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The study of intelligence in humans has been ongoing for over 100 years, including the underlying
structure, predictive validity, related cognitive measures, and source of differences. One of the key
findings in intelligence research is the uniform positive correlations among cognitive tasks. This has been
replicated with every cognitive test battery in humans. Nevertheless, many other aspects of intelligence
research have revealed contradictory lines of evidence. Recently, cognitive test batteries have been
developed for animals to examine similarities to humans in cognitive structure. The results are incon-
sistent, but there is evidence for some similarities. This article reviews the way intelligence and related
cognitive abilities are assessed in humans and animals and suggests a different way of devising test
batteries for maximizing between-species comparisons.

Public Significance Statement

This review highlights the difficulty in understanding why different cognitive abilities are related to
each other in human and nonhuman animals. Cognitive abilities are related in similar ways across
species, but test batteries should be refined to strengthen these findings and increase translational
significance.
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Why do some people live longer, healthier lives, or obtain
higher levels of education, or gravitate toward more cognitively
demanding careers? What underlies individual differences in re-
action time (RT), working memory, or learning? Many researchers
have argued that individual differences in intelligence underlie
each of these, as it is the best, though not a perfect, predictor of
many of these (Brodnick & Ree, 1995; Conway, Cowan, Bunting,
Therriault, & Minkoff, 2002; Deary, Whiteman, Starr, Whalley, &
Fox, 2004; Gottfredson, 2002; Gottfredson & Deary, 2004; Jensen,
1998; Ree & Earles, 1992; Schmidt, 2011, 2014; Sheppard &
Vernon, 2008; but see Gutman & Schoon, 2013; Heckman, Pinto,
& Savelyev, 2013 for the importance of “noncognitive” factors and
Ceci, 1991 on how schooling is a causal factor for performance on
intelligence measures). Intelligence is typically measured with a
full-scale IQ (FSIQ) test. The FSIQ contains a battery of diverse
tasks designed to assess different aspects of cognition, including
basic math skills, matrix reasoning, spatial reasoning, verbal com-
prehension, and memory, though the specific content can vary
across tests (Johnson, Bouchard, Krueger, McGue, & Gottesman,
2004; Reynolds, Floyd, & Niileksela, 2013; Schrank & McGrew,
2001), and concerns have been raised about how often these tests

reflect western education or culture (Ceci, 1991; Nisbett, 2009;
Serpell, 2000; Wicherts, Dolan, & van der Maas, 2010). Capturing
these individual differences across all these tasks with a single
metric may appear to overlook important factors. Perhaps a person
is terrible at math, for example, but has exceptional verbal com-
prehension. Nevertheless, for a large majority of people, perfor-
mance typically correlates across all tasks—despite their diversity
(Carroll, 1993; Deary, 2000).

Charles Spearman (1904) was the first to report a uniform
positive correlation among diverse cognitive tasks in people and he
called this the “positive manifold.” This finding has continued to
be replicated ever since (Carroll, 1993; Deary, 2000; Jensen,
1998). When these positive correlational matrices are subjected to
factor analysis, one factor that explains approximately half of the
variance in performance is extracted. It is called the g factor
(Carroll, 1993; Jensen, 1998; Spearman, 1904). When tasks load
onto a factor, it indicates how much variance in that task can be
explained by the factor. All cognitive tasks load in the appropriate
direction onto g, but not all tasks load equally (Nisbett, 2009;
Reynolds et al., 2013; Weiss, Keith, Zhu, & Chen, 2013). The
tasks that show the highest loading onto this g factor involve
reasoning, abstraction, task complexity, and task novelty, irrespec-
tive of how the information is presented within the tasks them-
selves (Ackerman & Cianciolo, 2000; Jensen, 1998; but see Ceci,
1996 for difficulties determining how “abstract” a problem is).
Many researchers have described the g factor as “indifferent to the
indicator” because loading depends more on the complexity and
abstraction of the task rather than on a specific type of measure, or
in this usage the “indicator” (Jensen, 1998; Spearman, 1904). This
is why g is thought to reflect a general cognitive ability and has
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predictive validity in a variety of contexts (Deary et al., 2004;
Gottfredson, 2002).

While the g factor typically accounts for half of the variance in
performance, it can depend on the number, reliability, and famil-
iarity of the tasks used, and the variation in the sample tested
(Ackerman & Cianciolo, 2000; Colom, Abad, Garcıa, & Juan-
Espinosa, 2002). All cognitive tasks measure g, but they also
measure narrower abilities and contain task-specific variance (Car-
roll, 1993; Gustafsson, 2003; Jensen, 1998). The most accurate
measures of g will be obtained with a diverse test battery. Even
with a diverse test battery, the intercorrelations or extracted factor
can be smaller than expected because of measurement (un)reliabil-
ity and range restriction (Jensen, 1998; Viswesvaran, Ones,
Schmidt, Le, & Oh, 2014). Range restriction limits the amount of
variability in the sample, but the variability across subjects is
exactly what factor analysis is attempting to explain (Jensen,
1998)! This lack of variability will lower the value of the extracted
factor, but this is primarily because of sample characteristics.
Range restriction is a crucial factor when assessing g in small
samples with a small number of tasks. While a large and repre-
sentative sample can help with range restriction, the same cannot
be said for the effects of measurement reliability. Moderate to low
task reliability (.5–.8) attenuates the subsequent correlations,
which can impact later factor analysis since more of the variance
will be because of random error or transient factors unrelated to g

(Fan, 2003; Jensen, 1998). Some statistical methods (like structural
equation modeling, SEM, and confirmatory factor analysis [CFA])
can account for this, but multiple regression does not, increasing
the likelihood of false positives (Westfall & Yarkoni, 2016).
Nevertheless, many studies have handled these challenges beauti-
fully. The results from various large FSIQ tests conducted with
representative samples indicate that, even though the exact test
content can vary, the same g factor is extracted (Johnson et al.,
2004; Reynolds et al., 2013; Schrank & McGrew, 2001). The g

factor is robust against different methods of analysis, populations,
cultures, and test batteries (Carroll, 1993, 2003; Chabris, 2007;
Deary, 2000; Warne & Burningham, 2019; but see Wicherts et al.,
2010) and is relatively stable throughout the life span starting at 2
years old (Deary, Pattie, & Starr, 2013; Gignac, 2014; Spinath,
Ronald, Harlaar, Price, & Plomin, 2003).

While g can account for a large amount of cross-task variance in
individual differences, additional variance can be explained by
group factors. Some tasks show stronger correlations with each
other, forming a subgroup. For example, in a test battery with three
verbal measures and three math measures, there is a stronger
correlation within verbal measures and within math measures than
between both domains (Carroll, 1993; Jensen, 1998). Group fac-
tors are more strongly affected by test battery composition (Car-
roll, 2003; Cattell, 1987; Johnson et al., 2004). The most com-
monly found group factors include fluid intelligence (Gf),
crystallized intelligence (Gc), quantitative reasoning (Gq), visual
processing (Gv), processing speed (Gs), and memory, though the
exact terminology can vary (Carroll, 1993; Cattell, 1987; Hakstian
& Cattell, 1978). Most research has focused on Gf and Gc (Kvist
& Gustafsson, 2008; Nisbett, 2009; but see Johnson & Bouchard,
2005).

Gf is the ability to solve novel and complex problems, in
particular those that require relational reasoning, and frequently
use shapes and figures in the tasks as opposed to words. Gf loads

very highly, and sometimes perfectly, onto g (Benson, Hulac, &
Kranzler, 2010; Bickley, Keith, & Wolfle, 1995; Carroll, 1993;
Gustafsson, 1984; Kvist & Gustafsson, 2008), though the strength
of loading depends on many factors, such as sample homogeneity,
number of tests in the assessment, and methods of analysis (Blair,
2006; Carroll, 2003; Kan, Kievit, Dolan, & van der Maas, 2011;
Thorsen, Gustafsson, & Cliffordson, 2014). It is still debated to
what degree measures of Gf are dependent on school exposure and
culture. Some researchers argue that, because Gf tasks typically do
not use language or memorized facts, this means it relies less on
prior knowledge or schooling, and thus should be viewed as
culture free (Cattell & Horn, 1978; Jensen, 1998; Kent, 2017).
Other researchers have argued that the increased emphasis on
formal schooling and increase in visual stimuli in a given culture
has resulted in improvements in these tasks in subsequent gener-
ations, indicating that these tasks are dependent on school and
culture (Baker et al., 2015; Cahan & Noyman, 2001; Ceci, 1991;
Nisbett, 2009; Pietschnig & Voracek, 2015). This debate aside,
since many measures of Gf do not rely on language, they are an
important target assessment for assessing g in nonhumans (see
below). While the ideal way to measure any construct is with a
variety of measures, the Raven’s Progressive Matrices (RPM) is a
quintessential example of a Gf task (Carpenter, Just, & Shell, 1990;
Nisbett, 2009). The RPM is a series of partially completed matri-
ces, where the participant is tasked with selecting the choice option
that will correctly complete the matrix from a set of distractors
(Raven, 1941). Each item in the matrix is transformed, sometimes
in multiple ways, across the rows and columns of the matrix. The
participant must infer the underlying rules and correctly apply
them to find the correct answer (Raven, 1941, 2008). The test
items progressively increase in difficulty, with few people cor-
rectly answering the final questions (Carpenter et al., 1990). De-
spite the strong visuospatial component, the RPM is used as a
measure of reasoning (Schweizer, 2007; but see Gignac, 2015;
Stephenson & Halpern, 2013).

Gc reflects the ability to correctly use and apply learned knowl-
edge (Kvist & Gustafsson, 2008). Some researchers have empha-
sized the role of language and verbal storage, and rely strongly on
vocabulary measures to assess this ability (Ackerman & Cianciolo,
2000; Reynolds & Turek, 2012; Rolfhus & Ackerman, 1999).
When a more diverse battery is used, however, the extent to which
verbal comprehension overlaps with Gc has varied (Carroll, 2003;
Kan et al., 2011; Schipolowski, Wilhelm, & Schroeders, 2014). In
humans, knowledge is typically gained and tested through lan-
guage, which could have led to the debate about what is the nature
of Gc (Keith & Reynolds, 2010; Schipolowski et al., 2014).
Nevertheless, despite Gc being predominately measured through
language, language is not the only way to assess knowledge. As we
discuss in more detail later, nonlanguage methods are needed to
assess Gc in nonhuman animals. Researchers that have utilized a
more comprehensive test of knowledge to measure Gc have found
that it loads highly onto g and is a better predictor of academic and
job performance compared with Gf, particularly for older adults
(Postlethwaite, 2011; Schmidt, 2014).

Despite these general issues with group factors, it has been
consistently found that Gf and Gc load highly onto the g factor and
covary with each other (Carroll, 1993; Schipolowski et al., 2014).
One potential explanation for this covariation is provided by
investment theory (Kvist & Gustafsson, 2008). Because Gf influ-
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ences a person’s ability to understand or learn from novel prob-
lems, it is theorized that Gf is used when learning new information.
As this information is acquired, it then becomes Gc. The initial
ability level, determined by Gf, will determine the efficacy of this
investment or learning when it is specifically directed according to
interest, leading to more specific knowledge gains, or during more
passive exposure, leading to more general gains (Cattell, 1987;
Schmidt, 2011, 2014).

