¢) for every pel ) ., (T). Since n, and n, are both
n<g

o-additive measures, we conclude by a well-known extension theorem of
measure theory (see Halmos [1950] p. 54), that n, (¢)=n, (@) for all pe4,(T).
If pe.%:(T) then ¢ may be written in prenex normal form QM, where M is
an 5-(T)-matrix of ¢: that is, every substitution instance of M belongs 4,(T).
Again by analogue of Lemma 7.9 we have n,(¢)=n,(¢). Thus by transfinite
induction 5, =1,.

Remark : Gaifman first formulated condition (G) and published a proof of
Theorem 4.3 for the finitary language £’ (T), which of course is an im-
mediate consequence of Theorem 4.3. The authors subsequently proved Theo-
rem 4.3 for the infinitary language along constructive lines suggested by the
uniqueness proof given above. The idea underlying the presentation in this
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paper, which renders the existence part of Theorem 4.3 almost trivial, was
suggested to us by Professor C. Ryll-Nardzewski.

It is now clear how to define various probability-model-theoretic concepts
in analogy to the standard concepts of ordinary model theory. We will
discuss a few examples in the next section.

5. Model-theoretic concepts in the theory of probability systems. If (T, m)
is a probability system, let m* be the extension of m to & (T)/t satisfying
(G), and let /a1 be the restriction of m* to #/t.

DerNITION. Let {Ty, m), {T,, m,) be probability systems, then
) Ty, m>={T,,myy iff T\ =T, and m, is the restriction of m, to
a(Ty)/F;
(i) {Ty, m,><(Ty, my) iff T =T, and m} is the restriction of mi to
y(Tl)/‘“;
(i) Ty, m>=LT,, my) iff M =,.

Remark: The concepts defined in (i), (ii) and (iii) correspond to the con-
cepts of subsystem, F-subsystem and .£-equivalence respectively in ordinary
model theory.

Not many interesting results concerning these concepts are known for the
infinitary language %, a phenomenon which the probability-model theory
of # seems to share with the ordinary model theory of .. In many cases the
authors have been able to establish for probability logic analogies of major
results known from ordinary logic; this is particularly true for the finitary
language .#®, for which several results have already been published by
Gaifman [1964].

We present next a few standard constructions for probability systems.

Independent Unions. Let I be an index set. For each iel, let &#; be the
infinitary language whose only non-logical constant is the binary predicate
R;, and let .%; be its set of sentences. Let T be a set of new individual con-
stants. For each i/, let T, m,;)> be a probability system where m; is a proba-
bility on 4(T)/F. We shall assume these systems have strict identity. Let
£ be the infinitary language whose non-logical constants are all the binary
predicates R;, i/, and let & be its set of sentences. For every iel, 5(T)/t
and s(T)/+ are isomorphic to o-fields of sets of models, and 4+(T)/F
is isomorphic to the o-field product []+;(T)/t of the family {s;(T)/t:iel}.

iel
m = [ [ m; is the product measure on 4(7T)/+ induced by the family {m;:ie7}.

iel
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Then we define the independent union of the family of probability systems
{{T, m;>:iel}, to be the probability system (T, m), and denote it by
Z'<T’ mp.

We note two corollaries of the construction given with this definition:

COROLLARY 5.1. For every il and pe,(T), m*(p)=m ().

Proof: We argue by transfinite induction along the same lines as the
uniqueness part of the proof of Theorem 4.3. Let i€/, and for every £<w,
define sets of sentences 4;,(T) = ¥;:(T) = F:(T), as in the proof of Theorem
4.3. If peu;o(T) then m*(p)=m; (p) by the definition of m. The rest of the
induction is carried out as in the proof of Theorem 4.3.

We state a simple fact about product measures: Let X, Y be sets, let o7, #
be fields of subsets of X, Y respectively; let o7, Z be the o-fields generated
by .7, & respectively; and let u, v be probabilities on o7, # respectively. Let
7 x % be the product o-field of .o/ and #. Then we have:

LemMma 5.2. If Ais a probability on o7 x B such that J.(4 x B)=p(A)-v(B)
for all Ae <7, Be %, then L(A x By=u(A) v(B) for all Acs/, BeA.

Proof: Let o7 x # be the field of subsets of X x ¥ generated by rectangles
A x B, where Ae.«/, Be#. Then the condition A(4x B)=p(4)-v(B) de-
termines the probability 4 on & x #. o x 4 is o-generated by « x #. Thus
this condition determines 4 on o7 x #. The product measure u xv on o/ x #
agrees with 1 on &7 x%. Thus A==p x v, which proves the assertion.

COROLLARY 5.3. For every n<w, let i,eI and let ¢,€"; (T). Then
m*( A\ @)= [] m*(¢.).

n<w n<w

Proof: The assertion follows from the continuity of m* if we can establish:
Ifn<w, iy, ..., i,_€l and ¢,€ ¥ (T) for all k <n, then

m* (k/\ o) = kn m* ().

As in the proof of Theorem 4.3, for every ¢ <w,, k<n we define sets of
sentences 4, :(T)E 7, (T)= S, (T). If o, ¥, (T) for all k<n, then there
exists &<, such that ¢,e.%; (T) for all k<n. Accordingly we prove by
transfinite induction: For every &<, if ¢, ¥ (T) for all k<n, then
m*( A\ @ )=][m*(¢.)- First if ¢,es,,(T) for all k<n, then the assertion

k<n k<n
holds by the definition of m*. If ¢,e.%; o(T) for all k<n, then for every
k<n, @, may be written in prenex normal form Q,M,, where Q, is a
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string of quantifiers and M, is an o, o(T)-matrix of ¢,, which means every

substitution instance of M, belongs to s, o(T). It is now easy to see that by

an analogue of Lemma 7.10, straightforward computations with sup’s and

inf’s, and the fact that we have established the assertion for ¢,€s,4(T),

k<n, we obtain m*( A QM)=]] m*(QM,). We omit the cumbersome
k<n k<n

details and illustrate the idea with a simple example. By an analogue of
Lemma 7.10,

m*(JvoMo(vo) A Yo, M, (vl))—sup mf m*[( \/ Mo () A ( A M, ()]

—sup mf[m*( Vo Mo(te))-m*( A M(1)))]
Fy toeFo tieF,

= sup m*(V  My(1o))- mf m*( A Mi(1)

toeFo t1eFy

- m*(a quo(uo)ym*(Vlel(vl)),

because \V My(tg)e0,0(T), A My(f;)€5;,o(T), and those are formulas for

tocFo t1efy
which the assertion has already been established.

Next assume £>0 and that the assertion holds for all ordinals smaller
than £. First suppose @€4,.(T) for all k<n. Remember that for every
k<n, (U % (T))/F is a subalgebra of &, (T') and o-generates s, (T). Now
(T) for
all k<n. Thus by inductive hypothesis, m*( /\ W)= H m* (). By an n-

suppose |/1keU &L n(T) for all k<n. Then for some <&, Y, e,

L)

dimensional version of Lemma 5.2, m ( /\ qok) I1 m* (gok) In the general
k<n

case where ¢,.€.%, .(T) for all k<n, we proceed in the familiar fashion using
prenex normal forms and Lemma 7.10, as in the second part of the case
£=0. This completes the proof of Corollary 5.3.

The construction of independent unions is particularly valuable for the
introduction into a given probability system of ““a priori conditions” such
as ordinary relational structures. For example, we may consider a proba-
bility system W; =<4, R, o7, m), where the set 4 has a natural ordering <.
Then we consider the ordinary relational system W,={4, <) separately,
and form the independent union of A, and A,. This allows us to make
probability statements involving the ordering, and Corollaries 5.1 and 5.3
show how certain values of the probability of the independent union may be
computed from the probabilities of the components.
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It is natural to ask for the definition of an analogue of the direct product
of ordinary relational systems; however, a reasonable, natural generalization
of this construction for probability systems does not seem to exist. On the
other hand we are able to give an intuitively very suggestive definition of an
analogue of the ultraproduct construction of relational systems.

Ultraproducts. Consider again our language ¢ with one binary predicate
R. Let I be an index set. For each i€/, let T; be a set of new individual con-
stants, and let {T;, m;> be a probability system, where m; is a probability on
J(T)/t. Let T=]] T, be the Cartesian product of the family of sets {T;:iel}.

iel
For oe.(T) and i€, let ¢|i be the projection of ¢ onto the i*" coordinate;
that is, replace in @ every teT by #,e T,. Then for every o (T) and iel, } ¢
implies F ¢li. Finally let 1 be a probability on the power set of 1. Define for
all e s(T) a function m by the equation

mie)= | m(o1) 8200,
I

LemMa 5.4. (i) For every @, yes(T), if b oo, then m(@)=m(y).

(i) For every pes(T), if b, then m(p)=1.

(iii) m, regarded as a function on s(T)/t, is a probability.

Proof: (i) and (ii) are trivial. Thus m may indeed be regarded as a function
on ,(T)/F, and it suffices to prove o-additivety. Suppose ¢,€s(T) for all
n<w, and F=1 (@, A ¢,) for all m#n. Then F—1(@,]i A @,li) for all m#n and
all iel. Thus for all iel

m(V e, li)y=3Y me,li).

n<w n<o

Therefore by the Dominated Convergence Theorem

m(V @,)= fm,-( Voo, i) dAi)

n<w

1

= | X muleali)di(i)

n<w

= % | mlenliang)

n<w

=2 ';1(%)-

n<w

We define the ultraproduct with respect to A of the family of probability
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systems {{T;, m;>:iel}, to be the probability system (T, m), and denote it
by [[<T;, miy/ 2.

iel

COROLLARY 5.5. For all pe #(T),
(@)= [ m (o11) 42 ).
I

Proof: Define p(¢)={,m; (¢li)dA(i), for all pe ¥ (T). By the same argu-
ment as in Lemma 5.4, p is a probability on & (T)/F. Clearly u extends m.
By Theorem 4.3 it suffices to prove that p satisfies the condition (G). Let
Jvpe F(T). For every iel,

m (Qvpii)= sup m(V (¢]i)(1)).
FeT;(®) teF
Therefore for every i€l and n<w there exists ¢, T; such that
mi Qo] i) = lim m(V (¢17) ()
For n<w define s,eT by s,(i)=1,, for all iel. Then for iel,
m; (vg | i) = lim m(V @(s)]i).
n—>w k<n

Thus, by the Monotone Convergence Theorem,

p(Jvg) = f F(ve|i)da(i) = f lim m] \/ @ (si)1i)da(i)

n—+ oo

1

= lim m*(\/ @ (s)1i)dA(i) = lim ;1(\/ @ (s))

B [ i o)

=n(V ()= sup u(V o(1).
k<o FeT() teT

Remark: Let t, t'eT and let J={iel:t;=¢'}. If for every iel, {T;,, m;» has
strict identity, then we have m(z=1r)=A(J). Thus the ultraproduct con-
struction does not preserve strict identity.

