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1. Introduction. Probability concepts nowadays are usually presented in
the standard framework of the Kolmogorov axioms. A sample space is given
together with a a-field of subsets - the events - and a a-additive probability
measure defined on this a-field. When the study turns to such topics as
stochastic processes, however, the sample space all but disappears from view.
Everyone says "consider the probability that X2 0", where X is a random
variable, and only the pedant insists on replacing this phrase by "consider
the measure ofthe set {WEQ:X(W)20}". Indeed, when a process is specified,
only the distribution is of interest, not a particular underlying sample space.
In other words, practice shows that it is more natural in many situations to
assign probabilities to statements rather than sets. Now it may be mathe-
matically useful to translate everything into a set-theoretical formulation,
but the step is not always necessary or even helpful. In this paper we wish
to investigate how probabilities behave on statements, where to be definite
we take the word "statement" to mean "formula of a suitable formalized
logical calculus".

It would be fair to say that our position is midway between that of Carnap
and that of Kolmogorov. In fact, we hope that this investigation can eventu-
ally make clear the relationships between the two approaches. The study is
not at all complete, however. For example, Carnap wishes to emphasize the
notion of the degree of confirmation which is like a conditional probability
function. Unfortunately the mathematical theory of general conditional
probabilities is not yet in a very good state. We hope in future papers to
comment on this problem. Another question concerns the formulation of
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interesting problems. So many current probability theorems involve expec-
tations and limits that it is not really clear whether consideration of proba-
bilities of formulas alone really goes to the heart of the subject. We do make
one important step in this direction, however, by having our probabilities
defined on infinitary formulas involving countable conjunctions and dis-
junctions. In other words, our theory is o-additive.

The main task we have set ourselves in this paper is to carryover the
standard concepts from ordinary logic to what might be called probability
logic. Indeed ordinary logic is a special case: the assignment of truth values
to formulas can be viewed as assigning probabilities that are either 0 (for
false) or 1 (for true). Tn carrying out this program, we were directly inspired
by the work of Gaifman [1964] who developed the theory for finitary for-
mulas. Aside from extending Gaifman's work to the infinitary language, we
have simplified certain of his proofs making use of a suggestion of C. Ryll-
Nardzewski. Further we have introduced a notion of a probability theory, in
analogy with theories formalized in ordinary logic, which we think deserves
further study.

In Section 2 the logical languages are introduced along with certain syn-
tactical notions. In Section 3 we define probability systems which generalize
relational systems as pointed out by Gaifman. In Section 4 we show how
given a probability system the probabilities of arbitrary formulas are de-
termined. Tn Section 5 we discuss model-theoretic constructs involving proba-
bility systems. In Section 6 the notion ofa probability assertion is defined which
leads to the generalization of the notion of a theory to probability logic. In
Section 7 we specialize and strengthen results for the case of finitary formulas.
In Section 8 examples are given. An appendix (by Peter Krauss) is devoted to
the mathematical details of a proof of a measure-theoretic lemma needed in
the body of the paper.

2. The languages of probability logic. Throughout this paper we will
consider two different first-order languages, a finitary language !E(w) and an
infinitary language !E. To simplify the presentation both languages have an
identity symbol = and just one non-logical constant, a binary predicate R.
Most definitions and results carryover with rather obvious modifications to
the corresponding languages with other non-logical constants, and we will
occasionally make use of this observation when we give specific examples.

The language !E(w) has a denumerable supply of distinct individual vari-
ables Vn' for each n < W, and !E has distinct individual variables v~, for each
~ <WI' where WI is the first uncountable ordinal. Both languages have logical
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constants r., v, ---', V, 3, and = standing for (finite) conjunction, dis-
junction, negation, universal and existential quantification, and identity as
mentioned before. In addition the infinitary language se has logical constants
1\ and V standing for denumerable conjunction and disjunction respectively.
The expressions of se are defined as transfinite concatenations of symbols
oflength less than W 1, and the formulas of secw) and seare built from atomic
formulas of the forms Rv~v~ and v~=v~ in the normal way by means of the
sentential connectives and the quantifiers. Free and bound occurrences of
variables in formulas are defined in the well-known way. (For a more explicit
description of infinitary languages see the monograph Karp [1964].) A sen-
tence is a formula without free variables.

We will augment the non-logical vocabulary of our languages with various
sets T of new individual constants tET and denote the resulting languages
by secw)(T) and seCT) respectively. It is then clear what the formulas and
sentences of secW)(T) and seCT) are. For any set T of new individual con-
stants let Y and yeT) be the set of sentences of se and seCT) respectively,
and let oCT) be the set of quantifier-free sentences of seCT). We adopt
analogous definitions for the language secw).

If L is a set of sentences and cp is a sentence, then cp is a consequence of L
if cp holds in all models in which all sentences of L hold, and we write L 1= cpo
cp is valid if it is a consequence of the empty set, and we write 1= tp, For both
languages 2 Cw) and :e we choose standard systems of deduction, and we
write L f- cp if cp is derivable from L. cp is a theorem if cp is derivable from the
empty set, and we write f- tp, (For details concerning the infinitary language
we again refer the reader to Karp [1964].) By the well-known Completeness
Theorem of finitary first order logic we have for every L <;;ycw) and every
cpE.<f'Cw), L f- cp iff L 1= cpo This is not true for the infinitary language se; how-
ever, we still have "weak" completeness in the sense that for every cpEY,
f-cpiffl=cp.

We call two sentences cp and t/J equivalent if f- cp....... t/J. It is well-known that
this is an equivalence relation, and that the equivalence classes form a
Boolean algebra, the so-called Lindenbaum-Tarski algebra of sentences,
which in the infinitary case is a-complete. By the "weak" Completeness
Theorem this algebra is isomorphic to a field of sets of models, which in
the infinitary case is a a-field. Let Y/f-, Y(T)/f- and o(T)/f- be the Linden-
baum-Tarski algebras of the respective sets of sentences. Clearly Y /f- and
:J(T)/f- are o-subalgebras of Y(T)/f-. We adopt analogous definitions for the
language secw). For any sentence tp, let cp/f- be the equivalence class of cpo
Finally we define some relativized notions. If L is a set of sentences we call
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two sentences <p and '~ equivalent with respect to 2: if 2:I-<p~l/t. It is now
clear how the relativized Lindenbaum-Tarski algebras ,9"12:1-, .V'(T)I2:1- and
.J(T)/LI- are defined. Since the "strong" Completeness Theorem fails for the
infinitary language Y. it is not in general the case that .<712:1- is isomorphic
to a o-field of sets of models. On the other hand ,V'(w)12: I- is isomorphic to a
field of models. Again. for any sentence (P, <p12: I- is the equivalence class of
(P with respect to 2:, and the mapping which sends (pll- into <p12: I- is a 0"-

homomorphism of C/'/I- onto C/'12:1-.
In general we will present definitions and results for the infinitary language

Y', and we will show in Section 7 how these results can be specialized, and
in many cases strengthened, for the finitary language Y(W).

3. Probability systems. We start with the definition of a concept which
corresponds to the notion of a relational system in ordinary logic. Recall
that if .d is a Boolean algebra then a probability on .9/ is a o-additive
probability measure on .#. A finitely additive probability on .d is a finitely
additive probability measure on .#. For a detailed discussion of these con-
cepts see Halmos [1963] and Sikorski [1964].

DEFINITION. A probability system (or sometimes, a probability model) is a
quintuple <A. R, ld . .cl, m), where

(i) A is a nonempty set;
(ii) <.4. m) is a measure algebra, that is, ,# is a Boolean a-algebra and

m is a strictly positive probability on ,#;
(iii) R is a function on A x A into ,91;
(iv) Id is a function on A x A into ,rd with the substitution property, which

means that for all a, a', b, b' E A,
(a) Id(a. a)=l
(b) ~ld(a,a')U ~[d(b,h')U ~Id(a,b)U Id(a',b')=l
(c) ~ Id(a, a') U ~rd(h, b') u ~ R(a, b) U Ria', b')=1.

If m=c<A. R. ld, d. m) is a probability system, then s:t is a complete
Boolean algebra (see Halmos [1963] p. 67), and therefore <A, R, Id, .#) is
a Boolean-algebraic model in the ordinary sense (see, e.g., Karp [1964] p. 140).

Id is to be interpreted as identity. If Id(a, b)=O for all a, hEA such that
a*b, we follow a suggestion of Gaifman [1964] and call ma probability
system with strict identity and write m=<A, R, .rd, m). If mis a probability
system with strict identity and m is a two valued probability, then s:t is the
two element Boolean algebra and <A, R) may be identified with an ordinary
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model. Most concrete examples of probability systems we have encountered
have strict identity. However some intuitively very suggestive model con-
structions, such as the ultraproduct construction and symmetric probability
systems which will be discussed in Section 5, lead beyond the realm of proba-
bility systems with strict identity. For this reason we thought it advisable to
introduce the more general notion of a probability system.

If 1ll=<A, R, Id, d, m) is a probability system, we define for all a, bEA,

a ~ b iff Id(a,b) = 1.

The substitution property of Id implies that ~ is a congruence relation on
Ill. The cardinality of Ill, denoted by IIll/ is defined to be the cardinality of the
set of equivalence classes with respect to ~. Ifill is a probability system with
strict identity then IIIII is the cardinality of the set A. More generally, for any
subset A' c;; A the system-cardinality of A, denoted by IA'I~I' is defined to be
the cardinality of the set of equivalence classes with respect to ~ which have
a non-empty intersection with A'.

4. Probability interpretations. We now interpret the language !l' in pro-
bability systems and give a definition of the concept "a sentence cp holds
in a probability system III with probability a", where O~a~ 1 is a real number.
The definition could be given in the traditional way using an analogue of
Tarski's concept of satisfaction; however, in the context of probability logic
it seems to be more appropriate to use the equally well-known device of new
individual constants.

Let 1ll=<A, R, Id, .W', m) be a probability system and let Tm={ta:aEA}
be a set of new individual constants such that ta # tb whenever a # b.

We recursively define a valuation function h on Y(Tm) into oW':

(i) h(ta=tb)=Td(a,b),
(ii) h(Rtatb) = R(a,b),

(iii) h(, cp) = 1 ~ h(cp),
(iv) h(V CPi) = V h(CPi)'

i<~ i<~

(v) h(/\ cp;) = /\ h(cp;),
i<~ i<~

(vi) h(3vcp) = V h(cp(ta) ) ,

aeA

(vii) h (V vcp) = /\ h (cp (ta) ) .
aeA

The following lemma is well-known and easy to prove:



224 DANA SCOTT AND PETER KRAUSS

LEMMA 4.1. (i) For all tp, l/JE,C/'(T'll)' ijf-CP+-+l/J, then h(cp)=h(l/J);
(ii) h induces a a-homomorphism from .C/'(T~()/f- into d.
Proof: By the definition of h it suffices to prove that for all cpE9'(T'l1)' if

cpf- then h(cp)=l. This can be done by considering a standard system of
deduction for 2'(T~(), and showing that h maps all axioms into 1 and that
the property of being mapped into 1 is preserved under all rules of deduction.
For a more detailed presentation see Karp [1964]. (ii) is an immediate conse-
q uence of (i).

We identify h with the induced homomorphism and define Jl'll(cp/f-)=
m(h(cp)) for all cpE.C/'(T~a. Then Jl~( is a probability on 9'(T'll)/f-. (This is a
well-known fact in measure theory, and a proof can be found in Halmos
[1963] p. 66.) Since hardly any confusion could arise we write Jl21(CP) for
Jl~(cp/f-), and we read "Jl~(cp)=a" as "cp holds in the probability system m:
with probability a".

If m: is a probability system with strict identity and m is two valued, then
for every CPE2'(TtI)' Jlm(cp)=1 iff cp holds in the model <A, R). Thus the
definition of the probability J1~1 is a canonical extension of the ordinary defi-
nition of truth. Moreover, if m: has strict identity, then J1~I(ta= tb)=O for
a, bEA where a=lb, and therefore J121 is two valued on the identity sentences
(the sentences without the predicate R).

The next lemma introduces the Gaifman Condition (G).
LEMMA 4.2. Whenever 3vcp E.<J' (Tm), then

(G) Ilm(3vcp)= sup 1l21(V cp(tJ);
FeA«(J) aeF

where A(w) is the set of all finite subsets of A.
Proof: ,u~,(3vcp)=m(h(3vcp))=m( V h(cp(ta))). .,,1is a measure algebra and

aEA

therefore satisfies the countable chain condition (see Halmos [1963] p. 67).
Thus there exists a countable subset A'c;;A such that

V h«(p(ta)) = V h(cp(ta) ) .
aeA aeA'

Thus
1l~1(3vcp) = m( V h(cp(t a))) = m(h( V cp(ta))) = JIm ( V cp(ta) ) .

aeA' {leA' aeA'

Since J1~1 is a-additive,
J1~I( V (p(ta) ) = sup ,u~I( V cp(ta))·

(leA' FeA'(UJ) aeF

Condition (G) now follows from the choice of A'.
We now present the preceding ideas from a slightly different point of view
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to see that the probability system ~ may be identified with the restriction of
the probability Il~( to {}(~()/f-. We first observe that from the definition of h
and the countable chain condition in d it follows that for the purpose of
our probability interpretation we may assume that d is the a-algebra gener-
ated by the union of the images of A x A under Id and R respectively. If the
definition of h is restricted to clauses (i)-(v), then obviously Lemma 4.1
holds with ,5f'(Tm) replaced by {}(Tm). Since m is strictly positive on ,# we
have

Thus the quotient algebra of {}(Tm)jf- modulo the a-ideal {q>jf-Eo(Tm)jf-:
J1m(q»=O} is isomorphic to d, and it is a well-known fact that the proba-
bility m on d may be uniquely recaptured from the probability Il~( on
o(Tm)jf- . (See, e.g., Halmos [1963] pp. 64ff.) Thus the probability system ~

is, up to the obvious isomorphism, determined by the ordered pair (Tm, 11m),
where Il'll is restricted to {}(T~l)jf-.