It is possible to discuss g at two different levels, as a statistical
finding referred to as psychometric g, and as a psychological
construct. Psychometric g is not controversial (Blair, 2006; Car-
roll, 1993; Jensen, 1998). Positive correlations across diverse
cognitive tasks are no longer seen as surprising. Further, many
researchers do not argue that a factor analysis will produce one
factor that can account for half of the variance (Conway & Kovacs,
2015; Van der Maas et al., 2006). The status of g as a psycholog-
ical construct, however, is still heavily debated. Despite the fact
that g has been consistently reported in over a century’s worth of
research, and we know which tasks consistently load highly onto
g, there remains no consensus as to what g actually is (Carroll,
1993; Cattell, 1987; Chabris, 2007; Deary, 2000; Gottfredson,
2002; Gustafsson, 1984, 2003; Jensen, 1998; Kovacs & Conway,
2016; Van der Maas et al., 2006); g’s ontological status remains a
mystery. The following is a brief overview of many popular
theories of g today. Our aim is not to review an exhaustive list of
all current theories of g, nor a nuanced treatment of the theories
that are discussed. Additionally, this article is not an endorsement
of any particular theory of g. Rather, the goal of this article is to
provide a general background about theories of intelligence for
readers outside the expert community. Furthermore, we also do not
cover the vast literature on cognitive abilities in infants or the
developmental aspects of general intelligence. Again, this is be-
cause we ultimately are interested in discussing tests of g in adult
nonhuman animals. Undoubtedly, once such tests can be reliably
developed, they should allow for the investigation of how devel-
opmental processes contribute to g in nonhuman animals, but such
a discussion would be premature now. For excellent empirical
research and theories on the development of g, see Blaga et al.
(2009); Bornstein et al. (2006); Coyle, Pillow, Snyder, and Koc-
hunov (2011); Demetriou et al. (2018); Fagan, Holland, and
Wheeler (2007); Rose, Feldman, Jankowski, and Van Rossem
(2008); and Spinath et al. (2003).

One proposal is that g is a single entity that is related to a wide
variety of cognitive abilities because it causes differences between
individuals in those abilities (Brown, Le, & Schmidt, 2006; Car-
roll, 1993; Gustafsson, 1984, 2003; Schmidt, 2011, 2014, 2017

right panel of Figure 1). Even though this perspective purports g as
a single entity, it does not necessarily reflect one physical structure
or psychological process (Jensen, 1998). In attempting to identify
the physical substrates of g, a variety of results have been found
including relevant genes (Plomin & von Stumm, 2018), neural
networks (Duncan et al., 2000), neural substrates (Schmitt, Raz-
nahan, Liu, & Neale, 2020), and developmental processes (Gar-
lick, 2002). It is unlikely that any one of these alone is responsible
for g and more likely that there is a dynamic interaction between
all of these physical substrates and with the environment (Ceci,
1991; Chabris, 2007; Garlick, 2002; Jensen, 1998; Kan, Wicherts,
Dolan, & van der Maas, 2013; Schmitt et al., 2020; Van der Maas
et al., 2006). Indeed, some researchers argue that schooling has
robust and potentially causal effects on the physical substrates that
could underlie g (Baker et al., 2015). At the psychological con-
struct level, other researchers theorize that elementary cognitive
process underlie g, meaning that differences in one or more of
these basic abilities is predominately the reason behind differences
in g (Gignac, 2014; Jensen, 1998, p. 260). Working memory
(WM), short-term memory (STM), processing speed, associative
learning, and response inhibition have all been proposed as com-
ponents of g (Conway et al., 2002; Deary, 2000; Dempster, 1991;
Jensen, 1998; Kaufman, DeYoung, Gray, Brown, & Mackintosh,
2009; Sheppard & Vernon, 2008; left panel of Figure 1).

Other researchers argue that g is actually a statistical artifact.
These theories state that more complex tasks (that are more g

loaded) require a broader array of independent resources. Even
though these processes are independent, the nature of the tasks
creates a correlation (Bartholomew, Deary, & Lawn, 2009;
Kovacs & Conway, 2016) or that the developmental trajectory
creates mutually beneficial interactions between independent
abilities (Rose et al., 2008; Van der Maas et al., 2006). In the
next section, we review the relationship between g and the
cognitive mechanisms listed earlier to investigate this issue.
These cognitive mechanisms were investigated because of the
rich literature that is available to review and because the po-
tential role they play when investigating g across species.

Related Cognitive Factors

Working Memory

WM describes the ability to hold a limited amount of informa-
tion over the short term (seconds to minutes). What differentiates
WM from STM is that WM involves manipulating the stored
information or engaging in a secondary task while the to-be-

Figure 1. A diagram representing the reviewed cognitive abilities and their relationship to g and to each other.
The thickness of the lines represents the strength of the relationship, while the type of line (solid or dashed)
represents the consistency of the relationship. The direction of the arrows indicate the thereotical causal
relationship. Gf � fluid intelligence.
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recalled information is held in memory (Baddeley, 2003; Conway
et al., 2002). For example, STM might involve holding in memory
a list of items until their recall is requested, while WM would
involve performing mathematical operations, counting, or some
other transformation while encoding a list of to be recalled items.
Some common WM tasks are the complex span task, n-back task
(Au et al., 2015; Shelton, Elliott, Matthews, Hill, & Gouvier,
2010), and reverse span task (Oberauer, Süß, Schulze, Wilhelm, &
Wittmann, 2000).

In the complex span task, there is a competing demand that is
interspersed between to-be-remembered items (Conway et al.,
2002; Engle, Tuholski, Laughlin, & Conway, 1999). For example,
in the operation span task, participants must verify if the solution
to a given equation is correct or incorrect, before being presented
with the to-be-recalled word, letter, or number (Conway et al.,
2002). Different variations of the complex span task include ver-
ifying if a sentence is logical or counting the number of squares
before being presented with the to-be-remembered items. The
degree of interference between the interleaved task and the items
for recall can vary by changing the similarity between them. Some
experiments found worse recall performance when the interleaved
task and the to-be remembered item are highly similar, for example
both involve words or visuospatial judgments (Jarrold, Tam, Bad-
deley, & Harvey, 2011; Shah & Miyake, 1996), but this is not
consistently found across all item types (Bayliss, Jarrold, Gunn, &
Baddeley, 2003). Performance on these different span tasks are
correlated, but the correlation is different from unity (Bayliss et al.,
2003; Conway et al., 2002). It is possible that this is partially
because of measurement error, but an exploratory factor analysis
extracted three factors, which they interpreted to be verbal storage,
visuospatial storage, and a general processing factor (Bayliss et al.,
2003). This indicates that each span task captures more specific
and general properties of WM, which is consistent with theoretical
conceptions (Baddeley, 2003).

In the n-back task, participants are presented with a continuous
stream of items. As each item is presented, the participant must
decide whether it matches an item presented n trials ago, with the
range typically extending from 0–3 (Jaeggi, Buschkuehl, Jonides,
& Perrig, 2008). For example, in the stream: fish, peanut, cup, fish,
pipe, dog, dog, car, phone, car; a response would be required to the
second presentation of “dog” in a 1-back task, “car” in a 2-back
task, and “fish” in a 3-back task. Generally, the larger the n, the
more difficult the task. Thus, participants must continuously up-
date the items in their WM, while simultaneously comparing each
current item to the appropriate item n-back.

In the reverse-span task, participants are presented with a series
of letters or numbers, and then they must repeat them in reverse
order. This means that participants are simultaneously holding and
transposing the information so that it can be presented in reverse
order (Jensen, 1998; Oberauer et al., 2000).

Performance on these WM tasks is correlated with measures of
g, but the reason for this correlation is not well understood. Some
researchers have shown that WM training improves performance
on WM and highly g-loaded tasks, indicating that WM is a
subcomponent of g (Jaeggi et al., 2008; Schmiedek, Lövdén, &
Lindenberger, 2010). Others argue, however, that these improve-
ments are hollow—that is, they stem from non-g factors, like test
familiarity or strategy adjustments during test battery completion
(Colom et al., 2002; Colom et al., 2013; Estrada, Ferrer, Abad,

Román, & Colom, 2015). Additionally, not all researchers have
shown WM-training effects on g (Chooi & Thompson, 2012;
Harrison et al., 2013; Redick et al., 2013). These mixed effects
could mean that WM is used during these g loaded tasks in holding
necessary information, but the ability to correctly identify which
information is necessary is unique to g. Being able to hold more
information or handle competing demands more effectively does
not necessarily indicate an improved ability for abstract reasoning.
This dissociation between WM and abstract reasoning could indi-
cate that there is a causal relationship between WM and g, but that
differences in g cause differences in WM, not the other way
around. Theoretically, from this perspective an increase in g

should result in an increase in WM performance as well. Alterna-
tively, there could be another, more general factor that underlies
the efficacy of WM and g-loaded tasks. Training on WM that fails
to improve this underlying factor should result in little impact for
performance on g loaded measures. Finally, WM and g could be
independent cognitive abilities and the reason for the correlation is
because of task impurity.

The diversity of tasks used to measure WM obstructs determin-
ing the relationship between g and WM. Each type of WM task
places different demands on WM, and thus they may not all be
measuring the same construct (Aben, Stapert, & Blokland, 2012).
Supporting this is the fact that these tasks do not always strongly
correlate with each other (Au et al., 2015; Jaeggi et al., 2008;
Kane, Conway, Miura, & Colflesh, 2007; but see Schmiedek,
Lövdén, & Lindenberger, 2014; Wilhelm, Hildebrandt, & Ober-
auer, 2013). Furthermore, WM tasks sometimes strongly correlate
with STM measures (Aben et al., 2012; Colom, Abad, Quiroga,
Shih, & Flores-Mendoza, 2008; Conway et al., 2005; St Clair-
Thompson, 2010; Figure 1), further obscuring relationships be-
tween tasks and the underlying constructs they purportedly mea-
sure. Likewise, WM is not necessarily a unitary construct, but may
itself consist of separate processes, such as attention (Baddeley,
2003), processing speed (Unsworth, Redick, Heitz, Broadway, &
Engle, 2009), and STM capacity (Conway et al., 2002), among
others (Kovacs & Conway, 2016; Schmiedek et al., 2014; Wilhelm
et al., 2013). Support for the relationship between g and these other
processes have all been reported (Chuderski, Taraday, Nęcka, &
Smoleń, 2012; Conway et al., 2002; Unsworth et al., 2009; Figure
1). Thus, it is possible that different WM tasks differentially tap
into these alternative processes (or subcomponents).

Short-Term Memory

STM is the ability to hold information over a delay period,
without an explicit competing task or manipulation requirement
(Unsworth & Engle, 2007). The information being held in STM is
subject to capacity limits and decay over time (Cowan, 2008).
Performance on WM and STM tasks tends to be correlated, likely
because both involve the short-term retention of information
(Aben et al., 2012; Colom et al., 2008; Conway et al., 2002; Figure
1). STM and WM are not dichotomous constructs; rather, tasks fall
on a continuum depending on how demanding is the secondary
task (Aben et al., 2012; Engle et al., 1999). For example, requiring
participants to repeat a letter, preventing them from verbally re-
hearsing the to-be-remembered items, is still considered a STM
task because the secondary task is of low difficulty (Conway et al.,
2002; Engle et al., 1999). Nevertheless, as discussed above, WM
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does have some unique properties (Conway et al., 2002; Cowan,
2008). Some researchers have found that STM alone is related to
g using SEM and CFA (Colom et al., 2008; Martínez et al., 2011;
Figure 1). Yet, others have failed to find a unique relationship
between STM and g using SEM, but these utilized different con-
struct measures (Conway et al., 2002). Given these challenges,
researchers tend to focus on WM when investigating the relation-
ship between STM processes and g.

