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Educational attainment is moderately heritable1 and an impor-
tant correlate of many social, economic and health outcomes2,3. 
Because of its relationship with many health outcomes, mea-

sures of educational attainment are available in most medical data-
sets. Partly for this reason, educational attainment was the focus of 
the first large-scale genome-wide association study (GWAS) of a 
social-science phenotype4 and has continued to serve as a ‘model 
phenotype’ for behavioral traits (analogous to height for medical 
traits). Genetic associations with educational attainment identi-
fied by GWAS have been used in follow-up work in which biologi-
cal5 and behavioral mechanisms6,7 and genetic overlap with health  
outcomes8,9 were analysed.

The largest (n =​ 293,723) GWAS of educational attainment to 
date identified 74 approximately independent SNPs at genome-wide 
significance (hereafter, lead SNPs) and reported that a 10-million-
SNP linear predictor (hereafter, polygenic score) had an out-of-
sample predictive power of 3.2%10. Here, we expand the sample size 
to over a million individuals (n =​ 1,131,881). We identify 1,271 lead 
SNPs. For a subsample (n =​ 694,894), we also conduct genome-wide 
association analyses of variants on the X chromosome, identifying 
ten lead SNPs.

The marked increase in our GWAS sample size enables us to 
conduct a number of additional informative analyses. For example, 
we show that the lead SNPs have heterogeneous effects, and we  
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perform within-family association analyses that probe the robust-
ness of our results. Our biological annotation analyses, which focus 
on the results from the autosomal GWAS, reinforce the main find-
ings from earlier GWAS in smaller samples, such as the role of many 
of the prioritized genes in brain development. However, the newly 
identified SNPs also lead to several new findings. For example, they 
strongly implicate genes involved in almost all aspects of neuron-to-
neuron communication.

We found that a polygenic score derived from our results 
explains around 11% of the variance in educational attainment. We 
also report additional GWAS of three phenotypes that are highly 
genetically correlated with educational attainment: cognitive (test) 
performance (n =​ 257,841), self-reported math ability (n =​ 564,698) 
and hardest math class completed (n =​ 430,445). We identify 225, 
618 and 365 lead SNPs, respectively. When we jointly analyze all 
four phenotypes using a recently developed method11, we found that 
the explanatory power of polygenic scores based on the resulting 
summary statistics increases, to 12% for educational attainment and 
7–10% for cognitive performance.

Results
Primary GWAS of educational attainment. In our primary GWAS, 
we study educational attainment, which is measured as the num-
ber of years of schooling that individuals completed (EduYears). 
All association analyses were performed at the cohort level in 
samples restricted to European-descent individuals. We applied a 
uniform set of quality-control procedures to all cohort-level results. 
Our final sample-size-weighted meta-analysis produced associa-
tion statistics for around 10 million SNPs from phase 3 of the 1000 
Genomes Project12.

The quantile–quantile plot of the meta-analysis (Supplementary 
Fig. 1) exhibits substantial inflation (λGC =​ 2.04). According to our 
linkage disequilibrium (LD) score regression13 estimates, only a 
small share (approximately 5%) of this inflation is attributable to 
bias (Supplementary Fig. 2 and Supplementary Table 1). We used 
the estimated LD score intercept (1.11) to generate inflation-
adjusted test statistics.

Figure 1 shows the Manhattan plot of the resulting P values. We 
identified 1,271 approximately independent (pairwise r2 <​ 0.1) SNPs 
at genome-wide significance (P <​ 5 ×​ 10−8), 995 of which remain if 
we adopt the stricter significance threshold (P <​ 1 ×​ 10−8) proposed 
in a recent study14 (Supplementary Table 2, see Methods for a 
description of the clumping algorithm). The results from a condi-
tional-joint analysis15 are reported in the Supplementary Note and 
Supplementary Table 3.

We used a Bayesian statistical framework to calculate winner’s-
curse-adjusted posterior distributions of the effect sizes of the lead 
SNPs (Methods). We found that the median effect size of the lead 
SNPs corresponds to 1.7 weeks of schooling per allele; at the 5th and 
95th percentiles, 1.1 and 2.6 weeks, respectively. We also examined 
the replicability of the 162 single-SNP associations (P <​ 5 ×​ 10−8) 
that were reported in the combined discovery and replication sam-
ple (n =​ 405,073) of the largest previous study10. In the subsample 
of our data (n =​ 726,808) that did not contribute to the analyses of 
the previous study, the SNPs replicate at a rate that closely matches 
theoretical projections derived from our Bayesian framework 
(Supplementary Fig. 3).

Within-family association analyses. We conducted within-family 
association analyses in four sibling cohorts (22,135 sibling pairs) 
and compared the resulting estimates to those from a meta-analysis 
that excluded the siblings (n =​ 1,070,751). The latter association sta-
tistics were adjusted for stratification bias using the LD score inter-
cept. Figure 2 shows the observed sign concordance for three sets 
of approximately independent SNPs, selected using P value cutoffs 
of 5 ×​ 10−3, 5 ×​ 10−5 and 5 ×​ 10−8. The concordance is substantially 

greater than expected by chance but weaker than predicted by our 
Bayesian framework, even after we extend the framework to account 
for inflation in GWAS coefficients owing to assortative mating. In 
a second analysis based on all SNPs, we estimate that within-family 
effect sizes are roughly 40% smaller than GWAS effect sizes and 
that our assortative-mating adjustment explains at most one third 
of this deflation. (For comparison, when we apply the same method 
to height, we found that the assortative-mating adjustment fully 
explains the deflation of the within-family effects.)

The Supplementary Note contains analyses and discussion 
of the possible causes of the remaining deflation we observe for 
EduYears. Although the evidence is not conclusive, it suggests 
that the GWAS effect-size estimates may be biased upward by  
correlation between educational attainment and a rearing envi-
ronment conducive to educational attainment. Consistent with 
this hypothesis, a recent paper16 reports that a polygenic score 
for EduYears based entirely on the non-transmitted alleles of the  
parents is approximately 30% as predictive as a polygenic score 
based on transmitted alleles. (For height, the analogous estimate 
is only 6%.) The non-transmitted alleles affect the educational 
attainment of the parents but can only influence the educational 
attainment of the child indirectly. If greater parental educational 
attainment positively influences the rearing environment, then 
GWAS that control imperfectly for rearing environment will yield 
inflated estimates. The LD score regression intercept does not cap-
ture this bias because the bias scales with the LD score in the same 
way as a direct genetic effect.

