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Scores on cognitive tasks used in intelligence tests correlate positively with each other, that is, they

display a positive manifold of correlations. The positive manifold is often explained by positing a

dominant latent variable, the g factor, associated with a single quantitative cognitive or biological process

or capacity. In this article, a new explanation of the positive manifold based on a dynamical model is

proposed, in which reciprocal causation or mutualism plays a central role. It is shown that the positive

manifold emerges purely by positive beneficial interactions between cognitive processes during devel-

opment. A single underlying g factor plays no role in the model. The model offers explanations of

important findings in intelligence research, such as the hierarchical factor structure of intelligence, the

low predictability of intelligence from early childhood performance, the integration/differentiation effect,

the increase in heritability of g, and the Jensen effect, and is consistent with current explanations of the

Flynn effect.

Keywords: intelligence, g factor, dynamical systems, mutualism, reciprocal causation

In the study of intelligence, one empirical phenomenon is

well established: Test scores on cognitive tasks show a positive

manifold, that is, they are invariably positively intercorrelated,

albeit to varying degrees. This implies that people who score

well on one cognitive test are likely to score well on other

cognitive tests. The positive manifold is a robust phenomenon.

For instance, it does not depend on the exact nature of the

cognitive task, and it is observed in a variety of populations

(Jensen, 1998). It is in the light of this empirical phenomenon

that many differential psychologists accept the idea of an un-

derlying factor of general intelligence, commonly denoted as g,

at least as a working hypothesis (Carroll, 1993; Gottfredson,

1998; Jensen, 1998; Thorndike, 1994). As Bartholomew states,

“If a set of test scores tends to be positively correlated among

themselves there is a prima facie case for believing that those

correlations are induced by a common dependence on a latent

variable” (Bartholomew, 2004, p. 62).

It is important to distinguish between g as a psychometric and g

as a psychological construct (Thorndike, 1994). From a psycho-

metric point of view, the g factor is the outcome of factor analysis

of the correlation matrices of cognitive test scores. In the simplest

case, such analyses produce a dominant first-order general factor

(see Figure 1a), or a dominant first eigenvalue. In more advanced

versions of factor analyses of a wide variety of IQ tests (e.g.,

confirmatory factor analysis, exploratory or confirmatory hierar-

chical factor analysis), g is conceptualized as a higher order factor

or as a general first order factor in the presence of more specific

group factors (Carroll, 1993; Gustafsson, 1984; Mackintosh,

1998). In addition, in hierarchical models, g may be identified with

first-order factors such as fluid intelligence (Horn & Noll, 1994).

From a psychometric (i.e., factor analytic) point of view, g is

considered to be well established (cf. Bartholomew, 2004). In this

view, g is a summary measure or index of the positive manifold.

As a psychological construct, g is much more controversial. This

controversy centers on the question of the origin or nature of g

(Sternberg & Grigorenko, 2002). Can psychometric g be identified

with some psychological or biological variable? Does g explain

differences amongst individuals in performance on diverse mental

tests (Gottfredson, 1998)?

A century ago, Spearman (1904, 1927) introduced the notion of

mental energy as the main cause or origin of g. Many current

explanations are of this ‘single quantitative latent factor’ type. We

denote this the g explanation. For instance, it has been argued that

individual differences in g are due to individual differences in an

underlying cognitive factor, such as speed or efficiency of infor-

mation processing, working memory, or the capacity to handle

cognitive complexity (for reviews, see Deary, 2002; Detterman,

2002; Jensen, 1998). Alternatively, g is identified with underlying

biologically related factors such as brain size, neural efficiency or

pruning, or neural plasticity (Detterman, 2002; Garlick, 2002;

Gray & Thompson, 2004). Although there is ample evidence that

these factors play a major role in intelligence, none of these factors

is generally accepted as the unitary cause of g (Ackerman, Beier,

& Boyle, 2005; Luciano et al., 2005).

The large body of research on g may give the impression that the

g explanation is the only possible explanation of the positive
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We thank André de Roos, Denny Borsboom, Ingmar Visser, Lourens

Waldorp, Annemie Ploeger, Eric-Jan Wagenmakers, Marthe Straatemeier,

Earl Hunt, and Dennis Garlick for comments and discussion.

Software for the simulations in this article can be found at the Web page

of Han L. J. van der Maas: users.fmg.uva.nl/hvandermaas

Correspondence concerning this article should be addressed to Han L. J.

van der Maas, Department of Psychology, University of Amsterdam, The

Netherlands. E-mail: h.l.j.vandermaas@uva.nl

Psychological Review Copyright 2006 by the American Psychological Association
2006, Vol. 113, No. 4, 842–861 0033-295X/06/$12.00 DOI: 10.1037/0033-295X.113.4.842

842



manifold. However, to establish the g factor, the analysis of

correlations is insufficient (Borsboom, Mellenbergh, & van Heer-

den, 2004). In the words of Bartholomew (2004), “What we have

done is to demonstrate that what we have observed is what we

would have expected if an underlying variable, called g, did exist.

It leaves open the possibility that some other mechanism could

have produced the correlation” (p. 73). Thus we must exclude

alternative mechanisms, which do not include a general factor as

an underlying quantitative variable but which do give rise to the

positive manifold.

Thorndike (1927) and Thomson (1951) proposed one such al-

ternative mechanism, namely, sampling. In this sampling theory,

carrying out cognitive tasks requires the use of many lower order

uncorrelated modules or neural processes (so-called bonds). They

hypothesized that the samples of modules or bonds used for

different cognitive tests partly overlap, causing a positive correla-

tion between the test scores. In this view, the positive manifold is

due to a measurement problem in the sense that it is very difficult

to obtain independent measures of the lower order processes.

Jensen (1998) and Eysenck (1987) identified three problems with

this sampling theory. First, whereas some complex mental tests, as

predicted by sampling theory, highly load on the g factor, some

very narrowly defined tests also display high g loadings. Second,

some seemingly completely unrelated tests, such as visual and

memory scan tasks, are consistently highly correlated, whereas

related tests, such as forward and backward digit span, are only

modestly correlated. Third, in some cases brain damage leads to

very specific impairments, whereas sampling theory predicts gen-

eral impairments. These three facts are difficult to explain with

sampling theory, which as a consequence has not gained much

acceptance.1 Thus, the g explanation remains very dominant in the

current literature (see Jensen, 1998, p. 107).

The aim of this article is to outline a third possibility, a new

explanation of the positive manifold. This explanation is based on

a mathematically formulated developmental model with mutual-

ism or positive beneficial relationships between cognitive pro-

cesses. This explanation identifies a plausible mechanism that

gives rise to the positive manifold but that does not include g as a

latent quantitative variable. At the very least, this demonstrates

that a latent variable, which is well established psychometrically

(i.e., in factor analyses), need not correspond to an actual quanti-

tative variable, such as speed of processing or brain size. This

model also suggests explanations of other important empirical

phenomena in intelligence research. We present and discuss pos-

sible explanations for the low predictability of intelligence from

early childhood performance, the hierarchical factor structure of

intelligence, the increase in heritability of g, the Jensen effect, the

differentiation effect, and the Flynn effect.

The article is organized as follows. We first introduce a biolog-

ical metaphor concerning ecosystems to explain the idea underly-

ing our explanation. We then briefly introduce the models that

biologists use to study such complex ecosystems. Following from

these models, we introduce a model for intelligence based on

mutualism or reciprocal causal interactions. In order to investigate

this simple mathematical model, we introduce three scenarios for

the explanation of data from intelligence research. Computer sim-

ulations confirm that mutualism gives rise to, and thus embodies

an explanation of, the positive manifold. In the remaining sections

we investigate other aspects of psychometric g, such as the devel-

opment of intelligence, the differentiation effect, the heritability of

intelligence, and the Flynn effect. We end with a discussion of

possible extensions, open questions, and possible objections.

The Ecosystem Metaphor

Suppose we investigate the ecosystems of several small lakes in

a specific area. We set out to determine how well these ecosystems

function, for instance regarding biodiversity or sensitivity to ex-

ternal perturbations.2 Our research strategy consists of collecting

data concerning many different aspects of the lakes, such as

measures of the quality of water and number and diversity of flora

and fauna. Suppose we observe a positive manifold in these

measures, and a dominant general factor in the subsequent factor

analyses of the data. This would imply that “good” lakes are better,

1 The position of Jensen is perhaps inconsistent. In his discussion of the

question whether g is unitary (Detterman, 2002; Jensen, 1998, p. 260;

Kranzler & Jensen, 1991), he uses arguments similar to sampling theory,

which he rejected earlier. With regard to the unitary question, he argues

that the g factor is just a psychometric construct and may not relate to a

single underlying process or capacity. It is our impression, however, that

most differential psychologists believe that g is more than a statistical

construct. A recent genetic formulation of sampling theory can be found in

B. Anderson (2001).
2 In ecology, there is little consensus on measures for comparing eco-

systems (but see Kennedy et al., 2002, and Brooks & Kennedy, 2004, on

biodiversity barometers). Furthermore, real ecosystems include many com-

petitive relations and will not show a simple positive manifold. For our

present argument, we discard these issues.
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Figure 1. Three models of the positive manifold: (a) the standard g

model, (b) the mutualism model, and (c) the extended mutualism model.

Squares and circles denote manifest and latent variables, respectively.

Symbols x denote processes, u unique variances, and K resources (see text).
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to varying degrees, than “bad” lakes in all measured aspects. Thus,

we may ask: Is there a type of g factor for lakes? Is there an

equivalent of mental energy, a ‘speed’ factor, or a ‘plasticity’

factor for ecosystems?3 We do not exclude this possibility. How-

ever, what is more important to our present proposal is that

biologists have other explanations of these phenomena in

ecosystems.

