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ARTICLE INFO ABSTRACT

Keywords: Genes play an important role in children's cognitive ability through adolescence and into adulthood. Recent
POlygefliC risk scores advances in genomics have enabled us to test the effect of various genetic predispositions on measured cognitive
Educ?t}on outcomes. Here, we leveraged summary statistics from the most recent genome-wide association studies of
E&iﬁ:lmhtalth eleven cognitive and mental health traits to build polygenic prediction models of measured intelligence and
Genetics academic skills in a cohort of Australian adolescent twins (N = 2335, 57% female). We show that polygenic risk
Adolescence scores for educational attainment, intelligence, and cognitive performance explained up to 10% of the variance
Intelligence in academic skills and 7% in intelligence test scores in our cohort. Additionally, we found that a genetic pre-

disposition for ADHD was negatively associated with all cognitive measures and a genetic predisposition for
schizophrenia was negatively associated with performance IQ but no other cognitive measure. In this study, we
provide evidence that a genetic vulnerability to some mental health disorders is associated with poorer per-
formance on a variety of cognitive and academic tests, regardless of whether the individual has developed the

disorder.

1. Introduction

It is well known that different people learn at different levels of ease
and speed. Cognitive ability or intelligence can be broadly defined as an
individual's ability to learn, reason, and infer when presented with new
situations. In 1904, Charles Spearman first described a general intelli-
gence factor, termed ‘g’, to describe the observation where individuals
that score highly in one type of intelligence test, will be likely to score
high in others (positive inter-correlation) (Spearman, 1904). General
intelligence can be measured through a variety of cognitive tests that
output a standardized IQ score (Intelligence Quotient). Higher general
intelligence is correlated with a wider range of variables, cognitive and
other, than any other trait (Krapohl et al., 2016) including increased
mortality (Batty, Deary, & Gottfredson, 2007), reduced fertility (Barban
et al., 2016; Day et al., 2016) and increased risk of mental and physical
disease (Deary, Strand, Smith, & Fernandes, 2007; Hill et al., 2018). For
more than a century, scientists have attempted to understand and
identify factors that correlate with general intelligence.

A large body of literature has shown that cognitive ability is

influenced by genetics and furthermore, that the influence of genetic
factors on individual intelligence changes from childhood to adulthood
(Bartels, Rietveld, Van Baal, & Boomsma, 2002; Deary, Whalley, Lem-
mon, Crawford, & Starr, 2000; Von Stumm & Plomin, 2015). Herita-
bility estimates for intelligence increase dramatically as we age.
Heritability is estimated to be 20% in childhood, 40% during adoles-
cence and between 60 and 80% in adulthood (Finkel, Pedersen, &
McGue, 1995; Hansell et al., 2005; Haworth et al., 2009; Plomin & von
Stumm, 2018). Genome-wide association studies (GWAS) of cognitive
ability have greatly increased our understanding of the polygenic ge-
netic architecture underpinning these traits and have led to the dis-
covery of variants, genes, and biological pathways that play a role in
cognition (Visscher et al., 2017). To date, more than 200 independent
variants have been associated with general intelligence (IQ) (Davies
et al., 2018; Hill et al., 2019; Savage et al., 2018).

Intelligence is generally understood to be the ability to learn and
apply knowledge to adapt to or alter the environment (Sternberg, 2012).
Two commonly proposed types of intelligence are that of crystalized (the
ability to learn and recall) and fluid (the ability to infer and reason in
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new situations) intelligence (Cattell, 1963). Intelligence is sometimes
parsed into verbal IQ (the ability to acquire and apply verbal informa-
tion and skills to solve problems) and performance IQ (the ability to
fluently manipulate visual-spatial information to solve problems) (Blaha
& Wallbrown, 1982). The widely used tests of intelligence developed by
Wechsler assess performance in several domains, including verbal
comprehension, non-verbal reasoning, working memory, and processing
speed, which generally cluster together to provide an intelligence score
(Wechsler, 1955). Despite the identification of genetic variants associ-
ated with general intelligence, GWAS sample sizes are currently not
large enough to detect unique genetic variation specific to cognitive
domains.