Corollary 5.5 shows that the probability of the ultraproduct is in a very sug-
gestive fashion a “weighed average™ of the probabilities of the components,
This idea was introduced in Lo$ [1962] and is further developed in Fenstad
(forthcoming), to which the reader is referred. We conclude this section with
a brief discussion of symmetric probability systems.

Symmetric probability systems. Let (T, m) be a probability system. A
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function neT7 is a permutation of T if 7 is one-to-one and onto. A permu-
tation x is finite if n(r)=1 for all but a finite number of ¢teT. Following a
suggestion of Gaifman [1964} we call (T, m)> symmetric if for every finite
permutation 7 of T and every e+ (T), m(p)=m(¢™), where o™ is obtained
from ¢ by replacing every individual constant ¢ of ¢ by n{s).

Remark: Gaifman’s [1964] definition is apparently stronger; however,
Lemma 5.7 shows that the two definitions actually coincide.

The following lemma is easy to prove; for a proof we refer the reader to
Hewitt-Savage [1955].

LrMMA 5.6. Let (T, m) be a symmetric probability system. Then for every
permutation 7 of T and every pes(T), m*(p)=m*(o").

LeMMA 5.7. Let {T, m) be a symmetric probability system. Then for every
permutation © of T and every e % (T), m*(¢)=m*(o").

Proof: We proceed by transfinite induction using the familiar method of
the proof of Theorem 4.3. First, if ¢ €44 (T), then the assertion is Lemma 5.6.
If o %, (T), then ¢ may be written in prenex normal form QM as explained
before. It is again easy to see by an analogue of Lemma 7.9, by the fact that
a permutation = of T is a function onto T, and by elementary arithmetical
properties of sup’s and inf’s that we obtain m*(QM)=m*(QM"). We illus-
trate the argument with a simple example. By an analogue of Lemma 7.9,

m*(Avo Vo, M(ve,v,))= sup inf m*(V A M(t,1,)).

FoeT(®) FieT(®) toeFotieF;

Now V A M(¥,, t;)€40(T), and the assertion has already been establish-

toeFo t1€F,
ed for these formulas, so we have for every F,, F, T

m*(V A M) =m*(V A M n(ty),n(t,))).
toeFo t1eF, toeFo t1eFy
Finally, since 7 is onto,
m*(3voVo,M(vg,v,)) = sup inf m*( v A M (10,1,))
FoeT(®) FieT(w) tocFo t eF,
=m*(3v,Yv,M"(vy,v,)).

Next, assume &>0 and that the assertion holds for all ordinals smaller

than £. Recall that (| %, (T))/t is a subalgebra of .%(T)/} that o-generates
n<g
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s¢(T)/F. By the inductive hypothesis m*(@)=m*(¢") for every pe U{ &,(T).
'l<

Let X be the set of @eu(T) for which the assertion holds. If ¢,eX and
Fg,—@,+, for all n<w, then

m*(V ¢,) = lim m*(¢,)

n<w n— o

lim m* (¢;)

—m*(V ¢}).

n<ow

A similar argument for decreasing sequences proves that X is monotone,
and therefore by a well-known fact about monotone classes (see Halmos
[1950], p. 27), Z=u,(T). If peF(T), we proceed as in the second part of
the case of £=0.

In a sense the symmetric probability systems are diametrically opposite to
ordinary relational systems. In ordinary relational systems the probability is
as concentrated as possible; in symmetric probability systems it is completely
dispersed. The condition of symmetry is a severe restriction on a probability
system, as an example in Section 6 will demonstrate.

This completes our discussion of probability-model-theoretic concepts,
and we now turn to the analogue in probability logic of theories in ordinary
logic.

6. Probability assertions. In ordinary logic a theory of .# is any subset
of & closed under deduction. In probability logic we first have to define the
concept of probability assertions which play the role of sentences (or, better
axioms and theorems) in ordinary logic.

For this purpose we introduce a new language .#, the first-order language
of real algebra. .# has denumerably many distinct individual variables 4,,
n<a. The non-logical constants of .# are a binary predicate <, binary
function symbols 4 and -, and individual constants ¢, +1 and —1. The
logical constants of .# are A, v, 71, ¥ and 3, standing for (finite) con-
junction, disjunction, negation, universal and existential quantification re-
spectively. Formulas and sentences of .# are defined as usual. .# is to be
interpreted in the real numbers in the standard way with the obvious meaning
being given to the symbols. Let Re denote the set of real numbers, and say
that .# is interpreted in the relational system R=(Re, <, +, +, 0, +1, —1).
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The set of sentences of .# true in R is called the set of theorems of real
algebra. An algebraic formula is a quantifier free formula of .#. Every alge-
braic formula is equivalent in real algebra to a disjunction (conjunction) of
conjunctions (disjunctions) of polynomal inequalities of the form p>0 or
p>0, where p is a polynomial with integral coefficients. We call an algebraic
formula closed (open) if it is equivalent to a disjunction of conjunctions of
polynomical inequations of the form p=0(p>0). It is obvious that in this
definition we could have used the conjunctive instead of the disjunctive
normal form.

We now make several definitions. A probability assertion of £ is an (n+1)-
tuple {&, @, ..., ¢,_,>, where n<w, ¢ is an algebraic formula with exactly
n free variables and ¢,..., ¢, 1€.%. A probability assertion is called closed
(open) if the algebraic formula is closed (open). A probability system (T, m)
i1s a probability model of {®, ¢, ..., ¢, > if the n-tuple of real numbers
A (@g),-- - Mm@, _ 1)) satisfies @ in R,

If X is a set of probability assertions and ¥ is a probability assertion, then
¥ is a probability consequence of X iff every probability model of all assertions
in ¥ is also a probability model of ¥. ¥ is a probability law of L if ¥ is a
probability consequence of the empty set of assertions.

Immediately the familiar questions arise: Is there a method of deductively
generating the probability consequences from a given set of probability as-
sertions? Is there a method of deductively generating all probability laws?
Under which conditions does a set of probability assertions have a proba-
bility model? Is there an analogue of the concept of consistency in ordinary
logic? Obviously these questions are interrelated. Before we enter into their
discussion, we insert some remarks concerning our definition of probability
assertions.

The definition of probability assertions depends both on the language %
and the language .#, and it is clear how this definition could be generalized
by considering languages .#" with stronger means of expression. The under-
lying idea of our approach is that we want to investigate polynomial in-
equalities in “variables” u(@q),..., u(@,-,) with real coefficients, where
Poy---» Ou_1€-S and uis interpreted as a probability on .¥/F. Our definition
does not quite realize this idea. For this purpose it would have been ap-
propriate to introduce a language .#' which is like .# but has individual
constants for every real number. We easily see that by the continuity of
addition and multiplication every closed probability assertion of .#" is equiv-
alent to a denumerable set of probability assertions of .#’ with rational co-
efficients and, after clearing denominators, to a denumerable set of proba-
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bility assertions of .#. This, however, is not true for open probability as-
sertions of .#’. We thus fall somewhat short of our objectives. Nevertheless
since not very much work has yet been done towards the investigation of
probability assertions, we chose the present formulation for its simplicity.
If X<, then X determines a set of probability assertions {{1,—12>0,
@y peX}. Accordingly we say that {T, m) is a probability model of X if
m(p)=1 for all peX. More generally, if p is a probability on &/F, then u
determines a set X of probability assertions as follows. For every gpe.% we
choose sequences of rational numbers p,/q,, and p,/q.., such that for all n<w

PPt (g < Pt <
qn qn+] Gn+1 Qn
and
lim =% = p(p) = lim 7
n—w Yy n=ow Yy
Let

o= {{duho=P,20,0>:n <0} U {{~qio+ P, 20,0)>:n < w}

and let =\ Z,. Accordingly we say that (T, m) is a probability model of

ped

pif m(e)=p(e) for all pe & . It then is obvious that (T, m) is a probability
model of u iff (T, m} is a probability model of X. Moreover, if 4S.% is a
complete and consistent theory, then 4 uniquely determines a two valued
o-additive probability measure ¢ on &/t. In this case {T’, m) is a probability
model of A iff (T, m) is a probability model of u.

For the infinitary language % the questions raised above seem to be rather
vexing problems, only a few scanty results could be established by the authors.
First let us establish the relationship to ordinary logic.

A set X< 7 is consistent if there exists no ¢e.% such that I+ [ A 710}
It is well known that not every consistent set of sentences of .# has a model
(see Karp [1964] p. 32). The trouble already occurs with the ordinary propo-
sitional logic of ¥ and carries over to the probability logic of #. Indeed,
let p;,, { <w;, n<w, be a doubly indexed set of propositional constants. Let

Z={V puié <o} U {1 [pm A pen]:é <& <wy,n<w}.
It is easy to see that X is consistent. Suppose then there exists a g-additive
probability measure u on &/ such that u(¢@)=1 for all peZ. Then for every
¢ <wy there exists n<w such that u(pg,)>0. Thus there are uncountably
many p’s such that u(p)> 0. Thus for some n < w there are uncountably many
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¢ <wy such that p(pg,)>0. Since p([pg, Ape,])=0 for &, this is a con-
tradiction. Obviously every complete and consistent set of sentences of
an infinitary propositional language has a model. In infinitary propositional
logic the trouble therefore arises from the fact that the Prime Ideal Theorem
fails for Boolean ¢-algebras.

Naturally the question arises: Does every complete and consistent set
X <.% have a model? The answer is again no, and a counter-example is due
to Professor C. Ryll-Nardzewski. Interestingly enough the counter-example
produces a probability model of the complete consistent set of sentences
under consideration. The question of whether every complete consistent set
X =.% has a probability model can, however, be settled by a similar counter-
example, and we shall discuss both of these examples in a form slightly
modified from Ryll-Nardzewski’s original suggestion.