Heterogeneous effect sizes. Because educational institutions vary 
across places and time, the effects of specific SNPs may vary across 
environments. Consistent with such heterogeneity, for the lead 
SNPs, we reject the joint null hypothesis of homogeneous cohort-
level effects (P =​ 9.7 ×​ 10−12; Supplementary Fig. 4). Moreover, we 
found that the inverse-variance-weighted mean genetic correlation 
of EduYears across pairs of cohorts in our sample is 0.72 (s.e. =​ 0.14), 
which is statistically distinguishable from one (P =​ 0.03).

Our finding of an imperfect genetic correlation replicates earlier 
results from smaller samples17,18. This imperfect genetic correlation 
is an important factor to consider in power calculations and study 
design. In the Supplementary Note, we report exploratory analyses 
that aim to identify specific sources of measurement heterogeneity 
or gene–environment interactions that may explain the imperfect 
genetic correlation. Unfortunately, the estimates are noisy, and the 
only robust finding was that SNP heritability was smaller in cohorts 
for which the measurement of EduYears was derived from questions 
with fewer response categories.
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Fig. 1 | Manhattan Plot for GWAS of EduYears. The P value and mean 
χ2 value are based on inflation-adjusted test statistics. The x axis is 
chromosomal position and the y axis is the significance on a –log10 scale. 
The dashed line marks the threshold for genome-wide significance 
(P =​ 5 ×​ 10−8) (n =​ 1,131,881).
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X-chromosome GWAS results. We supplemented our autoso-
mal analyses with association analyses of SNPs on the X chromo-
some. We first conducted separate association analyses of males 
(n =​ 152,608) and females (n =​ 176,750) in the UK Biobank. We 
found a male–female genetic correlation close to unity. We also 
found nearly identical SNP heritability estimates for men and 
women, which is consistent with partial dosage compensation (that 
is, on average the per-allele effect sizes are smaller in women) and 
indicates that any contribution of common variants on the X chro-
mosome to sex differences in the normal-range variance of cogni-
tive phenotypes19 is quantitatively negligible.

Next, we conducted a large (n =​ 694,894) meta-analysis of sum-
mary statistics from mixed-sex analyses (Supplementary Fig. 5).  
We identified 10 lead SNPs and estimated a SNP heritability due 
to the X chromosome of approximately 0.3% (Supplementary 
Table 4). This heritability is lower than that expected for an auto-
some of similar length (Supplementary Fig. 6 and Supplementary 
Table 5). We cannot distinguish whether the lower heritability is 
due to smaller per-allele effect sizes for SNPs on the X chromo-
some or to the combination of haploidy in males and (partial) X 
inactivation in females.

Biological annotation. For biological annotation, we focus on the 
results from the autosomal meta-analysis of EduYears. Across an 
extensive set of analyses (see Supplementary Fig. 7 for a flow chart), 
all major conclusions from the largest previous GWAS of EduYears10 
continue to hold but are statistically stronger. For example, we 
applied the bioinformatic tool DEPICT20 and found that, relative 
to other genes, genes near our lead SNPs were overwhelmingly 
enriched for expression in the central nervous system (Fig. 3a and 
Supplementary Table 6).

There are also many novel findings associated with the large 
number of genes newly implicated by our analyses. At the stan-
dard false discovery rate (FDR) threshold of 5%, the bioinformatic 
tool DEPICT20 prioritizes 1,838 genes (Supplementary Table 7), 
a tenfold increase relative to the DEPICT results from an earlier 
GWAS of EduYears10. In the following paragraphs, we distinguish 
between the 1,703 ‘newly prioritized’ genes and the 135 ‘previously  
prioritized’ genes.

An extensive analysis of many of the newly prioritized genes and 
their brain-related functions are described in the Supplementary 
Note. Here we highlight two especially noteworthy regularities. 
First, whereas previously prioritized genes exhibited especially high 
expression in the brain prenatally, the newly prioritized genes show 
elevated levels of expression both pre- and postnatally (Fig. 3b). 
Many of the newly prioritized genes encode proteins that carry out 
neurophysiological functions such as neurotransmitter secretion, 
the activation of ion channels and metabotropic pathways, and syn-
aptic plasticity (Supplementary Fig. 8).

Second, even though glial cells are at least as numerous as neu-
rons in the human brain21, gene sets related to glial cells (astrocytes, 
myelination and positive regulation of gliogenesis) are absent from 
those identified as positively enriched (Supplementary Table 8). 
Furthermore, using stratified LD score regression22, we estimated 
relatively weak enrichment of genes highly expressed in glial cells 
(Supplementary Table 9): 1.08-fold for astrocytes (P =​ 0.07) and 
1.09-fold for oligodendrocytes (P =​ 0.06) versus 1.33-fold for neu-
rons (P =​ 2.89 ×​ 10−11). Because myelination increases the speed 
with which signals are transmitted along axons23, the absence of 
enrichment of genes related to glial cells may weigh against the 
hypothesis that differences across people in cognition are driven by 
differences in transmission speed.

The results also raise a number of possible targets for functional 
studies. Among SNPs within 50 kb of lead SNPs, 127 of them are iden-
tified by the fine-mapping tool CAVIARBF24 as likely causal SNPs 
(posterior probability >​ 0.9; Supplementary Table 10). Eight of these 

are non-synonymous, and one of these eight (rs61734410) is located 
in CACNA1H (Supplementary Fig. 9), which encodes the pore-form-
ing subunit of a voltage-gated calcium channel that has been impli-
cated in the trafficking of N-methyl-D-aspartate receptors25.