In general any ordered pair (T, Il), where T is a set of new individual
constants and Il is a probability on {}(T)jf-, uniquely determines a probability
system ~. Indeed let A=T, let d be the quotient algebra of;;(T)jf- modulo
the a-ideal {q>jf-:q>E{}(T), 1l(q»=O}, let m be the probability on d induced
by u, and let Id(t, t') and R(t, 1') be the image of t= t'jf- and R(t, t')jf- under
the canonical homomorphism of;;(T)jf- onto d. Then ~=(A, R, Id, .9/, m)
clearly is a probability system; it is easy to check that the valuation homo-
morphism h is the canonical homomorphism, and Il is the restriction of Ilm
to {}(T)jf-. Moreover, if ll(t=t')=O for all t, t'ETwhere Ii:.t', then ~ has
strict identity.

Thus we may also regard a probability system as an ordered pair (T, m),
where T is a set of new individual constants, and m is a probability on
{}(T)jf-. The probability systems with strict identity are then characterized
by the condition m(t=t')=O for all t, t'ETwhere ti=t'. This is the form in
which Gaifman [1964] introduces the concept of a probability model and,
whenever convenient, we will also adopt this terminology.

From this new point of view we have the following extension theorem:
THEOREM 4.3. Let (T, m) be a probability system. Then there exists a unique

probability m* on ,5f'(T)jf- which extends m and satisfies the Gaifman Condition:
whenever 3Vq>EY' (T), then

(G) m*(3 Vip) = sup m*( V q>(t));
FET(W) tEF

where T(w) is the set ofall finite subsets of T.
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Proof: The existence of m* is clear from our considerations above. The
uniqueness of the extension will be proved by transfinite induction. During
the course of our proof we will make use of analogues of Lemma 7.9 which
will be established separately, and of course independently, for the finitary
language ::t'lwj (T) in Section 7 of this paper.

For every ordinal ~ < WI' we shall define sets of sentences j~(T) S; Y'~(T) S;

YeT) by recursion: First let Jo(T)=J(T). Then if ~>O, let j~(T) be the
closure of U .'/'~(T) under denumerable propositional combinations. For

t1<~

every ~ < W j , let Y~(T) be the closure of ,)~(T) under quantification and
finite propositional combinations. Then obviously whenever IJ < ~ < WI'

and
Y'(T)= U .J~(T)= U .'/'~(T).

';<(1)1 ~<(J)l

Now suppose III and I1z are both o-additive probability measures on
(/'(T)jf- which extend m and satisfy condition (G). We shall prove by trans-
finite induction that for every ~<Wl and every <pE.'/'~(T), we have 111(<p)=
I1 z«p)·

In case ~=0 and <pE Jo(T), then III (<p )=l1z(<p) by hypothesis. If <pE g'oCT),
then <p may be written in prenex normal form QM, where Q is a string of
quantifiers and M is an {Jo(T)-matrix of tp ; that is, every substitution instance
of M belongs to Jo(T). By an obvious analogue of Lemma 7.9 we have
11\ «p)=l1 z(<p). Tn case ~>O, first observe that (U Y'~(T))jf- is a subalgebra

'1<~

of Y(T)jf- that c-generates ,)~(T)jf-. By way of an induction hypothesis, we
assume that 111(<p)=l1 z(<p) for every <pEU Y'~(T). Since III and I1z are both

~<~

o-additive measures, we conclude by a well-known extension theorem of .
measure theory (see Halmos [1950] p. 54), that 111 (<p )=l1z (<p) for all <pE;J~(T).

If <pE.'/'~(T) then <p may be written in prenex normal form QM, where M is
an .)~(T)-matrix of <p; that is, every substitution instance of M belongs j~(T).

Again by analogue of Lemma 7.9 we have 11\ (<p)=l1z(<P ). Thus by transfinite
induction 111'=112'

Remark: Gaifman first formulated condition (G) and published a proof of
Theorem 4.3 for the finitary language ::t'IUJ)(T), which of course is an im-
mediate consequence of Theorem 4.3. The authors subsequently proved Theo-
rem 4.3 for the infinitary language along constructive lines suggested by the
uniqueness proof given above. The idea underlying the presentation in this



ASSIGNING PROBABILITIES TO LOGICAL FORMULAS 227

paper, which renders the existence part of Theorem 4.3 almost trivial, was
suggested to us by Professor C. Ryll-Nardzewski.

It is now clear how to define various probability-model-theoretic concepts
in analogy to the standard concepts of ordinary model theory. We will
discuss a few examples in the next section.

5. Model-theoretic concepts in the theory of probability systems. If <T, m)
is a probability system, let m* be the extension of m to 5f'(T)/f- satisfying
(G), and let m be the restriction of m* to c'l"/f-.

DEFINITION. Let <Tt , m[), <Tz, mz) be probability systems, then
(i) <T1,m1)r;;<Tz,mz) iff T1r;;Tz and m, is the restriction of mz to

o(T1)/f- ;
(ii) <T1, m 1)~<r; mz) iff r, r;; Tz and mi is the restriction of m'i to

5f'(T1)/ f- ;
(iii) <T1,ml)=<Tz,mz) iffm1=mz.

Remark: The concepts defined in (i), (ii) and (iii) correspond to the con-
cepts of subsystem, !I!-subsystem and !I!-equivalence respectively in ordinary
model theory.

Not many interesting results concerning these concepts are known for the
infinitary language !I!, a phenomenon which the probability-model theory
of !I! seems to share with the ordinary model theory of !I!. In many cases the
authors have been able to establish for probability logic analogies of major
results known from ordinary logic; this is particularly true for the finitary
language !I!(wl, for which several results have already been published by
Gaifman [1964].

We present next a few standard constructions for probability systems.

Independent Unions. Let I be an index set. For each iEI, let !l!i be the
infinitary language whose only non-logical constant is the binary predicate
R;, and let .'1"; be its set of sentences. Let T be a set of new individual con-
stants. For each iEI, let <T, m;) be a probability system where m, is a proba-
bility on oi(T)/f-. We shall assume these systems have strict identity. Let
!I! be the infinitary language whose non-logical constants are all the binary
predicates R;, iEI, and let 5f' be its set of sentences. For every iEI, J;(T)/f-
and ;J(T)/f- are isomorphic to a-fields of sets of models, and )(T)/f-
is isomorphic to the a-field product TIJi(T)/f- of the family {,Ji(T)/f-: iEI}.

iel

m = TIm, is the product measure on)(T)/f- induced by the family {mi : iEI}.
i€I
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Then we define the independent union of the family of probability systems
{<T, m):iEI}, to be the probability system <T, m), and denote it by
I<T,m).
i E I

We note two corollaries of the construction given with this definition:
COROLLARY 5.1. For every iEI and qJEY'i(T), m*(qJ)=mi(qJ).
Proof: We argue by transfinite induction along the same lines as the

uniqueness part of the proof of Theorem 4.3. Let iEI, and for every ~<Wl

define sets of sentences di~(T)~ Y'i~(T) ~ Y'i(T), as in the proof of Theorem
4.3. If qJEdiO(T) then m* (qJ)=mi (qJ) by the definition of m. The rest of the
induction is carried out as in the proof of Theorem 4.3.

We state a simple fact about product measures: Let X, Y be sets, let d, :!B
be fields of subsets of X, Y respectively; let d, PJ be the IT-fields generated
by s¥, :!B respectively; and let u, v be probabilities on d, PJ respectively. Let
.;;f x PJ be the product IT-field of.91 and PJ. Then we have:

LEMMA 5.2. If A is a probability on .;;f x PJ such that A(A x B)=/l(A)' v(B)
for all Auy, BE!!IJ, then A(A x B)=/l(A)'v(B)for all AEd, BEPJ.

Proof: Let .97x!!IJ be the field of subsets of X x Y generated by rectangles
A x B, where AE.W', BE.OJ. Then the condition A(A x B)=/l(A)' v(B) de-
termines the probability A on d x .OJ. .;;f x PJ is o-generated by d x:!B. Thus
this condition determines Aon d x PJ. The product measure /l x v on d x PJ
agrees with A on d x:!B. Thus A=/l x v, which proves the assertion.

COROLLARY 5.3. For every n « co, let inEI and let qJnEY';jT). Then

m*( 1\ qJn)= fl m*(qJn)'
n<w n<w

Proof: The assertion follows from the continuity ofm* if we can establish:
If n-c co, io, " " in - 1 EI and qJkEY'iJT)for all k «;n, then

m*( 1\ qJk) = fl m*(qJk)'
k<n k<n

As in the proof of Theorem 4.3, for every ~<Wl' k «:n we define sets of
sentenCeSJik~(T)~Y'ik~(T)~.Y'dT). If qJkE.'l'ik(T) for all k-en, then there
exists ~<(()l such that qJkEY'ik~(T) for all k «:n. Accordingly we prove by
transfinite induction: For every ~<(()l' if qJkE·Y'ik~(T) for all k «:n, then
m* ( 1\ qJk) = flm* (qJk)' First if qJkE {}ikO(T) for all k < n, then the assertion

k<n k<n

holds by the definition of m*. If qJkE.'l'ikO(T) for all k «:n, then for every
k<n, qJk may be written in prenex normal form QkMk, where Qk is a
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string of quantifiers and Mk is an 0ikO(T)-matrix of CfJk> which means every
substitution instance of Mk belongs to 0ikO(T). It is now easy to see that by
an analogue of Lemma 7.10, straightforward computations with sup's and
inf's, and the fact that we have established the assertion for CfJkEOikO(T),
k «:n, we obtain m*( /\ QkMk)= nm*(QkMk). We omit the cumbersome

k<n k<n

details and illustrate the idea with a simple example. By an analogue of
Lemma 7.10,

m*(3voMo(vo) A VvIMI(VI»= sup infm*[( V Mo(to» A ( 1\ MI(tI»]
Fo Fl toeEo tl EF I

= sup inf[m*( V Mo(to»'m*( /\ MI(tI»]
F o F I toeEo II eF I

= sup m*( V Mo(to»'inf m*( /\ MI(tt»
Fo toeEo F 1 IIEF t

because V Mo(to)EoioO(T), /\ MI (tl)EOitO(T), and those are formulas for
toeFo flEFt

which the assertion has already been established.
Next assume ~ > °and that the assertion holds for all ordinals smaller

than ~. First suppose CfJkEOik~(T) for all k-en. Remember that for every
k:«:n, (U Y ik" (T»/f- is a subalgebra of Yik(T) and rr-generates Oik~(T). Now

,,<~

suppose tfikEU Yik,,(T) for all k-en. Then for some 11«, tfikEYik,,(T) for
,,<~

all k-en. Thus, by inductive hypothesis, m*( /\ tfik)= nm*(tfik)' By an n-
k<n k<n

dimensional version of Lemma 5.2, m*( /\ CfJk)= nm*(CfJk)' In the general
k<n k<n

case where CfJkEYik~(T) for all k-en, we proceed in the familiar fashion using
prenex normal forms and Lemma 7.10, as in the second part of the case
~=o. This completes the proof of Corollary 5.3.

The construction of independent unions is particularly valuable for the
introduction into a given probability system of "a priori conditions" such
as ordinary relational structures. For example, we may consider a proba-
bility system '!(I=<A, R, sf, m), where the set A has a natural ordering <.
Then we consider the ordinary relational system '!(Z =<A, <) separately,
and form the independent union of '!{I and '!{z. This allows us to make
probability statements involving the ordering, and Corollaries 5.1 and 5.3
show how certain values of the probability of the independent union may be
computed from the probabilities of the components.
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It is natural to ask for the definition of an analogue of the direct product
of ordinary relational systems; however, a reasonable, natural generalization
of this construction for probability systems does not seem to exist. On the
other hand we are able to give an intuitively very suggestive definition of an
analogue of the ultraproduct construction of relational systems.

Ultraproducts. Consider again our language if with one binary predicate
R. Let! be an index set. For each ie J, let T, be a set of new individual con-
stants, and let <Tj , m;) be a probability system, where m, is a probability on
J(~)/f-. Let T= nT, be the Cartesian product of the family of sets {~: iEI}.

iEJ

For qJEY'(T) and iEJ, let qJli be the projection of qJ onto the r h coordinate;
that is, replace in tp every tETby tjE~. Then for every qJEy;J(T) and iEJ, f- qJ
implies f- qJli. Finally let A be a probability on the power set of 1. Define for
all (pEJ(T) a function m by the equation

m(qJ) = Jmj(qJli)dA(i).
1

LEMMA 5.4. (i) For every qJ, ljIEJ(T), if f- qJ+->ljI, then m(qJ)=m(ljI).
(ii) For every qJEJ(T), if r ip ; then m(cp)=1.