In mathematical biology, ecosystems are often modeled with

coupled differential or difference equations. Famous are the Lotka-

Volterra type models for prey–predator population dynamics

(May, 1973; Murray, 2002). The basic Lotka-Volterra prey–

predator model concerns two species with population sizes x1

(prey) and x2 (predator). Prey grows according to the logistic map,

with birth factor a, and constrained by environmental resources K.

Furthermore, predation by x2 decreases x1 by a factor M, the

effectiveness of predation. x2 has a constant death rate c, and its

reproduction is proportional with factor b to amount of prey and M.

The idea is that number of prey x1 increases when number of

predators x2 is low and decreases when predators are numerous,

whereas number of predators increases when prey are numerous

and decreases when prey are rare. This leads to oscillations in both

x1 and x2. The dynamics are specified in two equations that define

the change dx/dt of the population sizes x1 and x2 over time:

dx1

dt
� ax1(1 � x1/K) � Mx2x1, (1)

dx2

dt
� (Mbx1 � c)x2. (2)

This elementary system generates a number of fascinating and

complex phenomena, as described in any basic text on population

dynamics (and illustrated with many java applets on the internet).

Current more realistic models can be very complex and detailed,

providing accurate description of, and predictions concerning, the

dynamics of large ecosystems (e.g., Kondoh, 2003; Prakash & de

Roos, 2004). In these models, interactions in the form of compe-

tition and cooperation are essential and will give rise to correla-

tions between different aspects or parts of the ecosystem.

Our dynamical explanation of the positive manifold of cognitive

tasks is based on this type of interaction in multivariate dynamical

systems (cf. van Geert, 1991). We argue that the positive manifold

may be a by-product of the positive interactions between the

different cognitive processes of the system. In our proposal, all

processes of the system are initially undeveloped and uncorrelated.

During the development of the system, the dynamical interactions

give rise to correlations among the processes of the system.

A Simple Dynamical Model for the Positive Manifold of

Intelligence

The model consists of two parts, a dynamical part and an

interaction part. The dynamical part represents the development of

cognitive processes. Developmental curves generally first show a

strong increase and then reach some kind of asymptote (i.e.,

intelligence does not grow unboundedly). This type of growth

pattern can be modeled in many ways. A popular model is the

logistic growth model (first part of Equation 1), which was intro-

duced as model for psychological growth by van Geert (1991) and

is also used by Eaves, Kirk, Martin, and Russell (1999) and

Molenaar and Raijmakers (1999) in simulations of genetic effects

in development. The logistic model can be seen as an elementary

model of growth, which can be extended in many ways. We also

chose a very simple interaction model, which is a multivariate

extension of the second part of Equation 1. Interactions are deter-

mined by a matrix of weights. Figure 1b gives a schematic view of

the model. We will introduce the model step by step.

The first step is the assumption that intelligence is based on

underlying cognitive processes, such as perceptual, memory, de-

cision, and reasoning processes. There is at present little consensus

about the specific basic processes underlying intelligent behavior

(Deary, 2002, p. 153). It is possible to adopt one theoretical

proposal, like the Sternberg model or the minimal cognitive archi-

tecture model of M. Anderson (1992) and develop the mutualism

model in these terms. The circles and squares used in Figure 1c

could be labeled with components proposed by Sternberg (1988).

However, our account of the positive manifold does not hinge on

a particular cognitive architecture or brain model. We use the term

cognitive processes in a general sense, including such notions as

modules, capacities, abilities, or components of the (neuro)cogni-

tive system, as they are routinely measured in intelligence tests.

Thus, as “species” in our model, we consider W processes xi (i in

1 . . . W), which represent basic cognitive (perceptual, memory,

decision, etc.) processes. The processes are denoted by a vector x.

The model requires some quantification of the processes. Of

course, a simple quantification as used in biology (number of

animals) is not possible. The standard way to quantify psycholog-

ical processes is by a test score. We assume that for each process

in our model, such a score is available. Given the existence of a

large number of intelligence tests and a large number of cognitive

tasks, this is feasible in principle.

Our choice for the logistic growth model is based on new

dynamical system approaches to the study of psychological devel-

opment (e.g., Port & van Gelder, 1995; Thelen & Smith, 1994; van

der Maas & Hopkins, 1998; van Geert, 2003). Key concepts in this

approach are emergence, autocatalytic growth, phase transitions,

and self-organization. The basic logistic model that we apply does

not incorporate all these phenomena (although it can; see van

Geert, 1991). It does, however, incorporate auto-catalytic growth

based on the notion that the development of cognitive processes is

largely an autonomous self-regulating process (Molenaar,

Boomsma, & Dolan, 1993).

The logistic model includes three types of parameters: initial

values, growth parameters, and carrying capacities (or limited

resources). The initial values x0 are not important in our applica-

tion of the model. They will be set to uncorrelated and arbitrary

low values. They are important for certain applications of the

logistic model in which sensitivity to initial conditions plays an

important role (e.g., models with large values of the growth pa-

rameters, e.g., van Geert, 1991, or modeling involving strong

competition; Sprott, 2004).

The W growth parameters in a determine the steepness of the

logistic growth function associated with each x. We can assume the

3 As an alternative example we may consider humans with severe

psychological problems or the crises in the poorest developing countries.

Concerning the latter, we might ask whether they are due to one underlying

cause (in case of developing countries, IQ, according to Lynn & Vanhanen,

2002) or the interaction between many relevant variables (Diamond, 1997).
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growth parameters to be correlated or uncorrelated. As we dem-

onstrate below they need not be correlated to explain the positive

manifold. If they are assumed to be correlated (e.g., due to shared

environment in the early phase of development), other empirical

phenomena can be explained too. The W parameters in K deter-

mine the asymptotes of the logistic growth processes and are often

interpreted as limiting resources or carrying capacity for growth.

We assume that the growth of each cognitive process uses limited

resources. We conceptualize these resources mainly in terms of

biological constraints, such as neuronal speed and size of neural

systems associated with each of the cognitive processes (Garlick,

2002; Jensen, 1998). For instance, the growth of short-term mem-

ory reaches a maximum in late childhood presumably because of

limitations of the underlying neural system (e.g., Gathercole,

1999). As with the growth parameters, we may assume the limited

resources of the processes to be correlated or uncorrelated. The

positive manifold does not require correlated resources, although

correlated resources may explain additional phenomena.

The next major step is the assumption that these cognitive

processes have mutual beneficial or facilitating relations. Each

process supports the development of other processes. This view of

relations in developing complex systems is in accordance with

modern views of dynamical systems (for discussion, see Wagner,

1999). These positive relations can be direct (bidirectional or

reciprocal) or indirect (via other processes). Reciprocal causal

relations are well known in the psychological literature. For in-

stance, better short-term memory helps to develop better cognitive

strategies, and better strategies make it possible to increase the

efficiency of short-term memory (Siegler & Alibali, 2005). There

are many examples of positive influences of language on cogni-

tion, and visa versa. Examples are syntactic bootstrapping (Fisher,

Hall, Rakowitz, & Gleitman, 1994), and semantic bootstrapping

(Pinker, 1994). Similar examples are the relations between cogni-

tion and meta-cognition (Sternberg, 1998), between action and

perception (Gibson, 1986), and between performance and motiva-

tion (Dweck, 1986). Clearly, these positive reciprocal relations are

not limited to the intellectual domain. For instance, abstract think-

ing may help to find creative solutions for interpersonal social or

emotional problems (Gottfredson, 2002), whereas good control

over emotional and social life are beneficial to academic success

(Strahan, 2003). Ideally such positive influences are demonstrated

in experimental research, in which the independent variable is

manipulated experimentally.4 It is of course possible that there are

no facilitating interactions between certain processes, or even

competitive or debilitating interactions. A simple example of the

latter is the time constraint on cognitive expertise. Becoming an

expert in say, chess, may not allow other specializations. Below we

demonstrate that the model can include a good degree of zero or

competitive interaction without affecting the fundamental result of

the positive manifold of correlations. In short, we propose to view

the cognitive system as a developing ecosystem (or society) with

primarily cooperative relations between cognitive processes. Note

that this model does not make use of latent variables.5

Given these assumptions we can formulate the model mathematically:

dxi

dt
� aixi(1 � xi/Ki) � ai�

j�1
j�i

W

Mijxjxi/Ki for i, j � 1 . . . W. (3)

Variables xi represent the W cognitive processes. Parameters ai

are growth parameters, determining the steepness of the logistic

growth function associated with each xi. Parameters Ki represent

the limited resources of the logistic growth processes. The matrix

M contains weights Mij, used to specify the generally positive,

possibly asymmetric, relations between pairs of processes in de-

velopment. Parameters x0, a, K, are random parameters (i.e., they

differ over subjects), whereas the matrix M contains population

parameters (i.e., they are equal for all subjects). In the biological

literature, this type of model is known as the Lotka-Volterra

competition model. However, given that in our application the Mij

are generally positive, it is more appropriately called a mutualism

model (Murray, 2002). This is the simplest instance of a model for

mutualism, but it suffices for our present purposes.6 The dynamics

of the mutualism model are fairly simple. For appropriate starting

values x0 and appropriate values of the parameters a, K, and M,

each xi converges to a constant level or a steady state. Large values

of M imply that the xi grow without bound, which is of course

unrealistic and should be avoided in simulations (see Appendix

and Murray, 2002).7 Figure 2a shows the results of a typical run of

the model (the development of one individual). Starting from x0i

each process follows a logistic curve until an asymptote (larger

than Ki) is reached. With all Mij � 0, the asymptotes equal Ki. In

the Appendix, we provide the formulas for the stable states and the

associated expected covariance matrix.8 These can be used to

investigate the behavior of the model. For instance, the stable

states of the model are independent of both x0 and a, implying that

individual differences in the initial phase of development do not

predict later differences. Below we discuss this in more detail. We

first focus on the positive manifold, as this is the most important

empirical fact in the study of intelligence.