Processing Speed

The term “processing speed” is used to describe a variety of
tasks that can vary in complexity and memory demands (Deary,
2000). These tasks typically assess how quickly a participant can
detect a change in the environment, perceive the difference be-
tween two stimuli, or transform stimuli. Some tasks that require
detecting a change in the environment are based off of Hick’s law,
that RT will increase linearly with increases in information a task
requires (Hick, 1952). The Jensen box is an example of an appa-
ratus that utilizes the principal of Hick’s Law (Deary, 2000; Jensen
& Munro, 1979). The Jensen box consists of a home key and 1, 2,
4, 6, or 8 stimuli placed equidistant from the home key in a
semicircular arrangement. Participants must keep their finger rest-
ing on the home key until one of the stimuli in the array changes
(e.g., color or brightness). Participants are instructed to touch the
changed stimulus as quickly as possible (Deary, Der, & Ford,
2001; Jensen, 1982; Vickrey & Neuringer, 2000). Even at its most
simple, when the array only has one stimulus, there is still a
relationship between RT and intelligence, with the correlation
ranging between �.18 to �.22 (Deary, 2000; Doebler & Scheffler,
2016; Sheppard & Vernon, 2008). Another processing speed task
is the digit-symbol substitution task (Conway et al., 2002; Hoyer,
Stawski, Wasylyshyn, & Verhaeghen, 2004). In this task, partici-
pants are given a conversion table of digits and a corresponding
symbol. The symbols are usually simple shapes or a series of
connected lines that do not resemble letters. Participants must
complete a table of numbers with the appropriate corresponding
symbol, or they are shown various digit-symbol pairs and must
determine if the pairs are valid or invalid according to the conver-
sion table as quickly and accurately as possible (Conway et al.,
2002; Hoyer et al., 2004). The conversion table is always present,
so this task does not rely on memory processes. This task is
commonly included in FSIQ tests (Benson et al., 2010). Even
though processing-speed tasks appear simple, they show a consis-
tent, modest relationship to g, with correlations typically ranging
from �.22 to �.4, such that faster or shorter RTs correlate with
higher scores on intelligence tests (Deary, 2000; Doebler & Schef-
fler, 2016; Sheppard & Vernon, 2008; Vernon, 1983; Figure 1).
These two tasks are a very select subset of all the different
processing speed tasks that are used (Deary, 2000; Sheppard &
Vernon, 2008).

Why processing speed shows a consistent relationship with g is
not well understood (Deary, 2000). There is some evidence that
processing speed influences how quickly a competing task can be
performed in WM tasks (Conway et al., 2002; Unsworth et al.,
2009; Figure 1). Therefore, processing speed may only be related
to g because it influences WM. When WM tasks are also included,
processing speed is no longer directly related to g (Conway et al.,
2002). It is also possible that processing speed, WM, and g rely on

the same underlying mechanism or process. There are a large
variety of processing speed tasks, however, so it is unclear if these
different tasks measure the same underlying construct (Stankov &
Roberts, 1997). Tasks used to show a relationship between pro-
cessing speed and g differ greatly from those used to study how
processing speed influences WM (Colom et al., 2008; Conway et
al., 2002; Deary, 2000; Stankov & Roberts, 1997). Thus, it is
difficult to determine if processing speed and WM show the same
relationship across all of these tasks.

Response Inhibition

Some researchers have suggested that response inhibition is a
crucial factor underlying differences in intelligence (Dempster,
1991). Response inhibition is the ability to suppress unwanted
motor responses or thoughts and can be measured with antisac-
cade, Stroop, Go/No-go (GNG), and stop signal tasks (Friedman et
al., 2006; Swick, Ashley, & Turken, 2011; Verbruggen, Best,
Bowditch, Stevens, & McLaren, 2014). A reversal learning task is
also used to a lesser degree to measure inhibition (Eagle, Bari, &
Robbins, 2008; Izquierdo & Jentsch, 2012). In the antisaccade
task, participants must avoid moving their eyes toward a target and
instead they must move their eyes in the opposite direction (Klein,
Rauh, & Biscaldi, 2010). In the Stroop task, participants must read
the ink color of a word out loud, even when it conflicts with the
word’s meaning (i.e., the word “red” printed in yellow ink; Stroop,
1935). In the GNG and stop signal tasks, participants must make a
motor response when they see one type of stimulus and withhold
the motor response when they see or hear other types of stimuli.
For the GNG task, participants receive successive presentations of
two stimuli intermingled within the session. Responses to the
positive discriminative stimulus (S�) are rewarded while re-
sponses to the negative discriminative stimulus (S�) are not
rewarded. Initially participants typically make responses to both
stimuli, but with further training learn to inhibit responses to the
S�. The stop-signal task is similar to a GNG task. On some trials,
only the S� is presented, and participants are rewarded for re-
sponding to the S�. Occasionally a trial will initially present the
S�, and after a short delay the S� is also presented. The partic-
ipant is instructed to withhold responses when the S� is presented.
Thus, the stop-signal task measures the ability of the participant to
suppress behavior in the midst of preparing or making a response.
(Swick et al., 2011; Verbruggen et al., 2014). Finally, in the
reversal-learning procedure, the first phase consists of a GNG
procedure in which participants learn that one cue (S�) is asso-
ciated with a reward, while the other is not (S�; note, the S� and
S� may be presented simultaneously rather than successively).
Once discrimination performance stabilizes, the stimulus-outcome
assignments are reversed (Eagle et al., 2008; Izquierdo & Jentsch,
2012). For example, after learning to respond to a blue circle (S�)
and withhold responding to a yellow circle (S�), the blue circle
becomes the S� and the yellow circle becomes the S�. Response
inhibition influences how quickly the participant can inhibit the
original learned responses, and replace them with new responses.

For reversal learning, no significant relationship has been found
between intelligence and the number of trials needed to reverse the
initial discrimination in children (Plenderleith, 1956) or adults
(Stevenson & Zigler, 1957). Using the antisaccade task, the total
number of errors (Friedman et al., 2006) and the errors with a
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regular latency (Klein et al., 2010) showed a modest correlation
with intelligence. A similar result was found with the GNG (Horn,
Dolan, Elliott, Deakin, & Woodruff, 2003) and the stop-signal
tasks (Friedman et al., 2006). The Stroop task had low (Friedman
et al., 2006) to nonsignificant (Polderman et al., 2009) correlations
with measures of intelligence. When intelligence was broken down
into Gf and Gc, only the antisaccade task had a significant corre-
lation with Gf, ranging from .19–.23, while the stop signal and
Stroop task were not significantly correlated, with a correlation
ranging from .03–.12. For Gc the correlations for these three
inhibitory tasks were low, .12–.19, though 4 out of 6 were signif-
icant (Friedman et al., 2006). These three tasks loaded significantly
onto the same “inhibition” factor, but SEM showed that it did not
explain any unique variance for Gf or Gc when other cognitive
abilities were in the model (Friedman et al., 2006; Figure 1). This
indicates that the modest correlations were the result of task
impurity. Inhibition was not the cause of the correlations, but a
correlation was found because of the other cognitive factors that
were also being used, potentially WM. Yet, it is not possible to
draw a strong conclusion about the relationship between inhibition
and g because of relatively small amount of research that has been
conducted.

Associative Learning

Associative learning is the ability to mentally link or associate
specific stimuli together. One measure of associative learning is a
simple discrimination task, where the participant must select be-
tween two stimuli. One of the stimuli is paired with a reward while
the other stimulus is not. Selecting the rewarded stimulus does not
seem to be related to intelligence in children or adults, but this is
underexplored (Plenderleith, 1956; Stevenson & Zigler, 1957).
The paired associates task and the three-term contingency task,
however, show a more promising relationship with intelligence. In
the paired associates task, participants are told to remember pairs
of unrelated one-syllable words. During training, participants see
the first word of the pair, then press a key to reveal the second
word. A test usually follows immediately after the training phase,
where the first word of the pair is given and the participant must
type the second word (Alexander & Smales, 1997). A variation on
this is the three-term contingency task. During training, one word
serves as the stimulus and there are three response keys. When the
participant presses the response key, a word is revealed. At test, the
participant is shown the stimulus word and must type the correct
word for each response key (Williams & Pearlberg, 2006). The
paired associates and three-term contingency tasks are signifi-
cantly correlated with each other, .43–.64, and with g, .31–.52
(Alexander & Smales, 1997; Kaufman et al., 2009; Tamez, My-
erson, & Hale, 2008; Williams & Pearlberg, 2006). The paired
associates and three-term contingency tasks are not pure measures
of associative learning considering how much information needs to
be stored and retrieved, which clearly relies on memory processes.
As discussed earlier, WM and possibly STM are related to g.
Nevertheless, it has been found using SEM that associative learn-
ing tasks are uniquely related to g independent of the memory and
retrieval requirements (Kaufman et al., 2009; Figure 1). This
suggests that associative learning is another potential underlying
cognitive mechanism of g, but the task needs to be difficult or
complex to reveal such a relationship.

Related Cognitive Factors–Summary

Four of the cognitive mechanisms discussed, WM, STM, pro-
cessing speed, and associative learning are all related to g to
varying degrees (see Figure 1). Why these factors are related is still
being explored, and the relative importance of each factor is
debated. The relationship between response inhibition and g is
underexplored, but so far response inhibition does not seem to be
related to g in any significant way. This is difficult to understand
in the context of the relationship g has with task complexity since
some measures of inhibition, like the Stroop task, appear more
complicated than measures of processing speed, yet processing
speed has consistent correlations with intelligence (Deary, 2000).
Recently, how much unique variance processing speed can explain
was called into question (Conway et al., 2002), but the consistency
of the correlation is undeniable. Nevertheless, merely knowing
which cognitive mechanisms are related to g does not provide
much insight into what, exactly, g actually is. We know how to
measure g and its validity as a predictor of many life outcomes, but
over 100 years of research has yet to elucidate its exact nature.
Investigating g and its psychological correlates in nonhuman ani-
mals (the focus of the next part of our review) would open up new
avenues of research into the biological and empirical nature of g,
and perhaps break through the current impasse in human research
on the subject.

g in Nonhuman Animals

The g factor has been found consistently in human samples with a
variety of measures, but what about other species? Finding a g factor
in nonhuman animals would enable the study of many important
questions about g, such as its evolutionary origins, its effects on
biological fitness, and questions about mechanism that are challeng-
ing or even impossible to study in humans, such as the role of genes,
its neural underpinnings, and environmental determinants during de-
velopment. Useful animal models for studying g would allow the
latest tools to be applied, such as optogenetics, chemogenetics, other
gene-modification techniques (e.g., CRISPR), powerful control of the
individual’s environment from conception to adulthood, and other
forms of neural manipulation. Application of these tools would allow
for unprecedented insights into the causal role of genetic, neural, and
environmental factors in g and intelligence. These insights could, in
turn, provide translational significance to understanding g in humans.
Working with animals, either in a lab or other setting, it is easy to see
individual differences in task performance, but it is not clear if these
differences would be consistent across a variety of tasks, like what we
see in humans with the g factor (Macphail, 1987).