Polygenic prediction. Polygenic predictors derived from earlier 
GWAS of EduYears have proven to be a valuable tool for researchers, 
especially in the social sciences6,7. We constructed polygenic scores 
for individuals of European ancestry in two prediction cohorts: the 
National Longitudinal Study of Adolescent to Adult Health (Add 
Health, n =​ 4,775), a representative sample of American adolescents; 
and the Health and Retirement Study (HRS, n =​ 8,609), a representa-
tive sample of Americans over the age of 50. We measure prediction 
accuracy by the ‘incremental R2’ statistic: the gain in the coefficient 
of determination (R2) when the score is added as a covariate to a 
regression of the phenotype on a set of baseline controls (sex, birth 
year, their interaction and 10 principal components of the genetic 
relatedness matrix).

All scores are based on the results from a meta-analysis that 
excluded the prediction cohorts. Our first four scores were con-
structed from sets of LD-pruned SNPs associated with EduYears at 
various P-value thresholds: 5 ×​ 10−8, 5 ×​ 10−5, 5 ×​ 10−3 and 1 (that is, 
all SNPs). In both cohorts, the predictive power is greater for scores 
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constructed with less stringent thresholds (Supplementary Fig. 10). 
The sample-size-weighted mean incremental R2 increases from 3.2% 
at P <​ 5 ×​ 10−8 to 9.4% at P ≤​ 1. Our fifth score was generated from 
HapMap3 SNPs using the software LDpred26. Rather than removing 
SNPs that are in LD with each other, LDpred is a Bayesian method that 
weights each SNP by (an approximation to) the posterior mean of its 
conditional effect, given other SNPs. This score was the most predic-
tive in both cohorts, with an incremental R2 of 12.7% in AddHealth 
and 10.6% in HRS (and a sample-size weighted mean of 11.4%).

To put the predictive power of this score in perspective, Fig. 4a 
shows the mean college completion rate by polygenic-score quin-
tile. The difference between the bottom and top quintiles in Add 
Health and HRS is, respectively, 45 and 36 percentage points (see 
Supplementary Fig. 11 for analogous analyses of high school com-
pletion and grade retention). Figure 4b compares the incremental R2 
of the score to that of standard demographic variables. The score is 
a better predictor of EduYears than household income and a worse 
predictor than the educational attainment of the mother or father. 
Controlling for all the demographic variables jointly, the score’s 
incremental R2 is 4.6% (Supplementary Fig. 12).

We also found that the score has substantial predictive power for 
a variety of other cognitive phenotypes measured in the prediction 
cohorts (Supplementary Fig. 13). For example, it explains 9.2% of 
the variance in overall grade point average in Add Health.

Because the discovery sample used to construct the score con-
sisted of individuals of European ancestry, we would not expect 
the predictive power of our score to be as high in other ancestry 
groups7,27,28. Indeed, when our score was used to predict EduYears in 
a sample of African-Americans from the HRS (n =​ 1,519), the score 
only has an incremental R2 of 1.6%, implying an attenuation of 85%. 
The Supplementary Note shows that this amount of attenuation is 
typical of what has been reported in previous studies.

Related cognitive phenotypes and multi-trait analysis of 
GWAS. We performed GWAS on three complementary pheno-
types: cognitive performance (n =​ 257,841), self-reported math 

ability (n =​ 564,698), and highest math class taken (highest math, 
n =​ 430,445). For cognitive performance, we meta-analyzed pub-
lished results from the COGENT consortium29 with results based 
on new analyses of the UK Biobank (UKB), as did another study30. 
For the two math phenotypes, we studied new genome-wide 
analyses using samples of research participants from 23andMe. 
We identified 225, 618 and 365 genome-wide significant SNPs for 
cognitive performance, math ability and highest math, respectively 
(Supplementary Figs. 14–16 and Supplementary Tables 11–13).

We conducted a multi-trait analysis of EduYears and our sup-
plementary phenotypes to improve polygenic prediction accuracy. 
These phenotypes are well suited to joint analysis because their 
pairwise genetic correlations are high, in all cases exceeding 0.5 
(Supplementary Table 14). We applied a recently developed method, 
multi-trait analysis of GWAS (MTAG)11 to summary statistics for 
the four phenotypes from meta-analyses that exclude the prediction 
cohorts. For all four phenotypes, MTAG increases the number of 
lead SNPs identified at genome-wide significance (Supplementary 
Figs. 17–20 and Supplementary Table 15). Figure 4c shows the 
incremental R2 for the polygenic scores based on GWAS and MTAG 
association statistics (but otherwise constructed using identical 
methods) when the target phenotype is either EduYears (left panel) 
or cognitive performance (right panel).

In Add Health, in which our measure of cognitive performance 
is the respondent’s score on a test of verbal cognition, the incremen-
tal R2 values of the GWAS and MTAG scores are 5.1% and 6.9%, 
respectively. To obtain a better measure of prediction accuracy for 
cognitive performance, we used an additional validation cohort, the 
Wisconsin Longitudinal Study (WLS), which administered a cogni-
tive test with excellent retest reliability and psychometric properties 
that were similar to those used in our discovery GWAS of cogni-
tive performance. In the WLS, the MTAG score predicts 9.7% of the 
variance in cognitive performance, a substantial improvement over 
the 7.0% predicted by the GWAS score and approximately double 
the prediction accuracy reported in three recent GWAS analyses of 
cognitive performance30–32.
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Discussion
The results of this study illustrate what the advocates of GWAS 
anticipated: as sample sizes get larger, thousands of lead SNPs will 
be identified, and polygenic predictors will attain non-trivial lev-
els of predictive power. However, theoretical projections that failed 
to consider heterogeneity of effect sizes were optimistic4. Our and 
others’ findings17,18 suggest that imperfect genetic correlation across 
cohorts will be the norm for phenotypes, such as educational attain-
ment, that are environmentally contingent.

For research at the intersection of genetics and neuroscience, 
the set of 1,271 lead SNPs that we identify is a treasure trove for 
future analyses. For research in social science and epidemiology, 
the polygenic scores that we construct—which explain 11–13% and 
7–10% of the variance in educational attainment and cognitive per-
formance, respectively—will prove useful across at least three types 
of applications.

