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Preface

During the past decade, we have witnessed a remarkable resurgence ofinterest in

the psychology of humanintelligence. In the late 1960s, research in the field of

intelligence seemed to have goneinto at least a partial remission. But today a

large numberof investigators are pursuing active research programs concerning

human intelligence.

The rapid expansionofthe field of intelligence convinced meof the need for a

Handbook of Human Intelligence—a volume that would help guide research on

intelligence during the next decade or so. But a handbook cannot keep up with a

rapidly advancing field, and it was for this reason that I decided that there was

also a need for a series of volumes to complementthe handbook—in essence, to

continue the work that I hope the handbookinitiates. This series of volumeswill

mark significant advances in the psychology of humanintelligence.

Advances in the Psychology of Human Intelligence, to be published biannu-

ally, contains articles by leaders in the field that document the progressthat ts

being made toward understanding human intelligence. This series does not at-

tempt to achieve the encyclopedic coverage of a handbook,but it can keep up

with, and, I hope, lead the field in a way that no single, one-time volume could.

Thus, the Advances series complements the handbook in its documentation and

guidance of developments in research on humanintelligence.

The present volumeis the first in the series, and contributors were asked to

address the following questions in their chapters (as well as any others that might

be of particular concern to them):

1. What notion of intelligence motivates the research program to be de-

scribed?

ix



X PREFACE

2. How doesthe research build upon andclarify this notion of intelligence?
3. Whattheoretical or practical questions aboutintelligence does the research

address?

4. What are the particular advantages and disadvantages of the proposed
approachto intelligence?

5. How,if at all, does this research tie in with previous and current research
by others in the field of intelligence?

6. What are the major findings of the research program, and whatis their
significance for the understanding ofintelligence?

7. Whatdirections is the research likely to follow in the next 5 to 10 years?

The concept of intelligence explored in this and subsequent volumes is
broadly conceived. All volumesinclude contributions both by individuals whose
research is clearly identified with the mainstream of research on intelligence and
by individuals whose research may notbe so identified but yet has an important
bearing on our understanding of intelligence. Although contributors always rep-
resent a diversity of substantive and methodological foci, they share a serious-
ness of commitment and contribution to research on intelligence, broadly de-
fined.

The present volumereflects the diversity of approaches and substantive con-
cernsthat will characterize future volumes. It includes chapters dealing primarily
with attention (Hunt & Lansman), choice reaction time (Jensen), reading (Fre-
deriksen), spatial visualization (Cooper; Pellegrino & Kail), number (Gelman),
reasoning (Sternberg), and complex problem solving (Chi, Glaser, & Rees;
Polson & Jeffries). All of the chapters deal with intelligent behavior, broadly
conceived, and illustrate the diversity of research topics currently being pursued
under the general rubric of research on intelligence.

Robert J. Sternberg
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Introduction

Robert J. Sternberg

Yale University

Until the second half of the 20th century, two theoretical questions seemed to

predominate in the literature on intelligence: (1) what is the structure of intelli-

gence? and (2) to what extent is intelligence determined by inheritance and to

what extent is it determined by environment? With the advent of the

information-processing approach to studying intelligence, these two questions

becameless central, and a multiplicity of other questions arose that had received

relatively little consideration in earlier work. Many of these new questions are

dealt with in the present volume.

To the extent that the selection of authors andtopics in this bookis biased,it is

unabashedly biased toward the information-processing approachto intelligence

and the kinds of theoretical questions this approach generates. In order to intro-

duce these questions and the chapters that address them,I have chosen a single

key theoretical question that I believe each chapter addresses in a particularly apt

way. I raise each of these questions here and discuss briefly how each given

chapter addresses the questions I have selected.| wish to emphasize that the

choice of questions is mine and that the authors of the chapters might not view

their own contributions in the same light that I do. Nevertheless, I believe that

my ownperspective might provideat least a minimal unifying backdrop for the

contributions of the various authors in the volume.

1. To What Extent Should Research on Intelligence Focus on Process and to

What Extent Should It Focus on Product? The psychometric approachto intel-

ligence was characterized by its emphasis on the products of intelligent perfor-

mance. In the information-processing revolution, emphasis shifted to the pro-

cessesof intelligent behavior. Psychometricians were criticized for their inatten-

1



2 STERNBERG

tion to the processes thatgive rise to the products measured by the tests. Indeed,
information-processing methods are especially well suited to the identification
and examination of the processes constituting intelligent performance.

Recently, some information-processing psychologists have begun to question
whether information-processing researchers have not been too extreme in their
shift from product to process. But these psychologists are not advocating

a

shift
back to the emphasis on observable products that characterized many psychomet-
nc investigations. Rather, they are suggesting that more attention be paid to
mental products, in particular, the knowledge base that is generated by the
processes of intelligent performance. Their goal is the formulation of a
knowledge-basedtheory ofintelligence, or at least a theory that gives knowledge
the prominence these psychologists believe it deserves. Chi, Glaser, and Rees, in
their review of others’ and their own research on ‘‘Expertise in Problem Solv-
ing,’’ propose an outline for the development of a knowledge-based theory of
intelligence. They argue that differences between expert and novice performance
in the solution of physics problems (and other types of problems as well) are
heavily knowledge-dependent. To the extent that one wishes to view individual
differences in intelligence as reflecting differing levels of expertise in varying
kinds of problem-solving performance, the findings ofthe studies they review on
complex problem solving are relevant for understanding individual differences in
humanintelligence.

2. To What Extent Can Individual Differences in Intelligence Be Understood
in Terms of Discrete Differences in Cognitive Styles in Strategic Behavior?
During the mid-20th century, research on cognitive styles in intelligent be-
havior flourished. People seemed to be potentially characterizable as field in-
dependentor field dependent, as levelers or sharpeners, as reflective or impul-
sive, and as tolerant or intolerant of ambiguity, to name just a few of the
constructs that were investigated. But research on cognitive styles began to peter
out during the late 1960s and early 1970s. Research of this kind was not discon-
tinued altogether, but the numberof investigations and the attention attracted by
this kind of investigation almost certainly decreased. There seem to have been
several reasons for this decrease in the salience of cognitive-styles research:
questions regarding the distinguishability of some of the styles from general
intelligence; questions about the cross-situational consistency of some of the
styles; questions about whether the styles really represented discrete types of
performanceorrather merely represented ends of various continua; and questions
about where such research was heading.

Cooper accidentally stumbled onto what appeared to be a cognitive-style
difference in visual comparisons. In her early research on mental rotation and
comparison, she found what appeared to be twodiscrete strategies for solving
rotation and comparison problems. Individuals seemed to be characterized by the
use of either one strategy or the other. In Chapter 2, Cooper reviews her program
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of research onholistic and analytic processors in visual processing. Because she

is especially sensitive to the problems of cognitive-style research, her chapter on

“Strategies for Visual Comparison and Representation: Individual Differences’”’

in some respects provides a model for how cognitive-styles research (or, as I

prefer to call her work,° ‘neocognitive-styles’’ research) can remain viable in the

1980s.

3. Can the Factor Model of Differential Psychology and the Component

ModelofInformation-Processing Psychology Be Integrated in a Way That Max-

imally Exploits the Potential ofEach, with Neither Subservient to the Other? In

the enthusiasm that accompanied the information-processing revolution in re-

search on intelligence, there was an unfortunate tendency to dismiss the factor

model out of hand or, at best, to give it short shrift. Factor analysis provided a

convenient whipping boy, especially because research using the factor model

seemed to be foundering on the shores of what appeared to someto be insupera-

ble problems. Some information-processing investigators continued to use factor

analysis in their research, but such analysis was relegated to a relatively minor

role. The idea was not to dispense with factor analysis altogether, but somehow

to ‘‘put it in its place.”’

Many of the criticisms that were directed against factor analysis centered

around its relative inefficacy in hypothesis testing (as opposed to hypothesis

generation). But at the same time that these criticisms were being made, power-

ful new methods based on the factor-analytic model were being developed that

madefactor analysis a potentially valuable tool in confirmatory as well as explor-

atory studies. One of these confirmatory methods, analysis of covariance struc-

tures, has been used by Frederiksenin the studies that have led to the develop-

ment of ‘‘A Componential Theory of Reading Skills and Their Interactions.”

Frederiksen combines differential and experimental-cognitive methods in an ex-

tremely powerful way. Both correlational and subtractive logics play indispensa-

ble roles in his research. I believe Frederiksen’s methodologyto be as elegant as

any in showing the power that the two kinds of logics can provide whentruly

integrated, rather than when simply used side-by-side as has been true in much

earlier research seeking to ‘‘combine’’ the two kinds of logics and methods.

4. Can a Substantial Base of Theory and Data Be Constructed for Under-

standing What Young (‘‘Preoperational’’ ) Children Can Do,as Well asfor What

They Cannot Do? The work of Piaget provided a monumental base of theory

and data for understanding children’s cognitive development. Unfortunately,

children in one age bracket—that from roughly 3 or 4 to roughly 7 or 8 years of

age—often seemed to be characterized more by what they could not do than by

what they could do. Typically, it might be shown what concrete-operational

children could do (e.g., conservation of quantity, volume, number, or whatever)

that preoperational children could not do. In her research program on ‘*Basic
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Numerical Abilities,’ Gelman has gone a long way toward helping us under-
stand what young children can do in the domain of numerical information pro-
cessing. She has used a set of ingenious experimental techniques to show that
young children have surprisingly sophisticated understandings of number con-
cepts and that they already possess the basic counting principles needed for later
quantitative skills development. At the same time, she has shown how experi-
mental methods can be used to address in a rigorous way someofthe theoretical
problemsthat Piaget andhisdisciples have in manycases addressed only through
observational techniques. Sophisticated experimental techniques, such as those
employed by Gelman, when used in combination with observational techniques,
show that children demonstrate strikingly high levels of numerical competence.
Their competence maybeless readily visible when it is studied solely by obser-
vational techniques.

5. What Role, if Any, Should an Account of the Distribution of Attentional
Resources Play in a Theory of Intelligence? Ideal conditions for the testing of
intelligence, either in school or in laboratory settings, are usually considered to
be a silent, well-lighted room in which distractions of any kind are minimized.
But people rarely function in such a rarified environment. Typically, there are
many demands ontheir attentional resources, and they may find themselves
trying to behaveintelligently in two or more waysat once, while at the same time
filtering out various distractions that threaten to prevent them from performing
any of the tasks in an intelligent way.

Hunt and Lansman have proposed a model of ‘Individual Differences in
Attention’’ that takes at least one step toward remedying the relative inattention
theorists of intelligence have paid to attentional variables. In particular, they
have tried to account for how people distribute their attention when they do two
things at once. Althoughthese theorists have not integrated their model ofatten-
tional resource distribution with their own or others’ models of intelligence, such
an integration would seem to be a possible next step in a future research program.
To the extent that the only moderate predictive validities of intelligence tests
might be due to the lack of ecological realism on the part of thesetests, a test that
manipulates situational variables, such as the amountof attention that can be
devoted to a given task, might provide something of a breakthrough in our
understanding ofintelligent performance in real-world situations.

6. What Role, if Any, Should the Measurement of Very Basic Information
Processing, Such as Simple and Choice Reaction Time, Play in Theorizing About
and Research on Intelligence? In his very early work on individual differences
in intelligence, Sir Francis Galton measured intelligence through the use of a
wide variety of simple physical and psychophysical tasks. The Galtonian tradi-
tion was carried over to the United States by James McKeen Cattell, but it was
aborted by Wissler’s findings that relatively simple psychophysical mea-
surements were neither very much correlated with each othernor with performance
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in school. The relatively greater success of the more complex judgmental tasks

used by Binet andhis disciplesled to a tradition of intelligence research that had

little use for the simple tasks advocated by Galton, Cattell, and their disciples.

In the past few years, Jensen has been one of a number of psychologists who

have claimed that we were too quick to dispense with measurements madein the

Galtonian tradition—that whereas the more physical kinds of tasks used by

Galton may indeed have beenoff base, the simple and choice reaction-time tasks

may not have been; that with more refined and sophisticated measurement of

basic information processing, it may be possible to identify the bases for the

more complex kinds of information processing measured by the judgmental tasks

studied by Binet and his successors. In his chapter on ‘‘The Chronometry of

Intelligence,’’ Jensen reviews evidence from his own and others’ laboratories

suggesting that speed to perform basic processes, such as visual and memory

scanning, is at least moderately correlated with psychometric test performance.

Moreover, when several information-processing predictors are combinedinto a

single predictive equation, quite substantial prediction of psychometric test per-

formance can be obtained. Theorizing about the reasons for this relationship is

still in early stages; Jensen proposes a first-pass theory of intelligence that at-

tempts to account for intelligent behavior as at least partially derivative from

mental speed. Whetheror notthis theory ultimately proves viable, it is clear that

theorists (such as myself) who prefer to understandintelligence in terms of more

complex forms of information processing will eventually have to deal with the

correlational data Jensen and others of his persuasion haveto offer.

7. Can ‘‘Cognitive Components’’ Analysis Be Applied Beyond the Domains

of Inductive and Deductive Reasoning? During the mid- and late 1970s, an

approach to research onintelligence called ‘‘componential analysis’’ or ‘‘cogni-

tive components’’ analysis became fairly salient in the literature. In this ap-

proach, the investigator takes a complex task, often one found on actual IQ tests,

and decomposes performance on the task into elementary information-processing

components. The approach has been quite successful in accounting for variation

in the difficulty of stimulus items and in accounting for individual differences in

componential terms. But a disproportionate number of componential analyses

seemed to deal with reasoning tasks, and the question inevitably arose as to

whether componential analysis could be applied to tasks in domains other than

that of reasoning. Research in the early 1970s by Shepard, Cooper, and their

associates suggested the possible feasibility of componential analyses of spatial

tasks, and in Chapter 7, ‘‘Process Analyses of Spatial Aptitude, ”’ Pellegrino and

Kail have shown beyond any doubt the usefulness of componentialanalysis as a

way of understanding spatial abilities and their development. The program of

research has thus served a dual function, providing us with both a rather com-

prehensive view of the nature of spatial abilities and a demonstration of the

applicability of componential analysis in a domain quite different from that of

reasoning behavior.
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8. Does Human Performance on Problem-Solving Tasks Show the Same
Kinds of Communalities That Have Been Shown in the Reasoning Tasks Most
Often Used to Measure General Intelligence? Tests of general intelligence, or
g, have tended to emphasize various kinds of inductive reasoning tasks, such
as analogies, classifications, and series-completion problems. Information-
processing analyses of these tasks have suggested that the appearance ofa gen-
eral factor when thesetasks are factor analyzed may be accountedforat least in
part by communalities in the information-processing components used to perform
the tasks. Although at least some IQ tests, such as the Stanford-Binet, have also
used *‘transformation problems’”’ (e.g., the water-jugs problem) as one basis for
assessing intelligence, for some reason, performance on these has not been much
studied in the context of research on process generality in humanintelligence.
Although Newell, Simon, and others have shownthat a single computer program
can solve various kinds of transformation problems, there has been a dearth of
evidence to suggest that humanbeings actually solve various types of transforma-
tion problemsin a similar way. In their chapter on ‘‘Problem Solving as Search
and Understanding,’’ Polson and Jeffries review evidence from their laboratory
suggesting that a common model, with suitable adjustments, can account for
performance on at least two transformation tasks—water jugs and missionaries
and cannibals—and on variants of these two tasks. This demonstration is an
important one becauseit provides a basis for selecting components of problem-
solving performance that might be related in subsequent investigations to
psychometric intelligence test performance and to performance on other
information-processing tasks. In particular, one might ask whetherthere is a g
for problem-solving tasks, whetherthis g is the same one that has been identified
in factor-analytic and information-processing investigations of intelligence, and
if not, why not.

9. Are Sources ofIndividual Differences in Intelligence the Same Within and
Across Age Levels? A recurrent, but as yet unanswered, question is that of
whetherthe sources ofdifferences in intelligent performanceare the same within
and across age levels. I address this question in my chapter describing ‘‘A
Componential Approach to Intellectual Development,’’ where I propose that the
sources of differences in performanceare largely the same. I take my previously
proposed componential framework for understanding adult intelligence and at-
tempt to show howit can be applied to the understanding of intellectual de-
velopment from childhood through old age.

In conclusion, the chapters in this book represent a diversity of problems and
perspectives within the information-processing framework. I believe they do
indeed describe significant ‘‘advances in the psychology of humanintelligence’’
as studied from a multiplicity of viewpoints.



Expertise in Problem Solving

Michelene T. H. Chi, Robert Glaser, Ernest Rees

University of Pittsburgh

INTRODUCTION

At first glance, it may seem anomalous for a chapter on expert performance to

appear in a volume onintelligence. But an accumulation of scientific events

indicates that the analysis of expertise in semantically rich knowledge domainsis

quite relevant to understanding the nature of intelligence. These events have

occurred in a numberofdisciplines, particularly cognitive psychology andartifi-

cial intelligence. The first part of this chapter briefly outlines work in these

fields. The common themeis the increasing emphasisonthe structure of knowl-

edge as a significant influence on intelligence and high-level cognitive perfor-

mance. The latter part of the chapter describes, as an illustration of this, investi-

gations of high and low competence in a knowledge-rich domain, namely, prob-

lem solving in physics.

Intelligence has been studied by contrasting individual differences, age dif-

ferences, differences between the retarded and the gifted, and between fast and

slow learners. These dimensions of difference are well represented by the past

research of the contributors to this volume, including ourselves. What have we

learned by investigating intelligent performance along these dimensions? If we

consider speed of processing, memory span, and the use of complex strategies as

three straightforward measures of cognitive performance, the following picture

emerges. Moreintelligent individuals have faster processing speed, longer mem-

ory span, and use more sophisticated strategies than less intelligent persons

(Belmont & Butterfield, 1971; Hunt, Lunneborg, & Lewis, 1975; Jensen, 1981).

This is also true of older versus younger children (Chi, 1976) and fast as com-

pared with slow learners. For example, good readers can encode wordsfaster and

7



8 CHI, GLASER, AND REES

1975). Thus, over these demensions of comparison, measuredintelligence corre-
lates positively with faster processing, more complex encoding andrecall, and
the use of sophisticatedstrategies.

Although this pattern of results occurs reliably, we still do not understand
what the underlying mechanisms are and whethersimilar mechanismsare opera-
tive in various disciplines and areas of knowledge. This is one reason the analysis
of expertise has emerged as an interesting area of investigation. The Study of
expertise forces us to focus on a new dimensionofdifference between more and
less intelligent individuals—the dimension of knowledge—because expertiseis,
by definition, the possession of a large body of knowledge and proceduralskill.
The central thesis of this chapteris that a major componentofintelligenceis the
possession of a large body of accessible and usable knowledge. In the following
section, we briefly outline the literature in two related disciplines that have
gradually come to the same conclusion.

THE FOCUS ON KNOWLEDGE

Cognitive Psychology

MemorySkills

In cognitive psychology, the effects of knowledge on complexskilled perfor-
mance werefirst explored in the seminal work of de Groot (1966) and Chase and
Simon (1973a, 1973b) in their studies of chess skill. In an attempt to discover
what constitutes skill in chess, de Groot (1966) found that differences in skill
were not reflected in the number of moves the players considered during their
search for a good move, norin the depth of their search. Both the master and the
novice did not search any further ahead than five moves. Both experts and
novices used the samesearch strategies, that is, depth first with progressive
deepening. In order to capture the essenceof skill differences in Chess, de Groot
resorted to a different type of task—memory for chess positions. He found that
when masters were showna chessposition for a very brief duration (5 seconds),
they were able to remember the position far better than novice players. This
difference could notbe attributed to superior visual short-term memory on the
part of the masters because, when random board positions were used, recall was
equally poor for masters and novices (Chase & Simon, 1973b).

In order to understand the chess masters’ recall superiority, Chase and Simon
attempted to uncover the structures of chess knowledge that the masters pos-
sessed. Using ‘‘chunks’’ as a defining unit of knowledgestructure, Chase and
Simonset out to identify experimentally the structure and size of chunks in the
knowledge base of masters and novices. They used two procedures. One wasto
record the placement of chess pieces on the chessboard during the recall of
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positions and use 2-second pauses during recall to segment the chunks. A second

procedure wasto ask the chess player to copy a position and use head turns from

board to boardto partition the chunks. The theoretical rationale underlying both

the pause and the head-turn procedure was the notion that chunksare closely knit

units of knowledge structure. Hence, retrieval of one item of information within

a chunk would lead to retrieval of another in quick succession.

Both master and novice did retrieve pieces in chunks—bursts followed by

pauses—andthey reproduced chesspositions pattern by pattern, with a glance (or

head turn) for each pattern. These were familiar and highly stereotypic patterns

that chess players see daily, such as a castled-king position or a pawn chain, or

they were highly circumscribed clusters of pieces, often of the same color and

located in very close proximity. The difference between the novice and the expert

chess player was the size of the chunks. The master’s patterns were larger,

containing three to six pieces, whereas the novice’s patterns contained single

pieces. If one counted by chunks rather than pieces, the novice and the master

were recalling the same numberof chunks from the board position.

There are limitations with the procedureof identifying chunks by a 2-second

pause and/or a head turn. Onelimitation is that it does not provide a description

of the complex structure of the chunk, for example, the overlapping nature of

chunks (Reitman, 1976). A more serious limitation is that it does not allow for

the identification of higher-order chunks. The pause procedure permits only the

identification of ‘‘local’’ chunks, that is, chunks that are spatially close and

defined by suchrelations as next to, color identity, piece identity, etc. (Chase &

Chi, 1981).

The existence of higher-order chunks is evidenced in the master’s recall for

sequences of moves (Chase & Simon, 1973a). That is, after viewing all the

movesof a game, a master’s recall of move sequences shows clustering of move

sequences represented by pausesthatis similar to the clustering of pieces in the

board-recall task. This says that a given board position generates a sequence of

stereotypic moves. Data from eye-movementstudies clearly show that chess

players fixate predominantly on the pieces interrelated by attack and defense

strategy (Simon & Barenfeld, 1969) and that these pieces are typically not

proximally related, as are the local chunkpieces.

The study of expert-novice differences in the use of complex knowledge in

other domains has also revealed higher-order chunk structures. In electronics,

Egan and Schwartz (1979) foundthat skilled technicians reconstructing symbolic

drawings of circuit diagrams do so according to the functional nature of the

elements in the circuit such as amplifiers, rectifiers, andfilters. Novice techni-

cians, however, produce chunks based more upon the spatial proximity of the

elements. In architecture, Akin (1980) found that during recall of building plans

by architects, several levels of patterns were produced. First, local patterns

consisting of wall segments and doorsare recalled, then rooms andother areas,

and then clusters of rooms or areas. The hierarchical nature of chunksalso has
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beenillustrated in the recall of baseball events. High-knowledgeindividuals can
recall entire sequences of baseball events much better than low-knowledgeindi-
viduals (Chiesi, Spilich, & Voss, 1979).

Like the chess results, the expert in several diverse domainsis able to re-
member ‘‘sequences of moves’’ much more rapidly than the novice. Also, we
see a similarity between chess patterns, circuit diagrams, and architectural pat-
terns in that functional properties are more important at higher levels, whereas
structural properties (such as proximity and identity in color and form) are more
importantat lower levels. And with increasing skill more higher-order chunksare
developed.

In sum,one aspect of cognitive psychologyresearch hasclearly identified the
superior memory capacity of skilled individuals, as exhibited in the large pattern
of chunks, whetherthey are adult chess players, child chess players (Chi, 1978),
Go players (Reitman, 1976), Gomoku players (Eisenstadt & Kareev, 1975),
bridge players (Charness, 1979), musicians (Sloboda, 1976), baseball fans
(Chiesi et al., 1979), computer programmers (Jeffries, Turner, Polson, &
Atwood, 1981; McKeithen, Reitman, Rueter & Hirtle, 1981), or electronic techni-
cians (Egan & Schwartz, 1979). Although a numberofthese studies have uncov-
ered the hierarchical nature of the patterns (Akin, 1980; Chiesi et al., 1979; Egan
& Schwartz, 1979), no work to date has explicitly related the knowledge and
chunk structures of these skilled individuals to the complex skill that they are
able to perform.

Problem-Solving Skills

A currently prominent area of research in cognitive psychology is problem
solving. Problem-solving research was revolutionized in the 1960s when re-
searchers turned from studying the conditions under which solutions are reached
to the processes of problem solving. Following the contribution of Newell and
Simon’s (1972) theory, problem-solving research proceeded to model search
behavior and to verify that humans indeed solve problems according to means-
ends analyses. Numerous puzzlelike problems were investigated, all of which
indicated that human subjects do solve problems according to means-ends
analyses to some degree (Greeno, 1978).

In puzzle problems, sometimes known as MOVE problems, the knowledge
involved in solving the problems is minimal. All the knowledge one needs to
solve the problems is given: the initial state, the number and function of oper-
ators, and the final goal state. Solution requires that a set of operators be applied
to transform one state of knowledge to another, sothat eventually the goal state
can be reached. A variety of puzzle problems have been investigated: the water-
jug problem (Atwood, Masson, & Polson, 1980; Atwood & Polson, 1976; Pol-
son & Jeffries, Chapter 8, this volume), hobbits and orcs (Greeno, 1974;
Thomas, 1974), missionaries and cannibals (Simon & Reed, 1976), and Tower
of Hanoi (Egan & Greeno, 1974; Simon, 1975).
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The research on puzzle problems, however, offered limited insights into learn-

ing. Because learning in real-world subject matters requires the acquisition of

large bodies of domain-specific knowledge, cognitive scientists turned their at-

tention from knowledge-free problems, like puzzles, to knowledge-filled do-

mains like geometry (Greeno, 1978), physics (Simon & Simon, 1978), ther-

modynamics (Bhaskar & Simon, 1977), programming (Jeffries, Turner, Polson,

& Atwood, 1981), understanding electronic circuits (Brown, Collins, & Harris,

1978), and recently, political science (Voss & Tyler, 1981).

Solving real-world problemspresents new obstaclesthat were not encountered

previously in puzzlelike problems. Basically, the exact operators to be used are

usually not given, the goal state is sometimes not well defined, and more impor-

tantly, search in a large knowledge space becomes a serious problem. (The

research on artificial intelligence programs in chess, to be mentioned in the next

section, gives the flavor of this difficulty.) Solving real-world problems with

large knowledge bases also provides a glimpse of the power of the human

cognitive system to use a large knowledge system in an efficient and automatic

manner—in ways that minimize heuristic search. In general, current studies of

high levels of competence by cognitive psychologists appear to support the

recommendation that a significant focus for understanding expertise is investiga-

tion of the characteristics and influence of organized, hierarchical knowledge

structures that are acquired over years of learning and experience.

Artificial Intelligence

The goal of artificial-intelligence (AI) research is to make a machine act in-

telligently. In this area, the problem of understanding intelligence has become

increasingly focused on thelarge structure of domain-specific knowledge that is

characteristic of experts. This is in contrast to the early years ofthe field, when

the creation of intelligent programs was identified with finding “‘pure”’

problem-solving techniques to guide a search, for any problem, through the

problem spaceto a solution,as in the General Problem Solver (Newell, Shaw, &

Simon, 1960). The techniques elucidated, such as means-ends analysis, are

clearly part of the picture, but it was apparent early on that in realistically

complex domains such techniques must engage a highly organized structure of

specific knowledge. This shift in AI is characterized by Minsky and Papert (cited

in Goldstein & Papert, 1977) as a change from a power-based strategy for

achieving intelligence to a knowledge-based emphasis. They write as follows:

The Power strategy seeks a generalized increase in computational power. It may

look toward new kinds of computers (‘“‘parallel’’ or ‘‘fuzzy’’ or ‘‘associative’’ or

whatever)or it may look toward extensions of deductive generality, or information

retrieval, or search algorithms.... In each case the improvement soughtis in-

tended to be ‘‘uniform’’—independentof the particular data base.
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The Knowledge strategy sees progress as coming from better ways to express,
recognize, and use diverse and particular forms of knowledge. This theory sees
the problem as epistemological rather than as a matter of computational poweror
mathematical generality. It supposes, for example, that when

a

scientist solves a
new problem, he engages a highly organized structure of especially appropriate
facts, models, analogies, planning mechanisms, self-discipline procedures, etc.
To be sure, he also engages ‘‘general’’ problem-solving schemata but it is by no
means obvious that very smart people are that way directly because of the superior
power of their general methods—as compared with average people. Indirectly,
perhaps, but that is another matter: A very intelligent person might be that way
because of specific local features of his knowledge-organizing knowledge rather
than because of global qualities of his ““thinking’’ which, except for the effects of
his self-applied knowledge, mightbe little different from a child’s [p. 86].

We can now elaborate on this transition in AI research from building pro-
grams that emphasized heuristic search to knowledge-based programs, using
chess programs as examples. The chess problem space can be pictured as a
game tree. Figure 1.1 shows a very simple example of such a tree. Each
node represents a possible position (of all the pieces) during a game, and
each link leading from a node represents a possible move. Atfirst glance,
the problem might seem fairly simple: Start at the top of the tree and find
a set of paths that force the opponent into checkmate. However, as Shannon
(1950) pointed out, at any given point a player has approximately 30 legal moves
available, so the number of nodes at successive levels of the tree increases
dramatically. In an entire game, each player makes an average of 40 moves
(giving the tree 80 levels), and the numberofpossible paths to the bottom of the
tree total about 10'*°. Even the fastest computer could not search such

a

tree
exhaustively, so intelligent choices must be madeto limit the exploration se-
verely. There are twobasic limitations that can be applied: limiting the numberof
moves considered from each node (width of search) and limiting the numberof
successive moves that will be considered on each path (depth of search). Both of
these methods require the use of some chess knowledgeif they are to be applied
successfully. In the case of depth of search, inasmuch as positions reached are
not final (won or lost), they must be evaluated to determine if they are advan-
tageous ornot. In addition, simply cutting off the search at a specified depth can
cause problems(e.g., the cutoff may be in the middle of an exchangeof pieces),
so some analysis is required to determine if the search should be deepened.

Full-Width Search

Two general search-based approaches have been followed in attempts to
create chess-playing programs: full-width (brute force) search and selective
search. Both limit the depth of search, but in a full-width program, the width of
search is not limited at all, as the name implies. To date, a modification ofthis
approach has been the most successful. It uses a mathematical algorithm that
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FIG. 1.1. A chess gametree.

eliminates from consideration moves by the opponentthat are worse than the best
move already found (based on the evaluation of the positions to which they lead)
because it must be assumedthat one will make the best possible move. The 1980
world computer chess champion, BELLE by Thompson and Condon at Bell
Labs, and a former champion, CHESS 4.6 by Slate and Atkin at Northwestern,
are both of this type. These programs, and others like them, have a bare
minimum of chess knowledge but make use of a computer’s speed and memory
to do vast amounts of searching. Although these programs can now beatpracti-
cally all human players, they cannot beat the top ranked experts (grand masters).
Estimates of 10 more years of work to reach this level are not uncommon. The
main reason for such slow progress is probably the explosive branching of the
gametree. Each level contains about 30 times as manynodesas the level above,
so a large increase in computational poweris needed for a very small increase in
depth of search.
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Selective Search

Clearly, grand masters do not play better chess because they outsearch a

computer. The limited size of short-term memory and the amount of time re-

quired to fixate items in long-term memory limit humans to very tiny tree

searches. In fact, de Groot (1965) and Newell and Simon (1972) have shown

through protocol analysis that expert players tend to choose good moves without

any search at all and then conduct a limited search to test their choices. This

approach is an example of the second programming method—selective search.

The Greenblatt program (Greenblatt, Eastlake, & Crocker, 1967), the first to

make a respectable showing in human tournament competition, provides an

example of how this approach has been implemented. His program selects moves

for consideration on the basis of ‘‘plausibility.’’ It first generatesall of the legal

movesavailable from the present position. A plausibility score is then calculated

for each moveonthebasis of a subset of 50 heuristics (notall are applicable to a

given situation). These heuristics are simply *‘rules of thumb”’ taken from chess

lore for selecting a good move, which have been roughly quantified to allow for

calculating a numerical score. The movesare then ranked in order of decreasing

plausibility, and only the first few are considered. In addition, all of the continua-

tions used to evaluate a move are generated in the same way. Because only a

handful of the possible moves is considered at each node, the gametree is

significantly reduced in size. The size of the search must be reducedstill further,

however, so the mathematical algorithm mentioned before is used to “‘prune’’

more branches from the tree. The depth of search is also limited.

Although expert players do choose a few plausible moves for consideration,

they do not do it through computation and evaluation as does the Greenblatt

program. Rather, they respondintuitively to patterns on the board. As mentioned

earlier, de Groot (1965) has shownthat grand masters can reproduce complicated

positions almost exactly after seeing them for only 5 seconds. Apparently, the

years of practice necessary to become a chess expert result in a very large

knowledge base of patterns of pieces and probably patterns of moves as well.

When experts look at the board and ‘‘see’’ good moves, they are engaging in

pattern recognition. Thus, an obvious direction for chess-program design is to

build production systems that can recognize and respond as humanplayers do

(Simon, 1976).

Knowledge-Based Chess

There is more to human play than just recognizing a possible next move,

however. The movesof a good player advance toward somegoal; they fit into a

plan that looks at least a few moves ahead. An early attempt to give chess

programs simple goals is the Newell, Shaw, and Simon program (1958), which

has a series of independent goal modules. Each module can recognize appro-

priate situations on the board and generate moves with specific purposes, such as
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king safety, center control, etc. The purpose of these goals, however, is only to
select a few reasonable candidates for the next movein orderto limit the search
tree; there is no overall plan.

A program called PARADISE (Wilkins, 1980) contains the factors we have
discussed that seem to give expert chess players an edge over even the best search
programs. It uses an extensive knowledge of chessboard patterns, embodied in
production rules, to establish goals, which are then elaborated into more concrete
plans. Search is used only to check the validity of the plans.

PARADISE does not play an entire game; it plays ‘‘tactically sharp’’ posi-
tions from the middle game. Tactically sharp simply means that success can be
achieved by winning material from the opponent—a commonsituation in chess.
The knowledge base consists of some 200 production rules, each with a general
pattern of relationships among pieces as its condition. Most of these rules are
organized around general higher-level concepts necessary for effective play, such
as looking for a THREATto the opponent’s pieces, looking for a way to make a
Square SAFE to movea pieceto it, trying to DECOY an opponent’s piece out of
the way, etc. The effect of applying the production rules to a given position is to
suggest a plan or plans with the overall goal of winning material. A given plan
may include calls back to the knowledge base to produce plans to accomplish
subgoals of the original plan (if such a subplan cannot be found,then the overall
plan is scrapped). Plansare thus hierarchically expanded until they are ready for
use. Each plan containsan initial moveplusa series of alternative future moves
depending on the types of replies by the opponent. Each plan also contains
information about whyit was produced by the knowledgebasein thefirst place.
The plan andits associated information are then used to guide a very smalltree
search to determine if the plan is feasible.

Productions in the knowledge base are used to generate the defensive moves
used in the search. Calls for additional planning and analysis to expand the
original plan can also be generated by the search. The depth of search is not
artificially limited in this program; instead, analyses are conducted (using the
knowledge base) at the ends of lines suggested by the plans to determine if
termination of the search is proper. Inasmuchasthe plans limit the number of
alternatives considered at each nodeto only a few, the search can go much deeper
than in other programs. Because all of the analysis, planning, and searching is
guided by the knowledge base, altering or improving the play of PARADISE
consists of simply modifying or adding individual production rules. Such a
system seems to have great potential for playing expert chess, if the requisite
knowledge can be determined and coded into the knowledge baseorifa self-
learning system can be designed to modify its own base.

In sum, the example of chess programsillustrates the general tendency in AI
toward knowledge-based programming. Even though computers have great ad-
vantages over humansin speed and memory, it seems that knowledge provides
an edge, which pure power can only overcomeat greatcost,if atall.
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PHYSICS PROBLEM SOLVING AND EXPERTISE

In this section, we review whatis known about how physics problems are solved

and, in particular, how expert physicists solve them as comparedto novices. The

first subsection reviews the available empirical evidence, and the second reviews

the resulting theoretical models simulating the way experts and novices solve

physics problems.

Empirical Findings

In the relatively small amount of work donein this area, there are basically three

types of empirical investigation. One examines the knowledge structures of

physics concepts. Shavelson (1974; Shavelson & Stanton, 1975), for instance,

has investigated methods for determining this ‘‘cognitive structure.’’ He de-

lineates three methods that may be used singly or in conjunction: word associa-

tion, card sorting, and graph building. Of the three, word association is the most

venerable and widely used. Using this method, Shavelson (1974) has shownthat

students’ physics concepts become more interrelated and that their cognitive

structures become morelike the course ‘‘content structure’’ (as determined by a

structural analysis of the instructional materials) at the end of the course thanat

the beginning. Thro (1978) has foundsimilar results using the instructors’ cogni-

tive structure as the content structure.

A second type of empirical research is investigation of subjects’ prior concep-

tion of the physical world, with a view toward how that preconception might

affect one’s learning of physics. For example, McCloskey, Caramazza, and

Green (1980) have shownthat a sizable number of students who have had no

physics courses, as well as some who have had one or more college courses,

believe that an object onceset in curvilinear motion (e.g., through

a

spiral tube)

will maintain that motion in the absence of any further external forces. Also,

Champagne, Klopfer, and Anderson (1980) have constructed the Demonstration,

Observation, and Explanation of Motion Test (DOE) to test students’ ideas of

motion due to gravity. They have found, similarly, that a sizable number of

students entering a college mechanics course have erroneousideas about motion

(and that students who had taken high school physics did no better than those

whohad not). They also found, however,that results on the DOEalone were of

little predictive value in determining success in the mechanics courses.

The third type of empirical evidence relates specifically to problem solving

and is usually gathered in the context of solution protocols. Careful analyses of

protocols have indicated significant differences between the expert and novice.

The only obvioussimilarities between them are in the macroprocesses they use in

solving physics problems. According to Simon and Simon (1978), both expert

and novice proceedto solution by evoking the appropriate physics equations and

then solving them. The expert often does this in one step, however, simply
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stating results without explicitly mentioning the formula being used, whereas the
novice typically states the formula, puts it into the appropriate form, and substi-
tutes the values of the variables in discrete steps. McDermott and Larkin (1978)
include another two ‘‘stages’’ prior to the evoking andinstantiating of equations,
postulating that solution proceeds in at least four episodes: the first stage is
simply the written problem statement; the second involves drawing a sketch of
the situation; and the third is a ‘‘qualitative analysis’’ of the problem, which
results in a representation containing abstract physics entities. Generating the
equations is the fourth stage. According to Larkin (in press), experts seem to
perform all four processes, whereas the novice mayskip the qualitative analysis
stage. Beyond this gross similarity lie much more subtle and salient differences
between the expert and novice protocols, which can now beelaborated.

Quantitative Differences

There are three major differences between the novice and the expert physicist
that are easily quantifiable. The most obviousis time to solution. The speed with
which a problem can be solved dependsa great deal onthe skill of the individual.
Simon and Simon (1978) noted a 4:1 difference between their expert and novice.
Larkin (1981) also reported a similar difference between her experts and novices.
This difference is not unlike the speed difference found in chess-playing ability
of the master versus beginner. This is to be expected if we postulate that experts
in general are more efficient at searching their solution space.

Related to solution time is another quantifiable difference: the pause times
between retrieving successive equations or chunks of equations. Larkin (1979)
has claimed that a number of physics equations are retrieved by the experts in
succession, with very small interresponseintervals, followed by a longer pause.
Her novice did not seem to exhibit this pattern of pause times in equation
retrieval. This is interpreted as suggesting that experts group their equationsin
chunks so that the eliciting of one equation perhaps activates another related
equation, andthusit can beretrieved faster. (There is also some evidencethat the
chunk is associated with a ‘‘fundamental principle’’ of physics, such as New-
ton’s Second Law or Conservation of Energy.) Additional evidence for the
rapidity of equationretrieval by the experts was demonstrated by Larkin (1981)
when she found that experts were four times faster than novicesin accessing and
applying equations during problem solving. This suggests to Larkin (1979) that,
for the experts, physics equations are stored in chunksor related configurations
so that accessing oneprinciple leads to accessing anotherprinciple. This result is
appealing becauseit is reminiscent of the chess results, where chess pieces were
found to be chunked whenthe interpiece pause times during recall of a chess
position were examined.

Another interesting aspect of novice problem solving is not only that they
commit more errors than experts but that, even when they do solve a physics
problem correctly, their approach is quite different. It is this difference that we
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want to understand, as well as why they commit errors. Likewise, it is also

interesting to understand the circumstances under which experts make errors.

Qualitative Differences

Qualitative differences between an expert and novice problem solver are

harder to define operationally, especially in empirical studies. However,it is the

qualitative differences that distinguish expertise most noticeably. One prominent

yet elusive difference between the expert and noviceis that expert physicists, as

noted before, seem to apply a ‘‘qualitative analysis’’ (Larkin, 1977a, Larkin,

1980; McDermott & Larkin, 1978) or ‘‘physical intuition’’ (Simon & Simon,

1978) to the problem, priorto the actual retrieval of physics equations. There are

several possible interpretations of what constitutes qualitative analysis. One in-

terpretation is that qualitative analysis, occurring usually in the beginning phase

of problem solving, is the construction of a physical representation (1.e., a

representation that has someexternal, concrete physical referents). This ability to

represent the problem physically in terms of real-world mechanisms wasfirst

noted over a decade ago, although not in the context of the expert-novicedistinc-

tion. Paige and Simon (1966) observed that when algebra word problemsthat

corresponded to physically unrealizable situations were presented to subjects, a

few of them immediately perceived the ‘‘incongruity’’ in the problem, whereas

others proceeded to evoke equations before realizing that the solution was mean-

ingless (e.g., a negative quantity for the length of a board). The former solvers

apparently imagined the physical referents of the objects mentioned.

In physics problem solving, the construction of a physical representation may

be helpful, or even necessary, for several reasons. First, Simon and Simon

(1978) suggested that physical representation provides a basis for generating the

physics equations. Second, physical representation provides a situation that can

be used to check one’s errors (Larkin, 1977a; Simon & Simon, 1978). Third, the

physical representation provides a concise and globaldescription ofthe problem

and its important features. And finally, we conjecture that the physical repre-

sentation permits direct inferences to be drawn aboutcertain features and their

relations that are not explicit in the problem statement but can be deduced once a

representation is constructed.

However, there is also reason to think that what occurs during qualitative

analysis is more than the construction of a physical representation, because the

often complex physical configuration and intuition deriving from what happens

in a physical situation may not necessarily lead to correct inferences. As the

aforementioned work of Champagne, Klopfer, and Anderson (1980) and

McCloskeyet al. (1980) have indicated, naive problem solvers mustnot always

rely on their physical intuition for constructing a representation. However, inas-

much as it is predominantly the experts who construct an elaborate representa-

tion, we postulate that this representation need not correspond directly to a

physical representation, but may be more abstract.
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A secondqualitative difference between the expert and the novice observed by
Simon and Simon (1978)is in the numberof ‘‘metastatements.’’ Metastatements
are comments made by the subjects about the problem-solving processes. On the
average, their expert made only one metastatement per problem, whereas the
novice made an average of five. They were usually observations of errors made,
comments on the physical meaning of an equation, statements of plans and
intentions, self-evaluations, and so on.

There are several possible explanations for why their expert made fewer
metastatements. First, the expert might be better at recognizing the correctness of
a solution, and thus need notvoice any uncertainties, etc. Second, the expert may
have multiple ways to solve a problem (Simon & Simon, 1978), so that the
solution can easily be doublechecked. Finally, the expert might have a well-
structured representation of the problem to checkresults against.

Another blatant qualitative difference between the solution processes of ex-
perts and noviceslies in their solution paths (sequence and order of equations
generated) (Simon & Simon, 1978). The important distinction between the ex-
pert and the novice is that the expert uses a ‘‘working-forward’’ Strategy,
whereas the novice uses a ‘‘working-backward”’ strategy. The expert’s strategy
is simply to work from the variables given in the problem, successively generat-
ing the equations that can be solved from the given information. The novice, on
the other hand, starts with an equation containing the unknownof the problem.If
it contains a variable that is not among the givens, then the novice selects another
equation to solve for it, and so on. (These processes and models based on them
are explained more fully later.)

This interpretation of the novice’s performance initially seems counterintui-
tive; that is, the novice’s strategy appears to be more goal oriented and sophisti-
cated. One interpretation of this difference is that experts know that they can
achieve the goal simply by direct calculations of the unknowns from the givens.
Another intepretation is that experts do not require complex planning for simple
problems. They probably have existing routines or production systemsthat they
can apply directly to the problems. This simple forward-working strategy of the
expert does change, however, to a very sophisticated means—ends analysis of the
goals and planning when the problems become moredifficult (Larkin, 1977b).
A puzzling question concerning the difference between the two strategies is

how people change from oneto the other. Whyisit that the expert can develop a
more efficient system? One possible answeris that over the years the expert has.
built up andstored several fundamentalsets of subroutines that can solve several
types of basic problems. In this case, solving a problem becomes a matter of
categorizing the problem into one or more problem types and applying the
existing subroutines. As we describelater, this ability to categorize the problem
quickly is faciltitated by a powerful parsing mechanismthattranslates key words
in the problem statement—wordssuch as ‘‘at the moment,’’ ‘‘catch-up,’’ etc.—
into problem types.
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The second question is how can the expert construct a more efficient sub-

routine, if one does not already exist for solving a complex problem? Wethink

that this facility lies in the rich internal representation that the expert has gener-

ated, a representation that permits many appropriate inferences to be drawn so

that the problem can be simplified and reduced.

In sum, the analysis of the qualitative aspect of protocol data raises a number

of important questions: Whyis the initial ‘‘qualitative analysis’’ of the problem

important? What kind of representation of a problem is constructed during this

initial stage of analysis? Whyare the sequences of equations generated by experts

and novices different? What enables an expert to generate a sequence of

equations that is more efficient? The quantitative analysis of the protocol data

simply confirms a numberofintuitions that we already have but cannot explain:

Experts commit fewer errors, they can solve problemsfaster, and they seem to

store related equations in closely knit chunk structures. Moreover, not one of

these quantitative findings provides any answersto the qualitative questions. Nor

do they answer our questions posed earlier, namely, why are novices less suc-

cessful at solving physics problems, and why are their procedures somewhat

different, even when they are successful? Answering these questionsis the focus

of our own experimental program, which is described in the latter part of this

chapter. These questions also drive current research and theory; we now turn to

considering the current state of theory.

Theoretical Models of Physics Problem Solving

There has been a great deal more theoretical than empirical work done on prob-

lem solving in physics. In this section, we review all of the existing models.

They are of two types: psychological models that explicitly attempt to simulate

humanperformanceandartificial-intelligence models that do not (although they

may contain components that are similar to human performance). Both types of

model are written in the form of computer programs.

Psychological Models

The majority of psychological models discussed here have several things in

common. First, the behaviors they simulate are generally think-aloud protocols

gathered while a person solves a physics problem. Second, except for one case,

most of them solve mechanics problems taken from a first course in physics.

Althoughthese problemsare straightforward, they are by no means simple. They

do require some thought and usually take at least 2 minutesto solve. Third, the

aspects of protocols that the models attempt to simulate are generally the se-

quences of equations generated by the solver. Hence, the qualitative aspects of

the protocols (such astheinitial analysis of the problem, the metastatements, and

so on) are usually ignored. Finally, the simulation usually takes the form of a

production system.
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To be more specific, the core of several of these models is a symbol-driven
process. The variables representing the knowns and unknown(s) (the answer) in
the problem are simply comparedto the variables appearing in the various for-
mulas that the model hasin its possession. Two very simple selection criteria can
be applied to produce two different behaviors. On the one hand, a formula can be
selected in which all variables but one are knowns. That one unknownvariable
can then be asserted to be known (tagged as solvable, without any actual alge-
braic or arithmetic computation), and the process can be repeated until the new
knownis the answerto the problem. This is a working-forwardstrategy typical of
experts. On the other hand, a formula can be selected becauseit contains the
desired unknown.If all the other variables in the formula are known, then the
problem is solved. If not, the unknown variable (the models discussed here
generally discard a formula if it has two or more unknowns) becomes a new
desired variable, and the process is repeated. This is the working-backward
strategy characteristic of novices.

To make these two strategies more concrete, consider the following very
simple example: There are two formulas available, one relating the variables a,
b, and e, and the otherrelating d, c, and e:

e = f(a, b) 1.1

d = f(c, e) 1.2

Suppose a problem is proposed such that a, b, and c are given (the knowns) and
d is the desired answer (the unknown). The forward-working method chooses
Equation 1.1 first because a and b are known, allowing the calculation of e.
Inasmuchas cand e are now both known, Equation 1.2 can be selected and used
to find d. By contrast, the working-backward method chooses Equation 1.2 first
because it involves the desired unknownd. Since e is unknown,it becomesthe
intermediately desired unknown, and Equation 1.1 is then chosen. Equation 1.1
can now besolved for e, which is substituted into Equation 1.2 to find d.

Simon and Simon Models. The first models to be discussed use the two
Strategies just described—working forward and backward. In the Simon and
Simon (1978) models, the behaviors of two subjects—one novice and one
expert—workinga series of kinematics problems (describing motion in a straight
line without any consideration for the causesof that motion) are simulated by two
very simple production systems. The available formulas are represented in the
conditions of the productionsaslists of the variables they contain. The problem
itself is presented as a list of the known and desired variables it contains. As
explained earlier, the expert productions match the knownsin the problem with
the independentvariables in the formulas, whereas the novice productions match
the desired unknownagainst the independentvariable and the knowns against the
dependent variables. The productionsarelisted in different orders, reflecting the
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fact that the two subjects sometimes used different formulas where both

strategies might be expected to choose the same one. These two versions of the

model simulate the equation-selection behavior of the subjects quite well.