4 But this is not strictly necessary. Under certain assumptions, cross-

lagged effects in the multivariate longitudinal panel design and in multi-

variate time series can be used to study causality (Pearl, 2000; Rogosa,

1980; Wadsworth, DeFries, Fulker, Olson, & Pennington, 1995).
5 In his classification of stereotypical influence patterns that may de-

scribe correlation data, Cattell (1965) called this model structure the

general reticule (see McArdle, 1984). Cattell never investigated this struc-

ture.
6 In theoretical biology, this model is applied to the study of food webs

(cf. Bruno, Stachowicz, & Bertness, 2003) and biodiversity (cf. Kennedy et

al., 2002). Recently proposed extensions are models with adaptive M

(Ackland & Gallagher, 2004; Kondoh, 2003), multiple resources (Kooi,

Kuijper & Kooijman, 2004), environmental effects on K (van Nes &

Scheffer, 2004), strong competition with new species (Sprott, 2004), and

stochastics (Mao, Sabanis, & Renshaw, 2003). This work can be very

helpful in extending the mutualism model for the positive manifold in

intelligence. van Geert (1991) investigated a number of applications to

psychological development.
7 May (1975) described this unbounded growth as an “orgy of mutual

benefaction” (p. 95). Recently, it has been shown that stochastic versions

of the Lotka-Volterra mutualism model do not have this problem. The

addition of tiny amounts of environmental noise prevents the unbounded

growth of the x values (Mao et al., 2003).
8 The formula for the covariance matrix resembles Submodel 3B of

LISREL (Jöreskog & Sörbom, 1993). We may use LISREL to fit the

mutualism model directly to real data. Clearly, identification requires some

further restrictions on M. However, fitting the mutualism model to real

data, although interesting, is not immediately relevant to our main message

in this article.
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Explaining the Positive Manifold

There are at least two independent ways in which the positive

manifold may arise in the mutualism model: by specifying correlated

parameters (especially K) or by positive M. When the resource

parameters K are correlated we enter a g like scenario: Above-average

scores on many different tasks are explained by one above-average

biological or cognitive resource or set of correlated resources. Obvi-

ously, in such a case we expect a positive manifold. However, if all

model parameters are uncorrelated, and M is positive (and equal over

subjects), there is no such thing in the model as a single underlying

factor. We hypothesize that beneficial relations between processes

also result in a positive manifold and consequently give rise to a single

dominant factor in a factor analysis.

To study these two mechanisms we investigate three scenarios.

In the first scenario, the model parameters are uncorrelated and all

Mij � 0; hence, no positive manifold is expected. In the second

scenario (g), the K parameters are correlated and all Mij � 0. In the

third scenario (mutualism), the K parameters are uncorrelated and
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Figure 2. (a) Simulation based on Equation 3 with 16 processes. Mean (SD) of ai, Ki, and x0i are respectively:

6 (.5), 3 (.5), .05 (.01). All Mij equal .05. On account of the positive interactions, the asymptotes clearly exceed

the Ki values. (b) Growth of the average of the 16 processes (an index of psychometric g) for 20 random subjects.

(c) Correlation between average scores at different times in development with asymptotic scores. The model

predicts that the stability of intelligence scores is initially very low but increases steadily during development.
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all Mij � 0. The last two scenarios should both give rise to a

positive manifold. If Scenario 3 does indeed produce a positive

manifold, this demonstrates that mutualism suffices to explain this

important finding in intelligence research.

For each scenario, we simulated and analyzed data. The main

result below can also be derived analytically (see Appendix; the

derivation of the positive manifold). However, the results of sim-

ulations are easier to obtain and to understand. Also many other

results could only be established by means of simulation. We ran

the model N times with new samples of the parameter values, to

obtain data of N subjects. Data were obtained for one point in time,

after the steady state was reached. Each simulation resulted in a

data set of measurements of W variables of N subjects, for exam-

ple, the kind of data that are used in factor-analytic studies of

intelligence. Unless stated otherwise, W and N are set to 16 and

1,000, respectively. We did not add measurement error, but adding

measurement error does not change the results qualitatively. In

analyzing the data, we followed the common practice of inspecting

the correlations between observed variables, plotting the eigenval-

ues of the correlation matrix and fitting the common factor models.

Scenario 1: No Positive Manifold

In this scenario, Mij � 0 for all runs (subjects). The parameters

x0i, ai, and Ki for each process i are sampled from uncorrelated

normal distributions with means (standard deviations in parenthe-

ses) equal to 6 (.5), 3 (.5), and .05 (.01). These values are quite

arbitrary; other values could have been used. The parameters are

uncorrelated, so there is no mutualism, and we expect a zero-factor

solution to characterize the data. In Figure 3, we report the main

findings of this scenario. The histogram shows that the correlations

between the observed variables x are indeed close to zero. The

eigenvalues in the next panel also suggest a zero-order structure. If

there is a dominant factor underlying the data, we expect a dom-

inant first eigenvalue (much larger than one) and much smaller

subsequent eigenvalues. The last panel shows the p values of the

fit of factor models with 0 to 4 factors for the observed variables

and the parameters. The zero-factor model of the observed vari-

ables (x) cannot reasonably be rejected, that is, the associated p

value is larger than .05.9

Scenario 2: g

In this scenario, we simulated the standard explanation of g in

terms of a latent factor influencing all processes. This was accom-

plished by sampling the resources Ki for each run (subject) from a

correlated multivariate distribution (r � .5) with M � 0. Figure 4

summarizes the results. The correlations between the observed

variables (x) are all positive (�.5) and the eigenvalues suggest a

dominant factor; the zero-factor model for the observed variables

(and for K) is rejected, whereas the one-factor model fits the data

well. All variables xi load highly on this factor, as shown in the

fourth panel.

Scenario 3: Mutualism

The only difference with Scenario 1 concerns M. All Mij are

fixed at .05. Parameters K (as well as a and x0) are drawn from an

uncorrelated multivariate normal distribution. As shown in the first

panel of Figure 5, the observed correlations are again close to .5.

The pattern of eigenvalues is very similar to that of Scenario 2.10

A single common-factor model fits the observed data well, and all

variables have large positive loadings on this factor. This shows

that mutualism may give rise to the positive manifold and a single

dominant common factor in factor analysis of the data generated

with this model. This result was found to be very robust. That is,

if all Mij are drawn from a normal distribution with a positive mean

(for instance with M � .05, SD � .03, with about 5% negative

Mij), we find very similar results (only the variance of the distri-

bution of observed correlation increases). Also M can be sparse,

with many Mij � 0, or the Mij can be made subject dependent (i.e.,

random) without changing the results qualitatively.

9 The figure shows the result of one simulation with 1,000 runs. Each

scenario was simulated many times, but the results were very stable and

consistent with the analytical solution in the Appendix. For this reason, we

decided not to report means over simulations. The results in the figures

represent average results very well.
10 These results and inspection of the formula for the covariance matrix

(see Appendix) shows that the mutualism model and the standard factor

models are statistically equivalent (i.e., implying the same covariance

matrixes with equal numbers of parameters) in some particular cases. For

instance, the model in Scenario 3 and the one factor model with equal

factor loadings are equivalent, but other variants of the mutualism model

are not equivalent to any factor model (for instance, a model in which the

beneficial relations between processes are organized in a circle). Model

equivalence in structural equation modeling is a complex issue (Molenaar,

2003; Raykov & Penev, 1999) and the present case requires further study.

Observed correlations

intercorrelations

fr
e

q
u

e
n

c
y

−0.2 0.2 0.6

0
1

0
2

0
3

0

5 10 15

0
.8

0
.9

1
.0

1
.1

1
.2

Eigenvalues

eigenvalue

v
a

lu
e

0 1 2 3 4

Factor analysis

number of factors

p
.v

a
lu

e

0
.0

0
.4

0
.8

Figure 3. Scenario 1: All Mij are zero and parameters are uncorrelated.

The first panel shows the correlations between the observed variables, the

second shows the eigenvalues, and the third shows p values of the fit of

factor models with 0 to 4 factors. A zero factor model fits the data well.
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Summarizing, we have shown two independent mechanisms for

the creation of a positive manifold in the correlations between a set

of observed variables: (a) by using correlated parameters (Scenario

2) and (b) by mutualism (Scenario 3). Scenario 2 is compatible

with a g-type explanation, as here the resources of all processes are

correlated. The explanation demonstrated in Scenario 3 is, to our

knowledge, new.11 This explanation does not involve or require a

latent quantitative variable such as g, even though factor analysis

of data of the mutualism model does produce a single common

factor.

An interesting question arises as to what causes the individual

differences in Scenario 3. A g factor in the sense of a latent

quantitative variable is absent in this scenario, but the positive

manifold does emerge, which implies that people, who are good at

one test, are good at other tests as well. What then explains these

individual differences, given that g, on account of its absence,

cannot be invoked? It cannot be M itself, since M is equal over

subjects. The answer lies in the resources K (weighted by M).

Although all K are sampled from the same uncorrelated multivar-

iate normal distribution, small differences in the average of K

between model runs (subjects) exist. By mutualism, these differ-

ences influence all processes, which results in the positive mani-

fold. Therefore, the weighted sum of K is a good predictor of the

individual differences in cognitive performance. A formal treat-

ment of this point is given in the Appendix (see The Relation

Between g and K).