First, by examining associations between the scores and high-
quality measures of endophenotypes, researchers may be able to 
disentangle the mechanisms by which genetic factors affect educa-
tional attainment and cognitive phenotypes. Such studies are already 
being conducted with polygenic scores from earlier GWAS of edu-
cational attainment6,7, but they can now be well powered in samples 
as small as those from laboratory experiments. For example, if our 
polygenic score explains 10% of the variance in an endophenotype, 
then its effect can be detected at a 5% significance threshold with 
80% power in a sample of only 75 individuals. Second, the polygenic 
scores can be used as control variables in randomized controlled 
trials (RCTs) of interventions that aim to improve academic and 
cognitive outcomes. Given the current levels of predictive power of 
the scores, such use can now generate non-trivial gains in statistical 
power for the RCT. For example, if adding the polygenic score to the 
set of control variables in an RCT increases their joint explanatory 
power from 10% to 20%, then the gain in power from including the 
polygenic score is equivalent to increasing the sample size of the 
RCT by 11% (for such calculations, see the supplementary online 
material of a previous study4). Third, the polygenic scores can be 
used as a tool for exploring gene–environment interactions33, which 
are known to be important for genetic effects on educational attain-
ment and cognitive performance1,34.

Our results also highlight two caveats to the use of the poly-
genic scores in research. First, our within-family analyses suggest 
that GWAS estimates may overstate the causal effect sizes: if educa-
tional attainment-increasing genotypes are associated with paren-
tal educational attainment-increasing genotypes, which are in turn 
associated with rearing environments that promote educational 
attainment, then failure to control for rearing environment will bias 

GWAS estimates. If this hypothesis is correct, some of the predictive 
power of the polygenic score reflects environmental amplification 
of the genetic effects. Without controls for this bias, it is therefore 
inappropriate to interpret the polygenic score for educational attain-
ment as a measure of genetic endowment.

Second, we found that our score for educational attainment has 
much lower predictive power in a sample of African-American indi-
viduals than in a sample of individuals with an European ancestry, 
and we anticipate that the score would also have reduced predictive 
power in other samples of individuals with a non-European ances-
try. Therefore, until polygenic scores are available that have as much 
predictive power in other ancestry groups, the score will be most 
useful in research that is focused on samples of individuals with an 
European ancestry.
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Methods
This article is accompanied by a Supplementary Note with further details.

GWAS meta-analyses. Our primary analysis extends the (combined discovery  
and replication) sample of a previous GWAS of educational attainment10  
from n =​ 405,072 to n =​ 1,131,881 individuals. We performed a sample-size-
weighted meta-analysis of 71 quality-controlled cohort-level results files using  
the METAL software36. The meta-analysis combines 59 cohort-level result files 
from the previous study with 12 new result files: 8 from cohorts that were not 
included in the previous study10 and 4 from cohorts that updated their results  
with larger samples.

All cohort-level analyses were restricted to individuals of European  
ancestry that passed the quality control of the cohort and for whom EduYears 
was measured at an age of at least 30. The EduYears phenotype was constructed 
by mapping each major educational qualification that can be identified from 
the survey measure of the cohort to an International Standard Classification of 
Education (ISCED) category and imputing a years-of-education equivalent for 
each ISCED category. Details on cohort-level phenotype measures, genotyping, 
imputation, association analyses and quality-control filters are described in 
Supplementary Tables 16–19.

We used the estimated intercept from LD score regression13 to inflation-
adjust the test statistics. We then used the clumping algorithm described below to 
determine the number of approximately independent SNPs identified at any given 
P-value threshold.

Clumping algorithm. Our clumping algorithm is iterative and has been used 
previously10. We describe it here for the case of identifying lead SNPs among the set 
of SNPs that reached P <​ 5 ×​ 10−8; the algorithm is the same when determining sets 
of approximately independent SNPs for other P-value thresholds.

First, the SNP with the smallest P value in the pooled meta-analysis results is 
identified as the lead SNP of the first clump. Next, all SNPs in LD with the lead 
SNP are also assigned to this clump. SNPs are defined to be in LD with each other 
if they are on the same chromosome and the squared correlation of their genotypes 
is r2 >​ 0.1. To determine the second lead SNP and second clump, the first clump 
is removed, and the same steps are applied to the remaining SNPs. The process is 
repeated until no SNPs with a P value below 5 ×​ 10−8 remain. Each locus is defined 
by a lead SNP and the SNPs assigned to its clump. Therefore, each lead SNP maps 
to exactly one locus, and each locus maps to exactly one lead SNP.

We performed the clumping in Plink37. Note that we measure the LD between 
every pair of SNPs on each chromosome without regard to the physical distance 
between them. Therefore, if two SNPs on the same chromosome have a pairwise r2 
above 0.1, then they cannot both be lead SNPs. On the other hand, it is possible for 
two SNPs in close physical proximity both to be lead SNPs, provided their pairwise 
r2 is below 0.1. Analyses of the sensitivity of the number of lead SNPs and loci to 
alternative definitions and to the choice of the reference file used to estimate LD 
are included in the Supplementary Note.

Conditional and joint multiple-SNP analysis. Given a P-value threshold specified 
by the user, conditional and joint multiple-SNP analysis (COJO)15 is a method that 
identifies a set of SNPs such that, in a multivariate regression of the phenotype 
on all the SNPs in the set, every SNP has a P value below the threshold. COJO 
uses the meta-analysis summary statistics together with LD estimates from a 
reference sample. Our COJO analysis was conducted using a reference sample of 
approximately unrelated individuals of European ancestry from UK Biobank. We 
specified the P-value threshold as 5 ×​ 10−8. The analyses were restricted to SNPs 
satisfying recommended quality-control filters. The Supplementary Note contains 
additional details.

Bayesian framework for calculating winner’s-curse-adjusted posterior effect-
size distributions. We assume that the marginal effect size of each SNP is drawn 
from the following mixture distribution:

β τ π~










N (0, ) with probability
0 otherwisej

2

where τ2 is the effect-size variance for non-null SNPs and π is the fraction of 
non-null SNPs in our data. We estimate the parameters τ2 and π by maximum 
likelihood. Given their values, the posterior distribution of SNP j can be 
calculated from Bayes’ rule. Relative to the GWAS effect estimate, the mean of the 
posterior distribution is shrunken toward zero (because zero is the mean of the 
prior distribution) and is not biased by the winner’s curse. Further details and a 
derivation of the likelihood function used in the maximum-likelihood estimation 
are provided in the supplementary note of a previous SSGAC study38.