Research on nonhuman animals has shown they are capable of
extraordinary cognitive feats, like tool use in New Caledonian
crows (Auersperg, von Bayern, Gajdon, Huber, & Kacelnik,
2011), the range of abilities demonstrated by Alex the African
Gray parrot (Pepperberg, 2018), and many more than what can be
listed here. While impressive in their own right, extraordinary
performance by particular species, be it in a single, specialized task
(e.g., the spatial memory of the Clark’s nutcracker, Balda &
Kamil, 1992; or tool use by the New Caledonian Crow), or by only
a few subjects across many tasks (e.g., by the African Gray parrot,
the Bottlenose dolphin; Herman, 2010) does not provide insights
into psychometric g that would be provided by consistent perfor-
mances across many tasks whereby stable individual differences
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replicate key aspects of psychometric g in humans (Macphail,
1987). These exceptional animals cannot be meaningfully dis-
cussed in a review about g since they have not been given test
batteries designed to determine cross-task consistency in perfor-
mance. The purpose of exploring the potential for psychometric g

in other species is not to rank species in their intelligence. Rather,
developing test batteries that can be applied across species can
help illuminate the conditions under which cognitive abilities will
show a pattern of positive correlations. Thus, an animal model for
measuring g would open up new avenues of research into the
environmental and neural contributions to psychometric g, which
can inform on theories of the causes for the correlations that
determine g.

To meaningfully relate task performance to g in nonhuman
animals requires reliable measures of performance in standardized
behavioral tasks. Recently, researchers have been investigating
individual differences in cognition in nonhuman primates, mice,
and birds using test batteries (Burkart, Schubiger, & van Schaik,
2017; Shaw & Schmelz, 2017). Some of these test batteries,
however, are inadequate. Some suffer from including too few tasks
(Anderson, 1993), or the included tasks lack sufficient variety to
derive meaningful individual differences (Locurto & Scanlon,
1998). Other batteries include tasks that are ill-defined and, there-
fore, obscure the underlying constructs (Keagy, Savard, & Borgia,
2011). Finally, some test batteries do not adequately control for the
way in which a particular species interacts with their environment,
or noncognitive differences between species, such as motivation
(Bitterman, 1965; Macphail, 1987). For example, it may be diffi-
cult for a subject to use a tool with their beak when the tool was
designed to be used with a hand (Krasheninnikova, Berardi, Lind,
O’Neill, & von Bayern, 2019). Thus, while many studies of g in
animals have found positive correlations across tasks, these defi-
ciencies make it difficult to relate these studies to the general

cognitive ability found in humans.
Nevertheless, some test batteries used in nonhuman animal

research have enabled assessment of the underlying cognitive
abilities (see Table 1). We focus the remainder of this review on
these stronger test batteries that provide evidence for a general
factor of intelligence. This necessarily restricts our discussion to
species for which sufficiently strong data are available. As a
reminder, we are also not focusing on species differences in
intelligence, but rather individual differences in psychometric g for
various species. Thus, relatively smart species, such as crows,
parrots, and dolphins, are not included, while cognitively humble
species, such as mice, are. It is beside the point whether parrots are
deemed smarter than pigeons, or that apes are smarter than mice,
as we are not concerned with ranking species intelligence against
each other, but rather finding in nonhuman populations, similar
individual differences as have been consistently found between
individual people. Indeed, even demonstrations of differences in
cognitive prowess of various species are not sufficient evidence for
true species differences in general cognitive abilities (Burkart et
al., 2017; Macphail, 1987). Until these species are given a diverse
battery of tests, it is impossible to comment on the consistency of
performance across tasks, which is at the center of g in research on
humans.

Using appropriate test batteries, evidence for correlations within
subject have been found in chimpanzees (Hopkins, Russell, &
Schaeffer, 2014; Woodley of Menie et al., 2015), cotton-top tama-

rin monkeys (Banerjee et al., 2009), rhesus macaques (Herndon,
Moss, Rosene, & Killiany, 1997), orangutans (Damerius et al.,
2019), mice (Galsworthy, Paya-Cano, Monleón, & Plomin, 2002,
2005; Kolata et al., 2005; Kolata et al., 2007; Matzel et al., 2003;
Matzel et al., 2006), robins (Shaw, Boogert, Clayton, & Burns,
2015), bowerbirds (Isden, Panayi, Dingle, & Madden, 2013), and
magpies (Ashton, Ridley, Edwards, & Thornton, 2018). The gen-
eral factor found in these studies can explain from 18 to 64% of the
variance in individual performance. Performance has been related
to WM (Kolata et al., 2005) and is stable over long periods of time
(Ashton et al., 2018; Hopkins et al., 2014). Despite this, these test
batteries sometimes fail to extract a general factor, such as studies
in chimpanzees (Herrmann, Call, Hernàndez-Lloreda, Hare, &
Tomasello, 2007, 2010), mice (Locurto, Fortin, & Sullivan, 2003;
Locurto, Benoit, Crowley, & Miele, 2006), and song sparrows
(Anderson et al., 2017; Boogert, Anderson, Peters, Searcy, &
Nowicki, 2011). We next explore why evidence for a g-like factor
in nonhuman species is not as reliable as in the human literature.
We also discuss the value of g in nonhuman species in predicting
fitness related outcomes.

Nonhuman Primates

Herrmann et al. (2007) developed the primate cognitive test
battery (PCTB) to assess performance across human children (age
2.5 years) and adult nonhuman primates. The PCTB includes 15
tasks from social and physical cognitive domains, such as the
understanding of physical objects, social cues, and causal relation-
ships (see Table 1). This test battery was specifically created to test
different evolutionary theories on why humans seem to show more
advanced cognitive abilities compared with nonhuman primates,
which is why tests of social abilities are included (Herrmann et al.,
2007). Approximately the same test battery was given to children,
chimpanzees, and orangutans, but the analyses conducted did not
allow for the examination of how individuals performed across all
tasks. A follow up article examined the results from the children
and chimpanzees to determine the structure of these cognitive
abilities (Herrmann, Hernández-Lloreda, Call, Hare, & Tomasello,
2010). Using CFA, for children they found evidence for three
factors, physical, social, and spatial, which is surprising consider-
ing other research has shown evidence for a general factor for
children in this age range (Spinath et al., 2003). For chimpanzees,
they found evidence for two factors, spatial and physical-social
that account for individual differences in performance. While the
initial research indicated there may be a relationship in chimpan-
zees between boldness and performance on the physical tasks,
where bolder chimpanzees had better performance (Herrmann et
al., 2007), this relationship was not further elaborated (Herrmann
et al., 2010). The lack of a g factor for either species is surprising,
though this could be because of a number of factors, particularly
when examining the results for the chimpanzees. The authors
acknowledge that their test battery contains a much higher pro-
portion of social tasks compared with what is typically found in the
literature (Spinath et al., 2003). They also acknowledge that a
number of their test items had low variabilities, though they do not
specifically state which tasks (p. 108). Finally, the reliabilities of
the tasks for the chimpanzee sample ranged from .05–.66, which as
discussed earlier, can weaken subsequent correlations. It is not
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entirely clear how or if this was controlled for in their subsequent
analyses.

Another group of researchers used a modified version of the
PCTB and found evidence of a g factor in chimpanzees using
principal component analysis (PCA) that was stable across 2 years
and was heritable, consistent to what is seen with humans (Hop-
kins et al., 2014). However, it is unclear how much variance in
performance is explained by this g like factor in chimpanzees or if
the modified version of the PCTB changed the task reliabilities.
Additionally, while age and sex were collected as potentially
confounding variables, it is not clear if any personality measures,
like boldness, were taken. Using the same data set, a follow up
study used different statistical techniques and confirmed both the
presence of a single factor and its heritability, but it is still unclear
how much variance is explained by this factor (Woodley of Menie
et al., 2015). In an attempt to resolve the discrepancy in results, a
reanalysis combined both data sets (Kaufman, Reynolds, & Kauf-
man, 2019). Using CFA, they found evidence for a g factor and
group factors for chimpanzees and children, however, the exact
structure of these factors was different between the two species.
Additionally, it was unclear how much variance in performance
was explained by g. For chimpanzees, they confirmed that this was
relatively stable over time, though performance tended to improve
during the second test. They reported that the stability coefficient
for the PCTB was .5 compared with .96 for FSIQ tests given to
children.

Evidence of g has also been found in cotton-top tamarins and
orangutans using different test batteries for each (Banerjee et al.,
2009; Damerius et al., 2019). The tamarins were tested on 11 tasks,
including social tracking, reaching, and reversal learning (Banerjee
et al., 2009). Participation in all tasks was voluntary. Data were
collected in the form of ranks and Bayesian latent variable analysis
was used. Using this method, they found evidence for a g factor,
but no evidence for distinct group factors. They acknowledge,
however, that the lack of group factors could have been because of
low levels of reliability for some of the tasks. The orangutans were
tested on five tasks, including response inhibition, causal reason-
ing, and reversal learning, all showing high levels of variability
(Damerius et al., 2019). Using PCA, one factor was extracted that
explained 31.28% of the variance in performance and all tasks
loaded onto this factor, similar to what is seen in humans. While
this research was conducted with orangutans at rehabilitation cen-
ters, there was variation in how much of their development oc-
curred in the rehabilitation center versus the wild, which was
related to differences in noncognitive factors. For nonwild sub-
jects, there was a positive relationship between curiosity and g.

Rhesus macaques have also been given a test battery that in-
cluded six tasks, including delayed nonmatch to sample (DNMS)
and reversal learning, but the goal of this study was to determine
if there were age related cognitive declines in this species (Hern-
don et al., 1997). Using PCA, the first component extracted ac-
counted for 48% of the overall variance, but was significantly
negatively correlated with age, indicating that older subjects per-
formed worse on all tasks. While g is stable across individuals over
time in human populations, there is evidence for age related
declines in cognitive abilities, and that these declines are indepen-
dent of g (Gow et al., 2011). The relationship between g and
age-related cognitive decline is complicated and outside of the
scope of this review article, but the research by Herndon et al.

(1997) indicates that it is likely that rhesus macaques have a g like
factor.

One of the key differences from human research in test batteries
for nonhuman primates and other species is the inclusion of social
tasks (Banerjee et al., 2009; Herrmann et al., 2010; Hopkins et al.,
2014; Table 1). In human research, intelligence and social ability
appear to be separable domains and dissociable. People can show
an impairment in social ability while performing normally on IQ
tests, and vice versa (Adolphs, 1999). When humans with intact
and normal brain functioning were tested on both measures of g

and social knowledge, the correlation between the two measures
was quite low (Derksen, Kramer, & Katzko, 2002). Nevertheless,
this low correlation could also result from comparing the subjec-
tive self-report measure of social knowledge to the more objec-
tively measured g (Derksen et al., 2002). Studies with human
children and adolescents indicate that general intelligence and
“Theory of Mind,” or the ability to understand the mental state of
another, are independent (Cavojová, Mikusková, & Hanák, 2013;
Rajkumar, Yovan, Raveendran, & Russell, 2008), but these pop-
ulations are older than the participants tested by Herrmann et al.
(2007, 2010). For nonhuman primates, inclusion of six social tasks
in the PCTB also failed to find a g factor (Herrmann et al., 2010).
Others suggest, based on reanalysis of these data, that these social
tasks could be equivalent to Gc, the cultural-knowledge group
factor seen in humans (Kaufman et al., 2019). This suggestion is
premature, however, given that the operational definition and
assessment of Gc in humans varies widely across labs (Kan et al.,
2011; Keith & Reynolds, 2010; Schipolowski et al., 2014). The
relationship between social ability, cultural knowledge, and gen-
eral cognitive abilities should be tested more thoroughly in humans
throughout the life span to better establish their relationship.