The need for such large sample sizes is a result of the complex nature
of intelligence as a genetic trait, meaning that it is influenced by the
culmination of many genetic variants that each have small effect. A
commonly used proxy for intelligence is that of educational attainment
(EA)—the number of years of formal education. EA is correlated both
phenotypically (~0.50) (Plomin & von Stumm, 2018) and genetically
(~0.72) (Hagenaars et al., 2016; Lee et al., 2018; Okbay et al., 2016;
Sniekers et al., 2017; Trampush et al., 2017) with intelligence. Intelli-
gience is regarded as a combination of both cognitive and non-cognitive
factors, and is influenced by both genes and the environment (Belsky
et al., 2018; Krapohl & Plomin, 2016). Though a coarser measure than
traditional intelligence tests, the highest level of education is a common
question asked in almost all recruiting studies, and this has allowed
researchers to rapidly gain large enough sample sizes to detect genetic
variants (Single Nucleotide Polymorphisms; SNPs) with small effect. The
most recent GWAS of EA (N = ~1.1 million) identified 1271 variants
and estimated the heritability explained by common SNPs, i.e. the SNP-
based heritability, to be 30% (Lee et al., 2018). Using a large GWAS of
cognitive performance, a recent study used genomic structural equation
modelling (gSEM) to partition genetic variants associated with EA, the
most well-powered cognitive trait, into two factors representing cogni-
tive and non-cognitive components (Demange et al., 2021). This novel
approach has produced a well-powered proxy GWAS for the non-
cognitive EA factor associated with educational attainment.

The wealth of genetic information produced from GWAS has led to
the production of genetic predictors (polygenic risk scores; PRS). Poly-
genic risk scores have created the opportunity to operationalise an in-
dicator of an individual's genetic predisposition for complex traits. Such
studies have shown that PRS for intelligence or EA are able to signifi-
cantly predict educational attainment (Selzam et al., 2017a), IQ test
scores (Allegrini et al., 2019) as well as university entrance exam scores
and university enrolment (Smith-Woolley, Ayorech, Dale, von Stumm, &
Plomin, 2018) in independent samples. Aligned with the increasing role
of genetics in cognitive abilities during puberty and adolescents, PRS
have been shown to account for a cumulatively larger proportion of
variance in cognitive test scores and educational attainment between the
ages of 7 and 16 (Allegrini et al., 2019; Selzam et al., 2017b).

To date, few studies have examined the domain or subject-specific
genome-wide associations of cognitive or academic abilities (Donati,
Dumontheil, Pain, Asbury, & Meaburn, 2021; Gialluisi et al., 2019; Lee
etal., 2018; Luciano et al., 2013; Price et al., 2020), and most have small
samples for GWAS. Phenotypically, education has been associated with
improvement in particular domains of intellectual ability, such as
working memory and vocabulary, rather than gains in general intelli-
gence (Melby-Lervag & Hulme, 2013; Ritchie, Bates, & Deary, 2015).
Several studies report high, but imperfect, genetic correlations (~60%)
between achievement in reading and mathematics (Davis et al., 2014) as
well as performance in various school subjects including English, art,
mathematics and science (Rimfeld, Kovas, Dale, & Plomin, 2015).
Additionally, it has been shown that differences in EA genetic scores are
associated with word reading ability (Belsky et al., 2016) and reading
comprehension (Selzam et al., 2017b). Genetic variation associated with
EA also differentially influences A-level subject choice and achievement
in the United Kingdom (Rimfeld, Ayorech, Dale, Kovas, & Plomin, 2016)
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and has a stronger association with English rather than mathematics in
early adolescence (Ward et al., 2014). Polygenic scores for EA and
cognitive performance have also been found to predict variation in
math, science, and verbal performance at the end of schooling (Lee et al.,
2018). Both PRS for EA and for cognitive performance have been re-
ported to predict variation in several measures of intelligence or related
cognitive domains (Davies et al., 2016; Lee et al., 2018), although not
statistically significant, the vocabulary domain was reported to have a
stronger qualitative association with both an EA and a cognitive per-
formance PRS (Davies et al., 2016). Although PRS are as yet imperfect
measures of genetic predisposition, these studies demonstrate that PRS
derived from GWAS of cognitive measures may be useful for differential
statistical prediction of domain-specific cognitive abilities and academic
performance.

The Queensland Core Skills Test (QCST) is a test of academic
achievement that was administered to the majority of Year 12 students
in Queensland, Australia between 1992 and 2019. The test was used to
assess individual achievement and core skills and the results were used
for university entrance applications. Instead of testing subject-specific
knowledge, the QCST comprises a set of five ‘baskets’ that represent
core academic skills. These baskets are aimed to assess higher-order
cognitive skills such as comprehension and communication, reasoning,
synthesis and integration of information, creating and presenting, and
applying techniques and procedures. Prior work using the classic twin
design has identified that these core skills have moderate to high heri-
tability estimates, ranging from 0.43 to 0.73 (Wainwright, Wright,
Luciano, Geffen, & Martin, 2005). Although shared genetic variation
across baskets and verbal and performance IQ accounted for most of the
genetic influences on three of these baskets, two were significantly
influenced by independent genetic factors. In addition, both verbal and
performance IQ were influenced by specific genetic factors, indicating
some differences in the genetic influences across these core skills and
intelligence. The QCST represents a unique resource to assess PRS as-
sociations of general academic achievement but also whether differen-
tial associations between academic skills exist (Authority, Q. S, 2003).