Let &% be an infinitary language with countably many one-place predicates
P; for each j<w, and define a probability model A={4, R;, &, m);.,, as
follows: Let A==w, and let .27 be the Borel sets of the product space (2°)”;
that is, the o-field of subsets of (2°)” generated by all sets of the form
{Ee(29)?:&(i) (j)=1}, where i, j<w. Let m be the product measure on .o/
determined by m({£e(2°)”:£(i) (j)=1})=1 for all i, j < w. Finally, for j<w,
define R;(1)={£e(2°)*:£(i)(j)=1} for all ie 4. (Note: strictly speaking U
is not a probability model since (.7, m) is not a measure algebra. Thus we
would have to consider the quotient algebra 7/I of &/ modulo the g-ideal
I={xe o/ :m(x)=0}, and lift m up to a strictly positive probability on =//I.
In this example, however, all sup’s and inf’s in o7 that have to be taken into
consideration are countable; clauses (vi) and (vii) of the definition of the
valuation function # make sense; and everything comes out just the same.
We can omit the tedious details.) Then let Ty—{z,:je A} be a set of new
individual constants such that z,#1,, if i#i’. Now we observe that for every
@eS, the element A(¢p)e.of is invariant under all finite permutations of the
second coordinate in (2°)“. By the well-known 0-1 Law (Hewitt and Savage
[1955] p. 496) m is two-valued on h(¢). Thus the set Z={pe ¥ :m(h(p))=1}
is a complete and consistent theory of #. We wish to show that 2 has no
model. Indeed, suppose B=(B, §,>;,, is a model of Z. Since B must be
non-empty, let be B. For j<w define formulas Q;(v)=P;(v), if beS;; while
Q,;(v)="1P;(v), if b¢S;. Then Iv[ A Q;(v)] holds in B. However, as a

ji<o

straightforward computation shows, m(3v[ A Q;(v)])=0, which is a contra-
j<o

diction. On the other hand, by its very construction % is a probability model

of X; that is, py(p)=1 for all peZ.
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For our second example we let W' =(A4, R}, #'>;.,, be that Boolean-alge-
braic model where A =w, where «7'=.<7/J, the ideal J being the g-ideal of
all first-category sets in the Borel algebra o7, and where R (i)=R;(i)/J for
all i, j<w. Since 4 is countable, we note that the valvation 4’ for %’ is such
that 4’ (¢)=h(p)/J for all pc&. But there is a 0-1 Law for category just as
there is for measure, hence X'={pe S h'(p)=1y} is also a complete and
consistent theory of . We wish to show that X’ has no probability mo-
del. First we note that for every Borel set a of 2° we can find a formula
@.(v) such that h'(e,(1))={¢e(2?)”: &(i)ea}/J. Therefore the sentence
Volp,(v)—@,(v)] belongs to the set X’ iff a/J,=b/J, where J, is the ideal of
first-category sets of 2¢. This means that if 2’ had a probability model, then
the measure algebra of this model would contain a o-homomorphic image
of the algebra of Borel sets modulo first-category sets. But we know that
there is no non trivial g-additive probability on this algebra (see Sikorski
[1964] p. 77). Thus X’ has no probability model. It should be noted that
both the models W and A’ could be equipped with a strict identity relation,
and they thus afford counter-examples for the logic with strict identity.

The property of a set T <. to have a probability model may be given an
algebraic interpretation which can be read off directly from our presentation.
We say that a Boolean algebra o/ has the Kelley property if o7/ ~{0} is a
countable union of sets with positive intersection number. (For the definition
of this and other Boolean-algebraic concepts see Sikorski [1964]; in par-
ticular, cf. p. 204.) We then have the following:

COROLLARY 6.1. Let X<.%. Then X has a probability model iff ¥ has
a Boolean-algebraic model which is complete, weakly distributive and has the
Kelley property.

Proof: This follows immediately from Kelley’s Theorem: A complete
Boolean algebra has a strictly positive g-additive probability measure iff it is
weakly distributive and has the Kelley property (see Kelley [1959]).

In Karp [1964] we find the theorem that every countable consistent set
2 < % has a countable model in the ordinary sense. The exact analogue of
that result also holds for probability logic. We can also treat the case of
theories with identity. To help formulate the result we define the formuia
8, for 0<n<w to be the formula 3o, ... dv,_ Vv, V v;=v,. Note that for

each probability system (T, m) with strict identity we have m(0,)e{0, 1}
for 0<n<w.
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THEOREM 6.2. (i) Let u be a probability on L[V, and let X = & be a count-
able set. Then there exists a countable probability model {T, m) such that
for every geX, im(p)=u(p)-

(i) If for every 0<n<aw, u(0,)€{0, 1}, then the probability model {T, m)
may be assumed to have strict identity.

We will give a detailed proof of part (ii) and leave the proof of part (i) to
the reader. To prove this result we require a few lemmas. The first is a
measure theoretic generalization of the well-known Rasiowa-Sikorski Lemma
(see Rasiowa and Sikorski [1950]). The proof is given in full in the Appendix.

LeEMMA 6.3. Let # be a Boolean o-algebra and let of =9 be a o-subalgebra.
Let y be a probability on ¢, and for every m, n<w let b,,,€%. Then there
exists a finitely additive probability v on & such that

(1) v(x) = p(x), for all xe o#;
(i) v( A b,,) = lim v(A b,,), for all m < w.

n<o L i<n

For every ¢es(T) we recursively define an ordinal number A(¢)<w;,
called the length of ¢, by these equations:

(1) if @ is atomic, (@) =1;

(i) A(m @)= Ai(p) +1;
(iii) Alo, v ¢3) = A(Q, A @y) = Apy) + i) +1;
(i) 20V @) =2(A @)=Y i(p,).

n<au n<w n<w

LemMa 6.4. If oes(T), A{p)=w, and =1 occurs in ¢ only in front of atomic
Sormulas, then there exists a sequence \r,€.:(T) such that A(Y;)<A(p) for all
i<w,and either o\ ; or Foe N\ ;.

Proof: By transfinite induction on A(). If A(p)<w, the assertion holds
trivially. Thus assume 4(¢)=w and that the assertion holds for all ¢’ such
that A(¢")<A(p). If o=V ¢, or ¢= A ¢,, the assertion is again trivial.

n<w n<w
Thus for some n<w, either o=V @, or ¢= A ¢;. Consider the first case.
i<n i<n
Since A{p)=> w, we see that 1(¢;)= w for some i <n. Let m be the largest such
integer i<n. Then A(e,,)<i(p) and A(g;)<w for all m<i<n. By inductive

hypothesis there exists a sequence ;€5(T’) such that 1(y;)<i(g,,) for all
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j<w, and either t¢,— V ¥, or ko, A ;. Again consider the first case.

j<o i<o

Foo V[V evy,v V ol

j<o i<m m<i<n

Then

It now follows from well-known laws of ordinal addition that for every j< o,

'1(\/ QDiVlﬁjV vV (pi)zl(\/ ‘pi)+/1(lpj)+'1( % ‘Pi)

i<m m<i<n i<m m<i<n
<}“(4\/ @) + A(@,) + A( v ®;)
= (o),

which proves the assertion. All other cases are treated analogously.

If u is a finitely additive probability on /F and 2&.% is a set of
infinite conjunctions and disjunctions, we say u preserves X if for every

N @u NV Y,€Z,
n<w n<w

n(A @)= lim p(A ¢)
and

(Vv )= lim u(V ¢;).

LEMMA 6.5. For every @es(T) there exists a denumerable set £ < 4(T) of
infinite conjunctions and disjunctions such that for all finitely additive proba-
bilities m, and m, on o(T)[¢, if they agree on the finitary sentences and pre-
serve X, then my(@)=m, ().

Proof : By transfinite induction on A(¢). If A(¢) <w then ¢ is finitary, thus
by hypothesis we may take X to be empty. Thus assume A(¢)=w and the
lemma holds for all ¢ such that A(y)<i(p). We also may assume that —
occurs in ¢ only in front of atomic formulas. By Lemma 6.4 there exists a
sequence y;€4(T) such that A(y;)<A(e) for all i<w, and either Fope V ;

or ko> A ¥, Consider the first case. Then for every n<w, we note that
i<eo

A(V ¥;)< (). By the inductive hypothesis, for every a<w there exists a

denumerable set X, such that for all finitely additive probabilities m,, m,, if

they agree on the finitary sentences and preserve X,, then m;(V ;)=

i1<n

my(V ;). Let Z=J Z,U { V ¥;}. Then clearly m, (¢)=m, (o) for all finite-

i<n n<w i<w

ly additive probabilities m,, m, which agree on the finitary sentences and
preserve 2. The other case is completely analogous.



240 DANA SCOTT AND PETER KRAUSS

Now we begin with the proof of part (ii) of Theorem 6.2. Let u be a
probability on &/+ such that for every O<n<w, u(8,)€{0, 1}, and let 2= &
be countable.

We first consider the case p(—6,)=1 for all 0<n<w. Let T={¢;:i<w}
be a set of new individual constants such that ;1; if i#j. Let ¥ =.%(T) be
the set of all sentences which may be obtained from subformulas of sentences
in X by substituting individual constants from T for free variables. (Note that
every subformula of a sentence of % has only finitely many free variables,
thus every sentence in ¥ contains only finitely many individual constants
from T.) Z is denumerable. Let dv; ¢,(v; ), n<w, be an enumeration of all
existential sentences in X. Choose a sequence gew®® such that

(i) o(n)+1<o(n+1), for all n<w;

(i1) every individual constant in @, has index <a(n).

Consider the set of sentences

Fr={t#t;i<j<olU{3ve,(,)—> V @,()n<o}.

i<o(n)

The following lemma is essentially due to Ehrenfeucht and Mostowski [1961].

LemMmA 6.6. If W={A, R) is a denumerably infinite model then there exists
a sequence a€ A such that (A, R, a,>, ., is a model of T and A={a,:n<w}.

Proof: Assume A is well-ordered in type w. Define a,, for m<w by re-
cursion:

(1) If for some n<w, m=0(n) and if there exists an xe A~ {a;:i<m} that
satisfies @, (v; ) in {A, R, ay,..., G,_ >, then let a, be the first such x.

(2) Otherwise, let a,, be the first element of A~ {a;:i<m}. Then it is easy
to check that {4, R, a,>,, is a model of I'. We will have 4={qa,:n<w}
because case (2) occurs infinitely often by the definition of ¢, which means
that 4 will indeed be exhausted.

Let ©={—0,:n<w}, let A=I'U @, and define a mapping f from /O F
mto S (T)/ A+ by (/O F)=¢/AF. Since O = 4, the mapping is well defined.
Clearly fis a e-homomorphism. Moreover, fis an isomorphism into. Indeed,
let pe.# and suppose AF=1¢. If O U {¢@} has a model then, by the Léwen-
heim-Skolem Theorem, it has a denumerably infinite model. Thus by Lemma
6.6, AU {¢} has a model, contrary to the assumption. Thus, © U {¢} has no
model; therefore, by the “weak” Completeness Theorom, @ F —1 ¢, which
proves the assertion. Now let g be the canonical s-homomorphism of
S(T)/F onto F(T)/At; that is, g(p/F) = @/AF. For orientaiton we draw a
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diagram
Sk > Flor L F(T)AF £ F(T)/t.