Mice

The cognitive abilities for mice have been heavily explored by
Locurto, Galsworthy, and Matzel (see Table 1). Test batteries
typically include measures of WM, associative fear learning, ol-
factory discrimination, and spatial memory, though the content and
quantity of tasks varies. Unlike primate test batteries, mouse
batteries frequently include measures of anxiety and overall activ-
ity levels, likely because these emotional responses are frequently
studied in mice, especially in connection to fear learning and drug
effects. Across a series of experiments, Locurto et al. (2003) and
Locurto et al. (2006) devised cognitive test batteries for mice
consisting of a visual nonmatch to sample (NMTS) task, spatial
NMTS, spatial learning (Hebb-Williams Maze), detour problems,
WM, place learning, olfactory learning and discrimination, fear
conditioning, and operant acquisition. Briefly, the WM tasks have
been a four (Locurto et al., 2006) or eight-arm radial maze and a
variation of the radial maze task called the 4 � 4 task (Locurto et
al., 2003). In the radial arm maze, there is a central platform with
n enclosed arms radiating from it. Each arm contains a food reward
and the subject is allowed to freely sample any arm at any time.
Subjects entering an arm and failing to obtain the reward or
entering an arm again after already obtaining the food reward were
counted as WM errors. The 4 � 4 task also took place in the
eight-arm radial maze. In the first phase, four of the arms con-
tained a food reward, while the other four were blocked off. Once
the animal had sampled all of the rewards, they were removed
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from the maze for 30 s. In the second phase, all of the arms were
open, but only the four previously blocked arms were baited.
Entering arms that had been rewarded in the first phase, entering
the same arm twice in the second phase, and entering an arm for
the first time, but failing to obtain the food reward were all counted
as errors. The control procedures measured activity levels on land
and in water in an open field chamber, and a light-dark preference
test. The number of transitions in the light-dark chamber and the
distance traveled in the open field chamber was termed activity.
The time spent next to the wall in the open field chamber nega-
tively correlated with the number of center crosses in the open
field chamber. Together they were counted as an anxiety measure.
The same control procedures were used with all cognitive test
batteries (Locurto et al., 2003; Locurto et al., 2006).

For the research conducted in 2003, the subjects were trained on
the cognitive tasks until their performance reached asymptote.
Multiple dependent measures were taken from each task and an
aggregate score was used in the analysis, which had a reliability of
.88. The average correlation between the cognitive tasks, however,
was .12. When the correlational matrix of cognitive tasks and
control measures was subjected to PCA, multiple independent
factors were extracted (Locurto et al., 2003). In the follow up study
of 2006, subjects were given fewer trials on the cognitive tasks,
and only one dependent measure was used in subsequent analyses.
This reduced reliability to .54 in Experiment 1 and .58 in Exper-
iment 2. The average correlations between the learning tasks for
these experiments were �.03 and .15, respectively. The authors
state, “The relatively low reliabilities in the present study contrib-
uted to the relatively low average correlations observed,” yet it
does not appear as though these correlations were corrected for
measurement unreliability (Locurto et al., 2006 p. 382). PCA,
including the control measures, revealed a similar result, where
multiple independent factors were extracted.

Other researchers have not had similar results, even when using
the some of the same tasks. Galsworthy and colleagues have also
tested mice on a diverse battery of cognitive tests, but have found
evidence for g. In 2002, Galsworthy et al., tested mice with two
measures of spatial learning (Hebb-Williams and Morris water
maze), spontaneous alternation in a T-shaped maze, a detour task,
contextual memory, and a problem-solving task. Multiple depen-
dent measures were used in the correlational matrix for some of
these tasks. The reliabilities of these tasks ranged from .68–.84.
The control procedures measured anxiety with an open field arena,
defecation in testing environments, and latency to swim to a visible
platform. A correlation matrix with all of the cognitive tasks and
the spontaneous alternation task revealed that a majority of the
tasks were positively correlated, and some of the positive correla-
tions were nonsignificant, with an average correlation of .2. When
a PCA was conducted, the first component explained 31% of the
total variance in performance. A separate PCA was conducted on
the measures of anxiety. They found that the first component could
explain 46% of the variance in anxiety, but this component did not
significantly correlate with any of the cognitive measures or their
g-like factor.

In a follow-up study, Experiment 1 used essentially the same
test battery, but for Experiment 2 it was expanded to include a
spatial reversal in the Morris water maze, a water plus maze, novel
object exploration, and an additional problem-solving task (Gals-
worthy et al., 2005). Additionally, in Experiment 2, many of the

tasks were shortened. For these experiments only one dependent
measure per task was used in the correlational matrix and an
aggregate performance score was used when appropriate. Reli-
abilities were only reported for each dependent measure, however,
not the aggregate. For Experiment 1, reliabilities ranged from
.47–.87, and in Experiment 2 they ranged from .03–.78. The mean
correlation was .18 and .06, respectively. A principal component
factor analysis (PCFA) resulted in one factor that could account for
32% of the variance in Experiment 1, and 19% of the variance in
Experiment 2. They acknowledge that the low task reliabilities
could have attenuated the subsequent g factor, but did not indicate
that the correlations had be corrected to compensate for this
(Galsworthy et al., 2005 p. 688).

Studies conducted in Matzel’s lab used a test battery that con-
sisted of egocentric navigation (Lashley III maze), passive avoid-
ance, spatial learning (Morris water maze), odor discrimination,
and fear conditioning (Kolata et al., 2005; Kolata et al., 2007;
Kolata et al., 2008; Matzel et al., 2003; Sauce, Wass, Smith, Kwan,
& Matzel, 2014). These tasks were administered in such a way to
ensure variability between subjects and capture differences in
learning (Kolata, Light, & Matzel, 2008) An open-field arena was
used to determine anxiety and activity levels. An analysis similar
to Galsworthy et al. (2002, 2005) was conducted. Performance on
the cognitive tasks showed a uniformly positive correlational ma-
trix and PCA extracted one component that explained 38% of the
variance (Matzel et al., 2003). When the behavior in the open field
was analyzed, only the amount of time spent away from the walls
was significantly related to the general factor. This type of behav-
ior, spending time in the open part of the open-field arena, is
thought to reflect novelty seeking. As with humans, subsequent
studies found this factor to correlate with WM, which was assessed
with two 8-arm radial mazes (Kolata et al., 2005; Sauce et al.,
2014). This factor also correlated with performance on a mouse
version of the Stroop task (Kolata, Light, Grossman, Hale, &
Matzel, 2007). In humans, such a relationship has received only
mixed support, however, it is underexplored (Friedman et al.,
2006; Polderman et al., 2009). Pooling across prior data sets (n �

241) produced a sample size with substantially more power. With
this sample, the average correlation was .22, a magnitude similar
to what they had found in the individual studies, but they did not
report the task reliabilities. PCA confirmed a general factor that
accounted for 38% of the variance and identified a potential group
factor of spatial ability (Kolata et al., 2008). This strengthens the
similarity between humans and mice in the structure of cognitive
abilities.

To recap, for mice, one lab has had consistent success in
capturing a general factor for cognition using their test battery
(Kolata et al., 2005; Kolata et al., 2007; Kolata et al., 2008; Matzel
et al., 2003; Sauce et al., 2014), while other labs have had more
inconsistent results (Galsworthy et al., 2002; Galsworthy et al.,
2005; Locurto et al., 2003; Locurto et al., 2006; Table 1). One key
difference comes from how control measures are incorporated into
the data analysis. When the control measures are entered into the
factor analysis, a g factor is not extracted (Locurto et al., 2003;
Locurto et al., 2006). When the control measures are subjected to
a separate factor analysis, and a correlational analysis is used to
determine if the factors are related, typically a g factor that can
account for approximately 30% of the variance is found (Galswor-
thy et al., 2005; Kolata et al., 2008; Matzel et al., 2003). The latter
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is the method of correlated vectors, and while some human re-
searchers have advocated for its use (Jensen & Weng, 1994) other
researchers have identified potential issues with its use (Ashton &
Lee, 2005; Wicherts, 2017). It is also not always clear why certain
dependent measures are being collected in cognitive tasks with
mice (Locurto et al., 2006). Unlike in human intelligence tests
where there is one dependent measure for each task, with mouse
studies multiple measures are typically collected. If the rodent g is
as robust as the human g, we would expect to see a similar positive
correlational matrix in each species, regardless of task battery
composition or dependent measures collected. When constructing
test batteries for humans, however, tasks are chosen specifically
because they are known to load highly onto g, and avoided if they
do not. This bias could artificially strengthen the correlation be-
tween tasks (Locurto et al., 2006). The discrepancy between Gals-
worthy’s, Locurto’s, and Matzel’s labs in data analysis and success
in finding a general factor should be investigated further, possibly
by standardizing certain methods to ensure minimum between lab
variation.

Avian Species

The structure of cognition has also been explored in a wide
variety of avian species, including song sparrows (Anderson et al.,
2017; Boogert et al., 2011), robins (Shaw et al., 2015), spotted
bower birds (Isden et al., 2013), and Australian magpies (Ashton
et al., 2018; Table 1). Given the more distant relationship between
birds and mammals (�350 mya), investigation of g in birds could
provide insight into the phylogenetic depth of general intelligence
(see Figure 2). Similar results across birds and mammals could
also result from convergent evolution, where a general cognitive
factor evolves independently across multiple species because of
similar environmental conditions or social structures. Likewise,
since research with birds, especially pigeons, often uses similar
methods and procedures as used in human cognitive research (e.g.,
behavioral psychophysics experiments using visual touchscreen
operant chambers), birds provide a powerful tool, similar to non-
human primates, with which to tease apart the relationship between
g and its underlying cognitive components. For nonpigeon avian
research, test batteries typically consist of acquisition of novel
operant behavior, discrimination learning, reversal learning, spa-
tial/reference memory, and response inhibition (see Table 1). Re-

sponse inhibition is assessed with a detour tube task. In this task,
subjects are presented with a transparent tube with a visible food
reward inside. The tube is positioned such that the subject must
inhibit the direct approach to the food, and instead move away
from the reward to access it from the side of the tube (Kabadayi,
Bobrowicz, & Osvath, 2018; van Horik et al., 2018).

Wild male song sparrows were administered the motor learning,
color association, color reversal, and the detour task in a laboratory
environment. The number of songs in their repertoire was also
collected. Song learning is thought to encompass cognitive abili-
ties because of the process of learning songs from other males,
directly or through recordings, during the critical period early in
life. Once males reach sexual maturity, they produce crystalized
song typical of adults of that species. If song learning was influ-
enced by general cognitive ability, it would be a potential mech-
anism for mate choice for cognition (Boogert et al., 2011). The
correlational matrix for the cognitive abilities was not uniformly
positive and the average correlation was .248. PCA extracted two
components, where the first component accounted for 45% of the
variance and the second component accounted for 33% of the
variance. The color association and color reversal learning tasks
loaded positively onto the first factor, the motor learning task had
a weak negative loading, and detour performance had a strong
negative loading. This negative loading indicates that the detour
tube task is measuring something different compared with the
other tasks. Song repertoire size showed a complicated relationship
with these cognitive tasks. Larger song repertoires were associated
with faster performance on the detour task, but slower performance
on the reversal learning task. Song repertoire size was negatively
correlated with detour performance, however, meaning that birds
with a larger repertoire were faster at the detour task. The research-
ers acknowledge that differences in noncognitive factors like per-
sonality and experience could have influenced performance on
these measures and be a potential factor in why a g like factor was
not found.