Note that the average or sum of uncorrelated K is not a common

factor, in the factor analytic sense (i.e., a single underlying vari-

able). For instance, one person’s high performance on cognitive

tasks may be due to exceptionally high Ki for certain processes

(e.g., memory processes), another person’s high performance may

be due to high Ki for completely other processes (e.g., language

processes), and a third person’s high performance might be due to

the general absence of low Ki. This differs fundamentally from the

g explanation of individual differences in which similar perfor-

mance is due to similar g value. This g explanation leads to the

expectation that we should be able to find some (presumably

biological) factor equal to g (Bartholomew, 2004). Failure to find

such a factor supports alternative approaches, for example, the

mutualism model.

Other Empirical Phenomena in the Study of General

Intelligence

The positive manifold is by far the most important phenomenon

to explain in any model of intelligence. The explanation in terms

of mutualism, that is, facilitating developmental relations between

processes, in fact, does not depend on the precise set-up of our

model. The logistic growth model is not essential, although posi-

11 There are important similarities with Detterman’s (1987) complex

system account of intelligence, in which mental ability is viewed as a

complex system of independent but interrelated parts. However, Detter-

man’s proposal is more akin to sampling theory. Basic processes are

uncorrelated and “system wholeness” is a function of level of measure-

ment. More complex measures will include more parts of the system and

will therefore suggest a higher degree of wholeness (see summarizing point

3 of Detterman, 1987).
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tivity of interaction is. The logistic growth model is, however,

important for the explanation of other empirical results. In the next

sections, we investigate a number of empirical phenomena.

Hierarchical Factors

Scenario 3 gives rise to a correlation matrix that fits a factor

model, with a single first-order factor. Real psychometric cogni-

tive abilities data, however, require several correlated first-order

factors and thus allows for a higher order general (g) factor (e.g.,

Mackintosh, 1998). In hierarchical factor models, observed vari-

ables are correlated with g only via their correlations with first-

order group factors that are nested under g (e.g., Carroll, 1993).

Fortunately, it is not difficult to generate such correlation struc-

tures with the mutualism model. The most debatable assumption in

Scenario 3 is that all M are set equal to the same arbitrary small

positive value. Certainly, the elements Mij are not necessarily

equal. M may also be sparse and may include negative values. For

instance, some processes might compete for the same resources,

and some processes in language acquisition might even require

certain constraints (Newport, 1990). It appears that more complex

M lead to more complicated factor structures akin to factor struc-

tures found for real data.

To investigate what happens when the Mij are not all equal and

even partly negative, we sampled the Mij from a normal distribu-

tion with a mean of .05 and standard deviations varying from .02

to .06. Note that for larger standard deviations, the probability of

negative Mij is quite high (e.g., given a standard deviation of .04,

the probability of negative Mij is .10; given a standard deviation of

.06, this probability is .20). In Figure 6 we show histograms of the

correlations between the variables x for increasing standard devi-

ations of the Mij. The mean correlation stays roughly the same, but

the variance increases. The number of factors required to describe

the data also increases. The correlation matrices obtained from the

factor scores of these factors again show a positive manifold,

which can be described with one or more correlated factors, that is,

a typical hierarchical factor structure.

A more controlled way to obtain a hierarchical structure is by

specifying a matrix M in which the Mij are high (strong interac-

tion � .08) between variables associated with the same group

factor and low (weak interaction � .02) between variables of

different group factors (see Table 1). To demonstrate this, we

simulated data for four group factors, each associated with four

variables xi. Figure 7 displays the correlations, the eigenvalues, the

p values of the factor models, and the correlations of each factor of

a four-factor model with the variables xi. Again the correlations

suggest a general g factor as in Scenario 3. However, the one-,

two- and three-factor models are rejected ( p � .05). In contrast,

the four-factor model fits the data well ( p � .05). The correlations

of the four factors with the observed variables clearly display the

expected pattern.

Further analysis shows that these four factors are intercorrelated

following Promax rotation (Lawley & Maxwell, 1971). The single

common factor model fits the covariance matrix of the four com-

mon factors well. A full hierarchical confirmatory factor model

with four group factors and one general factor also fits the data

well; 	2(100, N � 1,000) � 93.2, p � .67. Indeed, under certain

choices of M, the covariance structures associated with the hier-

archical factor model and the mutualism model are technically

equivalent (see Footnote 10). By weakening the weak interactions

in the matrix M (leading to a block diagonal matrix structure), the

dependency between the four group factors can be reduced. In such

a case, the model resembles a multiple intelligence model with

independent factors (cf. Gardner, 1983; Horn & Masunaga, 2000)

in which psychometric g does not exist.

In addition, Cattell’s (1971) distinction between fluid intelli-

gence (gf) and crystallized intelligence (gc) can be accommodated

in the mutualism model. Crystallized intelligence is thought to

develop by the interaction of fluid intelligence and cultural expe-

rience (e.g., Hunt, 1997). Consistent with this, measures of gc tend

to improve in adulthood, whereas measures of gf reach their

highest levels in early adulthood (McArdle, Hamagami, Meredith,

& Bradway, 2000). Whether the gc–gf theory rejects the g theory

(Carroll, 1997; Hunt, 1997) is not directly relevant here. It is well

known that gf and g correlate highly (Jensen, 1998) and, more

importantly, in the present context, gf and gc are both g-like

factors, that is, higher order common factors that explain correla-

tions between sets of observed variables. The possible circum-

stances in which such common factors may arise in the mutualism
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increasing standard deviation. However, the positive manifold remains present.
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model have been outlined above. However, it is important to

specify the manner in which the mutualism model can account for

the asymmetry in gf and gc, as specified in Cattell’s investment

hypothesis (Cattell, 1971).

There are three independent ways to model this hypothesis.

First, we can model the asymmetry in the relation between gf and

gc by specifying asymmetries between the processes associated

with gf and gc in M. We could assume that gf processes strongly

influence gc processes, whereas gc has no influence on gf. When

xi associated with gc also compete with each other (negative Mij),

the dynamics of the model resemble biological models with com-

petition, parasites, prey, and predators. This gives rise to more

complex and more interesting dynamical behavior. However, as

long as the majority of interactions are positive, competition by no

means rules out the positive manifold. In the section on differen-

tiation, we discuss a simple way to implement such a mechanism.

Second, the asymmetry may be modeled via K. In the model of

van Geert (1991, 1994) the carrying capacity (Ki) of one process is

made dependent on the growth (x) of other processes (so-called

bootstrap dynamics). In such a model, the dependent process will

not start to grow before the basic process has reached a certain

level. Third, we could simply assume that the growth speeds (a) of

the processes associated with crystallized intelligence are (much)

lower than the growth speeds of fluid processes.

Preliminary simulations have shown that all three mechanisms

may explain the segregation in development of fluid and crystal-

lized intelligence. Further work should be directed toward a the-

oretical analysis to determine which of these three mechanisms

best represents the investment hypothesis.

The Development of Intelligence

The g theories are rather unspecific concerning development.

For instance, the subject index of the book of Jensen (1998) does

not contain references to age or development. Ackerman and

Lohman (2003) even state, “As near as we can tell, g theories have

failed to provide any account of development across the lifespan”

(p. 278). Yet a number of developmental effects are often dis-

cussed, and in the present and the next section we investigate how

well the mutualism model accounts for these effects.

One important effect is the low predictive validity of test per-

formance during infancy and early childhood. In a classic longi-

tudinal study, Bayley (1949) found essentially no correlation be-

tween test performance in the first 3 years and test performance at

18 years. This correlation rises during childhood to attain a quite

high level between 11 and 18 years. This finding has been repli-

cated many times. There may well be a low correlation between

infant measures and later intelligence, but these correlations are
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Table 1

M Matrix for Hierarchical Factor Data

.00 .08 .08 .08 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02

.08 .00 .08 .08 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02

.08 .08 .00 .08 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02

.08 .08 .08 .00 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02

.02 .02 .02 .02 .00 .08 .08 .08 .02 .02 .02 .02 .02 .02 .02 .02

.02 .02 .02 .02 .08 .00 .08 .08 .02 .02 .02 .02 .02 .02 .02 .02

.02 .02 .02 .02 .08 .08 .00 .08 .02 .02 .02 .02 .02 .02 .02 .02

.02 .02 .02 .02 .08 .08 .08 .00 .02 .02 .02 .02 .02 .02 .02 .02

.02 .02 .02 .02 .02 .02 .02 .02 .00 .08 .08 .08 .02 .02 .02 .02

.02 .02 .02 .02 .02 .02 .02 .02 .08 .00 .08 .08 .02 .02 .02 .02

.02 .02 .02 .02 .02 .02 .02 .02 .08 .08 .00 .08 .02 .02 .02 .02

.02 .02 .02 .02 .02 .02 .02 .02 .08 .08 .08 .00 .02 .02 .02 .02

.02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .00 .08 .08 .08

.02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .08 .00 .08 .08

.02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .08 .08 .00 .08

.02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .08 .08 .08 .00

Note. The group factors are associated with the blocks of higher M values (italic).
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certainly much lower than those observed later in development

(Honzik, 1983; McCall & Carriger, 1993; Slater, 1997). In the

mutualism model, performance in the initial phase of development

is determined by the starting values (x0) and the growth parame-

ters (a). The stable asymptotic states of the xi (e.g., adulthood

performance), however, do not depend on the growth parameters

and the initial values (see equation for the stable states in the

appendix). This implies a low or even zero correlation between

initial and later performance.

But what about the much higher correlations between test scores

later in development (e.g., late childhood) and test performance at 18

years? These correlations are substantial (i.e., in the range of .40 to

.80) and imply that growth speed and asymptotic values are corre-

lated. That is, high-intelligent subjects develop faster than low-

intelligent subjects. At first sight, this seems to contradict one of our

model assumptions. In all simulations and analyses we assumed the

growth parameters (a) and limited resources (K) to be uncorrelated.