To calculate the 5th, 50th and 95th percentile of the effect-size distribution of 
our lead SNPs, we simulated effect sizes from the posterior distribution of each 
lead SNP and identified the 5th, 50th and 95th percentiles of the complete set of 
simulated effect sizes.

As described below, we also use this Bayesian framework in our GWAS and 
MTAG replication analyses and in our within-family analyses.

Replication of lead SNPs from the previous combined-stage analysis. We 
conducted a replication analysis of the 162 lead SNPs identified at genome-wide 
significance in a previous10 combined-stage (discovery and replication) meta-
analysis (n =​ 405,073). Of the 162 SNPs, 158 passed quality-control filters in our 
updated meta-analysis. To examine their out-of-sample replicability, we calculated 
Z-statistics from the subsample of our data (n =​ 726,808) that was not included 
in the previous study10. Let the Z-statistics of association from, respectively, the 
previous study10, the new data and our current meta-analysis, be denoted by Z1, 
Z2 and Z. Since our meta-analysis used sample-size weighting36, Z2 is implicitly 
defined by:

= +Z
N
N

Z
N
N

Z1
1

2
2

where SNP subscripts have been dropped and N’s are sample sizes. Because 
this formula holds when Z1 and Z2 are independent, the implicitly defined Z2 is 
interpreted as the additional information contained in the new data.

Of the 158 SNPs, we found that 154 have matching signs in the new data (for 
the remaining four SNPs, the estimated effect is never statistically distinguishable 
from zero at P <​ 0.10). Of the 154 SNPs with matching signs, 143 are significant 
at P <​ 0.01, 119 are significant at P <​ 10−5 and 97 are significant at P <​ 5 ×​ 10−8. 
The replication results are shown graphically in Supplementary Fig. 3. To help 
to interpret these results, we used the Bayesian framework described above to 
calculate the expected replication record under the hypothesis that all 158 SNPs 
are true associations. The posterior distributions of the effect sizes of the SNPs are 
calculated using parameters estimated from the summary statistics of the previous 
study10: τ π = . × .−� �( , ) (5 02 10 , 0 33)2 6 .

Within-family analyses. We conducted within-family association analyses on a 
sample of 22,135 sibling pairs from the Swedish Twin Registry’s Twingene study, 
the Swedish Twin Registry’s Screening Across the Lifespan Twin Youth study, 
UKB and WLS. For each cohort, we standardized EduYears within the cohort 
and then residualized this variable using the same controls as in the GWAS. We 
then regressed the sibling difference in the residuals on the sibling difference in 
genotype. We restricted analyses to SNPs with a minor allele frequency (MAF) 
above 5% in each of the sibling cohorts and meta-analyzed the cohort-level results 
using inverse-variance weighting.

We followed a previous study38 to compare the signs of the within-family 
estimates to the signs of the estimates from a GWAS meta-analysis that we re-ran 
after removing the sibling samples (n =​ 1,070,751). We benchmarked our observed 
fraction of concordant signs against the three theoretical benchmarks shown in 
Fig. 2. The theoretical benchmarks are calculated using posterior distributions for 
the GWAS effect sizes obtained from our Bayesian statistical framework. Treating 
each benchmark as a null hypothesis, we conducted one-sided binomial tests for 
which the alternative hypothesis is that the observed sign concordance falls short 
of the benchmark. We conducted this test for sets of approximately independent 
SNPs selected at the P-value thresholds of 5 ×​ 10−8, 5 ×​ 10−5 and 5 ×​ 10−3 (Fig. 2 and 
Supplementary Table 20).

We also performed regression-based comparisons of the within-family 
estimates and the GWAS estimates (Supplementary Table 21 and Supplementary 
Fig. 21). Further details, including a derivation of our assortative-mating 
adjustment, can be found in the Supplementary Note.

Joint F-test of heterogeneity. When the SNPs are considered individually, for all 
but one of the 1,271 lead SNPs, we fail to reject a null hypothesis of homogenous 
effects across cohorts at the Bonferroni-adjusted P value threshold of 0.05/1,271. 
We generated an omnibus test statistic for heterogeneity by summing the Cochran 
Q-statistics for heterogeneity across all 1,271 lead SNPs39. Because the software 
used for meta-analysis does not report Q-statistics, we inferred these values based 
on the reported heterogeneity P values. To do so, we treated each lead SNP as if it 
were available for each of the 71 cohorts in the meta-analysis, which implies that 
the Q-statistic for each lead SNP has a χ2 distribution with 70 degrees of freedom. 
The sum of these Q-statistics is therefore (approximately) χ2-distributed with 
70 ×​ 1,270 =​88,970 degrees of freedom. This gave us an omnibus Q-statistic of 
91,830, with corresponding P value equal to 9.68 ×​ 10−12.

Cross-cohort genetic correlation. We estimated the genetic correlation of 
EduYears across all pairs of cohorts with non-negative heritability estimates 
(Supplementary Table 22). We used bivariate LD score regression40 implemented 
by the LDSC software with a European reference population, filtered to HapMap3 
SNPs. The estimated genetic correlations of EduYears between each of our 933 
pairs of cohorts is shown in Supplementary Table 23.

We calculated the inverse-variance-weighted mean of the genetic-correlation 
estimates. The genetic correlation across pairs of cohorts will be correlated across 
all observations that share one of their cohorts in common. Therefore, to obtain 
correct standard errors, we used the node-jackknife variance estimator described 
previously41. As detailed in Supplementary Note, we also estimated the variance 
of SNP heritability of EduYears across cohorts, and we conducted analyses 
to assess the extent to which we can predict variation in SNP heritability and 
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genetic correlation of EduYears based on several observable cohort characteristics 
(Supplementary Tables 24, 25).

X chromosome. We performed association analyses of SNPs on the X chromosome 
in our two largest cohorts, UKB (n =​ 329,358) and 23andMe (n =​ 365,536). The 
UKB analyses were conducted in a sample of conventionally unrelated individuals 
of European ancestry, yielding a smaller sample size than the autosomal UKB 
analyses (Supplementary Table 26). Imputed genotypes for the X chromosome 
were not included in the data officially released by UKB. We therefore imputed the 
data ourselves using the 1000 Genomes Project42 as our reference panel.