In this theory, there is no needto postulate any differences in the mechanism

by which equations were produced;it is only necessary to specify a difference in

the order in which they were generated. Noris skill difference attributable to

trivial differences such as the lack of certain formulas. Both the expert and

novice systems contain basically the same set of equations.

Knowledge Development and Means-ends Models. Tworelated models are

described in Larkin, McDermott, Simon, and Simon (1980). Oneis referred to as

the Knowledge Development model, which simulates the expert behavior, and

the other is the Means-Ends model, simulating novice behavior. These models

expand and improve on the Simon and Simon modelsin several ways to reflect

more accurately human information-processing capacities and the behavior of the

subjects. Three separate memories are present: Long-term memory (LM), work-

ing (short-term) memory (WM), and external memory (EM). Long-term memory

consists of the productions themselves, which contain the necessary physics and

procedural knowledge. Working memoryis a small memory limited to about 20

elements, and it is the contents of this memory that the condition sides of the

productions are matched against. External memory represents the pencil and

paper used by a problem solver. The complete problem statement resides in this

EM,and elements can be periodically transferred back and forth between EM

and WMbythe actions of certain productions to simulate the changing focus of

attention of a problem solver and theprocess of recording intermediate results on

paper.

The solution process begins with the problem statementin a coded form that

specifies the objects involved, their attributes and points of contact, instants and

intervals of time, and the desired unknown(s). (The complex problem of natural

language understanding is avoided.) Both models have productions that assign

variables to the necessary elements of the problem so that the appropriate for-

mulas may be selected. As before, the two basic selection strategies—forward

and backward—are employed, but they are more elaborate to simulate behavior

more closely.

The differences between the current and the previous Simon and Simon

models are the most marked in the selection of a formula in the Means—Ends

novice model because novices are observedto do this in several discrete stages,

first selecting a formula, then relatingits variables to items in the problem, and

then using it. A formula is originally selected for consideration if it merely

contains a desired quantity. In cases where more than one formula contains the

desired quantity, selectors tailored to represent observed novice preferences pick

one. This model produces the same backward chain of equations as the earlier

model. It then ‘‘solves’’ them by chaining forward, marking each previously
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unknown variable as known until the originally desired variable becomes
“known.’’ (Neither of these models has any actual algebraic manipulation
ability.)

The Knowledge Development model is more similar to the previous Simon
and Simonexpert model. This is because experts generally do not exhibit the step
by step behavior of stating an equation and then connectingit to variables in the
problem. Thus, as before, the selectors choose a formula on the basis of the
unknownsandassert that the dependentvariable is now knownin onestep. This
situation can be viewed as a ‘‘collapsed’’ or overlearned version of the novice
model. (This becomesclearer shortly when other models are discussed.) The
main new feature of the model is that when more than one formula can be
selected based on the knowns, information from the problem is used to decide
among them. For instance if a (acceleration) and t¢ (time) are knowns, then both
x = gat* and v = at could beselected. If the problem contains an object falling
or rolling from rest, the first is selected. In all other instances, the second is
selected, corresponding to the observed expert preferences. It is in this sense that
the knowledge about the problem is used.

In addition to these differences, the Larkin et al. (1980) models have the
ability to solve more kinds of problems than the previous ones, which were
confined to kinematics. They solve dynamics problems (describing the motion of
a body by considering the forces causing or influencing that motion) using two
basic methods for solving such problems—Forces and Energies—and because
they contain more than one solution method, they have an attention focusing
mechanism. If a model is solving a problem using Energies, it should not try a
Force equation halfway through the solution, nor should it select an equation
whenit is not through writing a previous one. To accomplish this focusing, goal
elements are included in the conditions of many of the productions. At the
beginningof a solution process, a goal is set (placed in WM and EM)so that only
productions related to that goal can execute.

Able Models. The Able models of Larkin (1981) address a different issue
than strictly simulating the problem-solving processes. Instead, they attempt to
simulate the learning processes, (i.e., how a novice might become an expert). In
the model’s ‘‘naive’’ state, it is called the Barely Able model; after substantial
learning, it is called More Able. The learning process is modeled by a
mechanism for adding procedures that is generally used in adaptive production
systems (Waterman, 1975).

Barely Able starts with a list of equations that can be used in the Forces or
Energy methods and operates with a general means-ends Strategy for applying
them that is similar to the previous Means—Ends model. The learning process
itself is quite straightforward: Whenever a production succeeds in applying an
equation to derive a new known value, it creates a new production that has the
previous knownsonthe condition side and an assertion of the new known on the
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action side. For example, if Barely Able solves the equation V = V, + atfor a,

then the new production will check to see if V,, V, and ¢ are knownand,if so,

assert that a is known. Psychologically, this means that the procedurefor finding

the right equation and solving for the unknown becomes automated once the

initial production has been executed. Thus, as Able solves more and more prob-

lems, it looks more and morelike the Knowledge Development model mentioned

earlier—it becomes forward-working because all the backward-working steps

become automated.

There are two limitations to the Able model. The first is that the learning takes

place in one trial. This is psychologically unrealistic, and a more complicated

learning function probably needs to be built in which some aspects of learning

take place faster than others. The second limitation is that the model does not

provide the capability to concatenate series of productions into one (Neves &

Anderson, 1981). Such a mechanism would allow two or more formulas to be

combined into a single step, as experts are often observed to do.

Model PH632. A model labeled PH632, developed by McDermott and Lar-

kin (1978), has a somewhat different focus than those previously described. Its

purpose is to examine and model in a general way the use of problem repre-

sentations by an expert solver but not to exhibit a detailed psychological modelof

the process. It is, again, a production system with external, working, and long-

term memories. The condition sides of the productions can contain goal elements

that keep attention focused on the specific task at hand and that allow the

productions to be organized hierarchically.

A series of four representational stages of a problem is postulated: verbal,

naive, scientific, and mathematical (see also Larkin, 1980). The model assumes

that a problem solver progresses through these stages as a problem is solved.

However, the detailed description of the model (McDermott & Larkin, 1978)

starts with the naive representation. The naive representation is a sketch depict-

ing the components of the problem andtheir relationships and is implemented as

a data structure that encodesthis information. The scientific representation con-

tains abstract physics concepts such as forces, momenta, and energies (which

must generally be inferred by the problem solver) and is usually depicted as a

free-body diagram. The mathematical representation consists of the equations

relating the variables in the problem that must be solved to produce the final

answer.

Once PH632 has a naive representation, it tries one of the two solution

methods mentioned earlier—Forces and Energies. If both are adequate, the one

chosen may simply be the first one tried. Once a particular methodis chosen, its

productions give the model the ability to scan the sketch qualitatively to deter-

mine where the objects and systemsof interest are, whether they are familiar or

unfamiliar, and how they are related. If a system is familiar (e.g., a hanging

block), PH632 can use its knowledge to build a production describing it. If the
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system is unfamiliar, an extended analysis is conducted to produce an encoded

version of a free-body diagram. This difference in representation corresponds to

an expert’s tendency not to draw an explicit free-body diagram of a familiar

system. The model makes qualitative checks as it proceeds to determine whether

its representation seems correct and whether its approach is working. For in-

stance, in a statics problem (one with no motion), it checks to makesureall of the

forces are balanced by at least one opposing force. It can also test whetherall of

the entities generated in the scientific representation (e.g., forces) can be related

to the quantities given in the problem statement so the equations can be gener-
ated.

Once assurance is gained that the modelis on the right track, it can write the

equations for the mathematical representation. Because all of the forces have
already been located and resolved into components in construction of the scien-

tific representation, this step is relatively simple. Unlike the previous models,
PH632 can perform the algebraic and arithmetic operations necessary to produce

the answer.

Atwood. Larkin’s (1980) latest program, Atwood, concentrates on the ver-
bal representation stage, an area generally ignored by the previous models.
Considering the difficulties and complexities encountered by §artificial-
intelligence researchers in building language understanders, Atwood accom-
plishes its task in a surprisingly simple and straightforward way. Because
mechanics problems in general contain a rather small set of basic objects attri-
butes, and relationships, it can simply ignore most of the words in a typical
problem statement and concentrate on the key words.

Basically, Atwood contains a set of schematathattell it what words to attend
to and what situations those words may indicate. Thus, it knows that the word
rod is important and that there should be one and only one length associated with
it. Pulley is another key word, and Atwood’s schematells it that there will be a
rope passed overthis object and that the rope should have objects connected to
each end.

Using some rudimentary knowledge of English syntax, Atwood processesthe
problem statement word by word, creating nodes for each physics object it
recognizes and connecting these nodes into a semantic net with the help of the
knowledgeof their legal relationships contained in the schemata. Whentested on
a set of 22 of the problems collected by Chi, Feltovich, and Glaser (1981),
Atwood wasableto build correctnets for 15 of them, while ignoring roughly two
thirds of the words they contain.

Summary and Discussion of the Psychological Models. The psychological
models so far developed focus their attention on the different approaches that
experts and novices take in terms of the sequence of equations they generate—
forward-working versus backward-working. In these models, it is assumed that
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experts are forward working because their initial backward solution procedure

becomes automated with learning. The question of initial problem representation

is generally avoided in these models, perhaps primarily becauseit is difficult to

obtain empirical information on this process solely through the usual forms of

protocol analysis. As we describe later, other techniques are required for this

purpose.

An alternative theoretical framework is to suggest that novices are data

driven. They treat the unknown and knownvariablesas literal symbols and plug

them into equations in their repertoire. Experts, on the other hand, are schemata

driven in the sense that their representation of a probem accessesa repertoire of

solution methods. Hence, for the expert, solving a problem begins with the

identification of the right solution schema, and then the exact solution procedure

involves instantiation of the relevant pieces of information as specified in the

schema. This is particularly likely because mechanics problems are overlearned

for the experts, especially experts who have spent a great deal of their time

teaching. Anotherinterpretation is to postulate that novices also solve problems

in a schemata-driven way, except that their schemata of problem types are more

incomplete, incoherent, and at a level hierarchically lower than those possessed

by the experts. In our opinion, the development of psychological models should

proceed in this particular direction, building knowledgestructures in the forms of

schemata, in order to capture the problem-solving processes of experts and

novices. Some empirical evidence for the validity of this interpretation is pre-

sented later.

Artificial Intelligence (Al) Models

Artificial intelligence programs, unlike those previously discussed, are not

specifically intended to model observed behavioror to take into accounttheories

of human cognitive architecture. Their general aim is to solve physics problems

successfully by any means possible. However, they do contain elementsthat are

very similar to both human behavior and the previous psychological models.

One of the main issues addressed by the AI models is representation—howto

represent the knowledge that the program needsin order to form a representation

of the problem and solveit. Indeed, the current recognition in psychology of the

importance of representation probably derives from the early recognition ofits

importance in AJ and computer science in general. The question of how physics

knowledgeis represented is a major research problem,as the rudimentarystate of

such representations in the psychological models indicates.

Thefirst phase of a problem solution is reading and understanding(or translat-

ing) the verbal problem statement. Much work has been done on the general

problem of natural language understanding in AI, and twoof the programsto be

described put considerable emphasis on this stage. Both are more detailed and

complex than the simple Atwood(Larkin, 1980) translator because they aim for a

complete translation utilizing all of the information in the problem statement.

Thus, both use esoteric translation processes and have extensive knowledge



1. EXPERTISE IN PROBLEM SOLVING 2/

bases of syntactic and semantic information, including specific physics knowl-

edge in a well-organized form to allow a correct physical interpretation of a

problem. Oncetranslation is complete, some kind of language-free, internal

computer model of the problem exists, which can be compared to a naive repre-

sentation.

Issac. Issac (Novak, 1977) is a program that can read the problem state-

ment. It does this for statics problems only. The key feature is the representation

of objects as idealized physics entities. For instance, in a problem that has a man

standing on a ladder, the properties that are important to the solution are his mass

and location on the ladder. He can therefore be represented as a ‘‘point mass. ’’

But if he is holding up one end of the ladder, only the point on the ladder heis

holding is important, and he becomesa ‘‘pivot.’’ This idealization is accom-

plished in Issac by using Canonical Object Frames (schemata) from the knowl-

edge base. Each one contains the knowledge necessary to abstract the proper

characteristics from the ‘‘real-life’’ object and to use the idealized object prop-

erly in the solution of the problem. This idealization process corresponds only

partially to the formation of scientific representation because no attempt is made

to represent or analyze qualitatively the other essential physics entities in a Statics

problem—the forces. Instead, all possible balance-of-forces equations are writ-

ten at each point of contact between objects, resulting in many more equations

than are actually needed for a solution. This illustrates the problemsthat can arise

if the representation of a problem does not generate an efficient solution.

Newton. Newton (de Kleer, 1977) does not have any language-translation

facility. It solves roller-coaster problems (blocks sliding on curved surfaces), and

they are best represented as a picture of the track, which is provided in a

symbolic form. The key feature of this program is a process of qualitative

analysis referred to as envisionment. Newton envisions, as a human solver

might, what might happento the sliding block based only on the general shape of

the track. Thus, on an upslope, the block might slow down andslide back,or

continue up. Atthe crest of a hill, the block might be traveling so fast thatit flies

off into space, or it might slide down the other side. Using a series of production

rules that codify such qualitative knowledge, Newton builds a tree of possible

paths for the block that guides further processing of the problem. Some simple

problems may be solved using only this qualitative reasoning. If this is not

possible, then schemata are used that contain knowledge and formulas necessary

to analyze each nodeof the tree (section of the track) mathematically. In cases

where the value of a particular variable is needed for the answer, the familiar

means-ends process is used to choose the proper formulas.

Mecho. Another language translator 1s Mecho (Bundy, Byrd, Luger, Mel-

lish, & Palmer, 1979), which solves problems from kinematics and those with

pulleys. It has also been extended (Bundy, 1978; Byrd & Borning, 1980) without
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translation to solve problemsin statics and roller coasters in an attempt to make
the problem-solving part as general as possible by encompassing the work of
others (e.g., de Kleer, 1977; McDermott & Larkin, 1978; Novak, 1977). The
salient feature of this program, and perhaps, the key to its extensibility, is a
two-level knowledge organization. On the object (lower) level is the physics
knowledge, organized as rules, schemata, and the problem itself. The problem
passes through several stages of representation on the way to a solution. For
example, the natural language-translation feature produces a symbolic repre-
sentation specifying the objects in the problem and their properties. Where
necessary, schemata describing important objects (e.g., a pulley) are cued in
from the knowledge base. Thus, this initial internal representation might be
viewed as naive with elements of a scientific representation. The next general
step 1S to produce the mathematical representation, which can then be solved
algebraically. This is not a simple step however. The metalevel (upperlevel) of
the knowledge base contains all of the procedural knowledge necessary for the
entire solution process, organizedas a set of rules and schemata. It includes rules
for interpreting the object-level knowledge for use at each step ofthe process, for
making inferences when needed informationis not explicitly stated, for deciding
on a general solution strategy, for selecting equations (means-—ends strategy
again), and so on. Although a complete scientific representation is not explicitly
formed, the planning and inferencing powers of the metalevel implicitly use the
elements of such a representation to plan the solution before equations are actu-
ally generated. Thus, in statics problem, for instance, the planning process
eliminates the problem of excess numbers of equations experienced by Issac.

The organization of procedural knowledge into explicit modular form is what
is mostinteresting psychologically about Mecho. Quite often, such knowledgeis
buried in the structure of a program and the assumptionsthat wentinto writingit,
making changesdifficult and modeling of procedural learning impossible. This
two-level organization also allows the declarative knowledge to be present in
only one form, which can be interpreted by the metalevel for use at each step of
the solution process. By contrast, both Issac and Newton contain separate repre-
sentations of the same physics knowledge for each step. In a sense, Mecho can
learn (though not on its own) and has learned to solve new problemsin a fairly
realistic way psychologically becauseall that is necessary is to give it other new
pieces of procedural and declarative knowledge.

Summary. Although, as noted, the purpose of these AI programsis not to
model human behavior, it is clear that they contain many psychologically impor-
tant features and ideas. The question of representation of the problem and the
knowledge base is commonto both fields, and the proposed solutions—stagesof
representation, rules, and schemata (often called frames in AI)—are generally
similar. However, because AI is not limited by empirical knowledge of be-

haviors, these programs can venture into areas where psychological model build-
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ers have more difficulty simulating, such as natural language translation, qual-

itative analysis (e.g., envisionment), planning and inferencing processes, and the

actual specification of knowledge organization. The importance of these items to

the success of AI programs emphasizes the need for much more work to deter-

mine empirically how they occur in humans.

EMPIRICAL STUDIES

TOWARD A THEORY OF EXPERTISE

The objective of the series of investigations that we have carried out is to

construct a theory of expertise based on empirical description of expert problem-

solving abilities in complex knowledge domains. In this case, the knowledge

domain is physics, specifically mechanics. There are three basic questions that

guide our efforts. First, how does task performance differ between experts and

novices? This question has been partially answered in the review of empirical

evidence on physics problem solving. To recapitulate, the basic differences

found thus far are: (1) the two groups use different strategies for solving prob-

lems, forward versus backward; (2) they seem to have different chunking of

equations; (3) in an initial phase of problem solving, experts tend to carry out a

qualitative analysis of the problem; and (4) experts are faster at solving problems.

One of our goals is to describe more extensively these differences between

experts and novices.

The second question asks: How are the knowledge bases of skilled andless-

skilled individuals differently structured? It is clear that the skilled individual

possesses more knowledge, but how is that knowledge organized? Again, some

research has already addressed this issue. Simon and Simon (1978) initially

postulated a difference in the knowledge base in terms of the conditions of the

productions. Larkin (1979) has postulated a difference in the way equations are

stored. Experts store them in relation to a high-level principle, but this does not

seem to be the case for novices. In our work and in Larkin’s (1980) model

Atwood, knowledge is postulated to be organized in the forms of schemata.

The third question guiding our work is: How does the organization of the

knowledge base contribute to the performance observed in experts and novices?

The relation betweenthe structure of the knowledge base and solution processes

must be mediated through the quality of the representation of the problem.

A problem representation, as we stated in Chi et al. (1981): “‘is a cognitive

structure corresponding to a problem, constructed by a solver on the basis of his

domain-related knowledge and its organization [p. 121-122].’’ We adopt

Greeno’s (Riley, Greeno, & Heller, 1981) notion of a representation, which

takes: ‘‘the form of a semantic network structure, consisting of elements and

relations between these elements [p. 23].’’ Hence, we hypothesize that at the

initial stage of problem analysis, the problem solver attempts to ‘‘understand”’
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the problem (Greeno, 1977), that is, construct a representational network con-
taining elements specifying theinitial state of the problem, the desired goal, the
legal problem-solving operators, and their relational structures. From such a
structure, new inferences can be deduced. Hence, the quality, completeness, and
coherence of an internal representation must necessarily determine the extent and
accuracy of derived inferences, which in turn may determinethe ease of arriving
at a solution and its accuracy. Therefore, the quality of a problem representation
is determined not only by the knowledge available to the solver, but by the
particular way the knowledge is organized. One way to capture empirically the
difference between the representation of the expert and that of the novice has
been the amount of qualitative analysis occurring in the beginning of the
problem-solving processes.

Because of its apparent overriding influence on problem solution (Hayes &
Simon, 1976; Newell & Simon, 1972), we have focused our studies mainly on
the representation of a problem. We employ methods of tapping knowledge in
ways other than the analyses of problem-solving protocols because, as we see
shortly, the analyses of protocols often provide limited information. However,
the first study we describe examinesthe protocols of problem solving to see what
kind of information they do provide, as well as the ways they provide a limited
glimpse into the knowledge structure. The next set of studies looks at the
categorization behavior of problem solvers, and the third set looks at the knowl-
edge available to individuals of different skill levels. Finally, the fourth set of
studies examines the features in a problem statement that might elicit the
categorization processes—orto put it another way: Whatare considered to be the
relevant features of a problem by experts and novices?

Study 1: Protocols of Problem Solving

In this study, we attempted to characterize and contrast—both quantitatively and
qualitatively—the problem-solving processes of experts and novices, beginning
with the reading of the problem throughto the checking ofthe solution. To do so,
the problem-solving protocols of two experts and two novices solving five
mechanics problems were examined. This study (initiated and carried out by Joan
Fogarty) had two specific goals: (1) we wanted to describe some quantitative
parameters of expert and novice problem-solving processes and compare these
data with those existing in the literature; (2) we wanted to contrast some qualita-
tive differences between experts and novices, particularly focusing on the qual-
itative aspects of problem analyses.

The five mechanics problems were taken from Chapter 5 of Halliday and
Resnick (1974). The expert subjects were two professors of physics who had
considerable experience teaching introductory physics. The novices were two
freshmen physics majors (A students) who had just completed a term of under-
graduate physics using Halliday and Resnick (1974) as the textbook, in which

mechanics problems ofthe type used in this study were taught. Each subject was
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presented with written problems, one at a time, and wasinstructed to ‘‘think

aloud’’ while solving the problems.

Quantitative Results and Discussion

A variety of quantitative measures can be obtained from protocol data, and

these are elaborated in the subsections that follow.

Errors. On the average, the experts made one out of five possible errors,

whereas the novices madethree out of five (Table 1.1). As anticipated, experts

made fewererrors than novices. Thefact that one of the experts made twoerrors

suggests that these problemsare nontrivial, yet they are problems that a compe-

tent novice can solve. Novice K. W., for example, solved 4.5 out of the 5

problemscorrectly.

Solution Times. Solution times were determinedbytiming the length of the

protocols. Looking only at the correct solution times for the entire problem (see

Table 1.1), the mean solution time for the experts averaged about 8.96 minutes,

whereas the average correct solution time for the novices was 4.16 minutes. The

magnitude of our solution time for problem-solving protocols is much longer

than that obtained by Simon and Simon (1978). Their problems were selected

from a high school physics text and were limited to kinematics; such problems

can be solved mainly through algebraic manipulation. Our problems were more

complex; they were chosen from a college physics text and involved dynamics,

which requires that forces be explicitly taken into account. Applying the Force

Law requires making some physical inferences before equations can be brought

into play. |
The novices in this study actually solved problems faster than the experts.

However, this seems to be an artifact of the great number of errors made by

Novice C. H. That is, Novice C. H.’s only correct solution was problem 1,

which in fact took him longerto solve than the rest of the subjects. But, because

problem 1 happens to be a short problem and because it was the only problem he

solved correctly, his average latency was reduced because it was determined by

the speed of solving that particular problem. Novice K. W.’s solution times, on

the other hand, are actually comparable (averaging 7.01 minutes) to the experts’

(averaging 8.96 minutes).

The only obvious outlier in solution time occurs in problem 2, where Expert

R. E. took significantly longer than Novice K. W. Examining the protocols in

detail, we see that Expert R. E. in this case sought and calculated a value

unnecessarily. When he discovered that the problem was really much simpler

than he thought, the actual protocol for the short solution took only about 1.33

minutes.

Hence, barring unusual circumstances, competent novices not only can solve

these problems, but they can do so in approximately the same amountof time as
experts. However, if the task had emphasized speed, the experts probably could
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TABLE1.1

Solution Time (Sec), Number of Equations Generated, and Number of Diagrams Drawn

for Each Subject and Problem

 

Problems Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Mean®

(No. of Subparts) (1) (2) (2) (3) (2)

Expert R. E. Solution Time 225 625 555 590 585 516

No. of Equations 6 8 12 9 14 9.8

No. of Diagrams 3 4 4 l 2 2.8

Expert M. V. Solution Time (165) (325)A,B 500 590 590 560

No. of Equations 3 5 7 12 15 8.4

No. of Diagrams 1 I l 2 3 1.6

Novice C. H. Solution Time 275 (585)A,B (925)A (835)A,B,C (325)A,B? 275

No. of Equations 7 10 12 19 8 11.2

No. of Diagrams 3 3 5 3 3 3.4

Novice K. W. Solution Time 200 105 (290)B 655 420 345

No. of Equations 7 10 12 19 7 11.0

No. of Diagrams 2 0 2 2 1 1.4

 

Note: Parentheses around the solution time indicate an incorrect solution. The letter(s) that follow indicate the incorrect part(s)

of the problem.

“The mean solution time was calculated only for problems solvedcorrectly.

’ The subject attempted only Part A of this problem.



1. EXPERTISE IN PROBLEM SOLVING 33

have solved the problems much faster than the novices. Wesuggest, however,

that protocol data are not a particularly viable way to assess the speed of problem

solving.

Numberof Quantitative Relations. Another quantitative parameter that may

shed somelight on skill differences between experts and novicesis the numberof

quantitative relations generated by the subjects as they solve problems. Table 1.1

also shows the total number of quantitative relations generated by each subject

for each problem. A quantitative relation is defined as any mathematical relation

among physicalentities, and it generally takes the form of an equation. Excluded

are algebraic manipulations of already generated equations and instantiations of

equations (i.e., substituting values for the variables). In general, there appear to

be no systematic differences in the number of quantitative equations generated as

a function of skill. There was greater variability in the number of equations

generated by a given subject for the different problems than between subjects on

the same problem.

‘Chunks’? of Equations. Asstated earlier, Larkin (1979) has hypothesized

that experts store physics equations in tightly connected ‘‘chunks,’’ whereas

novices store equations individually. To test the *‘chunking’’ hypothesis, Larkin

(1979) measured the times during the problem-solving process when quantitative

relations were generated. Her results showed that the expert generated a great

many pairs of equations with short pauses between the equations, whereas the

novice generated fewer equations with shorter pauses.

Using the same analysis, we also examined the distribution of generated

equations over time. For each subject, the time interval between the generation of

each pair of quantitative relations was calculated for each problem. Our data do

not discriminate between the generation pattern of experts and novices. If any-

thing, the results indicated that the opposite was true. That is, the novices seemed

to have generated a greater numberof relations in close succession.

There are substantial individual differences, however. Novice C. H. showed

the strongest degree of chunking or generated the largest number of quantitative

relations in rapid ‘‘bursts.’’ How do we account for the discrepancy between our

results and Larkin’s? Oneinterpretation is to hypothesize that a burst of equation

generation might be anartifact of various problem-solving strategies that subjects

may adopt. Our novice subjects, for example, reported that when they get stuck

on a problem, they write down as many related equations as they can think of.

They then look at the equations they have generated to get some hints about how

to proceed. This would produce clusters of equations.

Anotherstrategy, reflecting the style of solution processes of individual sub-

jects, relates to the way equations are generated, which oftenis all at the same

time. Novice C. H., for example, would spend a considerable amount of time

generating equations. This pattern of solution processes would necessarily inflate
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the number of equations generated within a short period of time. Perhaps the
generation of equations in bursts may also be the outcome of another artifact,
discussed in the next section: the drawing of free-body diagrams.

Even though wedid notreplicate Larkin’s (1979) finding that experts tend to
generate equations in clusters, this does not deny the possibility that the storage
of equations may indeed be different in the knowledge base of the experts and
novices. Our conclusionis that protocol analysis of equation generation will not
address this particular issue directly. In order to address the issue of how
equationsare stored in the knowledge bases of experts and novices, one needs to
design a study where experts and novicesare asked to generate or freely associate
equations outside the context of a problem-solving situation.

Number of Diagrams Generated. Another potentially interesting quantita-
tive measure is the numberof free-body diagrams drawn by the subjects. The
construction of free-body diagrams appears to form an important componentof
problem solving. Free-body diagrams are partial figures that depict partial
abstractions of the total physical situation. They may be drawnforall or part of
the physical situation andutilize directional arrows denoting the forces acting ina
physical system.

The number of diagrams, including free-body diagrams, drawn by each sub-
ject for each problem is also shown in Table 1.1. Again, there appear to be no
systematic skill differences, although there seem to be some individual dif-
ferences, with Expert R. E. and Novice C. H. drawing the greatest number of
free-body diagrams. These twoindividuals also generated the greatest numberof
equations and producedthe greatest amount of clustering.

Drawing free-body diagrams mayinflate the numberof equations generated in
clusters. Both novices as well as the experts, though to a lesser extent, utilized
the strategy of constructing free-body diagrams, whichis taught and emphasized
in introductory physics courses. By using the free-body diagrams, equations
relating the forces can be generated. Hence, the more frequently subjects draw
free-body diagrams, the morelikely they are to have clusters of equation genera-
tion. Therefore, bursts of equation generation may be an artifact of a solver’s
need to generate many diagrams.

The purpose of generating many free-body diagramsis not clear to us. We
speculate that when subjects find a problem difficult, they tend to draw more
diagrams. Each drawing may be seen as an attempt to create a meaningful
representation of the problem. For example, for problems that took the longest to
solve, a large numberof diagrams tended to be generated (such as problem 2 for
Expert R. E.). Furthermore, problem 2 wasthe one that Expert R. E. had some
difficulty with, having derived a value unnecessarily. Likewise, for Novice C.
H., problem 3 took the longest time to solve (which he did incorrectly); he also
generated the greatest number of diagrams for that problem. These speculations
need to be confirmed, but it seems that drawing free-body diagrams may be a
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way of helping the subject create a meaningful representation. It may also indi-

cate that the subject is having difficulty going beyondthe visual stage of problem

representation.

In Study 5 (this chapter), when four experts and four novices were asked to

solve a problem, the novices generated four times as many (4.7) diagramsas the

experts (1.0 diagrams). The novices had more difficulty solving the problem

correctly (three out of four errors) than did the experts (one out of four errors).

This provides some additional support for the notion that frequent generation of

diagramsis used as an external aid to create a meaningful problem representa-

tion, especially when subjects are having difficulties.

Summary of Quantitative Measures. Theresults of this study indicate that

few of the quantitative measures we used meaningfully differentiated the experts

from the novices. The quantitative measures obtained from protocols seem to be

tenuous measures that are confounded with individual differences and the par-

ticular strategies adopted by the problem solver. We now turn to qualitative

analyses of the protocols to locate differences that can be attributed to skill.

Qualitative Results and Discussion

For reasons already indicated and because a great deal of attention has been

devoted to the equation-generation and manipulation stages of problem solving,

we now focus on the initial qualitative analysis stage of problem solving. We

assume that during this stage of processing a representation of the problem is

constructed, that this occurs primarily during reading of the problem, andthatit

is completed in the first 30-40 seconds after the problem has been read. We

estimate that this stage takes a very short time because it appears to be analogous

to the stage of ‘‘initial analytical assessment’’ that Simon and Barenfield (1969)

talked about for chess problem solving and the stage of ‘‘preconception’’ that

expert musical sight readers engage in prior to the actual playing of a musical

piece (Wolf, 1976). The short duration of these initial processes is an important

consideration in determining our subs2quent experimental procedure.

Figures 1.2 and 1.3 show two samples of protocols, one from Expert R.E.

and the other from Novice C. H., both on the first part of problem 5. The

protocols have been segmented into four types of episodes: qualitative analysis,

drawing diagrams (which may beeither the diagramsdepicting the main compo-

nents of the problem or the abstracted free-body diagrams), generating equations,

and manipulating equations.

Before proceeding with the discussion of the protocol data, it may be neces-

sary to clarify a few terms and operational definitions. Any statements in the

protocols that do not relate to drawing diagrams or generating and manipulating

equations were considered to be ‘‘qualitative analyses’’ of the problem. Fur-

thermore, these statements can be a variety of types such as references to plan-

ning, checking of the solution, and so on. We focused specifically on those



ExPerT R, E,

(PROBLEM #5)

TAXONOMY OF

EPISODES PHYSICS PROTOCOLS
eee

*QUALITATIVE ANALY- Constant velocity——> Frictional "There must be a frictional force
force retarding the motion because

SIS (INFERENCES) Otherwise the block would accel-
Frictional force opposes force erate down the plane under the

due to weight of block action of its own weight...the
angle ¢ must be related to the

*Friction—-Coefficient of fric- coefficient of friction somehow."
tion ~ angle ¢

DRAWING FREE Bopy

DIAGRAM

“You would have a normal force
perpendicular to the plane, the
weight down, and the force of
kinetic friction would lie along
the plane...the angle between
the weight vector and the normal
to the plane is also angle ¢."

 

GENERATE EQUATIONS mgsing - fi, = 0 “For motion down the plane would
N - mgcoso = 0 be mg times sing minus f which
f_ = upN = uxmgcos¢ is retarding things and that's

equal to zero. For motion per-
pendicular to the plane, you
would have the normal force act-
ing upward, but mgcos¢ acting
downward or into the plane and
those two things sum to zero.
The only relation you need in
addition is that the force of
kinetic friction is » times the
normal and is therefore wy times
mgcos¢."

ALBEGRAIC MANIPU- mgsing - umgcoss = 0 "So substituting that (f = umgcos¢)
LATION uk = tang into the first equation, which

I've circled, you would then have
mgsing, f which would be yu times
mgcos>, and all of that would be
equal to zero, and so what one
finds then is that u, the coef-
ficient of friction must be tand."

REREAD QUESTION A

wn .
"So let's draw the plane again...

Draw FREE Bopy the difference is that the fric-
DIAGRAM yA tional force...acts in the other

we (| direction."

QUALITATIVE "We know the initial speed is
Vo...I'm sort of fishing hereANALYSIS
for a minute, the final speed...
is obviously zero."

 

CONTINUED

36
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Expert R. E,

(PROBLEM #5) CONTINUED)

TAXONOMY OF

EPISODES PHYSICS PROTOCOLS

"We have an expression which

relates several things of

interest to us...al] at the

same time."

GENERATE Ve - Vio = eax

QUALITATIVE "We can easily solve for x
providing we know the other

ANALYSIS things in the equation....We
don't know a but that's not

hard to find."

GENERATE mgsing + upmgcosd = ma "This time both mgsing and
the frictional force...those

two forces act in the same

 

 

direction."

MANIPULATE figsing + upmgcose = fa "The masses cancel everywhere

u = tang = Sine ...we also know up...up 7S the
k cos¢ tangent of ¢... wnich 1s the sin

Sing of ¢ over the cos of >...the

a = gsing x cosggees? cos¢'s cancel and you're left
with the acceleration down the

= 2gsind plane of...twice gsino.

QUALITATIVE block slides uniformly "So effectively you have...an

—>>f, = F acceleration...of twice the
k : .

ANALYSIS _ ngsing weight... I n the first part

( INFERENCE) ' . of the problem...friction...
(CHECK W , now in opposite direc- must be exactly equal to gsing

ECK ANSWER) tions = > and if you have it operating

Total Force = F, + fy = 2mgsing in the opposite direction..."

a= Ftotal - 2gsing
m

MANIPULATE 0 - Vor = 2(-2gsing)x "Now let's go ahead and solve
x= V 214 sin for...V Final squared was 0.

0 /4gs Ing V initial squared was what it
is...so what you end up with

for, for x is Vo squared over

4gsing."

FIG. 1.2. Expert R. E.’s protocol on problem 5, segmented into episodes.

qualitative analysis statements that seemed to generate knowledge not explicitly

stated in the problem (i.e., inferences). (These qualitative analysis statements are

not to be confused with qualitative analysis of the protocol data.)

There are several general remarks that can be made about the initial stage of

the protocols. First, contrary to the picture painted earlier, the protocol data

indicate that our novices also spent time analyzing the problem qualitatively.
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Novice C, H,

(PRoBLEM #5)

TAXONOMY OF

 

EPISODES PHYSICS PROTOCOLS

Draw DIAGRAM “Let me draw a picture. An in-
clined plane with slop angle ¢

N ...and it's (the block) sliding
down the plane with a velocity
...constant velocity."

QUALITATIVE ANALY- Constant velocity "Since it's (the block) Sliding
__ _ down the plane with constant

SIS (INFERENCES)  eicteon velocity, it means the sum of 

the forces is zilch so there's
a, there's got to be some kind

Y of friction on the thing..."

EN

Draw FREE Bopy {_— "I'll draw a free body diagram.
There's the weight mg, there'sDIAGRAM QO the frictional force, then
there's the normal force per-

ng pendicular to the plane.

GENERATE EQUATIONS Force parallel to olane = “Ok. So I'm going to drawmgsing trusty axes and resolve weight
Fy = mgcos¢ into a, into....You've got 4
Fo= uF there so this mgcos¢, and this

iS mgsing...normal force is
going to be equal to mgcos¢
and friction equals, umm...u
times the normal force."

MANIPULATE f = umgcoss "So that frictional force is
equal to umgcoso."

2 2GENERATE V> = Vo° + 2a(x-xo) "The block is projected up the
plane with an initial velocity.
So I'm going to use...equation
for motion V2 = Vo2 + 2 times
acceleration times change in
distance."

eee

CONTINUED

During this stage, some inferences about the problem are drawn. A simple count
of the number of propositions that were made, which can be judged to be
inferences, shows that experts average 12.75 propositions and novices average
10.58, which is not reliably different. Consistent with our earlier assertion, the
initial episode of qualitative analysis is usually short in duration, taking only one
paragraph in the protocols.
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Novice C. H,

(PROBLEM #5) CONTINUED

TAXONOMY OF

EPISODES PuyYsiIcs PROTOCOLS

ee

MANIPULATE x, = 0 V = 0 "Initial position I'm going to

9 call 0...final velocity equals

Vor _ 0 so I get Vo(sic) over 2a is

2as going to equal the x."

*QUALITATIVE
"a is going to be acceleration

due to the frictional force.”

ANALYSIS (WRONG)

( INFERENCE)

"Now we've got a different
Draw Free BoDy

drawing. We've got mg and the

 

DIAGRAM velocity is up the plane so
frictional force...is down the

plane."

GENERATE cFY = ma "...sum of the forces in my
x direction is going to equal
mass times acceleration."

MANIPULATE mgsing + f = ma "So, you've got mgsing + fric-
mgsing + umgcos = ma tional force equals the mass
a = g(sing + ucosd) times acceleration, so fric-

2 tional force is equal to...

x = STREPee) yu times the normal force...
g v my m's go out so the accelera-

tion equals g times sing +
ucosd¢. So I substitute back

in the other equation."
(Leaves out factor of 2)

FIG. 1.3. Novice C. H.’s protocol on problem 5, segmented into episodes.

The second observation is that, unlike what is commonly believed, the qual-

itative analysis episode often occurs throughout the protocols, not just at the

beginning. For example, the inference episode occurs, on the average, 24 times

throughout each problem for the experts and 1} times for the novices, although

this difference is again not significant. Because of this phenomenon, it is difficult

to ascertain exactly when the construction of a representation 1s completed.

These protocols lead us to think that a gross representation is initially con-

structed; refinement, if necessary, can occurlater in the protocol.

Thethird observation is that errors in solution have two sources. One source is

trivial computation error resulting either from faulty manipulationor instantiation

of equations. An example ofa trivial computation error occurs in the last episode

of Fig. 1.3. In manipulating the equations, the novice madeanerror by a factor
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of 2. The other source of solution errors can betracedto either the generation of
wrong inferences or the failure to generate the right inference. The inference
episode with an asterisk besideit in Fig. 1.3 indicates an example of a wrong
inference. Weattribute the source of solution errors in generalto these incorrect
inferences, even though the incorrect inferencein this particular case wasnot the
cause for the problem’s incorrectsolution. This is because the novice was able to
generate all the correct equations. The mistake in this problem arises from the
solver’s failure to complete the solution by substituting for w. Incorrect in-
ferences are relatively easy to detect in the protocols. What is more difficult to
capture is the solver’s failure to generate a necessary inference. This can be
captured only by comparing and contrasting the expert’s and the novice’s pro-
tocols in trying to understand a novice’s error. Our interpretation is that Novice
C. H. did not complete the solution(see the last episode of Fig. 1.3) because he
failed to generate the inference that the coefficient of friction fA iS Somehow
related to the angle ¢, as did the expert (see the first episode of Fig. 1.2).
Withoutsetting an explicit goal to relate the two (uw and angle ), Novice C. H.
could not solve the problem, even though he hadall the necessary equations.

Hence, in general, we would conclude from examination of the inference
generating episodes of the protocols that both experts and novices are just as
likely to spend time generatingtacit knowledge about a problem and that both
groups are just as likely to do so iteratively across the entire problem-solving
protocols. However,it is the quality of the inferences that matters. Novices are
morelikely either to generate the wrong inference orfail to generate the neces-
sary inferences. A large number of the novices’ errors can be traced to this
source.

Studies on the Categorization of Problems

tive analyses, or that they do not generate inferences at all, does not explain the
source of incomplete or erroneous inference making. To uncoverthis limitation
of the novices, we have to understand the knowledge structure of both experts
and novices and how that knowledge enhances or limits their problem-solving
abilities. Analyzing the protocols of problem solving does not appear to provide
enough information of this kind. Our research described here, therefore, is con-
cerned with waysof exploring the knowledge ofa problem solver through means
other than analyzing solution protocols.

Wehypothesize that a problem representation is constructed in the context of
the knowledge available for a particular type of problem. Further, we makethe
assumption that the knowledge useful for a particular problem is indexed when a
given physics problem is categorized as a specific type. Therefore, expert-novice
differences may berelated to poorly formed, incomplete, or nonexistent problem
categories. Given this hypothesis, we investigated knowledge contained in prob-
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lem categories. Our first order of business, then, was to determine whether our

initial hypothesis is true. That is, are there reliable categories to which problems

are typed, and, if so, are these categories different for novices and experts?

Evidencealready exists to suggest that solvers represent problems by category

and that these categories might direct problem solving. For instance, Hinsely,

Hayes, and Simon’s (1978) study found that college students can categorize

algebra word problems into types and that this categorization occurs very

quickly, sometimes even after reading just the first phrase of the problem state-

ment. This ability suggests that ‘‘problem schemata’’ exist and can be viewed as

interrelated sets of knowledge that unify superficially disparate problems by

some underlying features. We refer to the knowledge associated with a category

as a schema.Thechessfindings of Chase and Simon (1973a, 1973b) can also be

interpreted as showing that choosing a chess moveresults from a direct associa-

tion between move sequencesand a chunkedrepresentation of highly stereotyped

(or overlearned) chess pieces or patterns. There is also evidence in studies of

medical diagnosis that expert diagnosticians represent particular cases of disease

by generalcategories and that these categories facilitate the formation of hypoth-

eses during diagnostic problem solving (Pople, 1977; Wortman, 1972).

Study 2: Sorting Problems

To determine the kinds of categories subjects of different experience impose

on problems, we asked eight advanced PhDstudents from the physics department

(experts) and eight undergraduates who had a semesterof mechanics (novices) to

categorize 24 problemsselected from Chapters 5-12 of Halliday and Resnick’s

(1974) Fundamentals of Physics. The subjects’ task was simply to sort the

problems on the basis of similarities in how they would solve them.

Analysis of Quantitative Results. Again, no gross quantitative differences

between the twoskill groups were produced. For example, there were no signifi-

cant differences in the number of categories produced by each skill group (both

averaged about 8.5 categories), and the four largest categories produced by each

subject captured the majority (about 77%) of the problems. There was also little

difference in the amountoftimeit took experts and novicesto sort the problems,

although experts tended to take slightly longer, about 40 seconds per problem

(discarding one outlier), whereas novices took about 37 seconds per problem.

The absence of gross quantitative differences in measures such as numberof

categories, number of largest categories, and time to categorize, confirms the

notion that there are no fundamental capacity differences between experts and

novices. That is, the novices are not inherently slower, for example, nor do they

have limited abilities to discriminate the problemsinto eight categories. The lack

of a general quantitative difference points to the necessity of examining the

qualitative differences.
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Analysis of Qualitative Results. If we examine the nature of the categories
into which experts and novices sorted the problems, they are qualitatively dis-
similar. This difference can be seen most dramatically by observingthe twopairs
of problemsthat the majority of the subjects of each skill groupsorted together.
Figure 1.4 shows twopairs of problemsthat eight out of eight novices grouped
together as similar. These problems have noticeably similar ‘‘surface struc-
tures.’’ By surface structures, we meaneither: (1) the objects referred to in the
problem (e.g., a spring or an inclined plane); (2) the key words that have
meaning in physics(e.g., center of mass orfriction); or (3) the physical config-
uration that involves the interaction of several object components (e.g., a block
on an inclined plane).

The suggestion that these surface structures are the bases of the novices’
categorization can be further confirmed by examining subjects’ verbal justifica-
tions for the categories, whichare presentedin the right-hand columnofFig. 1.4.
The novices’ explanations indicate that they grouped the top two problemsto-
gether because they both involved ‘‘rotational things’’ and the bottom two to-
gether because they involved ‘‘blocks on an inclined plane.’”’

For experts, surface structures do not seem to be thebasis for categorization.
There is neither a similarity in the key words usedin the problem statements nor
in the visual appearance of the diagramsfor the problems (Fig. 1.5). No similar-
ity is apparent in the equations used for the problems grouped together by the
majority of the experts. The similarity underlying the experts’ categorization can
only be detected by a physicist. It appears that the experts classify according to
the major physics principles (or fundamental laws) governing the solution of each
problem (sometimesreferred to as the solution method). The top two problemsin
Fig. 1.5 can be solved bythe application of the Conservation of Energy Law, and
the bottom twoare better solved by the application of Newton’s Second Law (F
= MA). The verbal justifications of the subjects confirm this analysis. We might
refer to these underlying principles as the ‘‘deep structure’’ of the problem,
which is the basis by which experts categorize problems.

In sum, the results of this study uncover several facets of problem solving that
were not observable from protocol analyses. First, through a sorting task, it
became apparent that categories of problems exist. These categories probably
correspond to problem schemata, that is, unified knowledge that can be used to

initially alloted to the qualitative analysis episodes of problem solving. Third, the
results also imply that within 45 seconds the experts, at least, can already per-
ceive the solution method applicable to the problem. The possibility that such
categorization processes may occur during problem solving is never evident from
the problem-solving protocols because there was never any cause for solvers to
mention either the principle underlying a problem orthe surface structure of the
problem. Only throughanalternative task, such as sorting, are we ableto detect
the presence of categories that may be related to solution methods.



Diagrams Depicted from Problems Categorized Novices’ Explanations for Their Similarity

by Novices within the Same Groups Groupings

Problem 10 (11) Novice 2: “Angular velocity, momentum,

circular things’’

Novice 3: “Rotational kinematics, angular

speeds, angular velocities”

Novice 6: “Problems that have something

rotating; angular speed”

Problem 11 (39)

G
\eb. KY Novice 1: “These deal with blocks on an

incline plane”
Problem 7 (23)

oe

Novice 5: “Inclined plane problems,

coefficient of friction”

Novice 6: “Blocks on inclined planes

with angles’

Problem 7 (35) 
FIG. 1.4. Examples from novices’ problem categories. Problem numbersrepre-

sent chapter and problem number from Halliday and Resnick (1974).
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     Diagrams Depicted from Problems Catergorized Experts’ Explanations for Their Similarity
by Experts within the Same Groups Groupings   

  

   

  Problem 6 (21) Expert 2: “Conservation of Energy”

  

  

Expert 3: ‘‘Work-Energy Theorem.= 6mK = 200 nt/m -——_—_—___—______4 They are all straight-forward
problems.”

   
   
  

   Expert 4: ‘'These can be done from energy
considerations. Either you should
know the Principle of Conservation
of Energy, or work is lost
somewhere.”’

      
   

  
  

Problem 7 (35)

    Problem 5 (39) Expert 2: ‘These can be solved by Newton's
Second Law”

        “F = ma; Newton's Second Law”

  

T Expert 4: ‘‘Largely use F = ma: Newton's
Second Law”

    

 

Problem 12 (23)

FIG. 1.5. Examples from experts’ problem categories. Problem numbers repre-
sent chapter and problem number from Halliday and Resnick (1974).
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Study 3: Sorting Specially Designed Problems

If the interpretation of the previous sorting results is accurate, then one should

be able to replicate the findings and, further, to predict how a given subject at a

specific skill level might categorize a given problem.In this study, we specially

designed a set of 20 problems to test the hypothesis that novices are more

dependent on surface features, whereas experts focus more on the underlying

principles. Table 1.2 shows the problem numbers and the dimensions on which

they were varied. The left column indicates the major objects that were used in

the problem;the three right headings are the solution methods (or the basic laws)

that can be used to solve them. Figure 1.6 shows an example of a pair of

problems(corresponding to problems 11 and 18 in Table 1.2), which contain the

same surface structure but different deep structures. In fact, the problems are

identical except for the question asked. From the results of Study 2, we predicted

that the novices would group together problems with similar surface features,

such as the two problems shownin Fig. 1.6, whereas experts would not. Instead,

experts would group together problemsthat have similar deep structures, regard-

less of the surface features. Intermediate subjects might exhibit some characteris-

tics of each skill group.

TABLE 1.2

Problem Categories

Principles

Momentum

Surface Structure Forces Energy (Linear or Angular)

Pulley with hanging blocks 20°

11 19°

14° 370

Spring 7

18 16 1

17¢

9 6°

Inclined plane 14¢ 308

5

Rotational 15 2

13

Single hanging block 12

Block on block 8

Collisions (bullet-‘‘block’’ or block-block) 4
6°

10°
 

“Problems with more than onesalient surface feature. Listed multiply by feature.

’ Problems that could be solved using either of two principles, energy or force.

“ Two-step problems, momentum plusenergy.
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No. 11 (Force Problem)

A man of mass M, lowers himself to the ground

from a height X by holding onto a rope passed

over a massless frictionless pulley and attached to

another block of mass Mo. The mass of the man

is greater than the mass of the block. Whatis

the tension on the rope?

No. 18 (Energy Problem)

A man of mass M, lowers himself to the ground

from a height X by holding onto a rope passed

over a massless frictionless pulley and attached to

another block of mass Mo. The mass of the man

is greater than the mass of the block. With what

speed does the man hit the ground?

 
FIG. 1.6. Sample problems.