Also the asymptotic stable states have been shown to be independent

of a. However, the actual growth speed does not only depend on a but

also on K and M. Equation 3 specifies the change in x in time. This

change depends on a, K, and M. In general, higher K and higher M

will increase the growth speed, causing a correlation between actual

growth speed and asymptotic performance. Figures 2b and 2c dem-

onstrate this. Figure 2b shows the growth of the mean of x (as an

index of general intelligence) of 20 subjects. Inspection of the devel-

opmental curves suggests an increase in stability of intelligence.

Figure 2c supports this. The correlation between test performance and

asymptotic performance increases over time. Note that this is a prop-

erty of the logistic equation. If we use Scenario 2 (g scenario), we find

the same increase in correlation.

In the next section, we discuss a more complicated developmen-

tal effect, the change in the positive manifold or the strength of

psychometric g during development.

Differentiation Effects

There is some evidence that the positive manifold is not uniform

in the population. Two possibly related differentiation effects have

been much researched and debated (Deary et al., 1996). The age

differentiation effect concerns a decline of g with age (e.g., Tide-

man & Gustafsson, 2004). The ability differentiation effect refers

to stronger g in low-IQ groups (e.g., Facon, 2004; Jensen, 2003).

Neither effect has been replicated consistently (for reviews, see

Carroll, 1993; Facon, 2004; Hartmann & Teasdale, 2004; Reinert,

1970). Especially for age differentiation, the results are very mixed.

Reinert (1970) reviewed more than 50 studies. Some of these studies

support differentiation, some support integration, some support a

pattern of integration followed by differentiation, and many studies

did not find any pattern of integration or differentiation. Carroll

(1993) reanalyzed 12 data sets and concluded that in “nearly all

instances the same number of factors was extracted at each age” (p.

679) and “age-differentiation is a phenomenon whose existence is

hard to demonstrate” (p. 681). Newer studies are also inconclusive

(Bickley, Keith, & Wolfle, 1995; Juan-Espinosa, Garcia, Colom, &

Abad, 2000; Rietveld, Dolan, van Baal, & Boomsma, 2003; Rose,

Feldman, & Jankowski, 2004, 2005; Tideman & Gustafsson, 2004).

From a theoretical point of view, a strong g in infancy is

implausible. Given most conceptualizations of intelligence (e.g.,

Bartholomew, 2004), and also most theories of psychometric g, a

newborn cannot be viewed as intelligent. Such conceptualizations

refer to understanding, problem solving, goal-directed adaptive

behavior, rational thinking, and cognitive ability. If we consider

the subtests of the dominant IQ tests, such as the Wechsler Adult

Intelligence Scale, it is clear that most of these subtests do not have

equivalent or analogous variants that are applicable to infants.

Thus, intelligence, which standard psychometric intelligence tests

purport to measure, takes some time to develop in children. Con-

sequently, we expect that it takes some time for the positive

manifold, and thus the psychometric g factor, to emerge. In the

empirical literature there is some support for this initial phase of

integration (see Reichard, 1944; Reinert, 1970; Rose, Feldman, &

Jankowski, 2005). For instance, Rose, Feldman, and Jankowski

(2005) tested infants of 7 and 12 months old, and find correlations

between subtests that are much lower than those usually found for

older children. In the next section, we discuss the increase of

heritability of g with age. This also suggests that the strength of g

increases in the first phase of development.12

It is important to realize that current models of psychometric g

do not offer straightforward explanations of differentiation. Stan-

dard g theories are not specific on the development of psychomet-

ric g. They seem to imply an increase in the strength of g over time

(i.e., integration instead of differentiation). This, at least, is what

happens in the simulation of Scenario 2 (see below). Alternatively,

it could be argued that g (as a genetic biological variable) is fixed

over development, but then the emergence of psychometric g still

requires explanation, as does differentiation (for further discus-

sion, see Ackerman & Lohman, 2003). Spearman (1927) invoked

the law of diminishing returns to explain differentiation. However,

as Detterman (1991) clarified, this law does not explain differen-

tiation. Newer theories refer to the idea of investment (Cattell,

1971; Hunt, 2005) and to the idea of g as constraint (M. Anderson,

1992, 2001; Detterman, 1987). These theories explain how more

specialized abilities emerge within individuals and how these

abilities are related to more basic processes. These ideas are

interesting, but they are not formulated in such detail that we can

derive clear predictions of age differentiation in the population.

More importantly, these theories probably also predict an initial

phase of integration (the emergence of g) and invoke additional

mechanisms to explain differentiation.13

12 Why are the data of a century of research so inconclusive? In our

opinion, methodological problems provide at least part of the answer.

Testing for integration or differentiation is difficult. The main problems

concern selection effects (in both cross-sectional and longitudinal studies;

see Rabbitt, Diggle, Holland, & McInnes, 2004), the composition of test

batteries (which changes with age), validity problems (especially in infancy

and early childhood), measurement bias (such as that caused by ceiling

effects), and the choice between several measures of differentiation. We

have to be careful not to overinterpret the data (Carlstedt, 2001; Facon,

2004; Fogarty & Stankov, 1995; Reinert, 1970).
13 There is probably only one theory that gives a straightforward expla-

nation of differentiation, and that is the sampling theory. According to

Thurstone (1938) differentiation may take place because younger children

use a smaller set of basic processes for different cognitive tasks than older

children, who also have at their disposal specialized processes. This is a

viable idea, but it is not in conflict with our proposal, as it represents an

explanation of differentiation in terms of a measurement problem. We

made the simplistic assumption that we can measure each process with one

task. If we relax this assumption, and choose a more complex measurement

model, we can incorporate this explanation.
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The mutualism model allows for both integration and differen-

tiation. We first examine the change in the strength of psychomet-

ric g in Scenarios 2 and 3. For different time points we compute the

first eigenvalue as an indication of psychometric g. The first

eigenvalue corresponds to the average correlation between the

cognitive processes and is therefore a simple straightforward mea-

sure of psychometric g.14 As a measure of intelligence, we simply

take the mean x score of subjects. The first plot in Figure 8 shows

that Scenario 2 (the g model) only produces integration. The first

eigenvalue only increases, following the developmental trend of

the mean x. The other lines show the standardized regression (beta)

coefficients for the subjects, specific random a, K, and x0. They

indicate the amount of variance in the x that can be explained with

the variance in a, K, and x0. At first, the growth parameters and

the initial values explain most of the variance in x, but after some

time, K takes over. In this scenario the positive manifold is caused

by the correlated K values. Therefore the beta coefficient associ-

ated with K and the first eigenvalue co-vary.

The second plot corresponds to Scenario 3 (mutualism). As in

earlier simulations, all Mij are set to .05, and the ai, Ki, and x0i are

sampled from uncorrelated normal distributions. In this scenario

the first eigenvalue first increases and then decreases (integration

followed by differentiation). This is interesting, as no additional

mechanism was invoked to create differentiation. Inspection of the

beta coefficients associated with a, K, and x0, reveal that the peak

in the curve of the first eigenvalue can be explained by the fact that

the influence of a declines before the influence of K increases.

Further simulations show that this is a robust effect that occurs

given a range of parameter settings.15 Simulations also show that

the peak occurs later in the low-intelligent group than in the

high-intelligent group. This gives rise to a complicated pattern of

ability differentiation.

One may question the time scale of this integration/differentia-

tion pattern. In the simulation, the largest part of development is

characterized by integration. As we discussed above, there is little

clear evidence for age differentiation, but none for a long initial

period of integration either. In view of the methodological prob-

lems mentioned above, the safest conclusion is that an initial

relatively short period of integration is followed by a stable g. This

pattern can be achieved in the mutualism model by increasing the

level of mutualism. The third plot demonstrates this. All Mij are set

equal to .065 instead of .05, which lead to a very short period of

integration followed by a stable g factor. Note that the integration

process is already finished before mean x starts to rise.

These simulations show that the mutualism model gives rise to

rather complex patterns of integration/differentiation without in-

voking any additional mechanism. Nevertheless, we did consider

possibilities to incorporate other mechanisms as put forward in the

investment and the constraint models of differentiation. The basic

idea in these models is that during development more and more

specialized cognitive processes (related to gc) emerge. A simple

implementation of this idea is to let the standard deviation of the

Mij increase with time while the mean of the Mij remains constant.

Thus, during development certain mutualistic interactions become

stronger, whereas other interactions decrease in strength or may

even turn into competitive relations. This means that some mutu-

alistic interactions are optimized (e.g., the interaction between

strategy selection and memory use), whereas other abilities/pro-

cesses compete for the same resources (such as time). From

Figure 6 we already learned that the increase in the standard

deviation of M indeed leads to a more complicated factor structure.

The last plot of Figure 8 again demonstrates this. It shows the

growth of the cognitive processes of one individual, the change in

the first eigenvalue in the population, and the change in the number

of factors required to explain the data. As expected, with time,

more and more factors are required to describe the data. Note that

the first eigenvalue and the number of factors do not necessarily

give the same impression of integration/differentiation. Interest-

ingly, the growth curves of the processes xi show a diverging

pattern in which some processes start to decline as soon as the

main developmental period is finished. Evidence for such declines

in cognitive functioning in adulthood are reviewed in McArdle,

Ferrer-Caja, Hamagami, and Woodcock (2002).