(iii) m, regarded as afunction on J(T)/f-, is a probability.
Proof: (i) and (ii) are trivial. Thus m may indeed be regarded as a function

on .J (T)/f-, and it suffices to prove o-additivety. Suppose qJnEa(T) for all
n < W, and f-, (qJlIl;\ (Pn) for all m iol1. Then f-, (qJlIlli;\ qJnli) for all m ion and
all iEI. Thus for all iEJ

I1l j( V qJnli)= Il1l i(qJnl i).
n<w n<w

Therefore by the Dominated Convergence Theorem

m( V (Pn) = Jm j ( V CPn I i) dA(i)
n<w n<w

1

= JI I1lj(qJn I i) dA(i)
n<ro

I

n~roJ 11l;(qJnl i)dA(i)
1

= I m(qJ,,).
n<w

We define the ultraproduct with respect to A of the family of probability
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systems {<T;, m;):iEl}, to be the probability system <T, m), and denote it
by Ilct; mi)/ A.

iel

COROLLARY 5.5. For all lpEY(T),

m*(lp) = Jm7(lpji)dA(i).
I

Proof: Define ]l(lp)=J1m7(lpli)dA(i), for all lpEY(T). By the same argu-
ment as in Lemma 5.4, ]l is a probability on Y(T)/!-. Clearly ]l extends m.
By Theorem 4.3 it suffices to prove that ]l satisfies the condition (G). Let
3VlpEY(T). For every iEI,

m7 (3 Vlp i i) = sup m7 (V (lp I i)(t») .
FeTi(W) teF

Therefore for every iEI and n <OJ there exists tinE T; such that

m7 (3vlp I i) = lim m7 (V (lp I i)(tik»).
n-e co k<n

For n<OJ define snETby sn(i)= tin for all iEI. Then for iEI,

m~(3vlpli)= lim m~(V lp(sk)/i).
n~ 00 k<n

Thus, by the Monotone Convergence Theorem,

J1 (3vlp) = J m~ (3vlp I i) dA(i) = J lim m~ (V lp (Sk) I i) dA(i)
n-too k<n

I I

= limJm~(V lp(sk)li)dA(i) = limJ1(V (P(Sk»)
nr- co k<n n-....«co k<n

I

=J1(V lp(Sk») = sup J1(V lp(t»).
k<w FeT(w) teT

Remark: Let t, t'ETand let J={iEI:ti=t'}. If for every iEI, <T;, m;) has
strict identity, then we have m(t= t')=A(J). Thus the ultraproduct con-
struction does not preserve strict identity.

Corollary 5.5 shows that the probability of the ultraproduct is in a very sug-
gestive fashion a "weighed average" of the probabilities of the components.
This idea was introduced in Los [1962] and is further developed in Fenstad
(forthcoming), to which the reader is referred. We conclude this section with
a brief discussion of symmetric probability systems.

Symmetric probability systems. Let <T, m) be a probability system. A
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function nETT is a permutation of T if tc is one-to-one and onto. A permu-
tation tt is finite if n(t)=t for all but a finite number of lET. Following a
suggestion of Gaifman [1964] we call <T, m) symmetric if for every finite
permutation t: of T and every <pEjw)(T), m(<p)=m(<p"), where <p" is obtained
from <p by replacing every individual constant t of <p by net).

Remark: Gaifman's [1964] definition is apparently stronger; however,
Lemma 5.7 shows that the two definitions actually coincide.

The following lemma is easy to prove; for a proof we refer the reader to
Hewitt-Savage [1955].

LEMMA 5.6. Let <T, m) be a symmetric probability system. Then for every
permutation n ofT and every (pEJ(T), m*(<p)=m*(<p").

LEMMA 5.7. Let <T, m) be a symmetric probability system. Thenfor every
permutation tt ofT and every <pEY'(T), m*(<p)=m*(<p").

Proof: We proceed by transfinite induction using the familiar method of
the proof of Theorem 4.3. First, if <pEJo(T), then the assertion is Lemma 5.6.
If (PEY?oCT), then <p may be written in prenex normal form QM as explained
before. It is again easy to see by an analogue of Lemma 7.9, by the fact that
a permutation tt. of T is a function onto T, and by elementary arithmetical
properties of sup's and inf's that we obtain m*(QM)=m*(QM"). We illus-
trate the argument with a simple example. By an analogue of Lemma 7.9,

m*(3vOVv1M(vo,v 1)) = sup inf m*(V /\ M(to,t 1) ) .
FoeT{W) F1ET(W) toeF01{EFI

Now V /\ M(to, t l)EJO (T), and the assertion has already been establish-
rn e Fo tl eF l

ed for these formulas, so we have for every F0' F 1 ET(W)

m*( V /\ M(tO,t 1) ) = m*( V /\ M"(n(tO),n(t 1) ) ) .
10eFo tlEF l toeEo llEFI

Finally, since tt. is onto,

m*(3vOVv1M(vo,v t )) = sup inf m*( V /\ M"(tO,t 1) )
FoeT(W) FIET(W) 10eFo fiEF.

Next, assume e> 0 and that the assertion holds for all ordinals smaller
than e. Recall that (U Y'q(T))/f- is a subalgebra of /7 (T)/f- that a-generates

q<~
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6~(T)/f-. By the inductive hypothesis m*(qJ)=m*(qJ") for every qJE U 9"~(T).
~<~

Let E be the set of qJE;J~(T) for which the assertion holds. If qJnEE and
f-qJn~qJn+l for all n «:co, then

m* (V qJn) = lim m* (qJn)
n<w n-e co

= lim m*(qJ;)

= m*( V qJ;).
n<w

A similar argument for decreasing sequences proves that E is monotone,
and therefore by a well-known fact about monotone classes (see Halmos
[1950], p. 27), E=;J~(T). If qJEYJ~(T), we proceed as in the second part of
the case of ~=O.

In a sense the symmetric probability systems are diametrically opposite to
ordinary relational systems. In ordinary relational systems the probability is
as concentrated as possible; in symmetric probability systems it is completely
dispersed. The condition of symmetry is a severe restriction on a probability
system, as an example in Section 6 will demonstrate.

This completes our discussion of probability-model-theoretic concepts,
and we now turn to the analogue in probability logic of theories in ordinary
logic.

6. Probability assertions. In ordinary logic a theory of if is any subset
of 9" closed under deduction. In probability logic we first have to define the
concept of probability assertions which play the role of sentences (or, better
axioms and theorems) in ordinary logic.

For this purpose we introduce a new language Jt, the first-order language
of real algebra. Jt has denumerably many distinct individual variables Am
n < w. The non-logical constants of Jt are a binary predicate ~, binary
function symbols + and ., and individual constants 0, +1 and -1. The
logical constants of vlt are /\, v, -', V and 3, standing for (finite) con-
junction, disjunction, negation, universal and existential quantification re-
spectively. Formulas and sentences of Jt are defined as usual. Jt is to be
interpreted in the real numbers in the standard way with the obvious meaning
being given to the symbols. Let Re denote the set of real numbers, and say
that Jt is interpreted in the relational system 9t=(Re, ~, +, ',0, + 1, -I).
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The set of sentences of ull true in 9t is called the set of theorems of real
algebra. An algebraic formula is a quantifier free formula of uti. Every alge-
braic formula is equivalent in real algebra to a disjunction (conjunction) of
conjunctions (disjunctions) of polynomial inequalities of the form p;;::O or
p>O, where p is a polynomial with integral coefficients. We call an algebraic
formula closed (open) if it is equivalent to a disjunction of conjunctions of
polynomical inequations of the form p;;::O(p>O). It is obvious that in this
definition we could have used the conjunctive instead of the disjunctive
normal form.

We now make several definitions. A probability assertion of se is an (n + 1)-
tuple <$, ({Jo, ... , ({In-l)' where n-c co, $ is an algebraic formula with exactly
n free variables and ({Jo, ... , (Pn -1 E .C/. A probability assertion is called closed
(open) if the algebraic formula is closed (open). A probability system <T, m)
is a probability model of <4>, ({Jo, ... , ({In -1) if the n-tuple of real numbers
<m«({Jo), ... , In«({Jn-l) satisfies $ in 9t.

If L; is a set of probability assertions and IJI is a probability assertion, then
IJI is a probability consequence of L; iff every probability model of all assertions
in L; is also a probability model of IJI. IJI is a probability law of se if IJI is a
probability consequence of the empty set of assertions.

Immediately the familiar questions arise: Is there a method of deductively
generating the probability consequences from a given set of probability as-
sertions? Is there a method of deductively generating all probability laws?
Under which conditions does a set of probability assertions have a proba-
bility model? Is there an analogue of the concept of consistency in ordinary
logic? Obviously these questions are interrelated. Before we enter into their
discussion, we insert some remarks concerning our definition of probability
assertions.

The definition of probability assertions depends both on the language se
and the language jt, and it is clear how this definition could be generalized
by considering languages uti' with stronger means of expression. The under-
lying idea of our approach is that we want to investigate polynomial in-
equalities in "variables" fl( ({Jo), ... , fl( ({In-l) with real coefficients, where
(Po,· .. , ({In- 1 E Y' and fl is interpreted as a probability on .'/'/1-. Our definition
does not quite realize this idea. For this purpose it would have been ap-
propriate to introduce a language j{' which is like j{ but has individual
constants for every real number. We easily see that by the continuity of
addition and multiplication every closed probability assertion of uti' is equiv-
alent to a denumerable set of probability assertions of uti' with rational co-
efficients and, after clearing denominators, to a denumerable set of proba-
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bility assertions of JI. This, however, is not true for open probability as-
sertions of JI'. We thus fall somewhat short of our objectives. Nevertheless
since not very much work has yet been done towards the investigation of
probability assertions, we chose the present formulation for its simplicity.

If L:s; .'7, then L: determines a set of probability assertions {o.o-1 ~ 0,
1p):lpEL:}. Accordingly we say that <T, m) is a probability model of L: if
m(Ip)=1 for all IpEL:. More generally, if fl is a probability on Yj't-, then fl
determines a set L: of probability assertions as follows. For every IpE Y we
choose sequences of rational numbers Pnjqn, and p~jq~, such that for all n < w

and

Let
L:", = {< qnAo - Pn ~ 0, <p): n < w} U «- q~Ao + P~ ~ 0, tp »: n < w}

and let L:= U L:",. Accordingly we say that <T, m) is a probability model of
cpE9

fl if m(Ip)=fl(<P) for all <pEY. It then is obvious that <T, m) is a probability
model of fl iff <T, m) is a probability model of L:. Moreover, if L1 s;.'7 is a
complete and consistent theory, then L1 uniquely determines a two valued
o-additive probability measure fl on Yj't-. In this case <T, m) is a probability
model of L1 iff <T, m) is a probability model of fl.

For the infinitary language 5£ the questions raised above seem to be rather
vexing problems, only a few scanty results could be established by the authors.
First let us establish the relationship to ordinary logic.

A set L:s; .'7 is consistent if there exists no <p E.'7 such that r't- [<p 1\ --. <p].
It is well known that not every consistent set of sentences of 5£ has a model
(see Karp [1964] p. 32). The trouble already occurs with the ordinary propo-
sitional logic of 5£ and carries over to the probability logic of 5£. Indeed,
let P~n' ~ < w 1 , n < co, be a doubly indexed set of propositional constants. Let

L: = { V P~n: ~ < wd u {--. [P~n 1\ P~'n]: ~ < ~' < w 1 , n < w}.
n<w

It is easy to see that L: is consistent. Suppose then there exists au-additive
probability measure fl on Yj't- such that fl(<p)= 1 for all tp e L:. Then for every
~< W1 there exists n < w such that fl(P~n)> O. Thus there are uncountably
many p's such that fl(P) > O. Thus for some n < ca there are uncountably many



236 DANA SCOTT AND PETER KRAUSS

~ < WI such that f.1(P~n)> O. Since f.1([P~n /\ P~'n])=O for ~ # C this is a con-
tradiction. Obviously every complete and consistent set of sentences of
an infinitary proposi/ionallanguage has a model. In infinitary propositional
logic the trouble therefore arises from the fact that the Prime Ideal Theorem
fails for Boolean c-algebras.

Naturally the question arises: Does every complete and consistent set
1:<;;Y' have a model? The answer is again no, and a counter-example is due
to Professor C. Ryll-Nardzewski. Interestingly enough the counter-example
produces a probability model of the complete consistent set of sentences
under consideration. The question of whether every complete consistent set
1:<;;Y' has a probability model can, however, be settled by a similar counter-
example, and we shall discuss both of these examples in a form slightly
modified from Ryll-Nardzewski's original suggestion.

Let 2 be an infinitary language with countably many one-place predicates
P, for eachj<w, and define a probability model 1ll=(A, Rj, d, m)j<", as
follows: Let A =w, and let ,91 be the Borel sets of the product space (2"')"';
that is, the o-field of subsets of (2"')'" generated by all sets of the form
gE(2"')"': ~(i) (j)=l}, where i,j<w. Let m be the product measure on d
determined by m({~E(2"')"':~(i) (j)=l})=! for all i,j<w. Finally, forj<w,
define Rj(i)=gE(2"')"':~(i)(j)=l} for all iEA. (Note: strictly speaking III
is not a probability model since (s~, m) is not a measure algebra. Thus we
would have to consider the quotient algebra s?iII of d modulo the o-ideal
I={xEd:m(x)=O}, and lift m up to a strictly positive probability on diI.
In this example, however, all sup's and inf's in ,91' that have to be taken into
consideration are countable; clauses (vi) and (vii) of the definition of the
valuation function h make sense; and everything comes out just the same.
We can omit the tedious details.) Then let ~1={/;:jEA} be a set of new
individual constants such that Ii # Ii" if i # 1'. Now we observe that for every
IfJE S, the element h(IfJ )Es?i is invariant under all finite permutations of the
second coordinate in (2"')"'. By the well-known 0-1 Law (Hewitt and Savage
[1955] p. 496) m is two-valued on h(IfJ). Thus the set 1:={IfJE,'/}: m(h(1fJ))=1}
is a complete and consistent theory of 2. We wish to show that 1: has no
model. Indeed, suppose IB=(B, Sj)j<", is a model of 1:. Since B must be
non-empty, let bEB. For j<w define formulas Qj(v)=Piv), if bESj; while
Qj(v)=iPiv), if brjSj' Then 3v[ A Qj(v)] holds in lB. However, as a

j<w

straightforward computation shows, m(3v[ A Qj(v)])=O, which is a contra-
l « o»

diction. On the other hand, by its very construction mis a probability model
of 1:; that is, f.1~1(1fJ)=1 for allIfJE1:.