The results confirmed our previous interpretations. One novice, who had

completed a course in mechanics, groupedstrictly on the surface structures of the

problems. Table 1.3 shows his problem categories and the explanationshe pro-

vided for his groups. First of all, if one scans only the verbal justification column

(far right), it is evident that, except for the fourth group where he mentioned a

physics principle (‘‘Conservation of Energy’’), the remaining categories were all

described by either physics key words (e.g., “‘velocity problems’’) or the actual
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TABLE1.3

Problem Categories and Explanations for Novice H. P.

Group 1: 2, 15 ‘‘Rotation”’

Group 2: 11, 12, 16,7 19 ‘*Always a block of some mass hanging down’”’

Group 3: 4,10 ‘‘Velocity problems’’ (collisions)

Group 4: 13,° 17 ‘‘Conservation of Energy’’

Group 5: 6,7, 9, 18 ‘*Spring”’

Group 6: 3,5, 14 ‘Inclined plane’’

Groups 7, 8, 9 were singletons

“Problem discrepant with our prior analysis of surface structure as indicated in

Table 1.2.

’ Problem discrepant with our prior analysis of solution principles as indicated in

Table 1.2.

physical components contained in the problem (‘‘spring’’). And indeed, he col-
lapsed problemsacross the physics laws. For example, in Group 5 (Table 1.3),
problem 18 is obviously solvable by the Force Law, whereas problem 7 is
solvable by the Energy Law (see Table 1.2 again). The only category for which
he madeanyreference to a physics principle is Group 4, which he described as a
‘‘Conservation of Energy’’ category. However, this is to be distinguished from
the expert’s labeling of ‘‘Conservation of Energy’’ because this novice only
labels those problems as ‘‘Conservation of Energy’’ when the term ‘‘Energy’’ is
actually mentioned in the problem statements themselves, as was the case here.

In contrast, the expert’s classifications are all explained by the underlying
principles, such as Conservation of Angular Momentum, Conservation of
Energy, etc. (See Table 1.4). Furthermore, as predicted, the expert collapsed
problemsacrossthe surface similarities. For example, in Group 3, problem 1 is
basically a spring problem, and problem is a collision problem.

Table 1.5 shows the groupings of an advanced novice (an intermediate). His
categorizations of the problemsare characterized by the underlying physicsprin-
ciple in an interesting way. These principles are qualified and constrained by the

TABLE 1.4
Problem Categories and Explanations for Expert V.V.

 

Group 1: 2, 13 ‘Conservation of Angular Momentum’’
Group 2: 18 ‘‘Newton’s Third Law’’
Group 3: 1,4 ‘“Conservation of Linear Momentum’”’

Group 4: 19, 5, 20, 16,7 ‘‘Conservation of Energy’’
Group 5: 12,15, 9,7 11, 8, 3, 14 ‘‘Application of equations of motion’’ (F = MA)
Group 6: 6, 10, 17 ‘“Two-step problems: Conservation of Linear

Momentumplus an energy calculation of some

sort”’
en

“Problem discrepant with our prior analysis of solution principles as indicated in Table 1.2
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TABLE 1.5

Problem Categories and Explanations for Advanced Novice M. H.

Group |: 14, 20 **Pulley”’

Group 2: 1,4, 6, 1/0, 124 ‘Conservation of Momentum”’ (collision)

Group 3: 9, 13,% 17, 18° ‘Conservation of Energy’’ (springs)
Group 4: 19, 11 ‘Force problems that involve a massless pulley’’ (pulley)
Group 5: 2, 15° ‘*Conservation of Angular Momentum’’ (rotation)
Group 6: 7,% 16% ‘‘Force problemsthat involve springs’’ (spring)
Group7: 8, 5,% 3 ‘Force problems’’ (inclined plane)

 

Note: Italic numbers mean that these problemsshare a similar surface feature, which is indicated
in the parentheses, if the feature is not explicitly stated by the subject.

“Problems discrepant with our prior analysis of solution principles as indicated in Table 12.

surface components present in the problems. For example,instead of classifying
all the force problems together (Groups 4, 6, and 7), as would an expert, he

explicitly separated them according to the surface features of the problems. That
is, to him there are different varieties of force problems, some containing pul-
leys, some containing springs, and some containing inclined planes.

To summarize this study, we were able to replicate the initial finding that

experts categorize problems by physics laws, whereas novices categorize prob-
lemsby the literal components. If we assumethat such categories reflect knowl-

edge schemata, then our results from the person at the intermediate skill level

suggest that, with learning, there is a gradual shift in organization of

knowledge—from one centering on the physical components, to one wherethere
is a combined reliance on the physical components and physics laws, and,

finally, to one primarily unrelated to the physical components.

Study 4: Hierarchical Sorting

The results of the previous twosorting studies strongly suggest that the prob-

lem categories of experts are different from those of novices. That is, we assume

that the differences lie not only in the “‘category labels’’ that subjects of different

skill prefer to use. We assume that problem categories correspond to problem

schemata and, theoretically, that schemata can have subschemata embedded in

them and be embedded in higher-level or superschemata. Hence, if we can

identify some similarity of the contents of schemata at different levels for indi-

viduals of different skills, then perhaps we will have converging evidence that

the schemata of the novices and experts are indeed different and that their

schemata might be the same when different levels are compared.

To test this assumption, a hierarchical sorting task was designed by Christ-

opherRoth.In this task, subjects werefirst asked to sort the problems in the same

manneras in the previous two studies. Then, groups that they hadinitially sorted

were returned, and they were asked to subdivide each group further if they

wished. The sorting of each group was conducted in a depth-first manner. When
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all the discriminations of each group were completed, they were also asked to
combine their initial groups until they no longer wished to make any further
combinations. Subjects’ rationale for each grouping wasalso recorded.

Sixteen subjects were run. They ranged from graduate students (experts), to
fourth-year physics and chemical engineering majors (intermediates), to A-C
students (novices) who had taken courses in physics (mechanics, electricity, and
magnetism).

The 40 problems used in this study were selected from Chapters 5-12 of
Halliday and Resnick (1974), as in Study 2, which is the minimum amountof
material typically coveredin a first-year mechanics course. There are two aspects
of the data to examine: the contents of the groups and the tree structures. We
believe that the most naive structures are those generated by the novice
C-students (R. R. and J. T.) (Fig. 1.7, top two panels). The circular nodes
represent the groups from the initial sort, and the numbers inside the nodes
indicate how many problemsare in that group. The square nodes beneath the
circular nodes are the groups formed whenthe problems were further discrimi-
nated, and the triangular nodes abovethe circular nodes indicate the combina-
tions. The tree structures of these two novices havethree distinct characteristics
that none of the other more skilled subjects exhibited. First, the initial groups
(circular nodes) have a greater than average number of categories. (Eight
categories is the average numberderived from Study 2.) The second characteris-
tic is that they either cannot make further discriminations (Novice R. R.),
suggesting that their categories are already at the lowest level, or they make such
fine discriminations (Novice J. T.) that each problem is in a category byitself.
This is reminiscent of the chess results, where beginning chess players have
chunks consisting of one or two pieces. The nature of the initial categories is
physical configurations, much like what was found in Study 2, such as
““gravity,’’ ‘‘pulley with weight,’’ etc. When the novice (J. T.) breaks the
categories down so that each problem is a category, the descriptions of these
categories are very specific and still bound to the physical configuration. For
example, oneoftheinitial categories of Novice J. T. is ‘‘tension in rope.’’ When
that category was further broken down,one subdivision was specified as ‘‘ten-
sion with two blocks on incline,’’ and another was ‘‘tension with two blocks and
pulley on incline.’’ The most sophisticated tree structures of the experts are
shownin the lower two panels of Fig. 1.7. The initial circular nodes are generally
the different varieties of physics principles, much like those uncovered in Study
2. For Expert C. D., one group of circular nodes contains Conservation of
Energy, Conservation of Momentum,and Conservation of Angular Momentum,
and the other group of three are F = MA, F = MA tofind the Resultant Force,
and Simple Harmonic Motion. Each group of three (circled) categories was
further collapsed to two superordinate categories: Conservation Laws and
Equations of Motion. The subordinate categories for the same subject are gener-
ally discriminations based on physical configurations, such as ‘‘tension prob-
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lems.’’ Hence, from ourlimited analyses, we could hypothesize that the subordi-

nate categories of the experts correspondto the initial categories of the novices.

Although this study is not definitive in hypothesizing that experts’ categories are

at a higher level than novices’ categories, additional data from Study 5 converge

on the same notion.

The results of this study can also be interpreted in the framework proposed by

Rosch (1978) of ‘‘basic’’ categories. The term basic can be used loosely to mean

the preferred or dominant categories into which problems were divided by the

subjects. Hence, one could say that the basic categories of the novices corre-

spond to the subordinate categories of the experts.

Studies of the Knowledge Base

If the knowledge bases of the experts are different from those of the novices, in

what waysare they organized differently, and in what way doesthe knowledge of

experts and novices enhance and hindertheir problem-solving processes? These

questions, coupled with the results of the categorization studies, lead us to an

examination of the knowledge bases. The categorization studies show that with-

out actually solving the problems, and in less than 45 seconds, experts can

encode the problem into a deep level of representation, which enables them to

grossly determine the solution method applicable to the problem. We speculate

that such encoding skill necessarily reflects the knowledge-base differences be-

tween experts and novices. The next set of studies asks to what extent and in

what ways are the knowledge bases of the novices less complete and coherent
than the experts.

Study 5: Summaries

With these questions in mind, we attempted to capture what subjects knew
about physics, independent of a problem-solving context. One simple approach
was to ask subjects to summarize a chapter of a physics text. This should reveal
the knowledge they have on a particular topic. We selected Chapter 5 on particle
dynamics from Halliday and Resnick (1974) because subjects in the first protocol
study needed this information to solve the five problems correctly. Furthermore,
this chapter introduced Newton’s three laws, which could be a common theme
that all subjects might mention during their summaries. Hence, we mightbe able
to make some comparisons.

Weasked four experts (two college professors, one postdoctoral fellow who

had never taught lowerdivision physics, and one fifth-year graduate student who
had often taught lower division physics) and four undergraduates (who had just
completed the introductory physics course with a B grade, using Halliday & Ren-
sick as a text) to review the chapter for 5 minutes and then summarizeoutloudits
important concepts. Subjects were run individually, and 15 minutes were allotted

for the summary. The book wasavailable to them while they summarized,so that



52 CHI, GLASER, AND REES

any limitation in their summaries could not beattributed to a retrieval problem.

(Then they were all asked to solve a single problem taken from Chapter 5. These

problem-solving protocols provided the data for discussing the frequency of

diagram drawing mentioned in Study 1.)

Again, we began by looking at various quantitative measures such as the

length of the summaries, the numberof quantitative relations mentioned in the

summaries, and so on. Cursory examination of the data suggested once morethat

there were no skill differences in any of these quantitative measures. We then

turned to an examination of the content of the summaries. Since every subject

mentioned Newton’s three laws of motion, we compared what they said about

two of them.

Newton’s Third Law appears at the top of Table 1.6, and the bottom of the

table shows one possible way of breaking the law into its componentparts. Using

these subcomponents as a scoring criterion, we analyzed the summaries of the

experts and novices to see what proportion of the subcomponents were men-

tioned by each skill group. The results are shown in Table 1.7. The X’s in the

table show the subcomponents of the law that were mentioned by each subject.

At the bottom of the table are samples of protocols of a novice and an expert. It is

clear that experts in general make more complete statements about the physical

laws than do novices, even though the textbook was available for them to use.

Table 1.8 represents a similar analysis of Newton’s First Law. Again, experts

mentioned an average of three subcomponents, whereas novices tended to men-

tion an average of two subcomponents at most.It is also interesting to note that

TABLE 1.6

Newton's Third Law and Its Decomposition

 

‘To every action there is always opposed an equalreaction; or the mutual actions of two bodies upon

each other are always equal, and directed to contrary parts.”’

 

Components of the Third Law
a

1. The law applies to two general bodies (or particles)

a. Discussion must mention 2 bodies, and

b. These must be general bodiesor particles

(Particular example bodies alone are not sufficient to meet this condition, although example

bodies are allowed to be present)

2. Action and reaction refer to Forces exerted by each body on the other, where these forces need

not be of any particular type

a. Must be an explicit statement that each body (however bodyis discussed)exerts a *‘force’’ on

the other; and

b. ‘‘Force’’ must be in general terms (particular exampleforces, such as kick, push, alone won’t

do although such examples are allowed to be present)

3. Reaction (howeverstated) is equal in magnitude

Reaction (howeverstated) is opposite in direction

5. Line of action/reaction is in a straight line between two bodies

i

na
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TABLE1.7

Newton's Third Law Decomposedinto Five Components and Two Sample Protocols
i

Novice Expert

K.D. S.B. JW. C.H. OG. MV. SD. BP.

Reaction opposite in direction xX xX x x x xX x x

Reaction equal in magnitude Xx x x x x x x

Action—Reaction involves two x x x

general bodies

Action-Reaction are general forces x x x

extended by each body on the

other

Direction of Action—Reaction is a x

straight line

 

Examples of Subjects’ Summary Protocol

 

Novice S.B. ‘‘And his third law states that for every action there’s an opposite reactionto it.”’

Expert O.G. ‘‘The third law... states that for every action there is an equal and opposite reac-

tion, or in other words, if Body A exerts a force on Body B, then Body B exerts a

force on Body A ina direction whichis along the line joining the two points. When

you say bodies in this chapter, you meantheyare really particles, point masses.”’

 

the postdoctoral fellow’s performance(S. D. in Table 1.8) is most “‘novicelike,”’

perhaps because he did not have any experience teaching mechanics.

The summaries of experts and novices on a given chapter from a physicstext

indicate that experts do have more complete information on physics laws than do

novices. This is not surprising in the sense that one would expect experts to know

more. On the other hand, it is surprising because the students have been taught

this knowledge and had the bookavailable. One would hopethat, after instruc-

tion, students have mastered at least the declarative knowledge of the laws of

physics. However, one obvious deficiency of novices is that they had not. One

cannot automatically assume that all students have mastered the prerequisite

knowledge needed for solving problems. Nor can we assumethat the novices’

deficiencies lie mainly in the inadequate strategies or procedural knowledge that

improves with experience in solving problems.

Up to this point, our data show that novices are deficient in three aspects of

knowledge. First, very good students, as Study | shows, makeerrors in problem

solving only whenthey haveeither generated the incorrect inferencesorfailed to

generate the correct inference during the initial encoding or representation-

generation stage of problem solving. Weattribute the generation of the wrong

inference to incomplete knowledge in the data base, so that the appropriate

inference (the right link between certain nodes in the semantic network; Greeno

& Riley, 1981) could not be made. Second, we discovered that whether novices
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TABLE 1.8
Components of Newton’s First Law

“Every bodypersists in its state of rest or of uniform motion in a straight line
unless it is compelled to change that state by forces acting on it.”

 

Novice Expert

JW. S.B. K.D. C.H. S.D. O.G. MLV. B.P.

   

No net unbalancedforce x x x x Xx x Xx

Rest x xX xX
Uniform motion Xx xX x xX x
Straight line xX xX xX

Examples of Subjects’ Summary Protocol

Novice J.W. ‘The first one is inertia, which is that a body tendsto stay in a certain state unless

a force acts upon it.”’

Novice S.B. ‘*First of all there’s, the body wants to stay at rest, the body just, it’s resistance

toward any other motion.’”’

Expert B.P. ‘‘His first law is a statementthat a body is moving in a uniform velocity in a given

straight line or statics. It will keep moving or stay whereit is unless some external

forces are applied.’’

Expert O.G. ‘The first law is called the law of inertia. And it states that a body persists in its

motion along a straight line of a uniform rate unless a net unbalanced force acts

upon the body.”’

 

and experts have the same knowledge base or not, it is organized differently.
That is, we can view the knowledge of problem types as schemata, and the
experts’ schemata center wround the physics principles, whereas the novices’

schemata center around the objects. Finally, a third deficiency in the novices’

knowledge base, at least for B students, is the lack of a certain fundamental

knowledge of physics principles.

These three deficiencies are general in the sense that we do not have a good
grasp of exactly what knowledge is missing from the novices’ data base (except

for the summary study), nor do we have any means for comparing the knowledge

bases. And, most importantly, we have tapped only the declarative knowledge
that the subjects possess. The next study attempts to be more detailed in assessing

the knowledge that subjects do have. It provides a means of comparing the

knowledge bases between subjects and begins to look at the use of procedural

knowledge, becauseit is the procedural knowledgethat will ultimately determine

how well a person can solve a problem.

Study 6: Elaboration Study

In this study, we were interested in the knowledge associated with certain

physics concepts. These are concepts generated by the category descriptors pro-

vided by the subjects in the sorting studies. We view these concepts as labels
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designating schemata. Hence, the purpose of this study was to uncover what

knowledgeis contained in the schemata of experts and novices. From the sorting

studies, we concluded that the schemata of the experts are principle oriented,

whereasthe schemata of the novices are object oriented. But, what we needed to

know is how the schemataof the two skill groups differ. Do the schemata of the

experts contain more information or a different kind of information? Are the

schemata of the novices subschemata of the experts’ schemata as we

hypothesized in Study 4? This study addressed these issues.

Two experts (M. G. and M. S.) and two novices (H. P. and P. D.) were asked

to elaborate on a selected sample of 20 prototypical concepts that subjects in the

sorting studies had used to describe their classifications. Figure 1.8 gives a

frequency count of those category labels used by the experts and novices in Study

2. The sample of 20 ranged from labels provided by experts (e.g., Force Law) to

those providedstrictly by novices (e.g., inclined plane). Subjects were presented

with each concept individually and given 3 minutesto tell everything they could

think of about it, and how a problem involving the concept might be solved.

Weuse two waysto analyze the contents of these elaboration protocols. One

way is to depict the contents of the protocol in terms of a node-link network,

where the nodes are simply key terms mentioned by the subjects that are obvious

physics concepts. The links are simply unlabeled relations that join the concepts

mentioned contiguously. Using this method, the networks of a novice’s (H. P.)

and an expert’s (M. G.) elaboration of the concept ‘‘inclined plane’’ are shown in

Figs. 1.9 and 1.10. Since we view each of these concepts as representing a

potential schema, the related physics concepts mentioned in the inclined plane

protocol can be thoughtofas the variables (slots) of the schema. For example, in

Novice H. P.’s protocol, his inclined plane schema contains numerousvariables

that can be instantiated, including the angle at which the plane is inclined with

respect to the horizontal, whetherthere is a block resting on the plane, and what

are the mass and height of the block. Other variables mentioned by the novice

include the surface property of the plane, whether or notit has friction, and, if it

does, what the the coefficients of static and kinetic friction. The novice also

discussed possible forces that may act on the block, such as possibly having a

pulley attached to it. At the end, he also discussed the pertinence of Conservation

of Energy, but this was not elicited as an explicit solution procedure that is

applicable to a configuration involving an inclined plane, as is seen later in the

case with the expert. Hence, in general, one could say that the inclined plane

schemathat the novice possessesis quite rich. He knowsprecisely what variables

need to be specified, and he also has default values for some of them. For

example,if friction was not mentioned, he probably knowsthat he should ignore
friction. Hence, with a simple specification that the problem is one involving an

inclined plane, he can deduce fairly accurately what are the key components and

entities (i.e., friction) that such a problem wouldentail.

The casual reference to the underlying physics principle, Conservation of

Energy, given by the novice in the previous example, contrasts markedly with
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the expert’s protocol in which she immediately makes an explicit call to two

principles that take the status of procedures, the Conservation of Energy Princi-

ple and the Force Law (Fig. 1.10). (In Greeno & Riley’s, 1981, terminology,

they would be considered calls to action schemata.) We characterize them as

procedures (thus differentiating them from the way the novice mentioned a

principle) because the expert, after mentioning the Force Law, continues to

elaborate on the condition of applicability of the procedure and then provides

explicit formulas for two of the conditions (enclosed in dashed rectangles in Fig.

1.10). (She also explained the conditions of applicability of Conservation of

Energy, but did so during other segments of the study.) After her elaboration of

the principles and the conditions of applicability of one principle to inclined

plane problems (depicted in the top half of Fig. 1.10), Expert M. G. continued

her protocol with descriptions of the structural or surface features of inclined

plane problems, muchlike the descriptions provided by Novice H. P.(see Fig.

1.9). Hence, it seems that the knowledge commonto subjects of both skill groups

pertains to the physical configuration and its properties but that the expert has

additional knowledge relevant to the solution procedures based on major physics

laws.

Another way of viewing the difference between the novice’s and expert’s

elaborations of inclined plane is to look at the description that Rumelhart (1981)

ascribes to schemata of inactive objects. That is, an inclined planeis seen by the

novice as an inactive object, so that it specifies not actions or event sequences but

rather spatial and functional relationships characteristic of inclined planes. Be-

cause novices may view an inclined plane as an object, they thus cite the poten-

tial configuration and its properties. Experts, on the other hand, may view an

inclined plane in the context of the potential solution procedures; that is, not as an

object but more as an entity that may serve a particular function.

An alternative way to analyze the sameset of protocols is to convert them

directly into ‘‘production rules,’’ or ‘‘if-then’’ rules (Newell, 1973). To do so, a

simple set of conversion rules can be used, such as whenthe protocols manifest

an if-then, if-when, or when-then structure. This transformation is quite

straightforward and covers a majority of the protocol data. Tables 1.9 and 1.10

depict the same set of protocols that were previously analyzed in the form of

node-link structures. What is obvious from such an analysis is that the experts’

production rules contain explicit solution procedures, such as ‘‘use F = MA”’ or

‘‘sum all the forces to 0.’’ None of the novices’ rules depicted in Table 1.10

contain any actions that are explicit solution procedures. Their actions can be

characterized as attempts to find specific unknowns, such as ‘‘find mass’’ (see H.

P.’s rule 2 and P. D.’s rule 1 in Table 1.10).

We alluded to an important difference between the way Conservation of

Energy was mentioned by novice H. P. versus expert M. G. The present analysis

makesthis difference more transparent. The difference lies in the observation that

the novice’s statement of Conservation of Energy (Rule 8 in Table 1.10) was part
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TABLE 1.9
Expert Productions Converted from Protocols
ere

MS.

 

1. IF problem involves an inclined plane

THEN a. expect something rolling or sliding up or down

b. use F = MA

c. use Newton’s Third Law

2. IF plane is smooth

THEN use Conservation of Mechanical Energy

3. IF plane is not smooth

THEN use work donebyfriction

4. IF problem involves objects connected by string and one object being pulled by the other
THENconsider string tension

5. IF string is not taut

THENconsider objects as independent

 

M.G.

 

1. (IF problem involves inclined plane)?

THEN a. use Newton’s Law

b. draw force diagram

2. (If problem involves inclined plane)?

THEN can use Energy Conservation

3. IF there is something on plane

THEN determineif there is friction

. IF there is friction

THENputit in diagram

5. (IF drawing diagram)*

THENputin all forces—gravity, force up plane, friction, reaction force

6. (IF all forces in diagram)*

THEN write Newton’s Laws

7. IF equilibrium problem

THEN a. 2F = 0

b. decide on coordinate axes

8. IF acceleration is involved

THEN use F = MA

9. IF ‘‘that’s done’’ (drawing diagram, putting in forces, choosing axes)*

THEN sum components of forces

-

 

“ Statements in parentheses were notsaid explicitly by the subjects but are indicated by the context.

of a description of the condition side of a production rule, whereas the statement

of this principle by both experts (M. S.’s rule 2 & M. G.’s rule 2 in Table 1.9) is

described on the action side of the production rules.

On the elaboration of an inclined plane (Fig. 1.10), we stressed that the expert

mentioned the conditions of applicability of the Force Law (the statements in the

dashed enclosures). This points to the presence of not only explicit procedures in

the experts’ repertoires but also of explicit conditions for when a specific proce-
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TABLE 1.10

Novice Productions Converted from Protocols

I

H.P.
OTST

1. (IF problem involves inclined plane)*

THENfind angle of incline with horizontal

2. IF block resting on plane

THENa. find mass of block

b. determine if plane is frictionless or not

3. IF plane hasfriction

THENdetermine coefficients of static and kinetic friction

4. IF there are any forces on the block

THEN...

5. IF the block is at rest

THEN...

6. IF the block has an initial speed

THEN...

7. IF the plane is frictionless

THENthe problem is simplified

8. IF problem would involve Conservation of Energy and heightof block, length of plane, height of

plane are known

THENcould solve for potential and kinetic energies
a

PD.
NN

1. (IF problem involves an inclined plane)*

THENa. figure out what type of device is used

b. find what masses are given

c. find outside forces besides force coming from pulley

2. IF pulley involved

THENtry to neglectit

3. IF trying to find coefficient of friction

THENslowly increase angle until block on it starts moving

4. IF twofrictionless inclined planes face each other and a ball is rolled from a height on one side

THENball will roll to the same height on other side

5. IF something goes downfrictionless surface

THENcan find acceleration of gravity on the incline using trigonometry

6. IF want to have collision

THENcanuseincline to accelerate one object

 

¢ Statementsin parentheses werenotsaid explicitly by the subjects but are indicated by the context.

dure applies. Another analysis supports this difference. We examinedallstate-

ments made by the two experts and the two novices throughoutthe protocols of

the entire set of 20 concepts and recorded all statements made about Conserva-

tion of Energy. Nearly half of each expert’s statements (10 out of a total of 22 for

M. S.; 9 out of 21 for M. G.) were specifying the conditions under which

Conservation of Energy could be used. For example, the following are two

quotes, one from each expert:
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M. S.: “‘If the [inclined] plane is smooth, of course then you could use Conserva-
tion of Mechanical Energyto solve the problem. Ifit’s not smooth, then you’ve got
to take into account the work donebyfrictional forces. ”’

M. G.: ‘‘Energy conservation can also be used [in a collision problem] but only for
an elastic collision because no heat is produced.’’

The novices, on the other hand, made only one such statement between them (1
out of 22 for H. P.; 0 out of 13 for P. D.).

In sum, this study showsthat the contents of the schemata are different for the
novices and the experts. First, for an object schema, both experts and novices
possess a fundamental knowledge of the configuration andits properties, but the
experts possess additional knowledge, which may be viewedas also activating
higher level schemata (Rumelhart, 1981) that are relevant to the principle. Sec-
ond, the schemata of the experts contain more procedural knowledge. Thatis,
they have explicit procedures, which may be thoughtof as the action side of the
productions. Finally, the experts’ schemata contain much more knowledge about
the explicit conditions of applicability of the major principles underlying a prob-
lem. Hence, this study, coupled with the Summary Study, emphasizes the im-
poverished nature of novices’ schemata, which can seriously hinder their
problem-solving success.

Studies to Identify the Key Features of Problems

The previousstudies have suggestedthat novices in general have knowledgethat
is deficient in a variety of ways (perhaps with the exceptions of A students).
Hence, it is important to ascertain whether the difficulties novices encounter in
problem solving also lie in their inability to identify the relevant cues in the
problem, as is the case with poor chess players. The common finding in chess
research is that the poor players have great difficulties seeing the meaningful
patterns on the chessboard. Theability to perceive the relevant chessboard pat-
terns reflects the organization of the chess knowledge in memory. Hence, we
need to determine whether both novice and expert problem solvers have the
ability to identify the relevant cues in a problem and, if so, how this ability
affects problem solving. From the studies we have already discussed, we specu-
late that the difficulties experienced by novices derive from their inability to
generate the appropriate knowledge from the relevant cues.

Study 7: Basic Approach

In this study (designed and carried out by Paul Feltovich), we were interested
in knowing aboutthe featuresthat help a subject decide on a ‘‘solution method,”’
which can be interpreted as one of the three major principles (Conservation of
Energy, Conservation of Momentum, and Force Law) that can underlie a
mechanics problem ofthe kind we use. Putting it another way, we are attempting
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to determine the problem features that subjects could have used in eliciting their

category schemata, if the solution methods, at least for the experts, may be

viewed as their schemata of problem types (see Study 3).

Subjects in this study were asked to do three things. First, they were to read

the problem statement and think out loud about the ‘‘basic approach’’ that they

would take to solve the problem. Basic approach was not further defined for

them. Second, they were asked to restate the basic approach explicitly in one

concise phrase. Finally, they were asked to state the problem features that led

them to their choice. Here, we focus predominantly on the last aspect of this

study (see Chi et al., 1981, for additional details).

The subjects were two physicists (J. L. and V. V.) who had frequently taught

introductory mechanics and two novices (P. D. and J. W.) who had completed a

basic college course in mechanics with an A grade. The problems were the same

20 (described in Table 1.2) used for the sorting replication study (Study 3).

Table 1.11 summarizes the key features cited by the experts and novices as

contributing to their decisions about the basic approach to the solution of the

problems. The numbersin the table show the frequency with which each feature

wascited. A feature was included for each skill group only if it was mentionedat

least twice (across the 20 problems), once by each subject or twice by one

subject.

First, analysis of these features showsthatthere is essentially no overlap in the

features mentioned by novices and experts, except for the object ‘“‘spring.”’ Sec-

ond, the kinds of features mentioned as relevant by the novicesare different from

those identified by the experts. Novices, again, mention literal objects and key

terms that are explicitly stated in the problem,such as “‘friction’’ and ‘‘oravity.”’

This is consistent with the results of the categorization studies. Experts, on the

other hand, identify features that can be characterized as descriptionsof states and

conditions of the physical situation, as described implicitly by the problem. In

some instances, these are transformed or derived features, such as a ‘*before-and-

after situations’’ or ‘‘no external force.’’ Because these features are not explicitly

stated in the problem, werefer to these as second-order features (or, aS we previ-

ously mentioned, generated tacit knowledge).

In sum, the mostinteresting finding of this study is that the features mentioned

as relevant for suggesting a solution methodare different for experts and novices.

Because the subjects used their own wordsto describe the features, there is often

a lack of consensus concerning relevant features, particularly between the ex-

perts. In Table 1.11, for example, in 14 of the 24 features cited, the experts did

not refer to the same features, whereas this occurred only once for the novices

(see the asterisks). This is consistent with the interpretation that novices must

have greater consensusbecausetheyrefer to the explicit key terms in the problem

statement itself. Experts, on the other hand, must necessarily showa greatdealof

individual difference because they transform the literal surface features into some

second-order features based on their individual knowledge bases. However, even
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TABLE1.11
Key Features Cited by Experts and Novices
Se

Experts

VV. JL.
eee

Given initial conditions 9
Before-and-after situations 3

* Spring 0
No external force 4
Don’t need details of motion 4

* Given final conditions 5
Asked something at an instant in time 4
Asked somecharacteristics of final condition 4
Interacting objects 0
Speed-distance relation 0
Inelastic collision 2
No initial conditions 4

4

l
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0

2

2

2

1

0

0
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+
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Nofinal conditions

Energy easy to calculate at two points
Nofriction or dissipation

* Force too complicated

Momentum easyto calculate at two points
* Compare initial and final conditions
Can compute work doneby external force
Given distance

Rotational component

Energy yields direct relation

No before and after

Asked aboutforce

%

3

4

5

]

1

0

1

0

4

4

2

0

0

2
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3

1

0

0
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Friction

Gravity

Pulley

Inclined plane

Spring

Given masses

Coin on turntable

Given forces

* Force-velocity relation O
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W
W
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*Asterisks indicate features mentioned by only one of the two subjects.
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with such wide individual differences, there was a distinct characteristic to the

experts’ cited features that distinguished them from the novices’ cited features.

Study 8: Judging Problem Difficulty

Even though the experts cited the abstracted features as the relevant cues in

the previousstudy, it is still possible that the experts transformed the same basic

set of key terms as those identified by the novices. A direct way to ascertain

whether subjects of different skill consider the same set of words important is to

ask them to point out the important words in the problem statements. In this

study, we presented six novices (undergraduates averaging grades of B) and six

experts (graduate students) the same set of 20 problems used earlier and asked

them to judge (using a 1-5 rating) how difficult it was to solve a problem after

reading the problem statement. We then asked subjects to circle the key wordsor

phrases that helped them make that judgment. Finally, we asked how those

particular key words helped them reach their decision.

The most striking finding is the extensive overlap between the cues that

experts and novices identified as important for deciding on the difficulty of a

problem. If anything, experts identified fewer cues as important compared with

the novices. Table 1.12 presents one of the problems broken downinto eight

propositions. There were, on the average, seven propositions per problem. The

propositions containing words chosen by three or more of the novices and

three or more of the experts are indicated by N and E respectively. For 19 of

the 20 problems, the experts and the novices circled the same sets of words or

phrases in the problem statements, which are embedded in 2.7 propositions, on

the average. Only in 7 ofthe 20 problemsdid the experts identify additional cues

(about i.6), whereas in 13 of the 20 problems, the novices identified additional

cues (2.1) as important. This result suggests, at least, that novices’ difficulties in

problem solving do not stem from the failure to identify the relevant cues.

TABLE 1.12

Decomposition of a Problem Statementinto Propositions

rn

en

a

Problem 8

 

1. A block of mass M1

N 2. is put on top of a block of mass M2

NE 3. Inorder to causethe top block to slip on the bottom one,

NE 4. a horizontal force Fl must be applied to the top block

N 5. Assumea frictionless table

NE 6. Find the maximum horizontal force F2

7. which can be applied to the lower block

NE 8. so that both blocks will move together.
nl

N = Propositions indicated by three or more of the novices.

E = Propositions indicated by three or more of the experts.
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The subjects’ responses to both the questions of why these particular cues are
important and howtheyhelp in making decisions wereclassified according to the
following categories: (1) whether the cues refer to one of the three fundamental
principles (‘‘the cues tell me to use Energy Conservation’’); (2) whetherthe cues
refer to some surface feature of the problem, much like what novices refer to
when they categorize problems (e.g., Fig. 1.8); (3) whether the cuesbring their
attention to some characteristic of the problem thatis not related to physics(‘itis
difficult to visualize’ or ‘‘it has many concepts’’); or (4) whether the cueselicit
some reasons that are unrelated to the specific problem (the problem is difficult
‘‘because I have never solved it before’’ or ‘‘because it has a lot of words’’).

Table 1.13 is a breakdownof experts’ and novices’ reasons for why a problem
was judged difficult or easy, along with samples of quotes. Consistent with our
previousfindings, experts, much more often than novices, rely on the underlying
physics principle when judging the difficulty of a problem (e.g., ‘‘compressing
spring tells me to think Energy’’).They both rely equally often on problem
characteristics, such as whether a problem involvesfriction or the center of mass.
However, novices are much morelikely to rely on superficial nonphysics aspects
of a problem to maketheir judgements(the third category in Table 1.13), such as
whether “‘it is abstractly phrased’’ and ‘‘it has a lot of words.’’ Finally, the

TABLE 1.13
Proportion of Response Types

 

Novices Experts

 

Abstract Principle 9% 30%
‘straightforward application of Newton’s Second Law’”’
‘collision problem, use Conservation of Momentum’’

‘‘no friction, no dissipative forces, just apply Energy Conservation’”’

 

Problem Characteristics 33% 35%
“frictionless, problem is simplified”’

‘‘massless spring simplifies problem’”’

“‘pulley introducesdifficulty ’’

 

Nonphysics Related Characteristics 40% 28%
‘‘problem is difficult to visualize’’

‘‘easy calculations but hard to understand’’

‘“‘many factors to consider, make problem difficult’’

 

Nonproblem Related Characteristics 18% 7%

‘“‘never did problemslike this’’

“‘numbers instead of symbols’’@

**must consider units”’

‘diagram distracting’’

 

* All our problems used symbols for known quantities rather than actual numerical values.
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novices often introduce reasons for why a problem is difficult that are not specific

to a given problem, such as ‘‘I have never done problemslike this before.’”’

Wheninferences were generated in the protocols of problem solving (Study 1)

and when second-order features were identified (Study 7), we speculated that

such tacit knowledge was generated from the literal key terms in the problem

statement. Now, we can verify some of these speculations directly by examining

several of the reasons that subjects gave for how particular key terms that they

circled contributed to their judgment of problem difficulty. Table 1.14 presents

examples of the kind of statements produced by experts. These statements of

reasons can be judged to be inferences generated either directly from the literal

terms in the problem, suchas‘‘frictionless, use Conservation of Momentum, ’’ or

the inferences may be generated from a derived cue, such as ‘‘no dissipative

TABLE 1.14

inferences Generated from Literal and Derived Cues

i

 

Literal Cue Derived Cue Inference

Frictionless Conservation of Momentum

Frictionless No dissipative forces

No dissipative forces Conservation of Momentum

No dissipative system Conservation of Energy

Frictionless No dissipative force Conservation of Energy

Frictionless No dissipative force Conservation Laws

Energy not consumed Conservation of Momentum then

calculate new Energy

Frictionless Only force is restoring force Newton’s Second Law

Center of massat rest No external forces |M.iV,| = |MoV2|

Center of massat rest

Center of mass at rest Relative Momentum = 0

Pulley must be taken into account Newton’s Second Law for

translation and rotation

Massandradiusof pulley Consider Rotational Kinetic

Energy

Pulley can’t be neglected Rotational Dynamics

Massof pulley Rotational Energy

Massive pulley Rotational Dynamics

Compressing spring Think Energy

Motion Energy Analysis

Slip and force Friction

M, + Mz collide Conservation of Energy and

Momentum

M,stops after distance L Work-Energy

Speed Newton’s Second Law to Find

Acceleration then Equation of

Motion

Merry-Go-Round Rotational motion Conservation of Angular

Momentum

en
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forces.’’ These correspond to the second-order features mentioned in the previ-
ous study.

Recall that the purpose of this task was to have experts and novices judge
problem difficulty. The experts, in general, were more accurate at judging the
difficulty of a problem than novices. Accuracy was determined by comparing the
ratings of problem difficulties that subjects gave to our own assessment of how
difficult a problem actually is to solve. The aforementioned examination of the
reasons subjects gave for why a particular problem is difficult, and why those
particular key words were helpful in identifying a problem’s difficulty (Table
1.13), suggests that novices are less accurate at judging a problem’s difficulty
because they rely heavily on nonphysics-related or nonproblem-related features.
Obviously, these are not the reliable factors to consider when one attemptsto
solve a physics problem.

In sum, even though the task of this study—requesting sources of problem
difficulty—isslightly different from either a problem-solving task or tasks used
in the other studies (e.g., sorting), we suspect that the features identified as
relevant are the sameasthoseusedin other tasks. Basically, the results show that
the relevant and important key terms in a physics problem can beidentified by
novices quite accurately. In this sense, a physics problem is not analogousto a
““perceptual’’ chessboard, in which case the beginner cannot pick outthe rele-
vant or important patterns. However, the similarity between a chess expert and a
physics expert remains and can beseenin their ability (compared to novices) to
abstract the relevant tacit knowledge cued by the external stimuli. The chess
master’s expertise derives from the ability to abstract or impose a cognitive
structure onto the pattern of black and white chess pieces. Although novice chess
players are just as capable as experts at perceiving the chess pieces perse,
““seeing’’ the relations among the pieces requires fitting one’s schemata to the
configuration of chess pieces. Similarly, the novice physicistis just as capable as
the expert in identifying the key terms in a problem statement. The difficulty
resides in the novice’s limited ability to generate inferences and relations not
explicitly stated in the problem.

GENERAL DISCUSSION

The goal of this chapter has been to contribute to our understanding of high-
level competence in complex domains of human knowledge. Expert individuals
in various areas of knowledge perform remarkable intellectual activities, and
cognitive psychlogists are on the threshold of understanding these feats of mem-
ory retrieval, rapid perception, and complex problem solving. Since intelligence
is generally measured throughtests that assess skill in acquiring new knowledge
in scholastic settings, understanding the nature of the competenceattained should
shed light on this ability to learn.
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Early in this chapter, evidence was provided for the necessity to focus on the

organization and structure of knowledge,in both psychological and Al research.

This trend toward understanding the influence of knowledgeis relatively recent

in contrast to the earlier emphasis on search algorithms and other heuristics for

deducing and retrieving information. The techniques and theories that evolved,

such as means-ends analysis, were intended to be independentofthe particular

data base and, as such, have proven to be valuable search heuristics that are

generalizable across different tasks and knowledge domains.

The turn to a focus on the knowledge base was necessitated in part by the

inability of psychological theories to model human capabilities solely on the

basis of search heuristics and in part by the limitations discovered in attempting

to construct AI programs that would outperform humans, even though the com-

puter’s search capabilities are essentially limitless. Hence, the constraints of

powerful search techniques, when they did not engage an organized knowledge

structure, soon compelled researchers to develop theories and programsthat took

account of the role of knowledgestructure.

The emphasis on the knowledge base has also changed the direction of re-

search. Since knowledge has different degrees of structure depending on an

individual’s experience, it was intuitively apparent that an important problem

was how particular knowledge base is structured. The obvious choice was to

model the expert’s knowledge, as was done most dramatically in a numberof Al

programs. This choice has also led to psychological investigations of developing

structure of novices’ knowledge, in contrast to the richly organized structure of

experts’ knowledge.

The research on problem solving generated by this new emphasishasrevolved

around understanding the processesof arriving at a solution in the context of the

knowledge available to a solver. In physics, this has led to the construction of

numeroustheoretical models that attempt to simulate the processes of problem

solving, in particular, the knowledge that is necessary to generate a particular

sequence of equations. Other theoretical models constructed by AI researchers

have put more emphasis onthe representation of the problem in the contextofthe

available knowledge.

The important issue of problem representation has also been recognizedin the

psychological research. It is conspicuous in protocols of problem solving in the

form of ‘‘qualitative analysis’’ of the problem, which usually occurs early in the

solution process. Most empirical findings to date have failed to explicate this

initial qualitative analysis, although the consensushas beenthat a representation

of the problem, constructed at this point, is a significant factor in driving the

solution process. Numerous quantitative differences between the experts and

novices have also been identified, such as solution speed, errors, and equation-

generation pattern. None of these measures, however, has succeededin shedding

much light on understanding the different problem-solving processes of experts

and novices.
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The research from our own laboratory has been oriented toward magnifying
the representational ‘‘stage’’ of problem solving through techniques other than
the analysis of problem-solving protocols. Our findings (Study 1) have em-
phasized that solution protocols provide limited insights to the processes of
representation and, further, produce quantitative measures that are difficult to
interpret because they are subject to large individual differences. These indi-
vidual differences are dictated by a variety of particular strategies that solvers
adopt, such as generating a numberof equations when one cannotthink of a way
to proceed. Throughthe use of a sorting task (Studies 2, 3, and 4), we were able
to uncover a potential source of representational difficulty for novices. If we
assume that a problem is represented in the context of the available knowledge,
then novices will undoubtedly have an incomplete and less coherent representa-
tion because of the organization of their knowledge. Their knowledgeis or-
ganized around dominantobjects (e.g., an inclined plane) and physics concepts
(e.g., friction) that are mentioned explicitly in the problem statement. Experts,
on the other hand, organize their knowledge around fundamental principles of
physics (e.g., Conservation of Energy) that derive from tacit knowledge not
apparent in the problem statement. An individual’s ‘‘understanding’’ of a prob-
lem has been explicitly defined as being dictated by knowledge of such principles
(Greeno & Riley, 1981). Hence, during qualitative analysis ofa problem, experts
would understand a problem better than novices because they ‘‘see’’ the underly-
ing principle.

A person’s understanding of a principle can be evaluated in several ways
(Greeno & Riley, 1981). One wayis to haveit stated explicitly, as was done by
experts in the Summary Study (Study 5) andin therationale they provided in the
Sorting Studies (Studies 2, 3, and 4). Another wayis to analyze the nature of the
categories into which individuals sort problems; this constitutes an implicit as-
sessment of their understanding of principles. An alternative but consistent in-
terpretation of the Sorting Studies is that experts and novices organize their
knowledge in different ways. Experts possess schemata ofprinciples that may
subsume schemata of objects, whereas novices may possess only schemata of
objects. Some support for this conjecture was provided in both Study 4, on the
hierarchical nature ofthe sorting categories, and in Study 6, on the elaboration of
the contents of object and principle schemata. Once the correct schemais acti-
vated, knowledge (both procedural and declarative) contained in the schemais
used to process the problem further. The declarative knowledge contained in the
schema generates potential problem configurations and conditions of applicabil-
ity for procedures, which are then tested against the information in the problem
statement. The procedural knowledge in the schema generates potential solution
methodsthat can be used on the problem. Experts’ schemata contain a great deal
of procedural knowledge, with explicit conditions for applicability. Novices’
schemata may be characterized as containing sufficiently elaborate declarative
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knowledge about the physical configurations of a potential problem, but they

lack abstracted solution methods.

Our hypothesis is that the problem-solving difficulties of novices can be

attributed mainly to inadequacies of their knowledge bases and notto limitations

in either the architecture of their cognitive systems or processing capabilities

(e.g., the inability to use powerful search heuristics or the inability to detect

important cues in the problem statement). This conjecture follows from several

findings. First, similarity in the architecture of experts’ and novices’ cognitive

systems is probably implied by the fact that there are generally no differences

between experts and novicesin the numberof categoriesinto whichthey prefer to

sort problems, in the latency required to achieve a stable sort, and in a variety of

other measures. These quantitative measures pointto the invariance in the cogni-

tive architecture of experts and novices. Second, novices do show effective

search heuristics when they solve problems using backward-working solutions.

Third, in our last set of studies (Studies 7 and 8), we showed that novices are

essentially just as competent as experts in identifying the key features in a

problem statement. The limitation of the novices derives from their inability to

infer further knowledge from theliteral cues in the problem statement. In con-

trast, these inferences necessarily are generated in the context of the relevant

knowledgestructures that experts possess.

In concluding this chapter, we would like to speculate on the implications of

the work and theory reported here for a conceptionof intelligence. The tests of

intelligence in general use today measure the kind of intellectual performance

most accurately called ‘‘general scholastic ability.’’ Correlational evidence has

shownthat the abilities tested are predictive of success in school learning. Given

this operational fact, these commonly usedtests ofintelligence are nottests of

intelligence in some abstract way. Rather, if we base our conclusions on their

predictive validity, we can concludethat they are primarily tests of abilities that

are helpful for learning in present-day school situations. More generally, we can

assume that these intelligence tests measure the ability to solve problems in

school situations, which leads to learning. The problem-solving ability possessed

by the expert learner is a result of experience with the domains of knowledge

relevant to schooling.

If expertise in learning is the ability for representing and solving school

problems, then for a less intelligent learner, a problem representation may be in

close correspondence with the literal details of a problem, whereas for a more

intelligent learner, the representation contains, in addition, inferences and

abstractions derived from knowledge structures acquired in past experiences. As

a result of prior experience in various knowledge domainsrelevant to schooling,

the representations required for solving school problems are more enriched and

contribute to the ease and efficiency with which learning problemsare solved.

Wespeculate further that the knowledge the expert learner brings to a problem
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would incorporate a good deal of procedural knowledge—how a knowledge
structure can be manipulated, the conditions under whichit is applicable, and so
on. Novice learners, on the other hand, would havesufficient factual and declar-
ative knowledge about a learning problem but would lack procedural skill, and
this would weakentheir ability to learn from their available knowledge.
A knowledge-based conception of intelligence could have implications for

how individuals might be taught to be more effective learners. Such an attempt
would de-emphasize the possibility of influencing mental processingskill (i.e.,
developing better methods for searching memory). Improved ability to learn
would be developed through a knowledge strategy in which individuals would be
taught ways in which their available knowledge can be recognized and manipu-
lated. Improvementin theskills of learning might take place throughthe exercise
of procedural (problem-solving) knowledgein the context of specific knowledge
domains. To date, conceptionsof intelligence have been highly processoriented,
reminiscent of earlier notions of powers of mind. If, in contrast, one did take a
knowledge-emphasis approach to the differences between high and lowperfor-
mers in school learning, then one might begin to conduct investigations of
knowledgestructure and problem representation in the way that we have begun to
do in the expert-novice studies describedin this chapter. This orientation might
provide new insights into the nature of the expert performance we define as
intelligence.
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Strategies for Visual
Comparison and
Representation: Individual
Differences

Lynn A. Cooper
University of Pittsburgh

INTRODUCTION

program studying individual differences in modesof processing visual informa-
tion. Aspects of the research program have been discussed elsewhere (e.g.,
Cooper, 1976, 1980a, 1980b; Cooper & Podgorny, 1976), but this chapter repre-
sents the first attempt to synthesize the results of the program in its entirety. The
research project did not begin as a study of individual differences. Rather,
attention wasinitially directed toward questions concerning the general nature of
memory-comparison processes. It soon becameclear that individuals differ quite
dramatically in performance on visual memory-comparison tasks, so the
individual-differences aspect of the research program becameits primary em-
phasis.

The study of individual differences in performance on cognitive tasks—
particularly as those differences relate to differences in intelligence or ability—
has recently been an area of active research. The research effort has grown as
both cognitive and differential psychologists have attempted to provide an
information-processing analysis of the cognitive skills that underlie human ap-
titude (see Carroll, 1976). Pellegrino and Glaser (1979) have distinguished be-
tween two approachesto studying individual differences in ability.

In the ‘‘cognitive correlates’? approach, the goal is to identify particular
information-processing skills that are related to levels of aptitude. The work of
Hunt and his colleagues (e. g., Hunt, Lunneborg, & Lewis, 1975) provides a
good example of this approach. Performance of low-aptitude and high-aptitude
subjects are compared on cognitive tasks that have been studied previously and
for which information-processing models have been developed. Theeffort is to

TT
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find the basic information-processing differences that distinguish high- from

low-ability persons. These differences can be thought of as differences in the

efficiency with which one or more component processing operations are exe-

cuted.

In the ‘‘cognitive components’’ approach, the goal is to develop

information-processing models of performance on aptitude items themselves.

The works of Sternberg (1977) and Mulholland, Pellegrino, and Glaser (1980)

provide good examplesof this approach. Itemsontests of aptitude are recast into

versions appropriate for laboratory investigation, and models are developed for

performance on these laboratory tasks. The effort is to model the processes

underlying task performance andto locate individual differences in one or more

of the component processes specified by the model.