In summary, the present simulations show that complex inter-

related integration/differentiation effects (as indicated by the first

eigenvalue) arise without any changes to the model. The timing of

these effects can be altered with changes in parameter values,

especially the strength of mutualism. Differentiation in terms of an

increase in the number of factors can be achieved by assuming that

the mutualism is first rather uniform and later evolves toward a

more complex structure. The constraint and investment models of

differentiation are somewhat more sophisticated than this simple

implementation. However, in view of the lack of a clearly estab-

lished empirical pattern, we do not consider further complications

of the model.

Heritability of Intelligence

In his account of the g factor, Jensen (1998) discussed the

heritability of g. Twin studies have indicated that the heritability of

cognitive tests, IQ, and g vary between .5 and .8 (Jensen, 1998;

Plomin & Spinath, 2004). Both Plomin (2001) and Jensen (1998)

argued that the main factor in the heritability of intelligence is g.

One argument of Jensen is particularly intriguing. For a number of

data sets, he computed the correlations between the vector of

heritabilities and the vector of g loadings of cognitive tests (i.e., the

method of correlated vectors). These correlations are larger than .5,

which is taken to suggest a high influence of the genetic compo-

nent of g. This result is sometimes called the Jensen effect.16

Can we explain this result with the mutualism model? Eaves et

al. (1999) and Molenaar and Raijmakers (1999) have shown that

the use of the logistic model for the simulation of phenotypic

differences between genetically equal twins may lead to nonintui-

tive results. First, note that other results obtained with the method

of correlated vectors (for instance, concerning speed of processing)

14 Alternatively, we could test for the number of factors required to

describe the data. However, we already know (from Figures 4 and 5) that

Scenario 2 and Scenario 3 (with all Mij equal) always require only one

factor.
15 Rietveld, Dolan, van Baal, and Boomsma (2003) and Thompson,

Detterman, and Plomin (1993), suggested that shared family environment

early in development and at lower IQ levels might cause differentiation

effects. We tested this by using correlated growth parameters. This indeed

leads to a strengthening of the integration/differentiation pattern shown in

second plot of Figure 9.
16 The method of correlated vectors has been criticized by Dolan (2000)

and Lubke, Dolan, and Kelderman (2001), yet multivariate genetic analy-

ses (e.g., Plomin & Spinath, 2004) seem to support Jensen’s results (see

also Luo, Thompson, & Detterman, 2003).
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are explained easily with the mutualism model (see the discussion

of Figure 10, presented below). For each variable in the mutualism

model, the correlation with the other variables will co-vary with

the loadings of the first factor of these variables. In fact, this is a

property of positive manifold data, whether generated by the

mutualism model or by the g model. Second, high heritability for

cognitive tests and g can be achieved readily. Genetic and envi-

ronmental influences can be introduced in the model via K. A

simple additive model is Ki � ci Gi � (1� ci) Ei, where G and E

are the genetic and environmental factors with weights c and 1�
c, respectively. Assuming that all Gi and all Ei are uncorrelated and

sampled from distributions with the same means and standard

deviations, heritability h2 equals c2. Thus, different uncorrelated

genetic influences or constraints on K may cause a high heritabil-

ity of g. Notably, this explanation is consistent with the finding in

quantitative trait locus (QTL) research that there are no single-

gene influences that strongly correlate with IQ or g (see, Plomin &

Spinath, 2004). Furthermore, this setup of the model also explains

the increase in heritability during development (Bartels, Rietveld,

van Baal, & Boomsma, 2002; Fulker, DeFries, & Plomin, 1988).

Initially the values of the variables are determined by the random

initial values x0 and growth parameters a. The influence of the

genetic part of K is very low in this phase. Only later in develop-

ment, when variables reach their asymptotic values determined by

K, the genetic part of K comes into play (see Figure 8).

However, this does not explain the positive correlation between

the heritability and g loading of the cognitive tests (the Jensen

effect). It appears that the mechanism of mutualism only leads to

such a correlation if we introduce small positive correlations

between the genetic resources Gi, on the basis of evidence for

heritability of g. However, introducing correlations between model

parameters undermines the idea of the mutualism model (see
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Figure 8. The top panels show the development of g (first eigenvalue [EV]) in Scenarios 2 and 3. The plots

also show the mean trend of x, the standardized regression coefficients of the regression of x on a, K, and x0.

The latter indicate how much variance in x can be explained by the subject-dependent parameters. The bottom

left plot depicts the change in the first eigenvalue for a higher value of M. As shown by the first eigenvalue,

integration is limited to the very early phase of development. The first eigenvalue reaches its maximum before

the mean of x starts to rise. The last plot illustrates what happens when the variance of the mutualistic

interactions is increased during development. The number of factors required to describe the data increases, and

some processes decline later in development.
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Scenario 2). Yet, simulation of the mutualism model shows that

the Jensen effect only requires very weak genetic intercorrelations

between the Gi. We used the equation for the covariance matrix

(see Appendix) to simulate data with normally distributed Mij

(mean � .05), normally distributed hi
2 (mean � .5, sd � .02), and

uniform genetic intercorrelations (sd � 0). The environmental

intercorrelations were fixed at zero. We varied the levels of genetic

intercorrelation and the standard deviations of the Mij to investi-

gate the robustness of the results. Figure 9 shows the correlation

between the heritability and g loading of the cognitive tests for

different values of the genetic intercorrelations of the genetic

resources Gi (x axis), and different values of the standard deviation

of the values in M. For most values, the vector correlations are

clearly positive, which is consistent with the Jensen effect.17

In sum, the mutualism model explains most results obtained

with the method of correlated vectors. Also the increase in heri-

tability during development can be explained by assuming that

uncorrelated limited resources are (partly) genetically based,

whereas the growth parameters are not, or are genetically based to

a lesser degree. Explaining the Jensen effect requires an additional

assumption concerning very small, but nonzero, genetic intercor-

relations of the resources Ki.

Flynn Effect and the IQ Paradox

Another intriguing phenomenon in intelligence is the so-called

Flynn effect (Flynn, 1984). This effect refers to the massive IQ

gains over time, in the order of one standard deviation per gener-

ation. Explanations of this effect include nutrition, family size,

education, environmental complexity, and test-taking strategies

(Wicherts et al., 2004). Dickens and Flynn (2001) discuss the

Flynn effect in relation to the high heritability and the low contri-

bution of environmental factors to g and pose the so-called IQ

paradox: How can high heritability and presumed large environ-

mental influence co-exist?

Dickens and Flynn (2001) present a model based on strong

reciprocal causation between phenotypic IQ and environment lead-

ing to a gene–environment correlation that masks the potency of

the environment. The idea is that people shape or select their

environment depending on their IQ. Higher IQ leads one into

better environments, causing still higher IQ, and so forth. For

instance, in an adoption study of Braungart, Fulker, and Plomin

(1992), the heritability of Home Observation for Measurement of

the Environment (HOME) scores (an environmental factor) was

estimated at 40%. Whereas a number of authors have proposed this

idea of reciprocal causation (e.g., Ceci, 1990; Jensen, 1998; Scarr

& McCartney, 1983), Dickens and Flynn (2001) used a formal

model to show that this idea may explain the IQ paradox.

The mutualism model is consistent with the solution proposed

by Dickens and Flynn. The current mutualism model only incor-

porates mutualistic (e.g., reciprocal causal) relations between cog-

nitive processes, but there is no reason to limit the model in this

way. We already mentioned a reciprocal relation between intellec-

tual performance and motivation, and other beneficial relations

between cognitive and noncognitive processes are possible. A

natural extension is to incorporate reciprocal causal relations be-

tween cognitive and environmental processes. This provides an

explanation of differential generation effects. The Flynn effect is

not uniform over IQ subtests (Wicherts et al., 2004), and it seems

that the positive manifold changes over time. By specifying the

precise relations between environmental changes and cognitive

processes, it may be possible to explain these differential Flynn

effects in the mutualism model.

The Interpretation of High g Loadings

An important implication of the mutualism model is that high g

loadings of variables or (first-order) factors in a factor analysis can

mean two very different things: the processes associated with these

variables may either influence or be influenced by many other

processes. Suppose the M matrix has the following form: .005,

.005, . . . .005 in the first row, .01, .01, . . . .01 in the second row,

with this pattern continueing to .08, .08, . . . .08 in the last row. So

the last process (row) has a strong positive influence on all other

processes, and we may expect a high g loading. Now, we take the

transpose of this matrix M. In this case, the last process (column:

.08, .08, . . . .08) is strongly influenced by all other processes, and

again we may expect a high loading. Figure 10 shows the g

loadings for the processes for both cases. The g loading of the 16th

process is indeed highest for both cases (note that the slope of the

g loadings is less steep in the latter case). Thus, high g loadings, or

17 We also tested an alternative scenario. It is possible to make M

different between individuals, with a genetic part equal for twins. Under

certain conditions, using M as specified in the section on the interpretation

of high g loadings (see below), the Jensen effect can be simulated.

Jensen effect

genetic inter−correlation of K

v
e

c
to

r 
c
o

rr
e

la
ti
o

n

0
.0

0
.2

0
.4

0
.6

0
.8

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.01

0.02

0.03

0.04

0.05

Figure 9. The correlation between heritability and g loadings of the

processes xi as a function of the genetic correlations between the genetic

components of Ki for different values of the standard deviation of the Mij

values (lines). A very weak genetic correlation suffices to explain the

Jensen effect.
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high correlations with g, are not necessarily informative about the

role of processes in intelligence or the nature or origin of g

(Detterman, 2002).