As is well-known, since u(—18,)=1 for all 0 <n < w, u may be lifted to /O +
and subsequently transferred to {p/F:pe S (T), (f '0Og) (p/F)eF/@O},
which is a g-subalgebra of #(T)/F. For every peZ, let ¢’€.4(T) be obtained
from ¢ by eliminating quantifiers; that is, by successively replacing all ex-
istential subformulas Ivy(v) by V ¥(r). Then 't p¢’. Since (f~'Og)

i<w

(o/F)=(f"10g) (¢'[F), we have u(¢)=p(¢’). By Lemma 6.5, for each ¢’
there exists a denumerable set X’ <4(T') of infinite conjunctions and dis-
junctions such that for all probability measures m, and m, on o(T)/+ if they
agree on the finitary sentences and preserve 2’, then m, (¢")=m,(¢’). Finally,
Jet X’ be the union of all these sets 3'. ¥’ is denumerable. By Lemma 6.3,
there exists a finitely additive probability v on &(T)/F which extends u and
preserves £'. Let n be the restriction of v to the finitary quantifier-free
sentences. Then # is g-additive. (This is a consequence of Lemma 7.1 which
will be established in Section 7.) As is well-known, #» may be extended to a
probability m on s(T)/F. We claim that {T, m) is the desired probability
model; that is m (@)= (@) for all pe X. First observe that m(1;=1;)=n(t;=t))
=vy(1;=t;)=p(t;=1;)=0 for all i< j<w. Thus (T, m) is indeed a probability
model with strict identity. Now let peZX. Clearly m* and v agree on the
finitary quantlﬁer-free sentences. m* is o-additive and therefore preserves X',
and v preserves 2’ by construction. By the definition of 2’ and Lemma 6.5,
v(¢")=m*(¢’). However u{@)=pu(¢")=v(¢’), as noted above and by the con-
struction of v. Finally we see m*(¢")=#(¢), by the construction of ¢’ and
condition (G). Thus m(¢)=pu(p), which completes the proof in case
u(—6,)=1for all O<n<w.

In the other case, assume that N<w and pu(0y)==1 and that N is the
smallest such. Then p(—16,)=1 for all n<N and u(0,)=1 for all n>N. Let
T={t;:i< N} be a set of new individual constants such that 7,1, if i#/. Let

F={t#1;:i<j<N},
O={"10,n<N}U {0,:N <n <o},
A=TUy 0.

As before, define a mapping f from &/@F into & (T)/A}+ such that
f(gp/@F)=0/A}. Again fis an isomorphism into. Indeed, let pe & and
suppose A+—1¢. Then

OF( A L#t)-> 0.

i<j<N
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Thus
Or3v,...30,.,( A v#EV)> 0.
i<j<N
However, ’
Ordv,. .. dv,(( A vi#V).
i<j<N
Thus @ F—¢. Finally we observe that if ¢’ is obtained from @eX by elimi-
nating quantifiers; thatis, by successively replacing all existential subformulas
Iop(v) by V (s), then I'toeg’. Thus we can complete the proof as
P<N
before.

We conclude the proof of Theorem 6.2 with a remark concerning the proof
of part (i). In this case we need only replace the refined method of the
Ehrenfeucht-Mostowski Theorem (Lemma 6.6) by the somewhat cruder
method of the original Henkin Completeness Proof (Henkin [1949]). The
steps are quite similar though simpler than those just given. In this case,
however, we clearly cannot expect the probability model {T, m) to have
strict identity. This completes the proof of Theorem 6.2.

Remark: Gaifman [1964] gives a proof of Theorem 6.2 for the finitary
language £, Although this is not an immediate consequence of Theorem
6.2, we will utilize the main ideas of our proof to obtain the result in the
finitary case almost immediately (see Theorem 7.3).

We now give an example to show that there are probabilities on &/t
which have a probability model but do not have a symmetric probability
model. Indeed, for every pe-% let u(p)=1 iff ¢ holds in {w,, <), the
system of the countable ordinals with their natural ordering. Every £ <,
is definable in #; that is, there exists a formula ¢, of .# with exactly one
free variable v such that for every n <, # satisfies . in {w;, <) iff =£.
Thus whenever ¢ <w,, we have g(Jvp,)=1: and whenever n<l<w,, we
have p(Jofp, A :])=0. Now suppose u has a symmetric probability model
{T. m). Since m(dvep,)=1 for every £ <w,, we obtain for every { <w, some
teT such that m*(¢@.(r))>0. Since (T, m) is symmetric, by Lemma 5.7, we
have for every 1'eT, m*(p(t"))=m*(¢:(1)). Thus for every £ <w; and every
teT, we find m*(¢:(r))>0. Now consider a fixed 7eT. Then for some £>0,
m*(p(1))=¢ for infinitely many & <w,. However, since /i(Iv[g, A ¢.])=0
whenever <& <w,, we find that m*(¢,(r) A @,(1))=0 whenever 1 <&<w;,
which cannot be the case.

There is a positive result concerning symmetric probability models for the
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finitary language £ which is due to Gaifman [1964]. We will give a
simplified version of his proof in Section 7, Theorem 7.14.

The questions of whether there is a method of deductively generating the
probability consequences from a given set of probability assertions, or of
deductively generating all probability laws are clouded by the fact that it is
difficult to give the concept of deductively generating a workable meaning
for infinitary languages. Nevertheless we can make a few remarks. Our
discussion thus far certainly shows that we have not much reason to expect
a positive answer to the first question. On the other hand the second problem
has in a sense a positive solution which we will present now.

THEOREM 6.7. Let {®, @,,..., ¢,..,» be a probability assertion of L such
that the free variables of ® are Aq,... A,_; further -=1(@; A ;) if i#], and
FV @, Let I={i<n:t=1¢;}. Then {®, @g,..., ¢,—» is a probability law of
2 iff the sentence

Vig ... VAt [[A 4 =0A AN 4L 20A Ao+ + 4oy =1] > D]
iel i<n
is a theorem of real algebra.

Proof: Suppose {®, ¢,,..., ¢,_,» is a probability law of #. Consider any
sequence of real numbers {x,,..., x,_,> such that x;=0 for all iel, x;>0
for all i<n, and xy+---+x,_,=1. If i¢l, then ¢; is consistent. By the
Completeness Theorem for Sentences, there exists a two-valued probability
measure g; on &/ such that p,(p;)=1. Define u(y)=> x;- u;(¢; A ) for all

igl

YeF. Itis easy to see that u is a o-additive probability measure on &/t and
u(p;)=x; for all i<n. By Theorem 6.2, there exists a probability model
(T, m) such that mi(¢p;})=x; for all i<n. Since (P, @q,..., ¢, is a proba-
bility law, {x,,..., X,_,» satisfies @ in R. Thus the required sentence is a
theorem of real algebra. The converse of Theorem 6.7 is trivial.

For any probability assertion (¥, ¥,..., ¥,,_1> of £ we can effectively
find an equivalent probability assertion (@, @,,-.., ¢,_» of £ which satis-
fies the hypothesis of Theorem 6.7; they are equivalent in the sense that any
probability model U is a probability model of (@, Y,..., ¥, _ > iff it is a
probability model of {®, @, ..., ®,_,>. Moreover, we can effectively gener-
ate all probability assertions of .¢ which satisfy the hypothesis of Theorem
6.7. By a famous result of Tarski the theorems of real algebra are decidable.
Thus for each such probability assertion of % we can decide whether the
corresponding sentence is a theorem of real algebra or not. Theorem 6.7
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therefore yields a method of generating all probability laws of .#. Whether
there is a more useful way of generating the laws remains to be seen.

Theorem 6.7 also provides suggestions for the definition of an analogue
of the concept of consistency in ordinary logic. The general problem of
conditions under which a set of probability assertions has a probability
model is completely open for the infinitary language %, and it is apparently
quite difficult. This completes our general discussion of the probability logic
of the infinitary language %, and we now turn to the finitary language .#*
where the situation is somewhat more satisfactory.

7. The finitary case. The Boolean algebras )/, F©)N(T)/F and
A?(T)/F are subalgebras of the o-algebras .#/F, ¥ (T)/F and 4(T)/t re-
spectively. Our definitions and results concerning the infinitary language £
therefore have rather obvious applications to the finitary language £“’, and
in many cases they can be considerably strengthened. This is due to two
important facts which we state for comment and reference.

LeMMA 7.1. Every finitely additive probability u on /v is c-additive.

Proof . For every 2<% and every e %, I+ ¢ iff for some finite
2'< X it is the case that X'+ ¢. This implies that a set of disjoint elements
of E has a supremum in Z/k iff it is finite. Thus the os-additivity
of u is trivial.

The following lemma is well-known and has an easy proof by means of
elementary methods of functional analysis. For a purely algebraic proof we
refer the reader to Horn and Tarski [1948].

LEMMA 7.2. Let # be a Boolean algebra and let o/ <% be a subalgebra.
Every finitely additive probability on o can be extended to a finitely additive
probability on .

As pointed out before, Gaifman [1964] gives a proof of the next theorem.
Our proof of Theorem 6.2 can be essentially simplified to yield this result by
replacing the role of Lemma 6.3 by Lemmas 7.1 and 7.2. Indeed Lemma 6.3
has been designed to patch up the difficulties arising from the fact that
Lemma 7.2 fails for g-additive probabilities. This in turn corresponds to the
fact that the Prime Ideal Theorem for o-ideals fails for Boolean s-algebras.

THEOREM 7.3. (i) Every probability u on ¥ “|v has a denumerable proba-
bility model.
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(ii) If for every 0<n<w, u(6,)e{0, 1}, then p has a denumerable proba-
bility model with strict identity.

Proof . We again prove only part (ii). We first consider the case u(—0,)=1
for all n<w. As in the proof of Theorem 6.2, we choose a set T={¢;:i<w}
of new individual constants such that ¢;5¢; if is%j. The set ) (T) is de-
numerable. Let 3v; ¢,(v; ) be an enumeration of all existential sentences of
F)(T), and define the sequence ¢ and the set I' as before. Let O@=
{—0,:0<n<w}, and A=I'U O. Define the mapping f from ¥ (T)/@+
into S (T)/AF by f(p/OF)=¢/A}. By Lemma 6.6 f is an isomorphism
into. Since u(—16,)=1 for all 0<n<w, u may be lifted to S (T)/OF and
subsequently transferred to the subalgebra {p/4F:pe. 9} of F©(T)/AF.
By Lemma 7.1 and 7.2, u may be extended to a probability v on #)(T)/4+.
Finally we transfer v to &)(T)/\- via the canonical homomorphism g from
L (T)/F onto F)(T)/AtF defined by g(o/F)=¢/4F. Since v(p)=1 for
every @A, v satisfies the Gaifman Condition (G). If m is the restriction of v
to 5“(T)/F, then (T, m) is the desired probability model in view of the
uniqueness part of Theorem 4.3. It is now also clear how to treat the re-
maining case and part (i) by analogy to the proof of Theorem 6.2.