Poorer cognitive performance is often associated with many mental
health disorders, such as schizophrenia, bipolar and major depressive
disorder, and has been shown to persist even after episodic and symptom
remission (Robinson et al., 2006; Rock, Roiser, Riedel, & Blackwell,
2014). In fact, a recent study reported that cognitive functions declined
in individuals with psychotic disorders over the twenty years following
their first hospitalization (Fett et al., 2020). Impaired performance in
specific cognitive domains has also been associated with mental health
disorder status when compared to age-matched controls. Examples
include decreased working memory, vocabulary and verbal fluency in
individuals with schizophrenia (Fett et al., 2020; Trivedi, 2006) and
deficits in working memory and executive function in individuals with
depression (Rock et al., 2014). However, after the onset of a mental
health disorder, it is difficult to distinguish whether these observed as-
sociations are as a result of the subsequent environment or more innate
and biological processes that precede disease onset.

The genetic relationship between cognitive ability, educational
attainment, and mental health disorders are also heterogeneous. Table 1
details the average of significant genetic correlations between intelli-
gence, educational attainment and several mental health disorders that
have been derived from GWAS studies. Intelligence has been found to
have significant negative genetic correlations with schizophrenia,
depression or depressive symptoms, and attention-deficit/hyperactivity
disorder (ADHD), significant positive genetic correlations with autism,
and anorexia, and genetic correlations with bipolar disorder have been
non-significant across several studies (Davies et al., 2018; Hagenaars
et al., 2016; Hill, Davies, Liewald, McIntosh, & Deary, 2016; Lam et al.,
2017; Savage et al., 2018). While the genetic correlations between
educational attainment and depression, ADHD, autism, and anorexia
nervosa were in the same direction as with intelligence, the correlations
were slightly stronger. In contrast to intelligence, educational
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Table 1
Significant mean genetic correlations between intelligence, educational attain-
ment and several mental health disorders reported in previous studies.

Mental Health Intelligence  References Educational References
Disorder Attainment
Autism 0.21 (Davies et al., 0.31 (Hagenaars
Spectrum 2018; et al.,, 2016;
Disorder Hagenaars Hill et al.,
et al., 2016; 2016; Lam
Hill et al., et al., 2017)
2019; Lam
et al., 2017;
Savage et al.,
2018; Sniekers
et al., 2017;
Trampush
et al., 2017)
Anorexia 0.06 (Hill et al., 0.19 (Hill et al.,
Nervosa 2019) 2016; Lam
et al., 2017;
Watson et al.,
2019)
Bipolar ns 0.28 (Hill et al.,
Disorder 2016; Lam
et al., 2017;
Okbay et al.,
2016; Stahl
et al., 2019)
Schizophrenia -0.21 (Davies et al., 0.10 (Hagenaars
2018; et al.,, 2016;
Hagenaars Lam et al.,
et al., 2016; 2017; Okbay
Hill et al., et al., 2016)
2016; Hill
et al., 2019;
Lam et al.,
2017; Savage
et al., 2018;
Sniekers et al.,
2017;
Trampush
et al., 2017)
Depression -0.28 (Barban et al., -0.32 (Lam et al.,
2016; Davies 2017)
et al., 2018;
Savage et al.,
2018; Sniekers
et al., 2017)
ADHD -0.39 (Davies et al., —0.53 (Lam et al.,
2018; Hill 2017)
et al., 2019;
Lam et al.,
2017; Savage
et al., 2018)

attainment has been found to have significant positive genetic correla-
tions with bipolar disorder and with schizophrenia. Moreover, when
educational attainment was parsed into cognitive and non-cognitive
factors, the non-cognitive component of educational attainment was
found to have a stronger positive genetic relationship with schizo-
phrenia (0.26) (Demange et al., 2021). This positive genetic correlation
between schizophrenia educational attainment, which contrasts with
both phenotypic associations and genetic correlations with cognition,
might result from heterogeneity in both schizophrenia and educational
attainment phenotypes (Bansal et al., 2018; Demange et al., 2021).
These findings highlight the potential complexity of relationships that
underpin the correlation between traits.