A similar test battery, but with the inclusion of a spatial/
reference memory task, was given to hand-reared male and female
song sparrows (Anderson et al., 2017). Two measures of song
accuracy were assessed in addition to repertoire size. The corre-
lational matrix was not uniformly positive and many correlations
were weak. The average correlation for males (n � 19) was .101,
but this actually decreased to .036 when females were added to
create a larger sample size (n � 38–41). PCA was conducted with
the correlational matrix from the male subjects and two compo-
nents were extracted from this test battery. Similar to the results
with the wild population, the color association, reversal, and spa-
tial learning task loaded positively onto the first component, but
the detour task loaded negatively (Anderson et al., 2017; Boogert
et al., 2011). All measures of song performance were positively
correlated but, in contrast to the wild population, better perfor-
mance on color reversal was associated with higher song quality
while better performance on the detour task was associated with
poorer song quality. This further emphasizes that cognitive abili-
ties in sparrows do not show a uniform relationship (Anderson et
al., 2017; Boogert et al., 2011). While these studies did not allude
to task reliability, a follow up study investigated the consistency of
performance across time (Soha, Peters, Anderson, Searcy, & No-
wicki, 2019). Subjects were tested once a year for 2 or 3 years on
the test battery used by Anderson et al. (2017). Performance and

Figure 2. A cladogram of the species reviewed that have been given
cognitive test batteries.
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relative rank were not consistent across years for males or females,
with the average correlation across time being .13. The relation-
ship that cognitive performance had with measures of song accu-
racy also varied across years. This variance over time makes
interpreting the initial studies difficult.

Research with other avian species has produced similar corre-
lational matrices to what was found with song sparrows, though
with stronger evidence for a general cognitive factor. Bower birds
were given a problem-solving task, where they had to remove a
novel barrier, novel motor learning, color discrimination and re-
versal, shape discrimination, and spatial memory. A majority of
the correlations were positive and the average correlation was .26.
PCA extracted two components, where all tasks loaded positively
on the first component and it accounted for 44% of the variance,
indicating a general factor. Whether this general factor was related
to mating success was also studied. Male bower birds build elab-
orate nests (bowers), which appears to be a cognitively demanding
task, to attract mates. Similar to song sparrows, if this nest building
ability is generally related to performance on other cognitive tasks,
it could be used as a signal by females for mate selection. Yet, no
consistent relationship between mating success and cognitive mea-
sures has been found (Isden et al., 2013). Wild robins were
administered the same test battery as described by Anderson et al.
(2017). A majority of the correlations were positive, with an
average of .158, and PCA extracted two components. All tasks
loaded positively onto the first component and it accounted for
34.46% of the total variance. The loadings onto the first compo-
nent were strengthened after removing potential noncognitive con-
founds, like innate color preference (Shaw et al., 2015). However,
the reliability of these tasks was not given.

A study with Australian magpies administered the same test
battery that was given to song sparrows (Anderson et al., 2017)
and robins (Shaw et al., 2015), though time to learn a novel motor
behavior was not included in the correlational matrix or the PCA.
They found uniformly strong positive correlations among cogni-
tive tasks, with an average correlation of .465, and when given
similar tasks 2 weeks later, performance was very reliable (.806–
.975). PCA extracted one component that explained 64% of the
variance in performance. Group size was related to this factor,
where subjects living in larger groups performed better on these
cognitive tasks. Furthermore, maternal cognitive ability was found
to be the best predictor of reproductive success as measured by the
number of fledglings produced and the number that survived to
adulthood (Ashton et al., 2018). This contrasts with earlier studies
that had only looked at the mating performance of males (Ander-
son et al., 2017; Boogert et al., 2011; Isden et al., 2013).

Thus, as with nonhuman primates and mice, evidence for g in
avian species has yielded mixed results. In the song sparrow,
performance on the detour task has a negative loading on the first
factor extracted (Anderson et al., 2017; Boogert et al., 2011).
Negative loadings are not seen in human studies of intelligence
unless better performance is measured in the opposite direction of
the other tasks (Jensen, 1998). In contrast, for the remaining
species, robins, spotted bower birds, and Australian magpies,
performance on all tasks showed positive loadings on the first
factor and the first component accounted for an average of 47% of
variance in performance (Ashton et al., 2018; Isden et al., 2013;
Shaw et al., 2015). The detour task itself could be the reason for
the different pattern of results. Follow-up studied with robins and

pheasant chicks found that better (i.e., healthier) body condition
and experience with transparent objects reduced the number of
ineffective pecks to the transparent wall (Shaw, 2017; van Horik et
al., 2018). Noncognitive factors could be influencing performance
on the detour task and obscuring a general factor in sparrows.

It is also possible that these species are under different evolu-
tionary pressures that has created differences in how cognitive
abilities are related. The predictive value of g in humans has been
strongly linked to outcomes that are the products of cultural
evolution that themselves can vary substantially across individual,
such as occupation and education attainment. Thus, exploring g in
an ecological/evolutionary context could help illuminate why cer-
tain tasks load more highly onto g than others. Avian species that
show nonsignificant positive and negative correlations on these
cognitive tasks might be under different evolutionary pressures
than those showing significantly, uniformly positive correlations.
Evolutionary theories are elaborated on later, but briefly, Australia
is home to spotted bower birds, which has a weak correlational
matrix, and magpies, which has uniform, positive correlations.
These species differ in terms of how they interact with conspecif-
ics and humans, with bower birds being more isolated, which
could be driving differences in how performance on these tasks are
related (Ashton et al., 2018; Isden et al., 2013). The consistency of
the test batteries given to these different avian species makes it
easier to theorize about which factors are causing the differences in
performance, a strength of the studies conducted so far. Testing
wild subjects allows for a more nuanced understanding of how
cognitive ability can impact reproduction and survival, and how
this could interact with environment and social structure.

One species that is conspicuously absent from avian studies of
intelligence is the pigeon. This is surprising given their long
history as research subjects in psychology. Pigeons show evidence
of cognitive processes typically studied in human and nonhuman
primates, such as abstract reasoning (Blaisdell & Cook, 2005; Katz
& Wright, 2006), rule learning (Garlick, Fountain, & Blaisdell,
2017), WM (Cook & Blaisdell, 2006; Kangas, Berry, & Branch,
2011; Lind, Enquist, & Ghirlanda, 2015), associative learning
(Cook, Levison, Gillett, & Blaisdell, 2005), artificial grammar
learning (Herbranson & Shimp, 2008), inhibition of return (Cook,
Katz, & Blaisdell, 2012), memory interference dynamics (Wright,
Santiago, Sands, Kendrick, & Cook, 1985), and choice RT (Vick-
rey & Neuringer, 2000). Often these cognitive processes are as-
sessed in similar ways in pigeons as they are in human and
nonhuman primates facilitating cross species comparisons. These
cognitive processes seem to be supported by similar neuroanat-
omical structures, indicating that there is some restriction on how
certain cognitive abilities evolve (Colombo & Broadbent, 2000;
Colombo & Scarf, 2012; Divac, Mogensen, & Björklund, 1985;
Güntürkün, 2005). These similarities suggest that, if pigeons were
given a comprehensive test battery, a g factor would emerge.
Frequently, pigeon researchers use the same subjects across mul-
tiple experiments, so it is likely that many labs already have
assessed subjects on a variety of cognitive tasks, making it even
more surprising that no lab has yet correlated their performance on
different tasks. We are currently assessing pigeons on a test battery
to measure g, with the addition of a novel reasoning task—a
modified version of the RPM (mRPM; Flaim & Blaisdell,
2020)—an assessment of Gf in humans (Raven, 2008). This factor
loads highly onto g, yet is completely absent from any study in
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nonhumans. Briefly, for the mRPM task, subjects must learn an
abstract rule to identify the rewarded stimulus, and transfer learn-
ing of that rule to novel stimuli. Preliminary results indicate that
the mRPM is sensitive to individual differences in rule acquisition
and transfer (Flaim & Blaisdell, 2020).

Discussion

Most animal studies have revealed a similar cognitive structure
as found in humans. Nevertheless, weaknesses in animal test
batteries make it difficult to determine if they extract the same
factor across species. Test batteries for nonhuman animals some-
times assess abilities that are underexplored in humans. In primate
studies, for example, social tasks are frequently included (Derksen
et al., 2002), while avian batteries always include a measure of
inhibition—both of which are underexplored in humans (Demp-
ster, 1991). Even when the same cognitive abilities are tested, the
methods are vastly different. The eight-arm radial maze is com-
monly used in animal studies of WM, but this is not the way WM
is assessed in human studies of g (Conway et al., 2005). WM is
theorized to have domain general properties that would result in
similar performance across specific task stimuli, as long as the
tasks had similar demands (Unsworth et al., 2009). The eight-arm
radial maze appears as though it has similar task characteristics to
the WM tasks given to humans, since the subject has to maintain
and update a list of locations within the trial. This would indicate
that it is a valid measure to investigate WM across species, even
though the particular task format has been designed to take advan-
tage of the rat’s species-specific tendencies. Nevertheless, as dis-
cussed earlier, WM is unlikely to be a unitary construct. Different
aspects of WM have been emphasized in the different tasks used
with humans, and each underlying aspect has shown a relationship
with g (Kane et al., 2007; Unsworth & Engle, 2007; Unsworth et
al., 2009). One group of researchers has investigated how these
different aspects of WM are related to the g factor in mice,
providing further evidence that WM and its relationship to g is
similar across species (Kolata et al., 2007), but more research
needs to be conducted before forming strong conclusions. Human
performance on an eight-arm radial maze should be compared with
more traditional measures of WM and measures of g in nonhumans
(Astur, Tropp, Sava, Constable, & Markus, 2004). Research with
nonhuman animals should investigate WM with a broader array of
tasks to determine if it also shows similar domain general proper-
ties and specific underlying processes (Kolata et al., 2007; Shaw &
Schmelz, 2017).

Associative learning tasks pose a similar issue. In avian studies,
with the exception of the study by Cook et al. (2005), studies of
associative learning typically involve the acquisition of two asso-
ciations (Anderson et al., 2017; Ashton et al., 2018; Boogert et al.,
2011; Isden et al., 2013; Shaw et al., 2015). While underexplored,
this type of associative learning task does not show a significant
relationship with intelligence in humans, in children or adults
(Plenderleith, 1956; Stevenson & Zigler, 1957). The associative
learning tasks that are sensitive to differences in cognitive ability,
the paired associates and three-term contingency tasks, have
10–30 unique stimulus pairs, placing more demands on learning,
memory, and retrieval systems (Alexander & Smales, 1997; Kauf-
man et al., 2009; Tamez et al., 2008; Williams & Pearlberg, 2006).
Differences in task design are expected when conducting compar-

ative studies to accommodate different physical and sensory ca-
pabilities, in addition to other factors like motivation (Macphail,
1987). As mentioned earlier, this means different species will need
different parameters to ensure that performance is an adequate
reflection of cognitive ability, but greater care should be taken to
ensure that the underlying construct is the same (see Wright et al.,
1985 for a beautiful demonstration of this using the comparative
method of systematic variation; Bitterman, 1975).