The research style that my co-workers and I have adopted differs from both

the cognitive correlates and the cognitive components approaches to analyzing

individual differences. Our primary concern hasbeento characterize differences

in the sorts of strategies that individuals use in solving spatial problems. Our

view is that individuals may differ qualitatively in the nature of the processes

underlying task performance as well as quantitatively in the efficiency with

which componentprocessing operationsare carried out. The goal of our program

has beento analyzein detail the nature of these underlying strategies for perfor-

mance and to understand the conditions under which a certain strategy is most

effectively used. We have directed a good deal of the research toward observing

the flexibility or responsiveness of strategy selection to manipulations of both

task demandsandstimulus properties.

This emphasis on the importanceof strategies—or methodsfor approaching a

task or solving a problem—is consistent with an emerging view in work on

humanintelligence. The weaknessof the relationships frequently found between

ability measures and basic information-processing parameters has led several

investigators to argue that global strategy differences may make at least as

powerful a contribution to individual differences in intelligence as do differences

in the efficiency of basic information-processing skills (€.g., Baron, 1978;

Cooper & Regan,in press; Hunt, 1978). Hunt (1974), for example, has analyzed

two quite different strategies for solving items on the Raven Progressive Matrices

Test of general intelligence. And, experimental demonstrations of the relation-

ship between strategies and abilities have been provided recently by several

investigators. MacLeod, Hunt, and Mathews (1978) have shownthatselection of

a strategy for performing a ‘‘sentence-picture ’’ verification task (see Clark &

Chase, 1972)is influenced by and predictable from subjects’ relative levels of

verbal and spatial ability. Sternberg and Weil (1980) have reported a similar

finding for the solution of linear syllogisms. Subjects who were identified as

using a linguistic strategy for solving these problems showedcorrelations be-

tween solution times andlevel of verbal ability, but no such correlations emerged

with spatial ability. In contrast, subjects identified as using a spatial strategy

showed the reverse correlational pattern.
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The strategy differences that we have been studying have notyet been related
to ability differences. Nonetheless, we view our research program as having
implications for studying the relationship between strategy use and individual
differences in intelligence for two primary reasons. First, the qualitative dif-
ferences that we are investigating have emerged in relatively simple visual
information-processing situations. To the extent that strategy differences appear
in simple information-processing tasks, there is reason to believe that such dif-
ferences contribute as well to differences in performance on more complex
problems—suchasitemsontests of spatial aptitude. Indeed,a future direction of
our research program involves an analysis of the contribution madebystrategy
selection to performance on such spatial items. Second, our research program
provides an example of how individual differences in strategies can be studied
experimentally. In particular, our experiments show how natural, preferred
strategies can be manipulated by changes in task demands andproperties of
stimulus structure. Our findings thus have implications for the joint issues of both
the nature of strategy selection and the flexibility of a particular strategy userin
adopting alternative strategies. We suspect that both of these issues will gain
increasing importance in the study of humanintelligence.

In this chapter, our program ofresearch on individual differences is presented
in detail. An overview of the general experimental methods usedis first pro-
vided, followed by a discussion of the basic patterns of performance differences
that we have obtained. Subsequentphasesof the research project are describedin
three sections. In thefirst, we present experiments designed to manipulate indi-
vidual subjects’ use of a particular processing strategy. In the second, we present
work suggesting that individual subjects may differ in how visual information is
represented in memory.In the third, we present our preliminary efforts to relate
the strategy differences that we have been studying to other reported sourcesof
individual differences.

THE RESEARCH PROGRAM

General Experimental Method

The overall research strategy that we have adopted is a psychophysical one. That
is, relatively few subjects are tested in any one of our experiments, but they are
tested for an extended period of time (in the case of most of the studies, between
300 and 600 experimental trials for each individual subject). The goal is to
observe patterns of performance at asymptotic and error-free levels. This has
resulted in the adoption of various procedural measures, including the elimina-
tion of initial practice-session data and the re-presentation of trials on which
errors are made at some semirandom point during each experimentalsession.

The sequence of events that might occur ona trial in a typical experimentis as
follows: A subject views an initial or ‘‘standard’’ visual pattern (projected as a
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slide on a screen or plotted as an outline on an oscilloscope) for a sufficient

amount of time to encode the pattern (about 3 seconds). The pattern is removed

and, following a | to 1$ second blank interstimulus interval, a second visual

pattern or ‘‘test’’ pattern is displayed. The subject’s task is to indicate as rapidly

and accurately as possible, by actuating one of two response buttons, whether the

test pattern is the sameas the standard or different from the standard according to

some prespecified criterion. Both the speed and the accuracy of the discrimina-

tive response are dependent variables of interest. Additional procedural details,

including variations in stimulus parameters and responsecriteria, are discussed in

the context of the particular experiments to be reported.

An important issue concernsthe selection of subjects for these visual compari-

son experiments. In general, our subjects have been drawn from relatively

homogeneous population consisting of faculty, graduate students, laboratory

personnel, and paid undergraduates from various universities. Until recently, we

have not been concerned with sampling the entire range of measured spatial or

verbal aptitude, although possible relationships between strategy selection and

aptitude scores constitute an importantpart of our current and projected research

program. Rather, we have been interested in identifying individuals whose

reaction-time and error data conform to one of two basic types to be described

later. Our notion is that these two patterns of data correspond to the use of two

distinct strategies for comparing a visual memory representation with an external

visual object. We have thus chosen to study individuals whoclearly exhibit one

or the other of the two basic performance patterns. Once we haveidentified such

individuals, we can engage in a within-subject, across-experiment research ap-

proach in which we observe the extent to which individuals who are knownto

prefer a particular comparison strategy will change that strategy as a result of

well-defined task and stimulus manipulations imposedin additional experiments.

(For another example of this attemptto isolate strategy changes within subjects

resulting from task manipulations, see Glushko & Cooper, 1978.) Our claim is

not that every individual can be unequivocally characterized as adopting one of

the two visual processing modes that we have identified. Our claim is only that

the individuals that we have chosento study quite clearly exhibit one processing

mode or the other. It is worth noting, however, that in the majority of our

preliminary experiments, most of the subjects could be adequately categorized as

using one of the two basicstrategies (see, e.g., Cooper, 1976; Cooper & Pod-

gorny, 1976).

Basic Patterns of Individual Differences in Performance

Two distinct and reliable patterns of performance in individual subjects have

emerged in our initial series of visual comparison experiments. These experi-

ments have been used to ‘‘screen’’ or to identify subjects as using one processing

strategy or another for purposesof inclusion in subsequent experiments. To date,
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over 50 subjects have been tested using minor variations of this procedure. We
now present data from just one illustrative experiment, chosen for discussion
because the eight subjects who weretested also participated in a series of sub-
sequent studies.

The stimuli used in this experiment (see also Cooper, 1976; Cooper & Pod-
gorny, 1976) are depicted in Fig. 2.1. The right-hand column showstheinitially
presented or standard visual patterns, which varied in complexity, and which was
defined as the numberof points in each shape. Each standard could be followed
either by the identical visual pattern, in which case the required response was
‘‘same,’’ or by one of the test probes shownin the left-hand columns, in which
case the required response was ‘‘different.’’ The ‘‘different’’ test probes are
random perturbationsof the points determining inflections on the perimeterof the
standard shapes. They vary in their rated similarity to the standards, with ‘‘D1”’
probes being highly similar to the standards and ‘‘D6’’ probes being highly
dissimilar. The particular ‘‘different’’ perturbations shown in Fig. 2.1 were
selected from a much larger set on the basis of similarity ratings made by an
independent group of subjects. Care was taken to insure as well as possible that
similarity between the standards and the test probes decreased monotonically and
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FIG. 2.1. Standard and test shapes used in the basic visual comparison task or
““screening’’ experiment (adapted from Cooper & Podgorny, 1976).
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in approximately equal steps from D1 to D6 perturbations both within and

across the various standard shapes.

The reaction-time data from this screening experimentare plotted in Fig. 2.2

as a function of type of test probe. With the exception of subject 4, whose data

are plotted individually, reaction times (and, in subsequentfigures, error rates as

well) have been averaged over individual subjects conforming to each of the two

basic patterns of performance. This aggregation of individual subjects’ data

within each group has been donefor clarity of presentation, as the pattern of

performance of each individual subject in each of the groups followsthe pattern

of the average data quite closely. In general, only when particular subject

exhibits patterns that deviate from the group trends (e.g., subject 4 in subsequent

experiments) are that subject’s data shown individually.

Consider, first, the data of subjects 5, 6, 7, and 8. Three features of the

performanceof these subjects are important: (1) reaction time to ‘‘different”’ test

patterns decreases monotonically with increasing dissimilarity between the stan-

dard and the test shape; (2) ‘‘same’’ reaction time is intermediate in speed—

slower than the shortest ‘‘different’’ times to highly dissimilar probes but faster

than the longest ‘‘different’’ times to similar probes; (3) overall response speed1s

slow relative to the other subjects shown in Fig. 2.2.

In contrast, subjects 1, 2, 3, and 4 exhibit a considerably different pattern of

performance. Thesalient features of these subjects’ data are: (1) reaction time to

‘different’? test patterns is virtually constant, regardless of the similarity be-

tween the standard and the test shape; (2) ‘‘same’’ reaction time is faster than

“‘different’’ reaction time to any type of test probe; (3) overall response time is

quite rapid relative to the other group of subjects. Furthermore, these considera-

ble group differences in reaction-time performance are not accompanied by ap-

preciable differences in either the magnitudeorpattern of their errors. Figure 2.3

showspercentageof errors as a function of type of test probe for each of the two

groups of subjects. It is clear from this figure that, for both groups, error rates

decrease monotonically with increasing dissimilarity between the standard and

the test shape. Thus, for subjects 5, 6, 7, and 8 reaction time anderror rate are

positively correlated, whereas for subjects 1, 2, 3, and 4 these measures are not

correlated.

These differences between subject groups have proven interesting because

they involve patterns of performance rather than simple quantitative differences

betweenindividuals. It is difficult to characterize the performance differences in

terms of changes in the value of a single underlying processing parameter be-

cause an entire set of performance indices—including overall response speed,

relative speed of ‘‘same’’ and ‘‘different’’ responses, sensitivity of ‘‘different”’

reaction time to similarity between standard and test patterns, and relationship

between accuracy and reaction time—covaries systematically within an indi-

vidual subject and differs between subject groups.

Still another reason for our interest in these patterns of group differences1s the

inability of certain simple accounts to explain them. Consider, for example, an
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FIG. 2.3. Mean percentage of errors on the same-different discrimination from

the screening experiment. Subjects 1, 2, 3, and 4 are classified as holistic; subjects

5, 6, 7, and 8 are classified as analytic (Cooper 1980b).

account that attributed the pattern of differences to a speed-accuracy trade-off.

This account seems unlikely because thereislittle difference in the errorrates of

the two groups despite the marked differences in their reaction-time data. The

equivalence of error rates also casts doubt on an explanation that attributes the

reaction-time differences to some heightenedability of the faster subject group to

detect differences between memory representations of visual patterns and exter-

nally presented patterns. A final simple account might postulate some sort of

“floor effect’? on processing speed for the faster group of subjects. Although

such a floor effect could explain why this group’s response timesare unaffected

by similarity relations between visual patterns in memory and ‘‘different’’ test

probes, it has difficulty explaining why ‘‘same’’ response times should be more

rapid than all ‘‘different’’ response times for this subject group.

A moreinteresting type of explanation—the one on which our research pro-

gram has been predicated—places the difference between subjects in the nature

of the strategies they naturally use for comparing internally represented and

externally presented visual information. We now present a sketch of two possible

types of spatial comparison processesthat could producethe alternative patterns
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of performance obtainedin theinitial screening experiments. The central notion
is that one pattern of performanceresults from theuse of a “‘holistic”’ Strategy for
processing spatial information, whereas the other pattern derives from adopting a
more “‘analytic’’ processing mode.

The group of subjects that shows no effect of similarity on ‘‘different’’ re-
sponse times (along with other features of performance described earlier) could
be comparing a memoryrepresentation of a visual Shape with a test shape in a
holistic, parallel fashion seeking to verify that the two representations are the
same. This sort of comparison strategy would not involve a search for Stimulus
differences or for visual features that distinguish the memoryrepresentation from
the test shape. Instead, the goalof the comparison process would beto achieve a
match between the test shape and the corresponding memoryrepresentation. If
such a match were obtained, then the ‘‘same’’ response could be executed. If
such a match werenot obtained, then the ‘‘different”’ response could be executed
by default. Note that a unitary, holistic comparison process could produce the
reaction-time results for this group of subjects. The superior speed of the
‘‘same’’ response would result from the initial attempt to achieve a match be-
tween the memoryrepresentation andthetest Shape. The constant additional time
for the *‘different’’ response would result from its default execution only after the
matching process had failed. The insensitivity of ‘‘different’’ response times to
similarity between the standard andtest shapes is also a natural consequence of
this processing strategy because ‘‘different’’ responses are assumed to be made
by default rather than onthe basis of an analysis of distinguishing visual features.
Errors could be produced from this unitary comparison process if complete
structural information about the standard Shape was on occasion notretained in
its corresponding internal representation. On just those occasions, the compari-
son operation could accept an incorrect match or reject a correct one, and the
chances of this occurring would be greater, the more similar the representations
of the standard and thetest shape.

probe could be using a more analytic comparison process, and/or two different
and independent processes could be generating the ‘‘same’’ and the ‘‘different”’
responses. A process specialized for detecting differences could compare the
visual features of the memory representation and the test shape. As soonasthis
process found a feature that distinguished the two representations, the ‘‘dif-
ferent’’ response could be executed. Such a self-terminating difference compari-
son could explain the monotonic decrease in reaction time with increasing dis-
similarity between the standard andthetest shape. This is because the greater the
dissimilarity between the two visual representations, the earlier a difference will
be found and the faster will be the response.
A second process, similar to the single comparison process of the holistic

subjects, could operate simultaneously with the difference-detection process and
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under a time deadline. If a match is achieved before the deadline has been

exceeded, then the ‘‘same’’ response could be executed. Note that there are two

aspects of this second, holistic comparison process. First, this process cannot

lead to the initiation of a ‘‘different’’ response if a match is not found. Second,

the particular assumptions made about the value of the time deadline determine

the speed of the ‘‘same’’ response relative to ‘‘different’’ responses. Clearly, in

orderto characterize the data of the analytic subjects shown in Fig. 2.2, the value

of the time deadline must be set at an intermediatelevel.

This analysis of the comparison strategy of the analytic subjects—sometimes

called a ‘‘dual process’’ model—hasbeen proposed by others as a general model

of same-different visual comparison (e.g., Bamber, 1969; Sternberg, 1977).

Andother modifications of the processes just outlined are consistent with general

theories of perceptual matching (e.g., Krueger, 1978: Tversky, 1969). For

example, the analytic group of subjects could begin with a holistic comparison

process, but then move to a difference-detecting process on some proportion of

the trials on which a match is not found. Under this account, the intermediate

speed of the ‘‘same’’ response would result from some ‘‘same’’ decisions occur-

ring immediately after a holistic match and others occurring after the completion

of the analytic comparison process.

Regardless of which particular version of a two-process model most

adequately describes the behavior of the analytic subjects, we view the central

difference between the proposed alternative processing strategies as follows: The

holistic strategy involves the rapid, parallel comparison of a memory representa-

tion with a visual shape, and little analysis of difference information is per-

formed. The analytic strategy, in contrast, is based on a process specialized for

detecting features that differentiate a memory representation from an external

visual pattern.'

Manipulation of Visual Comparison Strategies

Havingidentified reliable individual differences in performance on a visual com-

parison task and having related these to possible strategy differences, the next

step in our research program was a more detailed analysis of the underlying

strategies, with a particular emphasis on the flexibility or modifiability of

strategies within individual subjects. The sorts of questions that we have been

addressing include: To whatextent are strategies preferred yet optional charac-

'In previous publications describing earlier aspects of this research (e.g., Cooper, 1976; Cooper

& Podgorny, 1976), holistic subjects were referred to as ‘‘Type I’’ subjects, and analytic subjects

were termed ‘‘Type II’’ subjects. As these labels have little mnemonic value, an effort has been made

to avoid them in this paper. The use of the terms “holistic’’ and ‘‘analytic’’ is also unfortunate

because of the multiple and sometimesconflicting meanings that these terms have acquired. They are

used as labels for the processing differences described in this paper for lack of any better terminology.
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teristics of an individual subject’s performancein visual comparison situations?
Stated differently, under what conditions can an individual subject be induced to
adopt a strategy different from his or her natural one when those conditions make
a particular strategy moreefficient? Is one type of strategy (holistic vs. analytic)
more responsive to changes in task demands than the other?

The experimental approach that we have adopted has been designed not only
to provide information concerning the modifiability of processing strategies but
also to provide independent evidence concerning the nature of the Strategies
themselves. Our goal has been to observe the performance of previously iden-
tified holistic and analytic processors on new butrelated tasks that have been
constructed with particular purposes in mind. First, we want a reasonably clear a
priori analysis of processing demands imposed by the new tasks. Second, we
want these processing demands to draw naturally upon oneof the hypothesized
Strategies used by the two types of subjects. Then, by having both types of
subjects perform the new tasks, we hope to observeeither differential changein
the performance of one type of subject but not the other or changein the perfor-
mance of both types of subjects but in identifiably different ways.

The newtasks that are described next were not designed simply to increase or
decrease overall levels of performance. Instead, we hoped that the demands of
the new tasks would cause a change in performance only if the subject has
adopted a particular processing strategy. If an alteration in the performance of
one type of subject but not the other is observed, then we can draw two conclu-
sions: (1) the demands of the new tasks embodycertain aspects of the natural
comparisonstrategy of the subjects whose performance remained unchanged;(2)
the subjects whose performance did change are capable of adopting multiple
comparisonstrategies in different situations. This second conclusion is a poten-
tially important one, particularly if we find that the performance ofindividuals
characterized by one visual processing strategy was easier to change than the
performanceof individuals whonaturally used the other processing strategy. On
the view advanced earlier that one aspect of intelligent or adaptive behavior
might involve the ability to select and execute the Strategy most appropriate for a
given task, then we might expect that individuals capable ofstrategy flexibility in
this low-level visual processing task would show the samesort of flexibility in
solving more complex visual problems such as those found ontests of spatial
aptitude. Thus, our research program has revolved around twointerrelated goals:
the discovery of how modifiable different comparison strategies are both across
subject groups and within individual subjects and the use of persistence and
changein individual subjects’ patterns of performanceto provide a deeper under-
standing of the nature of those underlying strategies.

Detecting Differences: The Quadrant Experiment. Our initial attempt to
manipulate processing strategies was suggested by the introspective report of one
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of the holistic subjects from the screening experiment. This subject claimed that

whenshe responded ‘‘different,’’ she did so without a clear notion of just how

the test shape differed from the standard shape in memory. This report is consis-

tent with the foregoing analysis in which the ‘‘different’’ response of holistic

processors wasattributed to a default decision following the failure of the match-

ing operation. Analytic processors, in contrast, are assumedto search actively for

information concerning the location of features that distinguish a memory repre-

sentation from a test shape in executing the ‘‘different’’ response.

The idea behind this particular experiment was that holistic processors might

be forced to adopt the analytic mode if the detection and report of differences

were explicitly required by the task. The same eight subjects whose screening

data are presented in Figs. 2.2 and 2.3 weretested on this new task, which again

required same-different comparison of a memory representation of a standard

shape with a test shape. The novel feature of this experimental procedure was

that, in addition to the same-different judgment, subjects were required to indi-

cate how a test shape differedfrom a standard, if they judged the two shapesto be

6-POINT SHAPE

 

QUADRANT -2 QUADRANT- |

DI D2 D3 DI D2 03

STANDARD

0) D2 D3 Di D2 D3

QUADRANT- 3 QUADRANT-4

FIG. 2.4. Oneofthe standard shapes—of low complexity—andthe correspond-

ing ‘‘different’’ probes used in the quadrant experiment. Each of the four sets of

probes corresponds to one of the four quadrants in the standard shape (Cooper,

1980b).
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different. We implemented this requirementof difference detection in the follow-
ing fashion: Random, angular standard shapes were constructed, and ‘‘different”’
test probes were made by applying local perturbations of varying magnitude to
points within each of four ‘‘quadrants’’ of each shape. Associated with each
quadrant of each standard shape werethree ‘‘different’’ probes, which variedin
their rated similarity to the standard. Figures 2.4 and 2.5 illustrate two of the
standard shapes, divided into quadrants, with all 12 of the corresponding ‘‘dif-
ferent’’ probes for each shape.

Figure 2.6 illustrates the sequence ofevents on a typical experimentaltrial. As
can be seen,the procedural innovation consisted of presenting lines depicting the
four quadrants of a shape, contingent on a responseof ‘‘different,’’ and requiring
the subject to indicate in which of the four quadrants the standard andthetest
shape differ. This is done by pressing one of four buttons corresponding to each
of the four quadrants.

Our hope wasto affect the performance of holistic and analytic subjects
differentially by adding the new requirement of the detection and report of
difference to the basic same-different comparison task. Specifically, we rea-

24-POINT SHAPE

QUADRANT - 2 QUADRANT-|

DI 02 D3 D | D2 D3

Rca STANDARD

01 D2 D3 DI D2 D3

QUADRANT- 3 QUADRANT- 4

 

FIG. 2.5. One ofthe standard shapes—of high complexity—and the correspond-
ing ‘‘different’’ probes used in the quadrant experiment. Each ofthe four sets of
probes corresponds to one of the four quadrants in the standard shape.
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STANDARD SHAPE TEST SHAPE NOISE (Masking) QUADRANT LINES

FIELD

|- Second memory Same- Different response Quadrant identification

interval (Different) (Quadrant—l,upperright)

FIG. 2.6. Sequence of events on an experimental trial for which the correct

response was ‘“‘different’’ in the quadrant experiment. Quadrant lines appeared

only when the response ‘‘different’’ was made. (Cooper, 1980b).

soned that analytic subjects should be affected minimally if at all by the

additional task demand. For if the chief component of these subjects’ natural

comparison strategy is an analysis of differences between a memory representa-

tion and a test shape, then information concerning the location of a difference

found during the same-different comparison should be available for report im-

mediately following the execution of the ‘“‘different’’ response.

Holistic subjects, however, should be affected in one of two ways by the

addition of the difference detection. If the additional processing requirement

causes them to adopt the analytic strategy, then same-different reaction-time

performance should change considerably from that obtained in the standard

visual comparison task. Specifically, ‘‘different’’ reaction time should decrease

monotonically with increasing dissimilarity between standard and test shapes,

reflecting the operation of a difference-detecting process. Another possibility is

that the addition of the new task requirement is not sufficient to force these

subjects to drop their natural holistic matching process in favor of a more analytic

comparison strategy. If these subjects persist in using a holistic comparison

process instead of searching for differences, then their reaction-time performance

should be similar to that obtained in the standard visual comparison task. How-

ever, use of this strategy should cause performance on quadrant identification to

be substantially poorer than performance by subjects using an analytic strategy.

This is because, by hypothesis, the holistic comparison process does not search

for information concerning the location of a difference between the standard and

test shapes. Hence, this informationis not available for report following execu-

tion of the ‘‘different’’ response. |

The reaction-time data from this experiment are shown in Fig. 2.7. Errors on

the same-—different discrimination are presented in Fig. 2.8, and errors on quad-
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QUADRANT EXPERIMENT [| Subjects 1.2.3,

Subjects 5,6,7,8

Subject 4

Y
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FIG. 2.8. Mean percentage of errors on the same-different discrimination illus-

trated for the types of test probes used in the quadrant experiment (Cooper, 1980b).

rant identification following a response of ‘‘different’’ are shown in Fig. 2.9.

Consider, first, the performance of subjects 5, 6, 7, and 8, who were formerly

identified as analytic processors. As expected, the pattern of latencies and errors

is muchlike that obtained in the basic visual comparison task (cf. Figs. 2.2 and

2.3). Both reaction times anderror rates decrease monotonically with increasing

dissimilarity between standard and test shapes, and the “‘same’’ response is

intermediate in speed. These findings are consistent with the use of an analytic

comparisonstrategy, which is just what we should expect from these subjects in

this situation.

Examination of subject 1, 2, and 3’s reaction-time performance clearly shows

that, as in the basic visual comparison task (Figs. 2.2 and 2.3), ‘‘different’’

response times are not affected by similarity between the standard and the test

shapes and that ‘‘same’’ response time is as fast as the fastest ‘‘different’’

response. These patterns—along with the monotonic decreasein error rate with

increasing dissimilarity—are consistent with the persistence of a holistic com-

parison strategy, even when the task incorporates the additional demand of

detecting and reporting stimulus differences. As corroboration of this analysis of

a subset of the previously classified holistic processors, subjects 1, 2, and 3 show
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FIG. 2.9. Mean percentage of errors on identification of the differing quadrant
illustrated for the types of test probes used in the quadrant experiment (Cooper,
1980b).

markedly inferior performance onidentification of the differing quadrantto that
of the previously classified analytic processors (subjects 5, 6, 7, and 8), particu-
larly for test probes highly similar to the standard shapes. Again, this finding is
consistent with what we should expect if this subject group was unable to switch
to an analytic mode of processing in the face of the new task demand.

Subject 4’s performancepattern is particularly revealing. In the basic visual
comparison experiment, this subject’s ‘‘different’’ reaction times showed the
typical holistic pattern (cf. Fig. 2.2), but now reaction-time performance is
heavily influenced by the similarity between the standard andthetest shape—a
characteristic of the analytic processing strategy. Also consistent with this sub-
ject’s change from holistic to analytic performance are the overall increase in
response time and the intermediate speed of the ‘‘same’’ response, which in the
previous experiment wasfaster than all ‘‘different’’ times. Furthermore, subject
4’s quadrant-identification performanceis at the level of the other analytic sub-
jects (5, 6, 7, and 8) and considerably superior to that of the subjects (1, 2, and 3)
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who retained the holistic comparison strategy despite the requirement of dif-

ference detection.

The constellation of results from this experiment provides someinsight into

the nature of the two underlying strategies for comparing a visual memory

representation with a visual test form. The data for subjects 1, 2, and 3 support

the idea that their natural comparisonstrategy involves a single holistic process.

This type of process waspredicted to result in ‘‘different’’ responses of constant

speed, rapid ‘‘same’’ responses, andrelatively poor quadrantidentification. This

exact pattern was found. The failure of these subjects to switch to an analytic

comparison strategy—even under conditions requiring the processing of dif-

ference information—suggests that the natural holistic strategy is not terribly

flexible. The alteration of subject 4’s performance in this task, which specifically

required the detection and report of differences, gives information concerning the

nature of the analytic comparisonstrategy. In particular, the performance change

suggests that the natural comparison strategy of the previously classified analytic

subjects does indeed involve a search for and detection of differences.

Changing the Judgmental Context: The Probability Experiment. In the ex-

perimentjust reported, persistence and change in individual subject’s patterns of

performanceresulting from a particular type of task demand were used to make

inferences concerning both the nature of visual comparison strategies and the

modifiability of these strategies. The same approach was used in the present

experiment, but instead of imposing additional task demands we explored the

responsiveness of spatial processing strategies to manipulations of the judgmen-

tal context for making same-different decisions. The particular manipulation

selected was the probability—within a given block of trials—that a pair of visual

shapes would be identical or different.

The same eight subjects, four previously identified holistic processors and

four analytic processors, were tested. The experimental task required a speeded

same-—different decision, and the stimuli were the same as those used in the

quadrant experiment. (No quadrantidentifications were required, however.) The

major procedural modification was to include three distinct experimental condi-

tions. In one condition, the probability of ‘‘same’’ and ‘‘different’’ stimulus

pairs was equal (50% same)—as in previous experiments. In another condition,

‘‘same’’ pairs were considerably morelikely than ‘‘different’’ pairs (75% same);

in a third condition, ‘‘different’’ pairs predominated (25% same). Subjects were

informed in advance of the probability structure of each condition.

The notion behind this experimentis quite straightforward. We reasonedthat

large changes in the probability structure of a sequenceof trials might make one

comparison strategy more efficient than the other and thus cause both subject

groups to adopt alternative processing modes in response to the probability

manipulation. Specifically, when confronted with a situation in which most of

the stimulus pairs were different, holistic subjects might find it more efficient to
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adopt the analytic strategy of search for and detection of difference. When
confronted with a situation in which mostofthe stimulus pairs were identical, the
analytic subjects might find it more efficient to switch to a holistic process based
on matching for sameness. Our prediction, then, was that the typical group
difference in performance patterns would emerge in the 50%-same condition.In
the unbalanced conditions, we hoped to induce all subjects to use an analytic
Strategy when ‘‘different’’ trials predominated and a holistic strategy when
‘‘same’’ trials predominated.

The reaction-time data from this experiment are shownin Fig. 2.10, and error
rates are presented in Fig. 2.11. Consider, first, the results from the 50%-same
condition. As expected, when the probability structure ofthe trials is balanced,
subjects 1, 2, 3, and 4 exhibit a holistic pattern of performance, and subjects 5,
6, 7, and 8 exhibit an analytic pattern. Of greater interest are the results from the
unbalanced conditions. When ‘‘same’”’ trials predominate (75%-same condition),
subjects 1, 2, 3, and 4 continue to show holistic patterns, which is consistent with
our predictions concerning the most efficient mode of visual comparison forthis
particular condition. However, subjects 5, 6, 7, and 8 show noevidence of
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FIG. 2.10. Meanreaction timeplotted as a function of type of test probe for the
three experimental conditions in the probability experiment.
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probability experiment.
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altering their analytic processing mode to conform to the change in judgmental
context. As usual, this group’s ‘‘different’’ reaction times decrease with increas-
ing dissimilarity between the standard and thetest shape; their ‘‘same’”’ response
is intermediate in speed.

The condition in which ‘‘different’’ trials predominated (25% same) was
much more effective in manipulating processingstrategies. As expected, subjects
5, 6, 7, and 8 continued to use their natural analytic strategy. Subject 4’s data
show evidenceof a switch to the analytic mode—with‘‘different’’ times decreas-
ing with dissimilarity, ‘‘same’’ times increasing relative to the other conditions,
and overall response time increasing—and,to a lesser extent, the performance of
the other three formerly holistic subjects shows evidence of these trends. Al-
though consistent with the framework provided here, it should be notedthat this
change in performance—particularly in the case of subject 4—is somewhat sur-
prising because reaction timesto ‘‘different’’ pairs actually increased, relative to
the other conditions, in just the condition in which that type of stimulus pair was
most prevalent. One further aspect of the data deserves mention. Forall subjects
in all conditions, relative error rates appear to be sensitive to the probability
manipulation. From Fig. 2.11 it can be seen that when ‘‘different”’ trials pre-
dominate, they produce a lowererror rate than whentheyare in the minority,
with the 50% condition falling between these two extremes. Similarly, error rates
on ‘‘same’’ trials are lowest in the 75%-samecondition, intermediate in the 50%
condition, and highest in the 25%-same condition.

In summary,the results of this experiment suggest that at least some holistic
processors can adopt the analytic comparisonstrategy in situations for whichit is
most efficient. Analytic subjects appear unable to adoptthe holistic processing
mode even though the particular task structure may makethis Strategy more
efficient than their natural comparison operation.

Forcing Analytic Processing Via Stimulus Structure: The Multidimensional
Pattern Experiment. The quadrant experiment and the probability experiment
were both partially successful in causing subjects using a holistic processing
mode to adoptan analytic strategy as a result of explicit or implicit task demands.
In this experiment, a somewhatdifferent manipulation wascreatedin an effort to
elicit analytic processing in all subjects. Our idea was that the use of stimulus
materials quite obviously composed of discrete, separable dimensions might
encourage subjects to base their visual memory comparison on these features or
dimensions. That is, such stimuli might prove difficult or impossible to process
holistically and thus might require an analytic processing mode.

The same group of eight subjects—four classified as holistic and four as
analytic—were tested in this experiment. The stimuli used for the visual com-
parison task were displays that varied on the three dimensions of size, shape, and
color. Twolevels ofsize (large, small), two different shapes (square, circle), and
two different colors (blue, red) were used, and these values on the three dimen-
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sions were combinedin all possible ways to create the stimulus set. On any given

trial, the two sequentially presented visual objects could be identical on all three

dimensions,or they could differ with respect to values on one, two,or all three.

So, on a typicaltrial a subject might be asked to make a same-different compari-

son of a small blue circle followed by a small red square (two differing dimen-

sions). The independentvariable of ‘‘numberof differing dimensions’’ between

the first display and the test display was considered analogousto the variable of

‘‘dissimilarity between the standard and the test shape’’ in previous experiments.

The reaction-time data, plotted as a function of number of differing dimen-

sions, are shown in Fig. 2.12. The error data from this experiment are not

presented because virtually no errors were made byanyof the subjects. It is clear

from Fig. 2.12 that the dimensional nature of the visual stimuli was effective in

causing all subjects to exhibit the analytic pattern of performance.For all eight

subjects, ‘‘different’’ reaction time decreases monotonically with an increase in

the number of dimensions on which the two visual patterns differ. Somewhat

curiously, ‘‘same’’ responses are as fast as the fastest ‘‘different’’ responses

rather than intermediate in speed as is typical of the analytic pattern. This same

result has been obtained for group data reported by previous investigators who

have performed modifications of this basic type of experiment (Egeth, 1966;

Hawkins, 1969; Nickerson, 1967).

One other puzzling feature of these data concerns the overall response speed

of the two groups of subjects. Although the difference between the speed of the

holistic and analytic processors is considerably smaller in the data shownin Fig.

2.12 than that obtained in previous experiments (cf. Figs. 2.2, 2.7, and 2.10),

there is still an overall advantage for the subjects originally classified as holistic.

The reason for this finding—which recurs in experiments discussed later—is not

apparent. In summary, then, accentuating the discrete dimensional structure of

the visual materials used in a memory comparison task appears to force both

types of subjects to adopt a processing mode based on an analytic comparison of

those dimensions.

Forcing Holistic Processing Via Stimulus Structure: The Faces Experi-

ment. Havingidentified stimulus variables that can changethe holistic process-

ing mode to an analytic one, the question naturally arises whether analogous

variables can be found that change the analytic mode to a holistic one. In the

probability experiment, modifications of judgmental context were found to affect

the holistic mode of processing—butnot the analytic one—soourinitial expecta-

tions concerning the modifiability of analytic processing were somewhat nega-

tive. Indeed, in one experiment based on the logic of the multidimensional

pattern experiment, these expectations were confirmed. We reasoned by analogy

to the multidimensional pattern experiment that a situation in which dimensional

or feature-based stimulus structure was absent might encourage holistic process-

ing in all subjects. Accordingly, the eight subjects were required to compare two

sequentially presented lines and judge as rapidly as possible whether they were
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FIG. 2.12. Mean reaction time plotted as a function of number of differing
dimensions for the multidimensional pattern experiment (Cooper, 1980b).

the sameordifferent in length. The lines were centered in the visual field, and,if
they differed in length, the extent of that difference could have one of four
values. This task proved very difficult for all subjects, yielding extremely high
error rates. The reaction-time data were difficult to interpret, but they suggested
the samesort of group differences found in previous experiments. Forthe holistic
subjects, reaction times were constant over extent of difference in length, but, for
the analytic subjects, times decreased as extent of length difference increased.
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A second experiment was somewhat more successful in producing data con-

sistent with holistic processing for both types of subjects. We selected as stimuli

photographs of humanfacesin light of the widespread belief that faces possess

‘‘configural’’ properties that make them difficult to analyze in terms of compo-

nentparts or features (e.g., Carey & Diamond, 1977; Diamond & Carey, 1977).

The photographs were taken from a Cornell University sorority yearbook. Five

standard photographs were chosen, and associated with each wasa set of photo-

graphs ranging in similarity to the standard face. An independent group of

subjects rated the similarity of each ‘‘different’’ photograph to each standard,

and on the basis of these ratings five distractors—representing a monotonic

decrease in rated similarity—were selected for each standard face.

Only twoofthe previously classified holistic subjects and three of the analytic

subjects were available for testing in this experiment. In addition, three new

subjects who had notparticipated in the screening task were tested. The proce-

dure was similar to that of the earlier experiments. A standard face was pre-

sented, followed by a test face, and subjects were required to judge as rapidly as

possible whether the pair of faces was identical or different.

Thereaction-time results are presented in Fig. 2.13. Error data are not shown

because virtually no errors were made by any subject type to any stimulus pair.

Note, first, that overall response times are quite rapid for all three groups of

subjects. This was also true in the multidimensional pattern experiment, and

undoubtedly, it is attributable in both cases to the fact that sets of faces and

multidimensional patterns are considerably more discriminable than the subtly

varying random shapes used in other experiments. Note, too, that overall re-

sponsetimes are faster for both groups of previously tested subjects than for the

new subjects. This difference most likely results from general experience with

performing reaction-timetasks.

For both the new group of subjects andthe holistic subjects, the reaction-time

patterns are consistent with holistic processing. Many features of the data for the

analytic subjects are consistent with this pattern as well. In particular, the relative

speed of the ‘‘same’’ response and the insensitivity of ‘‘different’’ times to

dissimilarity between the standardandthe test faces (for D2 through D5 probes)

suggest that these subjects have adopted a holistic comparisonstrategy as a result

of the configural properties of the stimuli. The only aberrant datum point, under

this account, is the elevated reaction time of analytic subjects to the highly

similar D1 category of test probe. The reasonsforthis elevation are notclear, but

we take the overall pattern of results from this experimentas preliminary, if not

compelling, evidence that variables of stimulus structure can change analytic

processing to the holistic mode.

There is a possible artifactual explanation for the data in Fig. 2. 13 that

attributes the flat reaction-time functions to a floor effect on the speed of the

“‘different’’ response. That is, any humanface is sufficiently dissimilar from any

other human face that our manipulation of rated similarity does noteffectively
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FIG. 2.13. Meanreaction timeplotted as a function of type oftest probe for the
face-comparison experiment. The function labeled *‘new’’ showsthe data of sub-
jects who had not beentested in the screening experiment. Functions for holistic
and analytic subjects are also shownseparately.

achieve a similarity continuum that could affect response times. We are not
inclined to favor this explanation for one central reason. In the multidimensional
pattern experiment, the test stimuli were also highly dissimilar from the standard
patterns at all levels of difference. And in that experiment subjects also re-
sponded quite rapidly and with virtually no errors. However, reliable decreases
in ‘‘different’’ response times were obtained. The pointis that if a floor effect
were to operate under the current conditions of high test-probe discriminability,
then it should also have operated in the multidimensional pattern experiment.

Onefinal but very tentative finding argues againsta floor-effect interpretation
of the face-comparison experiment. In a pilot study, we havetested subjects with
the same stimuli turned upside downin an effort to destroy the strong configural
properties of human faces. In this situation, we appear to be obtaining ‘‘dif-
ferent’’ reaction-time functions that decrease with increasing rated dissimilarity
between standard and test faces. Considerably more work is necessary to
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strengthen this finding, so at present it should be taken only as suggestive.

However, the constellation of results from the face-comparison experiment is

consistent with the idea that analytic processing can be changed to holistic

because of variations in stimulus structure.

Changing ResponseCriteria: The Identity Versus Similarity Experiment. In

all of the aforementioned experiments, the visual comparison tasks involved

deciding whether a test shape was identical to a standard or different in any

respect. In a recently completed experiment (Cunningham, Cooper, & Reaves,

1980), we have studied the effect on both holistic and analytic processing modes

of changing the comparison decision from one of identity versus nonidentity to

one of similarity versus nonsimilarity. Specifically, in certain conditions of the

experiment, subjects were required to expand their ‘‘same’’ response category to

include not only pairs of visual patterns that were identical but also pairs that

were similar.

The stimuli used in this experiment were the ‘‘free form’’ visual patterns

originally generated by Shepard and Cermak (1973). A typical set of shapes from

our experiment is shown in Fig. 2.14. Briefly, the forms are generated by a

9
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EXPERIMENTAL CONDITION(ID, SM, AND LG) 
FIG. 2.14. Examples of the stimuli used in the similarity experiment and an

explanation of the experimental conditions. For each condition, the correct re-

sponse is shown under each form, giventhat the first or standard form presented on

the trial was the one labeled **‘O.”’
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mathematical function; by gradually changing the parameters of the function,
changes in the shape of the form can be produced. We varied two parameters,
using nine levels of each, thus generating 81 different forms. Shepard and Cer-
mak (1973) have demonstrated that as the mathematical parameters of the forms
are varied smoothly, the perceived similarity of the forms also varies smoothly.
For the shapes in Fig. 2.14, a single parameter is changed step by step to
transform the form on the left into the form on the right. The leftmost form in
Fig. 2.14 was one of nine standard shapes, and the other four forms can be
identified by the numberof steps in the parameter space separating each from a
given standard. The greater the numberof steps separating two forms, the greater
will be their dissimilarity in shape. In our experiment, one of the nine standard
shapes waspresented, followed by a test shape that could either be identicalto
the standard or could differ from the standard by one, two, three, or four steps in
the parameter space.

The basic manipulation concernedthecriterion required for deciding that two
forms were the sameor different. The bottom of Fig. 2.14 depicts how correct
response type varied with experimental condition. In one condition, labeled ID
(“‘identity’’), the correct response was ‘‘same’’ only if the test form wasidentical
to the standard and ‘‘different’’ otherwise. In the SM (<‘small difference’’)
condition, the subjects were requestedto give a positive or ‘‘similar’’ response if
the test form was identical to the standardorif it differed by only one step in the
parameter space. If the pair of forms differed by two, three, or four steps, then a
response of ‘“‘different’’ was considered correct. In condition LG (‘‘large dif-
ference’’), the correct response was ‘“‘similar’’ if the pair of forms differed by
two or fewer steps and ‘‘different’’ if the pair differed by three or four steps.
Trials were blocked by experimental condition, and three holistic subjects and
three analytic subjects weretested.

The purpose of this experiment was twofold. First, we hoped to replicate the
essential features of the group-performancedifferences in the identity condition,
which has the same characteristics as earlier visual comparison experiments but
uses different stimulus materials. Second, we hopedto observe precisely how the
two processing modes would respond to the inclusion of the similarity condi-
tions. One possibility was that the holistic subjects might experience difficulty in
adjusting their responsecirteria in the similarity conditions becausetheir positive
responses are presumed to result from a search for ‘‘sameness.’’ The analytic
subjects might find the transition easier in that they might be able to abstract
some feature defining the similarity sets.

Figure 2.15 presents one depiction of the reaction-time data from this experi-
ment, plotted as a function of distance between the standard and the test form
separately for the two subject groups and three experimental conditions. Note,
first, that the function labeled ID replicates our earlier visual comparison experi-
ments. For the analytic subjects, ‘‘different’’ reaction time decreases sharply
with increasing dissimilarity between the standard andthetest Shapes, ‘‘same’’
responses (and, indeed overall response times) are rapid, and ‘‘different’’ re-
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FIG. 2.15. Mean reaction time plotted as a function of the distance between the

standard and the test probe in terms of steps in the parameter space for the

similarity experiment. Holistic and analytic processors are shown in the two

panels; the three experimental conditionsare plotted separately within each panel.

sponses do not vary significantly with increasing dissimilarity (although slight

decrease is apparent). Furthermore, there are considerable group differences in

performancein the similarity conditions (SM and LG), butthese differences are

difficult to interpret.

There is a way of viewing the change produced by experimental conditions

that leads to a slight reconceptualization of the underlying visual comparison

processes. Consider,first, the holistic subjects. The slight effect produced by

variation in experimental conditions (Fig. 2.15) could be interpreted as resulting

from a changein the location of the criterion used to distinguish similar forms

from dissimilar forms. Underthis account, the criterion expressed assteps in the

parameter space between a pair of forms would be between zero and one for the

identity condition, between one and twofor the small difference condition, and

between two andthree for the large difference condition. If the reaction-time data

are replotted as a function of the difference between the criterion and the number

of steps separating a pair of forms for each condition and each subject group,

then Fig. 2.16 results.

It is clear from Fig. 2.16 that the functions for all three conditions for the

holistic subject group are essentially superimposed. These data are consistent
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FIG. 2.16. Mean reaction time plotted as a function of the distance from the
criterion for the similarity experiment. Holistic and analytic processors are shown
in the two panels; the three experimental conditions are plotted separately within
each panel.

with the idea that the holistic subjects are using the same type of comparison
process in all experimental conditions. What is changing from condition to
condition is the location of the criterion. These data do show a small effect of
distance from the criterion and direction of distance from the criterion on both
positive (‘‘same’’ or ‘‘similar’’) and negative (‘‘different’’ or *‘dissimilar’’)
response times. Perhaps the output of the holistic comparison process in this
situation is some overall measure of discrepancyor similarity between the pair of
visual forms. That overall measure must then be compared with somecriterion to
determine the appropriate response. Some amountof time is needed to makethis
comparison, and that time might increase as the criterion and the measure be-
come closer in value. Of course, this accountis speculative. However, it does
explain the main features of the holistic subjects’ data in Fig. 2.16, andit retains
the important idea that the performanceofthe holistic subjects is the outcome of
a unitary comparison process.

The situation is considerably different for the analytic subjects shown in the
right-hand panel of Fig. 2.16. The transition from identity to similarity decisions
has a dramatic effect on this group’s performance.In particular, overall response
time becomesfaster when making the similarity decision, and response times are
less affected by dissimilarity between the standard and test form than in the case
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of the identity decision (see Fig. 2.15). It is tempting to interpret these data in the

following fashion: In the identity condition, these subjects use their natural

difference-detection process in order to achieve the same-different decision.

However, when required to make similarity-dissimilarity decisions, analytic

difference detection proves to be an ineffective strategy. This is because the

analytic process no longer provides information concerning the correct response.

That is, even if information concerning the location of differences between the

standard and the test shape is found, the correct response could still be either

positive (‘‘similar’’) or negative (‘‘dissimilar’’). The suggestion is that these

subjects drop the difference-detection process in favor of holistic matching in the

similarity conditions. Hence, they show further evidence of processing flexibil-

ity. This accountis certainly consistent with the similarity of their performance to

that of the holistic subjects in both the small difference and large difference

conditions.

However, several aspects of the data pose problemsfor these interpretations.

First, the analytic subjects—although showing a pattern of performance similar

to the holistic subjects in the similarity conditions—never achieve the overall

speed of the holistic subjects. Second, it is somewhat paradoxical that the ana-

lytic subjects show considerably slower reaction times in the large difference

condition than in the small difference condition. Given the accountof the holistic

subjects’ behavior, we should expect these response conditions to be of approxi-

mately equal speed.

Figure 2.17 illustrates error rates in this task as a function of the dissimilarity

between the standard and test forms, separately for each subject type and each

experimental condition. Note that the patterns of errors are approximately the

same for both types of subjects and thatthe errorrates in the identity condition

replicate those found in earlier visual comparison experiments. Note, too, that

the error rates are quite high, suggesting—particularly in the similarity

conditions—that this was a difficult task. However, these substantial errorrates,

especially for the analytic subjects, cast doubt on the floor-effect explanation for

their performance in the face-comparison experimentdiscussed earlier. For even

in the presence of high error rates that vary with dissimilarity between stimulus

pairs, trends toward reaction-time performance showing a smaller influence of

these variables were obtained.

In summary, this experiment has provided converging evidence (in the iden-

tity condition) concerning the basic patterns of performancethat distinguish our

two subject groups. In addition, it has provided a wealth of evidence concerning

how the two basic strategy types respond to changesin criteria for classifying

visual patterns. Ourinitial expectation that the holistic processing mode would

break down under conditions of similarity decisions was not confirmed. Instead,

these subjects persisted in using a single comparison process for all conditions.

However,analytic subjects appeared to drop their preferred difference-detection

strategy when that strategy clearly yieldedlittle information useful for selecting
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FIG. 2.17. Mean percentage of errors shownas a function of distance, in terms
of steps in the parameter space, between the standard andthetest probe for the
similarity experiment. Holistic and analytic subjects are shownin the two panels;
the three experimental conditionsare illustrated separately within each panel.

the appropriate response. Again, persistence and change in patterns of perfor-
mance have provided useful evidence concerning both the nature of visual com-
parisonstrategies and the flexibility of these Strategies in the face of task manipu-
lations.

General Comments and Future Directions. The overall goals of this phase
of our research program havebeento establish clearly individual differences in
natural strategies for performing visual comparisons andto explore the manipula-
tion of these strategies in the face of various task demands and modifications of
stimulus structure. The general conclusionis that Strategy selection does repre-
sent a stable individual difference but that the use of one strategy or another can
be influenced by a variety offactors. Specifically, some holistic subjects adopt
the analytic mode when explicitly or implicitly requested to search for stimulus
differences. They can also easily switch to an analytic strategy when stimulus
structure prevents the use of a holistic comparison. The analytic Strategy for
visual comparison appears to be moredifficult to modify. However, someevi-
dence was presented suggesting that configural stimulus structure encourages
holistic processing in analytic subjects. In addition, these individuals adopt the
holistic mode when an analysis of stimulus differences does not provide suffi-
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cient information for making a correct response. Under these conditions, how-

ever, the efficiency with which analytic subjects can use the holistic mode is

inferior to the efficiency with which holistic subjects use their natural strategy.

This phase of the research program, directed toward questions of strategy

modification, is continuing. For example, we are currently examining the possi-

bility that the analytic comparison process serves a nonobligatory ‘‘checking’’

function. The experimental context that we haveselected is one in whichsubjects

must make visual comparisons under conditionsof time constraint. By examin-

ing patterns of speed-accuracy trade-off under a variety of deadlines for respond-

ing, we hopeto assess: (1) whether or not analytic processors will use a holistic

strategy when there is insufficient time for difference detection; and (2) the

efficiency with which they can engage in holistic comparisons.