In both cohorts, the association analyses were performed on a pooled male–
female sample with male genotypes coded 0/2. Except for this allele coding in 
males, all major aspects of the 23andMe analysis were identical to those described 
for the autosomal analyses; see Supplementary Tables 17–19 for details.

Both sets of association results underwent the same set of quality-control filters 
as the autosomal analyses prior to meta-analysis. Additionally, we dropped a small 
number of SNPs with male–female allele frequency differences above 0.005 in 
UKB. The meta-analysis was conducted in METAL36, using sample-size weighting. 
Only SNPs that were present in both cohorts’ result files were used. To adjust the 
test statistics for bias, we inflated the standard errors using the LD score regression 
intercept estimated from our main autosomal analysis .( 1 113 ) .

Heritability of the X chromosome and dosage compensation. To estimate SNP 
heritability for males and females, we use the equation

χ = +E
Nh
M

[ ] 1i
i i2

2

eff

where ∈i {m,f}  indicates males or females, χE [ ]i
2  is the expected χ2 statistic, hi

2 is 
the SNP heritability for the X chromosome, Ni is the GWAS sample size, and Meff 
is the effective number of SNPs (which is assumed to be the same in males and 
females). We replaced χE [ ]i

2  with its sample analog and Meff with its estimated 
value, and then we solved for hi

2.
Let γ = ∕h hm

2
f
2denote the dosage compensation ratio. The ratio takes on a value 

between 0.5 (zero dosage compensation) and 2 (full dosage compensation). On the 
basis of the above equation, we estimated it as
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where χ̄i
2 is the mean χ2 statistic. (Similarly, our γ� estimate is equal to the ratio of 

our SNP heritability estimates.)

Biological annotation. We used DEPICT20 (downloaded February 2016 from 
https://github.com/perslab/depict) to identify the tissues or cell types in which 
the causal genes are strongly expressed, detect enrichment of gene sets and 
prioritize likely causal genes. We ran DEPICT as described previously10 with the 
following exceptions: we used 37,427 human Affymetrix HGU133a2.0 platform 
microarrays20, discarded gene sets that were not well-reconstituted43, and relaxed 
the significance threshold for defining a matching SNP in the simulated null 
GWAS from 5 ×​ 10−4 to 5 ×​ 10−3. ‘Previously prioritized’ genes were prioritized 
by DEPICT (in the sense of achieving FDR <​ 0.05) both in the previous study10 
and in the current work; ‘newly prioritized’ genes, on the other hand, were not 
prioritized in the previous study10. We used expression data from the BrainSpan 
Developmental Transcriptome35 and calculated the average expression in the brain 
of all DEPICT-prioritized EduYears genes (Supplementary Table 7) as a function of 
developmental stage (Supplementary Table 8 and Supplementary Fig. 22).

In addition to the analyses presented in the main text, we determined which 
functional systems are least implicated by DEPICT (Supplementary Table 27) and 
how enrichment of gene sets differs across phenotypes (Supplementary Table 28).

We tested the robustness of our DEPICT results using the bioinformatics 
tools MAGMA44 and PANTHER45,46. For MAGMA, we used the ‘multi=​snp-wise’ 
option, mapping a SNP to a gene if it resides within the gene boundaries or 5 kb 
of either endpoint. We estimated the LD using a reference panel of Europeans in 
1000 Genomes phase 3, and we defined a gene as significant if its joint P value 
falls below the threshold corresponding to FDR <​ 0.05 (Supplementary Table 29). 
For PANTHER, we used the binomial overrepresentation test with the DEPICT-
prioritized genes as input (Supplementary Table 30).

We also used stratified LD score regression22 to partition the heritability of 
the trait between SNPs of different types. In addition to the baseline SNP-level 
annotations (Supplementary Table 31), we tested a number of novel annotation 
types, described more completely in the Supplementary Note. We tested the 
heritability enrichment of neural cell types (Supplementary Table 9), various 
SNP-level annotations assembled by Pickrell47 (Supplementary Fig. 23 and 
Supplementary Table 32), developmental stages (Supplementary Table 33), and 
genes that are broadly expressed or specifically expressed in a particular tissue 
(Supplementary Fig. 24 and Supplementary Table 34). We also applied LD score 
regression to DEPICT-reconstituted gene sets (Supplementary Table 35) and binary 
gene sets (Supplementary Table 36 and Supplementary Fig. 25).

We used the tool CAVIARBF24,48 in a fine-mapping exercise to identify 
candidate causal SNPs. We used the 74 baseline annotations employed by stratified 
LD score regression as well as 451 annotations from Pickrell47. We applied a MAF 
filter of 0.01 and a sample-size filter of 400,000 and only considered SNPs within 
a 50-kb radius of a lead SNP. We computed exact Bayes factors by averaging over 
prior variances of 0.01, 0.1 and 0.5; we set the sample size to the mean sample size 
of our considered SNPs; and we added 0.2 to the main diagonal of the LD matrix 
because we used a reference panel for LD estimation. To incorporate annotations, 
we used the elastic net setting with parameters selected via fivefold cross-
validation. The resulting annotation effect sizes and list of candidate causal SNPs 
are given in Supplementary Tables 37 and 10. Regional association plots of four 
noteworthy candidates are shown in Supplementary Fig. 9.

Polygenic prediction. Prediction analyses were performed using Add Health, 
HRS and WLS. Polygenic scores were constructed using HapMap3 SNPs that 
meet the following conditions: (i) the variant has a call rate greater than 98% in 
the prediction cohort; (ii) the variant has a MAF greater than 1% in the prediction 
cohort; and (iii) the allele frequency discrepancy between the meta-analysis and 
the prediction cohort does not exceed 0.15. To calculate the SNP weights, we used 
the software package LDpred26, assuming a fraction of causal variants equal to 1, 
and then we constructed the scores in PLINK.

All prediction exercises were performed with an Ordinary Least Squares or 
probit regression of a phenotype on our score and a set of controls consisting of a 
full set of dummy variables for year of birth, an indicator variable for sex, a full set 
of interactions between sex and year of birth, and the first 10 principal components 
of the variance–covariance matrix of the genetic relatedness matrix.