Task purity is also a problem, with some tasks included in the
batteries unduly influenced by personality, subject experience,
experimental conditions, and physical health (Boesch, 2007; Ka-
badayi et al., 2018; Shaw et al., 2015; Sorato, Zidar, Garnham,
Wilson, & Løvlie, 2018; van Horik et al., 2018). Finally, tests
included in the battery should show high amounts of variability
between subjects, but high reliability within subject. Deficits in
either of these elements will hinder detection of a g factor (Carroll,
1993; Jensen, 1998). Some tasks in the PCTB have low levels of
between-subjects variation, which may contribute to the difficulty
in uncovering a general factor (Burkart et al., 2017; Herrmann et
al., 2010). In the test batteries for sparrows and mice, low levels of
reliability may have attenuated correlations and weakened the
general factor found (Cauchoix et al., 2018; Fan, 2003; Galsworthy
et al., 2005; Soha et al., 2019). Low reliabilities attenuating the
subsequent correlations were often mentioned in these experi-
ments, yet these correlations were not corrected to compensate for
this issue. For these species, however, the reliability and variability
may not be an issue entirely with the tasks, but with the subjects.
Task reliability will be higher in populations with higher variance
in their true scores, that is, their scores independent from random
error. Populations with higher true variance could produce a stron-
ger g factor because there is more variance available to be ac-
counted for. While tasks still need to be carefully constructed to
show between-subjects variability on the one hand, and within
subject reliability on the other hand, potential differences in true
variance across species should be kept in mind.

When a general factor has been found in nonhumans, the cor-
relational matrix across task performance is not as robust as what
we see in humans (Banerjee et al., 2009; Carroll, 1993; Galsworthy
et al., 2002; Galsworthy et al., 2005; Herndon et al., 1997; Hopkins
et al., 2014; Isden et al., 2013; Jensen, 1998; Kolata et al., 2005;
Kolata et al., 2007; Kolata et al., 2008; Matzel et al., 2003; Matzel
et al., 2006; Shaw et al., 2015; Woodley of Menie et al., 2015; but
see Ashton et al., 2018). This is especially problematic when PCA
is used to extract a g factor. PCA uses the total variance in the
extracted components, even unique and error variance. This can
result in overestimating the amount of variance the first extracted
component can explain (Jensen & Weng, 1994). Some of the
studies yielding poor correlational matrices used PCA, which may
have overestimated general cognitive ability in animal studies
(Galsworthy et al., 2002; Galsworthy et al., 2005; Isden et al.,
2013; Matzel et al., 2003; Shaw et al., 2015; Table 1). This is not
to dismiss the g factors that have emerged from weaker correla-
tional matrices, but we need to understand why the correlations
from nonhuman studies tend to be weaker. This could be because
of low task reliability, as mentioned earlier. Sample size, however,
is another factor impeding strong correlations, as most animal
studies are underpowered (Banerjee et al., 2009; Galsworthy et al.,
2002; Galsworthy et al., 2005; Herndon et al., 1997; Hopkins et al.,
2014; Isden et al., 2013; Matzel et al., 2003; Matzel et al., 2006;
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but see Kolata et al., 2008). For PCA and other methods of factor
analysis, it is recommended that there should be at least 10 subjects
for each measure, but few studies have achieved this ideal (Burkart
et al., 2017; Costello & Osborne, 2005; Yong & Pearce, 2013).
Some researchers have compensated for this by comparing empir-
ical results to the results of a random bootstrapping procedure or
randomly simulated data sets (Ashton et al., 2018; Damerius et al.,
2019; Shaw et al., 2015), though this is not common practice.
Another potential factor is the subject sample. Because the factors
are extracted to explain variance in performance, the subject pop-
ulation must be heterogenous (Burkart et al., 2017; Yong &
Pearce, 2013). Animal studies often lack heterogeneity, such as
when studies of wild animals only test males (Isden et al., 2013),
or bold individuals low in neophobia (Shaw & Schmelz, 2017). In
lab environments, although outbred strains of mice are used, they
are reared in nearly identical conditions; thereby, diminishing
interindividual variance (Galsworthy et al., 2002; Kolata et al.,
2005; Matzel et al., 2003). Environmental factors can make im-
portant contributions to cognitive abilities (Light et al., 2010;
Neumann, Murphy, Gewa, Grillenberger, & Bwibo, 2007; Nisbett,
2009). Thus, the strength of strong environmental control of lab-
oratory populations is also a weakness. A recent study showed that
when mice were exposed to an enriched environment for 2 weeks,
their performance on a cognitive test battery improved (Sauce et
al., 2018). Factors like environmental conditions and population
characteristics should be further explored to understand how they
could be affecting performance on cognitive tasks.

Given the strong interest in general intelligence in humans,
establishing methods for identifying a g factor across diverse
species should be a top priority of comparative cognition research.
The cognitive abilities of many species are starting to be formally
recognized and tested, but understanding how those abilities are
related to each other remains a mystery. Under what conditions
will species show evidence for general cognitive ability versus
distinct and nonoverlapping cognitive abilities? What are the costs
and benefits of having a generalized versus specialized system?
Social structure/group size, diet, and environmental complexity/
variability have all been proposed as determinants of cognitive
abilities (Ashton et al., 2018; Herrmann et al., 2007; Mettke-
Hofmann, 2014; van Horik & Emery, 2011). Group size, for
example, has been theorized to increase cognitive abilities because
larger groups put more demands on learning about and remember-
ing more individuals, including their status within the group, and
interindividual interactions (van Horik & Emery, 2011). A weak
correlational matrix was found in spotted bower birds (Isden et al.,
2013), for example, while the correlational matrix found in the
Australian magpies was stronger (Ashton et al., 2018). While these
species show many behavioral similarities, including vocal imita-
tion, sedentary lifestyle, and diet; they differ in their social inter-
actions, breeding behaviors, and parenting. In bower birds, females
select males based on bower attributes and mating display, but
males do not assist with parenting (Isden et al., 2013). Addition-
ally, there is evidence to suggest that interaction with conspecifics
occurs primarily during breeding and mating in the form of com-
petition, but less research has been published on bower bird
behavior outside of bower activities (Madden, 2008). By contrast,
Australian magpie groups involve complex social behaviors,
where members help to provision nestlings that are not related to
themselves (alloparenting), and work together to defend their

territory from predators and out-group members (Farabaugh,
Brown, & Hughes, 1992; Finn & Hughes, 2001). The difference in
social complexity might contribute to the different strengths of the
correlational matrices in these two species. Group size can also
explain differences in g within species as well. Within the Aus-
tralian magpies, Ashton et al. (2018) found that cognitive perfor-
mance improved as group size increased. This supports the idea
that larger, more complex social groups are more cognitively
challenging, thereby enhancing cognitive abilities of its members,
but its potential explanatory value for magpies does not necessarily
mean it will be able to explain differences across species. En-
hanced cognition could be general (Ashton et al., 2018), or be
restricted to social cognition. Herrmann et al.’s (2010) findings,
and the low correlations between g and social ability in humans,
suggest little effect of social complexity on g. Nevertheless, nu-
ances within group size and social dynamics could help elucidate
why these different results are found (Holekamp, 2007; Shultz &
Dunbar, 2006).

Other researchers have argued that diet plays a substantial role
in shaping cognitive abilities and brain function (DeCasien, Wil-
liams, & Higham, 2017; Holekamp, 2007; Mettke-Hofmann, 2014;
but see Allen & Kay, 2012). Having a varied diet (e.g., omnivorous
or frugivorous) is associated with larger brains and/or higher
cognitive abilities compared with species with specialized diets
(e.g., folivorous). This could be because of increased demands on
learning and memory systems posed by an omnivorous diet, im-
proved diet quality, or the combination of the two. Nevertheless,
research on the role of diet on cognition usually focuses on a single
cognitive ability, such as innovation, or uses brain size as a proxy
for cognition, rather than measuring g (Chittka & Niven, 2009;
Roth & Dicke, 2005; Snodgrass, Leonard, & Robertson, 2009; Sol,
Sayol, Ducatez, & Lefebvre, 2016). There is also evidence that
habitat complexity can influence brain size and rates of learning
(Mettke-Hofmann, 2014; Sayol et al., 2016; Schuck-Paim, Alonso,
& Ottoni, 2008). These influences are not necessarily mutually
exclusive, and may interact in their contribution to natural behav-
ior (Lefebvre & Sol, 2008; Mettke-Hofmann, 2014). It is possible
that these influences will consistently covary. In cichlid fish, for
example, environment complexity positively correlates with num-
ber of conspecifics (Pollen et al., 2007). A similar result was seen
in African Starlings, where cooperative breeding is observed more
frequently in complex environments (Rubenstein & Lovette,
2007). The potential for environment, diet, and social structure to
covary makes it difficult to determine their independent contribu-
tions to brain size or cognitive abilities. Investigating a wider range
of species could help answer this question. Noted by Holekamp
(2007), spotted hyenas have high quality diets and complex social
groups, whereas carnivorous and omnivorous bears also have high
quality diets, but are predominately solitary. A better understand-
ing of how diet, environment, and social structure impact specific
cognitive abilities and brain size will also facilitate our understand-
ing of how they relate to the underlying cognitive structure.

On the surface, it seems beneficial to have a larger brain and
more advanced cognition. Larger brains are more diverse in func-
tion and structure (Roth & Dicke, 2005). Yet, brains are metabol-
ically costly and so selection for increased brain size usually
requires specific environmental conditions and tradeoffs with other
metabolically expensive organ systems (Burkart et al., 2017; By-
rne & Bates, 2007; Chittka & Niven, 2009; Isler & van Schaik,
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2006; Iwaniuk & Nelson, 2003; Roth & Dicke, 2005). In humans,
brain size increased as our digestive tracts shrank (Aiello &
Wheeler, 1995). In birds, there is a negative correlation between
brain size and pectoral muscle mass (Isler & van Schaik, 2006).
Increasing brain size and cognitive ability is not the only solution
to meet environmental challenges, however. In birds, there is a
negative correlation between migratory distance and brain size,
where the birds that traveled the furthest had the smallest brains
(Sayol et al., 2016; Vincze, 2016). Yet, migratory birds show
better long-term spatial memory compared with nonmigratory
birds, indicating that despite having smaller brains specific cogni-
tive abilities can be selected for (Mettke-Hofmann & Gwinner,
2003). Detailed comparative studies can illuminate the conditions
that support selection for general cognitive abilities versus specific
cognitive processes (Chittka & Niven, 2009; Mettke-Hofmann,
2014).

In a comparative analysis, better performance on cognitive tasks
may not correlate with measures of fitness. In some species, fitness
is increased through the selection of traits that attract mates or
defeat rivals, yet with a concomitant decrease in brain size (Le-
febvre & Sol, 2008). For other species, while potential mates that
perform better on cognitive tasks are preferred (Chen, Zou, Sun, &
Ten Cate, 2019; Spritzer, Meikle, & Solomon, 2005), this does not
always result in increased fitness for those males or that females
will act on that preference (Spritzer, Solomon, & Meikle, 2005).

Survival is another potential correlate with better cognitive
performance in animals (Sol, Bacher, Reader, & Lefebvre, 2008;
Sol, Székely, Liker, & Lefebvre, 2007), though this correlation is
not always found (Kotrschal et al., 2015). There is evidence for a
complicated interaction between cognitive abilities and personality
that could result in equivalent rates of survival despite differences
in cognitive abilities across individuals (Mazza, Eccard, Zaccaroni,
Jacob, & Dammhahn, 2018; Mettke-Hofmann, 2014). In great tits
(Parus major), a species of song bird, individuals who were more
competitive in maximizing a particular food resource during win-
ter performed more poorly on a problem-solving task compared
with less competitive individuals (Cole & Quinn, 2012). Although
intelligence is predictive of health and longevity in humans (Mur-
ray, Johnson, Wolf, & Deary, 2011), in modern societies this is
more dependent on navigating environments that humans have
created (especially schooling), not those created by the natural
environment (Flinn, Geary, & Ward, 2005). No other animals have
created, then subsequently had to resist, high-fat and high-sugar
foods to prevent disease states. Understanding how cognitive abil-
ities are related to survival in nonhumans will require the integra-
tion of multiple factors, including how cognitive abilities are
interrelated. Species that show evidence for more interrelated
cognitive abilities may have different interactions with noncogni-
tive factors, like personality.