Weattribute considerable significance to the fact that stable differences in

performance can be foundin even the ‘‘simple’’ visual comparison situations that

we have been studying. For purposes of developing process models for these

cognitive tasks, an analysis of the conditions that lead to changes in individual

patterns of performance has provided a powerful tool for furthering our under-

standing. The existence of individual differences in strategies for performing

simple visual processing tasks strongly suggests that the success of efforts to

understand performance in solving complex spatial problems will depend criti-

cally on an adequate analysis of strategic variation.

Individual Differences

in Visual Memory Representation

In the foregoing experiments, the assumption has been madethat the locus of

individual differenceslies in the nature of the process used to compareaninternal

representation of a visual pattern with another external visual shape. In this

section, we consider the possibility that individuals may also differ in the way in

which they encode and representvisual patterns in memory. The specific sugges-

tion we makeis that subjects differ in the extent to which they represent patterns

in terms of higher-order, organized visual units and how such visual units are

used at the time of comparison.It is clear that no single experimentor set of

experiments can distinguish aspects of visual memory representation from as-

pects of the processes that act on such a representation because behaviorin any

experimental context may result from complex interactions between repre-

sentational characteristics and processing mechanisms. Indeed, Anderson (1978)

has recently argued that behavioral data cannot discriminate among proposed

alternative internal representations because in any experiment oneis simultane-

ously testing assumptions about the nature of the processes that operate on the

proposed representations to produce the behavioral outcomes. Nonetheless, we

believe that results of experiments presented in this section are at least consistent

with the notion that subjects differ in the way visual informationis organized in
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memory as well in the way represented information is compared with new visual
input.

The general idea motivating these experimentsis that individual differences in
the selection of visual comparisonstrategies may result in part from differences
in the nature of the memoryrepresentations on which the comparison strategies
must operate. Consider, first, the analytic comparison mode. The chief charac-
teristic of this strategy is the search for and detection of features that distinguish a
memory representation from a visual pattern. Such a comparison operation
would operate most efficiently on a memory representation in which visual
information was organized in terms of component parts or features of patterns.
Such a memory representation might not prove optimal for the operation of the
holistic comparison mode. Inasmuchasthe holistic Strategy does not involve an
analysis of differences between parts or features of visual patterns, but rather
performs an overall match searching for pattern identities, it may be moreeffi-
cient for the holistic comparison to operate on a memory representation consist-
ing of a low-level, unstructured specification of a visual pattern. The intended
contrast is between a memoryrepresentation of the subunits, parts, or features of
a visual pattern (with a comparison operation that accesses those component
parts) versus a memoryrepresentation of all the low-level information in a visual
pattern (with a comparison operation that examines such information simultane-
ously and globally). This view of the possible differences between the way
analytic and holistic subjects represent visual information in memory led us to
perform an experimentexploring the sensitivity of the two types of processors to
organization in visual patterns.

Probing Sensitivity to Visual Structure: The Part-Detection Experi-
ment. The experiment that we conductedto test these ideas was similar to one
reported by Palmer (1977), although Palmer’s study wasnot designedto investi-
gate individual differences. The stimuli were visual patterns made up of combi-
nations of six line segments, which varied in their rated ‘‘goodness.’’ Figure
2.18 illustrates examples ofpatterns judged as high, medium,and low in overall
goodness. Associated with each six-segment pattern was a set of two-segment
probe patterns. The two-segment probes also varied in their rated goodness as
parts of the six-segmentfigures. Examplesof high-, medium-, and low-goodness
probes for each of three patterns are shown in Fig. 2.19.

The subjects’ basic task was to determine as rapidly and as accurately as
possible whether or not a particular two-segment probe was contained in a
particular six-segment pattern. In one experimental condition, the pattern was
presented followed by the test probe. In another condition, the two-segment
probe was presented before the six-segment pattern. On half of the trials, the
probe wasin fact a part of the pattern; on the other half , the probe wasnota part
of the pattern. If the probe was not contained in the pattern, it could have either
no line segments in common with the pattern or one Segment in common. Six
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FIG. 2.18. Examples of six-segment patterns and corresponding two-segment

probes usedin the part-detection experiment. Patterns vary in their rated goodness;

probesvary in their rated goodnessasparts of the appropriate six-segmentpattern.

subjects—three who had beenpreviously classified as analytic and three who had

been classified as holistic—were tested.

Our basic idea was that certain two-segment probes—thoserated as ‘‘good”’

parts of the patterns—would correspond to natural organizational units of the

patterns. If a visual pattern were represented in memory in terms of its compo-

nent features or parts, then those units in the memory representation should

contain the good two-segmentpieces. (This is essentially the view advanced by

Palmer, 1977, for patterns similar to those shown in Fig. 2.18). We hypothesize

that the analytic subjects represent visual information in memory in terms of

features or part structures and that they use these units as a basis for comparison

with other visual patterns. This hypothesis leads to the prediction that, for these

subjects, verification of good two-segmentprobesas being contained in a pattern

should be easier and, hence, more rapid than verification of medium or bad

two-segment probes. This is because verification of a good probe only requires

comparison with a single unit in the memory representation of the pattern,

whereas verification of bad probes requires accessing multiple units, 2 which
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should take more time than the one-unit case. So, for the analytic subjects,
part-detection time should increase with increasing probe ‘‘badness.’’? An
additionalpredictionis that verification time should berelated to figure goodness
for this group because it is presumably easier to decompose good figures into
their componentpart structure than bad figures. That is, bad figures may not be
easily parsed into features or units. Thus, for the analytic subjects, these figures
prove difficult to represent in memory and use for purposes of comparison.
A rather different set of predictions was madefor the holistic subjects. We

hypothesized that these subjects do not incorporate the componentstructure of
patterns in their memory representations. A low-level, unstructured memory
representation of the patterns might consist of six independent line segments with
no further internal organization. How would such a memoryrepresentation func-
tion at the time of comparison? Presumably, each of the individual segments in
the representation of the pattern would be equally accessible and available for
verification against the probe segments. That is, inasmuchas nostructural sub-
units larger than individual segments are used for comparison, noset of segments
should be more difficult than any other to access from the memoryrepresenta-
tion. Indeed, this sort of a process—in which all parts of a memoryrepresenta-
tion function independently, are equally accessible, and are available simultane-
ously for comparison—is just what we mean by ‘‘holistic.’’ This view of the
holistic subjects’ memory representations and comparison operationsleadsto the
prediction that their verification times should notbe affected by probe goodness.
Nor should these times be affected by the goodnessof the overall six-segment
pattern.

The reaction-time results from this experimentare displayed in Figs. 2.19 and
2.20. In Fig. 2.19, mean reaction timeis plotted as a function of probe goodness
for each of the six subjects and separately for the two experimental conditions.
The three holistic subjects are shown in the top panels, and the three analytic
subjects are shown in the bottom panels. Consider, first, the results for the
probe-after condition in which the six-segment pattern was presentedfirst, fol-
lowed by the two-segmenttest probe. Figure 2.19 clearly shows that reaction
times for the three analytic subjects (4, 5, and 6) were influenced markedly by
the rated goodness of the probe as a part of the pattern. Figure 2.20 shows a
similar pattern—verification time increasing monotonically with decreasing part
goodness—whentimesare plotted as a function of figure goodnessfor the three
analytic subjects. Inspection of both figures reveals no such trends forthe three
holistic subjects (1, 2, and 3). For this group, verification times are virtually
constant forall levels of probe and pattern goodness. These results confirm our
expectations concerning the sensitivity of holistic and analytic processors to
variations in probe andpattern organization.

Of someinterest are the results for the ‘‘probe-before’’ condition in which the
two-segmentpart was presented before the six-segment pattern. Overall, reaction
times are faster than in the probe-after condition, and neither type of subject
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FIG. 2.19. Mean reaction time plotted as a function of probe goodness for each

of the six individual subjects in the part-detection experiment. Subjects 1, 2, and 3

are previously classified holistic processors; subjects 4, 5, and 6 are analytic

processors. Conditions in which the probe appeared before and after the six-

segment pattern are illustrated separately.

shows muchofaneffectof either figure or probe goodnessonverificationlatency.

(For some analytic subjects these variables affect reaction time, but the effectis at-

tenuated when compared to effects obtained in the probe-after condition.) It

makes sense that the effect of structural variables should be reduced in this

condition because only the two-segmentpattern part need be stored in memory.

Unlike the probe-after condition in which the entire six-segment pattern must be

represented (for the analytic subjects, in terms ofits component structural units),

there is no need to process the structure of the pattern in the probe-before

condition. Hence, there is no reason to expect that structural variables should

affect verification times whenthe pattern is presented after the two-segmentpart.

In summary, the data from this experiment are consistent with the idea that

holistic and analytic subjects may differ in the way they represent visual informa-

tion in memory as well as in the nature of their comparison strategies. Our

explanation for the pattern of results is that analytic processors represent visual

information in memory in terms of natural component parts or units. By

hypothesis, our good probesare containedin a single memorial unit, whereas bad
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FIG. 2.20. Mean reaction timeplotted as a function of pattern goodness for each
of the six individual subjects in the part-detection experiment. Subjects 1, 2, and 3
are previously classified holistic processors; subjects 4, 5, and 6 are analytic
processors. Conditions in which the probe appeared before and after the six-
Segment patterns are illustrated separately.

probes are contained in more than one unit. Thus, information about the good
probes is easier to access from the structured memory representations of the
analytic subjects than information about the bad probes, which might require the
decomposition and analysis of multiple units in the memory representation. For
the holistic subjects, who are hypothesized to have memory representations that
preserve no pattern structure at a level higher than the individual line segment, all
parts of the memory representation are equally available for comparison. Hence,
part and pattern goodness have noeffect on the time required to perform visual
comparisons.

General Comments and Additional Preliminary Results. In an experiment
still in progress, we are trying to assess possible limitations on the ability of
holistic subjects to represent in memory all low-level parts of a pattern indepen-
dently. We have reasoned that as visual patterns begin to approximate the true
structure of three-dimensional objects, that structure might become so compel-
ling that even the holistic processors would incorporate structural units in their

e— Probe
After

©--- Probe
Before
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memory representations of visual materials. Accordingly, we constructed stimuli

that are three-dimensional analogues of the two-dimensionalpatterns used in the

previously reported experiment. Examples of these perspective drawings of

three-dimensional objects are illustrated in Fig. 2.21. Ratings were obtained of

the goodness of two-, three-, and four-line-segment parts of these objects, and

we selected for use in the experimentparts that varied in their rated goodness as

units of the patterns. Examples of good and bad two- and four-segmentparts of

 
FIG. 2.21. Examples of standard formsused in the three-dimensional version of

the part-detection experiment.
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FIG. 2.22. Examples of good and bad two- and four-segment probes (corre-
sponding to the patterns shown in Fig. 2.22) from the three-dimensional part-
detection experiment.

the patterns shownin Fig. 2.21 are illustrated in Fig. 2.22. Subjects were shown
one of the perspective drawings of a three-dimensional object followed by a
two-, three-, or four-segment probe. Their task was to determine as rapidly and
accurately as possible whether the probe was contained in the pattern. Probes
contained in the patterns varied in rated goodnessaspattern parts, and probesthat
were not in the patterns differed from actual pattern parts by either an overall
structural translation or by a changein the placement of one line segment.
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Our prediction wasthat all subjects would be affected by the goodnessofthe

part probes in this situation. We reasoned that even the holistic subjects would

incorporate three-dimensional structure in their memory representations of the

visual patterns. That is, rather than representing the patterns as independentsets

of individual line segments, the portrayed three-dimensionality of the stimuli

might force the holistic subjects to representthe patternsas surfaces connected in

a particular structural relationship.

Although notall subjects have completed this experiment, preliminary results

have not confirmed our expectations. Already, there are clear indications of

individual differences, with analytic subjects showing a marked effect of probe

goodness on verification latencies and holistic subjects showing little if any

effect. There is also some evidence of complex trade-offs between reaction time

and accuracy, which weare currently analyzing in detail. However, these pre-

liminary results suggest that holistic subjects persist in representing visual pat-

terns in terms of low-level components rather than structural units, even when

those patterns portray three-dimensional objects.

A further question that we are exploring concerns the extent to whichinitial

encoding operations might differ for the two subject types. That is, does the

fashion in which visual informationis extracted from a pattern constrain both the

way that information is represented in memory and howthe information is used

for subsequent comparison?It is, of course, difficult to separate encoding oper-

ations from memoryrepresentation and comparison, but we are hoping to gain

some information on this issue by observing how the two subject types scan

visual patterns that are to be represented in memory.

Relationship of the Holistic-Analytic

Strategy Distinction to Other Sources

of Processing Differences

Having isolated distinguishablestrategies for representing and processing visual

information in comparison tasks, it seems natural to ask whether these particular

strategy differences are related to other global sorts of individual differences

reported in the literature. Although this has not been a major thrust of our

research program, two relevant experiments can be briefly described.

An information-processing dichotomy that has received considerable attention

during the past decade concerns the hypothesized specialization of activity of the

brain’s two cerebral hemispheres. Superficially, the terms used to characterize

hemispheric functions are quite similar to those applied to the alternative com-

parison strategies that we have been studying. Thatis, the left hemisphereof the

brain is thought to excel in abstract, analytic processing, whereas the right

hemisphere has been described as specialized for holistic, ‘‘Gestaltlike”’ activity

(see e.g., Patterson & Bradshaw, 1975). It is possible that the natural strategies



2. VISUAL COMPARISON AND REPRESENTATION 117

selected by our groups of subjects reflect preferred tendencies to rely on one
hemisphere or the other in performing spatial comparison tasks.
We addressedthis possibility experimentally by presenting visual information

briefly to a single half of the visual field. The idea was that presentation of
information to the left visual half field might encourage holistic processing
because the information would arrive initially to the right hemisphere of the
brain. Alternatively, information presented only to the right visual half field
might encourage analytic processing because that information would first reach
the left hemisphere.

The sameeight subjects tested in ouroriginal screening experimentpartici-
pated in this study. The stimuli were the random Shapes shownin Fig. 2.1, but
only four levels of difference were used. There were three types oftest trials,
randomly intermixed. Onalltrials, the initially presented standard shape was
shownin the center of the visualfield. Thetest shape that followed could appear
in the center of the field, in the left visual half field, or in the right visual half
field with equal probability. The test shape was presented for only 125 mil-
liseconds to insure that, under conditions of visual half field presentation, sub-
jects had inadequate time to shift fixation to thetest shape. Again, the notion
behind the experiment wasthat if holistic processing (as we havecharacterized
this mode) is mediated by theright hemisphere of the brain, then all subjects
should show appropriate holistic patterns under conditionsof left visual half field
presentation. If our form of analytic processing is mediated by the left hemi-
sphere, then all subjects should show appropriate patterns under conditions of
right visual half field presentation. However,the group performancedifferences
that we typically find should emerge under conditions of central presentation of
both standard andtest shapes.

The reaction-time results, plotted separately for each method of presentation
and for each of the subject groups, are shown in Fig. 2.23. Error data, displayed
in an analogousfashion, are shownin Fig. 2.24. The results are quite clear. For
all three presentation modes, the two subject groups exhibit the reaction-time and
error patterns that were originally used to define the difference in their processing
strategies. The only difference attributable to presentation methodis that analytic
subjects have shorter response times whenthe test shape is presented centrally
than for either type ofhalf field presentation. Neither of these findingsis particu-
larly surprising becauseacuity is better in the center of the visual field than in the
periphery. Hence, performance should be better under conditions of central
presentation. To the extent that this experiment is sensitive enough to pick up
potential differences in hemispheric processing, we concludethat there is no
obviousrelationship between our holistic-analytic distinction and the specialized
activity of the cerebral hemispheres.
A second information-processing dichotomy, which superficially seems re-

lated to the holistic-analytic distinction in comparison modes, has been proposed
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FIG. 2.23. Mean reaction timeplotted as a function of type of test probe for the

three different presentation modesin the laterality experiment.

by Hock and his associates (e.g., Hock, 1973; Hock, Gordon, & Gold, 1975;

Hock, Gordon, & Marcus, 1974). Hock’s research strategy has involved man-

ipulating aspects of stimulus structure in same-different comparison tasks and

then determining—for individual subjects—the extent of ‘‘same’’ reaction-time

differencethat results from the stimulus manipulations. Typical stimulus manipu-

lations might include whether twoletters are presented upright or upside down,

and whether they are presented in the sameor in different cases. The reaction-

time differences attributable to stimulus manipulations for each subject are then

correlated. Significant positive correlations are used to argue for individual dif-

ferences in modesof processing visual information. Hock has characterized the

differences in processing modes as follows: Subjects whose ‘‘same’’ responses

are influenced by stimulus variables are termed ‘‘structural’’ because their times

appear to be affected by aspects of stimulus structure. Subjects whose ‘‘same”’

responses are relatively less affected by stimulus variables are termed ‘‘ana-

lytic.’’

Hock’s experimental methods and techniques of data analysis are sufficiently

different from our ownto cast doubt onthe possibility of a relationship between

the holistic-analytic distinction and his proposed structural-analytic processing
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FIG. 2.24. Mean percentage of errors shown as a function of type of test probe
for the three different presentation modes in the laterality experiment.

difference. In addition, there is reason to believe that Hock’s evidence for group
differences is less than compelling. (See Carroll, 1978; Cooper & Regan, in
press, forcritical discussions of this evidence for individual differences in visual
information processing.) Nonetheless, we performed an experiment similar to
that reported by Hocket al., (1975), using four analytic and four holistic subjects
in an attempt to find individual differences corresponding to those obtained by
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Hock.Pairs of letters were presented on eachtrial, and subjects were required to

determine as rapidly as possible whether they were the sameordifferent in name.

The stimulus variables we manipulated were whether the same-nameletters were

presented in the same or in different cases and whether the letter pairs were

presented in the inverted or upright position. We also included three response

conditions: one in which a same-different choice response was required; one in

which only ‘‘same’’ responses were signaled; and one in which only ‘‘different”’

responses were signaled. The central outcome of statistical analyses of the data

showed no individual differences in the effects of the stimulus variables. Thus,

we conclude that this experimentdid not provide evidence supporting any corre-

spondence between ourholistic-analytic distinction and Hock’s suggested pro-

cessing dichotomy.

Other candidates for processing differences that might relate to our holistic-

analytic distinction are varieties of ‘‘cognitive styles,’’? such as ‘‘field

independence-field dependence’’ (Witkin, 1964) and ‘“mpulsivity-reflexivity’’

(Messick, 1976). We have not systematically investigated the possibility of such

relationships, but there is reason to believe that the impulsive-reflexive distinc-

tion taps something different from our holistic-analytic distinction. The

impulsive-reflective dichotomy is thought to reflect a tendency to attend to

global versus detailed aspects of visual stimuli. However, the performance pat-

terns that define the two styles involve trade-offs of speed and accuracy in visual

processing tasks. And,the holistic-analytic differences in reaction-time patterns

are obtained in the absence of differences in errors.

Of considerably greater interest than these processing differences are the

implications of holistic-analytic strategy differences for intelligence—in particu-

lar, spatial aptitude. The kinds ofvisual comparisons for which we have found

individual differences are certainly a component of performance on items con-

tained in tests of spatial ability. Indeed, process modelsthat have been developed

for performance on such items contain operations corresponding to encoding and

visual comparison. Furthermore, in his series of studies on spatial aptitude, Egan

(1976, 1978, 1979a, 1979b) has consistently found correlations betweenspatial

ability scores and intercept parameters of reaction-time functions, which in his

tasks provide measures of the times required to encode and compare visual

materials. One avenue that we intend to pursue in the future will involve an

analysis of the role of comparison operations in the solution of spatial aptitude

items. Ofparticular interest is the possibility that either the holistic or the analytic

processing mode has greater success in solving such itemsin terms of both speed

and accuracy. The pattern of results in our experiments seemsto suggest that the

holistic mode should be associated with greater success than the analytic mode

because holistic subjects perform comparisons more quickly without a sacrifice

in terms of error rates.

One form that such an investigation could take would involve correlating

parameters of performance on spatial aptitude test items with parameters that
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define the holistic-analytic processing distinction. This information will be use-
ful, but the central premise of our research program has been the importance of
strategy selection, use, and modifiability in processing visual information. In this
sense, our research program provides a framework for viewing sources of indi-
vidual differences, and we intend to apply this framework to the analysis of
spatial aptitude. That is, rather than generating models ofthe processing oper-
ations underlying performance on spatial items and then correlating model pa-
rameters with ability scores, we prefer to observe high- and low-ability subjects
solve the items and then attempt to characterize the strategies associated with
ability differences. Our notionis that strategic variation maybeat least as potent
a source of individual differences in ability as is the efficiency with which any
particular processing operation can be executed. So, our projected research ap-
proach to the area of spatial aptitude will involve intensive observation of sub-
jects solving a variety of spatial problems and a subsequentattempt to understand
differences in underlying strategies. Hopefully, it will then be possible to relate
Strategy selection and flexibility to both ability differences and problem charac-
teristics. We can then go onto ask the important question of whetherstrategies
can be modified for maximalefficiency in different problem environments. In
this sense, our goal in the aptitude area is the same as the goal of the program
described in this paper. We will be searching for qualitative individual dif-
ferences in performance and allowing those differences to generate models for
aptitude tasks, rather than assuming a model of the aptitude task and searching
for quantitative individual differences in task parameters.

CONCLUDING REMARKS

This chapter has provided a description of our research program on individual
differences in visual information processing. The differences between subjects
have been characterized as alternative Strategies for representing visual informa-

mance and to examinetheflexibility of these Strategies in the face of changesin
task demandsandstimulusstructure.

It has not yet been demonstrated that the holistic-analytic processing distinc-
tion relates to differences in human intelligence. Nonetheless, we view this
research program as providing a frameworkfor the study of humanability. It is
our contention that strategy selection and adaptability are important aspects of
ability. The research program reviewedin this chapter provides an example of
how an analysis of strategies can be accomplished. Finally, we see the research
program as providing indications of the importance of Strategies in an under-
standing of ability. For the fact that we have found qualitative processing dif-
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ferencesin relatively simple task environments suggests that the contribution of

strategic variation to individual differences in performance on complex problems

may be a substantial one.
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A Componential Theory of
Reading Skills and Their
Interactions

John R. Frederiksen

Bolt Beranek and Newman Inc.

GENERAL THEORETICAL FRAMEWORK

A componential theory of reading (or of any other complex performance) at-
tempts to identify a set of functionally defined information-processing systems or
components, whichin interaction with one another accomplish the more complex
performance—in this case, reading with comprehension. Componentprocesses
are defined by the types of data structures on which they operate (the domain or
situation in which they operate) and bythe specific transformations of those data
structures that result (the function or action performed). Components can be
thought of as corresponding to the production systemsofartificial intelligence,
which consist of situation-action pairs (Winston, 1979). Productions (and com-
ponents) are applied whentheir triggering situations occur. Their actionsalter the
internal data structures and therefore set the stage forstill other productions.
Productions (and components) are, in effect, always available for use and are
automatically applied whenever their defining input data structures make an
appearance.

An advantage of production-system theories is that no executive control pro-
cesses need be postulated. Components will be applied in sequences that are
determinedbytheir pattern of interaction,as it is determined by their joint effects
on a commoninternal data base. Thus, the controls over component operations
reside in the specification of the situations in which they are applied. For exam-
ple, in the theory of reading, a decoding process is postulated that has, as input,
an orthographic array consisting of encoded letters or multiletter units. This
process applies grapheme-phonemecorrespondence rules and results in a pro-
nunciation for the input array. The process cannot operate until its input situation

125
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occurs—namely, until letters and/or multiletter units have been encoded. Thus,

there is an automatic sequencing of processes for encoding orthographic units

and decoding. However, the encoding of multiletter units and the encoding of

individual graphemes both require as input a set of spatially distributed visual

features. These two components are, therefore, not sequentially organized.

In a componential theory, readers may be thoughtofas differing in the degree

to which productions (or components) have become automated (cf. Schneider &

Shiffrin, 1977; Shiffrin & Schneider, 1977). Automatic processes can operate

concurrently with other components, without degrading their efficiency of opera-

tion. In contrast, controlled (nonautomatic) processes make demandsongeneral,

shared processing resources; when they must operate concurrently with other

processes, performance is degraded. A skilled reader possesses many highly

automated components, whereas a less-skilled reader has a smaller number of

such components, which may be quantitatively less automated. However, the

specific components that lack automation may vary considerably within the popu-

lation of poorly skilled, young adult readers. Thus, although readers may be

reliably classified along a single dimension of ‘‘general reading ability,’’ the

actual sources of low tested ability may vary considerably from readerto reader.

Measurement of Components

A definition of a processing component such as the one we have presented has

immediate implications for the measurement, and thus the identification, of

components as determiners of readers’ performance. The precise specification of

a domainof operation allows: (1) the selection of a task that invokes the compo-

nent; and (2) the identification of stimulus variables whose manipulation will

alter processing difficulty with respect to the designated component. Contrasts

among task conditions can then be developed that represent the degree to which

performance is degraded as component-specific processing is rendered more

difficult. Measures such as these are theory based and are thus susceptible to

experimental validation or invalidation. Validity is established by showing that

the manipulation of task difficulty has produced the predicted change in perfor-

mance. Component-specific measures of individual performance are the values

of these contrasts obtained for individual subjects.

Example: Encoding Multiletter Units. Consider, for example, the process of

encoding multiletter units. Unit detectors are hypothesized to respond more

readily when:(1) units are of high frequency within English orthography; and (2)

units are in positions where they are likely to occur normatively (Mason, 1975;

Mason & Katz, 1976). Accordingly, an experiment was carried outto test the

effects of these variables on a subject’s speed in encoding and reporting multilet-

ter units. The display conditions were arrangedto insure that efficient perceptual
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processing would be required for task performance, while at the same time
allowing manipulation of these variables. Stimuli were four-letter items, pre-
ceded and followed by a 300 msecpattern mask, allowing an exposure duration
of 100 msec. Ona third oftrials, the items were common four-letter English
words, but, on the remainingtrials, two of the four letters were masked continu-
ously during the exposure, allowing only a single letter pair (a bigram) to be
available for encoding. Thecritical bigrams wereeither of high or low frequency
(T > 260 or T < 75 in the Mayzner & Tressault, 1965, tables), of high or low
positional likelihood (with a priori conditional probabilities of being presented in
the tested position, P[Position/Bigram] > .55 or < .10), and they were presented in
either the initial, middle, or final position within the array. The subject’s task
was to report all letters as soon as possible.

For the least skilled readers (those who scored below the 48th percentile on
the Nelson-Denny Reading Test), performance was found to depend on the
frequency and positional likelihood of the stimulus bigrams, as had been pre-
dicted. For these subjects, high-frequency bigrams were encoded an average of
41 msec faster than were low-frequency bigrams, andinitial brgrams were en-
coded 39 msec faster when they werelikely to appear in that position than when
they were unlikely to appear there. Comparable figures for a middle group of
readers (scoring between the 48th and 77th percentiles) were 35 msec and 20
msec, whereas those for a high-ability group (scoring at or above the 85th
percentile) were essentially zero—.3 msec and 4.2 msec. The experimental
variables thus had the predicted effects on performance, particularly for those
readers who were least likely to have automated perceptual skills for encoding
multiletter orthographic units.

When,as in this example, mean performancefor the various task conditions
has followed the predicted pattern, a second criterion for validation of the com-
ponent can be applied. This criterion serves the purpose of establishing that
individuals differ reliably in measured levels of performance on the given com-
ponent, even when alternative measurement operations—that are in theory
equivalent—are employed. In this next step, two or morecontrasts among task
conditions are chosenthat: (1) are experimentally independent; and (2) produce
changes in processing difficulty with respect to the particular component. These
contrasts, calculated for the individual subject, constitute alternative indices of
component-specific performance. As such, they must show construct validity,
they must be positively correlated with one another (convergent validity) and, at
the same time, show consistent patterns of correlation, or lack of correlation,
with measures of other components (discriminant validity). The theory thus
generates an explicit hypothesis about the componential complexity or structure
for a set of measures, and this hypothesis (termed a measurement model) is
amenable to statistical evaluation through the use of confirmatory maximum-
likelihood factor analysis.
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Overview of ComponentSkills in Reading

The two methods for validation of component-specific measures—verifying ef-

fects of task manipulations on task difficulty and analyzing correlations among

measures in fitting a measurement model—have been applied to three major

processing areas in reading. In Fig. 3.1, these three major processing levels are

described and their interrelations represented. The unit of informational analysis

is the single fixation, which makes a set of words or phrases available for

processing. At the momentof fixation, the reader can apply to the information

obtained within the fixation: (1) a set of word-analysis processes; (2) a discourse

model generated from previous text by discourse-analysis processes; and (3) an

ability to combine information from word and discourse sources by what we term

integrative processes. As indicated in the figure, we suggest a set of component

processes that constitute each category.

Word-Analysis Processes

Word analysis includes processing components involvedin the perception of

single-letter and multiletter orthographic units, the translation of orthographic

information into a phonological representation, the assignment of appropriate

speech patterns (e.g., stress, pitch, contour) to such translated units, and the

depth of processingin retrieving lexical categories. Note that the defining charac-

teristics of these word-analysis processesis that they are all limited to processing

information available within a single word.

Discourse-Analysis Processes

Discourse-analysis processes are used for analyzing lexical and structural

information at a text level (rather than at the word level) for the purpose of

constructing a text modelthat represents the reader’s understanding. These com-

ponentprocessesincluderetrieving and integrating word meanings, constructing

a propositional base (including analysis of noun groups and establishing case

relations), analyzing cohesive relations among sentencesor propositions, resolv-

ing problems of reference (anaphora and cataphora), constructing inferential

elaborationofthe text structure, and relating the text structure to prior knowledge

of the subject matter.

Integrative Processes

At the moment of visual fixation, the reader has available: (1) perceptual,

phonological, and structural information about lexical items included in the

fixation; and (2) semantic, conceptual, and pragmatic knowledge resulting from

the analysis of prior discourse. Integrative processes permit the reader to com-

bine information from these multiple sources, yielding a set of lexical identifica-

tions for the fixated items. The components of the integrative processes are

directly related to the sources of available information. They include the extrapo-



3. A COMPONENTIAL THEORY OF READING SKILLS 129

INTEGRATIVE PROCESSES

@ Generating Extrapolations From Text Model

@ Combining Information From Perceptual and
Contextual Sources For Lexical Retrieval

@ Retrieving and Integrating Word Meanings
With Text Model

   

  
  

  

  

EFFECT: To ReduceLevel EFFECT: To Increase
of Word Analysis Required Confidencein the Text Model:
for Lexical Retrieval To Induce a Text-Sampling

Strategy

INFORMATION PASSED INFORMATION PASSED
Perceptual: Semantic
Phonological Conceptual

Propositional

   

WORD ANALYSIS PROCESSES DISCOURSE ANALYSIS PROCESSES

@ Parsing Sentence Constituents

  

   

  Grapheme Encoding

@ Conceptual Analysis of
Constituents

 

Encoding Multigraphemic Units

   Translating Graphemic Units to
Phonemic Units   @ Analysis of Case Relations  

 

@ Recursive Sentence Processing

 

@ Assigning Appropriate Speech
Patterns to (Multi) Word Units
(e.g., Intonation, Stress, Fluency)

 

@ Establishing Cohesive Relations
Among Propositions

   

   

Retrieving Lexical Categories Text-Based Inferential Processing     
FIG. 3.1. Categories of reading processes andthe nature oftheir interactions.

lation of the discourse model in terms of generating semantic-syntactic forms,
which can be expected to occurin the text that follows, andthe utilization of this
information—this preactivation of nodes within memory—so as to makelexical
identifications more readily. The generative process may, in a skilled reader,
resemble the spread of activation postulated by Collins and Loftus (1975). The
integrative utilization of perceptual and semantic information requires a
mechanism such as the logogen, postulated by Morton (1969).

In Fig. 3.1, we have attempted to show how capability with integrative
processing can lead to improvedefficiency of processing within both the word-
analysis and discourse-analysis categories. For example, by using semantic con-
straints, the amount of orthographic encoding and analysis required for word
recognition could be reduced, and the tendency to encodein phrasal units could
be increased. In addition, success in generating hypotheses regarding semantic-
syntactic aspects of future text could increase readers’ confidence in the text
model they have created. This in turn could lead to an increased tendency by
readers to use a sampling strategy as well as a decrease in the amount of text
required for establishing the adequacy oftext analysis.
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Forms of Component Interaction

Within or between these processing areas, components can interact by virtue of

their effects on the commoninternal data base andtheir usage of shared process-

ing resources. Together, these mechanisms provide for a numberoffunctionally

determined types of component interaction (Table 3.1).

Functionally Determined ComponentInteractions

Data-Linked Components. Components can interact by virtue of their oper-

ating on a common memorystore. For example, two components may require

commoninput information structures but may operate independently otherwise.

Such components are linked through correlated input data. Other components

mayin their operation construct inputdata structures that are neededbystill other

components. Their operation will thus determine the usage of the later-occurring

processes, so that together the components form a processing hierarchy. If two

processes run concurrently, but the second process improves in efficiency and

quality of output as the first process runs further to completion, the processes are

called cascaded processes (cf. McClelland, 1978). If the operation of the second

process depends on data structures created bythe first process running to comple-

tion (or to some fixed point), the processes are dependent processes. Finally,

concurrent processes may both operate on a common data store and, if attendant

changesin the data store caused by one process facilitate (or otherwisealter) the

operation of the other, then the components are mutually facilitatory.

TABLE3.1

Types of ComponentInteractions

a

I. Functionally determined interaction

A. Data-lined components

1. Correlated input data

2. Cascaded processes

3. Dependent processes

4. Mutually facilitatory processes

B. Process-linked components

1. Shared subprocesses

2. Shared control processes

C. Resource-linked components

1. Dueto general processing capacity

2. Shared memory access/retrieval channels

3. Limited capacity working memory

Il. Nonfunctional sources of process intercorrelation

A. Etiologically linked components

1. Reflecting a learning hierarchy

2. Reflecting effectiveness of learning environments

B. Reflecting general, biologically determined ability

i
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Process-Linked Components. Components can also interact by virtue of
their mutual dependence onthe operation of other componentprocesses and such
components are termed process-linked components. For example, two compo-
nents might require a commonor shared subprocess for their execution. Alterna-
tively, two components might be invoked by a single, shared control process.
(This latter case is formally a special case of processes linked through correlated
input data; here of course the emphasis is on the third component, whichcreates
the required data structures.)

Resource-Linked Components. A third form of functionalinteraction among
components occurs when two or more components must compete for commonor
shared processing resources. Such components are called resource-linked com-
ponents. Shared resources might include use of a limited Capacity processor,
shared memory access/retrieval channels, or limited capacity working memory
(cf. Perfetti & Lesgold, 1977, 1979). When two processesare in competition for
resources, increases in the automaticity of one processwill free resourcesfor the
second process.

Each of these types of functional interaction among components constitutes a
possible source of correlation among components.If a componential theory of
reading is to be complete, it must delineate these forms ofinteraction and thus
account for correlation among measured components. Theories of component
interaction—presented as explicit hypotheses concerning the manner and nature
of component interactions within the processing system—can be stated and
evaluated by defining a set of structural equations that accounts for the links
among components. (Bentler, 1980, has provided a clear accountof structural
equations and their use in psychological theory.) Estimation of parameters of
these equations, as well as a test of goodness of fit, are possible through an
application of Joreskog’s Analysis of Covariance Structures (ACOVS) program
(J6reskog, 1970) or LISREL (Joreskog & Sérbom, 1977).

Nonfunctional Sources of Covariation
Among Components

In addition to these functional sources of componentinteractions, there are
nonfunctional sourcesof intercorrelation among components. These include cor-
relations due to etiological factors—the circumstances under which processing
components are acquired—and other, biological factors. For example, compo-
nent reading skills might be sequenced in instruction. Differential access of
pupils to effective learning environments would constitute a second etiological
source of intercorrelation among components. A third nonfunctional source of
process interaction, and probably the most controversial, is the notion of a
general, biologically determined propensity for acquiring certain classes of com-
ponent processes. Evidence for these etiological sources of reading skill are
found in the presenceofpersistent backgroundcorrelations among components
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that remain after specific theoretically hypothesized and functionally determined

interactions have been taken into account. Thestatistical proceduresfor analysis

of covariancestructures allow us to verify the presence or absence of such back-

ground correlations by permitting usto fit alternative structural models that by

hypothesis allow or disallow such background covariation. As with anystatistical

test, the results permit us to accept or reject the hypothesis of background inter-

correlation among components, or they indicate an inconclusive outcome.

STRUCTURAL MODELS AND THE ANALYSIS

OF COVARIANCE STRUCTURES

Components can be correlated due to any of these functional sources of interac-

tion amongprocesses orto other nonfunctional, etiological factors. My purpose

here is to show how hypotheses concerning componentinteractionscan be repre-

sented as a set of structural equations. These equations can be used to generate,

in turn, an hypothesized covariancestructure falling within the family of models

dealt with in ACOVS (Jéreskog, 1970) or LISREL (Joreskog & Sd6rbom, 1977).

Since 1965, I have beenintrigued with the possibility of using confirmatory

maximum-likelihood factor analysis as a tool for testing theories of human cogni-

tion. In particular, I have been interested in developing measurement systems

with theoretical underpinnings that thoroughly constrain the parameters of the

second-order factor model (e.g., Joreskog, 1970):

Y=BAOA' BP’ + O?. 3.1

In this equation, { denotes the variance-covariance matrix (usually the correla-

tion matrix) for a set of componentially specific measures. B contains parameters

of the measurement model. Each row of GB represents a single measure, and the

columns correspond to components or, in the older language, factors. A nonzero

entry in the ith row and jth column of B indicates that the measure i is, by

hypothesis, determined at least in part by the level of skill in component j.

Matrix 6? is a diagonal matrix containing unique (or error) variance associated

with each of the measures. If we define

px =ADA’, 3.2

Equation 3.1 can be rewritten as:

L=BO*B +O 3.3

where ®* containsthe intercorrelations among the measured components. This

equation is that of a first-order factor model and is used in testing an

hypothesized measurement model. Equation 3.2 relates intercorrelations among

measured components to parameters of the interactive model. The specification

of a structural model for componentinteractions leadsto a series of constraints on

the matrix A. (How this is done is described later.) The matix ® contains
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background intercorrelations among components, after removing correlations
due to theoretically proscribed componentinteractions.

In summary, each of the matrices in Equation 3.1 correspondsto a different
aspect of our problem:the relation of observed variables to components in a
measurement model (8), the forms of componentinteraction as represented bya
set of structural equations (A), and the presence of background correlations
among components (®). By constraining parameters within each of these ma-
trices in the general model, one cantest these different aspects of the componen-
tial theory.

Evaluating the Measurement Model

Fixing parameters of 8, while allowing the factors—measurements of
components—tointercorrelate freely (i.e., by regarding all elements of ®* to be
free parameters), permits us to test a measurement model. Comparative model
fitting is accomplished by varying the hypothesized structure of £8. No assump-
tions about componentinteractions are necessary at this Stage.

Testing Structural Models

Measured performance on a component j (7;) is resolved within the structural
equation system into: (1) that which is contributed by measured performance on
other components (y;, k # j); and (2) that which is contributed by unique skill
on the jth componentitself (¢;). These relationships are expressed in a linear
structural equation relating performance on componentj to each of these con-
tributory sources:

15) = % Sx Ne + 85 3.4ki
where 6;, = 0 if component k does not directly influence performance on
component j, and 6;, # O where specific interactions among components are
postulated. After specifying the pattern of componentinteractions by specifying j
equations of form 3.4, the resulting set of equations is rewritten so as to express
each of the ¢’s (the unique components) as a linear function of the 7’s (the
measured components). These equations can then be combinedin a single matrix
equation:

DE=Ayn 3.5

where D is a diagonal matrix whose jth element is §,;, A is a Square matrix
having diagonal elements 1 and off-diagonal elements —6;x, and ¢ and 7 are
random vectors representing unique and measured components, respectively.
Since in the factor model of Equation 3.1, measured components must be ex-
pressed as linear combinations of unique components, Equation 3.5 must be
solved to give:

Hn =AtUDE=AE. 3.6
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Thus, the parameters of the structural equation system are related to those of the

factor model by the relation A = A! D. The covariances among the measured

components are then given by:

E (ACC'A’) = AE(CGC') A! = APA’, 3.7

where ® contains the covariances among unique components.

The structural model for componentinteractions is identifiable if elements of

A and D (the 5’s) are a computable function of the values in A andif there are a

sufficient number of fixed parameters in A to allow a unique solution. Identifi-

able models may be tested by appropriately constraining the elements of A and

using ACOVS(Joreskog, 1970) to fit Equation 3.1. The estimates of free param-

eters in A are then used to calculate the required values for the 0’s.

Testing Background Correlations Among Components

Hypotheses concerning the presence of background correlations among compo-

nents can be evaluated by comparing a model in which the unique components

are uncorrelated (® = J) with one in which correlations are allowed (© # J). In

performing thesetests, the structures of § and of A are, of course, determined by

the measurement and structural models. If the model provides an acceptable fit

with ® = J, it may not be necessaryto test the alternative.

In the remainderof this chapter, each of the steps we have described is applied

to data obtained from our study of the components of reading. First, the mea-

surement tasks developed for each of the three general skill areas are described.

For each skill domain, the procedures for testing and fitting a measurement

model are presented. The validity of the resulting measurement models is estab-

lished through comparative modelfitting. By testing a series of alternative mea-

surement models, which differ from the hypothesized model in particular fea-

tures, the critical characteristics of a ‘‘correct’’ model are established. Finally, I

describe and apply the procedures for developing andtesting structural theories

of component interaction. Structural models are first presented for the word-

analysis domain and thenfor the integrative and discourse-analysis domains. The

status of ‘‘general reading ability’’ as a construct can be evaluated in light of

these structural models.

COMPONENTIAL ANALYSIS OF READING SKILLS

Subjects

Subjects in this study were 48 readers of high school age chosen to represent a

wide range ofability. They were recruited from two schools, an inner-city school

and a suburban school. Subjects were selected to represent a wide range of

reading ability, as measured by percentile ranks on the Nelson-Denny Reading
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Test. Each potential subject was administered the entire Nelson-DennyTest: a
vocabulary test, a timed reading passage, and a series of comprehension items.
Their total score was the sum of the vocabulary and comprehension scores. The
final distribution of total scores for four groups of 12 subjects was as follows:

1. Group 1. 11th-47th percentile.
2. Group 2. 48th-77th percentile.
3. Group 3. 85th-97th percentile.
4. Group 4. 98th percentile or greater.

Characteristics of the Reading ComponentsBattery

In the course of eight experiments conducted over the last 3 years (see Frederik-
sen, 1977, 1979, 1980), a series of computer-administered tasks has been de-
veloped, each of which appears to meet the conditions we have set for
component-specific measurement: (1) each task clearly involves processing as-
sociated with a specified component; (2) its design permits the manipulation of
task characteristics in ways that will alter difficulty with respect to the involve-
ment of the particular component; and (3) it has received experimentalvalidation
in that mean performance has been shownto vary in the predicted manner with
changes in task characteristics. The Reading Components Battery is made up ofa
subset of the tasks and measures developed in the previous set of experiments.
The tasks and measures are grouped under three general skill areas: word
analysis, discourse analysis, and contextutilization.

The Measurement Model for Word-Analysis Tasks

The experimental tasks used in studying word-analysis componentsare listed
in Table 3.2, along with the measures derived from each task. These measures
were chosen for their componential specificity, and the components they repre-
sent are also indicated in the table.

Anagram-Identification Task. Subjects were presented with a briefly ex-
posed four-letter stimulus array, followed by a masking field. Stimuli were
high-frequency words (salt), pseudowords (etma), or unpronounceable nonword
anagrams (rtnu). Sixteen items of each type were presented at each offive
durations, which ranged from 5 to 45 msec. For each exposure, we measured the
numberof correctly reported letters (the order of report wasdisregarded). A logit
transformation of the numberof letters correct N., log [N./N — N,)], when
plotted against exposure duration, yielded a linear function. Fitting straight lines
to this plot provided two descriptive parameters: a location parameter and a slope
parameter. The measure employedin the present analysis was the slope parame-
ter: the rate of increasein letter information encoded during an anagram display,
measured in logits per second. Rates of encoding anagrams were foundto differ
for the four groups of readers. They were 364, 378, 406, and 443 logits/sec,
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TABLE 3.2

Reading Components Battery:

Word-Analysis Tasks and Measures
a

 R

Experimental Task Derived Measures Components®

NN

A. Anagram Identification: 1. Rate of letter encoding, inferred I

Subjects report letters seen within from increasein logit (Prob. Cor-

a briefly presented, masked rect) per unit increase in

display containing four-letter exposure duration.

anagrams.

B. Posner Letter Matching: 2. RT (Aa) — RT (AA). J

Subjects respond sameordifferent

on basis of similarity of letter

names.

C. Bigram Encoding: 3. Increase in RT for low-frequency II

Subjects report letters seen within compared with high-frequency

a briefly presented, masked bigrams.

display containing four-letter 4. Scanning Rate: Increase in RT I, u

words;oncriticaltrials, all letters for each shift (left to right) in

except a single bigram are bigram position.

simultaneously masked. 5. Increase in RT for bigrams II

having low positional likelihood.

D. Pseudoword Pronunciation: Increase in vocalization onset latency

Subjects pronounce pseudowords _for:

that vary in orthographic structure 6. Digraph vowels compared with Il

(in length, syllables, and vowel simple vowels.

type). 7. Increase in array length from four Il, Ul

to six letters.

8. Twosyllables compared with one Il

syllable.

E. Word Recognition: Correlation of pseudoword onset

Subjects pronounce wordsthat latencies obtained for each of 19

vary in frequency and orthograpic orthographic forms with those for:

structure: 9. High-frequency words presented IV

in isolation.

10. Low-frequency words presented IV

in isolation.

OO

« J. Letter encoding efficiency.

Il. Perceiving multiletter units.

Ill. Decoding or phonological translation.

IV. Efficiency in word recognition.

respectively, for the four reader groups, ordered from least skilled to most

skilled. Inasmuch as the anagrams were randomstringsof letters, this measure

wasinterpreted as an index ofletter encoding efficiency.

Letter-Matching Task. This task was similar to the letter-matching task of

Posner (Posner & Mitchell, 1967). Subjects were presented with 144 pairs of

letters that were similar in physical form (e.g., 4A, aa), similar in name but not
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form (e.g., Aa), or dissimilar (e.g., ad, AD, Ad). Letters were presented for 50
msec, and subjects respondedbypressing a ‘‘same’’ button whentheletters were
visually or nominally similar (AA, Aa) or a ‘‘different’’ button otherwise. The
difference in ‘‘same’’ reaction times (RTs) for nominally and physically similar
letter pairs (the ‘‘NI-PI’’ RT) has beeninterpreted as a measureoftimeforretrieval
of a letter name becauseinthevisually similar case subjects are thought to respond
on the basis of a rapid matching of visual features (but, see Carroll, 1980a). This
difference wascalculated for each of our subjects. The means for each ofthe four
reading groups, again in order of ability, were 130, 114, 122, and 87 msec.

Bigram-Identification Task. The bigram-identification task has been de-
scribed earlier in this chapter. In the context of attempting to encode and report
the letters making up four-letter English words, subjects were presented displays
in which only a single pair of adjacentletters (a bigram) was visible; the other
letters were masked by simultaneously presenting an overwriting masking
character. On these occasions, subjects reported only the target bigram. Low-
frequency bigrams were found to be moredifficult to encode than high-frequency
bigrams, as measured bythe RTin reporting them. Likewise, bigrams presented
in unlikely locations within the array took longer to encode than bigrams pre-
sented in likely positions. These two measures were interpreted as indicating a
reader’s efficiency in encoding multiletter units. Large RT differences indicate
that the ‘‘bandwidth’’ of frequencies/positional likelihoods over which a reader
maintainsefficient performanceis narrow; small RT differencesindicate efficient
performance over a wide range of stimulus conditions. Finally, a third measure
was calculated; the increase in RT per unit shift in bigram position from left to
right. This measure of scanning time is interpreted as potentially representing
both components I and II because high rates can in principle be achieved when
individual letters and/or multiletter units are rapidly encoded.

Pseudoword-Pronunciation Task. In this task, subjects were presented 304
pseudowords, which were derived from a like number of words by changing one
or more vowels. The pseudowordsrepresent 19 orthographic forms (varying in
length [four to six letters], number of syllables [one or two], presence of mar-
kers, and vowel type [VV vs. V]). There were 16 examples of each form, twofor
each of eight initial phenomes. Mean onset latencies for pronouncing
pseudowords were measured, along with the experimenter’s judgmentof re-
sponse correctness. Three contrasts among orthographic forms were chosen on
the basis of their presumed commoneffect on difficulty of decoding. These were
the increasesin onset latency brought about by: (1) increasing pseudowordlength
from four to six letters; (2) increasing the numberof syllables from one to two;
and (3) replacing a single vowel with a digraph. (In manipulating any one of
these variables, items were counterbalanced with respect to the other factors.)
The increases in decoding times were typically greatest for the less able readers:
For the four groups of readers, length effects were 55, 37, 29, and 13 msec,
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respectively; syllable effects were 114, 71, 53, and 22 msec; and vowel-

complexity effects were 44, 65, 49, and 25 msec. Accordingly, each of these

measures is regarded as an index of decoding efficiency.

Word-Recognition Task. This task is similar to the pseudoword-

pronunciation task, except for the substitution of 304 words for pseudowords.