Although genetic correlations provide information on the similarity
of allelic effects on two traits averaged across the genome, the extent
that those genetic effects are evident in a phenotype depends on the
heritability of those phenotypes and the accuracy of the measured allelic
effects. Increasing sample sizes have increased the power to detect
common genetic effects in GWAS and the precision in estimating those
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effects (Howard et al., 2019; Wray et al., 2012), which in turn has
increased the power of PRS derived from those GWAS (Dudbridge,
2013). Although the power of PRS is still limited, they provide an op-
portunity to test for measured genetic effects on traits that might be
measured in samples too small for GWAS. They also provide a test of
whether a genetic predisposition to one trait has a measurable impact on
the phenotypic expression of another. PRS have been employed to
explain variation in cognitive trajectories in the subgroups of individuals
with schizophrenia (Dickinson et al., 2020). A higher PRS for schizo-
phrenia has been associated with lower cognition scores but not lower
academic achievement scores in healthy individuals (Shafee et al.,
2018). In the reverse direction, higher PRS for EA has been associated
with some domains of cognition in individuals with schizophrenia,
including working memory and crystallised IQ, but not other domains,
including processing speed and cognitive flexibility (Comes et al., 2019).
Similarly, a PRS of ADHD has been associated with poorer performance
on word reading, nonword reading, and spelling but was not associated
with other skills including phoneme awareness, rapid naming tasks, and
a working memory task (Gialluisi et al., 2019). This suggests that a ge-
netic predisposition to ADHD does not uniformly contribute to poorer
performance across cognitive tasks and academic skills; however, a re-
view of PRS of ADHD did show a general pattern of poorer educational
or cognitive performance with a higher genetic liability for ADHD
(Ronald, de Bode, & Polderman, 2021). Krapohl et al. (2016) conducted
a systematic examination of the association of genetic predisposition for
several traits, including mental health disorders, on various outcomes,
including cognitive and academic skills. They did not detect any sig-
nificant association between a genetic predisposition for either ADHD,
autism, depression, bipolar disorder, or schizophrenia and cognitive
performance or academic achievement in an adolescent sample (N ~ 3
k); although, the association between a predisposition and English was
nominally positive. Meanwhile, Hagenaars et al. (2016) used the same
training GWAS summary data to build PRS and predicting intelligence
(N ~ 36 k) and educational attainment (N ~ 111 k) in an older adult
sample. They found genetic predisposition to autism to predict higher
cognitive scores while a genetic predisposition for depression and one
for schizophrenia each predicted lower cognitive scores. They also found
a genetic predisposition for ADHD predicted poorer educational
attainment, while a predisposition for autism, or bipolar, or schizo-
phrenia were all associated with higher educational attainment. The
different findings of Hagenaars et al. and Krapohl et al. might reflect the
vastly different target sample size and subsequent power differences or it
might be due to the difference in cognitive phenotypes and age of the
sample.

Here, we leveraged GWAS summary statistics from the most recent
genome-wide association studies of intelligence, EA, cognitive and non-
cognitive EA factors, as well as seven mental health disorders, to build
prediction models of IQ test scores, core academic skills, and academic
achievement in a cohort of Australian adolescent twins.

2. Methods
2.1. Participants

A cohort of 2335 adolescent twins (57% female) from the Brisbane
Longitudinal Twin study (BLTS) were used in these analyses (Wright &
Martin, 2004). Each individual completed the Multiple Aptitude Battery
(MAB) test at approximately the age of 16 (mean age = 16.6, s.d. = 1.4).
Each participant also completed a standardized test of academic
achievement, the Queensland Core Skills Test (QCST), in August of their
Year 12 of formal schooling (mean age = 17.4, s.d. = 0.4), for which we
were granted consent to access their results. The mean family socio-
economic status, assessed using the Australian Socioeconomic Index
2006 (AUSEIO6) occupational status scale, was 59.65 (s.d. = 24.0; scale
0-100) indicating a slightly higher than average socioeconomic standing
in this cohort. Standard genotyping and quality control procedures for
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the BLTS have been described previously (Colodro-Conde et al., 2018).
Imputation was conducted using the Haplotype Reference Consortium
1.1 reference panel.

Written informed consent was obtained from each participant and
from a parent or legal guardian for participants under the age of 18. The
BLTS study was approved by the Human Research Ethics Committees of
the QIMR Berghofer Medical Research Institute. Access to QCST results
was approved by the Queensland Department of Education given
participant and parent consent.

2.2. Cognitive Performance Instruments

2.2.1. Multidimensional Aptitude Battery (MAB)

The MAB, based on the Wechsler Adult Intelligence Scale (WAIS-R;
Purves et al.,, 2020; Wechsler, 1981) (Jackson, 1998), is a
multiple-choice test of general intelligence that yields three scores:
Verbal 1Q, Performance IQ and Full-scale (VIQ, PIQ and FIQ respec-
tively). FIQ is computed as a weighted sum of VIQ and PIQ. Verbal IQ is
designed to measure an individual's ability to solve problems using
language-based reasoning, which includes things such a vocabulary,
arithmetic and general knowledge. Performance IQ is designed to
measure visuospatial intellectual abilities and includes tasks like spatial
arrangement, object assembly and attentiveness to detail. Further details
regarding these subtests have been described previously (Luciano et al.,
2001; Wainwright, Wright, Geffen, Luciano, & Martin, 2005).