Remarks: (1) As can readily be verified by an analysis of Lemma 6.6, our
proof of part (ii) does not go through for a language #’ which either has
infinitely many individual constants or non-denumerably many non-logical
constants to begin with. This fact is substantiated by two counter-examples
of Gaifman [1964]. Nevertheless, Theorem 7.3 still holds for these languages,
as the proof in Gaifman [1964] shows. We will not discuss the question of
adapting our method of Lemma 6.6 to this situation. (2) The cardinality
statements of Theorem 7.3 obviously depend on our assumption that %
has only denumerably many non-logical constants. If we allow non-de-
numerably many non-logical constants then the well-known adjustments
have to be made. The same remark applies to all other theorems of this part
which contain statements about the cardinality of probability systems.

Let T be the set of complete consistent theories in .£(®, that is, the set of
prime ideals in /I, As is well-known from the Representation Theorem
for Boolean Algebras (see, e.g., Halmos [1963] p.77), T is a compact
Hausdorff space with a basis of closed-open (clopen) sets of the form
{ZeT:peZX}, where e ), and F“/I is isomorphic to the field of clopen
subsets of T under an isomorphism which maps ¢/F into {ZeT:peX}. Every
model determines a complete consistent theory in .#%, that is, a point in T.
By the ordinary Completeness Theorem, every complete consistent theory
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of #“ has a model; thus T may be identified with the space of models.

Many important results in the ordinary logic of £ may conveniently be
established through topological considerations in the space T. This topo-
logical construction can be generalized in the strictest sense of the word;
thus the space M of probability models of £ can be defined as a compact
Hausdorff space such that the space T can be homeomorphically embedded
mto M. The construction makes use of well-known definitions and methods
of functional analysis. For the details we have to refer the reader to Dunford
and Schwartz [1958].

Let C (T) be the linear space of ali continuous real functions on T. Since
the characteristic functions of clopen subsets of T are continuous, we may
regard .#“)/k as a subset of C (T). Let L be the linear subspace of C (T)
generated by ¥/ in C(T). As is well-known, C(T) is a Banach space
under the sup-norm where for xe C (T) we have [|x]j=sup x(£). Any finitely

EeT

additive probability g on /I uniquely extends to a linear functional p
on C(T) such that

(iy u(x)<|x] for all xeC (T);

(i) p(1)=1.

Conversely, any linear functional on C (T) satisfying (i) and (ii) uniquely
determines a finitely additive probability on #)/F. Let C (T)* be the linear
space of all continuous linear functionals on C (T). As is well-known, C (T)*
is also a Banach space with its own norm such that for every ueC (T)*,
el <1 iff p(x)<|x| for all xeC (T).

Let M={ue C(T)*:{u] <1, u(1)=1}. By our remark above, the set of all
finitely additive probabilities on /I may be identified with M, and by
Lemma 7.1 this set agrees with the set of probabilities on .#@/+. Every
probability model determines a probability on %/t and by Theorem 7.3
every probability on /I has a probability model, thus M may be identi-
fied with the space of probability models.

We now consider C (T)* with the so-called weak star topology. The basic
open neighborhoods are sets of the form

N (3 Xgs oo r Xg_138) = {ve C(T)*:|v(x) — pu(x)| <eforalli<n}

where n<w, pe C (T)*, xq, ..., x,_€C(T), and £>0 is a real number.

It is easy to see that M is a closed subset of the unit-sphere {ueC (T)*:
[l < 1}; therefore, by the Alaoglu Theorem M is acompact Hausdorff space
with the relativized weak star topology.

Every XeT uniquely determines a two-valued probability u on F/k,
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and conversely. Thus there exists a natural embedding of T into M. Finally
we observe that M is a convex set; that is, for every puq, g, €M, and every
real number O <a <1, ap; + (1 —a)p, e M. For any subset K of a linear space,
the convex hull of K is the smallest convex set containing K. The closed
convex hull of a subset K of a linear topological space is the closure of the
convex hull of K. We say ueM is an extreme point of M iff for every pu,,
u,€M and every O<a <1, if p=ap, + (1 —o)p,, then py=p,=pu,.

We then have the following known basic theorem about our topological
construction.

THEOREM 7.4. (i) The natural embedding of T into M is a homeomorphism;;
(i1) T, regarded as a subset of M, is the set of extreme points of M,
(iii) M is the closed convex hull of T.

To prove Theorem 7.4 we first establish a useful lemma.

LemMA 7.5. Sets of the form MnN(u; xg,..., X,_;8), where xg,...,
X,—1 €S @k, constitute a basis for the weak star topology of M.

Proof: Let ueC(T)*, xq,..., x,_1€C(T), and &>0. Consider ve
M N(u; X, ..., X,_1;¢). Let §=&— max |v(x;)— pu(x;)|. By the Stone-Weier-
strass Theorem, there exist p,, ..., ¥,_ ;€L such that ||.x;~y;|| <14 for all i<n.
We show

M NNV Vo ooor Vuo1330) S M N N (X0, s X 15 €) -
Indeed, let AeMn N(v; yy,..., Vo_; 39) and i<n. Then since 1, veM

[A(x) = 1w (x)l < A — Al + 1Ay — v ()l
+ v () — vl + v (x) — u(x)l
<fix; =yl AL + 36 + lly; — x;il vl +& =0
<e.

This proves that sets of the form Mn N(u; xg,..., x,_;¢), where
Xg,.-+» X,—1 €L, form a basis. Now let xeL. Then x=ogxq+ - +0,_ X1,
where xq,..., x,_; €I and «,,...,a,_, are real numbers. Consider
veM N N(yu; x;¢), and let d=¢—|v(x)—p(x)|. Then a straightforward com-
putation yields Mn (YN(v; x;; §/r|e;]) M n N(u; x; ). This proves the

i<n

Jemma.

Now we proceed with the proof of Theorem 7.4. For part (i) we regard T
as a subset of M and show that the topology of T is the topology of M
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relativised to T. Let n<w, ueT and x,,..., x,_, €. /. Then

{veT:|v(x;) —u(x)l <eforalli<n} = {veT:|v(x;) — u(x;)| <e}.
For every i<n, {veT:|v(x;)—u(x,)|<g} will be either the empty set, the
whole set, or the set of all prime ideals of ¥/ containing x;, depending
on the choice of u(x;) and ¢; in any case it is a clopen subset of T. Since a
similar argument shows that every clopen set of T is the restriction of an
open set of M to T, Lemma 7.5 proves assertion (i).

To prove part (ii) we let ueT and consider p,, u,eM and 0 <a <1 so that
p=oy, +(1—o)u,. Suppose xe.S [+ where p(x)=1. Then 1=ou,(x)+
(1-o0)y(x). Since (<[l Ix] <1, for i=1,2, we have ,(x)=
i (x)=1. Thus u=p, = u,; that is, u is an extreme point of M. Conversely
let peM and suppose, for some xe.#“/F, that 0<pu(x)<1. Let p,(y)=
#(y 0 x)/u(x)and po( p) = p(y ~x)/(1 — pu(x)) for all ye ¥ /F-. Then u, p,eM
and pt=p(x)- gy +(1—p(x))- 1y, that is p is not an extreme point of M.

For (iii) note that M is a convex, compact subset of C(T)*. Thus (iii)
follows from (ii) by the Krein-Milman Theorem.

Our topological considerations now yield the full analogue of the Compact-
ness Theorem of finitary first-order logic.

THEOREM 7.6. Let X be a set of closed probability assertions of L. Then

(i) Z has a probability model iff every finite subset of X has a probability

model;

(i1) X has a probability model with strict identity iff every finite subset of X

has a probability model with strict identity.

Proof: It is clear that the set of probability models of a closed probability
assertion of £ is a closed subset of M. Part (i) therefore follows from the
compactness of M. To prove part (ii), let X be a set of closed probability
assertions of #“) such that every finite subset of X has a probability model
with strict identity. Consider the set {#,:0<n<w} as defined in Section 6.
Observe that for all », +[0,—0,,]. For every O<n<w, let I, be the set of
all non-decreasing functions on {1, ..., n} into {0, 1}. Let 0 <n<w be fixed.
For each iel,, define

Ay =g =i, 0, >: 1 < k < n},

where 2,=i, is short for —4,>0if /=0, and 1,—120 if i,=1. Clearly 4,;
is a set of closed assertions. Then for every 0 <n<w, there exists iel, such
that X U 4,; has a probability model. Indeed, suppose that this is not the case.
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Then, by part (i), there exists 0 <n< such that for all iel, there exists a
finite subset X;<ZX such that X;U A4,; has no probability model. Thus
(U Z)U 4,,; has no probability model for all iel,. By hypothesis, | J Z; has

icln icln
a probability model with strict identity; however, for some i€/, this proba-

bility model has to be a model of 4,;, which is a contradiction. If for some
n there exists iel, which is not identically zero, and 2 U 4,; has a probability
model, then, by virtue of our observation above, there exists 0 < N <w such
that ZU {(1,=0,0,>:0<k<N}U {{ly=1,0,>:N<k} has a probability
model . Otherwise for every n, XU {{(1,=0, 6,>:0<k<n} has a proba-
bility model; and therefore, by part (i), U {{(1,=0, 8,>:0<n<w} has a
probability model . In both cases the probability model U defines a proba-
bility u on )/ which satisfies the hypothesis of Theorem 7.3 (ii). Thus by
Theorem 7.3 (ii), 4 has a probability model B with strict identity. Since A
is a probability model of X, we conclude that B is also a probability model
of X. This completes the proof of part (ii).

Not very much work has been done yet to investigate the question of
satisfiability of sets of probability assertions in general. For one reason,
general theorems about solvability conditions for /inear inequalities are
known, but there does not seem to be too much to say about polynomial
inequalities. Note that at least quadratic inequalities are needed to formulate
assertions about conditional probabilities and independent probabilities.
Theorem 7.4, however, gives a very clear topological characterization of the
space of probability models M in terms of the well-known space of models
T, and should be a useful tool for further investigations.