Our measure of prediction accuracy is the incremental R2. To calculate this 
value, we first regress a phenotype on our set of controls without the polygenic 
score. Next, we re-run the same regression but with the score included as a 
regressor. For quantitative phenotypes, our measure of predictive power is the 
change in R2. For binary outcomes, we calculated the incremental pseudo-R2 
from a Probit regression. To obtain 95% confidence intervals, we bootstrapped 
the incremental R2 values with 1,000 repetitions (Supplementary Table 38 and 
Supplementary Figs. 13, 26–28).

Prediction of other phenotypes. In addition to EduYears, we also used our 
polygenic score to predict a number of other phenotypes. For the HRS and 
Add Health datasets, we analyzed three binary variables related to educational 
attainment: (i) high school completion; (ii) college completion; and (iii) grade 
retention (that is, retaking a grade).

In additional analyses in Add Health, we predicted an augmented version of 
the Peabody picture vocabulary test, measured when participants were 12–20 years 
old. Peabody scores were age-standardized. We also predicted a number of grade 
point average (GPA) variables (range: 0.0–4.0) from the third wave of Add Health, 
when transcripts were collected from respondents’ high schools. We analyzed 
overall GPA, math GPA, science GPA and verbal GPA, controlling for high school 
fixed effects.

In additional analyses in the HRS, we predicted several cognitive phenotypes. 
Total cognition is the sum of four cognitive measures measured in waves 3 through 
10: an immediate word recall task, a delayed word recall task, a naming task and 
a counting task. Verbal cognition measures the ability of the subject to define five 
words. To evaluate changes over time, we also studied wave-to-wave changes in 
total cognition and verbal cognition. Our next cognitive outcome, Alzheimer’s, 
is an indicator variable equal to 1 for subjects who report having been diagnosed 
with Alzheimer’s disease, and 0 otherwise. Because the HRS data are longitudinal, 
the unit of analysis for our four cognitive outcomes is a person-year. For these 
analyses, because an individual took the cognitive tests at different ages, in our set 
of controls we replaced our person-specific age variable with age at assessment 
(which differs for an individual across the cognitive outcomes); we also clustered 
all standard errors at the person level.

In the WLS, we measured cognitive performance using the raw score of the 
respondent in a Henmon–Nelson test of mental ability49.

For all of these additional prediction exercises, results are shown in 
Supplementary Table 38 and depicted in Fig. 4a and Supplementary Figs. 13, 11.

Benchmarking the predictive power of the EduYears polygenic score. To 
benchmark the predictive power of our score, we compared its predictive power 
to the predictive power of other common variables: education of the mother, 
education of the father, education of both mother and father, verbal cognition, 
household income and a binary indicator for marital status. For each variable, we 
calculated the incremental R2 of the variable using the same procedures as those 
described above, with the same set of control variables. (For ‘education of both 
mother and father’, we calculated the incremental R2 from adding both variables as 
regressors.) The results of this analysis are shown in Supplementary Table 39a and 
depicted in Fig. 4b and Supplementary Fig. 12.

We also evaluated the attenuation in the incremental R2 of the polygenic score 
in predicting EduYears when we control for available demographic variables one at 
a time: marital status, household income, education of the mother and education 
of the father. We next controlled for the education of both mother and father, and 
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finally, we controlled for the full set of demographic controls. The results of this 
analysis are shown in Supplementary Table 39b and Supplementary Fig. 12.

GWAS of cognitive performance, math ability and highest math. The GWAS 
of math ability (n =​ 564,698) and highest math (n =​ 430,445) phenotypes were 
conducted exclusively among research participants of the personal genomics 
company 23andMe who answered survey questions about their mathematical 
background. In our analyses of cognitive performance, we combined a published 
study of general cognitive ability (n =​ 35,298) conducted by the COGENT 
consortium29 with new genome-wide association analyses of cognitive performance 
in the UKB (n =​ 222,543). The phenotype measures are described in detail in 
Supplementary Table 40. Our new genome-wide analyses of cognitive performance 
in UKB, and math ability and highest math in 23andMe, were conducted using 
methods identical to those for EduYears in UKB and 23andMe, respectively 
(Supplementary Table 19).

For cognitive performance, we conducted a sample-size-weighted meta-analysis 
(n =​ 257,841), imposing a minimum-sample-size filter of 100,000. We similarly 
applied minimum-sample-size filters to the math ability (n >​ 500,000) and highest 
math (n >​ 350,000) results. We adjusted the test statistics using the estimated 
intercepts from LD score regressions (1.073 for math ability, 1.105 for highest math 
and 1.046 for cognitive performance). The summary statistics underwent quality 
control using the same procedures applied to the EduYears results.

The lists of lead SNPs were obtained by applying the same clumping algorithm 
used in the EduYears analyses (Supplementary Tables 11–13). Manhattan plots 
from the analyses are shown in Supplementary Figs. 14–16.

MTAG of cognitive performance, math ability and highest math. We performed 
a joint analysis of our GWAS results on EduYears, cognitive performance, math 
ability and highest math using MTAG11. Supplementary Table 14 shows moderately 
high pairwise genetic correlations, ranging from 0.51 to 0.85, which motivate the 
multivariate analysis. The MTAG analyses were restricted to SNPs that passed 
MTAG-recommended filters in all files with summary statistics. We removed  
(i) SNPs with a MAF below 1% or (ii) SNPs with sample sizes below a cutoff (66.6% 
of the 90th percentile), leaving approximately 7.1 million SNPs found in all four 
results files. Supplementary Table 41 reports the increases in effective sample size 
from using MTAG for each set of GWAS results.

Supplementary Table 15 lists all the lead SNPs in the MTAG analysis. 
Supplementary Figs. 17–20 show inverted Manhattan plots that compare the 
MTAG and GWAS results, restricted to the set of SNPs that pass MTAG filters.

Polygenic scores were constructed from MTAG results using the same 
procedures as for the GWAS results. Supplementary Figure 29 and Supplementary 
Tables 42 and 43 compare the predictive power of scores constructed from MTAG 
results in the Add Health and WLS cohorts (see Supplementary Note for details).