ASSIGNING PROBABILITIES TO LOGICAL FORMULAS 237

For our second example we let m:'=(A, R~, d')i<<» be that Boolean-alge-
braic model where A=w, where d'=d/J, the ideal J being the a-ideal of
all first-category sets in the Borel algebra d, and where R~(i)=Rj(i)/J for
all i.] «co. Since A is countable, we note that the valuation h' for m:' is such
that h'(<p)=h(<p)/J for all <pEY'. But there is a 0-1 Law for category just as
there is for measure, hence E'={<pEY':h'(<p)=l~d is also a complete and
consistent theory of .se. We wish to show that E' has no probability mo-
del. First we note that for every Borel set a of 2<» we can find a formula
<Pa(v) such that h'(<Pa(t;))=gE(2<»)<»: ((i)Ea}/J. Therefore the sentence
\!v[<Pa(V)+-+<Pb(V)] belongs to the set E' iff a/Jo=bfJo where Jo is the ideal of
first-category sets of 2<». This means that if E' had a probability model, then
the measure algebra of this model would contain a a-homomorphic image
of the algebra of Borel sets modulo first-category sets. But we know that
there is no non trivial a-additive probability on this algebra (see Sikorski
[1964] p. 77). Thus E' has no probability model. It should be noted that
both the models m: and m:' could be equipped with a strict identity relation,
and they thus afford counter-examples for the logic with strict identity,

The property of a set EsY' to have a probability model may be given an
algebraic interpretation which can be read off directly from our presentation.
We say that a Boolean algebra d has the Kelley property if d ~ {O} is a
countable union of sets with positive intersection number. (For the definition
of this and other Boolean-algebraic concepts see Sikorski [1964]; in par-
ticular, cf. p. 204.) We then have the following:

COROLLARY 6.1. Let E r:;;. Y'. Then E has a probability model iff E has
a Boolean-algebraic model which is complete, weakly distributive and has the
Kelley property.

Proof: This follows immediately from Kelley's Theorem: A complete
Boolean algebra has a strictly positive a-additive probability measure iff it is
weakly distributive and has the Kelley property (see Kelley [1959]).

In Karp [1964] we find the theorem that every countable consistent set
E r:;;. Y' has a countable model in the ordinary sense. The exact analogue of
that result also holds for probability logic. We can also treat the case of
theories with identity. To help formulate the result we define the formula
On for O<n<w to be the formula 3v o ... 3v ll - 1\!vn V Vi=Vn- Note that for

i<n

each probability system (T, m) with strict identity we have m(On)E{O, I}
for O<n<w.
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THEOREM 6.2. (i) Let J1 be a probability on .'7'If-, and let E~:7 be a count-
able set. Then there exists a countable probability model (T, m) such that
for every cpEE, iii(cp)=J1(CP)'

(ii) Iffor every O<n<w, J1(On)E{O, I}, then the probability model (T, m)
may be assumed to have strict identity.

We will give a detailed proof of part (ii) and leave the proof of part (i) to
the reader. To prove this result we require a few lemmas. The first is a
measure theoretic generalization ofthe well-known Rasiowa-Sikorski Lemma
(see Rasiowa and Sikorski [1950]). The proof is given in full in the Appendix.

LEMMA 6.3. Let.iJ?J be a Boolean a-algebra and let d ~I:JB be a a-subalgebra.
Let J1 be a probability on d, and for every m, n < w let bmnEI:JB. Then there
exists a finitely additive probability v on I:JB such that

(i) vex) = J1(x),for all XE d;
(ii) v( 1\ bmn) = lim v(l\ bmi),for all m < W.

n-c rc tf----J.r£· i<n

For every cpE.J(T) we recursively define an ordinal number A(cp)<Wl'
called the length of (P, by these equations:

(i) if (P is atomic, A(cp) = 1;
(ii) J.( -, (p) = l(cp) + 1;

(iii) A«(P, v (P2) = A(cp, A (P2) = A(cp,) + A(CP2) + 1;

(iv) A( V (Pn) = l( 1\ CPn) = I l(CPn)'
n<w n<(J) n<w

LEMMA 6.4. If cpE;J(T), A(cp)2 co, and -, occurs in cP only infront ofatomic
formulas, then there exists a sequence ljJiEJ(T) such that A(ljJ;) < A(cp) for all
i < ill, and either hp<-+ V ljJ i or hp<-+ 1\ ljJ i :

i « s» i<w

Proof: By transfinite induction on A(cp), If A(cp)<W, the assertion holds
trivially. Thus assume }.(cp)2W and that the assertion holds for all cP' such
that }'«(P')<A(cP). If (P= V (Pn or cP= 1\ cP", the assertion is again trivial.

n<w n<w

Thus for some n<w, either cP= V (Pi or cP=1\ CPi' Consider the first case.
i<n i<n

Since A(CP)2W, we see that ;~«(Pi)2ill for some i«:n. Let m be the largest such
integer i-:n. Then A(CPm) <),«(p) and A(CPi)<W for all m-c.i-cn. By inductive
hypothesis there exists a sequence ljJjEJ(T) such that A(ljJj)<A(CPm) for all
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j<OJ, and either f-qJm~ V t/Jj or f-qJm~ A t/Jj' Again consider the first case.
j<w j<w

Then
f-qJ~ V [V qJi V t/Jj V V qJJ.

j<w t-c m m<i<n

It now follows from well-known laws of ordinal addition that for every j < OJ,

2( V qJi V t/Jj V V qJi) = 2( V qJJ + 2(t/JJ + 2( \I qJJ
i<m m<i<n i<m m<i<n

<2(\/ qJi)+2(qJm)+2( \I qJi)
i<m

= 2(qJ) ,
m<i<n

which proves the assertion. All other cases are treated analogously.

If f! is a finitely additive probability on Yjf- and I £.9" is a set of
infinite conjunctions and disjunctions, we say f! preserves I if for every
A qJm V t/Jn EI,

a-c ro n<w

f! (A qJn) = lim f! (1\ qJi)
n<w n-e co t « n

and
f!( \I t/Jn) = lim f!( \I t/Ji)'

n<w n-r co i<n

LEMMA 6.5. For every qJEa(T) there exists a denumerable set I£a(T) of
infinite conjunctions and disjunctions such that for all finitely additive proba-
bilities m i and m2 on o(T)jf- , if they agree on the finitary sentences and pre-
serve I, then ml(qJ)=m2(qJ).

Proof: By transfinite induction on 2(qJ). If 2(qJ) <OJ then qJ is finitary, thus
by hypothesis we may take I to be empty. Thus assume 2(qJ)~OJ and the
lemma holds for all t/J such that 2(t/J)<2(qJ). We also may assume that -,
occurs in qJ only in front of atomic formulas. By Lemma 6.4 there exists a
sequence t/JiEO(T) such that A(t/JJ<A(qJ) for all i<OJ, and either f-qJ~ \I t/Ji

i<w

or f-qJ~ A t/Ji' Consider the first case. Then for every n < OJ, we note that
i<w

2(\/ t/Ji)<2(qJ). By the inductive hypothesis, for every n<OJ there exists a
i<n

denumerable set In such that for all finitely additive probabilities m l , mZ, if
they agree on the finitary sentences and preserve In' then m i (\I t/Ji)=

i<n

m2( \I t/J;). Let I= U In U{ V t/JJ Then clearly mi (qJ)=m 2(qJ) for all finite-
i<n n-c cc i<w

ly additive probabilities m., m2 which agree on the finitary sentences and
preserve I. The other case is completely analogous.
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Now we begin with the proof of part (ii) of Theorem 6.2. Let J1 be a
probability on Y'/'r such that for every 0 <n <w, J1(e,,)E {O, 1}, and let I's 9"
be countable.

We first consider the case J1(,en)= l for all O<n<w. Let T={ti:i<w}
be a set of new individual constants such that t(=I- t j if i =I-i. Let f s 9"(T) be
the set of all sentences which may be obtained from subformulas of sentences
in I' by substituting individual constants from Tfor free variables. (Note that
every subformula of a sentence of 2! has only finitely many free variables,
thus every sentence in f contains only finitely many individual constants
from T.) f is denumerable. Let 3v inq>,,(ViJ, n-c co, be an enumeration of all
existential sentences in f. Choose a sequence (JEW'" such that

(i) (J(n)+ 1<(J(n+ 1),jor all n<w;
(ii) every individual constant in q>" has index < u(n).

Consider the set of sentences

r={tji:-tj:i<j<w} u {3vinq>,,(v;,,)---+ V q>,,(tj):n<w}.
;,;,,(,,)

The following lemma is essentially due to Ehrenfeucht and Mostowski [1961].

LEMMA 6.6. Iflll=<A, R) is a denumerably infinite model then there exists
a sequence GEA'" such that <A, R, a,.)"<,,, is a model of rand A={an:n<w}.

Proof: Assume A is well-ordered in type w. Define am for m<w by re-
cursion:

(1) Iffor some n « co, m=(J(n) and if there exists an xEA~{ai:i<m} that
satisfies q>,,(v;,,) in <A, R, ao, ... , am-I)' then let am be the first such x.

(2) Otherwise, let am be the first element of A~{ai:i<m}.Then it is easy
to check that <A, R, a"),,<,,, is a model of r. We will have A={a,,:n<w}
because case (2) occurs infinitely often by the definition of (J, which means
that A will indeed be exhausted.

Let e={IO,,:n<w}, let ,1=rU e, and define a mappingffrom y/e'r
into Y(T}/,1 'r by f«(p/e 'r)=q>/,1 'r. Since e s,1, the mapping is well defined.
Clearlyfis a (J-homomorphism. Moreover,jis an isomorphism into. Indeed,
let q> E //' and suppose ,1 'r I q>. If e U {q>} has a model then, by the Lowen-
heim-Skolem Theorem, it has a denumerably infinite model. Thus by Lemma
6.6, ,1 U {q>} has a model, contrary to the assumption. Thus, e U {q>} has no
model; therefore, by the "weak" Completeness Theorom, e'r I ip, which
proves the assertion. Now let g be the canonical o-homomorphism of
Y(T)/'r onto Y(T)/Ll'r; that is, g(q>/'r) = q>/Ll'r. For orientaiton we draw a
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Y/I- ~ y/e I- ~ Y(T)/iJ I- ~ Y(T)/I-.
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As is well-known, since /l(, Bn)= 1 for all O<n<W, /l may be lifted to .y/e I-
and subsequently transferred to {ep/l-:epEY(T), (j-IOg)(ep/I-)Ey/el-},
which is a o-subalgebra of //'(T)/I-. For every epEE, let ep'EJ(T) be obtained
from ep by eliminating quantifiers; that is, by successively replacing all ex-
istential subformulas 3V1/J(v) by V t/J(tJ Then rl-ep+-->ep'. Since (j-IOg)

t « co
(epjl-)=(j-IOg) (ep'/I-), we have /l(ep)=/l(ep'). By Lemma 6.5, for each ep'
there exists a denumerable set E' £ d(T) of infinite conjunctions and dis-
junctions such that for all probability measures m l and mz onJ(T)/1- if they
agree on the finitary sentences and preserve E', then ml (ep')=mz(ep'). Finally,
let };' be the union of all these sets E'. };' is denumerable. By Lemma 6.3,
there exists a finitely additive probability v on Y(T)/I- which extends /l and
preserves };'. Let n be the restriction of v to the finitary quantifier-free
sentences. Then n is o-additive. (This is a consequence of Lemma 7.1 which
will be established in Section 7.) As is well-known, n may be extended to a
probability m on d(T)/I-. We claim that <T, m) is the desired probability
model; that is m(ep)= /l(ep) for all epEE. First observe that mit, =tj)=n(ti =tj)
=v(ti= tj)=/l(ti=tj)=O for all i<j<w. Thus <T, m) is indeed a probability
model with strict identity. Now let epEE. Clearly m* and v agree on the
finitary quantifier-free sentences. m* is o-additive and therefore preserves E',
and v preserves I' by construction. By the definition of I' and Lemma 6.5,
v(ep')=m*(ep'). However /l(ep)= /l(ep')=v(tp'], as noted above and by the con-
struction of v. Finally we see m*(ep')=m(ep), by the construction of ep' and
condition (G). Thus m(ep)=/l(ep), which completes the proof in case
/l(,On)=l for all O<n<w.

In the other case, assume that N'<t» and /l(ON)=l and that N is the
smallest such. Then /l(,On)=1 for all n-c N and /l(On)=1 for all ne N. Let
T={ti: i <N} be a set of new individual constants such that td= t j ifi -#j. Let

r = {ti:l= tj:i <j < N},
e = {, 0n:n < N} U {On:N < n < w},
iJ=FUe.