Another strength of animal research is that it could inform on
different aspects that influence or are correlated with human in-
telligence. The benefit of using lab animals is they provide more
control over biological factors which can be independently manip-
ulated. The ability to closely monitor or manipulate brain function
or genetics in animals can help elucidate which genes, brain
regions, neural connections, and neurotransmitters are involved or
correlated with cognitive functions, including g (Plomin, 2001;
Matzel, Sauce, & Wass, 2013). Animal models have already
identified some neurobiological correlates related to cognitive

ability, such as the importance of dopamine receptor function in
mice (Wass et al., 2013; Wass et al., 2018), and cortical thickness
and brain size in chimpanzees (Hopkins, Li, & Roberts, 2019). As
animal test batteries improve, is it likely that more neurobiological
correlates will not only be identified, but manipulated to help
determine their causal influence on cognitive performance.

While animal and human research investigating the physical
substrate of intelligence is important, there are some misconcep-
tions about how deterministic these neurobiological correlates are.
This is partially because some researchers have consistently stated
that differences in intelligence are because of differences in inher-
ited genes that are not sensitive to environmental factors (Jensen,
1998; Rushton & Jensen, 2005).1 This argument is sometimes
supported by heritability estimates that state intelligence is 60–
80% heritable (Bailey, 1997; Gillborn, 2016). This theory of
intelligence being determined by genes has persisted, yet the
theory is continuously criticized because of how heritability esti-
mates are calculated, and because more recent findings on the
relationship between genes and intelligence fail to support these
heritability estimates. Heritability estimates are used to determine
how much variance in a characteristic can be attributed to genetic
differences at the population level. Heritability estimates are in-
fluenced by how variable the environment is and are unique to
populations at the time of estimate, meaning the same character-
istic can have different estimates depending on who is sampled and
when (Nisbett, 2009; Sauce & Matzel, 2018; Tucker-Drob &
Bates, 2016; Turkheimer, Haley, Waldron, D’Onofrio, & Gottes-
man, 2003). These high heritability estimates for intelligence are
also difficult to reconcile with current genetic research. For most
traits, the number of genes involved in the expression is large, and
the effect size of each individual contributing gene is minute on its
own (Beauchamp et al., 2011; Chabris et al., 2012; Lango Allen et
al., 2010). Furthermore, there is no evidence to suggest that these
genes are insensitive to the environment (Bailey, 1997; Chabris et
al., 2012; DeYoung & Clark, 2012). Some researchers argue that
it is precisely a Gene � Environment interaction that could explain
both high heritability estimates and low identification rates for
specific gene variants (DeYoung & Clark, 2012; Sauce & Matzel,
2018). Heritability estimates typically over attribute variance in a
trait to genes by including the Gene � Environment interaction in
the estimate of heritability (Jensen, 1998; Sauce & Matzel, 2018).
These results indicate that it is unlikely that differences in intelli-
gence are because of immutable genetic factors. When neurobio-
logical factors related to differences in cognitive performance are
found they should not be presented as the sole and universal
contributor to differences. Reductionist arguments like these could
inadvertently perpetuate racist ideas (Gillborn, 2016; Phelan, Link,
& Feldman, 2013). Instead, these findings should be presented in
the context of environmental interactions.

Investigating how neurobiological correlates of intelligence are
related to the environment is easier with animal research because
of the amount of control a researcher has on the environment. As
mentioned earlier, short-term interventions that provide environ-

1 Many of these theories were created in attempt to explain differences
in IQ scores between races. A discussion of race, IQ, and genes is outside
the scope of this review, but please see Frank (2015); Krimsky and Sloan
(2011), and Nisbett (2009) for discussion on why it is incorrect and harmful
to posit race-based differences as innate.
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mental enrichment improve performance on a cognitive test bat-
tery in mice (Sauce et al., 2018). Short term, intensive WM
training increases dopamine (D1) receptor sensitivity and im-
proves performance on a cognitive test battery in mice, highlight-
ing the importance of even short-term interventions on biological
substrates (Wass et al., 2013). Chronic environmental conditions
and how that is related to cognitive performance could also be
investigated. Animal research has already successfully modeled
some of the environmental effects of development in a low socio-
economic status (SES) environment, including its neurobiological
consequences (Hackman, Farah, & Meaney, 2010). SES correlates
with intelligence, thus integrating these two lines of rodent re-
search (environmental and genetic manipulations) could help un-
cover the causal direction of this correlation (Brooks-Gunn, Kle-
banov, & Duncan, 1996; Hackman et al., 2010; Jensen, 1998;
Mani, Mullainathan, Shafir, & Zhao, 2013; Schmidt, 2017). Ex-
tended environmental manipulations will likely be key to under-
standing how chronic conditions impact cognitive function and the
underlying neurobiological correlates.

Humans are a language-using species, and language enables
much greater intelligence in our species than what is found even in
other highly intelligent species (Penn, Holyoak, & Povinelli,
2008). Furthermore, verbal fluency correlates positively with FSIQ
(Ardila, Pineda, & Rosselli, 2000). Thus, it is difficult to disen-
tangle the contribution of language to g. By studying nonlanguage
animal models, we can gain insight into the cognitive processes
and capacities that contribute to g that do not require, or that are
independent of language (Shaw & Schmelz, 2017; Figure 2).

Well-developed test batteries for use in different animals, in-
cluding humans, can help validate the neuroscience of g and its
related cognitive mechanisms. Finding a general cognitive factor
in animals has so far been only partially successful. Correcting
methodological issues discussed in the previous sections will im-
prove the search for a g factor in other species. Test batteries
across all species, including humans, could be modified to facili-
tate comparative research. Tasks that have been used with both
humans and other species that have not been included in test
batteries are ideal targets for development. As discussed earlier,
assessments of WM in rodent test batteries typically use an eight-
arm radial maze. Humans have been tested on a virtual radial arm
maze, but this has not been incorporated into a larger battery or
compared with more traditional measures of WM (Astur et al.,
2004; Shaw & Schmelz, 2017). Reversal learning is another ex-
ample of a cognitive task that is commonly included in animal test
batteries, and is commonly used in humans to investigate neuro-
psychiatric disorders (Izquierdo, Brigman, Radke, Rudebeck, &
Holmes, 2017); yet, is underexplored in humans in relation to g.
Furthermore, nonhuman animals should receive tasks that more
closely resemble those used to study g in humans. For example,
pigeons have shown similar RT effects on a variation of a human
task based on Hick’s Law (Vickrey & Neuringer, 2000). Including
tasks like this in a test battery for animals would allow for
increased correspondence between human and nonhuman animal
measures of g.

Test batteries should also include more tasks where animals
have to use previously acquired knowledge to solve novel prob-
lems (van Horik & Lea, 2017). Understanding how to apply
knowledge beyond the trained situation is thought to explain why
g is one of the best predictors of job performance (Schmidt, 2014).

In the test batteries given to animals, there is a debate about how
ecologically relevant those tasks should be (Burkart et al., 2017;
Herrmann et al., 2007). Nevertheless, if the goal is to discover
general cognitive abilities, then it is not clear how important it is
that the tasks in the test battery are ecologically relevant. The more
ecologically relevant a task is, the more likely that they will engage
highly conserved behavioral processes (those often labeled as
“instinctive”), with little interindividual variation (Burkart et al.,
2017). Using contrived and standardized tasks, such as in an
operant chamber, can actually help control for noncognitive fac-
tors, like environmental experience, and facilitate comparisons
across species (Clarin, Ruczyński, Page, & Siemers, 2013, but see
Shaw, 2017).

Perhaps the most important factor is that test batteries should
assess clear and separable domains of cognition as much as pos-
sible (Burkart et al., 2017; Shaw & Schmelz, 2017). Many studies,
particularly those investigating cognition in the wild, use ill-
defined tasks such as problem solving or innovation. This can
make it difficult to determine what aspects of cognition are being
used to solve the task, whether the same strategy is engaged across
subjects, and if the behaviors are related to other cognitive abili-
ties. Ultimately, there should be more communication across labs
to determine that test batteries for different species attempt to
assess the same underlying constructs, but which constructs should
receive the most focus? As reviewed earlier, in humans, WM,
processing speed, and associative learning have shown a relation-
ship to g, though the causal nature of this relationship is still
debated. These basic cognitive processes have been found in just
about all vertebrate orders, ranging from birds and mammals to
amphibians and fish. Furthermore, these core cognitive processes
reflect basic functions of vertebrate brains, often involving
collaboration across multiple circuits, such as hippocampus,
frontal cortex, and basal ganglia (Papini, 2008). By focusing on
these core cognitive processes, it is reasonable and possible to
create a comprehensive cross species test battery that could
extract psychometric g should it be present.

If psychometric g is found in a broad range of taxa, the causal
factor may reflect a deep homology of the vertebrate brain despite
species-specific brain and cognitive specializations (Güntürkün &
Bugnyar, 2016; Osvath, Kabadayi, & Jacobs, 2014). This hypoth-
esis requires testing, but such testing in turn requires the develop-
ment of a test battery that can reliably assess these core cognitive
functions across diverse species of vertebrate, from the human to
pigeon to fish. Despite our suggestion that g should be assessed
with the common set of general core cognitive processes of the
vertebrate brain, this does not reject the idea that there are species-
specific cognitive specializations found in individual species or
groups of species. As an analogy, the five-digit hand is a deep
homology found in all tetrapods, and reflects the ancestral state. As
a result, there are some common core functions of the five-digit
hand. There has also been selection for specialization in hand
structure and function, such as the opposable thumb of humans that
allows for fine motor precision, and even more extreme special-
izations for specific forms of locomotion, such as the wings of
bats, the fins of whales, and the hooves of horses—each reflecting
an adaptive specialization to each species’ particular locomotor
niche. Nevertheless, independent of these specializations, interin-
dividual variation in hand function within a species should be
readily measurable using batteries of functional tasks, such as grip

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
P

sy
ch

ol
og

ic
al

A
ss

oc
ia

ti
on

or
on

e
of

it
s

al
li

ed
pu

bl
is

he
rs

.
T

hi
s

ar
ti

cl
e

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

18 FLAIM AND BLAISDELL



strength, dexterity, and precision, or locomotor functions. Like-
wise, as we discussed above, some birds that store seeds to be
retrieved weeks or months later show specialized adaptation of
spatial memory and the supporting brain systems, in particular the
hippocampus. There is likely a complex relationship between
specialized cognitive abilities and g because of differences in
ecological constraints across species. Nevertheless, there ought to
be interindividual variation in spatial memory in a species of
food-storing birds, just as there are within a species of nonfood
storing birds, despite the fact that the food-storing species has an
overall greater spatial memory than does the nonstoring species.
Appropriate tests that assess general cognitive functions are
needed to facilitate assessments of g across a diverse array of
species. Thus, assessments should be focused on the general cog-
nitive processes, such as WM and associative learning, that are
found in all vertebrates.

It is inarguable that one factor explaining half of the variance in
performance on cognitive tests has been identified in humans
(Lubinski, 2004). This factor is a good predictor of mortality,
health, level of education, and SES. Furthermore, it is clear that
this factor is most strongly related to WM and processing speed
(see Figure 1). What this factor consists of and what underlies its
function is still under intense investigation. Better measures of a
general factor in humans and animals could be an important
effective tool to shed new light on general intelligence. Only then
can we more clearly elucidate the evolutionary and environmental
contributors to a general cognitive ability.
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