We must next prove a few lemmas to which we have already referred
repeatedly in earlier proofs.

We consider a fixed set T of new individual constants and assume through-
out that y is a probability on P (T satisfying the Gaifman Condition
(G). Also to simplify notation we assume that all sup’s and inf’s range over
the set of finite subsets of 7. The first lemma is an immediate consequence
of elementary properties of sup’s and inf’s and will be stated without proof.

LeMMA 7.7. If Voge S (T), then p(Vop)=inf u( A ¢(1)).
F teF

If @, Yre F)(T), then an occurrence of ¢ in Y is called simple if it does
not occur within the scope of a quantifier or a negation sign. The next lemma
is an easy consequence of the distributive laws.
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Lemma 7.8. (1) Let ' be obtained from by replacing a simple occurrence
of Jvg in Y by \/ ¢(t). Then #(l//)—sup nQ).

teF

(i1) Let y" be obtained from r by replaczng a simple occurrence of Yo in
by A @(1). Then u()=inf u(y’).
teF F

Let . (T) be of the form Qqv, ... Q,_v,_ M(v,, ..., v,_,), where for
each i<n, Q; is either an existential quantifier 3 or a universal quantifier V,
and M is a formula. The associated boundary prefix is a sequence bd,...bd,_,
such that for every i<n, bd;=sup if Q;=3, and bd,=inf if Q,=V. The as-
sociated distribution prefix is a sequence #,...#,_; such that for every
i<n, #;=V if Q;=3, and #;= A if Q;=V. Then we have the following
basic lemma for the computation of u(¢p).

LEmMMA 7.9.

w(@) = bd, .. bd,, VU #o oo FHaor Mo, .0 1,00)).
Fo -1 toeFo th-1€Fn-

Proof': By induction on n. For n=1 the assertion holds by condition (G)

and Lemma 7.7. For n>1 we have by inductive hypothesis,

#((P):de bdn llu(#o # annM(tO"' n— l,v))
Fo

=1 toc Fo th-1€Fn—1
LetF,,...,F,_, be fixed. Let N=[]|F;|, where|F,| is the number of elements
in F;. We enumerate the Cartesian product set F=[[F, say F={f,:k<N}.

If {tg,..., t,— 1> €F, we write # Q,v,M(f, v,) as short for
feF

7;Z/O s #n 1 QUM(tO"' n— l’v)

toe Fg th-1eF, -1
where f={tq,...,t,_1>. For every feF, QuM(f, v, occurs simply in
# Q,v,M(f, v,). Thus, by N consecutive applications of Lemma 7.8 and by

feF
the monotonicity of disjunction and conjunction and the elementary proper-

ties of sup’s and inf’s we have

,u(# Q..M (f,v,)) = bd, ... bd, pn(# #,M(f,s))

Gro GsN -y feFseGy

=bd,u(# #, M(f.1,)).

Fp feFt,eF,

Thus
(o) = bg'o---bd,,u( Ho e #n M(tos s t)-

Fp toeFo theF,
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The last lemma of this series is an easy consequence of Lemma 7.9 and
the distributive laws. For a convenient formulation we adopt the notation
of the proof of Lemma 7.9 and write

bdu(# M(f))=bdy...bd,— p( #o . #u-1 Mo .oostazr))-

F feF Fo Fp-1 toeFo th~1€Fn-1
For every k<r, let ¢, #“(T) be of the form Q,M,, where Q, is a string
of quantifiers and M, is a formula. For every k<r, let bd, and #, be the
associated boundary and distribution prefixes respectively.

Lemma 7.10.

Q) H(/\ (Pk):bd()'“ dr—l)u(/\ #i Mk)
k<r Fo Fpr-1 k<r tieFy

(i) p(V @) = bdy...bd,_  u(V #, M,).
k<r Fo Fp-y k<rtpeFi

We are now in a position to prove analogues of many important results
about the ordinary logic of Z®. As a matter of fact, if we regard closed
probability assertions of .#(*) as the analogues of sentences in ordinary logic,
then the analogy in many respects seems to be complete. There are exceptions,
however: we mentioned before our failure to define an analogue of direct
products. We state next a few of the positive results and comment on their
proof.

TueEOREM 7.11 (DOWNWARD LOWENHEIM-SKOLEM THEOREM). Let (T,, m,>
be a probability system of cardinality ., > w,, and let k, be a cardinal number
such that wy,<x,<k,. Then there exists a probability system {Ty, m;) of
cardinality x, such that (T, m;><T,, m,>. Moreover, for any subset
T, T, with systemcardinality <., we may choose T; = T;.

Proof: The proof uses standard methods and utilizes the fact that, by the
Gaifman Condition (G), whenever Jvpe.#“)(T), there exists a denumerable
subset T’ =T such that

m*Jvp)= sup m*(V ¢(1),
FeT'(e) teF
where (T, m) is the given probability system.
THEOREM 7.12 (DIRECTED UNION THEOREM). Let {(T;, m;>:icl} be a <-

directed family of probability systems; that is, for all i, jel there exists kel
such that both {T;, m;> and {T;, m;>=<{T,, my. Let T=\_JT,, and define, for

iel
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every ped (T), m(¢)=m(¢p), where e (T,). Then (T, m) is a proba-
bility system and for every icl, (T, m>=<<T, m).

Proof': Since the family {{T;, m;>:icl} is <-directed, m is a finitely ad-
ditive probability on 4’(T)/F. By Lemma 7.1, m is o-additive. The rest of
the proof proceeds along well-known lines.

THEOREM 7.13 (UPWARD LOWENHEIM-SKOLEM THEOREM). Let (T, m;) be
a probability system of cardinality k, >wg, and let k, be a cardinal number
such that 1k, >1x,. Then there exists a probability system {T,, m,> of cardi-
nality x, such that {T,, m>=<(T,, m,y. Moreover, if {Ty, m,)> has strict
identity, then we may choose {T,, m,) to also have strict identity.

Proof: Again a proof may be obtained by copying the well-known argu-
ment establishing the corresponding theorem of ordinary logic. This time
we make use of Theotem 7.6 and the observation that the probability
measure m; on . (T,)/F determines a set of closed probability assertions
of #“(T,). We also note that if r#¢, then (1,=0, t=¢) is a closed
probability assertion. Thus the well-known compactness argument goes
through.

We now present a result concerning symmetric probability systems which
obviously has no analogue in ordinary logic. This result is due to Gaifman
[1964] whose proof we have simplified by using ideas from the ultraproduct
construction of probability models.

THEOREM 7.14. Let X be a set of probability assertions of L. Then X has
a denumerable probability model iff ¥ has a denumerable symmetric proba-
bility model.

Proof: Suppose X has a denumerable probability model (T, m). Let
T={t,:n<y}, where y<w and where ¢, %1, whenever m#n. Consider a
probability 4 defined on the power set of T where A({z,})>0 for all n<y.
Let # be the product o-field of subsets of T7, and iet 1 be the product
measure induced by 1. For every neT" and pe ¥ (T), let ¢™ be the result
of replacing every individual constant ¢ in ¢ by the constant 7(f). Clearly if
F then F o™ If 9.7 (T), then ¢ contains only finitely many individual
constants. Thus for every real number a, {reT” :m*(p")<a} is a cylinder
set with a finite basis. Therefore, since T is denumerable and A is defined on
the power set of 7, this cylinder set belongs to 2. Hence for every pe 9 (T),
the function m*(¢™):TT—[0, 1] is #-measurable. Let Q be the set of neT™
whose range n(T)=T. Cleatly Qe2, and a straightforward computation
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yields 1(Q)= 1. We define for all e 5 (T)
(o) = [ m* (07 910,

2

By the same argument as in the proof of Lemma 5.4 we show that yu,, re-
garded as a function on #)(T)/}, is a finitely additive probability. By
Lemma 7.1, p, is o-additive. yu; satisfies the condition (G). Indeed, let
Jvpe SN (T). Then

1, (3 vg) = f m* (A o™ dA(x).
2
For every ne(, since 7 is onto,
m*(Jve™) = sup m* (Vv ¢™(1))
FeT(®) teF

= sup m*(V o (1)).

FeT(®) teF

Since T is denumerable by the Dominated Convergence Theorem,

N E! v(p)=f sup m*(V (1)) di(n)
ﬂI-‘(ET(“’) teF

sup f m* (t‘\e/F o ()" dA(r)

FeT(w)
= sup u,(V ¢(1).
FeT(w) teF

If pe S, then w,(¢)=m*(p). Thus let m, be the restriction of pu, to
2 (T)/F. Then (T, m,) is a probability model of X. It remains to be shown
that <7, m,) is symmetric. Let t€Q be a finite permutation of 7, and let
€5 (T). By definition 1 is invariant under all finite permutations of the
coordinates of the product space 2. It is now easy to check by standard
methods of integration theory that [om*(¢™) d1(n)= [om*(¢™) di(x). This
completes the proof.

COROLLARY 7.15. Every probability measure p on ¥/ has a symmetric
probability model.

Proof: By Theorems 7.3 and 7.14.

Remarks: (1) 1t is clear that our proof of Theorem 7.14 depends on the
assumption that X has a countable probability model. Consequently Corol-
lary 7.15 depends on the assumption that £ has only countably many
non-logical constants; that is, in our standard case one binary predicate R.
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Indeed, the counter-example concerning symmetric probability models given
in Section 6 can be constructed in £ if we allow non-denumerably many
unary predicates in .#,

(2) The probability system {7, m,> does not have strict identity. Indeed,
suppose t,, 1,€T and m+#n. Then

{reQ:n(t,)=n(1,)} = ig({neQ:n(lm) =i n {meQin(r,) =1}).
Thus ‘
I({re@in() = et = ¥ At} > 0.

i<y
Consequently
ot = 1,) = J m(n(ty) = 2(L)) dA(m) = ¥ A({t})? > 0.
2 =
If <T, m)> has strict identity, then {T,m;> has the same cardinality as
(T, m> and is “completely dispersed” in the sense that for m#n, m,(r,,=1,)
15 a constant strictly between 0 and 1.

(3) There are simple examples of sets of probability assertions of £
which have a probability model with strict identity but do not have a sym-
metric probability model with strict identity. We give Gaifman’s example:
Let X be the set of probability assertions determined by the set of sentences
0P (vg), Yoo, [[P(vo) A P(vy)]»vo=v,] and —10,, for all O<n<w. It is
easy to see that X has no symmetric probability model with strict identity.
The question of finding conditions for a set of probability assertions to have
a symmetric probability model with strict identity is still open.