As before, define a mapping f from y/e I- into Y(T)/iJ I- such that
f(ep/el-)=ep/iJl-. Againfis an isomorphism into. Indeed, let epEY' and
suppose iJ I-,ep. Then

el-( /\ ti:l=tj)~'ep.
i<j<N
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However,
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E> 1-:3 Vo ... :3 Vn - \ ( 1\ Vi:# Vj) -+ , q>.
i<j<N

E>1-3vO ••• 3v n _ t ( /\ Vi:#V j ) .
i<j<N

Thus E>I-'q>. Finally we observe that if q>' is obtained from q>EI: by elimi-
nating quantifiers; that is, by successively replacing all existential subformulas
3vt/J(v) by V t/J (f i) , then T 'rq><->q>'. Thus we can complete the proof as

i-:»
before.

We conclude the proof of Theorem 6.2 with a remark concerning the proof
of part (i). In this case we need only replace the refined method of the
Ehrenfeucht-Mostowski Theorem (Lemma 6.6) by the somewhat cruder
method of the original Henkin Completeness Proof (Henkin [1949]). The
steps are quite similar though simpler than those just given. In this case,
however, we clearly cannot expect the probability model <T, m) to have
strict identity. This completes the proof of Theorem 6.2.

Remark: Gaifman [1964] gives a proof of Theorem 6.2 for the finitary
language 2:(w). Although this is not an immediate consequence of Theorem
6.2, we will utilize the main ideas of our proof to obtain the result in the
finitary case almost immediately (see Theorem 7.3).

We now give an example to show that there are probabilities on :7/1-
which have a probability model but do not have a symmetric probability
model. Indeed, for every q>E.(/' let J1(q»=1 iff q> holds in <WI' <), the
system of the countable ordinals with their natural ordering. Every « WI

is definable in 2:; that is, there exists a formula q>~ of 2: with exactly one
free variable v such that for every I1<W I , 11 satisfies oin <Wt, <) iff 11=(.
Thus whenever «WI' we have J1(3vq>~)=1; and whenever 11«<W I , we
have J1(3v[q>,r /\ q>~])=O. Now suppose J1 has a symmetric probability model
<T, m). Since In(3vq>~)=1 for every «WI' we obtain for every «WI some
tET such that m*(q>~(t))>O. Since <T, m) is symmetric, by Lemma 5.7, we
have for every t'ET, m*((p~(t'))=m*(q>~(t)).Thus for every «WI and every
fET, we find m*(q>~(t))>O. Now consider a fixed tET. Then for some e>O,
m*(q>~(t))~f. for infinitely many «WI' However, since In(3v[q>~/\q>~])=0

whenever 11«<W I • we find that m*(qJ~(t)/\q>~(f))=Owhenever 11«<Wt,
which cannot be the case.

There is a positive result concerning symmetric probability models for the
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finitary language 2(w) which is due to Gaifman [1964]. We will give a
simplified version of his proof in Section 7, Theorem 7.14.

The questions of whether there is a method of deductively generating the
probability consequences from a given set of probability assertions, or of
deductively generating all probability laws are clouded by the fact that it is
difficult to give the concept of deductively generating a workable meaning
for infinitary languages. Nevertheless we can make a few remarks. Our
discussion thus far certainly shows that we have not much reason to expect
a positive answer to the first question. On the other hand the second problem
has in a sense a positive solution which we will present now.

THEOREM 6.7. Let <cP, C(Jo, ... , C(Jn-l) be a probability assertion of 2 such
that the free variables of cP are ..1. 0 " " An-I; further 1-, (C(JJ\ C(Jj) ~fii=j, and
I- V C(Ji' Let I={i<n: 1-, C(JJ Then <cP, C(Jo, ... , C(Jn-l) is a probability law of

i<n

2 iff the sentence

VAo... VAn _ I [[ i\ Ai=0 1\ i\ Ai~ 0 1\ ..1.0 + ... + An _ I = 1] --+ cP]
ieI i-c n

is a theorem of real algebra.
Proof: Suppose <cP, C(Jo, .. " C(Jn-l) is a probability law of 2. Consider any

sequence of real numbers <xo, ... , xn- 1 ) such that x;=O for all iEI, x i :2: 0
for all i < n, and Xo +... +Xn- 1 = 1. If irf= I, then C(Ji is consistent. By the
Completeness Theorem for Sentences, there exists a two-valued probability
measure fli on ,'//1- such that fli(C(Ji) = 1. Define fl(1/1) = LXi' fli(C(Ji 1\ 1/1) for all

i¢l
I/IE,'/. It is easy to see that fl is a a-additive probability measure on ,'//1- and
fl(C(Ji)=Xi for all i < 11. By Theorem 6.2, there exists a probability model
<T, m) such that m(C(Ji)=xi for all i «:n. Since <cP, C(Jo, ... , C(Jn-l) is a proba-
bility law, <xo, ..., xn - 1 ) satisfies cP in ~. Thus the required sentence is a
theorem of real algebra. The converse of Theorem 6.7 is trivial.

For any probability assertion <IJI, 1/10"'" I/Im-I) of 2 we can effectively
find an equivalent probability assertion <cP, C(Jo,"" C(Jn-l) of 2 which satis-
fies the hypothesis of Theorem 6.7; they are equivalent in the sense that any
probability model m: is a probability model of <cP, 1/10"'" I/Im-I) iff it is a
probability model of <cP, C(Jo, ... , C(Jn-l)' Moreover, we can effectively gener-
ate all probability assertions of 2 which satisfy the hypothesis of Theorem
6.7. By a famous result of Tarski the theorems of real algebra are decidable.
Thus for each such probability assertion of 2 we can decide whether the
corresponding sentence is a theorem of real algebra or not. Theorem 6.7
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therefore yields a method of generating all probability laws of Sf. Whether
there is a more useful way of generating the laws remains to be seen.

Theorem 6.7 also provides suggestions for the definition of an analogue
of the concept of consistency in ordinary logic. The general problem of
conditions under which a set of probability assertions has a probability
model is completely open for the infinitary language Sf, and it is apparently
quite difficult. This completes our general discussion of the probability logic
of the infinitary language Sf, and we now turn to the finitary language Sf(w)

where the situation is somewhat more satisfactory.

7. The finitary case. The Boolean algebras Y(W)/f-, y(w)(T)/f- and
)w) (T)/f- are subalgebras of the IT-algebras //'/f-, Y(T)/f- and o(T)/f- re-
spectively. Our definitions and results concerning the infinitary language Sf
therefore have rather obvious applications to the finitary language Sf(w), and
in many cases they can be considerably strengthened. This is due to two
important facts which we state for comment and reference.

LEMMA 7.1. Every finitely additive probability J1 on :7(w)/f- is IT-additive.
Proof: For every ];<;;,,/)(W) and every <pE/!)(w), ];hp iff for some finite

E' <;;]; it is the case that ];' f- <p. This imples that a set of disjoint elements
of .<j'(w)/f- has a supremum in y(w)/f- iff it is finite. Thus the IT-additivity
of J1 is trivial.

The following lemma is well-known and has an easy proof by means of
elementary methods of functional analysis. For a purely algebraic proof we
refer the reader to Horn and Tarski [1948].

LEMMA 7.2. Let fJ?J be a Boolean algebra and let d <;; fJ?J be a subalgebra.
Every finitely additive probability on d can be extended to a finitely additive
probability on fJ?J.

As pointed out before, Gaifman [1964] gives a proof of the next theorem.
Our proof of Theorem 6.2 can be essentially simplified to yield this result by
replacing the role of Lemma 6.3 by Lemmas 7.1 and 7.2. Indeed Lemma 6.3
has been designed to patch up the difficulties arising from the fact that
Lemma 7.2 fails for IT-additive probabilities. This in turn corresponds to the
fact that the Prime Ideal Theorem for IT-ideals fails for Boolean IT-algebras.

THEOREM 7.3. (i) Every probability J1 on //,(w)/f- has a denumerable proba-
bility model.
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(ii) Iffor every O<n<w, Jl(On)E{O, I}, then Jl has a denumerable proba-
bility model with strict identity.

Proof': We again prove only part (ii). We first consider the case j1(-, On)=1
for all n< co. As in the proof of Theorem 6.2, we choose a set T = {t;:i < w}
of new individual constants such that t;i=tj if ii=j. The set y(w)(T) is de-
numerable. Let 3v;/Pn(v;J be an enumeration of all existential sentences of
y(ro) (T), and define the sequence a and the set T as before. Let 0=
{-,0n:O<n<w}, and A=ru e. Define the mapping j from .?(ro)(T)lef-
into y(ro)(T)IAf- byj(qJlef-)=qJIAf-. By Lemma 6.6fis an isomorphism
into. Since Jl(-'0n)=1 for all O<n<w, j1 may be lifted to y(W)(T)le f- and
subsequently transferred to the subalgebra {qJIA f-: qJE yJ(ro)} of ,Cj?(ro) (T)IA f-.
By Lemma 7.1 and 7.2, Jl may be extended to a probability von .CjJ(ro) (T)I A f-.
Finally we transfer v to y(ro)(T)/f- via the canonical homomorphism g from
y(ro)(T)/f- onto y(ro)(T)IAf- defined by g(qJ/f-)=qJIA f-. Since v(qJ)=1 for
every qJEA, v satisfies the Gaifman Condition (G). If m is the restriction of v
to :/ro)(T)/f-, then <T, m) is the desired probability model in view of the
uniqueness part of Theorem 4.3. It is now also clear how to treat the re-
maining case and part (i) by analogy to the proof of Theorem 6.2.

Remarks: (1) As can readily be verified by an analysis of Lemma 6.6, our
proof of part (ii) does not go through for a language 2(w) which either has
infinitely many individual constants or non-denumerably many non-logical
constants to begin with. This fact is substantiated by two counter-examples
of Gaifman [1964]. Nevertheless, Theorem 7.3 still holds for these languages,
as the proof in Gaifman [1964] shows. We will not discuss the question of
adapting our method of Lemma 6.6 to this situation. (2) The cardinality
statements of Theorem 7.3 obviously depend on our assumption that 2(ro)

has only denumerably many non-logical constants. If we allow non-de-
numerably many non-logical constants then the well-known adjustments
have to be made. The same remark applies to all other theorems of this part
which contain statements about the cardinality of probability systems.

Let T be the set of complete consistent theories in .P(w), that is, the set of
prime ideals in y(ro)/f-. As is well-known from the Representation Theorem
for Boolean Algebras (see, e.g., Halmos [1963] p. 77), T is a compact
Hausdorff space with a basis of closed-open (clopen) sets of the form
{LET: qJEL}, where qJEY(w), and y(ro)/f- is isomorphic to the field of clopen
subsets ofT under an isomorphism which maps qJ/f- into {LET: qJEL}. Every
model determines a complete consistent theory in 2(ro), that is, a point in T.
By the ordinary Completeness Theorem, every complete consistent theory
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of 2(10) has a model; thus T may be identified with the space of models.
Many important results in the ordinary logic of 2(w) may conveniently be

established through topological considerations in the space T. This topo-
logical construction can be generalized in the strictest sense of the word;
thus the space M of probability models of 2(w) can be defined as a compact
Hausdorff space such that the space T can be homeomorphically embedded
into M. The construction makes use of well-known definitions and methods
of functional analysis. For the details we have to refer the reader to Dunford
and Schwartz [1958].

Let C (T) be the linear space of all continuous real functions on T. Since
the characteristic functions of clopen subsets of T are continuous, we may
regard Y(W)/'r- as a subset of C (T). Let L be the linear subspace of C (T)
generated by .,/,(w)/'r- in C (T). As is well-known, C (T) is a Banach space
under the sup-norm where for XEC (T) we have [x] =sup x(n Any finitely

~ET

additive probability p on .,/,(w)/'r- uniquely extends to a linear functional p
on C (T) such that

(i) p(x):c;. [x] for all XEC (T);
(ii) p(l)= 1.

Conversely, any linear functional on C (T) satisfying (i) and (ii) uniquely
determines a finitely additive probability on ,,/,(w)/'r-. Let C (T)* be the linear
space of all continuous linear functionals on C (T). As is well-known, C (T)*
is also a Banach space with its own norm such that for every pE C (T)*,
Ilpll:::;; 1 iff p(x):::;; [x] for all XEC (T).

Let M={pE C (T)*: Ilpll :::;; 1, p(l)=l}. By our remark above, the set of all
finitely additive probabilities on y(w)/f- may be identified with M, and by
Lemma 7.1 this set agrees with the set of probabilities on .,/,(W)/'r-. Every
probability model determines a probability on Y(W)/f-, and by Theorem 7.3
every probability on .'/~(w)/'r- has a probability model, thus M may be identi-
fied with the space of probability models.

We now consider C (T)* with the so-called weak star topology. The basic
open neighborhoods are sets of the form

where n-c co, pEC(T)*, xo, ... , XII_1EC(T), and s c-O is a real number.
It is easy to see that M is a closed subset of the unit-sphere {pE C (T)*:

li!lll:::;; I}; therefore, by the Alaoglu Theorem M is a compact Hausdorff space
with the relativized weak star topology.

Every LET uniquely determines a two-valued probability p on y(w)/'r-,
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and conversely. Thus there exists a natural embedding of T into M. Finally
we observe that M is a convex set; that is, for every fl-l, ItzEM, and every
real number 0< oc< 1, OCfl-l +(1- oc)fl-z EM. For any subset K of a linear space,
the convex hull of K is the smallest convex set containing K. The closed
convex hull of a subset K of a linear topological space is the closure of the
convex hull of K. We say fl-EM is an extreme point of M iff for every fl-l,
fl-z EM and every O<oc < 1, if fl-=OCfl-l +(1- oc)fl-z, then fl-=fl-l =fl-z.