A related phenomenon is that manipulation of a single variable

in complex systems is often ineffectual. Training of speed of

information processing or working memory, in spite of their high

correlation with g, may not lead to increases in general intelli-

gence. In more complex dynamical systems interventions can even

have counterintuitive effects. The lake example mentioned in the

introduction is again useful. To improve the water quality (visi-

bility) of lakes, biologists sometimes simply remove most fish

from lakes (Scheffer, 1998). In some cases, this is more effective

than the reduction of fertilizers, that is, the most probable cause of

low water quality (Meijer, de Boois, Scheffer, Portielje, & Hosper,

1999). Similarly, sudden shifts may occur in complex foodwebs.

Small changes in variables may lead to catastrophic changes (van

Nes & Scheffer, 2004). van der Maas and Molenaar (1992) argue

that such changes also occur in cognitive development.

Discussion

The positive manifold is arguably both the best established and

the most striking phenomenon in the psychological study of intel-

ligence. Over the past 100 years differential psychologists have

sought to explain this phenomenon by invoking an underlying

general intelligence factor. At present, the factor analytic (statis-

tical) support for a general factor is considered strong (Bar-

tholomew, 2004; Carroll, 1993; Jensen, 1998). However, the na-

ture of the g factor remains unclear (Deary, 2002). An assumption

that is often made is that the g factor represents an underlying

quantitative variable. Indeed, many attempts have been made to

actually identify this factor with measurable variables (e.g., speed

of nerve conductance, reaction time, glucose metabolism in the

brain). These studies have produced interesting correlations but

have not revealed the single underlying cause of the g factor

(Ackerman, Beier, & Boyle, 2005; Luciano et al., 2005).

The aim of the present article was to offer a new explanation for

the positive manifold that does not include a g factor as an

underlying quantitative dimension. In this explanation, we assume

that in the initial phase of development, cognitive processes are

uncorrelated. During development, the positive manifold emerges

as a consequence of mutually beneficial interactions between these

processes. Factor analysis of data generated by this dynamical

process suggests the presence of a dominant factor, as demon-

strated in the simulations. Interestingly, under certain circum-

stances, the mutualism model and the factor models are statisti-

cally equivalent, in the sense that they produce the same

covariance structure (see Footnote 10). However, the mutualism or

cooperation between processes is conceptually very different from

the g explanation, in terms of a single quantitative dimension.

Also, the mutualism model not only explains the positive mani-

fold, it sheds light on various other phenomena, such as develop-

mental, genetic, and cohort effects. These effects are amenable to

explanation within the mutualism model because this model is

essentially a developmental model, that is, it is concerned with the

outcome of a dynamic process.

First, the model provides a plausible explanation of hierarchical

factor structures. Variability in the interaction weights in M,

provided the average of M is positive, leads to complex positive

manifolds, as observed in real data. Second, the model explains a

number of developmental effects. The low correlation between

infant test performance and adulthood IQ can be explained by the

fact that the asymptotic states are independent of the growth

parameters and the initial values, which together determine the

model’s behavior in the initial phase of development. The corre-

lation between test performance and adulthood IQ increases

quickly because the limited resources and mutualism influence

both the growth speed and the asymptotic states. Third, the mutu-

alism model allows for interrelated integration/differentiation ef-

fects. In contrast to other models, differentiation can occur in the

model without invoking any additional mechanism. However,

when we assume an increase in the variance of mutualistic inter-

actions during development, differentiation and the decline of a

limited set of cognitive processes in adulthood can be explained.

Fourth, results obtained with the method of correlated vectors do

not pose a problem. They can be explained without further as-

sumptions. Fifth, the increase in heritability of intelligence follows

from the mutualism model if we are willing to assume that genetic

effects are (primarily) on the limited resources K. Sixth, provided

the genetic contributions to individual differences in K are mini-

mally correlated (i.e., correlations in the order of .01 to .09; see

Figure 9), we can explain the Jensen effect, that is, the correlation

between factor loadings and heritabilities of subtests. This assump-

tion of low correlations between genetic contributions to individ-

ual differences in K is in accordance with the low correlation

between singles genes and g in QTL research (Plomin & Spinath,

2004). Finally, the model may be extended, with reciprocal causal

relations between phenotypic intelligence and environmental fac-

tors leading to a gene–environment correlation that masks the

potency of the environment. According to Dickens and Flynn

(2001), this accounts for the coexistence of a high heritability of

psychometric g and a large environmental (Flynn) effect.

It is important to note that the mutualism model is consistent

with many other models and theories of psychological develop-

ment. It is a nonlinear dynamical model, and, as such, related to

much recent work in developmental psychology (Thelen & Bates,

2003; van der Maas & Molenaar, 1992). Especially relevant are the

applications of van Geert (1991, 1994) in developmental psychol-

ogy and the model of Dickens and Flynn (2001).

The positive manifold, g, and general intelligence are often

viewed as synonymous. We have shown that positive manifold

does not necessarily imply a single quantitative latent factor, but
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what about in the case of general intelligence? Of course, this

depends on one’s definition of general intelligence. If we equate

general intelligence with g, then the mutualism model does not

support general intelligence. We prefer to associate general intel-

ligence with the positive manifold, so that we may view the

mutualism model as a model of general intelligence in the sense

that it explains why people, who are good at one test, are good at

other tests as well. Given this interpretation of general intelligence,

there is nothing wrong with using the g factor as a summary or

psychometric index variable (e.g., in prediction), as long as we do

not assume that this variable relates to a single underlying quan-

titative process or capacity. In this view, the g factor is not

advanced as an explanatory variable.

Several possible points of criticism of the present proposal may

be raised. First, we may ask whether the mutualism model is really

different from the sampling theory. In sampling theory, the ele-

mentary processes are uncorrelated. Correlations between perfor-

mance on cognitive tasks exist because these tasks appeal to

overlapping subsets of these elementary processes. In sampling

theory, and this is true for all its variants, the positive manifold is

due to a measurement problem. If we were able to measure

elementary processes independently, the positive manifold would

disappear. In the mutualism model, the elementary processes are

uncorrelated initially but become correlated during development.

A more refined measurement will not make the positive manifold

disappear.

The objections raised to the sampling theory (see introduction)

are also less relevant to the mutualism model, because functional

independence does not imply a developmental independence. Per-

formance on simple reaction time tasks and performance on intel-

ligence tests, such as the Raven’s Progressive Matrices test, may

not have much in common. They may be functionally independent.

Yet, in the development of reasoning processes that are important

in the Raven test performance, speed of processing could well have

been very important. Another example is the relation between

short-term memory and many cognitive skills. In the first phase of

skill acquisition, short term memory is essential, but later, when

processes are automatized, short-term memory is no longer in-

volved in performance (J. R. Anderson, 1982). Also brain damage

might selectively impair performance on one type of test without

impairing other, highly correlated, performances in the population,

because the correlation is not based on current functional depen-

dency or overlap in processes but rather on developmental depen-

dency. Moreover, correlation between processes can be based on

many Mij through indirect pathways.

Another possible objection is that the mutualism model does not

constitute a parsimonious explanation of the data. Indeed, if every

element Mij has to be determined from data, there is no reduction

of information. We offer three responses to this. First, we do not

assume the presence of a rather mysterious latent variable, such as

g. Rather, we use a developmental model with a clear mechanism

to account for the positive manifold. Second, we can constrain the

structure of M, as in Scenario 3. Indeed, M can be quite sparse and

still give rise to a positive manifold. Many kinds of restrictions

may be placed on the elements in the matrix M, which can be

based on theoretical considerations or the results of experimental

studies. If, for instance, experimental manipulation of short-term

memory is found to alter the performance on an arithmetic task, we

would have reason to constrain the relevant Mij to a positive value.

Finally, irrespective of these considerations, if we believe that

beneficial relations between important cognitive or brain processes

exist, we have to take the mutualism explanation of the positive

manifold seriously.

A general objection to all three explanations of the positive

manifold concerns falsification (Jensen, 1998). It is not easy to

falsify explanations of the positive manifold. It is also quite pos-

sible that a full explanation of intelligence data requires elements

of all three explanations. Some cognitive processes are probably

much more important than others in the explanation of individual

differences, reciprocal causation plays a role and the measurement

problems in sampling theory can hardly be excluded. The best way

to falsify the mutualism model is to find a variable that correlates

perfectly with g. Furthermore, the present model incorporates

various assumptions, which can be challenged in different ways.

For instance, the model predicts that the initial values and growth

parameters do not determine the asymptotic stable states. Demon-

stration of a correlation between early infant performance and

adulthood intelligence or a demonstration of a strong g factor in

infancy would pose a problem for the mutualism model.

A number of issues require further study. For instance, we hope

to (a) extend the dynamical model using results of population

biology, (b) establish statistical model equivalence between the

mutualism model and factor analytic models, (c) make an inven-

tory of causal links between relevant cognitive (and noncognitive)

processes based on experimental evidence, (d) formulate the mu-

tualism model in terms of a cognitive architecture with a choice of

processes and causal links, and (e) obtain sufficient information to

actually fit the mutualism model to data.

This research program appears to have good prospects. In the

past few years, the mutualism model and its various extensions

have been studied extensively in population biology (see Footnote

6). Additionally, model equivalence has been investigated in quite

some depth (e.g., Molenaar, 2003; Raykov & Penev, 1999). Ob-

jective c requires the review of the relevant literature and may

necessitate new experimental cognitive research. Understanding

the function of many biological complex systems, such as genetic

networks and molecular signaling pathways, requires precise iden-

tification of the interaction between individual components. The

most common strategy to identify the causal links involves piece-

meal perturbations of the elements involved (Krupa, 2002). Trans-

lating this to psychology, we need (preferably) experimental data

about the precise relations between modules, processes, or capac-

ities of the mind. The last two issues require specification of the

processes x in our model. We consider both a data-driven and a

theory-driven strategy for this specification. In the data-driven

strategy, we can work with one of the many available data sets

from intelligence research and use subtest scores as measures of

the processes x. In the theory-driven approach, we can adopt (or

develop) a cognitive model of intelligence, such as the Sternberg

model (Figure 1c) or a gf–gc type model. Because we have at our

disposal the expected covariance matrix for the basic mutualism

model (see Appendix), fitting the model to data is possible in

principle. However, such an undertaking would require the spec-

ification of constraints on the matrix M to reduce the number of

parameters and render the model falsifiable. One possibility is to

constrain all elements of M to be equal as in Scenario 3, but this

may not be very plausible. The matrix displayed in Table 1

resembles hierarchical factor models, but there are many other

possibilities. The most promising option is to analyze longitudinal
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data with dynamic structural equation models (McArdle et al.,

2000). Further technical developments are required in this area.