The stimuli included 152 high-frequency words (SFI > 50; Carroll, Davies, &

Richman, 1971) and a like numberof low-frequency words (SFI < 50). The 152

words in each groupincluded eight representatives of each of the 19 orthographic

forms employed in the pseudoword-pronunciation task, and these eight represen-

tatives were matchedoninitial phoneme with their pseudoword counterparts. We

sought to construct a scale-free index of the degree of orthographic decoding in

the context of word recognition. It was shown in prior research (Frederiksen,

1976, 1978) that variability in onset latencies for decoding brought about by

changes in orthographic form are reliable. This pattern of change in RT for

decoding pseudowords can be thought of as a “‘trace”’ of the operation of a

decoding process. To the extent that similar changesin word-recognition latency

are found as orthographic form is similarly manipulated, we have evidence for

the operation of a decoding process in word recognition. Our measure of depth of

decoding in word recognition is, therefore, the correlation (calculated for an

individual subject) of mean pseudowordlatencies for each of the 19 orthographic

forms with those for words that are matched in orthographic form. A high

correlation indicates continued operation of the decoding process and, thus, a

high depth of orthographic analysis in word recognition. A low or zero correla-

tion indicates low depth of decoding—that words are recognized on the basis of

their visual form, per se. This measure of depth of decoding was calculated

separately for high- and low-frequency words. There were differences among the

four groups of readers in their reliance on decoding processes in word recogni-

tion. Mean correlations for high-frequency words were .42, .41, .35, and .22 for

the four reader groups; the corresponding measures for low-frequency words

were .38, .37, .45, and .35. Thus, the evidence suggests that, for a vocabulary of

high-frequency English words, the better readersare able to reduce their depen-

dence on decoding processes below the level required for low-frequency words,

but the poorer readers are not. These correlations, for high- and low-frequency

words, constitute our measures of processing efficiency in word recognition.

Validation of the Measurement Model. The componential interpretations

offered for the 10 measures of word analysis detailed in Table 3.2 constitute an

explicit hypothesis concerning the form of matrix B in Equation 3.1 and, as such,

constitute a measurement model. This hypothesis has been schematically repre-

sented in Fig. 3.2. Four components are postulated: (1) letter encoding; (2)

encoding multiletter units; (3) decoding; (4) word recognition. The variables y,

— yy9 correspond to the numbered measures in Table 3.2. Performance on a

measure y; is determined bythe skill level in one or more of the components and
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FIG. 3.2. Schematic representation of the measurement modelfor tasks in the
word-analysis domain. The arrows denote the direction of causation in the model;
Squares denote the observed variables (1-10 in Table 3.2); circles denote the
components (7; — my), including:letter encoding (1), encoding multiletter Units
(II), decoding (IID), and word recognition (IV). The model uses 18 parameters to
accountfor 45 correlations. Thetest offit yielded X 727 = 38.3, p = .073. Standard
errors of parameters averaged .20.

by a unique or task-specific error factor e;. In evaluating the measurement
model, a free parameteris entered into matrix B for each link between a measure
and a componentshownin Fig. 3.2. Following this procedure, the hypothesized
componential structure is seen as corresponding to the following hypothesized
form for the matrix B:
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where V denotes a free parameter or variable to be estimated. In testing this

measurement model, no restrictions are placed on the correlations among the

components (the matrix ®* in Equation 3.2). This hypothesized measurement

model wastested, using Jéreskog’s ACOVS program (Joreskog, van Thillo, &

Gruvaeus, 1971). The resulting value of chi-square (with 27 degrees of freedom)

is 38.3, and p = .073. Values of the fitted parameters are presented in Fig. 3.2.

(The standard errors of these parameters averaged .20).

Although the hypothesized measurement model is judged to be satisfactory,

we wishedto investigate what features of the model are critical and whatfeatures

less critical in accounting for the correlations among measures. Thus, we set out

to evaluate three alternative measurement models, each of which focused on a

specific distinction among the components hypothesized under the model we

have presented. These alternative models are described in Table 3.3, along with a

test of each model against the full four-component model of Fig. 3.2.

In the first alternative model, measures y, — ys are regarded as indices of

performance on a single perceptual encoding component. Under this model, a

single perceptual system respondsto individual letters and multiletter units, and

readers whoare efficient with one type of unit are also efficient with the second.

As shownin Table 3.3, this model is rejected, with x7(4) = 10.83, p = .03. In

the secondalternative, the parsing of an orthographic array into multiletter units

and the rule-based decoding of these units are regarded as twoaspects of a single

TABLE3.3

Comparison Among ACOVS Models for Word-Analysis Components

or

Number Number of Chi-

Alternative Model® Components Parameters Square df. Prob.

8

1. A single perceptual encoding 3 14 10.83 4 03

component; combine components I

and II

2. A single orthographic analysis 3 14 17.89 4

component; combine components II

and Ill

3. No distinction drawn between 3 15 9.24 3 .03

decoding efficiency and decoding

depth; combine components III and

.0O1

IV

4. Test of independence of original 4 12 12.62 6 .O5

four components

5. Test of independence of components 4 15 2.95 3 .83

I and II, I and IV, and II and IV

6. Test of structural model, with links 4 17 1.88 l 17

between components I andIII, I

and III, and II and IV

4 Alternatives are each tested against the full four-component model containing 18 parameters.
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decoding process. And again, readers who are most capable of encoding multilet-
ter units are also most capable of analyzing them. This alternative is also re-
jected, with y7(4) = 17.89, p = .001. Thethirdalternative soughtto investigate
the distinction between efficiency in decoding and word recognition. In this
model, the efficient decoding of pseudowords and recognition of words involve
the same process—orthographic decoding of words in the same manner as
pseudowordsor, perhaps, decoding of pseudowords by analogy with similarly
spelled words (Glushko, 1980). Again, the alternative model is rejected, with
x7(3) = 9.24, p = .03.

Our conclusion is that each of the four components hypothesized must be
represented in the measurement model. These results do not imply that the
components are independent. Totest this possibility, a fourth alternative model
was fit, which was similar to the model in Fig. 3.2 except for the additional
constraint that the components are uncorrelated (i.e., that ® = I). Thetest of this
hypothesis yielded x?(6) = 12.62, with p = .05, and again weare ledto reject
this alternative. In order to focus on where the most important intercomponential
correlations are found, we tested a fifth alternative in which the perceptual
components(I and II) are independent and correlated with the decoding compo-
nent (III) but are independent of the word-recognition component (IV). This
modelis an acceptable alternative to the original, with y?(3) = 2.95, p = .83. A
more thorough analysis of componentinteractions, using the technique of build-
ing a structural equation system (alternative Six) is discussed in

a

later section of
this paper. For the moment, we concludethat: (1) each of the components
represents a distinct source of expertise among readers; (2) there are clearly
demonstrated correlations among components, indicating the needfor a theory of
componential interaction.

The Measurement Model
for Discourse-Analysis Processes

Measuresrelated to the processing of discourse are all drawn from an experi-
mental study of anaphoric reference (Frederiksen, 1980). The purpose ofthis
experiment was to identify text characteristics that influence a reader’s difficulty
in resolving problemsof, specifically, pronominal reference. In the process, we
hoped to draw someinferences about the procedures usedbyreadersin searching
for antecedents and selecting referents from prior text when encountering a
pronoun.

The experimental task required subjects to read a seriesoftest passages, one
sentence at a time. To motivate careful reading, subjects were at times probed for
the meaning (referent) associated with a pronoun. This was accomplished by
underscoring the probed item. Whenever an underscore appeared, the subject’s
task was to supply (vocally) the correct referent noun or noun phrase from the
preceding text. However, the major focus of the Study was not the accuracy of
performance in the probe task (the four reader groups did not differ in their
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accuracy in supplying referents) but rather the time spent in processing sentences

containing a pronoun or other referential item. More particularly, we were in-

terested in the changes in reading time that occurred as the difficulty of the

reference problem was increased through manipulation of the structure of prior

text.

The patterns of reading times obtained under a variety of text conditions

supported a model having three distinguishable features:

1. When readers encounter a pronoun, they retrieve from memory the avail-

able antecedents (nouns or noun phrases matching the pronoun in gender and

number).

2. Readers evaluate those antecedents within the semantic or propositional

frame of the sentence containing the pronoun, using those semantic constraints

that are presentto select the correct referent.

3. Some readers appear to adopta test strategy of assigning priority to an-

tecedents that have topical status at the time the pronoun is encountered. For

example, topical status is higher for noun phrases appearing as the subject of a

sentence (particularly the initial sentence of a paragraph) thanit is for predicate

nouns.

The choice of measures—contrasting sets of text conditions—for use in this

study wasbased onthis processing model. We sought measuresthat, although ex-

perimentally independentof one another, would represent eachof these three com-

ponents: automatic assignmentof a topicalized antecedentas referent (numbered

VIL within the final componentlist); semantic evaluation/integration of antece-

dents within a current discourse representation (numbered VIII); and exhaustive

retrieval of antecedents (numbered IX). These measures are described in Table

3.4.

The influence of topical status of an antecedent on the problem of reference

was studied by presenting two-sentence texts in which the initial sentence con-

tained two antecedent noun phrases (NP), which both agreed in gender and

number with a pronoun presented as the subject of a second, target sentence.

Reading times for the target sentence were longer when the correct antecedent

was in the predicate of the initial sentence than when it was the subject (1.e.,

when it was topicalized). This difference (the first measure in Table 3.4) is

therefore interpreted as a measure of readers’ sensitivity to topicality in assigning

text referents.

In developing our second measure, we were interested in the effect of a prior,

consistent use of the pronounonreading times for a subsequent sentence contain-

ing the same pronoun. In particular, we wanted to see if a pronoun, once as-

signed a referent, would automatically be given the same referent when it was

repeated in a subsequent sentence. The initial sentences again contained two

antecedents, the first of which wasreferred to pronominallyin the final sentence.
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TABLE 3.4
Reading Components Battery:

Discourse-Analysis Tasks and Measureseee
Experimental Task Derived Measures Components“

as

sas>s—
Anaphoric Reference Experiment: Differences in reading times for

Subjects read texts containing sentences containing anaphora under
pronouns and supply referents for contrasting text conditions:
pronouns wheneverthey are 1. The correct antecedent is not VII
underscored. topicalized/topicalized in theinitial

sentence.

2. The pronoun appears in the VII, Vil
predicate/as the subject of a
sentence intervening between
referent and target.

3. The correct antecedentis referred to VI
collocatively/by lexical repetition
within the timed sentence.

4. The correct antecedentis sematically VIII, IX
ambiguous/unambiguous within the
target sentence.

5. Two/only one antecedent noun IX
phrase(s) agreeing with the pronoun
are (is) presentin the initial
sentence.

6. An incorrect antecedent noun VI, VI
phrase appearing in sentence 1 is/is
not repeated as the topic of an
intervening sentence, which occurs
prior to the target. eeeeeeeSsS‘asés

“ VI. Assignment of topicalized antecedentas referent.
VIII. Semantic integration/evaluation of antecedents with discourse representation.
IX. Exhaustive retrieval of antecedents.

assigned their previous referent
whenre-encountered in

a

text. Reading times depended on the position of the
pronoun in the intervening sentence. They were longest when the intervening
sentence began with an alternative noun phrase and contained the pronounin the
predicate. This manipulation had the effect of reducing the topical status of the
antecedent referred to pronominally and introduced a new topic—the subject of
the second sentence. Reading times were shortest whenthe intervening sentence
began with the pronoun and thus maintained the topical status of the referent.
Hence,the difference in reading times for these conditions is taken as a measure
of componentVII. It is also thought to involve component VIII because ofthe
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need for subjects to evaluate and reject alternative antecedents efficiently when

the pronoun is not madetopical in sentence two.

Whena pronoun(orother referential expression) is encountered, antecedents

must be evaluated within the semantic context of the pronoun. One method we

have used to measure this process of semantic evaluation has been to compare

reading times for sentences containing collocative reference (reference to a pre-

vious lexical category, using a different lexical item; Halliday & Hasan, 1976)

with sentences in which the problem of reference is made as trivial as possible by

simply repeating the lexical item. The former condition requires readers to search

their discourse model for lexical categories that are associated with the newly

encountered lexical item and to select from among those categories the onesthat

are semantically acceptable within the semantic context of the current sentence.

Reading times for sentences containing collocative references were longer than

those for sentences containing lexical repetitions, and we thus use this contrast

(measure 3) as an index of skill in component VIII.

A second text manipulation was employed to study the semantic evaluation

component. We generated sentences that were ambiguousin that either of two

antecedents appearing in the initial sentence would be semantically acceptable.

Reading times for such semantically ambiguous sentences were substantially

longer than those for unambiguoussentences, reflecting the fact thatit is difficult

to decide which antecedent should be regarded as the most meaningful in am-

biguous sentneces. This difference in reading times (measure 4) is thus taken to

be a function of readers’ speed in evaluating antecedents. However, it is also

thought to be related to another factor—the readers’ exhaustivenessin retrieving

all available antecedents (our ninth postulated component). The rationale for this

interpretation is as follows: If a reader retrieves only a single antecedent from the

earlier sentence, it will be found to be semantically acceptable within the current

sentence context, and no additional time will be expended in searching for

alternative referents. It is only when two or more referents are retrieved that the

semantic evaluation of antecedents becomesa difficult problem.

Another text comparison was carried out that focused directly on readers’

exhaustiveness in retrieving antecedents. We compared texts in whichtheinitial

sentence contained two antecedents with alternative texts having only a single

antecedent. In both cases, the correct referent for the pronoun in the second

sentence was the subject(topic) of the initial sentence. Here we were comparing

a situation in which there was a semantically irrelevant NP agreeing in gender

and number with the target pronoun against a situation in which there was no

additional NP agreeing with the pronoun. The results showed clearly that reading

times for the target sentence were greater when a second potential referent was

present in the first sentence. Readers thus do appearto retrieve multiple antece-

dents. Our fifth measure was therefore interpreted as an index of exhaustiveness

in retrieving antecedents for solving problems of pronominal reference.
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The final text comparison (measure 6) allowed us to test our componential
analysis on a text condition in which one component was expected to contribute
to high performance, and a second component was expected to hinder perfor-
mance. The texts began with a sentence containing two antecedent NPs and
ended with a sentencereferring pronominally to the topicalized NP in thefirst
sentence. In one set of texts, the incorrect antecedent (the one containedorigi-
nally in the predicate of the first sentence) was used asthe subject of a second
intervening sentence, but, in the control texts, a neutral sentence was used
instead as the intervening sentence. For readers sensitive to the topicality of
antecedents, the effect of topicalizing an incorrect antecedent between the re-
ferent and pronoun will be to increase reading times. At the same time, readers
whoare efficient in evaluating antecedents will more quickly reject the inappro-
priate antecedent and discoverthe correct referent. We thus predict that measure
6 will be negatively related to component VII and positively related to compo-
nent VIII.

represented schematically in Fig. 3.3. This measurement model provided an
acceptable fit to the matrix of intercorrelations among measures, with y?(3) =
3.17, p = .37. The three components of this model can be regarded as indepen-
dent because a model constraining the component intercorrelations to be zero
could not be rejected (,?[3] = 1.82, p = .61; see Table 3.5).

Inasmuchas our three-component model provides what appears to be a good
fit, we set out to test a series of alternative measurement models in order to
determinethecritical features of the present model. Theresults of these alterna-
tive analyses are presented in Table 3.5. In thefirst alternative model, the
distinction was dropped between Sensitivity to topicality (component VII) and
semantic integration (component VIII). We were led to reject this alternative
(x*[4] = 10.01, p = .04) and concluded that these two components must be
distinguished in a componential theory for anaphoric reference. In our second
alternative, retrieval of multiple antecedents (IX) and semantic integration (VIII)
are functionally linked and therefore form a single component. This model could
not be rejected when compared with the original three-component model (x? [3]
= 1.97, p = .58). Finally, in the third alternative model, a single component was
postulated (combining components VII and IX) that contrasted the automatic
assignment of topic as referent (VII) with the exhaustive retrieval of multiple
antecedents (IX). This model also could not be rejected when comparedwith the
original three-component model (x?(2] = 2.04, p = .36).

Weare forced to concludethat the available evidence in the intercorrelations
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FIG. 3.3. Schematic representation of the measurement model for measures in

the discourse-analysis domain. Arrows denote the direction of causation in the

model; squares denote the observed variables (1-6 in Table 3.4). "vn — x

denotes the components: automatic assignment of topicalized antecedent as re-

ferent (VII), schematic integration/evaluation of antecedent with discourse repre-

sentation (VIII), and exhaustive retrieval of antecedents (IX). €, — €, represent

measurementerror specific to a single measure. Chi-square (with 3 d.f.) is 3.17, p

= 37. A test of independence of the three components yielded y73 = 1.82, p

= .61.
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TABLE 3.5
Comparisons Among ACOVS Models for Measures of Discourse AnalysisLe

Number of Number of Chi-
Alternate Model* Components Parameters Square dff. Prob.eee

1. No distinction betweensensitivity to 2 8 10.01 4 .04
topicality and semantic integration;
combine factors VII and VIII

2. No distinction between semantic 2 9 1.97 3 58
integration andretrieval of multiple
antecedents; combine VIII and IX

3. A single factor contrasting rapid 2 10 2.04 2 36
assignment of topic vs. retrieval of
multiple antecedents; combine VII
and IX

4. Test of independence oforiginal 3 9 1.82 3 61
three factors
eee

“ Alternatives are tested against the full three-component model containing 12 parameters.

the one in which we manipulated the numberof antecedents, had been a more
reliable measure of the exhaustiveretrieval component.) Therefore, for present
purposes, we adopted the second alternative and accepted the fact that there
would be some ambiguity in the resulting measure of semantic integration (VIII),
namely, the tendency to retrieve several antecedents that are the subject of such a
semantic evaluation.

The Measurement Model
for Context-Utilization (Integrative) Tasks

The integrative skills we have postulated allow a readerto combine informa-
tion contained in semantic and Syntactic constraints associated with a discourse
context with information contained in the orthographic code in a system that
efficiently recognizes words and phrases. Two components of these context-
utilization processes are: (1) activation of semantically related items in memory
(the generative use of context); (2) use of contextual information to increase the
speed of lexical identifications. The first component (numbered component VI)
is intended to contrast readers who are low in generative depth with those who
are capable of activating a wide network of nodes in semantic memory, some of
which maybestrongly related to context and others only moderately so. High
skill in this component represents what Guilford (1967) has termed a ‘‘divergent
production’’ ability. The second component (numbered component V) is
exemplified, at one extreme, by readers who emphasize speed of performance
over depth of search when reading in context and, at the other extreme, by
readers who emphasize depth of search over processing efficiency.
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Word Recognition in Sentence Context. Measures developed for these

context-utilization components are drawn from two experimentaltasks described

in Table 3.6. The first task is an extension of the pseudoword and word-decoding

tasks outlined in Table 3.2. In this task, subjects are asked to pronounce target

words that are either tightly or loosely constrained by a prior context sentence.

For example, consider the following sentence, in which the final word has been

deleted: I reminded her gently that this was something that she really should

not. This sentence frame allows the target word to be any of a numberof

alternatives—buy, do, take, see, read,tell, and so forth. The sentence represents

a moderately constraining context. Contrast this with the following sentence:

Grandmother called the children to the sofa because she had quite a story

TABLE 3.6

Reading Components Battery:

Context-Utilization Tasks and Measures

On

Experimental Task Derived Measures Components*

I

Word Recognition in Sentence Context: Correlation of pseudoword onset

Subjects pronounce wordsthat vary

_

latencies obtained for each of 19

in orthographic form, presented in a orthographic forms with those for:

high- or low-constraining context. 1. High-frequency words presented in IV,(-)V

moderately constraining context.

2. Low-frequency words presented in IV, (-)V

highly constraining context.

Drop in mean onset latency when

words are presented in context rather

than in isolation for:

3. High-frequency words presented in Vv

a moderately constraining context.

4. Low-frequency words presented in V

a highly constraining context.

Reading Phrases in Paragraph Context: Increase in Visual Span when context

Subjects report all words seen within

—_

was addedfor:

a display containing a phrase that 5. Easy (highly readable) texts. VI, Vill

completes the context paragraph. 6. Difficult (less readable) texts. VI, Vill

Word Recognition in Paragraph Increase in Visual Span when context

Context: was addedfor:

Subjects report all words seen within 7. Easy (highly readable)texts. V, VI

a display containing randomly 8. Difficult (less readable) texts. V, VI

sequenced words derived from a

phrase that would complete the

context paragraph.
a

a JV. Efficiency in word recognition.

V. Speed set in applying context to identify a highly predictable target.

VI. Extrapolating a representation of discourse context: Activation of semantically related

items in memory.

VIII. Semantic integration of antecedents within a currently formulated discourse representation.
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to____. Here only a few words remain that fit the sentence—tell, relate,
present, and the like—this frame represents a highly constraining context.

In our experiment, 304 words were selected representing two frequency
classes (high and low), 19 orthographic forms, and eight initial phonemes, as
before. For each word, two context sentences were created representing high and
moderate degrees of constraint, as illustrated in the foregoing examples. The
“constraining power’’ of these context sentences was scaled in a prior experi-
ment (Frederiksen, 1978): Highly constraining contexts allowed an average of 7
words (which was the estimated domain size), whereas moderately constraining
contexts allowed an average of 14 words. By comparing subjects’ vocalization
latencies for words in highly and moderately constraining contexts with those for
words and pseudowordspresented in isolation, component-specific measures of
performance reflecting context utilization were derived. (For a more detailed
discussion of the experimental results, see Frederiksen, 1978, 1980.)

The first two measuresare the correlations of pseudoword-vocalization laten-
cies obtained for each of 19 orthographic forms with those for high-frequency
words presented in moderately constraining context (measure 1) or for low-
frequency words presented in highly constraining context. Such correlations, it
can be recalled, measure the extent to which orthographic decoding similar to
that involved in analyzing pseudowords is Operating as subjects process and
pronounce English words. In general, the more highly skilled readers (groups 3
and 4) showed lowerinvolvementof orthographic decoding than did the poorer
readers (groups 1 and 2). Meancorrelations for the former groups were .16 for
words in moderately constraining context and .13 for highly constraining con-
texts. For the less skilled readers, the corresponding means were .25 for the
moderately constraining context and .22 for the highly constraining context. The
measures we have constructed are hypothesized to represent two components:
general efficiency in word recognition (IV) and increase in speed of word recog-
nition with provision of a reliable context (V). These measures do not involve the
generative capacity in context utilization (VI) because in each case the target is a
likely item for that context. The relations of these measures to component V are
negative because a strong emphasis on speed of responding should lead to a
lower depth of decoding.

Measures 3 and 4 are the differences in mean response latencies for words
presented in context andin isolation. Large values of these measures indicate a
large drop in processing time when a predictive context is provided; small values
indicate a small decrease in speed of word recognition when contextis supplied.
We found that the mean drop in RT when contextis presented varied as a
function of reading ability. The mean reduction in RT was 88 msec for readers in
group 1, 60 msec for group 2, 49 msec for group 3, and 29 msec for group 4.
Apparently, the most highly skilled readers were the least apt to increase their
speed of responding whena predictive context was presented. Measures 3 and 4
are interpreted as representing the degree of emphasis placed by subjects on
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speed in applying context when identifying a highly predictable target (compo-

nent V).

Measurement of Effective Visual Span. The final experiment conducted

within the Reading Components Battery was a study of readers’ effective visual

span and the amountof information they could encode within a fixation, in the

presence and absence of a prior paragraph context. Effective visual span iS

defined as the distance, in character spaces, from the leftmost to the rightmost

character encoded from a phrase presented tachistoscopically. Subjects were

presented a passage oftext (taken from the Degrees of Reading PowerTest, State

of New York, 1977), but with the last four to seven words of the final sentence

missing. After reading the context passage, readers pressed a response key to

receive the final words of the passage, which were presented in a brief (200

msec) exposure. Their task was to report as many words as they saw, in any

order. Controls were included to insure that subjects were fixating an indicated

spot near the beginning of the test phrase at the time the test words were pre-

sented. (The spot changed subtly during the 200-msec interval preceding the

target, and subjects had to discriminate those changes successfully by pressing a

second response key.)

There were two majorvariables in the experiment: (1) presence or absence of

the prior context passage; (2) order of presentation of the words of the target

phrase (normalor scrambled). Thus, contextual effects—the increments in effec-

tive visual span occurring when a prior context passage is provided—could be

measured separately for the case where the target words were presented in an

unpredictable sequence and where the target phrase waspresented intact.

There were clear differences among groupsof readersin the contextual effects

shown underthese twotest-phrase conditions. Less able readers showed substan-

tial benefits of passage context only whenthe target words were presented in a

meningful sequence. The average effects of context for readers in groups 1, 2,

and 3 were 1.20, 1.59, and 2.19 letter positions when the test phrase wasintact,

but only .32, .84, and .26letter positions whenthe test phrase was scrambled. In

contrast, readers of high ability showed large contextual effects regardless of the

condition of the test words. For the top group of readers, contextual effects were

2.57 letter positions when the target phrase was not scrambled, and 2.01 letter

positions when the phrase was scrambled. The similarity in performance under

these two conditions suggests that, for highly skilled readers, an automatic

spreading-activation process 1s operating, which renders semantically related

concepts within the lexicon more accessible.

Wederived four measures from the visual span experiment. Measures 5 and 6

(in Table 3.6) are the increases in visual span that occurred when context was

added for the case in whichthe target words were presented in normal order. The

two measures correspond to separate groups of texts—those having high- and

low-scaled readability. These measures are thought to depend primarily on the
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sixth component we havepostulated: activation of semantically related concepts
in memory (VI). However, because the target phraseis presented in normal word
order, we hypothesize that semantic integration within a discourse model (com-
ponent VIII) mayalso play a role in determining levels of performance on these
measures.

Measures7 and

8

are also the values of contextualeffects, again measured for
high- and low-readability tests. Here, however, the target words have been
scrambled. Underourinterpretation of component VI as an automatic activation
process, performance on these measures also dependsonthe activation of seman-
tically related concepts. However, becausein this case target words do not form
meaningful sequences, they are processed individually, and Speed in recognizing
individual items that are contextually constrained is advantageous. The speed
factor is not thought to be of importance when the target is a meaningful phrase
because, in that case, groups of words are processed together as representatives
of concepts. (Additional evidence for this distinction in size of processing units
was found: Whentest phrases were scrambled, there was a strong effect of the
number of words within a test phrase on RT. Whentest phrases were intact, RT
was independent of the number of words they happenedto contain.)

Validation of the Measurement Model. The componential interpretation we
have offered for each of the context-utilization measures providesa basis for the
specification of a measurement model (Fig. 3.4). Subjects performance with
regard to these eight measures is hypothesized to be determined by four reading
components. Two of these represent the context-utilization skills—speedset in
applying a predictive context (V) and extrapolation of discourse context through
activation of semantically related items in memory (VI). The other two compo-
nents represent processes in word analysis and discourse processing drawn from
our earlier studies. These are efficiency of processing in word recognition (IV)
and semantic integration within a discourse representation (VIII). Twoadditional
measures were selected from our prior analysis to provide unambiguousidentifi-
cation of each of these components. For component IV, measure 9 and 10 were
introduced, representing depth of decoding of high- and low-frequency words
presentedin isolation. Measures 11 and 12 were drawn from our prior analysis of
discourse processes in the Anaphoric Reference Experiment. Measure 11 repre-
sents the increase in reading time when a sentence containing anaphora is am-
biguous with regard to the selection of a referent. Measure 12 represents the
increase in reading time for sentences containing a collocative reference to an
earlier noun phrase, compared with sentences in which the reference problem is
already ‘‘solved’’ for the reader—by simply repeating the antecedent noun
phrase.

In Fig. 3.4, hypothesized relations between components and measures are
represented by arrows. Efficient word recognition (IV) contributes to low depth
of decoding for words of high or low frequency, presented in context (y, and y,)
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FIG. 3.4. Schematic representation of the measurement model developed for

measures of contextutilization (integrative skills). Arrows denote the direction of

causation in the model; squares denote the observed variables. (Variables 1-8 are

those in Table 3.6; variables 9 and 10 correspondto those in Table 3.2—the depth

of decoding of high- and low-frequency words presented in isolation; variables 11

and 12 correspond to variables 4 and 3, respectively, in Table 3.4—two measures

of time for evaluating antecedents in reading a sentence containing an anaphor.)

Mwv> Nv, Nv» and nym denote the components: word recognition (IV), speed set in

applying context (V), extrapolation of discourse context (VI), and semantic inte-

gration within a discourse representation (VIII). Measures of components IV and

VIII were includedin order to partial out their involvementin tasks related to the

integrative components (V and VI). Chi-square for this measurement model was

45.8, with 42 d.f.; p = .316. Standard errors of parameters averaged .17. Only the

two significant componentintercorrelations are represented in the diagram.

152
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or in isolation (yg and y,9). Efficiency in semantic integration (VIII) leads to

smaller increases in reading time in solving problems of anaphoric reference (yi,

and y,») and to larger measures of visual span when the target phrase is a

meaningful word sequence (y; and yg). Activation of discourse-related items

within semantic memory (VI) leadsto increases in visual span when prior context

is included, regardless of whether the target words are phrases (y; and yg) or

scrambled sequences(y; and yg). Finally, speedset in applying context (V) leads

to increases in speed of word recognition when words are predictable from

context (y; and y4), to increases in visual span when words are scrambled (y7 and

yg, and to lower depth of decoding when context is provided (y, and yz).

The measurement model presented here was fit using the ACOVSprogram,

with norestrictions on intercorrelations among components. The resulting value

of chi-square with 42 d.f. was 45.8, p = .316. When the component intercorrela-

tions were restricted to be zero, the statistical test yielded y°(6) = 11.77, p

= .07. Therefore, the possibility of component interactions is considered. To

explore which components are correlated, we allowed components IV and VII

and components V and VI to correlate with one another and fixed all other

intercorrelations at zero. For this model, y?(4) = 3.21, p = .52. Parameter

estimates for this measurement model are the ones displayed in Fig. 3.4.

Although the measurement model we have hypothesized is clearly acceptable

statistically, we again tested several alternative models in order to discover the

features of the hypothesized model thatare crucial and those that are not. Statis-

tics resulting from this procedure are presented in Table 3.7. In the first alterna-

tive model, components VI and VIII are combinedinto a single semantic analysis

factor. This resulted in x?(5) = 9.25, p = .10. Given the face validity of the

measurement operations employed to mark each of these components, wereject

this possible alternative. In the second alternative model, components V and VI

TABLE 3.7

Comparisons Among ACOVS Models for Measures of Context Utilization

 

Number of Number of Chi-

 

Alternative Model" Components Parameters Square df. Prob.

1. Single semantic analysis factor; 3 19 9.25 5 10

combine factors VI and VIII

2. Single context utilization factor; 3 19 24.99 5 .0001

combine factors V and VI

3. Test independenceof original four 4 18 11.77 6 07

components

4. Test independence of factors IV and 4 20 3.21 4 .52

V, IV and VI, V and VIII, and VI

and VIII
ea

¢ Alternatives are tested against the full four-component model containing 24 parameters.
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were combinedin a single context-utilization factor. Here, x*(5) = 24.99, p =
-0001. Thus, the evidence strongly suggests that activation of contextually re-
lated items in memoryis distinct from the use of such constraints in reducing
time for analysis of perceptual/orthographic information contained in words. The
significant negative correlation between these components (— .43) indicates that
readers who show the greatest depth of context-determined activation within
semantic memory also show the smallest reductions in word-recognition time
when a constraining context is provided. Availability of a large number of
activated units in memory would seem to reducethe opportunity for a primarily
context-based word recognition because perceptual and orthographic information
must be analyzed in order to select among the numerousalternatives. Con-
versely, if the mechanism for extrapolating context is a serial predictive system
that generates only a few, high-probability candidate items, then the opportunity
for increasing speed in word recognition (and circumventing time-consuming
decoding operations) will be greater.

Estimation of Parameters for the Full Measurement
Model

For purposesof studying componentinteractions, twenty variables were selected
from those described in Tables 3.2, 3.4, and 3.6. These variables are listed in
Table 3.8. A single measurement model—the combined measurement models
developed for the word-analysis, discourse-analysis, and context-utilization
domains—was constructed. It is represented by the hypothesized pattern of
zeroes and nonzero parameters in the matrix B, whichis also given in Table 3.8.
This model was fit using ACOVS, with norestrictions on component(factor)
intercorrelations. This yielded y7(133) = 185.35, p = .002. The average stan-
dard errors of factor loadings was .16. Note that although the model can be
rejected on purelystatistical grounds, it contains only 29 nonzero factor loadings
in the matrix B (out of a possible 160) and,in all, uses only 57 parameters to
account for 190 intercorrelations among variables. Therefore, this is adopted as
the standard measurement modelto be used in ourfuture studies of interactions
among reading components.

Maximum-likelihood estimates of intercorrelations among the eight compo-
nents are presented in Table 3.9. These correlations are attributable to two
sources of covariation among components: functional interactions among com-
ponents and nonfunctional, etiological factors. In the remainder of this chapter,
we first examine the functional sources of correlation among components, as
expressed in structural equation systems. Afterfitting such interactive models, it
will then be determined whetherresidual correlations remain among components
that require the postulation of other nonfunctional factors such as ‘‘general read-
ing ability.’’
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TABLE3.8

The Complete ACOVS Model Usedin Validity Studies*

RSD

Component
a

Measure (Effect) I II IIT IV V VI Vil VI

es

1. ANAG:? Rate of letter encoding 26 0 1) p 0 0 0 0

2. LIM: RT(Aa) — RT(AA) 1.00 0 0 0 0 9 0 0

3. BG: Bigram Frequency ) 1.00 0 0 Q p 9

4. BG: Position 19 58 0 0 0 p 0 iy

5. BG: Positional Likelihood ~) 39 0 0 0 0 0 0

6. PSEU: Vowel Type 0 9 A 0 0 0 0 0
7. PSEU: Length ~) 30 43 ~) ~) » 0) 0

8. PSEU: Syllables ~) ~) 77 ~) ~) ~) ~ p

9. CORR: HFW/NC w/PSEU. ~) ~) ~ 56 ~ 9 0 0

10. CORR: LFW/HCC w/PSEU. ~) ~ ~ 9] — .30 ~ ~ ~

11. CONTEXT: NC-LCC (HFWs) ~) ~) ~) ~) 91 ~ ~ ~

12. CONTEXT: NC-HCC (LFWs) ~) ~) ~) ~) 1.00 ~ — ~

13. SPAN: C-NC (Phrases, Easy) ) ~) ~ ~) 1) 58 ~ 42

14. SPAN: C-NC (Phrases, Diff.) ~) ~ — ~ — 52 ~ .28

15. SPAN: C-NC (Words, Easy) 0 0 0 0) 58 72 0 ~)

16. SPAN: C-NC (Words, Diff.) ~ ~) ~ ~) 58 .62 0 7)

17. ANAPHOR:

_

Referent not Topic/Topic 0 0 0 0 0 0 1.00 Q

18. ANAPHOR:  Pred./Subject of Interv. Sen. Q 0 0 0 0 0 29 .26

19. ANAPHOR: Amb./Unamb. Reference 0 0 0 0 9 ) 9 61

20. ANAPHOR:  Foregrnd. NP2/Neut. Interv. sent. Q 0 0 0 0 0 — .33 46

ieeeeeee

ene

“The average of standard errors is .16.

> Variable was reflected in the analysis.
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TABLE 3.9
Intercorrelations Among Components in Complete ACOVS Model*—-__

Component I II Ill IV V VI VI VUEe

I. Letter recognition 1.00

II. Perceiving multiletter units 12+ .15 1.00
II. Decoding 49 + 21 35 4 .17 1.00
IV. Word recognition 25 + 18 10 + .16 66 + .16 1.00
V. Speed set in context utilization —.09 + .15 10 + .14 34 + 16 32 + .24 1.00
VI. Extrapolating context .20 + .18 —.15 + .17 —.42 + 2] —.44 + .19 —.51 + .18 1.00
VII. Topicality set for locating referents A9 + .15 49 + 14 49 + 17 49 + 15 16+ .14 .O7 + .18 1.00
VII. Semantic integration .22 + .20 —.19 + .20 87 + .18 48 + .20 .O8 + .2] 16 + .26 18 + .21 1.00—-—-—_-_-_-

“Standard errors are indicated after each correlation.
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ANALYSIS OF COMPONENTINTERACTIONS

Adopting the validated measurement models for each processing domain, we

tested hypotheses concerning interactions among components. This was accom-

plished by building a set of structural equations describing the hypothesized

interactions among reading components, demonstrating identifiability of parame-

ters, and testing the structural model byuseof the ACOVSprocedure (Joreskog,

1970). A chi-squaretest then allowed us to compare our structural models against

the null case where only the measurement model wasspecified and all compo-

nents were free to intercorrelate.

Word-Analysis Components

The first application of this procedure concerned the word-analysis domain

where, on the basis of intercorrelations of 10 variables, four components have

been identified. Components I, II, III, and IV represent: the processes of (1)

letter recognition; (2) perceiving multiletter units; (3) decoding; and (4) efficient

word recognition (low depth of processing in word recognition). In the interac-

tive model, componentsI and II are both hypothesized as contributing to effi-

cient, automatic decoding because the decoding process requires orthographic

information as input. Furthermore, availability of encoded multiletter units facili-

tates more efficient decoding because the numberof units to be processed will

then be reduced. However, componentsI andII are themselves hypothesized to

be independent because the inputdata structures they require (visual features) are

readily available to all readers. The effect of these perceptual components on

word recognition (IV) is thoughtto be indirect, through their effect on decoding.

Efficient decoding (III) contributes to efficient word recognition (IV) by ac-

celerating the availability of phonologically encoded units. Word recognition

also has a unique componentassociated with it, which represents the ability to

encode wordsdirectly on the basis of their visual form. Finally, unique compo-

nents of decoding and word recognition are assumed to be independent.

The structural model that incorporates these hypotheses concerning compo-

nent interaction is presented in Fig. 3.5. In addition, Table 3.10 shows the

derivation of the factor matrix A relating measured components to unique com-

ponents and the methodsfor estimating parameters. Inasmuchas there are fewer

parameters in D and A than unconstrained elements in A, the structural modelis

overdetermined. An estimate of nonfixed values in A was obtained using

ACOVS.The equations were then used to estimate the parameters. These were in

turn used to recalculate values for A4,;, A442, and Ags using (4) in Table 3.10. The

ACOVSmodel wasthen refit with fixed values in A to provide a x* value for the

fully constrained model. This test yielded x,” = 1.88, p = .17.

In this structural model, the two perceptual components make independent

contributions to decoding efficiency. Thus, they indirectly affect word recogni-
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FIG. 3.5. ACOVS model for tasks in the word-analysis domain. The arrows
denote the direction of causation in the model; Squares denote the observed var-
lables (Y; — Yo); circles denote the manifest components. MN — Mv denote,
respectively, the components:encodingletters (I), encoding multiletter perceptual
units (II), phonological decoding (IID), and word recognition (IV). Gy and Gy
represent unique components; €, — €,) represent measurement-error variance spe-
cific to a single measure.

tion. Efficient word recognition is not directly related to the perceptualskills but
is strongly related (with r = .66) to efficient decoding. However, component-
specific individual differences are the most important determiners of decoding
and word-recognition efficiency. Note finally that, beyond these hypothesized
functional interactions among components, there is no evidence of residual corre-
lations among components.

Interactions with Higher-Level Components

In this section, our problem is that of modeling the relations of the low-level
reading components both to components of discourse processing and to those
involved in utilizing contextual information in guiding lexical retrieval. The
procedure for fitting and testing a structural model of componentinteraction,
with modification, can be used to investigate the relations between high-level
components and low-level word-analysis components.



3. ACOMPONENTIAL THEORY OF READING SKILLS 159

TABLE 3.10

Analysis of Interactions Among Word-Analysis Components

in

on
e

Structural Equations
OI

I

No = G2 (1)

Unique Components as Functions of Measured Components

I

(in M1

tC. = 12 (2)

83303 = —Sai71 — S32Ne2 + 13

84404 = — 8433 + Na

or, in matrix form:

  

109 9 Cy 1 0) 0 0 Yi

9 1 OO Ce _ Q) 1 0 0 Nr

09 9 533 O C3 -83; —b3. 1 Q 13 (3)

0 0 O 84, C4 0 9 84 1 1) 4

D C = A n

Factor Matrix A = A7~!D

| Q) p Q)

Q) 1 Q Q (4)

O31 b3» d33 0

(543531) (543 032 ) (5 43533) 644

 

Identifiability of Parameters

  

843 = Average of Na /N31 ; Lay /Age 5 and hag /N33 .

531 — Xs (5)

O32 = Age

d33 = Aga.

MethodofAnalysis

Theories of the interaction between high-level components (of contextutiliza-

tion and discourse analysis) and low-level word-analysis components can be

stated as systems of structural equations. These equations relate measured per-

formance on particular high-level components to measured performance on: (1)



TABLE3.11
Analysis of Interactions Involving Higher-Order Components

 

Structural Equations

 

Mm = 61

Ne = be

3 = 3 C1).

Ns = bs .

Ns = 85373 + 05474 + 65505 + O56N6 Qy

Ne = 66373 + 06414 + b65S6

  

Unique Components as Functions of Measured Components

 

c=

C2 = 12

G3 = UE:

C4 >= 1) 4

5 = — 05313 — 8534 + 95 — 85576

cs = — 863 13 Ova 4 + 1) 6s

Factor Matrix A = A7'!D
eee

I 9 9 9 p 9
9 I Q Q 9 9
9 9 I ” p 9
9 Q Q I Q Q
0 1) (6 33 + 6 63 6 a6 ) (6 o4 + 6 64 6 a6 ) 6 30 (6 35 6 66 )

p 9 5453 O64 9 8 66

 

Identifiability of Parameters

 

6 55 = As6/AG6 5

O53 =As53 — 643 . O56 5

O54 = A354 — 8 64 , O56 5

055 =155, 063 = 63> O64 = Aga, Oug = AB-
S
S
S

“Components 1-4 are allowed to be freely intercorrelated; the correlation between components 5
and 6 may or maynot be constrained, depending on the model. Intercorrelations between components
1-4 and high order components 5 and 6 are assumedto bezero.
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other high-level components;(2) the four word-analysis components. Asthe goal

is to estimate the path coefficients (6;; 's) relating measured components, it is not

necessary to simultaneously model the structural relations among the lower-level

components. A fairly general structural model, which illustrates the properties of

structural models that we actually adopt, is given in Table 3.11. In this hypothet-

ical model, word-analysis components (numbered 1-4) are assumed to be corre-

lated. (This is due, as we have already seen, to component interactions that are

indicated by dashedlines in the figure. The present model, however, does not

specify these relations.) In the model, performance on high-level components 5

and 6 is determined bylevels of skill on components 3 and 4. Performance on

high-level component5 is determined,as well, by performance on another high-

level component (6). These two types of assumed relations among components

are the types we consider later in building our interactive models.

The structural equation system corresponding to this model is presented in

Table 3.11, along with a derivation of the factor matrix A expressed in terms of

the model parameters—the path coefficients (6;;’s). Several observations con-

cerning the matrix A are helpful. First, consider the factor loadings for compo-

nent 6, correspondingto the final row of A. Performance on this componentis

determined in the model by performance on lower-level measured components

and by a unique component. Forthis type of variable, the values in A give the

path coefficients directly. The values of Ags and Agq (corresponding to d¢3 and 664)

are simply regression coefficients obtained in the regression of component 6 on

components 3 and 4, and Age = See is an estimate of the error (or unique)

componentof variance (if we assume in the model that the unique componentis

uncorrelated with other components). The relations of the factor loadings for

component5 to underlying model parameters are more complex becausethis is a

case where the high-order variable is related to lower-level components (3 and 4)

both directly and indirectly—through the relationship of component5 to a second

high-order component (6). Here, the parameters of A are related to the parame-

ters of the structural model by expressions such as A53 = 553 + 663056, Which

contains two additive terms: 6;3 (representing the direct path from component3

to 5) and 5.3555 (representing the indirect path from component3 to 5 via 6).

Likewise, \s5 = 5sg5gg represents the path from unique component6 to 5 via

measured component 6. In developing and testing models for the interaction of

high-order components and word-analysis components, we encounter each of

these situations exemplified by variables 6 and 5 in the foregoing example.

Several of the high-order components are simply regressed on the set of word-

analysis components, as was variable 6. And oneof the high-order componentsis

dependent on both a second high-order component and the word-analysis com-

ponents, as was the case for variable 5.
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Structural Models of ComponentInteraction

The initial model of component interactions incorporated the following
hypotheses:

1. Word-analysis components of decoding efficiency (III) and word-
recognition efficiency (IV) are hypothesized to influence context-utilization
components (V and VI) directly because early retrieval of lexical categories
increases the time available for activation of semantically/syntactically con-
strained items in memory.

2. The generative component of context utilization (VI) directly (and nega-
tively) influences the speed component (V) because speed is inversely propor-
tional to the numberof contextually related alternatives that have been activated.

3. Word-analysis components of perceiving multiletter units (ID; decoding
efficiency (III), and word-recognition efficiency (IV) are also hypothesized to
influence components of discourse processing (VII and VIII). The discourse-
analysis processes involved in selecting and evaluating referents in building a
propositional representation for a sentence take place concurrently with pro-
cesses of decoding and word recognition and, therefore, must share processing
resources with them. High levels of automaticity in word-analysis components
reduce the resource demandsofthoseprocesses and, thus, improve the efficiency
of concurrent processes of discourse analysis. (However, the direct relation of
component VIII to II was eliminated in the model because the correlation be-
tween them was nonsignificant: r = —.19, with a standard error of .20.)

The structural equations for high-level components V-VIII corresponding to
these hypothesesare tnen:

Ns = 9533 + O54+ 45505 + Os6N65

Ns = O63sNs + Seana + Oeebe>

Nz = ON. + O73 + B74Ns + O7767, and

Ns = 0833 + OgaN4 + Ogee.

The second-order factor matrix A for this model has the hypothesized structure
indicated at the top of Table 3.12. The hypothesized structure for ® is also given
in this table. Here, the unique components V-VIII are assumed to be indepen-
dent.

To evaluate the fit of this structural model, two more general models were
constructed. In the first (model 2), the four high-order components were re-
gressed on all lower-order components. The nonsignificant chi-square of 12.86
(d.f. = 7) indicates that the restrictions of the original model are supported. To
evaluate assumptions concerning the independence of higher-order unique fac-
tors, a second alternative model was constructed (model 3). In this model, the
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TABLE3.12

ACOVS Models for ComponentInteractions

with and without Assumptions of Component Independence

nO

 

Fixed and Variable Intercorrelations Comparisons

Parameters Resulting Among among Models

from the Structural Model Components

Interactive

Model

MMModel" (A) (D) x? d.f. p

1. Restricted model

for interaction of

higher order com-

ponents and word-

analysis compo-

nents, assuming

component

independence.

 

2. Unconstrained re-

gression of higher

order components

on word-analysis

components,

assuming

component

independence.

12.86 .08°  
3. Restricted model

for interaction of

higher order com-

ponents and word-

analysis compo-      ODvV

 

nents, allowing ONvVV Vv

correlation among Ovvyv Vv

__components,

Pv

edODvV 0 Vv

4 The general model is & = BA®A' B’ + ©”, where 8 contains the measurement model,©,A and

® depend onthe particular structural model, and ©? containserror variances. The rows and columns

of matrices A and ® correspond to the eight components; submatrix ®,, contains intercorrelations

among word-analysis components; ®., contains intercorrelations among the higher order components,

and I represents the 4 x 4 identity matrix. Free parameters, or variables, are denoted by v.

’ Model | is tested first against model 2 and then against model 3.

high-order components are allowed to intercorrelate freely with each another,

instead of introducing the explicit relation of dependence between the two

context-utilization components V and VI. The obtained chi-square of 9.63 (d.f.

= 5) is again nonsignificant, and the assumption of independence of the unique

components is supported. Thus, the obtained correlations among high-order

measured components can beattributed entirely to their common dependence on

levels of automaticity/efficiency of lower-level components and to the specific

relation of dependence hypothesized for the context-utilization components.
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Summary ofInteractions for Discourse-Analysis Components. The relation-
ships of discourse-processing components to low-level components are illus-
trated in Fig. 3.6, which contains the estimated path coefficients. Component
VIII represents efficiency in integrating the semantic information associated with
an antecedentlexical item with the semantic representation being formulated by
the reader for the current sentence or phrase. This skill was established, for
example, by comparing reading times for sentences containing an ambiguous
pronominal reference with those for a sentence containing an unambiguousrefer-

> VIN

.o7

91

ty

‘ey

17

evi

FIG. 3.6. Causal model relating two components of discourse processing, as-

signment of topicalized referent (VII) and semantic integration of antecedents

within a discourse representation (VIII), to components of word analysis: letter

recognition (1), Multiletter unit identification (II), decoding, (IID, and word rec-

ognition (IV). In the model, there are direct structural relations between

perceptual/decoding components and discourse processing components.
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ence. Semantic integration is not significantly associated with word recognition

(IV), but it is strongly associated with decoding efficiency (IID), with r = .87 and

a regression coefficient of .91. Thus, there is a direct effect of automatic decod-

ing on this discourse-processing component, which can be interpreted as an

example of process interaction due to competition for a limited resource (Perfetti

& Lesgold, 1977). Perfetti and Lesgold (1979) have subsequently suggested that

the resourcelimitation is in working memory capacity and that inefficient decod-

ing requires space in working memory that would otherwise by utilized for

discourse processing. Whatever the nature of the resource limitation, it is clear

that efficient decoding has an important, direct impact on discourse processing.

And weare led to entertain the hypothesis that training for automatic decoding

may have an impacton efficiency of discourse processing.

The remaining discourse processing component we have identified, prefer-

ence for a topicalized antecedentas a referent (VII), reflects a dependenceof the

reader on the topical status of antecedents in effecting retrieval from memory.