2.2.2. Queensland Core Skills Test (QCST)

Substantial additional detail regarding the QCST has been described
previously (Wainwright, Wright, Luciano, Geffen and Martin, 2005).
Briefly, the QCST is composed of four test papers, one writing task, one
short response paper, and two multiple-choice test papers. Test items
from across the multiple choice and short response paper contribute to
five core academic skills and the writing task contributes to one of the
core skills, Create and Present. These core skills which are summed to
give a total score that represents general academic achievement. These
core skills, termed baskets, are as follows: Comprehend and Collect which
entails comprehending facts, extracting, and interpreting and displaying
meaning from various sources of information including poetry, prose,
diagrams, tables, and graphs. Structure and Sequence involves selecting
and organizing information, and discerning patterns and relationships in
pictures, graphs, tables, and text. Analyse, Assess and Conclude assesses
the ability to deduce key messages, make inferences, evaluate assump-
tions, and draw conclusions. Create and Present involves the use of
written language to clearly present ideas in response to provided stim-
ulus materials. Lastly, Apply Techniques and Procedures assesses the
ability to select and apply mathematical problem solving techniques.

The total QCST score is scaled by the calendar year in which the test
was written. However, individual baskets scores do not undergo any

Table 2
Traits and their sources used for PRS construction using SBayesR.
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type of scaling. Therefore, we controlled for the test year by creating
residuals of the basket scores, thereby removing the variance associated
with which year the test was taken from the regression.

2.3. Correlations and polygenic risk score calculation

We estimated the pairwise phenotypic and genetic correlations be-
tween seven psychiatric disorders and four cognitive traits (Table 2)
using Pearson correlations and linkage-disequilibrium score (ldsc)
regression (Bulik-Sullivan et al., 2015) respectively.

All traits selected had a significant SNP-based heritability in the
reference GWAS, though the predictive power of PRS calculated from
the identified common SNPs into the target traits differed substantially
(Table 2). For example, a PRS of Educational Attainment explained
between 11 and 13% of variance in EA in Lee et al. (2018) where a PRS
for anxiety only explained 0.5% of variance in anxiety in Purves et al.
(2020). Only SNPs passing quality control (minor allele frequency >
0.01, call rate > 0.9 and imputation score > 0.6) were used for PRS
calculation. Summary statistics for our 11 traits of interest in Table 2
were used for polygenic risk score calculation. These traits were selected
as they were reasonably powered GWAS summary statistics on mental
health disorders that were available to download from the Psychiatric
Genomic Consortium. To improve accuracy, the summary statistics used
as input for PRS calculation were refined by discarding all ambiguous
markers, indels and restricting SNPs to those with INFO > 0.6 and MAF
> 0.01. Importantly, as participants at QIMR have participated in
studies that contributed to several of these GWAS studies, PRS for these
traits were calculated using summary statistics that excluded any QIMR
cohorts. PRS were calculated using SBayesR, a Bayesian analysis that
was used to approximate the results of a conditional GWAS (Lloyd-Jones
et al., 2019). Polygenic risk scores were estimated by multiplying the
multivariate effect size (obtained from SBayesR) with the allelic dosage
of the effect allele and summing across all loci for each participant and
then standardised. For the LD reference, we used the same sparse LD
matrix as used in Lloyd-Jones et al. (2019).

The effect of each PRS on the three IQ measures (performance, ver-
bal, and full-scale) and on the six QCST measures (total and the 5 bas-
kets) was estimated using a linear mixed model regression with the PRS
as a predictor variable while accounting for sex, age and the first 10
genetic ancestry principal components included as covariates. Related-
ness between participants was accounted for as a random effect with a
genetic relatedness matrix, using GCTA 1.91.7 (Yang, Lee, Goddard, &
Visscher, 2011; Yang, Zaitlen, Goddard, Visscher, & Price, 2014). A
partial R? was calculated and variance explained by the PRS was esti-
mated as the difference in Pearson correlation coefficient between the
full model (i.e. including the PRS) and a reduced model including only
covariates. All significance values were corrected to account for multiple
testing using FDR < 5%.