To examine the credibility of the MTAG-identified lead SNPs of our lowest-
powered GWAS, cognitive performance, we conducted a replication analysis. We 
re-ran MTAG with GWAS results that exclude COGENT cohorts, and we used 
the COGENT meta-analysis as our replication sample. In addition to applying 
the MTAG filters above, we limited the analysis to SNPs for which the COGENT 
results file contains summary statistics based on analyses of at least 25,000 
individuals. The MTAG-identified lead SNPs for cognitive performance from 
our restricted sampled are reported in Supplementary Table 44. We used our 
Bayesian framework to calculate the expected replication record of the MTAG 
results under the hypothesis that the MTAG-identified lead SNPs are true positives, 
given sampling variation and adjusted for winner’s curse and differences in SNP 
heritability across the samples.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Code availability. All software used to perform these analyses are available online.

Data availability. Summary statistics can be downloaded from http://www.
thessgac.org/data. We provide association results for all SNPs that passed  
quality-control filters in a GWAS meta-analysis of EduYears that excludes  
the research participants from 23andMe. SNP-level summary statistics from 
analyses based entirely or in part on 23andMe data can only be reported for up 
to 10,000 SNPs. We provide summary statistics for all lead SNPs identified in our 
GWAS analyses of cognitive performance, math ability and highest math and the 
MTAG analyses of our four phenotypes. For the complete EduYears GWAS, which 
includes 23andMe, clumped results for the 3,575 SNPs with P <​ 10−5 are provided; 
this P-value threshold was chosen such that the total number of SNPs across 
the analyses that include data from 23andMe does not exceed 10,000. Contact 
information for each of the cohorts included in this paper can be found in the 
Supplementary Note.
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    Experimental design
1.   Sample size

Describe how sample size was determined. For each of the phenotypes, we combined all publicly available summary 
statistics with summary statistics from new association analyses. For the 
GWAS of EA, we had a combined sample size of 1,131,881 individuals. For 
the supplementary GWASs of CP, Math Ability, and Highest Math, we had 
sample sizes of 257,841, 430,445, and 564,698, respectively. For EA and 
CP, the sample sizes are larger than previously published papers that have 
identified replicable loci. For the two math-related phenotypes, they each 
have a heritability greater than that of EA (Math Ability: 0.156, Hardest 
Math: 0.165, EA: 0.122) and have sample sizes greater than previous 
GWASs of EA. This suggests that we will be well powered to find replicable 
loci for each of the four phenotypes considered.

2.   Data exclusions

Describe any data exclusions. No data were excluded from the analysis, except for standard quality-
control filters applied to the SNP data. The main filtering steps involved 
dropping SNPs that: (i) are known to have strand issues in some 
imputation programs, (ii) have missing or incorrect numerical values 
supplied for some variables (e.g., a P value of association outside the range 
0 to 1), (iii) have a minor allele count below 25, (iv) have poor imputation 
accuracy, (v) are indels or not located on the autosomes, or (vi) have 
invalid or duplicated chromosomal coordinates or whose alleles do not 
match those in the reference file. In association results from analyses of 
the full release of the UK Biobank data, we further filter out all SNPs that 
are not in the Haplotype Reference Consortium’s reference panel.

3.   Replication

Describe whether the experimental findings were reliably reproduced. We test the lead SNPs from a previous GWAS of educational attainment, 
Okbay et al. (2016) (Supplementary Note section 1.10). We also replicate 
the lead SNPs for the MTAG of cognitive performance (Supplementary 
Note section 1.14). Finally, we test whether polygenic predictors based on 
both the GWAS and MTAG results have predictive power in a out-of-
sample prediction cohort consistent with replication (Supplementary Note 
section 6.4, 6.5, and 6.6). In all cases, the replication record is strong.

4.   Randomization

Describe how samples/organisms/participants were allocated into 
experimental groups.

Not relevant because the study is not experimental.

5.   Blinding

Describe whether the investigators were blinded to group allocation 
during data collection and/or analysis.

Not relevant because the study is not experimental.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or the Methods 
section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same sample 
was measured repeatedly. 

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. p values) given as exact values whenever possible and with confidence intervals noted

A summary of the descriptive statistics, including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this study. The software used for imputation by each cohort included Minimac2, 
BEAGLE v2.1.2, IMPUTE2 v2.3.1, PBWT, and IMPUTE4 ShapeIT v2.r790. 
Associations analyses software used by each cohort included BOLT-LMM, 
SNPTEST v2.4.1, and REGSCAN v0.2.0. Meta-analyses were performed with 
Metal, release 2011-03-25. QC was run with EasyQC v9.0. LD score 
regressions were done using ldsc v1.0.0. Clumping was perfomed with 
Plink, 1.90b3p. Polygenic score weights were generated using LDpred 
v0.9.09, and the prediction analyses were executed in Stata v14.2. 
Biological annotation was completed using DEPICT (downloaded Feb 
2015), MAGMA v1.06b, PANTHER release 20170403, and CAVIARBF v0.2.1. 
MTAG analyses were conducted using the MTAG software v1.0.1.

For all studies, we encourage code deposition in a community repository (e.g. GitHub). Authors must make computer code available to editors and reviewers upon 
request.  The Nature Methods guidance for providing algorithms and software for publication may be useful for any submission.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of unique 
materials or if these materials are only available for distribution by a 
for-profit company.

No unique materials were used.

9.   Antibodies

Describe the antibodies used and how they were validated for use in 
the system under study (i.e. assay and species).

No antibodies were used.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used.

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used.

c.  Report whether the cell lines were tested for mycoplasma 
contamination.

No eukaryotic cell lines were used.

d.  If any of the cell lines used in the paper are listed in the database 
of commonly misidentified cell lines maintained by ICLAC, 
provide a scientific rationale for their use.

No cell lines were used.
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    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived materials used in 
the study.

No animals were used.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population characteristics of the 
human research participants.

Analyses were conducted on GWAS summary statistics. Of the individuals  
included in the current meta-analysis and not already included in Okbay et 
al.'s (2016) GWAS of EA, 54% are female. The mean birth year is 1955 with 
a range from 1901 to 1989.
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