This component was measured, for example, by comparing reading times for

sentences containing a pronoun when the referent was topicalized or not to-

picalized in the first sentence of a paragraph. Component VII1s associated with

three word-analysis components, suggesting again that automaticity of low-level

processes contributes to efficiency in processing at the textlevel, presumably

through lessened demands on the processing resource.

Finally, even though our investigation of discourse-analysis componentsis

still in its infancy, the results obtained thus far suggest that components in this

domain may be independent. Training targeted at one component under those

circumstances would not be expected to generalize to other components. This

expectation does not hold for word-analysis components where increased au-

tomaticity could contribute to efficiency in a variety of discourse-related compo-

nents.

Simplified Model for Interactions of Context-Utilization Components. Sev-

eral simplifications in the relationships of context-utilization components to

lower-level components were introduced and found acceptable. These are models

4 and 5 shownin Table 3.13. Thefirst simplification is based on the feeling that

the basic process of context utilization is the generative component (VI). The

speed component represents an optionalstrategy that some subjects employ—

that of trading off speed in responding against the possibility of errors in identifi-

cation that can occur when the amount of orthographic/phonological evidence

developed while reading in context is being minimized. In this model, all correla-

tions between the speed component (V) and lower-level components are re-

garded asattributable solely to dependence on the more basic generative compo-

nent (VI). The structural equation corresponding to component 5 thus becomes:

Ns = O55¢5 + O567N)6-
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TABLE3.13
Alternative Structural Models for Context-Utilization Components

 

Comparisons with

Model |

Interactive Model®
2

6-Q-d-8
af. p

 

1.

)

(2)

)
(3) (4)—>(6) (5) 61 2 74

2)

0-0-0 3s

“In all models, components 7 and 8 are regressed on components 2-4 and 3-4, respectively.
Intercorrelations among components are as indicated for model 1 in Table 3.12.

4.

5.

 

The other structural equations were, of course, unchanged. Comparison of model
4 to the original model yielded y?(2) = .61 and thus strongly supportedthefirst
simplification.

A further simplification also proved possible. In structural model 5, the direct
influence of the decoding component(III) on contextutilization (VI) was elimi-
nated. This simplification was motivated by the feeling that the generative use of
context is an automatic process—onethat is not likely to be in competition for
processing resources with an inefficient decoding process. Thus, the influence
(correlation) of decoding efficiency with context utilization should be entirely
attributable to its effect on efficiency of word retrieval (component IV). Com-
parison of this model (which included the simplifications of model 4 as well)
with the original model yielded x?(3) = .94, again providing strong support for
the reasoning behind the simplification.

Thefinal pattern of process interactions for the context-utilization components
is summarized in Fig. 3.7. Again, components I-IV are the word-recognition
components, interrelated as in Fig. 3.2. Generating extrapolations from a dis-
course representation (VI) and speed set in employing highly predictive context
(V) are the two identifiable aspects of contextutilization. The generative compo-
nent (VI) is related directly to word-recognition efficiency (IV) and related
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FIG. 3.7. Structural model relating two components of context utilization, ex-

trapolating a discourse representation (VI) and speedsetin utilizing highly predic-

tive context (V), to components of word analysis: letter identification (1), multilet-

ter unit identification (II), decoding (III), and word recognition (IV). In this

model, there are no direct effects of perceptual/decoding components on higher

order components.

indirectly to the other word-analysis components through their effects on word

recognition (IV). The path coefficient (— .46) is negative because, for the genera-

tive component, high values(large increases in visual span with the provision of

prior context) indicate efficient performance. (For the other components, low

values reflect efficient performance.) Theinteraction of generative use of context

(VI) with word-recognition efficiency is in theory due to the increased time for

activation of semantically associated lexical units when words are more rapidly

encoded. Speed setin utilizing predictive context (V) is negatively related to the

generative component(VI), representing a strategy that is most applicable when

the generative componentyields a small (unitary) set of constrained alternatives.

The correlations of the strategic component (V) with other components are all

attributable to its relation to the more basic generative component. Note, finally,

that the greatest factors contributing to context-utilization components are the

unique components, which in this model are mutually independent.

RELATIONSHIP OF READING COMPONENTS

TO OTHER COGNITIVE FACTORS

Eleventests representing five cognitive factors were drawn from the Educational

Testing Service kit of reference tests for cognitive factors (French, Ekstrom, &

Price, 1963), and theseare listed in Table 3.14 for each of the factors. The first

three factors represent perceptual skills. Speed of Closure tests require the sub-
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TABLE 3.14
ACOVS Model for Cognitive Ability Tests?eee

Factor
eee

A B C D E
Speed of Flexibility Perceptual Word Fluency of

Test Measure Closure of Closure Speed Fluency AssociationSO

1. Concealed words .52 —) ~ ~ ~
2. Gestalt completion 54 Q) —) ~) ~)
3. Hidden figures (power) 0) 1.00 0) ~ 0)
4. Hidden patterns (speed) .64 32 41 p Q
5. Finding As 0 ~ 36 0 0
6. Finding identical pictures —) ) .90 —) ~)
7. Word endings 0) 0 0 .69 —
8. Word beginnings ~) 0) —) 79 ~)
9. Controlled association ~) 0) ~) 0 77

10. Doubly constrained association ~) 0) ~) ~) 75
11. Simile interpretation 0) 0 0 —) 49

“The model uses 23 parameters to accountfor 55 correlations. Thetestoffit yielded x3. = 43.3,
p = .O9. Standard errors of parameters averaged .21.

ject to identify figures or words onthe basis of their overall visual form without
the benefit of specific features or details. Flexibility of Closuretests require the
reader to maintain in memorya specific figure so as to identify it when it occurs
embedded within

a

larger figural context. Tests of Perceptual Speed measure the
rate at which subjects can identify simple figures, or letters, amid an array of
distractors.

The last two factors are measures of the accessibility of items in lexical
memory when memoryis searched for items having particular features of a
phonological (orthographic) or semantic nature. Word-Fluency tests measure the
numberof lexical items having particular phonological/orthographic characteris-
tics that can be retrieved in a fixed time—thosethat begin or end with a particular
set of letters (e.g., begin with pro-, sub-; end with -ay, -ow). Fluency of
Association tests measure the number of lexical items bearing semantic/
associative relationships to a given word or wordsthat can be generated within a
designated time. In the Controlled Associationstest, all words having meanings
similar to a given word (e.g., dark) must be supplied. In the Doubly Constrained
Associations test, words must be foundthat are simultaneously associated with
two presented words (e.g., jewelry-bell; answer: ring). Finally, the Simile-
Interpretation test requires subjects to list as many interpretations for a simile as
they can think of within a timed period.

The factor model for this set of measures is also shown in Table 3.14. It
reproducesthe pattern of factor loadingstypically posited for this set of variables
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with the single exception that measure 4 (Hidden Patterns), which is a highly

speeded test, loads on Speed of Closure and Perceptual Speed, as well as on

Flexibility of Closure. Correlations among the five factors are given in Table

3.15. Correlations amongthe perceptualfactors are low, butthe correlation be-

tween the two fluency factors is extremely high (.86). Furthermore, correlations

between the fluency factors and verceptual factors are sizable.

Correlations of reading components with cognitive ability factors were ob-

tained by adapting the ACOVSprogram for performing an interbattery factor

analysis. The results generally supported our interpretation of reading compo-

nents (Table 3.16). Speed of Closure, a factor reflecting the ability to recognize

words on the basis of their overall visual characteristics, correlated with each of

the word-analysis components except letter-recognition efficiency; it correlated

most highly with efficiency in word recognition (component IV). Flexibility of

Closure, a measure of the ability to recognize familiar visual forms embeddedin

a larger context rapidly, was not correlated with any of the reading components.

And Perceptual Speed, measured by twotests of visual search (for a target letter

or picture), was generally correlated with all components, suggesting that this

factor is componentially nonspecific.

Twoadditional cognitive abilities were included, which are measures of word

accessibility via orthographic/phonological structure (Word Fluency) or by

semantic features (Fluency of Association). These two fluency factors are highly

correlated (r = .89). There was a general ‘‘background’’ correlation of — .30 to

—.40 between these factors and the reading components. Beyond this back-

ground correlation, it is interesting that, of these two factors, the one measuring

word accessibility via orthographic/phonological cues was more highly corre-

lated with decoding efficiency (—.85) and word-recognition efficiency (—.61).

In addition, Fleuncy of Association was more highly correlated with extrapola-

tion of discourse representation (component VI) (r = .70), a component that

shares with the fluency factor a need to access lexical items on subtle semantic

grounds. It is interesting that semantic integration of antecedents (component

VII) is not tapped by either of the fluency measures. This component, we

believe, does not involve divergent production of semantic relations. Rather, it

TABLE 3.15

Correlations Among Cognitive Ability Factors®

eaa

S
S

nnn

A B C D E

a

A. Speed of closure 1.00

B. Flexibility of closure —.11 + .22 1.00

C. Perceptual speed 28 + .24 12+ .18 1.00

D. Word fluency 60 + .23 39 + .29 33 + 19 1.00

E. Fluencyof association JS + .21 32 + .26 40 + 18 66 + 1] 1.00

a

“ Correlations having absolute value .25 or greater are in italics.
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TABLE 3.16
Correlations of Reading Components with Cognitive Ability Factors

Resulting from the Interbattery Factor Analysis¢eee

Cognitive Ability Factor
eee

Speed of

—

Flexibility Perceptual Word Fluencyof
Component Closure of Closure Speed Fluency

—

Associationsss

I. Letter encoding — .05 —.10 —.3] —.45 — 25
efficiency

II. Perceiving multiletter —.28 —.14 —.32 —.39 —.38
units

Ill. Decoding efficiency —.30 — .09 —.44 —.86 —.57
IV. Word-recognition —.40 .06 —.56 —.61 —.4]

efficiency

V. Speed in applying —.15 08 — .23 —.4] —.29
context

VI. Extrapolating a 35 02 .20 2 70
discourse

representation
VII. Assignment of — .34 — .08 —.52 — 45 —.22

topicalized antecedent
as referent

VII. Semantic integration 03 19 — 33 —.01 21
of antecedents with a

discourse

representation
—_—_—_—_—_—_—_—_—_—_—————————

“Correlations having absolute value .25 or greater are in italics.

involves the specific testing of retrieved antecedents within the semantic frame
under construction in working memory.

EXAMINATION OF
THE READING ABILITY CONSTRUCT

Composite Measures of Reading Ability

It is well known that tests of reading ability, comprehension, vocabulary, and
generalverbalfluency correlate highly with one another (cf. Davis, 1971). When
batteries of such tests are factor analyzed, a generalfactor of ‘‘verbal facility’’ is
typically extracted and interpreted as evidence for an underlying aptitude dimen-
sion. The question at issue is: How can wereconcile the empirical demonstration
of an ‘“‘ability’’ dimension, which is easily and reliably measured, with the
theoretical view of reading as a collection ofinteracting, but largely independent,
components of skill?
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From the standpoint of componential theory, general reading tests are com-

plex, requiring whatis potentially a large numberof individual componentpro-

cesses for their successful completion. High levels of tested skill are found for

readers who have achieved high levels of automaticity in a large proportion of

those components, andlow levels of performanceare found for readers for whom

the set of automatic components is morerestricted. The model I am advocating

here is a compensatory model for determining the overall performance of a

system of componentsasit is represented by scores on a composite reading task.

Within a compensatory model, high levels of skill in one component can com-

pensate for low levels in another. Performance on the composite task is thus

taken to be a linear function of the skill levels on individual components.

It is easy to show that a high correlation between two composite measures of

reading is to be expected within the framework of such a compensatory model,

even in the case where the underlying reading componentsare mutually indepen-

dent. Let ¢t = > w; y; represent performance on one composite reading task, and

let s = > v; y; represent performance on a second reading task. Each composite

task is a linear combination of performance levels on a set of components,

represented by y;. If we further assumethat the variances of the componentsare

1 and scale the weights (w; and v,) so that their sum of squares is 1, then the

correlation between the composites ¢ and s is given by:

Siwi vi P(Vi Yi) + >> Wi Vi P(Vi> Yi)
i i#j 3.8

i
2

 

p(t, s) =
2

1+ SS ww; pi ») | 1+ YS vi v; piv») |
iFj Aj

where p(y;, yi’) is the reliability of the ith component, and p(y;, y;) is the

correlation between the two discrete components i and j (Lord & Novick,

1968). If we now introduce the further condition that the components are inde-

pendent (that p[y;, yj] = 0), Equation 3.8 can be simplified to yield:

p(t, 8) = > Wi V; PO: Yi) 3.9

Finally, if actual component automaticities/performance levels are substituted for

measures of those quantities, the reliabilities will be 1, and the correlation be-

tween the two composites will simply be the correlation betweenthe weightings

of the components for the two composite tasks. Thus, two composite measures

having similar weighting on a set of component processes will be highly corre-

lated, even if the components operate independently. If the components are not

independent (i.e., they interact), the correlation will be less dependent on the

similarity of weights for the two composite measures of reading. High correla-

tions among reading tests are therefore to be expected, as long as the tests

represent componentially complex composites of individual components and the

weightings of componentsare similar. Hence, the fact that batteries of reading
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tests generally yield a large general factor has no bearing whatsoever on the
componential complexity of the reading: process represented in the tests. Such a
finding only suggests that the composite tests of the battery are making similar
demands ona set of underlying reading components. It is only when the indi-
vidual measures within a test battery are constructed so as to be componentially
specific that the high, positive correlation among measures will be eliminated
and the pattern of componentinteractions will become apparent.

Componential Analysis of Reading Tests

Given a set of measures of reading components resulting from the application of
the measurement modeldisplayed in Table 3.8, it is possible to study the relation
of several composite measures of reading ability to underlying reading compo-
nents. The correlations of the eight reading components and four criterion mea-
sures of redding ability were estimated using the ACOVSprogram (Table 3.17).
The four criterion measures are reading time for context paragraphsin the visual
span experiment, the numberoflinesof text read in the Nelson-Dennytimed read-
ing passage, and the Nelson-Denny vocabulary and comprehensionsubtestscores.

There are consistent relationships between word-analysis components and the
four criteria, including the comprehension subtest. Decoding efficiency and
word-recognition efficiency both correlate highly with vocabulary and com-
prehension measures and with the computer-based measure of reading speed.
Perceiving multiletter units (component II) is also moderately correlated with
three of the criterion measures. The letter-encoding component appears to be of
lesser importance for the tests that are specifically reading tasks, but it does
correlate —.31 with vocabulary. (This value is in close agreement with the one
obtained by Hunt, Lunneberg, & Lewis, 1975.) The finding of high correlations
of word-analysis components and measures of comprehensionis consistent with
results of Perfetti and Lesgold (1977; see also, Perfetti & Roth, 1980). Together,

these findings provide additional support for the hypothesis advanced in our
interactive model: that automaticity of word-analysis skills essentially frees pro-
cessing resources for the purposes of discourse analysis.

Although the majority of word-analysis components are strongly correlated
with criterion measures of reading ability, measures of higher-level components
are generally less predictive—at least as reading ability is measured by conven-
tional tests of speed and comprehension. Of the context-utilization components,
the most prominentis the generative process of extrapolating a discourse repre-
sentation in the activation of semantically constrained items in memory (compo-
nent VI). This componentcorrelates .59 with comprehension andis also highly
correlated with the other reading measures. The correlation of this component
with the vocabulary test (.47) suggests that general knowledge of word meanings
may be one prerequisite for developing skill in the generative use of context.
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TABLE3.17

Validity Coefficients*
en

Criterion Measure

a

Reading Time  Nelson-Denny _Nelson-Denny Nelson-Denny

Component for Context Speed Vocabulary Comprehension

a

I. Letter encoding 17 —.18 —.3] — .20

efficiency

II. Perceiving multi- .20 —.28 —.30 —.29

letter units

III. Decoding 70 —.48 —.62 —.68

efficiency

IV. Word-recognition 0 —.17 — 35 —.51

efficiency

V. Speed in applying 42 — .03 OO —.21

context

VI. Extrapolating a —.5] 37 47 9

discourse

representation

VII. Assignmentof 23 —.17 — .23 — 34

topicalized

antecedent as

referent

VII. Semantic 4] —.11 08 .02

integration of

antecedents with

a discourse

 

representation

Multi R 74 .63 73 .16

F (7, 38) 6.48 3.63 6.08 7.50

Prob. .000 .000 .000 .000

 

“Correlations of .25 or greater are in italics.

Finally, and surprisingly, neither of the discourse-analysis components 1s

strongly correlated with conventional reading test measures of speed, vocabu-

lary, or comprehension. Influence of topicality in assigning reference relations

(component VII) correlates —.34 with comprehension, indicating that good

comprehendersare less influenced bythe topical status of a referent in analyzing

anaphoric relations in a text. Semantic integration (component VIII) appears to

be poorly ‘‘tapped’’ by the conventional reading test measures; it correlates

highly with only the computer-timed measure of reading speed (r = .41). This

finding serves to remind usthat there are discourse processing skills that would

appear to have broad applicability in processing text, but these skills are only

poorly represented in conventional tests of reading comprehension.
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Status of the Reading Ability Construct
in Componential Theory

Apart from the identification of ‘‘reading ability’’ with performance on a com-
posite test of reading performance, can a role be found for a reading ability
construct within componential theory? One possibility is that an explicit, theoret-
ical definition of reading ability as a processing component can be developed.
For example, reading ability might be equated with a single component such as
“constructing a propositional representation of a text.’’ The problem with this
approachis that, in our attempt to be theoretically explicit in defining the compo-
nent, we are likely to discover that the proposedprocessis itself multicomponen-
tial, with each of the resulting subcomponents probablytoo specific to qualify as
a general reading ability. It is probably the case that any reasonably general
processing system is resolvable into a set of more particularized components
together with their interactions. Nevertheless, it is possible for componentsto be
grouped in more general systems. For example, even though the decoding com-
ponent we havestudied includes subprocessesfor syllabication andfortranslating
digraph vowels, measures of these subcomponents can be regardedasindicators
of efficiency of a more general decoding system. The empirical check on the
validity of a componentas an integrated system of subprocessesis in the conver-
gent and discriminant validity exhibited by the collection of subprocess mea-
sures, as they are evaluated in the fitting of a measurement model. Thus, in

theory it is possible to identify a system of components that are process-linked
and that together performs a type of text analysis that could be considered a
primary ability in reading. However, the components of discourse analysis that
we have analyzed thus far do not appearto be closely related aspects of a single
system for text analysis.

A second possible locus for general reading ability within a componential
model lies in the concept of resource or capacity limitation, used to explain
interactions between low- and high-level components of reading. Low reading
ability might be thoughtof as a result of restricted processing resources (Kahne-
man, 1973; Norman & Bobrow, 1975) or, perhaps, restrictions in working mem-
ory capacity (Perfetti & Lesgold, 1977). Such an explanatory concept has not
been limited to reading, however. For instance, limitations in attentional re-
sources have been proposed to explain age-related deficits in memory (Craik &

Simon, 1980; Kinsbourne, 1980). Furthermore, factor analytic studies of

resource-sharing measures (e.g., contrasts between performance in a task per-
formed alone or concurrently with a second task) have provided no evidence as

yet for a general factor reflecting a commonattentional resource component
(Sverko, 1977). The only factors that could be extracted in the Sverko study were
clearly task specific. Other students of the resource-sharing ‘‘ability’’ (Hawkins,
Church, & DeLemos, 1978) have reached similar conclusions. Resource-

capacity limitations, if they exist as stable aspects of individuals, are multifa-
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ceted and task specific. Thus, it is difficult to see how reading ability could be

conceptualized as a general limitation in processing resources. Deficits in

reading-related processing resources might, however, contribute to poor perfor-

mance on composite reading tasks.

A third possible interpretation remains—onethat is based on the background

environmental and biological factors that condition levels of performance on

components. Accordingto this view, these etiological factors enable some indi-

viduals to acquire high levels of skill in numerous components, whereas others

remain incapable of developing such general expertise. This essentially empiri-

cal definition of reading ability is similar to the identification of verbal ability as

the general (g) factor underlying a series of verbal tests or the equating ofa first

principle factor with ‘‘general intelligence.’’ There is a difference, however.

Here we are dealing with components, not with tests that are composites of

components. Given a set of theoretically derived measures of components that

have met the two standards of validity we have proposed, empirical evidence for

general ability will be found in the presence of background correlations among

components that remain after removing any covariation that is attributable to

theoretically proscribed interactions among components. Ourresults so far pro-

vide no evidence of such background correlations. Thus, they offer no support

for an underlying general factor of reading ability.

DISCUSSION

In this chapter, I have attemptedto outline the form of a procedure-based compo-

nential theory of reading and develop multiple standards by whichthe validity of

such a theory can be judged.

Thefirst level of validation concernedthe ability to predict mean performance

on a criterion-measurement task for a set of particular task conditions. These

predictions are based on an information-processing theory offered for the crite-

rion task. In the experiments I have reported, separate tasks are generally em-

ployed to measure each of the specific reading components underinvestigation,

and the selection of component-specific measures is based on the particular

processing model developed and validated for each task. An alternative approach

has been used by Sternberg (1977) in his studies of reasoning abilities. Rather

than working with a set of experimental tasks, a single criterion task is chosen,

which although representing a componentially complex (composite) perfor-

mance,is susceptible to a variety of parametric variations in task conditions. A

multicomponential theory is developed for predicting performance on thecrite-

rion task, and a ‘‘componential analysis’’ is advanced stating the theoretical

degree of involvement of each component for each of the task conditions. A

regression equation is then fit in which mean performanceonthecriterion taskis

predicted from the theoretically specified component weights for each of the task
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conditions. These regression equations can befit to data for groups of subjects or
for individuals. The goodness-of-fit of the componential modelis indexed by the
multiple correlation obtained in predicting composite performance from the
theoretically specified component involvements. And the regression weights are
interpreted as measures of the efficiencies of the individual components. These
weights are in fact contrasts among the task conditions and,as such, are formally
similar to the component-specific measures we have been developing. Carroll
(1980b) has shown how these beta weights mayserve as variables in further
analyses of covariances among components through the use of factor analysis.

Level-one validation can be thoughtof as equivalent to building andtesting a
theory of item or task difficulty. Rather than simply scaling item difficulties by
applying a standard statistical theory of task performance (e.g., a latent trait
theory), an information-processing theory of task performanceisfit to the per-
formancerecords for each individual, and parameters of the theoretical model are
taken as the ‘‘test’’ measures. This approach has been explicitly adopted by
Brown and Burton (1978), who have shown how, by applying a theory of
performance on arithmetic problems, patterns of errors can be used to identify
specific conceptual ‘‘bugs’’ within the individual’s information-processing sys-
tem. The hope in adopting such an approachis that a cognitively rich theory of
task performance will yield measures of particular features of an individual’s
processing system. These measures will in theory reveal the status of particular
processing components, rather than merely reflect the operation of the overall
system as it is performing a composite task.

The secondlevel of validation was concerned with the differencesin levels of

component-specific performance evidenced by individual subjects over a set of

measures that have been found to conform to the level-one standardsofvalidity.

Wehave attempted to show how the componential theory developed for predict-

ing the effects of task manipulationsin level-one validation also implies a highly

specific measurement model, which relates performance on one measure to that

on other measures of similar or dissimilar components. This measurement model

can be statistically evaluated using techniques of confirmatory maximum-

likelihood factor analysis. I believe that the logical correspondence between

theoretically derived hypotheses underlying level-one and level-two validationis

a tight one. If two measures share a processing component according to the

model developed in level-one validation, then they must be resolvable as

functions of the same underlying componentin fitting a measurement model. In

addition, their correlations with other measures must be proportional to their

weights (loadings) on the underlying common component. Any violation of these

relationships suggests that there is an unanticipated functional independence

between measures and that further theoretical specification will be needed to

account for the discrepancy. It is only when a measure is found to be unique—to

be uncorrelated with al// other measures—that there is ambiguity in the theoreti-
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cal interpretation of the outcome. (Here the measure may represent sometheoret-

ically unspecified component, or it may simply be unreliable.) Finally, it should

be emphasized that the testing of measurement models underlying the

covariances among component-specific measures is not factor analysis in the

usual sense because here the factor structure is specified in advance of the

analysis.

A componential theory not only specifies the processing components underly-

ing each of the experimental measures introduced; it must also provide for an

analysis of component-interactions. The procedural view of components provides

a means for predicting when components are linked and when they are not.

According to this view, components are invoked whenever particular

situations—or data structures—occur, and they operate on those data structures

in specified ways. Components are thus linked through their operation on a

common internal data base and through the joint demands they place on shared

processing resources. The specification of a theory of component interaction

therefore requires specific knowledge of the attentional demands andlevels of

automaticity of the components. Particular theories of componential interaction

can be stated as systems of structural equations, and the parameters of those

equations (the path coefficients) can be estimated (at least for some models) by

using maximum-likelihood techniques for the analysis of covariance structures.

The alternative to this structural modeling approachis the use oftraining studies.

The results of componentially specific training should transfer to other compo-

nentially specific measures, as specified in the theory of componential interac-

tion.

Finally, the componential theory of reading has provided a basis within which

I could re-examine the concept of “‘general ability’’ in reading. The existence of

a large general factor in the analysis of composite reading tests was shown to be

an expected outcome, given a compensatory modelrelating processing compo-

nents to composite test performance.I believe thereis little hope for uncovering

componentskills in reading bythe analysis of correlations among such composite

tests. What is needed is a set of theoretically based, componentially specific

measures that have met the proposed standards of validity. If a set of such

measuresis available that covers the broad range of componentskills of reading,

it should be possible to test for a general, background correlation among reading

skills attributable to general ability. Evidence for such a correlation has so far

been lacking. However, a stronger and more definitive statement concerning an

underlying ‘‘verbal ability’’ must await further evidence and, moreparticularly,

the development of a more articulated componential theory for discourse

analysis. Nevertheless, I feel that the approach outlined here might be applied
fruitfully in other areas of complex cognitive performance and serve as a means

of resolving the ongoing debate concerning the existence and nature of general

intelligence.
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Basic Numerical Abilities

Rochel Gelman

University of Pennsylvania

Typically, definitions of humanintelligence include some reference to mathemat-

ical abilities. Most IQ tests have questions requiring some knowledge of mathe-

matics or arithmetic. Piaget highlighted the role of mathematical-logical knowl-

edge in the developmentof concrete and formal operations. And, people whoare

able to do mathematics are thought to be bright—at least in Western cultures.

Whythe pervasiveness of the assumption that mathematical abilities contribute to

intelligence? I think it follows from a general view that ‘‘abstract’’ thinking

abilities are fundamentally involved in ‘“‘intelligent’’ thinking. By definition,

mathematical ideas are abstract. This is even true for our ideas about natural

numbers—they are not ‘‘out there’’ in the real world waiting to be noticed.

Hence, by implication, mathematical ideas represent an advancedlevel of in-

tellectual ability.

I believe the assumption that mathematical thought is both abstract and in-

telligent has contributed to our willingness to presume that the concept of number

and arithmetic abilities are relatively late on the developmental scale. Be it Piaget

(1967), Vygotsky (1962), or Bruner, Olver, and Greenfield (1966) to whom we

appeal, the view is that abstract concepts are not available to preschoolers.

Againstthis theoretical backdrop, it is easy to accept the argumentthat arithmetic

concepts likewise are not available to preschoolers. It is common to read that

preschoolers count by rote with no understanding of the counting procedure

(Piaget, 1952; Saxe, 1979a, 1979b), let alone an accurate concept of number.

Piaget’s finding (1952) that preschoolers fail the conservation of number task

served to buttress the view that numberconcepts are late in developing. However

reasonable such assumptions might seem, they are probably wrong. Recent evi-

dence points to the conclusion that certain mathematical abilities are present
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during the preschool years. Indeed, it seems that the ability to count and do
simple arithmetic problems maybe asnaturalas the ability to speak a language.

In this chapter, I review the findings on the nature of early counting
abilities—findings which support the view that very young children have implicit
knowledge of counting principles. Next, I consider how implicit knowledge of
counting might develop into explicit knowledge, including a beginning under-
standing of infinity. Then I take up the functions that can be served with this
knowledge of the principles. I then marshal the evidence that counting and
related abilities involve natural, universal cognitive abilities. I end with a discus-
sion of the limitations of this conclusion.

A DEFINITION OF COUNTING

In order to assess the young child’s ability to count, it helps to have a definition
of counting as a yardstick against which to compare performancelevels. Accord-

ing to Gelman and Gallistel (1978), counting involves the coordinated applica-
tion of five principles. This list of principles was derived from a consideration of
formal definitions, existing psychological models of counting (e.g. Klahr &
Wallace, 1976; Schaeffer, Eggleston, & Scott, 1974), and an initial analysis of

what looked like counting sequences generated by preschool children. The prin-
ciples are: (1) the one-one principle; (2) the stable-order principle; (3) the cardi-

nal principle; (4) the abstraction principle; and (5) the order-irrelevance princi-

ple.

As Gelman and Gallistel (1978) point out, every known counting model

assumesthe use of the one-one principle, which involves ticking off the items in

an array with distinct tags so that one and only onetag is used for each item in the

array. In followingthis principle, an individual has to coordinate two component

processes: partitioning and tagging. Partitioning involves the step by step main-

tenance of two categories of items—the to-be-counted and the already-counted

categories. Items must be moved (physically or mentally) from the latter category

to the former. The partitioning process must be coordinated with the tagging

process, which involves the summoningup of distinct tags, one at a time. These

are typically the count words, but they need not be. As long as theset of tags 1s

distinct and different from the namesof attributes of the to-be-counted items, it

can serve the tagging function.

Although counting must involve the one-one principle, the use of this princi-

ple by itself does not constitute counting. At the very least, the one-one principle

must be applied in coordination with the stable-order principle. That is, the tags

used in a count must be arranged or chosen in a stable, repeatable order. The

principle requires the availability of a stable list that is at least as long as the

to-be-counted numberof items requires it to be.

The one-one andstable-order principles involve the selection and application

of tags to the items in a set. The cardinal principle captures the fact that the final
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tag in a count sequencehas

a

specialstatus. It, unlike any other tags, represents

the numberof items in a set. This principle presupposes the first two principles

and the ability to pull out the last tag in a sequence for use in indexing the

cardinal value represented in an array.

The three foregoing principles together constitute the how-to-count procedure

of the Gelman and Gallistel model. The fourth principle—the abstraction

principle—captures the fact that the counting procedure can be applied to any

collection of real and imagined objects. Although not a commonpractice, we

could in principle collect together for a count such disparateitemsastheletters of

the alphabet, all pieces of furniture in a room,andthe number of minds in that

room. For adults, at least, any set of any combination of discrete things can be

counted. This is so obvious that one might question its elevation to the status of a

principle. The reason comes from the developmentalliterature. Many have main-

tained that young children severely restrict the definition of countables. Ginsburg

(1975) wrote that early counting and the concept of numberare: ‘tied to particu-

lar concrete contexts, geometric arrangements, activities, people, etc. It is a long

time before the young child treats number as abstract [p. 60].’’ Gast (1957)

advanced a similar view and, on the basis of his counting experiments, con-

cluded that only children 7 years of age or older have a fully abstract concep-

tion of what can be counted.

Gast shared a widespread view of how a child comesto recognize that any

kinds of objects can be put together for a count. To do this, the child must

recognize that all objects can be assigned to the common category things. By

one account of development, this ability is very abstract. This follows from a

commontheoretical argument aboutthe nature of classification abilities, namely,

that they proceed from being extremely concrete to very abstract (cf. Bruneret

al., 1966; Vygotsky, 1962; Werner, 1957). The ideais that the ability to classify

objects as things is the result of being able to form an extremely elaborate

hierarchy of subcategories wherein the superordinate is thing. Hence, the view is

that children slowly develop a more and more abstract conception of thingness.

If so, what may be obvious to the adult may not be obvious to the child.

Should it turn out that young children are relatively indifferent to the defini-

tion of countables, it is not necessary to conclude that they make use of a

complex schemefor constructing hierarchies. One can view theability to classify

the world as things and nonthings as a close derivative of the ability to separate

figures from grounds. Following this interpretation, the categorization of things

as opposed to nonthings may well be among the earliest mental classifications.

Hence, should the data reveal an early ability to classify heterogeneous items

together for counting, we have an alternative to the conclusion that this ability

implies the use of a hierarchical classification scheme.

The order-irrelevance principle captures a crucial fact about the adult’s

knowledge of counting. In many respects, it does not matter which tag is as-

signed to which object. Any object can be tagged with any of the appropriate

count words (i.e., those in the stable-order list). Given a linear array showing
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pictures of a star, a circle, a triangle, a nonsense shape, and so on, it makes no
difference which item is tagged as one. Furthermore, it is perfectly acceptable to
designate the star as one ontrial a and the triangle as one ontrial b. As long as
each item is uniquely tagged and the stable-order principle is honored, the order
in which items are tagged is irrelevant. The child who recognizes this fact can
determinethat the cardinal numberofa setis the same, no matter which itemsare
tagged one, two, etc.

Ginsburg (1977) cites anecdotes of young children who seem tobelieve that a
given number word becomesattached to a given object. Piaget (1952) makes
much of a child who wassurprised to discoverthat a set of 10 objects wasstill a
set of 10 objects even if a count wasstarted at a different point in the array. If
preschoolers do not recognize that the order in which itemsare tagged is irrele-
vant, it would be difficult to conclude that they understandtherole of counting in
the quantification of a display. Counting represents a set of procedures for
generating a numerical representation, a representationthatis not a direct percep-
tion of things ‘‘out there’’ in the world. A child whoinsists that the first objectis
called one fails to recognize that much about countingis arbitrary.

Children who honorall the counting principles clearly know how to count.
But what about children who makeerrors? It depends on what kind of errors
children make as to whether we grant them implicit knowledge of any one
principle or any combination of principles.

EVIDENCE THAT YOUNG CHILDREN
DO “KNOW” HOW TO COUNT

A Caveat

It is important to recognize the distinction between an implicit and explicit
understanding of principles or rules. Young children are granted implicit knowl-
edge of linquistic structures well before they are granted explicit knowledge(cf.
de Villiers & de Villiers, 1972; Gleitman, Gleitman, & Shipley, 1972), whichis
often characterized as metalinguistic. As weseelater, a similar distinction can be

made concerning counting principles.

Evidence for Implicit Knowledge of the Three
How-To-CountPrinciples

A child is granted implicit knowledge of the rules of a language onthebasis of at
least two kinds of data—the systematic production of sentences of given com-
plexity (e.g., Brown, 1973) and overgeneralization errors like mouses, footses,
unthirsty, etc. that can only be explained by reference to the availability of rules
(e.g., Berko, 1958; Brown, 1973; Clark & Clark, 1977). In 1978, Gelman and
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Gallistel provided comparable evidence that even some 2-year-olds honor the

three how-to-count principles and that many 3-year-olds honorall five counting

principles.

The 2%-year-olds. Perhaps the most compelling evidence that some 2-

year-olds have implicit knowledge of the how-to-countprinciples is the use of

what Gelman and Gallistel call idiosyncratic lists and Fuson (e.g., Fuson &

Richards, 1979) calls nonstandard lists. These appear in very young children

even when they count larger set sizes. Although the lists are nonstandard, they

are nevertheless used systematically. Thus, for example, a 21-year-old child

might say ‘‘2-6’’ when counting a two-item array and ‘‘2-6-10’’ when counting

a three-item array (the one-one principle). The same child will use his or her own

list over and over again (the stable-order principle) and, when asked how many

items are present, repeat the last tag in the list (the cardinal principle). Gelman

and Gallistel note that the 2'4-year-old who uses an idiosyncratic list is better

able to use it in the same order over counttrials than one who works with the

conventional list. This observation fits with the fact that subjects who impose

their own organization on material are better able to recall it (e.g., Mandler &

Pearlstone, 1966). The latter argument presupposes that the child is honoring

somerule or organization; the stable-order principle is as good a candidate as any

we can thinkof.

The 214-year-old also reveals some—albeit not a perfect—ability to honor the

one-one and cardinal principles. When asked to count the numberof items in an

array, there is a systematic tendency to use moretagsfor set sizes 4 and 5 than for

set sizes 2 and 3 (Gelman & Gallistel, 1978). Although the numerical relation-

ship between the numberof tags and objects is imprecise, it is far from random.

Hence, Gelman and Gallistel suggest that 2'2-year-olds recognize that counting

involves assigning tags to items in an array. They also report that 50% of the

2-year-olds who participated in a counting experiment were able to identify the

cardinal numerosity of a two-item array, and all of the same children could count

the same numberof items when asked. Only 25% ofthe children could likewise

count and then identify the cardinal value of three-item arrays. Gelman and

Gallistel conclude that the tendency of very young children to apply the cardinal

principle is weaker than the tendencyto apply either the stable-order or one-one

principle, an observation that finds support in the analysis of the counting

abilities of 3- to 5-year-old children.

The Older Preschoolers. The main evidence for the Gelman and Gallistel

claim that 3- to 5-year-olds honor the how-to-count principles came from their

study of how well children adhered to each of the separate principles and how

well they coordinated the application of all three principles when responding to

requests to count heterogeneousset sizes of 2, 3, 4, 5, 11, and 19 items. The

design called for a child to count each set size six times (three times for a linear
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arrangement and three times for a haphazard arrangementof the display). Thus,
it was possible to determineif a child used an idiosyncratic or a standardlist. (If
they did use an idiosyncraticlist, it was not held against them.) Each counttrial
was scored for whether a child used as many tags as there were items (the
one-one principle); for whether the list of tags was systematic, by virtue of the
fact that the conventional or an idiosyncratic list was used repeatedly overtrials
(the stable-order principle); and for whetherthe child indicated the correct cardi-
nal value of an array by repeating the last tag used. Then, summaries of how well
a child did on a given set size were analyzed to determine how many children in
each age group honored all or some of the how-to-count principles. Error
analyses shed light on the sources of difficulty and development involved in the
application of the counting procedure.

The evidence regarding the application of the one-one principle was quite
good. A crude index of the tendency to honorthis principle is whether or not
children used as many tags (unique or not) as there were objects to count. If
children attempted to counta given set size, they did quite well at applying either
N or (N = 1) tags even for set sizes of 19. The 3-year-olds did make errors. For
set sizes of 7,9, 11, and 19, 73%, 65%, 67%, and 10% of them used either N or
N = itags. Still, except for set size 19, these scores are quite creditable.

Error analysis of the application of the one-one principle revealed two major
types of errors: (1) the double counting or skipping of an item in the middle of a
count; (2) doing the same thing, i.e., double-counting or skipping an item at
either the beginning or end of a count. Tagging errors were infrequent, and when
they occurred they always involvedthe repetition of a tag rather than the use of
an inappropriate one (e.g., blue or a mouse). Gelman and Gallistel point out that
such results are consistent with a performance-demand hypothesis of the errors.
Children have trouble starting and stopping a count (hence, one-too-many or
one-too-few tags), and they slip up as they pass between adjacent items, some-
times double counting or skipping an item. They conclude that even 3-year-olds
in this experiment did a reasonable job of applying the one-oneprinciple.

More than 90% of the 4- and 5-year-olds and 80% of the 3-year-olds in the
Gelman and Gallistel study used the samelist onall their trails regardless of set
size. Hence, it was concludedthat these children honoredthe stable-order princi-
ple. They did not do nearly as well in applying the cardinal principle (see Table
4.1 where the children’s tendency to apply all three principles in concert is
summarized).

The main reason a child wasnot scored as having used all three principles was
his or her failure to indicate the cardinal value of an array of a givensetsize.
Gelman and Gallistel concluded that the performance demandsof counting larger
and larger set sizes became too great. Thus, a child forgot to repeat the last tag.

Further Evidence. Some have argued that Gelman and Gallistel granted
their subjects too much competence (Siegler, 1979; Sternberg, 1980). But, if
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TABLE4.1

Percentage of Children

Who UsedAll Three How-to-Count

Principles in the Gelman and Gallistel

Counting Experiment*

  

Age

Set Size 3 Years 4 Years 5 Years

2 76 74 93

3 67 79 100

4 57 68 100

5 43 63 86

7 19 47 80

9 0 37 67

11 5 37 47

19 0 16 20

 

“Based on Table 8.10, pp. 128-129, Gelman

and Gallistel (1978). These figures included children

who applied all principles perfectly and those who

were shakyin their adherenceto either or both of the

one-oneandstable orderprinciples. See Chapter 8 of

Gelman and Gallistel (1978) for coding information.

preschoolers do ‘‘know’’ the counting principles, they should recognize counting

errors. And, if performance demandslimit their application of the cardinal prin-

ciple, experimental manipulations that reduce performance demands should in-

crease their tendencyto state the cardinal value of a set. Recent research along

both lines lends support to the original Gelman and Gallistel conclusion.

Gelman and Gallistel commented on the ubiquitous tendencyof their subjects

to self-correct their own counts. It is difficult to explain this without presuming

that a child monitored the application of the counting principles and detected an

error. And, now there is evidence that preschoolers can detect some kinds of

counting errors. Fuson and Richards (1979) refer to the fact that 3-year-olds

recognize countingerrors, although only older children can describe them. Mier-

kiewicz and Siegler (1981) find that 3-year-olds are able to recognize some

counting errors, especially the skipping of an item (what I call a partitioning

error). Four- and five-year-olds recognize a diverse set of counting errors (e.g.,

omitting or adding an extra tag; double counting an item) moreover, they recog-

nize that it is acceptable to count alternate items of the same kind and then back

up to count the remaining items of another kind in a given display. They also

recognize thatit is acceptable to start a count in the middle of an array. Gelman

and Meck(in preparation) find that 3%4- and 4-year-old children can indicate

whether a puppet’s counttrials had errors when the errors were violations of the

cardinal principle (e.g., the puppet said x + 1 rather than x in response to a



“how many”’ question). The children did this even for set sizes to which they
themselves failed to apply the cardinal principle (e.g., 15 and 20).

Having a puppet do the counting for a preschooler is one way of reducing the
performance demandsofthe task, andthisis presumably whythechildren did so
well in detecting cardinal errors. Gelman and Meck(in preparation) followedthis
reasoning in their second experiment with 214- to 3-year-olds. As expected, the
children’s ability to count with accuracy broke downwith set sizes larger than 2
and 3. However, when the experimenter did the counting and then asked the
child to indicate ‘‘how many,’’ 78% of the subjects were correct on at least one
set size beyond that which they could count; 44% werecorrectonsetsizes up to
20.

If 3- to 5-year-olds do not have the cardinal principle available, Markman
(1979) should not have beenable to increase the preschooler’s tendency to report
the cardinalvalue ofan arrayas a functionof variations in question type. Yet she
did. Markmandistinguishes between concepts that are organized as classes as
opposed to collections (Markman, 1979; Markman & Siebert, 1976). To illus-
trate this distinction, consider the concepts of trees and forests. Given a particu-
lar instance of a tree, one can answer whether or notit is a memberofthe class
trees. However, given the same instance of the same tree, one cannot answer
whetherit is a memberofa forest. A tree by itself does not a forest make. There
must be other trees nearby(i.e., a tree is a memberofa forest onlyif it is in close
proximity to many othertrees). Likewise, a particular child is not a memberof a
family unlessit has a relationship with other people (e.g., siblings or parents). In
contrast, a particular child is a memberof the class children.

Markman(1979) suggests that class terms for a given display have the effect
of focusing attention on the particular membersof the display and that collection
terms have the effect of focusing attention on the overall characteristics of the
display. She notes that the cardinal numberof a display represents the complete
set but not the individuals in that set; a set may besaid to representfive items but
none of the individual items can be labeled five.

When young children are asked to count the numberof items in a display and
then indicate ‘‘how many’”’ are there, they have a strong tendency to recount the
display (e.g., Schaeffer et al., 1974). Markman tested 3- and 4-year-old chil-
dren’s ability to apply the cardinal principle when asked collection versus class
questions. For example, children in the collection condition were instructed:
‘‘Here is a nursery school class. Count the children in the class. How many
children are in the class?’’ Children in the class condition were asked: ‘‘Here are
some nursery school children. Count the children. How many.... ?’’ Set sizes
were 4, 5, or 6. On 86% oftheir trials, children in the collection group gave the
last numberin their count list as a response to the final question. In contrast,
children in the class group were as likely to recount without repeating the last
number as they were simply to repeat the last number. Clearly, a standard
counting task underestimates the young child’s ability to apply the cardinal
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principle. Whenall facts are considered, it seems reasonable to say that young

children honor the cardinal principle, but this tendencyis restricted to certain

conditions. And because their application of the cardinal principle depends on

applying the one-one and stable-orderprinciples, they obviously must be using

these as well—an assumption confirmed bytheir ability to detect errors in their

application.

Implicit Knowledge of the Abstraction

and Order-Irrelevance Principles

Over the years, I have varied the type of item used in an experiment, including

two- and three-dimensional displays and homogeneous versus heterogeneous

displays. I have seen little, if any, effect of these variations on performance

levels. For example, Gelman and Tucker report no differences in the ability of

their preschool subjects to make absolute judgments of the set sizes of

homogeneous of heterogeneous items. Thus, it seems that young children are

indifferent to a wider rangeof variations in item type than predicted by Klahr and

Wallace (1976) or observed by Gast (1957). In addition, the Gast study can be

faulted on the grounds that children were first tested on homogeneousarrays,

which probably prompted the younger children to countonly similar items (Gel-

man & Tucker, 1975).

Elsewhere, I report on experiments designed to determine the conditions

under which 3- and 4-year-olds would be affected by item type (Gelman, 1980).

In one such experiment, children were asked to count everything in the room.If

children refuse to classify animate and inanimate objects together for a count,

they should count items within each category only. Given that young children

recognize the difference between animate and inanimate objects (Carey, 1978;

Gelman & Spelke, 1981; Keil, 1979), it seemed reasonable to expect them to

keep these objects in separate groups when counting. The fact that they did not

further supports the conclusion that preschoolers apply the abstraction principle

when deciding what can be collected together for purposes of a count. In re-

sponse to instructions, children typically did one of two things. They spontane-

ously countedall the objects (i.e., people, tables, chairs, etc.) or they started by

counting only animate or inanimate objects. But when asked *‘what about me and

you?’’ (or ‘‘what about the other things in the room?’’), they continued their

count. That is, they did not start over again from 1 as would be expected had they

thought that animates and inanimates could not be grouped togetherfor counting.

Given these findings, I conclude that preschoolers are rather indifferent to

item types when it comes to applying the counting procedure. I do believe,

however, that conditions that make it more difficult for the young child to apply

the one-one principle correctly will affect performances. I have also reported

(Gelman, 1980) on an experiment where children were asked to count the exact

same heterogeneous arrays under two conditions. In one condition, they could
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touch and movethe objects; in the other, they could not because the objects were
under a plexiglass dome. The idea was that item type would influence perfor-
mance when itemsare presented in a way that interferes with the young child’s
prevalent tendencies to point to, touch, and move objects—astrategy that I see as
being used in the service of the partitioning process requirementof the one-one
principle. Results were as expected. Overall performancein the plexiglass condi-
tion was worse. An age-by-condition-by-set-size interaction Supports the
hypothesis that practice at counting a given set size reduces the performance
demands and henceincreases accuracy (cf. Case & Serlin, 1979).

On the basis of these experiments, I concludethat the main effects of stimulus
variables involve performance-demand variables or tendencies of young children
to be unduly influenced by context variables. Recent habituation studies show
that even an infant’s ability to discriminate among two-, three-, and four-item
arrays is not dependenton item type (Starkey, Spelke, & Gelman, 1980: Strauss
& Curtis, 1980). Giventhis fact, it is hardly surprising that the sameis true for
preschoolers.

In the counting experiment summarized earlier as well as in a subsequent
experimentdesignedto test for the use of the order-irrelevance principle, Gelman
and Gallistel asked children to countrepeatedly a givenset size of heterogeneous
items. In both experiments, there was little, if any, tendency to try to keep
assigning the same tag to a given item as it got moved aroundfromtrialtotrial.
The children seemed indifferent to the order in which they tagged particular
items. Hence, the conclusion followed that children had implicit knowledge of
the order-irrelevance principle. And because the subsequent order-irrelevance
experiment (see the following section) revealed explicit knowledgeofthis prin-
ciple in almost all 5-year-olds and many youngerchildren, the ideathat children
of the same age have implicit knowledge of the order-irrelevance principle is
reasonable.

The Developmentof Explicit Knowledge

Whenchildren as youngas 3 are asked to count a set of a given value, over and
over again, they are indifferent as to the order of the items as the items change
acrosstrials. Such behavior is what one would expectif the child has an implicit
understanding of the order-irrelevance principle. The behavior does not index
explicit understanding ofthis principle. Indeed, explicit understandingis at best
weakin the 3-year-old child. However, the developmentof explicit understand-
ing of this principle is well advanced by 5 years of age. This factis illustrated in
the 5-year-olds’ performance on a modified counting task.

The modified counting task required a child first to count a linear display of
five heterogeneous items. Almost all children do this by starting at one end or
another and therebysetting the stage for the modified countingtrials. Thesetrials
start with the experimenter pointing to some item in the middle of the array and
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saying: ‘‘Countall these but makethis be the 1.’’ Having donethat, the child is

asked to make the designated item the 2, 3,4... and x + 1. Then the child is

asked similar questions abouta different object. Five-year-olds are nearly perfect

across all the modified counting trials. Further, they try to say something about

how movementof the items per se does not affect the tagging process.