We then have the following known basic theorem about our topological
construction.

THEOREM 7.4. (i) The natural embedding ofT into M is a homeomorphism;
(ii) T, regarded as a subset ofM, is the set of extreme points ofM;

(iii) M is the closed convex hull ofT.

To prove Theorem 7.4 we first establish a useful lemma.
LEMMA 7.5. Sets of the form M n N(fl-; xo, ... , x n - 1 ; e), where xo, ... ,

x n _ 1E.C/'(w)/f-, constitute a basis for the weak star topology ofM.
Proof: Let fl-EC(T)*,xo, ... ,Xn _ 1 EC (T ), and e>O. Consider VE

M n N(fl-; xo, ... , xn - 1 ; e). Let c:5 =e- max Iv(x;)- fl-(x;)l. By the Stone-Weier-
i<n

strass Theorem, there exist Yo, ... , Yn-l EL such that Ilxi- Yill < tc:5 for all i <no
We show

M n N(v;yo, ... ,Yn-l ;tc:5) s M n N(fl-;xo, ... 'Xn- 1 ;e).

Indeed, let AEM n N(v; Yo, ... , Yn-1; tc:5) and i«:n. Then since A, vEM

IA(xi) - fl-(xi)1 ::; IA(xi) - A(Yi)1 + IA(Yi) - v(yJI
+ Iv(y;) - V (x;)j + Iv(x i ) - p(x;)1

< [x, ~ )';11 IIAII + tc:5 + IIYi - x;llllvll + e - c:5
< e.

This proves that sets of the form MnN(p;xo, ... ,xn _ 1;e), where
Xo,···, Xn - 1EL, form a basis. Now let xEL. Then x=ocoxo+···+OC'_IX,_I'
where X o, ... , X,_ 1 E Y(w)If- and (J(O' ••• ' OC'-1 are real numbers. Consider
vEMn N(p; x; e), and let c:5=e-lv(x)-fl-(x)i. Then a straightforward com-
putation yields M nnN (v; x;; c:5jr-loci J) s M n N(fl-; x ; e). This proves the

i<n
lemma.

Now we proceed with the proof of Theorem 7.4. For part (i) we regard T
as a subset of M and show that the topology of T is the topology of M
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reIativised to T. Let n «.co, flET and xo, ... , Xn_1E::/'(w)/'r-. Then

{vET: Iv(x;) - fl(X;)1 < efor all i < n} = n {vET: Iv(xi) - fl(x;)1 < s}.
i<n

For every i «:n, {vET:lv(xi)-fl(X;)I<E} will be either the empty set, the
whole set, or the set of all prime ideals of y(w)/'r- containing Xi' depending
on the choice of fleX;) and s ; in any case it is a clopen subset of T. Since a
similar argument shows that every clopen set of T is the restriction of an
open set of M to T, Lemma 7.5 proves assertion (i).

To prove part (ii) we let flET and consider fll, flzEM and O<IJ« 1 so that
fl=lJ(fll +(l-IJ()flz· Suppose XE.,/,(w)/'r- where fl(X)=1. Then 1 = IJ(fll (X) +
(l-IJ()flz(x). Since Ifl;(x)I:s;llfldlllxll:S;l, for i=1,2, we have fll(X)=
flz (x) = 1. Thus fl = fll = flz; that is, fl is an extreme point of M. Conversely
let flEM and suppose, for some XEY(w)/'r-, that O<fl(X)< 1. Let fll (y)=
fl(y n x)/fleX)and flz(y) = fl(Y~ x)/(1- fleX)) for all yE yew)/'r-. Then fll' flz EM
and fl = fleX) 'lll + (1- fl(X))' flz, that is fl is not an extreme point of M.

For (iii) note that M is a convex, compact subset of C(T)*. Thus (iii)
follows from (ii) by the Krein-Milman Theorem.

Our topological considerations now yield the fuIl analogue of the Compact-
ness Theorem of finitary first-order logic.

THEOREM 7.6. Let L be a set of closed probability assertions of se(w). Then
(i) L has a probability model iff every finite subset of L has a probability

model;
(ii) L has a probability model with strict identity iff every finite subset of L

has a probability model with strict identity.
Proof: It is clear that the set of probability models of a closed probability

assertion of stew) is a closed subset of M. Part (i) therefore foIlows from the
compactness of M. To prove part (ii), let L be a set of closed probability
assertions of se(w) such that every finite subset of L has a probability model
with strict identity. Consider the set {On:O<n<w} as defined in Section 6.
Observe that for all n, I-[On->On+d. For every O<n<w, let In be the set of
all non-decreasing functions on {l, ... , n} into {a, 1}. Let O<n<w be fixed.
For each iEI., define

where }.o = ik is short for - Ao~ 0 if ik = 0, and Ao-1 ~ 0 if ik = 1. Clearly Llni
is a set of closed assertions. Then for every 0 < n < w, there exists iEIn such
that L ULIn; has a probability model. Indeed, suppose that this is not the case.
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Then, by part (i), there exists O<n<ill such that for all iel; there exists a
finite subset I:i~I: such that I:i ULi ni has no probability model. Thus
(U Ii) ULi ni has no probability model for all iE1n- By hypothesis, U i, has
tet; i e Is;

a probability model with strict identity; however, for some iE/II this proba-
bility model has to be a model of Li ni, which is a contradiction. If for some
n there exists ie I; which is not identically zero, and I: ULini has a probability
model, then, by virtue of our observation above, there exists 0 <N< ill such
that I:u {o,o=O, 0k):O<k<N} U{(A-o=l, Ok):N~k} has a probability
model &. Otherwise for every n, I:u {0-0=0, ek):O<k~n} has a proba-
bility model; and therefore, by part (i), I U{O-o =0, 011): 0 < n< ill} has a
probability model &. In both cases the probability model & defines a proba-
bility f.l on y(w)jf- which satisfies the hypothesis of Theorem 7.3 (ii). Thus by
Theorem 7.3 (ii), f.l has a probability model j8 with strict identity. Since &
is a probability model of I:, we conclude that j8 is also a probability model
of I:. This completes the proof of part (ii).

Not very much work has been done yet to investigate the question of
satisfiability of sets of probability assertions in general. For one reason,
general theorems about solvability conditions for linear inequalities are
known, but there does not seem to be too much to say about polynomial
inequalities. Note that at least quadratic inequalities are needed to formulate
assertions about conditional probabilities and independent probabilities.
Theorem 7.4, however, gives a very clear topological characterization of the
space of probability models M in terms of the well-known space of models
T, and should be a useful tool for further investigations.

We must next prove a few lemmas to which we have already referred
repeatedly in earlier proofs.

We consider a fixed set T of new individual constants and assume through-
out that f.l is a probability on y(w)(T)f- satisfying the Gaifman Condition
(G). Also to simplify notation we assume that all sup's and inf's range over
the set of finite subsets of T. The first lemma is an immediate consequence
of elementary properties of sup's and inf's and will be stated without proof.

LEMMA 7.7. IjVvcpEy(w)(T), then f.l(Vvcp)=inff.l(/\ cp(t»).
F tEF

If cp, l/JEy(w)(T), then an occurrence of <p in l/J is cal1ed simple if it does
not occur within the scope of a quantifier or a negation sign. The next lemma
is an easy consequence of the distributive laws.
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LEMMA 7.8. (i) Let ljJ' be obtained from ljJ by replacing a simple occurrence
of3vqJ in ljJ by V qJ(t). Then p(ljJ)=sup p(ljJ').

rEF F

(ii) Let ljJ' be obtainedfrom ljJ by replacing a simple occurrence ofVvqJ in ljJ
hy 1\ qJ(t). Then p(ljJ)=inf p(ljJ').

tEF F

Let qJE//?(lU)(T) be of the form Qov o ... Qn-l vn- 1 M (vo, ... , Vn-I)' where for
each i <n, Q i is either an existential quantifier 3 or a universal quantifier V,
and M is a formula. The associated boundary prefix is a sequence bd., ...bdn- 1

such that for every i «:n, bdi=sup if Q i=3, and bdi=inf if Qi=V. The as-
sociated distribution prefix is a sequence #0 ... #n-l such that for every
i-c n, #i= V if Qi=3, and #;= 1\ if Qi=V. Then we have the following
basic lemma for the computation of p(qJ).

LEMMA 7.9.

/1(qJ)=bdo ... bdn-1P(#0 ... #n-l M(to,···,tn- 1») .
Fa Fn~1 (aeEo (1l-\EFn- 1

Proof: By induction on n. For n = 1 the assertion holds by condition (G)
and Lemma 7.7. For n> 1 we have by inductive hypothesis,

p (qJ) = bd., ... bdn- 1 P( #0 ... # QnDn M(to, ... , tn-l> Dn») .
Eo Fn-l taeFo tll-lEFn~t

Let F0' ... ,Fn-l be fixed. Let N = TI IFiI, where IFil is the number of elements
i<n

in Fi• We enumerate the Cartesian product set F= TI F j , say F= {.!ic:k<N}.
i<n

If <to,... , tn- 1)EF, we write # QnDnM(f, Dn) as short for
fEF

#0··· #n-I QnDnM(to,···,tn-l,Dn),
taeEo tn-IEFII - J

where f=<to, ... , tn-I). For every fEF, QnDnM(f, Vn) occurs simply in
# QnDnM Cr. Dn) · Thus, by N consecutive applications of Lemma 7.8 and by

fEF

the monotonicity of disjunction and conjunction and the elementary proper-
ties of sup's and inf's we have

p( # QnvnM(J,vn») = bd; ... bd; p( # #n M(J,s»)
fEF GfO GfN-. fEFsEGf

= bdnP( # #n M(J,tn».
En feFtnEF n

Thus
p(qJ)=bdo···bdnP(#o ... #n M(to,···,tn»).

Fa En (aeEo {nEFn
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The last lemma of this series is an easy consequence of Lemma 7.9 and
the distributive laws. For a convenient formulation we adopt the notation
of the proof of Lemma 7.9 and write

bd/l(# M(J))=bdo··.bdn-1/l(#o .. , #n-l M(t o, ... ,tn- 1) ) ·
F feE Fo Fn~l toeFo t n - t E F n - l

For every le-er, let qJiESI'(w)(T) be of the form QkMk, where Qk is a string
of quantifiers and Mk is a formula. For every k < r, let bd, and #k be the
associated boundary and distribution prefixes respectively.

LEMMA 7.10.

(i) /l( 1\ qJk) = bd.; ... bdc.., /l( 1\ #k Mk)
k<r Fa Fr-t k<r tkEFk

(ii) /l (V qJk) = bd., ... bdr - l /l(\j #k Mk) ·
k<r Fo Fr-t k<rtkEFk

We are now in a position to prove analogues of many important results
about the ordinary logic of 2(wJ. As a matter of fact, if we regard closed
probability assertions of 2(w) as the analogues of sentences in ordinary logic,
then the analogy in many respects seems to be complete. There are exceptions,
however: we mentioned before our failure to define an analogue of direct
products. We state next a few of the positive results and comment on their
proof.

THEOREM 7.11 (DOWNWARD LOWENHEIM-SKOLEM THEOREM). Let <Tz, m z>
be a probability system of cardinality Kz ;:0: W o, and let K1 be a cardinal number
such that Wo~Kl ~Kz. Then there exists a probability system <Tl , m 1>of
cardinality K l such that <Tl> ml>~<Tz, mz>. Moreover, for any subset
T3 c:;Tz with systemcardinality ~ Kl' we may choose T3 c:;Tl .

Proof: The proof uses standard methods and utilizes the fact that, by the
Gaifman Condition (G), whenever 3vqJESI'(wJ(T), there exists a denumerable
subset T' c:; T such that

m*(3vqJ)= sup m*(V qJ(t)),
FeT'(W) teF

where (T, m> is the given probability system.

THEOREM 7.12 (DIRECTED UNION THEOREM). Let {(T;, m;>:iEI} be a ~­

directed family ofprobability systems; that is,for all i,jEI there exists k e I
such that both <T;, m;) and <Tj, mj>~<Tk> mk>. Let T= UTi' and define,for

i E I
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every CPE,-/W)(T), m(cp)=mi(cp), where cpEo(w)(T;). Then <T, m) is a proba-
bility system and for every iEI, <T;, m;)=«T, m).

Proof : Since the family {<Ti , m;):iEI} is =<-directed, m is a finitely ad-
ditive probability on o(W) (T)/f- . By Lemma 7.1, m is e-additive. The rest of
the proof proceeds along well-known lines.

THEOREM 7.13 (UPWARD L6wENHEIM-SKOLEM THEOREM). Let <T1 , ml) be
a probability system of cardinality "1:2:wo, and let "z be a cardinal number
such that "z:2:Kl' Then there exists a probability system <Tz, mz) of cardi-
nality "z such that <T1, m1)=«Tz, mz)· Moreover, if <T1 , m 1 ) has strict
identity, then we may choose <Tz, mz) to also have strict identity.

Proof: Again a proof may be obtained by copying the well-known argu-
ment establishing the corresponding theorem of ordinary logic. This time
we make use of Theorem 7.6 and the observation that the probability
measure m7 on .'I'(w)(T1)/f- determines a set of closed probability assertions
of 2(w)(T1 ) . We also note that if t#t', then 00=0, t=t') is a closed
probability assertion. Thus the well-known compactness argument goes
through.