Trait Source N cases N controls ~ SNP-based heritability Phenotypic Variance explained (%) in source
(SE) study

Depression f Howard et al., 2019 246,819 561,485 0.09 (0.003) 1.5-3.2

Anxiety Purves et al., 2020 25,453 58,113 0.26 (0.011) 0.5

Bipolar Disorder ' Mullins et al., 2021; Purves et al., 2020 41,917 371,549 0.19 (0.006) 4.6

Schizophrenia Pardinas et al., 2018 40,675 64,643 0.25 (0.007) 5.7

ADHD Demontis et al., 2019 20,183 35,191 0.22 (0.014) 5.5

Anorexia Nervosa Watson et al., 2019 16,992 55,525 0.17 (0.01) 1.7

Autism Grove et al., 2019 18,381 27,969 0.12 (0.01) 2.5

Educational Attainment | . . .1 2018 1,100,000 NA 0.15 (0.009) 1113

Intelligence Savage et al., 2018 269,867 NA 0.19 (0.01) 5.2

Cognitive skills Demange et al., 2021 *510,795 NA 0.19 (0.006) Not reported

Non-Cognitive skills Demange et al., 2021 257,700 NA 0.06 (0.002) Not reported

* Sample sizes for the cognitive and non-cognitive skill factors are estimates using the output of genomicSEM. The traits themselves were not measured.

 QIMR samples removed from GWAS summary statistics.
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3. Results
3.1. Cohort descriptives

The cohort consists of 827 monozygotic (MZ) and 1247 dizygotic
(DZ) twins and 261 twin siblings. All participants are of European
ancestry. Demographic information is summarized in Table 3.

3.2. Correlations between cognitive traits and mental health disorders

All cognitive test measures in our cohort were positively correlated
(p < 0.01; Supplementary Table 1). Total QCST scores were highly
(>0.7) correlated with all five core skill tests, as well as verbal IQ. The
correlation between total QCST score and performance IQ was lowest at
0.49.

While the genetic correlations among the mental health disorders
were all positive, we found that the genetic correlations between our
mental health and cognitive traits were highly heterogeneous (Fig. 1;
Supplementary Table 2). Anorexia and Autism were positively associ-
ated with EA, IQ as well as the cognitive and non-cognitive EA factors.
Conversely, ADHD, depression and anxiety were negatively associated
with these four traits (albeit, the correlation between depression and the
cognitive skills factor did not survive multiple testing correction). We
also observed several contrasting correlations with the cognitive and
non-cognitive factors. For example, schizophrenia was negatively asso-
ciated with IQ and the cognitive EA factor, but was positively correlated
with the non-cognitive EA factor. Likewise, bipolar disorder was nega-
tively correlated with cognitive EA factor, but positively correlated with
EA and the non-cognitive EA factor (Fig. 1).

3.3. Cognitive and educational attainment PRS prediction of cognitive
and academic skills

A PRS for EA explained 10% of variance in total QCST scores (p = 4.5
x 107%%), 4.5% in FIQ (p = 7.9 x 1072%) and explained approximately
3x more variance in VIQ than PIQ (6.8% and 2.1% respectively).
Comparatively, a PRS for intelligence explained approximately 9.4% of
variance in total QCST (p = 4.8 x 107%%), 6.5% (p = 5.2 x 10°?") in VIQ
and 4.8% (p = 2.2 x 10719 in PIQ. The cognitive EA factor PRS had a
highly similar association pattern to that of the IQ PRS. In contrast, the
non-cognitive EA factor PRS only explained a small amount of variance
in total QCST (2.2%; p = 1.1 x 107°), FIQ (0.4%; p = 0.008) and VIQ
(1.2%; p = 4.9 x 107%) and was not associated with PIQ (p = 0.51)
(Fig. 2). The IQ PRS and cognitive skills PRS were more strongly

Table 3
Summary of demographic and phenotypic measures of the BLTS cohort used in
this study.

Mean (s.d.) [min - max] State Average”

Age at IQ testing 16.6 (1.4) [15.7-28.9]

Age at QCST 19.9 (0.4) [16.2-19.9]

Sex
Females (N) 1331
Males (N) 1002

IQ Test Scores
FIQ 111.9 (12.8) [77-153]
VIQ 109.9 (11.5) [77-153]
PIQ 112.4 (15.9) [64-151]

QCST Test Scores
Total QCST 125.37 (29.8) [42-212]] 117 (26.4)
Comprehend and Collect 23.2 (7) [5-44.5] 23.2 (5.7)
Structure and Sequence 20.4 (6.7) [2.5-45] 18.4 (4.9)
Analyse, Assess and Conclude 25.4 (8.1) [5.5-53.5] 14.8 (5.9)
Create and Present 40.9 (10.2) [1-73] 37.9 (8.7)
Apply Techniques and Procedures 14.5 (6.7) [1-38.5] 23.4(7.0)

@ The state means and SD were calculated from the weighted means and SD
from four calendar years, 2007-2010 (McLeod & Davidson, 2012).
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associated with performance IQ (p = 0.016) than the EA PRS (p = 0.029)
(Paternoster, Brame, Mazerolle, & Piquero, 1998).