To summarize, in the present article, we proposed a novel

explanation of the positive manifold. Positive interactions, that is,

reciprocal causation, in the development of cognitive processes,

gives rise to the same important phenomenon, viz. the positive

manifold, that has been advanced as evidence for a dominant

underlying latent variable in intelligence. A developmental model

with such interactions may also explain other important effects in

intelligence research or, at minimum, provide new ways to study

them.

A final question is whether it is possible to apply this model, or

at least this line of reasoning, to other areas in psychology, where

correlational data play an important role, and the identification of

latent variables is based strongly on the results of factor analyses.

It would certainly be a useful exercise to conceptualize broad

personality dimensions (e.g., the Big Five) as manifestations of the

interaction between processes within a broadly defined psycholog-

ical system. The same applies to more narrowly defined person-

ality variables. For instance, should we view depression as a true

latent variable, which determines a variety of psychological be-

haviors, or is it actually the upshot of system of self-reinforced

negative behaviors and feelings? Such questions can perhaps be

answered by developing and testing models of the kind proposed

in this article.
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Appendix

Stable States and Covariance Matrix for the Lotka-Volterra Mutualism Model

The model is formulated as:

dxi

dt
� aixi(1 � xi/Ki) � ai�

j�1
j�i

W

Mijxjxi/Ki for i, j � 1 . . . W.

(Equation 3)

Stable States

The system is in equilibrium when for all xi, dxi /dt � 0. This trivially

takes places when ai � 0 or xi � 0 or when:

aixi � aixixi/Ki �
aixi

Ki
�
j�1
j�1

n

Mijxj � 0N

1 � xi/Ki �
1

Ki
�
j�1
j�1

n

Mijxj � 0N

Ki � xi � �
j�1
j�1

n

Mijxj

in matrix notation (Mii � 0):

K � X*[I � M]N

assuming that [I � M] is invertible,

X* � [I � M]�1K.

Note that equilibrium X* is independent of a and initial values x0.

For mutualistic interactions (Mij � 0), Travis and Post (1979) show that

this equilibrium is stable if and only if all eigenvalues of [M � I] have

negative real parts, that is, Re 
i(M � I) � 0, for i � 1, 2, . . . . Travis and

Post also provide an equivalent condition in terms of the values of M.

The Relation Between g and K

Given this equilibrium state, the covariance matrix can be written as

� � [I � M]�1�[I � M
]�1, where � is a diagonal matrix representing

the variances of the uncorrelated K.

Given this covariance structure we can indicate how a g score,

obtained in a PCA, arises. A PCA involves the following decomposi-

tion, � � PDP
, where P is orthonormal (eigenvectors) and D is

positive and diagonal (eigenvalues). The inverse transformation is

D � P
�P, and it is this inverse transformation that is used to

obtain component scores (g) associated with the largest value (eigen-

value) in D. We can apply this to the covariance structure of the

mutualism model.

� � �I � M]�1�[I � M
]�1 � PDP


and the inverse:

P
[I � M]�1�[I � M
]�1P � D.

Let us assume that the principal component scores associated with the

largest eigenvalue approximate the g scores, that is, g � P
gx � P
g[I �

M]�1K, where Pg is the eigenvector in P that is associated with the largest

eigenvalue in D. It is then clear the g scores associated with the largest

eigenvalue in D cannot be related simply to any source of individual

differences Ki; they are a function of both K and M.

Derivation of the Positive Manifold

The simulations demonstrate that positive M results in a positive man-

ifold, that is, positive �. Because � is always positive, a sufficient

condition for positive � is [I � M]�1 being non-negative. The conditions

for non-negative [I � M]�1 are specified in Lemma 1.

Lemma 1. Let M � �
K�K be a non-negative matrix, that is, a matrix

with only non-negative elements, such that |I � M| � 0. Then the matrix

[I � M]�1 is non-negative if and only if the eigenvalues 
i of M satisfy

|
i(M)| � 1, i � 1, 2, . . . .

Proof. Subtract the partial sums

�
i�0

n

Mi � I � M � M2 � . . . � Mn

and

M�
i�0

n

Mi � M � M2 � . . . � Mn�1

from each other to obtain �I � M)�
i�0

n
Mi � I � Mn�1, or

�
i�0

n

Mi � (I � M)�1(I � Mn�1).

Hence in the limit of n3�, if Mn30,

�
i�0

�

Mi � (I � M)�1,

the left hand side of which is clearly non-negative as M is non-negative,

and so [I � M]�1 is non-negative.

For sufficiency, it remains to be shown that limn3� Mn � 0 N |
i(M)|

� 1. Let 
 be an eigenvalue of M and x be a corresponding normalized

eigenvector. Clearly limn3� Mnx � limn3� 
nx � 0N |
| � 1. Given that

any matrix norm ||M|| is bounded from below by the absolute value of the

largest eigenvalue of M, a sufficient condition for [I � M]�1 to be

non-negative is that ||M|| � 1 for any matrix norm.

Next we show necessity. Assume that [I � M]�1 is non negative.

Because M is non-negative, M � ε211
, where 1 is a vector with all entries

equal to one and e � � is positive. Therefore, Theorem 7.44 in Schott

(1997) [1] can be applied, and hence, if

��ε� � max
i

�
i(ε)�,

where 
i(ε) are eigenvalues of M � ε211
 and x(ε) is an eigenvector

corresponding to 
i(ε) for which �(ε) � �
i(ε)�, then

�M � ε211
)abs[x(ε)] � �(ε)abs[x(ε)].

Here abs[.] indicates element wise absolute value. As above,

�
i�0

n

(M � ε211
)i � [I � (M � ε211
)]�1[I � (M � ε211
)n�1].
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Multiplying both sides by abs[x(ε)], we have

�
i�0

n

�(ε)iabs[x(ε)] � [I � (M � ε211
)]�1[1 � �(ε)n�1]abs[x(ε)],

or

1

1 � ��ε�
abs[x(ε)] � [I � (M � ε211
)]�1abs[x(ε)]

� (I � M)�1abs[x(ε)] � ε2
(I � M)�111
(I � M)�1

1 � ε21
(I � M)�11
abs[x(ε)].

If we now let ε 3 0, then clearly (by continuity of eigenvalues)

��ε�3 � � maxi�
i�, where 
i are eigenvalues of M, and x(ε) 3 x, the

corresponding eigenvector of M. Hence, we find

1

1 � �
abs[x] � (I � M)�1abs[x].

If � � 1, this equation contradicts the assumption that [I � M]�1 is

non-negative and so � � 1, which by definition implies |
i| � 1 for i � 1,

2, . . . . However, by assumption |I � M| � 0, and so the eigenvalues of [I

� M], 1� 
i cannot be equal to one and therefore |
i| � 1, i � 1, 2, . . . .

Finally, we consider the relation between the condition for stability and

the condition for positive [I � M]�1, where the latter implies positivity of

the covariance matrix. In case of mutualism, these conditions are equiva-

lent (Lemma 2). Hence, stable states of mutualistic Lotka-Volterra models

are always characterized by a positive covariance matrix.

Lemma 2. Let M � �
K�K be a non-negative matrix, then the follow-

ing are equivalent:

(i) Re 
i(M � I) � 0, for i � 1, 2, . . . , i.e., all eigenvalues of M are

negative

(ii) |
i(M)| � 1, i � 1, 2, . . . , i.e., all eigenvalues of M lie within the

unit circle of the complex plane

(iii) [I – M]�1 is non-negative

Proof. Equivalence of (ii) and (iii) was shown in Lemma 1. We show

(ii) 7 (i):

(ii 3 i) Clearly |
(M)| � 1 7 (Re 
(M))2 � (Im 
(M))2 � 1, which

implies that Re 
(M) � 1 7 Re 
(M) – 1 � 0 7 Re 
(M � I) � 0.

(i 3 ii) If M is nonnegative and Re 
i(M � I) � 0, for i � 1, 2, . . . ,

then by continuity of the eigenvalues, we can find an ε � 0, ε � �,

small enough such that Re 
i(M � I) � Re 
i(M � ε211
 � I) � 0, i �

1, 2, . . . . Let

��ε� � max
i

� 
i(M � ε211
) �,

then clearly �(ε) � 0, and because M � ε211
 is positive, by Theorem 7.44

of Schott (1997) [1], as indicated above, the corresponding eigenvector

x(ε) satisfies �M � ε211
)abs[x(ε)] � �M(ε)abs[x(ε)]. Thus �M(ε) is a real

eigenvalue of M � ε211
. Therefore (i) implies Re �M(ε) � 1, but Re

�M(ε) � �M(ε) � 0, and so 0 � �M(ε) � 1. By definition of �M(ε) all

eigenvalues of M � ε211
 satisfy |
i(M � ε211
)| � �M(ε) and hence |
i(M

� ε211
)| � 1 for all i � 1, 2, . . . . Since Re 
i(M � I) � Re 
i(M � ε211


� I), this implies (ii) for all non-negative M.
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