We now present a result concerning symmetric probability systems which
obviously has no analogue in ordinary logic. This result is due to Gaifman
[1964] whose proof we have simplified by using ideas from the ultraproduct
construction of probability models.

THEOREM 7.14. Let 1: be a set ofprobability assertions of 2(w). Then 1: has
a denumerable probability model iff 1: has a denumerable symmetric proba-
bility model.

Proof: Suppose 1: has a denumerable probability model <T, m). Let
T={tn:n<y}, where y:o:;w and where tm#tn whenever m-en. Consider a
probability A defined on the power set of T where A({tn}»O for all n «:».
Let :Y be the product o-field of subsets of TT, and let X be the product
measure induced by A. For every nETT and cpE.9"(w)(T), let cp" be the result
of replacing every individual constant t in cp by the constant net). Clearly if
f-cp then f-cp". If (PE.'I'(W)(T), then cp contains only finitely many individual
constants. Thus for every real number a, {nETT:m*(cp"):o:;a} is a cylinder
set with a finite basis. Therefore, since T is denumerable and A is defined on
the power set ofT, this cylinder set belongs to:Y. Hence for every cpEy,(w)(T),
the function m*(cp"):TT~[O, 1] is :Y-measurable. Let Q be the set of nETT
whose range n(T)=T. Clearly QE!1)J, and a straightforward computation
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yields X(Q)=l. We define for all <pEy(w)(T)

p,,(<p) = f m* (<p") dX(n).
Q

253

By the same argument as in the proof of Lemma 5.4 we show that 11", re-
garded as a function on y(w) (T)jf-, is a finitely additive probability. By
Lemma 7.1, 11" is a-additive. 11" satisfies the condition (G). Indeed, let
3V<pEy(w)(T). Then

11" (3 v<p) = f m* (3 v<p") dX(n).
Q

For every nEQ, since tt is onto,

m*(3v<p")= sup m*(V <p"(t))
FET(W) tEF

= sup m*(V<p(t))".
FeT(W) teF

Since T is denumerable by the Dominated Convergence Theorem,

11,,(3v<P)=f sup m*(V <p(t))"dA:(n)
FeT(W) teF

n

= sup fm*(V<P(t))"dA:(n)
FeT(W) teF

n
= sup 11,,(V <pet)).

FeT(w) teF

If <pEY(w), then p,,(<p) =m* (<p). Thus let m" be the restriction of 11" to
o(W) (T)jf- . Then <T, m,,) is a probability model of L. It remains to be shown
that <T, m,,) is symmetric. Let 'CEQ be a finite permutation of T, and let
<pEo(w)(T). By definition X is invariant under all finite permutations of the
coordinates of the product space 9. It is now easy to check by standard
methods of integration theory that SQm*(<pt1t) dA:(n) = JQm*(<p") dX(n). This
completes the proof.

COROLLARY 7.15. Every probability measure 11 on //J(w)jf- has a symmetric
probability model.

Proof: By Theorems 7.3 and 7.14.
Remarks: (l) It is clear that our proof of Theorem 7.14 depends on the

assumption that L has a countable probability model. Consequently Corol-
lary 7.15 depends on the assumption that 2(w) has only countably many
non-logical constants; that is, in our standard case one binary predicate R.
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Indeed, the counter-example concerning symmetric probability models given
in Section 6 can be constructed in 2("1) if we allow non-denumerably many
unary predicates in 2«").

(2) The probability system <T, m;) does not have strict identity. Indeed,
suppose tm' t"ET and m=l=n. Then

{nEQ:n(tm) = n(t"n = U({nEQ:n(l m ) = tJ n {nEQ:n(t,,) = tJ).
i<}'

Thus

i<y

Consequently

tIJ;.(t m = (II) = j' In (n(l m ) = n(/,,)) dX(rr) ~ .I A({/;W > O.
1<;

fl

If <T, m) has strict identity, then <T, m;) has the same cardinality as
<T. m) and is "completely dispersed" in the sense that for m-en, m;.(tm=t,,)
is a constant strictly between 0 and 1.

(3) There are simple examples of sets of probability assertions of 2("1)

which have a probability model with strict identity but do not have a sym-
metric probability model with strict identity. We give Gaifman's example:
Let}; be the set of probability assertions determined by the set of sentences
3voP(vo), VVOVv l [[P(vo) /\ P(Vl)]-+VO=v1] and ,0", for all O<n<w. It is
easy to see that}; has no symmetric probability model with strict identity.
The question of finding conditions for a set of probability assertions to have
a symmetric probability model with strict identity is still open.

We conclude our discussion of the finitary language 2("1) with an im-
mediate consequence of Theorem 6.7.

THEOREM 7.16. The set ofprobability laws of2'("1) is recursively enumerable.
Proof: In the remarks following the proof of Theorem 6.7 we can, for the

finitary language 2("1), replace "effectively generate" everywhere by "re-
cursively enumerate". This yields a proof of Theorem 7.16.

8. Examples. We have reason to hope that the results of probability logic
may have useful applications to deductive logic, inductive logic and to
probability theory. The first point was illustrated by Ryll-Nardzewski's
example of a complete theory without models. The second point is rather
obvious, as a matter of fact our work originally started with a study of
Carnap's inductive logic. We will illustrate the third point by considering
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some well-known measurability problems in the theory of stochastic pro-
cesses with non-denumerable index sets.

Let ~ be the two point-compactification of the set of real numbers; that
is, the set of real numbers together with the points - 00, 00. Let (\) be the
set of rational numbers. Let f!jj be the a-field of Borel-sets of ~. Let T be an
index set, and we will choose Ts; ~. Let f!jjT be the product a-field of subsets
of the Cartesian product space ~T induced by f!jj. As is well-known, a
stochastic process with index set T may be identified with a probability space
<~T, f!jjT, m), where m is a probability on f!jjT. (For further details see e.g.,
Loeve [1960] p. 497 ff.) Let ~ be the a-field of Borel sets of ~T; that is, the
a-field of subsets of ~T generated by the closed sets of the product topology
on ~T. Then ,oljT r;;;;.~, and f!jjT =I=~ if T is non-denumerable.

During the investigation of stochastic processes one frequently would like
to assign probabilities to sets Xr;;;;. ~T which are not m-measurable; that is,
X ¢f!jjT. It is well-known that this can always be done with finitely many
sets at a time. Thus if X o, ... , X n - 1 r;;;;. ~T, then m can always be extended to
a probability on the a-field generated by f!jjT U {Xo, " " Xn-d (see, e.g.,
Halmos [1950] p. 71). The extension is not unique, however. In general,
given a a-field d2f!jjT, the question arises of whether there exists a proba-
bility n on d which extends m. Moreover, one attempts to specify convenient
conditions which render such an extension unique. Nelson [1959] investi-
gates this question for ~ and gives a sufficient condition for the existence of
a uniquely determined extension. He also shows that many interesting sets
belong to~. Another extension result is Doob's Separability Theorem (Loeve
[1960] p. 507). Let .# be the a-field generated by f!jjT and sets of the form
n {XE~T:X(t)EC}, where Ir;;;;.~ is an open interval and Cr;;;;.~ is closed.

tElnT
Then Doob's Theorem says that every probability m on f!jjT has an extension
to .Pi'. Moreover, the extension n may be assumed to be separable; that is,
there exists a denumerable subset ss:T such that for all open intervals I and
closed sets C,

n( n {XE~T:x(t)EC})=n( n {XE~T:X(t)EC}).
tEInT tEIns

S is called a separating set. The separability condition makes the extension
unique. Upon closer inspection the separability condition turns out to be an
instance of a "Gaifman Condition." This will appear more clearly during the
later development of our example. Indeed, it seems that from the earliest
investigations of the extension problem conditions for the "reasonableness"



256 DANA SCOTT AND PETER KRAUSS

of extensions of probabilities on B?JT have been proposed which strikingly
resemble particular instances of a "Gaifman Condition" (see, e.g., Doob
[1947]). Thus one might be tempted to put down a Gaifman Condition on
extensions of probabilities on B?JT to a certain rr-field d~B?JT which renders
such extensions unique, provided they exist, and then to investigate the
problem of the existence of probabilities satisfying this condition. Our ex-
ample will point in this direction.

Of course, a Gaifman Condition is most conveniently stated in terms of a
language rather than in terms of certain representations of sets. For our
example we use the infinitary language if. As non-logical constants of if
we provide a binary predicate <, and for every qe (j) a unary predicate Pq •

Moreover we augment if by a set of individual constants which, for con-
venience, we choose to be the index set T~ IR.

Let S be the set of relational systems of the similarity type of if(T). We
embed IR T pointwise into S. For xEIRT define 'llxES as follows: 'llx=
<T, Pq , <, I\EQ. tET, where < is the natural ordering of T, and Pq = {lET:
X(I)S;q} for every qEQ. The function ill is certainly one-one, and we shall
regard IR T simply as a subset of S.

For every I.{JE//'(T), let M(I.{J) be the set of relational systems in which I.{J
holds. It is well-known that {M(I.{J):I.{JEY'(T)} is a o-field of subsets of S,
and, by the "weak" Completeness Theorem for if(T), it is isomorphic to
Y(T)jf- under an isomorphism which sends I.{Jjf- to M(I.{J). The following
lemma is an immediate consequence of our definitions.

LEMMA 8.1. For all t , t'ET, qEQ and (S;W,

. , T ~ IR T if t = t'
(I) M(t = t) il IR =) (1\;/' '

\l'Iljt=l=t

(ii) M(t < 1') n IRT = , IR
T

if t < t'
(0 if' t-c t'

(iii) M(Pq(t)) n IR T = {XE IRT:x(t) S; q}
(iv) M(II.{J) il IRT = IR T

~ M(I.{J)
(v) M( V (Pi) n IR T = U M(l.{Ji) n IRT

i<~ i<~

(vi) M(!\ l.{Ji) n IR T = n M(I.{J;) n IR T

i<~ i<~

(vii) M(:! VI.{J) n IR T = U M(I.{J(t)) n IRT

rET

(viii) M(V VI.{J) n IR T = n M(I.{J(t)) il IRT
.

tET
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The operation of restriction to a subset is a complete homomorph-
ism of fields of sets. By Lemma 8.1, (i)-(vi), this homomorphism maps
{M(qJ):qJEd(T)} onto f18T. Accordingly, we define for all qJEJ(T),

11m (M(qJ)) = m (M(qJ) n lRT) .
We obtain a probability 11m on {M(qJ):qJEd(t)} and thus also on d(T)/f-. We
write /lm(qJ) for Ilm(M (qJ)) and obtain (T, 11m) as a probability system. We
are interested in the a-field d = {M(qJ) n [RT: qJEY(T)}. By our remark above
f18T S; d, and we will see later that d contains a vast assortment of interesting
sets. First we must complete our series of definitions. Suppose n is a proba-
bility on d which extends m. Define for all qJEY(T),

vn(qJ) = n(M(qJ) n [RT).

We say that n satisfies the Gaifman Condition if Vn satisfies (G). We thus have
as an immediate corollary of Theorem 4.3:

THEOREM 8.2. For every probability m on f18T there exists at most one proba-
bility on d which extends m and satisfies the Gaifman Condition.

This settles the uniqueness part of the extension problem, the existence
part is of course much more difficult. Consider the probability system
(T, 11m) induced by m. It is well-known that the equation n(M(qJ)n lRT)=
11=(M(qJ)) for all qJEY(T) defines a probability non d iff whenever qJE yeT)
and [RT S; M (qJ), then Il~ (qJ ) = 1. Indeed, just in this case n is a well-defined
set function on d (see, e.g., Halmos [1963] p. 65). This leads to:

THEOREM 8.3. Let m be a probability on f18T. Then there exists a probability
on d which extends m and satisfies the Gaifman Condition iff whenever
qJEY(T) and [RTS;M(qJ), then 1l~(qJ)= 1.

The authors have been able to show that not every probability m on f18T

has a Gaifman extension to d. A counter-example can already be produced
with the case of dependent Bronoulli trials. In this case the stochastic process
is two-valued, the space [RT collapses to 2T , and in our language !E we only
need one unary predicate P (together with -c , of course). Further
M(P(t)) n2T = {xE2 T : x(t)= 1} so that pet) means "success at time t", For
qJ we choose a finitary sentence which says "P has a least upper bound" as
follows:

3 Va [\I Vt [P(v t ) - Vt S; va] /\ \I Vt [\IVz [P(vz) --+ Vz S; Vt] --+ Va S; VI]].
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and

Then 2Ts;M«p), but a measure m may be defined so that tl~(<p)=O. In fact
we can take T= [0, 1] and determine m so that m(P(O))=O, m(P(1))= 1

([ P () P ( ')] ) \ 0 if I' < I;
In -, I /\ I = J' if '(1-IIlsl.

This well-known process was suggested to us by David Blackwell.
This leaves us with two questions: (1) Which probabilities on:J?JT do have

Gaifman extensions to .'7i? (2) Does there exist an "interesting" o-field ss"
such that :J?JT s; .'7/' s;.~ and every probability on .OJT has a Gaifman ex-
tension to .'7/'? The first question has hardly been attacked yet, and the
authors know only of a few meager results. The second question leads us
back to Doob's Separability Theorem.