Next, we tested the association between different QCST academic
skills and the PRS from the four cognitive and educational attainment
traits. Association results were largely similar across the different aca-
demic skills, indicating that a genetic predisposition to these cognitive
and educational attainment traits does not differentially impact acqui-
sition and performance of these academic skills (Fig. 3; Supplementary
Table 3).

3.4. Mental Health Disorder PRS prediction of cognitive and academic
skills

Only the ADHD PRS was significantly associated with all IQ and
academic measures whereby a higher genetic predisposition for ADHD is
predictive of lower outcome scores with effect sizes ranging from —0.05
and — 0.11. A genetic vulnerability to bipolar disorder was negatively
associated with PIQ and the academic skills Comprehend and Collect as
well as the Application of Techniques and Procedures (p = —0.07, —0.05
and — 0.03 respectively). Several PRS showed association with only one
cognitive outcome: depression and anxiety PRS were associated with
lower scores for the academic skill Applying Techniques and Procedures
(B-0.06), and schizophrenia PRS was associated with lower performance
IQ (p = —0.09;Fig. 3; Supplementary Table 3).

All remaining mental health PRS had non-significant associations
with all IQ and academic measures, indicating that we did not find ev-
idence that a genetic predisposition to these mental health disorders
were associated with performance on these tests. Though non-
significant, anorexia nervosa had a non-trivial association effect size
with PIQ (p = —0.05) and the academic skill Analyse, Assess and Conclude
(B = 0.05), albeit the effect was in the opposite direction.

4. Discussion

Intelligence is important to both individuals and society as a whole.
Understanding the mechanisms influencing intellectual ability is crucial
to better understand relationships between cognitive abilities and psy-
chosocial, educational and economic outcomes. This study had two
main objectives: First, to test the association between PRS for EA, in-
telligence, the cognitive and non-cognitive EA factors and IQ scores, as
well as unique measures of academic skills assessed during the QCST.
Second, we explored the associations between genetic predispositions to
seven mental health disorders and the same cognitive and academic
scores as above.

In line with previous findings, we found that individuals with higher
PRS for EA, intelligence and the cognitive EA factor performed better in
all IQ and academic tests. The PRSs for EA and intelligence explained
roughly the same amount of variance in total QCST and full-scale IQ test
scores, despite the greater statistical power of the EA GWAS (Table 2).
This implies that the genetic architecture of the QCST is more similar to
the genetics of intelligence than educational attainment. However,
while EA may be a good proxy for full-scale IQ, it did not perform as well
for performance IQ, which was better predicted by intelligence PRS or
cognitive EA factor PRS. In fact, intelligence PRS explained approxi-
mately twice as much variance in performance IQ than EA PRS. PRS for
the non-cognitive EA factor significantly predicted total QCST scores, as
well as the five individual core academic skills, albeit more weakly than
the cognitive EA factor. This indicates that there are genetic influences
independent of intelligence that contribute to higher educational
attainment that also capture variance in these higher-order academic
skills. When it comes to intelligence scores, it appears that genetic in-
fluences on the cognitive component of educational attainment
contribute almost equally to both performance and verbal IQ. Interest-
ingly, genetic influences on the non-cognitive EA factor (i.e. indepen-
dent of intelligence) contribute to verbal IQ. This probably results from
using a full-scale IQ or first principal component in the GWAS on
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Fig. 1. Genetic correlations between cognitive and psychiatric traits reveals highly heterogeneous genetic associations between mental health disorders and

cognitive phenotypes.
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Fig. 2. Barplot depicting percentage variance explained in total QCST, full IQ (FIQ), performance IQ (PIQ) and verbal IQ (VIQ) scores by the respective PRSs. PRS
were constructed for educational attainment, intelligence, cognitive skills and non-cognitive skills. Error bars represent 95% Confidence Intervals.
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Fig. 3. Beta coefficients of association results between PRS and cognitive outcomes. Associations in white did not survive multiple testing correction (FDR < 5%).

intelligence, which does not fully capture the genetic influences on each
of the performance and verbal IQ domains. It suggests that if there are
unique genetic influences on these IQ domains, those influencing
educational attainment are more strongly associated with verbal IQ than
performance IQ.