We conclude our discussion of the finitary language £ with an im-
mediate consequence of Theorem 6.7.

THEOREM 7.16. The set of probability laws of ) is recursively enumerable.

Proof: In the remarks following the proof of Theorem 6.7 we can, for the
finitary language .#“), replace “effectively generate” everywhere by “re-
cursively enumerate’’. This yields a proof of Theorem 7.16.

8. Examples. We have reason to hope that the results of probability logic
may have useful applications to deductive logic, inductive logic and to
probability theory. The first point was illustrated by Ryll-Nardzewski’s
example of a complete theory without models. The second point is rather
obvious, as a matter of fact our work originally started with a study of
Carnap’s inductive logic. We will illustrate the third point by considering
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some well-known measurability problems in the theory of stochastic pro-
cesses with non-denumerable index sets.

Let R be the two point-compactification of the set of real numbers; that
is, the set of real numbers together with the points — oo, co. Let @ be the
set of rational numbers. Let & be the o-field of Borel-sets of R. Let T be an
index set, and we will choose T< R. Let #7 be the product o-field of subsets
of the Cartesian product space RT induced by #. As is well-known, a
stochastic process with index set 7 may be identified with a probability space
(RY, BT, m>, where m is a probability on #7. (For further details see e.g.,
Loéve [1960] p. 497 ff.) Let  be the o-field of Borel sets of R”; that is, the
o-field of subsets of RT generated by the closed sets of the product topology
on RT. Then #T = &, and #T £ if T is non-denumerable.

During the investigation of stochastic processes one frequently would like
to assign probabilities to sets X< RT which are not m-measurable; that is,
X ¢%7. It is well-known that this can always be done with finitely many
sets at a time. Thus if X,,..., X,_, € RY, then m can always be extended to
a probability on the o-field generated by #7U {X,,..., X,_} (see, e.g.,
Halmos [1950] p. 71). The extension is not unique, however. In general,
given a o-field o/ 2 %7, the question arises of whether there exists a proba-
bility » on .27 which extends m. Moreover, one attempts to specify convenient
conditions which render such an extension unique. Nelson [1959] investi-
gates this question for % and gives a sufficient condition for the existence of
a uniquely determined extension. He also shows that many interesting sets
belong to 4. Another extension result is Doob’s Separability Theorem (Loéve
[1960] p. 507). Let o7 be the o-field generated by &7 and sets of the form

M {xeRT:x(r)eC}, where ISR is an open interval and C=R is closed.
teINT

Then Doob’s Theorem says that every probability m on #” has an extension
to .«Z. Moreover, the extension n may be assumed to be separable; that is,
there exists a denumerable subset S< 7 such that for all open intervals 7 and
closed sets C,
n( N {xeR":x(eCH=n( N {xeR":x(1)eC}).
teINT telINS

S is called a separating set. The separability condition makes the extension
unique. Upon closer inspection the separability condition turns out to be an
instance of a “Gaifman Condition.” This will appear more clearly during the
later development of our example. Indeed, it seems that from the earliest
investigations of the extension problem conditions for the “reasonableness”
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of extensions of probabilities on #” have been proposed which strikingly
resemble particular instances of a “Gaifman Condition” (see, e.g., Doob
[1947]). Thus one might be tempted to put down a Gaifman Condition on
extensions of probabilities on %7 to a certain o-field &7 2 %7 which renders
such extensions unique, provided they exist, and then to investigate the
problem of the existence of probabilities satisfying this condition. Our ex-
ample will point in this direction.

Of course, a Gaifman Condition is most conveniently stated in terms of a
language rather than in terms of certain representations of sets. For our
example we use the infinitary language . As non-logical constants of &
we provide a binary predicate <, and for every ge Q a unary predicate P,.
Moreover we augment ¥ by a set of individual constants which, for con-
venience, we choose to be the index set T R.

Let S be the set of relational systems of the similarity type of £(T). We
embed R” pointwise into S. For xeR7? define .S as follows: A =
(T, P, <, )40, 1> Where < is the natural ordering of 7, and P,={teT:
x(1)<gq} for every ge Q. The function U is certainly one-one, and we shall
regard R” simply as a subset of S.

For every ¢oe.#(T), let M(g) be the set of relational systems in which ¢
holds. It is well-known that {M(¢):pec.#(T)} is a o-field of subsets of S,
and, by the “weak’ Completeness Theorem for & (T), it is isomorphic to
F(T)/F under an isomorphism which sends ¢/t to M(¢p). The following
lemma is an immediate consequence of our definitions.

Lemma 8.1, For all 1, t'eT, qeQ and < w,

A . T_SIRTift=t’
(1)M(t_r)nﬂ%’{—(® if 141
. ’ T_QRT‘ft<t,

(11)M(t<t)r‘|lR—(0 ifret

(i) M(P,(1)) n R" = {xeR":x(1) < ¢}
(ivi M(T¢) n R"=R" ~M(p)
(V) M(V @) n R" = UM(p) n R

i<e i<
(vi) M(A @) n R"= NM(g) n R
i< i<g
(vii) M(Top) n R"= (UM(p(1))n R"
1eT

(viii) M(Vep) n R' = N M(e(1)) n R”.

teT
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The operation of restriction to a subset is a complete homomorph-
ism of fields of sets. By Lemma 8.1, (i)-(vi), this homomorphism maps
{M(¢):0ea(T)} onto BT. Accordingly, we define for all pes(T),

i (M(p)) = m(M(9) n RT).

We obtain a probability y,, on {M(¢): ¢es(t)} and thus also on o(T)/. We
write u,(¢) for p,(M ()) and obtain (7, u,,> as a probability system. We
are interested in the o-field o7 = {M(p)n R": o€ #(T)}. By our remark above
AT < o/, and we will see later that .o contains a vast assortment of interesting
sets. First we must complete our series of definitions. Suppose # is a proba-
bility on &7 which extends m. Define for all e #(T),

v,(¢) = n(M(g) n RT).

We say that n satisfies the Gaifman Condition if v, satisfies (G). We thus have
as an immediate corollary of Theorem 4.3:

THEOREM 8.2. For every probability m on B there exists at most one proba-
bility on s/ which extends m and satisfies the Gaifman Condition.

This settles the uniqueness part of the extension problem, the existence
part is of course much more difficult. Consider the probability system
T, ppy induced by m. It is well-known that the equation n(M(p)n R")=
i (M(p)) for all pe #(T) defines a probability n on <7 iff whenever g ¥ (T)
and RT=M(¢), then g (¢)=1. Indeed, just in this case n is a well-defined
set function on .« (see, e.g., Halmos [1963] p. 65). This leads to:

THEOREM 8.3. Let m be a probability on B*. Then there exists a probability
on &/ which extends m and satisfies the Gaifman Condition iff whenever
pe L (T) and RT=M(9), then p,(p)=1.

The authors have been able to show that not every probability m on #7
has a Gaifman extension to .«7. A counter-example can already be produced
with the case of dependent Bronoulli trials. In this case the stochastic process
is two-valued, the space R” collapses to 27, and in our language .% we only
need one unary predicate P (together with <, of course). Further
M(P(£))n 2" ={xe2":x(¢r)=1} so that P(r) means “success at time ¢’. For
¢ we choose a finitary sentence which says “P has a least upper bound” as
follows:

oo [Vo, [P(v) =0, S 0] AV, [V, [P(v,) > v, <0,] >0 < 0,]].
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Then 2" = M(¢p), but a measure m may be defined so that y;(¢)=0. In fact
we can take T=[0, 1] and determine m so that m(P(0))=0, m(P(1))=1
and
, (0 ift <t
m([ PO AP = (t'—rtift<t.
This well-known process was suggested to us by David Blackwell.

This leaves us with two questions: (1) Which probabilities on #7 do have
Gaifman extensions to .o/? (2) Does there exist an “interesting’” o-field 7"
such that #T<.«/' .o/ and every probability on %7 has a Gaifman ex-
tension to .«Z'? The first question has hardly been attacked yet, and the
authors know only of a few meager results. The second question leads us
back to Doob’s Separability Theorem.

For simplicity let us assume T={0, 1], and consider I=(z,, t,), where
0<t,<t,<1. Then

M {xeRT:x(1) < q} =M(Yoo[t, <vo <ty —P,lvy)]) n R,
telT

and the separability condition amounts to the Gaifman Condition (G) for
sentences of the form Vo, [t; <v,<1,—P, ()], where geQ. (Note that the
uniformity of the separating set .S is really no strengthening of the Gaifman
Condition since both the open intervals and the closed subsets of R have
countable bases.) Doob’s Separability Theorem now provides a positive
answer to our second question. If we let .27’ be the o-field generated by 7
and sets of the form M(Vo, [1, <vo<i1,-P,(v,)])n R", where geQ, and
t(, 1;€T, then every probability on %7 has a Gaifman extension to .=/’
Indeed the authors have been able to prove the corresponding condition of
Theorem 8.3, which yields a rather unorthodox proof of the Separability
Theorem. Moreover, it can be shown that .7’ is in a certain sense maximal;
that is, Doob’s Theorem is about the best result we can expect. A detailed
discussion of these results would take us too far afield here.

On the other hand it is necessary to point out that the g-field .« is highly
unorthodox in terms of the traditional notions of probability theory. &7 is
described by means of the infinitary language %, and the nested application
of Boolean operations combined with quantifiers has no clearly discernible
analogue in usual classical methods of generating o-fields. However, we can
show that many interesting subsets of RT which have traditionally been
considered belong to .7, The striking feature of our approach is that we can
show this by just writing down the ordinary definitions of these sets in the
language .#. We give a few examples by first describing the set M(@)n R”
and then giving a suitable pe.%.
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(1) The set of non-decreasing functions:
Voo Vo, [vg S0y - /\Q [P, (vy) > Pq(”o)]] .
qge
(2) The set of functions assuming a maximum:

do, Vo, /\Q [P,(v;) = P,(vo)].
qe

(3) The set of functions assuming at most n different values:

3vp...30,,V0, V [ A P(v)P,(v,)].
i<n geQ

In the following examples the sentence ¢ is more complicated to write
down and we leave the details to the reader:

(4) The set of functions assuming infinitely many different values.

(5) The set of continuous functions.

(6) The set of functions whose set of discontinuities is of first category.

Finally we observe that we can increase the class of definable subsets of
R” by applying the independent union construction of Section 5; that is, by
refining the ordinary model structure of the set 7. For example, we might
introduce two binary operation symbols + and - which we interpret as
ordinary addition and multiplication in 7. We could then write down the
sentence corresponding to:

(7) The set of Rieman-integrable functions.
By some further refinements we could also obtain the sentence for:

(8) The set of Lebesgue-measurable functions.