For simplicity let us assume T= [0, 1], and consider 1= (11' I z), where
Os 11< tzs 1. Then

T ( ) Tn {XEIR :x(t)sq}=M \lvo[t[<vo<tz->Pq(vo)J n fR,
t e I c t

and the separability condition amounts to the Gaifman Condition (G) for
sentences of the form \lvo [II <vo<lz->Pq(Vo)], where qEtD. (Note that the
uniformity of the separating set S is really no strengthening of the Gaifman
Condition since both the open intervals and the closed subsets of fR have
countable bases.) Doob's Separability Theorem now provides a positive
answer to our second question. If we let .'71' be the o-field generated by :J?JT
and sets of the form M(\lvO[t l <vo<tz->P,/vo)])n fRT, where qEtD, and
1(, 1z E T, then every probability on .OJT has a Gaifman extension to ss",
Indeed the authors have been able to prove the corresponding condition of
Theorem 8.3, which yields a rather unorthodox proof of the Separability
Theorem. Moreover, it can be shown that .'7/' is in a certain sense maximal;
that is, Doob's Theorem is about the best result we can expect. A detailed
discussion of these results would take us too far afield here.

On the other hand it is necessary to point out that the o-field .'7/ is highly
unorthodox in terms of the traditional notions of probability theory. S'~ is
described by means of the infinitary language 2, and the nested application
of Boolean operations combined with quantifiers has no clearly discernible
analogue in usual classical methods of generating o-fields. However, we can
show that many interesting subsets of [RT which have traditionally been
considered belong to c'7i. The striking feature of our approach is that we can
show this by just writing down the ordinary definitions of these sets in the
language 2. We give a few examples by first describing the set M(<p)n IRT

and then giving a suitable <pE2.
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(1) The set of non-decreasing functions:

VVoVVI [vo S VI -+ 1\ [Pq(vI)-+Pq(V o)]].
qeQ

(2) The set offunctions assuming a maximum:

3v,Vvo 1\ [Pq(v,)-+Pq(vo)].
qeQ

(3) The set offunctions assuming at most n different values:

3vo···3vn_,Vvn V [/\ Pq(Vi)~Pq(Vn)].
i<n qEQ
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In the following examples the sentence <p is more complicated to write
down and we leave the details to the reader:

(4) The set offunctions assuming infinitely many different values.
(5) The set of continuous functions.
(6) The set offunctions whose set of discontinuities is offirst category.
Finally we observe that we can increase the class of definable subsets of

IRi T by applying the independent union construction of Section 5; that is, by
refining the ordinary model structure of the set T. For example, we might
introduce two binary operation symbols + and· which we interpret as
ordinary addition and multiplication in T. We could then write down the
sentence corresponding to:

(7) The set of Rieman-integrable functions.
By some further refinements we could also obtain the sentence for:

(8) The set of Lebesgue-measurable functions.

A very attractive feature of a probability on d satisfying the Gaifman
Condition is that in many cases the condition allows us to actually compute
the value of the probability for various useful sets. On the other hand, a
rather disheartening aspect is the problem of its existence.

ApPENDIX

by Peter Krauss

A measure-theoretic generalization of the Rasiowa-Sikorski Lemma

In Rasiowa and Sikorski [1950] the following theorem is proved, which
now is generally known as the RASIOWA-SIKORSKI LEMMA:



260 DANA SCOTT AND PETER KRAUSS

Let <:YJI, /\, v, ,....,) be a Boolean algebra, let bE!!J such that b # 1, and for
every m-eso let 'Cm~!!J be a subset such that 1\'Cm exists in !!J. Then there
exists a prime ideal jl in !!J such that

(i) bEjl;
(ii) for every m-c.co, 1\'CmEjl ifffor some CE'Cm, CEjl.

An immediate consequence is the following relativised version:
THEOREM 1. Let <!!J, /\, v, ,....,) be a Boolean a-algebra, let d~!!J be a

a-subalgebra, let '1 be a a-prime ideal in d and let ['1] be the a-ideal in !!J
generated by '1. Let bE!!J such that ,....,b¢;['1] and for every m, n-co: let
bmnE!!J. Then there exists a prime ideal jl in !!J such that

(i) bEfz;
(ii) for every m « co, 1\ bmnEjl if/for some n « co, bmnEjz;

n«[)

(iii) If ~ ft·
Proof: Apply the Rasiowa-Sikorski Lemma to the quotient algebra B/['!].

We prove the following measure theoretic generalization of Theorem 1:
THEOREM 2. Let <.oJJ, r., v, ~) be a Boolean a-algebra, let d~!!J be a

a-subalgebra, and let 11 be a a-additive probability measure on d. Let v' be
a finitely additive probability measure on !!J such that v' (x) = 11(x) for all
XEd, let XO, ... ,xn_tE/!IJ and e>O. Finally, for every m, n-c co let bmnE!!J.
Then there exists a finitely additive probability measure v on !!J such that

(i) Iv(x;) - v'(x;)1 < e for all i < n;
(ii) for every m < co, v( 1\ bmn) = lim v( 1\ bm;);

n<w n-e co i<n

(iii) vex) = 11 (x)for all XEd.

Throughout the rest of this appendix we assume that <!!J, /\, v, ,....,) is a
Boolean o-algebra, d ~ tJlJ is a o-subalgebra and 11 is a o-additive probability
measure on ~r#. Moreover X is the Stone space of !!J, and we identify !!J with
the set of clopen sets of X. C (X) is the set of continuous real functions on
X and we regard !!J as a subset of C (X). Finally L is the linear subspace of
C (X) generated by fJIJ.

We first state two lemmas which can be found in Halmos [1950] p.71,
Exercise (2). For every subset 'C ~!!J, let ['C] be the e-subalgebra of!!J gener-
ated by 'C.

LEMMA 3. Let bEfJIJ~,r#. Then [dU {b}]={(xn b)U (y~b):x,YEd}.
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LEMMA 4. Let bE:!lJ~d and let a, cEd such that aszbs;« and fl(a)=
sup {fl(X):x<;;;.b, xEd}, fl(c)=inf {fl(X):b<;;;.x, XEd}. Let d=c~a, and let
rx, B:»0 be real numbers such that a +jJ= 1. Define for x, y Ed:

v((X n b) U (y ~ b)) = fl((X n a) U (y ~ c)) + rxfl(X n d) + Pfl(Y n d).

Then v is a a-additive probability measure on [dU {b}] such that V(X)=fl(X)
for all XEd.

The next lemma is also known:
LEMMA 5. Let bEIJi~ d and let v be a finitely additive probability measure

on [dU {b}] such that v(x)=j1(x)for all XEd. Then v is a-additive.
Proof: Let xnEd, n-cto be a decreasing sequence. Then

V(( 1\ x n) n b):S; lim v(xn n b).
n<w n-->oo

Suppose
v(( 1\ x n) n b) < lim v(xn n b).

n<w n--> 00

Then
fl( 1\ x n) = v( 1\ xn) = v(( 1\ x n) n b) + vH 1\ x n ) ~ b)

n<w n<w n<w n<w

< lim v(xn n b) + lim v(xn~ b)

n-e co n-e co

contradicting the hypothesis that j1 is (J-additive. Lemma 3 now proves
Lemma 5.

LEMMA 6. Let bnEIJi, n<w be a decreasing sequence such that 1\ bn=O.
n<w

Then there exists a finitely additive probability measure v on IJi such that

(i) lim V(bn) = 0;
n-->00

(ii) V (x) = fl(x)jor all XE d.

Proof: Define by recursion: do=d, d n+ 1 = [dnU {bn}], for n «:co. By
Lemma 4 we see that without loss of generality we may assume that bnrfdm
for n-cco, For every n « co choose anEd such that a.s:b; and fl(an)=sup
{fl(X):x<;;;.bm xEd}. Since b; is decreasing we may assume that an is de-
creasing. By recursion we wish to define a o-additive probability measure Vn

on d n such that Vo=fl and for n-c co, Vn+ 1 (X) = Vn(X) for every XEdno Sup-
pose vn has been defined on d no To define vn+ 1 on slfn+ 1, let a~, c~Edn be
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such that a~<;;;bn<;;;c~ and
vn(a~) = sup{vn(x):x <;;; bn,xEdn}
vn(c~) = inf{vn(x):bn <;;; x,xEsi'n}'

Since an<b; anE.r:i <;;; «, we may assume ansz a; for all n <w. Let d; = c~~a~.

In Lemma 4 let IX=O,jj=l and define for x,yES"'"n

We prove by induction on n: For every n-c co, xEd",

By definition, vn+l(xnbn)=vn(xna~). In case n=O, let xEdo. Then
x na;)E .91and by the definition of a~,

Now suppose for every XES~n'

vn+l(xn bn)=sup{,u(z):z<;;;xn b",zEd}.

We first show: vn+2(bn+I)=Vn+2(an+I)' In fact, by definition, vn+2(bn+I)=
Vn+l(a~+I)' By the induction hypothesis, Vn+1 (bn)=,u(an)=vn+1 (an)' Since
a;,+ I <;;;bn+l <;;;b", Vn+ 1(a~+ 1)= vn+1(a~+ 1nan). Since a~+ 1Edn+1 and a~+ 1<;;;

b", a~+ 1= X nb; for some XES'i'n" Thus vn+1(a~+ 1)= Vn+1((X nan) n bn), where
x nanEs¥n" By these induction hypothesis,

Furthermore an+1 <;;;a;, + 1 <;;;bn+1 and an+1<;;;an" Thus an+l<;;;a~+lnan=

(x nan) n b; <;;; b; + I' Therefore, by the definition of an+I' Vn+1 ((x nan) nbn)=
,u(a/!+I)' This proves vn+2(bn+I)=Vn+2(an+l)' Now let XE'#n+I' Then

In fact, I'/!+ 2 (b/!+1)= Vn+ 2 (an+ I) and an+1 <;;; bn+ I- Therefore vn+2 (x n b/!+ I) =
vn+2(x na/!+ I)' Since x nan+1 E'#n+1 and x n an+ 1 <;;;bn+1 <b.; x n an+ 1 =
yn bn for some YES/'Il" Thus vn+2(xn bn+I)=vn+l(yn bn). By the induction
hypothesis, vn+l(ynbn)=sup{,u(z):z<;;;ynbn,zEsf}. Since xnan+l<;;;
xnbn+I,Vn+2(xnbn+I)'::;;sup {,u(z):z<;;;xnbn+l, ZEd}. Clearly Vn+2(xn
bn+1)2SUp {Jl(z):z<;;;xn bn+l> ZE.r:i}, which completes the inductive proof.

As a direct corollary we obtain: For every n « co, vn+l(bn)=,u(an). Now
define a finitely additive probability measure v on the subalgebra U d n

n<w
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by v(x)=vn(x) for xEdn, and extend v to a finitely additive probability
measure on BO. Then lim v(bn)= lim jl(an)=O since /\ an£ /\ bn=O. This

n-e co n-s co n<w n<w

proves Lemma 6.

Now we proceed to prove Theorem 2. C (X) with the sup-norm is a Banach
space. Any finitely additive probability measure v on BO uniquely extends to
a linear functional on C (X) such that

(i) v(x) S Ilxll for all XE C (X);
(ii) v(l)=1.

And, conversely, any linear functional on C (X) satisfying (i) and (ii) uniquely
determines a finitely additive probability measure on BO. Let C (X)* be the
conjugate space of C (X) and consider the weak star topology for C (X)*.
For q:>EC(X)*, xo, ... , Xn+1EC(X), and e>O, let

N(q:>;xo, ""Xn-l ;e) = {t/tEC(X)*: 1t/t(xJ - q:>(xJI < ef or i < n}
M .... = {q:>EC(X)*: 11q:>11 S I,q:>(x) = jl(x)for all xEd}.

By the Alaoglu Theorem, M .... with the weak star topology is a compact
Hausdorff space.

LEMMA 7. Let bnEBO, n<w be a decreasing sequence such that /\ bn=O.
n<ro

For every r> 1, let Pr={q:>EM.... :III's lim q:>(bn)}. Then P, is nowhere dense in
M .....

Proof: Since Pr= n {q:>EM.... : I/rsq:>(bn)}, P, is closed in M ..... Suppose for
n<co

some q:>EC (X)*, X O, ... , Xn- 1EC (X) and e>O, we have

By the Stone-Weierstrass Theorem there exist vo, ... , vn - 1 EL such that
Ilxi- Viii <!e for all i <no There exist Co, ..., Cm- 1 such that vo, ... , Vn- 1 EM,
where M is the linear subspace generated by [d U{CO,"" Cm _ I}]' Let q:>' be
the restriction of q:> to M. By Lemma 5, tp' is c-additive on [d U{co,···, c.;-I}]'
By Lemma 6, tp' has an extension t/t to C (X) such that t/tEM .... and
lim t/t(bn)=O. Let i-c.n, Then q:>(Vi)= q:>'(Vi) = t/t(v;). Thus

Iq:>(xi ) - t/t(xi)1 s 1q:>(xJ - q:>(vJI + )t/t(Vi) - t/t(Xj)J
s II q:> II II Xi - viii + 11t/tIIIIX i - Viii < e.

Thus t/t EP, which is a contradiction.
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Now consider the hypothesis of Theorem 2. It clearly suffices to assume
that for every m < ill, o.: is a decreasing sequence for n < ill such that
/\ bmn=O. For every m « co, r211et

n<w

By Lemma 7, p= U U P, is of first category in M ...... Since the set
m < W r2:: 1

N(v'; xo, ... , xn - I ; e) n M.<J1 is a non-empty open set and M ..... is a compact
Hausdorff space, Theorem 2 follows by the Baire-Category Theorem.
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