We found that a genetic predisposition for ADHD was negatively
associated with all IQ and academic outcomes, despite the limited sta-
tistical power of the ADHD PRS compared to other mental health traits.
These findings are in line with previous studies that found that a higher
PRS for ADHD was associated decreased working memory in children
aged 7-11 (Aguilar-Lacasana et al., 2020), and were associated with
lower educational and IQ test scores in a sample of 6900 adolescents in
the UK (Stergiakouli et al., 2017), and studies where PRS for EA and I1Q
predicted ADHD traits (de Zeeuw et al., 2014; Krapohl et al., 2016). Our
results demonstrate the pervasiveness of this association across five
academic skill domains that are rarely measured in tests of achievement
and are representative of higher-order skills that are thought to gener-
alise across academic subjects. It is possible that the genetic effects that
have been captured by the ADHD PRS are predicting these academic
skills via an association with a general factor. This would be consistent
with the common genetic factor identified by Wainwright, Wright,
Luciano, et al. (2005). These findings point to genetic overlap between
ADHD and cognitive abilities and highlight the importance of recog-
nizing that ADHD risk may functionally contribute to poorer cognitive
outcomes across numerous domains.

Although cognitive impairment is a frequent observation in those at
risk of schizophrenia, only the association between schizophrenia PRS

and performance IQ maintained statistical significance after multiple
testing correction. Our results replicate previous reports of an associa-
tion between schizophrenia and adolescent performance IQ on both the
phenotypic level (Hubbard et al., 2016) and using genetic risk scores
(Riglin et al., 2017), where a higher PRS for schizophrenia has been
associated with lower performance IQ and language fluency, and sup-
ports evidence of impaired spatial functioning in individuals with
schizophrenia (Piskulic, Olver, Norman, & Maruff, 2007) or with a ge-
netic vulnerability for schizophrenia (Glahn et al., 2003). Together,
these findings suggest that specific domains, namely performance or
fluid intelligence, may be compromised in individuals at higher genetic
risk of schizophrenia rather than general intellectual ability. In a similar
vein, a genetic predisposition for schizophrenia was not associated with
compromised performance in the higher-order academic skills assessed
with the QCST.

A genetic vulnerability for bipolar disorder was also negatively
associated with performance IQ, perhaps driven by the high genetic
correlation between bipolar disorder and schizophrenia. None of the
remaining mental health trait PRSs had significant associations with IQ
measures or total QCST scores. However, ADHD, anxiety, depression
and bipolar disorder PRS were all negatively associated with the
Applying Techniques and Procedures basket. This basket tests the aca-
demic skill of information integration and problem-solving (Wain-
wright, Wright, Luciano, et al., 2005). Bipolar disorder PRS was also
significantly negatively associated with the Comprehend and Collect
QCST basket. Together this points towards domain-specific impairment
in individuals with genetic risk for these disorders, and sheds light on
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possible mechanisms underlying the observed relationship between
these disorders and impaired cognitive ability.

It is important to note that PRS associations do not necessarily imply
causality but rather highlight how genetic relationships and associations
express in phenotypic variability. However, a causal relationship be-
tween intelligence and some of these mental health traits has been
demonstrated previously in the latest IQ GWAS (Savage et al., 2018).
The authors used Mendelian Randomization to assess the causal re-
lationships of some of these observations and found a significant pro-
tective effect of intelligence on schizophrenia and ADHD and
intelligence was shown to be a risk factor for autism. Lastly, despite
significant genetic correlations, we found no significant influence of PRS
for anorexia or autism spectrum disorder on our cognitive outcomes,
though this might be because of limited statistical power rather than the
absence of a true effect.

Our study has several limitations. First, the GWASs used to create the
PRS only explain a small fraction of variance in each respective trait in
the general population. Additionally, the statistical power of each GWAS
is substantially different and therefore the absence of a significant as-
sociation for some traits may be due to lack of power and not the absence
of a true association. Additionally, the QCST participants may be
regarded as a biased sample of the cohort because less academically able
students escape ascertainment by not sitting the test. While we have
attempted to account for this through the inclusion of IQ measures, it is
possible these individuals are also not truly representative of the general
population given biases involved in the voluntary participation in
research studies. Lastly, participants in this cohort are mostly of British
and Irish ancestries, have higher-than-average IQ scores and are, on
average, from families with an above-average socio-economic status.
Therefore, once again, these results may not generalize to the general
population.

Overall, our results support the hypothesis of a general cognitive
factor for which the genetic underpinnings are being measured through
various proxies in GWAS studies. Additionally, we show that biological
risk of mental health disorders may influence cognitive test outcomes in
the general population from an early age, before the onset of any adult
forms of psychopathology and may effect individual developmental
trajectory.
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