A very attractive feature of a probability on 7 satisfying the Gaifman
Condition is that in many cases the condition allows us to actually compute
the value of the probability for various useful sets. On the other hand, a
rather disheartening aspect is the problem of its existence.

APPENDIX

by Peter Krauss

A measure-theoretic generalization of the Rasiowa-Sikorski Lemma

In Rasiowa and Sikorski [1950] the following theorem is proved, which
now is generally known as the RASIOWA-SIKORSKI LEMMA :
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Let {AB, A, v, ~> be a Boolean algebra, let be % such that b+#1, and for
every m<wo let €,,=% be a subset such that \€,, exists in #. Then there
exists a prime ideal f in % such that

() bey;

(ii) for every m<ow, N\ % ,,€/ iff for some ce€,, cEf.

An immediate consequence is the following relativised version:

THEOREM 1. Let {#, A, v, ~) be a Boolean c-algebra, let </ = # be a
o-subalgebra, let ¢ be a o-prime ideal in ¢ and let [ ¢] be the o-ideal in #
generated by ¢. Let be# such that ~b¢[g] and for every m, n<w let
b,.€AB. Then there exists a prime ideal / in % such that

(i) bey;

(i) for every m<w, N b,,c iff for some n<w, b, #;

n<w
(iil) ¢ < 4.
Proof: Apply the Rasiowa-Sikorski Lemma to the quotient algebra B/[¢].

We prove the following measure theoretic generalization of Theorem 1:

THEOREM 2. Let {#, A, v, ~) be a Boolean g-algebra, let o7/ =% be a
o-subalgebra, and let u be a o-additive probability measure on . Let v' be
a finitely additive probability measure on % such that v'(x)=p(x) for all
xesL, let xg,..., X,_1€B and ¢>0. Finally, for every m, n<w let b,,c%.
Then there exists a finitely additive probability measure v on % such that

(@ v(x) — v (x)l <eforalli<n;
(ii) for every m < w, v( A b,) = lim v( A b,);

n<o n—w i<n

(iil) v(x) = p(x)for all xe /.

Throughout the rest of this appendix we assume that {(#, A, v, ~)isa
Boolean o-algebra, o/ =% is a 6-subalgebra and p is a g-additive probability
measure on .2/, Moreover X is the Stone space of %, and we identify & with
the set of clopen sets of X. C (X) is the set of continuous real functions on
X and we regard # as a subset of C (X). Finally L is the linear subspace of
C (X) generated by #.

We first state two lemmas which can be found in Halmos [1950] p. 71,
Exercise (2}. For every subset ¥ =%, let [€¢] be the o-subalgebra of # gener-
ated by €.

LEMMA 3. Let be#~.of. Then [« U {b}]={(xn b)U (y~b):x, yeA}.
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LemMMA 4. Let be#B~.of and let a, ce o/ such that acb<c and p(a)=
sup {u(x):x<b, xeL}, u(c)=inf {u(x):b<x, xe}. Let d=c~a, and let
o, >0 be real numbers such that o+ f=1. Define for x, ye o :

(N uy~b)=p((xna)u(y~c)+au(xnd+pulynd).

Then v is a o-additive probability measure on [/ U {b}] such that v(x)= u(x)
Sfor all xe L.

The next lemma is also known:

LEMMA 5. Let be B~ of and let v be a finitely additive probability measure
on [ U {b}] such that v(x)=u(x) for all xe /. Then v is o-additive.

Proof: Let x,€ 7, n<w be a decreasing sequence. Then

v((A x,) 0 b)<limv(x, n b).

Suppose
v((A x,)n b)<limv(x,n b).
Then

BOA %) =v(A %) =v((A %) 0 B)+ V(A %)~ b)

n<w n<w n<ao

< lim v(x, n b) + lim v(x, ~ b)

n— o n—>o0
= lim v(x,) = lim u(x,),
n—cwo n—o0
contradicting the hypothesis that g is g-additive. Lemma 3 now proves
Lemma 5.

LEMMA 6. Let b,e#B, n<w be a decreasing sequence such that A b,=0.
n<w
Then there exists a finitely additive probability measure v on # such that

(i) lim v(b,)=0;

n—o

(i) v(x) = u(x)for all xe o .

Proof: Define by recursion: &/,=f, o, =[,U {b,}], for n<w. By
Lemma 4 we see that without loss of generality we may assume that b, ¢ %7,
for n<w. For every n<w choose a,e« such that ¢,=5b, and p(a,)=sup
{u(x):x=b,, xe/}. Since b, is decreasing we may assume that a, is de-
creasing. By recursion we wish to define a g-additive probability measure v,
on &7, such that vo=p and for n<w, v, ,(x)=v,(x) for every xe«Z,. Sup-
pose v, has been defined on «7,. To define v,,, on &/, ,, let a,, c,e 57, be
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such that a,<b,=c, and
vo{a,) =sup{v,(x):x S b,,xe s}
v,(¢;) =1inf{v, (x):b, S x,xe,}.

Since a,Sb,, a,e </ < o7, we may assume a,<=a, for all n<w. Let d,=c,~a,.
In Lemma 4 let x=0, =1 and define for x, ye.«Z,

Vn+1((x n bn) U (y ~ bn)) = vn((x n a;l) U (y ~ C,,,)) + V,,(y n dn)
We prove by induction on n: For every n<w, x€ </,
Voo (x 0 b)) =sup{u(z):zexn b,zed}.

By definition, v,,,(xnb,)=v,(xNa,). In case n=0, let xe.&,. Then
xnage.«/ and by the definition of aj,

vi(x N bg)=pu(xn ag)=sup{u(z):z<=xn by, ze}.
Now suppose for every xe.o7,,
Vo (x 0 b)) =sup{pu(z):z=xn b, zed}.

We first show: v, ,(b,, )=V, 2(a,4 ). In fact, by definition, v,,,(b,+;)=
Vo 1(dys ). By the induction hypothesis, v, (b,)=u(a,)=v,+(a,). Since
@y 1 Sbys 1 Shy Vs (@1 )= Vpi (@ N a,). Since a,, €/, and @4, S
by, ayy 1 =xn b, for some xe.oZ,. Thus v, (), {)=v,;,((x 0 a,) n b,), where
x N a,e-7,. By these induction hypothesis,

Var 1 ((x N a)n b)=sup{u(z):z<=((xn a,) n b,),ze}.

7

Furthermore a,,,<4,,,<b,s+, and a,,,<a, Thus a,,,Sa,,Na,=
(xna,)nb,=b,, . Therefore, by the definition of a,, ,, v,+1((xN a,)n b,)=
:u(an+1)' This proves vn+2(bn+1)zvn+2(an+1)' Now let XE:QZ,H_ 1- Then

Vn+2(x n an):sup{y(z):ZEx n bn+lvze’£{}'

In fact, v, 2(Pys 1) =v,12(ay+ ) and a,, 1 b, . Therefore v, ,(xN b4 )=
Vos2(XN @y q). Since xNa, 1€,y and xNa, 1 Sb, 1Sh, XN ayy =
yn b, for some ye.oZ,. Thus v, ,(xN b, 1)=v,,:(ynb,). By the induction
hypothesis, v,;(ynb,)=sup {u(z):z€ynb,, zes/}. Since xNa,4;<
XN byi1sVas2(xn b,y )<sup {u(z):zcxnb,,,, zeZ}. Clearly v,,,(xn
byr)=sup {u(z):zexn b,y ze.#}, which completes the inductive proof.

As a direct corollary we obtain: For every n<w, v, (b,)=p(a,). Now
define a finitely additive probability measure v on the subalgebra () <7,

n<w
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by v(x)=v,(x) for xe.s,, and extend v to a finitely additive probability
measure on #. Then lim v(,)=1lim p(a,)=0 since A a,= A b,=0. This

n—w n—>o n<w n<w

proves Lemma 6.

Now we proceed to prove Theorem 2. C (X) with the sup-norm is a Banach
space. Any finitely additive probability measure v on 4 uniquely extends to
a linear functional on C (X) such that

@) v(x)< | x| for all xeC (X);

@) v(1)=1.

And, conversely, any linear functional on C (X) satisfying (i) and (ii) uniquely
determines a finitely additive probability measure on #. Let C (X)* be the
conjugate space of C (X) and consider the weak star topology for C (X)*.
For e C (X)*, xo,..., X,+,€C (X), and ¢>0, let

N (5 X0s 0 Xp-138) = W € CX)*: Y (x) — 9 (x)| < & for i < n}
M,, = {peC(X)*:llo] < 1,¢(x) = u(x)for all xe o/} .

By the Alaoglu Theorem, M, with the weak star topology is a compact
Hausdorff space.

LemMMA 7. Let b,e#, n<w be a decreasing sequence such that A b,=0.

n<o
For every r=1, let P.={@eM_:1/r< lim ¢(b,)}. Then P, is nowhere dense in
Md'
Proof: Since P,= () {¢eM_,:1/r<(b,)}, P.is closed in M_,. Suppose for

n<w

some @peC (X)*, xq,..., x,_1€C (X) and >0, we have
QEN(Q; Xgy.uus Xyoq3 E)N My =P,

By the Stone-Weierstrass Theorem there exist v, ..., v,_,€L such that
|x;—v;]| <3¢ for all i<n. There exist ¢, ..., ¢,,—; such that vy,...,v,_, €M,
where M is the linear subspace generated by [.27 U {co, ..., ¢,,_1}]- Let ¢’ be
the restriction of ¢ to M. By Lemma 5, ¢' is g-additive on [.«7 U {¢,...,¢,n 1 }]
By Lemma 6, ¢’ has an extension ¥ to C(X) such that yeM, and
lim y(b,)=0. Let i<n. Then ¢(v;)=¢'(v;)=¥(v;). Thus

lo(x) — ¥ (x)l < lo(x) — @ ()] + W (v) — ¥ (x)]
< ol hx; — vl + Tl fix; —vill <e.

Thus yre P, which is a contradiction.
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Now consider the hypothesis of Theorem 2. It clearly suffices to assume
that for every m<w, b, is a decreasing sequence for n<w such that
A b,,=0. For every m<w, r>1 let

n<w

mn

1
P, ={peM_: < lim ¢(b,,)}-
r

By Lemma 7, P= ) |J P, is of first category in M,. Since the set
m<wrzl1

N(V'; Xgy ..., X,—1; €)1 M, is a non-empty open set and M_, is a compact

Hausdorff space, Theorem 2 follows by the Baire-Category Theorem.
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