The results of the modified counting task provides evidence that most 5-

year-olds have explicit knowledge ofthe order-irrelevance principle. The x + 1

trial allows us to reach a similar conclusion aboutthe cardinal principle. Thisis

true because manyof the 5-year-olds balkedat the x + | request, often complain-

ing ‘‘there are only five’’ and/or ‘‘I need another one.”’ Stated differently, they

knew their count was conserved no matter how the items were arranged as long

as the same set size was maintained through rearrangements of the objects. I

submit that they also knew that number names are temporary tags. Otherwise,

they would not have rearranged objects in a row So asto establish a corre-

spondence between the position of that item and the order of tags (Merkin &

Gelman, 1975). Nor would they have been able to answer the questions asked at

the end of the experiment.

To end the modified counting task, the experimenter first pointed out that,

overtrials, the child had labeled a given object 1, 2, 3, 4, etc. and then another

object 1 and 2. The child was then askedif it was all right to use the same count

word for the two different objects. Finally, the child was askedif he or she could

reverse the namesofthe object (e.g., by calling the chair a baby and vice versa).

Even most of the 5-year-olds failed the Piagetian nominalism question and in-

sisted that a chair was a chair and a baby wasa baby.In contrast, the same

5-year-olds—as well as many 3- and 4-year-olds—showed no inclination to

restrict the assignment of a given count work. Indeed, they occasionally were

very articulate, as was one 4-year-old whosaid: ‘‘It could be 1 or 2 or any

number, like 6, 10, and even 14.”’

Just as there is development from an implicit to an explicit understanding of

the order-irrelevance and cardinal count principles, so there is such a course for

the other counting principles. As indicated earlier, 3-year-olds can tell which

count sequences have double count, omission, and other errors, but only older

children can say why (Fuson & Richards, 1979). Mierkiewicz and Siegler (1981)

find that preschoolers are able to recognize a variety of counting errors. Butit is

not until children reach school age that they are able to say whyanerrorless count

sequence involving the alphabet as tags is a better counttrial than one that uses

the conventional count words but includes errors (Saxe, 1979a). Thus, we see the

development of an understanding of the one-one and stable-order counting prin-

ciples becoming moreexplicit.

But, it is not only the explicit understanding of the counting procedure that

develops. So does an explicit appreciation of the facts that counting is aniterative

process andthat there is no largest number. Evans (1982) finds that kindergarten

children typically resist the idea that each addition of one item will increase
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number. Their resistance is highly correlated with their ideas of what constitutes
a “‘big number.’’ These are usually under. 100 or made-up combinations like
“forty-thirty-a hundred.’’ Apparently, children need some experience with larg-
ish numbers before they can inducethat counting is iterative. For, at a second
level of development, children talk about a 1,000,000 and other large numbers
when asked whatis a very large number. They then allow that the addition of an
item can go on and on. But even this advancement does not guarantee that they
think there is no upperlimit on the natural numbers. Instead, they maintain that
despite the possibility of another, and another, and another larger number with
each addition of one, there is nevertheless a largest number. Finally, by 8 or 9
years of age, children recognize and acceptthe possibility of nonending iteration
and state that there is no largest number. There seems to be a progressive
bootstrapping of one level of understanding to the next with intermediate plateaus
where children assimilate enough examples before achieving, in Piagetian terms,
a reflective abstraction of their earlier levels of knowledge as well as a new level
of understanding.

RELATED NUMBER CONCEPTS AND ABILITIES

There is an evergrowing bodyofliterature on the nature of addition and subtrac-
tion skills in preschoolchildren, andit points to the conclusion that preschoolers
know that addition increases set size whereas subtraction decreases set size.
Smedslund (1966) had 5- and 6-year-olds indicate whether two arrays of equal
value (N = 16) were in fact equal; then the arrays were screened. When oneof
the arrays was transformed by adding or subtracting one object, the children were
able to indicate which array contained more elements. The same finding was
reported for 4- and 5-year-olds by Brush (1972), and for 3-, 4-, and 5-year-olds
by Cooper, Starkey, Blevins, Groth, and Leitner (1978). Also, I (Gelman,
1972a, 1972b, 1977) and Cooperet al. (1978) foundthat 3-, 4-, and 5-year-olds
could infer the occurence of a screened addition or subtraction by comparing the
pre- and posttransformation values of arrays.

Whatdoes one makeof the fact that preschoolers can count and do understand
the respective consequences of adding and subtracting? I submitit is possible for
young children to use counting as an algorithm in simple arithmetic tasks. Stated
differently, one consequenceof being able to countis the ability to develop early
skill at addition and subtraction. I often find that 3- and 4-year-olds spontane-
ously count when confronted with unexpected changes in set sizes and thereby
determine the difference. Groen and Resnick (1977) taught 414-year-olds to solve
simple addition problems by use of a counting algorithm. Their instruction con-
sisted of having children first count out two groups of objects of given set sizes,
then combine the groups and count them to achieve an answerto arithmetic
problems. Half the children spontaneously employed a moreefficient algorithm
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than they had been taught. This was to count on from the cardinal value of the

greater of the to-be-added numbers.

Starkey and Gelman(in press) tested 3-, 4-, and 5-year-olds on a variety of

mental addition and subtraction tasks. Each task began with the experimenter

asking how many pennies she held in her open hand. The experimenter then

closed her hand and thereby screenedthe array of pennies. She then said: *‘Now

I’m putting x pennies in my hand; how many pennies does this bunch have?’’ or

“Now I’m taking x pennies out...’’ Thus, the two values to be added or

subtracted were never simultaneously visible. Children did quite well in these

tasks. For example, the majority of the 5-year-olds could solve problems that

began with one to six items and required adding or subtracting oneto four items.

As expected, many children used a counting algorithm even though the items

were screened.

To be sure, the continued use of a counting algorithm as tasks become more

complex could present problemsfor children in school. The larger a set size, the

greater the chance of making counting errors. Written problems are easier to

negotiate if some number facts are known or if new algorithms are learned.

Obviously, children will have to learn in school many things that they do not

know about arithmetic and mathematics. What I am suggestingis that the ability

to count facilitates an early understanding of addition and subtraction.

I have hinted at another function served by children’s tendency to count. This

is that they can provide themselves with thought experiments (cf. Kuhn, 1977)

about the nature of natural numbers. Children whoset the task of counting all the

cracks in the sidewalk, the numberof telephonepolls they drive by, etc., provide

themselves with an opportunity to find out—on their own or from someone

else—that counting can go on, and on, and on. This must happen frequently, or

else it is hard to explain why half of Evan’s first and second grade subjects (who

were from a lower-middle to middle-middle class community) said that numbers

never end and that there is no largest number. They were not taught about such

matters in school.

As indicated before, if children can reach an induction aboutinfinity on the

basis of experience with counting, they must have ideas about very large num-

bers. Counting can serve as a source for learning about the existence of a count

sequence that can be very long, as well as for learning about the baserules that

contribute to the sequence’s potential for length. As in the case of inductions

about infinity, I suspect that there is more than one path to this knowledge.

Children might ask on their own whatthe next, and the next, and the next number

is. And parents and teachers alike provide input about base rules as to how to

count in the 100s and 1000s, etc. Whatever the case may be, the ability and

motivation to count at young ages supports inductive learning about some prop-

erties of the number system.

In sum, young children who count are able to invent counting algorithms to

solve arithmetic problems and provide themselves with practice and inputsthat in
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turn support the acquisition of further knowledge about counting andthe natural
numbers. Such learning requires a supporting environment. Our culture uses a

provides samples of the English language to the young language learner. How-
ever, such learning seems not to require structured lesson plans; it is a case of
“informal’’ learning (cf. Ginsburg, 1977). If I am correct, it should be that
counting and simple arithmetic skills are universal and that they develop even in
cultures without schools.

EVIDENCE FOR UNIVERSALABILITIES

Cross-Cultural Findings

Evidence from a variety of sources converges on the conclusion that the kind of
arithmetic abilities we grant preschoolers is universal. First, it appears that most
cultures use a counting procedure. It was once commonplaceto assign *‘primi-
tive’’ numerical abilities to those from nonliterate cultures (e.g., Menninger,
1969). Zaslavsky’s (1973) work shows that Africans do indeed count and have
done so for centuries. It also illustrates the folly of relying on the ability to use
conventional count words as evidence for the ability to count.

ManyAfrican societies (e.g., the Kinga, Hebe, and Nyatura of east Africa)
use finger gestures and hand configurations to represent different set sizes. A
failure to recognize that gestures may be used as tags in enumeration would
necessarily lead to an underestimation of the extent to which members of such a
society could count. Similarly, a failure to take into accountthe possibility that
number-word sequences need not derive from a base-10 system could lead to the
same underestimation of ability. There is a Bushman language that combinesthe
words for I and 2 to get the words for 3 and 4. The comparable English count-
words sequence for | through 4 would read ‘‘1, 2, 1-2, 2-2.’’ If we failed to
realize that the Bushmen were using a binary concatenation rule, we might
conclude they could only count up to 2 and that they had a ‘‘one-two-many’’
conception of differences in set size. Indeed, this is much like the conclusion
Menninger (1969) reached. He arguedthat an ability to count required the use of
a count sequence that went beyond the use of | and 2: ‘‘The number sequence
begins at three; three, four, five,... etc. When tribe of South Sea Islanders
counts by twos-urapan, okasa, okasa urapan, okasa okasa, okasa okasa urapan
(i.e., 1, 2 271, 2’2, 2’2°1), we distinctly feel that they have not taken the step
from two to three [p. 17].’’

Perhapsthe best evidence that counting need not be done with a conventional
string of words comes from Saxe’s (1979a) work in Papua, New Guinea. He
reports that people there use the namesof their fingers and successive parts of
their arms and uppertorso as counting tags. The systemisillustrated in Fig. 4.1.
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FIG. 4.1. Illustration of the use of body parts to correspond to number words by

a group in Papua, New Guinea. Adapted from Saxe (1979a).

Ginsburg and his colleagues lend further support to Zaslavsky’s conclusion

that Africans do count. They also find that unschooled children in two West

African groups—the Dioula and the Baoule—know informal mathematics at

about the same level as preschoolers in American culture. For example, they

understand the operations of arithmetic and use counting strategies with concrete

objects to solve simple arithmetic problems (Posner, 1978). In both com-

munities, children (7-8 years) are able to accomplish such tasks, whether they

are in school or not. An effect of a school-nonschooled variable is observed with

the Baoule but not the Dioula children. This is becauseall of the Dioula children

are at ceiling on these tasks before they even start school. Posner (1978) attrib-

utes this to what she refers to as the informal mathematics in the Dioula culture.

The Dioula are Muslims who have spread throughout the Ivory Coast. Tra-

ditionally, they have engaged in commerce and have a well-developed number

system (Zaslavsky, 1973). Hence, theirs is a culture wherein informal mathemat-

ical notions are indigenous, much like our own. In contrast, the Baoule culture

does not emphasize mathematical thinking and thereby provides a less supportive

environmentfor the arithmetic competenceof a child to develop. Thus, school-

ing becomesa significant variable for the Baoule children’s performancelevels

on even simple mathematical tasks.

Ginsburg’s (1979) work with inner-city children in the Baltimore and

Washington, D.C. areas supports his view that there are ‘‘natural’’ arithmetic

abilities that develop without the support of a school environment. Whentested
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with tasks that assessed their understanding of more, and their ability to count
and to add using a counting algorithm, these children showed the same kinds of
errors as did middle-class children here and African children in West Africa. The
implication here is that a commonerror pattern reflects a common underlying
capacity.

Saxe’s (1980) work with the Oksapmia of New Guinea provides another
example of how the presence of a supporting environment enhancesthe level of
arithmetic ability in an culture without schools. Until recently, the Oksapmia had
no money. Now some menare flown to work on

a

tea plantation and return home
with money. Some have even opened small trading stores. Preliminary results
show that those who have had the greatest interaction with currency have de-
veloped, on their own, moreefficient calculation algorithms than those who have
not hadthe interaction. Furthermore, the mostskilled individuals are beginning
to introduce a base system thatis not present in the original count system shown
in Fig. 4.1.

I must emphasize that neither I nor Ginsburg are claiming that schooling has
no effect on the development of mathematical abilities. Our view is that children
bring a great deal of knowledge about numbers and arithmetic to the school
setting because counting and simple notions of addition, subtraction, equiva-
lence, and nonequivalencereflect natural, universal abilities. These develop ina
supporting environment.

The Effect of Retardation

From the evidence in the previous section, one might conclude that there are
limited individual differences in the abilities to learn to count and use counting to
solve simple arithmetic tasks. Similar lines of evidence are often cited to support
the conclusionthat there are limited effects of individual differences in the ability
to acquire a first language. In the case of language acquisition there are, how-
ever, effects of an extreme variation in individual differences. Retarded indi-
viduals are often delayed in the start of language acquisition (Lenneberg, 1966)
and, in some cases, lag far behind their Mental Age (M.A.) controls. Fowler,
Gelman, and Gleitman (1980) find very limited syntactic abilities in some
Down’s syndrometeen-agers. Still, many of their abilities are indistinguishable
from those of a control group. For example, when teen-age retardates with an
average mean length of utterance (MLU) of about three words are compared to
normal 2%- to 3-year-olds with the same MLU,wefind no differences in the
kinds of grammatical morphemesandsyntactic structures used.

Reasoning by analogy from the language-acquisition data, I thought it possi-
ble that retarded children would show a comparable delay in the acquisition of
their ability to count and hence to solve the kind of simple arithmetic tasks
considered in this chapter. To find out, Gelman, Haberstedtt, and Hungerford

(In preparation) assessed the counting ability of a sample of retarded children. Then,
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Starkey and Gelman (in preparation) assessed the ability of some of these chil-

dren to solve the same arithmetic problems that we had given to normal pre-

schoolers. Children came from three class rooms at a parochial school. The

median ages of the groups were 7, 11, and 13 years, respectively, and their

median M.A.s were 4 years, 3.5 months; 5 years 9 months; and 7 years 6

months. Half of the two younger groups and one individual from the oldest group

were Down’s syndromechildren. All children in each group were seen in the

counting study, and then a sample of the older children was selected for the

arithmetic study.

One condition in the counting study was run in much the same way as the

initial Gelman and Gallistel experiment—a second demonstration condition was

run after the basic condition. In pilot work, I noted a limited tendency for the

retarded children to point at and move objects. Hence, we added the demonstra-

tion condition, wherein the experimenter asked the children to count as she did

(i.e., ‘‘to touch each toy and countout loud—yjustlike this’’). Both sessions were

recorded for later scoring according to the Gelman and Gallistel code.

In Fig. 4.2, the results of a composite counting analysis are shown as a

function of set size, M.A. group, condition, and criterion strength. The left-hand

panels show the percentage of children who used all three how-to-count princi-

ples on at least one of the three test trials; the right-hand panels show the

percentage who counted perfectly. Inasmuch as no child used systematic non-

conventionallists, these percentagesreflect tendencies to countcorrectly with the

standard count sequence.

Thereis a clear effect of M.A. Children in the youngest group with an M.A.

of 4 years 3 months are not able—under any conditions—to count evenset SIZES

of 2 and 3 accurately. When left on their own(i.e., the no-demonstration condi-

tion), around 30%, 20%, and 0% ofthese children consistently count set sizes of

2,3 and 5. The comparable figures reported by Gelman and Gallistel for normal

preschoolers were better. For 3-year-olds, they were 76%, 67%, and 58%; for

4-year-olds, they were 74%, 79%, and 68%. Furthermore, some normal 3-

year-olds could countset sizes of 7, and some 4-year-olds could succeed on set

sizes of 7 through 19. In terms of developmentallevel, the retardates were behind

what I expect of normal 3- and 4-year-olds. The tendency toward a larger devel-

opmental lag than expected according to M.A.level persists throughout the

groups.

The group data represent individual children who seem unable to countat all

and children who are quite excellent counters. Principle-by-principle analyses of

the data revealed that retarded children whofailed our counting criteria produced

error types that I have not see in normal preschoolers. Wefailed to observe the

use of any idiosyncratic lists, either within repeated trials on the sameset size or

across trials. Further, we observed the repeated use of a given count word (a

tagging error in the use of the one-one principle), some labeling of objects by

name(another tagging error), and a ubiquitous tendency to tag items repeatedly
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FIG. 4.2. The ability of retarded children to apply all three how-to-count princi-
ples as a function of M.A. level, set size, and experimental condition.

that had already been tagged. When asked ‘‘how many”’ items there were in an
array, children had a strong tendency to keep saying the same number(usually 1

or 2) across different set sizes. Occasionally, a child even used the nameor an
attribute of an object.

In order to determine whether the ability to count is related to the ability to
solve simple arithmetic problems, we assigned an overall grade of ‘‘poor,’’



4. BASIC NUMERICAL ABILITIES 199

“shaky,’’ or ‘‘very good’’ to each child. Eighteen children, six within each

grade, were then seen in conditions muchlike those used by Starkey and Gelman

(in press) with normal preschoolers. As we wanted to use some additionaltasks,

we also ran groups of normal 3-, 4-, and 5-year-olds for comparison with the

retardates.

The poor counters (median M.A. =

6

yrs.; median C.A. = 12 yrs.) in the

arithmetic study simply could not countset sizes larger than 5. And only one of

them wasable to indicate the cardinal numberforall three of the smaller set sizes

(2, 3, 5). Furthermore, their lists of count words were often random beyond 5,

similar to what Fuson and Richards (1979) call ‘‘spews.’’ Shaky counters (me-

dian M.A. = 6 yrs. 6 mos.; median C.A. = 13 yrs.) used the conventional

sequence mostof the time. However,asset sizes increased beyond 5, they often

used the wrong numberof tags and hence were scored as weak in their applica-

tion of the one-oneprinciple; they typically failed on the cardinal principle. Very

good counters (median M.A. = 8 yrs. 3 mos.; median C.A. = 13 yrs. 3 mos.)

were able to useall three how-to-countprinciples for all set sizes. Except for one

or two errortrials on the larger set sizes, these principles were applied consis-

tently. When I watch these children count, the qualitative impression is that the

poor group counts by rote, the shaky groupis catching on, and the good group is

just that. Performance differences on simple arithmetic tasks confirm these im-

pressions.

Here I summarize the data for only the simple arithmetic tasks and some

repeated iteration tasks. These involved initial arrays of one to six pennies, which

were transformed by addingor subtracting one to five pennies. The initial arrays

were screened before addition or subtraction took place.

For both normal preschoolers and retarded children, the difficulty of the

simple addition and subtraction problemsincreasedas a functionofset size, and

success was related to counting ability. Actually, the retarded children did

somewhatbetter than the normal younger children. Thus, 3-year-olds were cor-

rect on 31% and 35% of their addition and subtraction tasks, and the respective

pairs of percentage correct scores for the 4- and 5-year-olds were 64% versus

52% and 83% versus 71%. In contrast, the poor retarded counters were correct

on 64% and 40% of the subtraction problems, shaky counters on 72% and 49%,

and good counters on 97% and 97%.

I suspect that many of the differences between the results for normal 3-

year-olds and the poor counters reflected the use of different solutions. The

3-year-olds counted and did about as well as expected, given that their skill at

counting breaks down around 3. The poor counters in the retardate sample,

unlike the normal 3-year-olds, had the benefit of drill in school on similar

arithmetic tasks and had memorized some numberfacts. The suggestion that

different solution types were used is confirmed by error analyses.

No matter whattheir answers, normal preschoolers at every level gave a larger

numberthan the augend onaddition trials and a smaller numberthan the minuend
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on subtraction trials. This was not true for the retarded poor counters who often
gave addition answers for subtraction problems. As an example, they might say
the answer to a 4 — 2 problem is 6. Furthermore, iteration addition tasks (e.g., x
+ 1 + 1) were easier than control items (e. g., x + 2) for all preschoolers. This
would be expected if solutions were reachedvia a counting algorithm and not by
the retrieval of memorized numberfacts. Inasmuch as there was such an advan-
tage on theiteration task for the shaky counters but not for the poor counters, the
influence that the poor counters did not use a counting strategy is supported.

In sum, as expected, we are finding differences in the ability to count as a
function of M.A.in

a

retarded population. And the hypothesis that these in turn
reflect differences in the understanding andsolution types used on simple mental
arithmetic tasks is supported. On the basis of some pilot work, I venture to guess
that the retardate’s problems with moneyare, (e.g., they have terrible problems
shopping or buyingtickets,) likewise related to a failure to understand the count-
ing principles. Indeed, Thurlow and Turnure (1977) suggest that special educa-
tion programs probably fail in teaching money concepts because the programs
assumethe ability to count. In the contextof the present chapter, I find Thurlow
and Turnure’s (1977) speculation that ‘‘most [normal] children are apparently
able to pick up muchof their knowledge about time and money from casual or
incidental exposure to the concepts [p. 203]”’ intriguing becauseit suggests that
these abilities are also candidates for natural and universal abilities. At least with
regard to money, Saxe’s and Zaslavsky’s work would support this conjecture.

Counting in Babies? Probably

Studies of infant’s abilities to abstract the numerical value of arrays lend further
support to the view that numberis a natural domain of competence. Starkey and
Cooper (1980) showed infants aged 4 through 6 monthslineararrays of dots of
white light. In the first phase of their experiment, infants were repeatedly shown
a given Set size in arraysthat varied in length and density over habituationtrials.
Infants dishabituated to changes in numerosity from twoto three or three to two
but not changesin length on density. In a subsequent study, Starkey and Cooper
(1980) found that 6- through 8-month-old infants habituated to displays of three
(or four) items and dishabituated when shown displays of four (or three) dots.

Recovery of habituation is often taken as an index of infants’ ability to
discriminate between the display they habituate to and the subsequent display. A
follow-up to the Starkey and Cooper work confirms the assumption made by
these investigators that the reported discriminations were based on numerical
judgments. Starkey, Gelman, and Spelke (1980) tested 6- to 8-month-old babies
with heterogeneous displays. The displays were photographs of common house-
hold items (e.g., comb, pipe, lemon, scissors, corkscrew, etc.) selected to in-
clude a variety of colors, shapes, sizes, and surface textures. Each array con-
tained either two or three objects, and no two objects in any array were the same.
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Further, the spatial arrangement of the objects was unique from trial to trial. In

short, the only common characteristic of the set of three-item and two-item

displays was the numerical value. Half of the babies in the experiment viewed

either a set of two-item or three-item displays. When their tendency to look at

these arrays habituated, they were given a set of posthabituation trials. Both the

two-item and three-item groups were shown two-object and three-object arrays

presented in alternation. We predicted that infants who habituated to two-item

arrays during phase one of the experiment would look longer at the three-item

array during posthabituation trials. Conversely, infants habituated to three-item

arrays should look longer at the two-item arrays.

As predicted, during the recovery phase, infants looked longer at their

different-number arrays than at their same-numberarrays. Strauss and Curtis

(1980) have reported a similar result. In addition, they found that female infants

habituate to the class of three (or four) objects and then recover to a changeto

four (or three) objects. The conclusion I reach about such findingsis that infants

can attend to the numberof objects in a display and abstract a numerical invariant

over changes in displays. Inasmuch as weintentionally varied item types and

item positions, it is hard to imagine what else they could have been responding

to.

In further studies, Starkey, Spelke, and I have determinedthatinfants can also

to respond intermodally to numerical information. One study used a procedure

devised by Spelke (1976)to investigate infants’ knowledge of an auditory-visual

relationship. An infant is shown twofilms side by side while, between them,a

loudspeaker plays the sound track that goes with one of the movies. Because

infants look at the appropriate movie(i.e., the one that correspondsto the sound

track), Spelke has been able to investigate the nature and developmentof inter-

modal perception in infants (e.g., Spelke, 1979). In our study, infants were

shown two-item and three-item heterogeneousdisplays placed side by side. The

loudspeaker between the displays emitted either two or three taps on eachtrial. I

confess being surprised to find that babies had a significant tendency to lookat

the two-item display when two taps were sounded and at the three-item display

when three taps were sounded. Thus, it is not only that babies attend to the

numerical value represented in a visual display; they can also match visual and

auditory modesof presentation on the basis of number. To do this, they must not

only be able to abstract number but also be able to use a rudimentary form of

nonverbal counting. For what other procedure can be used to compare visual and

auditory presentations?

I said I was surprised by the intermodal results. To be sure, they lend strong

support to the thesis I advance here. But even if I wanted to say that the full-

blown ability to count is innate (and I do not), I need not expect infants to attend

to and use number. The humanability to walk upright is largely innate; yet, no

one expects a 6-month-old to walk. Hence, I’m puzzled by the fact that

6-month-old infants are interested enough in number to succeed on our tasks. In
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any event, the research with infants lends support to the idea that the ability to
abstract numerical values of displays, and do so by something akin to counting,
is natural.

FINAL COMMENTARY

I have argued that the abilities to count and to do simple arithmetic tasks are
natural, universal abilities. The preschooler’s acquisition of counting is guided
by a set of counting principles. Babies can match a numerical abstraction of small
sets in the visual mode with one in the auditory mode. As best as we cantell,
normal peoplein all cultures are able to count. And even in environments without
schools, there is evidence that the people can solve simple arithmetic tasks.
Finally, the ability to count is diagnostic with regard to retarded children’s ability
to solve simple mental arithmetic problems.

I have repeatedly used the phrase ‘‘simple arithmetic’’ tasks and have done so
on purpose. I do not want people to reach the conclusion that rich mathematical
abilities can develop irrespective of the environment. Even if I am correct in
assuming that there are universal arithmetic abilities, it does not follow that the
teaching of mathematics is unimportant. To illustrate why, I consider another
natural universal ability—the understanding and production of speech.

Every normal child can and does acquire his or her mother tongue. Language
learning, although dependent on a supporting environment, seems to be able to
proceed withoutstructured lesson plans (e.g., Newport, Gleitman, & Gleitman,

1977). Still, grammaris taught in schools. This, I submit, is because educators

recognize a basic distinction between the ability to converse and the ability to
access the structure of the spoken language. Grammarlessons are geared to
teaching children the rules that govern their language. However, mastery of these
tules does not guarantee that one can dolinguistics. This is the task of profes-
sional linguists who havestudied long andhard to achieve their special abilities.
Similar considerations apply to the acquisition of mathematical prowess. The
child who invents a counting algorithm is unlikely to discover, on his or her own,
the formal properties of a group. Like linguists, mathematicians need to study
and master a great deal of mathematics before they are able to do mathematics.
And as compared with the ability to learn to count, there are tremendousindi-
vidual differences in mathematical ability. It remains an open question as to how

and whetherearly arithmetic abilities are related to the ability to learn mathemat-
ics in school.
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People seldom concentrate their attention on a single activity. Drivers allow their

minds to wander without crashing into walls. The executive talking on three

telephones at once may befictional, but the airline traveler who reads while

listening for flight announcements1s real. Thinking about more than onething at

a time is a complex and importantaspect of daily life.

When asked to explain complex behaviors, psychologists often try to break

them downinto their constituent elements. In factor analysis, performance on a

complex test is depicted as a linear combination of basic abilities. Similar reason-

ing motivates Sternberg’s (1977, 1979) technique of componential analysis.

Sternberg’s approach is to break complex problem-solving behavior into stages

and to measure the processes involved in each stage. Problem solving, from this

point of view, can be compared to the execution of a complex program with
many subroutines. The program is to be understood by isolating the subroutines

and measuring their capacities. A similar logic appears in our own research
(Hunt, Frost, & Lunneborg, 1973; Hunt, Lunneborg, & Lewis, 1975), where we

utilized what Pellegrino and Glaser (1979) have called the ‘‘cognitive correlates”’
approach. The basic idea behind this work is that human thought, as a form of
information processing, must involve some basic information-processing
functions, analogous to the machine level operations (not the subroutines) of a

digital computer (Hunt & Poltrock, 1974). Pure measures of these functions
should be related to complex performance.

The assumption that has pervaded our work and that of others is that tasks
done in isolation place the same demands on the information-processing system

as tasks done concurrently. This is the assumption we wish to question here
becauseit not only pervades the way weanalyze data, but also the way wecollect
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it. We take great care to present people with just one problem at a time. But by

concentrating on the ability to do things singly, we may miss a dimension of

human behavior that is associated with the execution of concurrent tasks. The

point has been made eloquently by H. A. Simon (1969) in his book The Science

of the Artificial. Simon observed that complex systems are often made up of

simple subsystems. The complexity arises not from properties of the subsystems,

but from their interaction. Hence, we cannot hope to understand the operation of

the large system simply by an analysis of the subsystemsin isolation.

In this chapter, we look at a very simple model of dual task execution—a

model in which each task is seen as competing for a general attentional resource.

In such a model, the phrase ‘‘pay attention’’ is taken quite literally. The concept

of an allocatable mental resource has received considerable attention in experi-

mental psychology, but little formal effort has been made to apply the conceptto

individual-differences research or to discover how patterns of individual dif-

ferences could be used to test models of resource allocation.

This chapter is divided into four sections. The first contains a discussion of the

concept of attentional resources as it has been developed by experimental psy-

chologists. The second presents a formal model of the role of attentional re-

sources in determining individual performance. The third reports experimental

results that pertain to this model. The closing section deals with further implica-

tions of these basic ideas.

THE RESOURCE-COMPETITION MODEL

Theory

According to the resource-competition model, attention is akin to an energy

resource in that it can be parceled out over concurrently executed tasks. The

proposal has a long history in psychology. Posner (1978) cited relevant papers

from the 19th century. Even Spearman’s (1927) writings on the nature of general

intelligence can be interpreted in terms of a general attentional resource. Kahne-

man (1973) has written the most comprehensive modern treatment, and we

generally follow his analysis.

Consider any information-processing task. By definition, the task involvesthe

manipulation of signals being transmitted through the central nervous system.

The manipulations must be carried out by specific structures. What happens

when an information-processing system executes two logically independenttasks

concurrently? If the tasks require access to the same information-processing

structures, then the two tasks will interfere with each other. This is called struc-

tural interference.

Structural interference is obvious in many situations that require external

sensors and effectors. We cannot look to the left and right simultaneously. Nor
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can we jumpeast and west. If the ‘‘structures’’ involved are central rather than
peripheral, the interpretation is less obvious. For example, Baddeley and Hitch
(1974) conducted a series of experiments in which people first memorizeda list
of digits, then attempted to comprehendsentences, andfinally recited the digits.
They found that digit memorization interfered with sentence comprehension.
Baddeley and Hitch’s interpretation was that the two tasks competed for space in
a working memory structure. There is no way that such a structure can be
observeddirectly.

Other casesof intertask interference are harder to explain in terms of competi-
tion for a structure becauseit is not clear what structure is required by bothtasks.
Try to recite poetry while juggling! To account for nonstructural interference,
Kahneman (1973) proposed that all mental processes competefor a single pool of
attentional resources. Wecall this the resource-competition model. Kahneman
argued that attentional resources are analogous to a mental fuel that is drawn
upon by virtually every mental activity. The availability of resources places a
limit on the amount of mental processing that can take place at any one time.

Attentional resources are drawn upon by different mental structures in accor-
dance with the demands that external tasks place upon them. The quantity of
resources made available to a particular structure will depend on the allocation
policy that is in effect. An allocation policy determines how resources are to be
distributed to the structures required by competing tasks. Theallocation policy is
based upon the total level of resources available (the capacity) and the expected
payoff for varying levels of performance in each task. A resource-competition
modelis not inconsistent with a structural modelof intertask interference because
the two types of models explain different situations. But how one analyzes
people’s ability to do several things at once does depend on whether onebelieves
that intertask interference is primarily dueto structural or to attentional resource
competition.

Norman and Bobrow (1975) elaborated upon Kahneman’s proposal by intro-
ducing several useful concepts. The first of these was the notion of a
performance-resource function—a function that specifies the relationship be-
tween the level of attentional resource supplied and the performance expected on
a task. A hypothetical performance-resource function is shown in Fig. 5.1 and
can be used to illustrate Norman and Bobrow’s ideas. An important point to
rememberis that Fig. 5.1 does not represent the relationship between two ob-
servables. It relates observable performance, p, to the conceptual but in princi-
ple unobservable variable, r, attentional resources. Symbolically, we refer to the
function:

p= f(r). 5.1

Although we cannot observe Equation 5.1 directly, we may place some re-
strictions on it. First, providing more resources should never hurt performance.
Therefore the first derivative, f’, should be nonnegative:
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FIG. 5.1. A performance-resource function, p = f(r). Performanceis resource

limited in the regions A to B and C to D;it is data limited in the regions B to C and

D to E.

f(r) 2 0. 5.2

Whenever f’ is positive, an increase in resources will cause an increase in

performance, and, conversely, a decrease in resources will cause a decrease in

performance. In such cases performance is said to be resource limited. In Fig.

5.1, performanceis resource limited from points A to B and again from C to D.

Wheneverf’ is zero, changing the resource level will not change performance,

which is said to be data limited.

The terms resource limited and data limited have appealing intuitive interpre-

tations. One can easily think of tasks that seem to be resource limited (1.e., tasks

in which performance is determined by the extent to which we pay attention to

what we are doing). Data limitations are equally easy to envisage; most normal

individuals can memorize two digits easily and could not improve performance

by paying more than the minimal amount of attention required. As a more
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complex example, suppose that you are listening to a radio andthat the transmis-

sion is masked bystatic. Up to a certain point, your ability to comprehend the

broadcast is determined by the amountof attention you pay to it. Beyond that

point, the signal-to-noise rate of the radio transmission becomes the limiting

factor, and performance becomesdata limited.

Data limitations are produced by the interaction between task requirements

and personal capacities and thus cannot be assigned to one causeorthe other. In

our radio-broadcast example, we located data limitation in the radio transmitter.

But two people with different degrees of high-frequency hearing loss would vary

in the point at which they shifted from resource-limited performance (wherethey

could comprehend more by paying moreattention) to data-limited performance

(where additional attention could not improve performance).

In spite of the heuristic value of examples, the concepts of resource and data

limitation are strictly defined in terms of Equations 5.1 and 5.2 and,in the last

analysis, are abstract relationships that can be represented only imperfectly in

any concrete situation. The reason that the performance-resource function andits

associated concepts must remain abstract is that we have no direct way of estab-

lishing a metric for r, the ‘‘amount of resourcesallocated.’’

Two indirect approaches to the measurement of resources have been at-

tempted. One is to equate resource expenditure with a change in physiological

status. Heart rate, cardiac deceleration, and dilation of the pupil of the eye have

all been proposed as appropriate measures. Although these measuresareinterest-

ing, the fact that they do not correlate well with each other across situations
makes their conceptual status problematic.

An alternative approach, which we have taken in our ownresearch, is to use
as an index of resource allocation the extent to which one task interferes with the
execution of a second standard task. Although the logic of this measurement
technique does not depend on Norman and Bobrow’s analysis (see, for instance,

the alternative treatment by Kerr, 1973), we use their terminology.

Imagine two abstract tasks, | and 2, that are to be done concurrently and that

do not exhibit structural interference. Performance on the first task may be
plotted as a function of performance on the second. Letting p; be performance on
the ith task (i = 1, 2), Norman and Bobrowrefer to the function:

Pi = 8(p2) 5.3

as a performance operating characteristic (POC). Figure 5.2 presents an abstract
POC, which can be used to illustrate some general features of performance-
resource functions.

The form of a POC is determined by the competition between tasks for
attentional resources. Let R be total resource capacity and let r, and rs be the
resources allocated to tasks 1 and 2. The resulting performancelevels are:

Pi = filri)s Po = fo(r2), 5.4
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FIG. 5.2. A performanceoperating characteristic (POC)plotting performance on

one task as a function of performance on a simultaneously performedtask.

with r; subject to the restriction that

R =— Ir; + Py. 5.5

Equation 5.5 represents an assumption that the participant devotes a fixed

amount of mental resources to the experimental task across all single and dual

task conditions. Such an assumption cannotbe verified directly. Instead, it must

be introduced as an axiom andtested by its implications.

Considerthe horizontal section of the POC running from points A to B in Fig.

5.2. Given the assumptions of the resource-competition model, this means that

task 1 is data limited at performance level p,* because task-2 performance

increases in the A-B interval whereas task-1 performance is constant. Inasmuch

as, by assumption, performance on a fixed task cannot increase without the
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commitment of more resources to it, some resources must have been diverted

from task 1 to task 2 without causing a drop in task-1 performance. By similar

reasoning, the vertical segment of the POC, from points C to D, means that task

2 is data limited andthat task 1 is resource limited in the C-D interval. Both tasks

1 and 2 mustbe resource limited in the B-C interval, as an increment in perfor-
mance of one task is always accompanied by a decrementin performancein the

other. What would happen if tasks 1 and 2 were both data limited? The POC

would degenerate into a point defined by the intersection of a horizontal and
vertical line.

The POCprovides us with a method for determining the amount of resources
required by an individualin order to reach a given level of performanceontask 1,

when task 1 has been designated a ‘“‘primary’’ or most important to the per-
former. The experimenter specifies the external problem, establishes the desired
level of performance on task 1, and then measures the resource requirements of
task 1 by observing performance on the concurrent secondary task, task 2. To
illustrate, consider the following experiment. A performeris asked to memorize
a short list of digits (task 1) and then, while rehearsing those digits, to react to a
probe signal (e.g., a light or tone [task 2]). After responding to the probe, the
performer mustrecall the digits. Suppose that the performance-resource function
for rehearsing digits is as shownin Fig. 5.3a. The numberof digits one is capable
of maintaining in memory increases with the resources deployed, up to the total
resource capacity (R). We can replot this figure to show a family of curves:
probability of correct recall as a function of resources applied to the task, with the
curve parameter being the numberof digits to be memorized. This is shown(for
two andfive digits) in Fig. 5.3b. The goal is to measure the minimum amountof
resources required to memorize one, two, three, four, or five digits—points A
and B (for two and five) in Fig. 5.3b. But, the abscissa of the performance-
resource function refers to a hypothetical variable, r, which, in principle, is not
open to direct observation.

Performanceon the probe reaction-time task (task 2) may be used to obtain the
needed measure. The argumentis that, under an appropriate payoff arrangement,
a person should devote to the secondary task only those resourcesthat are left
over from the primary task. Thus, performance on the secondary task provides a
measure of the ‘‘spare capacity’’ left over after adequate resources have been
devoted to the primary task. This procedureis valid only if the secondary taskis
resource limited over the range of performance under consideration.

Continuing our example, suppose that the speed of reaction to a probe is a
monotonically increasing function of the resources devoted to the reaction-time
task. The argument does not depend on the form of the function, only on the fact
that the function satisfies the criterion for resource limitation, f3(r) > 0.

More generally, resource-competition models make only the weak assumption
that overt performanceis an ordinal measure of the resourcesallocated to task.
This has posed problemsin the analysis of experiments because of the limited
statistical analyses that can be justified when dealing with ordinal data. In the
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FIG. 5.3. Performance-resource functions for digit memorization.

following sections, we present an information-theoretic reformulation of

resource-competition theory that can be used to justify more powerfulstatistical

methods.

Figure 5.4 shows two POCsthat might result if the task of memorizing two

digits (easy) or five digits (hard) was combined with the task of responding to a

probe signal. Probability of recall is indicated on the ordinate, and speed of
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FIG. 5.4. POC for digit recall (primary) and probe reaction time (secondary)
tasks under two levels of primary task difficulty.

responding to the probeis indicated on the abscissa. Note that on both measures
good performance is associated with movement away from the origin. Consider
points A, and A;. These are the points at which recall of two and five digits,
respectively, becomes data limited. Data limitation is shown by the flatness of
the POC from the data-limitation point to the ordinate. Fewer resources are
required to reach the data-limitation point for the memorization of two than five
digits. If subjects are instructed to devote enough resources to the memorization
task so that they can recall the digits correctly, and to devote their remaining
capacity to the probe task, probe responses should be faster in the two-digit than
in the five-digit condition.

Task-2 performance may thus be used as a measure of task-1 resource re-
quirements. Let p.(2) and p,(5) be task-2 performancein the two- andfive-digit
memorization conditions. Similarly, r,(2) and r.(5) refer to the resourcesallo-
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cated to task 2 in the two conditions. Resources allocated to task 2 can be defined

by the equations:

ro(2) = fo" [po(2)]; r2(5) = fa [p2(5)]. 5.6

Inasmuch astotal resource capacity, R, is split between the two tasks, Equations

5.5 and 5.6 combineto define r,(i), the amountof resources required to maintain

i digits in memory,by:

ri) = R — fs" [p2@)]. 5.7

To what extent is this a scale? For the scale to be a linear or stronger measure

of r, we would have to make (and justify) some assumptions about f,. We

discuss this in more detail later. For the present, we point out that the weak

assumption that f is a performance-resource function and the much stronger

assumption that R is constant over conditions are sufficient to insure that p.(i) is

an ordinal scale of r,(i). Thatis,

[p2(i) > peG)) D [IriQ) > r,Q)]. 5.8

Quite aside from measurement-theory considerations, the paradigm that has

been described contains some important and not always obvious assumptions

about behavior. These have been discussed in detail by Navon and Gopher

(1979) and are mentioned here only briefly. One of the most important assump-

tions, and one of the most difficult to justify, is that the performer is indeed

operating at the point at which task-1 performanceshifts from a resourceto a data

limitation. Experimenters attempt to insure this by instructing performers to

devote enough effort to the primary task to perform it correctly and to devote

their remaining effort to the secondary task. In some experiments, these instruc-

tions are supplementedby an explicit payoff schemeso that a person who wishes

to maximize objective rewards will perform at the data-limiting point. Obvi-

ously, a performer can dothis only if the performer and the experimenteragree,

quite precisely, on the meaning ofthe instructions and the valuesof the payoffs.

Secondary task instructions also implicitly assume that performers have a sophis-

ticated knowledge of their personal performance-resource function for the task.

A second question concerns the concept of a general resource. Should one

think of mental resources as commodities that are infinitely transferable from one

task to another, like money, or as commodities that are very useful for some tasks

and acceptable but less useful for others, like alternative sources of energy?

These issues are serious ones and should not be minimized. Initially, how-

ever, we can ignore them. Later we examinethe plausibility of the assumptions

and consider how our data and models mightbe affected by their violation.

A third issue has been raised as a problem for resource-competition theories.

In many nomothetic experiments, data have been aggregated over individuals.

This often amounts to the highly questionable assumptionthat there is negligible

interindividual variation in resource capacity. Rather than regarding interin-
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dividual differences in capacity as random variation, we attempt to incorporate
them within a resource-competition model.

The Easy-to-Hard Paradigm

Muchof our work is based on an experimental design that we have cometocall

the easy-to-hard paradigm. Imagine that two individuals are performing an easy
version of task | (e.g., solving easy reasoning problems). It could easily happen

that two individuals who perform at the same level (virtually perfectly) on this

task might differ markedly in their ability to perform a moredifficult reasoning

task. The easy task would not be challenging enough to reveal the difference
between the two performers. However, one might be able to discriminate be-
tween the two individuals by using the secondary task technique explained in the
previous section. The spare capacity of each individual would be measured

during performance of the easy version of task 1. This spare capacity measure
would predict performance on a more difficult version of the task.

This logic can beillustrated graphically by considering the POCs for two
different individuals, A and B. The performance-resource functions are shownin
Fig. 5.5 separately for performance on easy and hard versions of task 1. In the
easy condition (Fig. 5.5a), both individuals are able to reach a high level of
performance, and thus the easy task fails to discriminate between them. Indi-
vidual differences do appear in the hard condition (Fig. 5.5b), where neither
individual can reach maximum possible performance.

Nowsuppose that we wishedto predict performance in the hard condition on
the basis of performance in the easy condition. This would clearly be impossible
because both individuals are performing at the same level (p*) on the easytask.
However, they may be expending different amounts of resources to achievethis
level of performance. Thus, we can use performance on a secondary task to
predict performance on the hard version of task 1. Although we cannot discrimi-
nate between persons A and B on the basis of unobservable performance-
resource functions, we can discriminate between them on the basis of their
POCs, which can be observed directly. Good performance on the secondary task
should be an indication of spare capacity that could be usefully applied to the
primary task if it became harder.

This is illustrated by the POCs shown in Fig. 5.6. Both A and B perform the
easy version of task 1 at level p*. However, A can achievethis performance with
a smaller output of resources. Therefore, A will achieve a higher level of perfor-
mance on task 2 than B.

This informal presentation of the easy-to-hard paradigm hasstressedits intui-
tive appeal, but a closer look at the reasoning behind it reveals complexities.
Individuals can differ in several characteristics that determine single and dual
task performance: (1) structural parameters pertaining to performanceof task 1,
which determine the resources necessary to perform that task at a given level; (2)
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FIG. 5.5. Performance-resource functions for two subjects (A and B) for task 1

(the primary task).

structural parameters pertaining to performance in task 2, which determine the

resources necessary to perform that task at a given level; and (3) total resource

capacity. Performance on tasks 1 and 2 in each of the single and dual task

conditions is determined by various combinations of these unobservable var-

iables. Unfortunately, we do not know the form ofthe relationships between the

unobservable parameters and the performance measures.
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FIG. 5.6. Performance operating characteristics for two subjects (A and B).

In the following section, we demonstrate how information theory can be used
to generate specific predictions concerning the relationships between perfor-
mance measures. The general argument of this section can be summarized as
follows. If there is a causal relationship between a set of unobservable traits and
each of a set of observable measures, then knowledge of one observable measure
may provide information concerning another. In the simplest case, if the same
trait determines two observable measures entirely, then one of these measures

will predict the other perfectly. When the relationships between observables and
unobservables becomes more complex, information theory can be usedto deter-
mine whether one performance measure provides information about another.

In the easy-to-hard paradigm, the three unobservable parameters—task 1
structural parameters, task 2 structural parameters, and total capacity—determine
performancein single and dual task conditions. Information theory can be used to
demonstrate that performance on task 2 in the dual task condition provides
information concerning performance on the difficult version of task 1 and that
this information is independent of performance in any of the single task condi-
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tions. The advantage of using information theory for this purpose is that it makes

no assumptions concerning the measurementproperties of the performance mea-

sures or the form of the functions that relate observables to unobservables.

To say that one variable provides information concerning another is equiva-

lent to saying that there is some function of the first measure that improves

estimation of the second. The problem is then to determine that function. If such

a function exists, it can be approximated in a given set of data by expressing one

variable as a linear polynomial function of the other. This fact provides the basis

for a statistical test of the model. If the unobservable causal relations postulated
by the resource-allocation model are true, then certain predictive relations un-

covered by the information-theoretic analysis must exist between observables. If

the predictive relationships exist, then a statistically reliable linear relationship

between observables should appear in any given data set. This statement can be

tested using conventional correlational analysis.

The role of the information-theoretic techniques is to determine, in a precise

manner, just what relations between observables are predicted by resource-

allocation models. The use of information theory does not introduce any

psychological content; the psychological content lies in the definition of the

resource-allocation model. The role of information theory is to provide a bridge

betweenthe theoretical concepts of *‘structure’’ and ‘‘resource’’ and the observ-

able performances. This is done by using information theory to provide a theoret-

ical justification for the use of conventional linear regression methods in the

analysis of observables.

A FORMAL MODEL
OF INDIVIDUAL DIFFERENCES

Definitions and Preliminary Notation

The model to be developed deals with the relations between primary and secon-

dary task performance overfour different conditions. Conditions will be indexed

by the variable c, where:

5 | © The secondary task is done alone.

c = 1. The primary task is done alone, at an easy level.

c = 1+. The primarytask is done at the easy level, and the secondary taskis

performed concurrently.

c = 2. The primary task is done alone, at a difficult level.

As an example, suppose that the primary task was to memorize either three or

seven digits and that the secondary task was to respond to a visual signal.

Condition c = 0 would be a ‘‘probe alone’’ condition, in which the visual signal



5. ATTENTION 221

was presented and reaction time recorded. Condition c = 1 would require

memorizing three digits. Condition c = 1+ would require memorizing three

digits, and a visual probe signal might be presented during the rehearsal period.

Condition c = 2 would involve memorizing seven digits.

An individual performer, i (i = 1... N), will be characterized by triplet,

(€14;, €;, R;), where e,; represents the ith individual’s structural efficiencyat the

primary task, and e,,; represents the individual’s structural efficiency at the

secondary task. R; represents the person’s attentional resource limit, or capacity.

Collectively, the individuals in an experiment constitute a set S, where:

S = {(ey;, €o;, R;)} i 1...N. 5.9

Performance on any task ¢ (t = 1, 2) requires the allocation of attentional

resourcesto the task. Let r,;(c) be the amount of resources devoted to task t by

individual i in condition c. By the definition of resource capacity:

|

Os<rg(c) SR, t= 1,21=1...N. 5.10

Let pi(c) be the observed performance of person i on task ¢ in condition c.

Then:

Pul(c) = Min tfilru(c) s ex, d], Dileu, d)} 5.11

where f; [r(c); @4, ad] is the performance-resource function for an individual

with task structural parameter e,;, who is faced with an external task of difficulty

d(d = 1, easy; d = 2, hard), and D, (e,, d) is the data-limit function. This

function establishes maximum performance for an individual, given the struc-

tural parameter and the external level of task difficulty.

It follows from Equation 5.11 that there will be a ‘‘maximum economic

investment’’ that a person should makein task ¢ at a given level of difficulty and

in a particular condition. Let this be r¥; (c), where r%; (c) 1s the minimum value

of r,;(c) that satisfies

filr#&(c); en, d) = Dy (ex, dd). 5.12

A person will be said to be an economic performer in condition c if and only if

resources r%;(c) are invested in the primary task.

The assumption that f, does not change over individuals and conditions,

except for changes in parameters, is actually an assumption of some content.

This sort of assumption is made in much psychological research. For instance, it

is made in stronger form in virtually all research on learning, where individual

parametersare fit to a generalized learning curve, and in psychometrics, where

the factorial content of a task is assumed not to changeoverindividuals. It might

be questioned in situations in which individuals could differ in the strategy with

which they approach the task.

A point that is important in later analysesis that rf; (c) is established within a

condition by the value of e,;. This is apparent from Equation 5.11.
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Task Assumptions

The task assumptions deal with the resource requirements of the primary task
at the easy (d = 1) and hard (d = 2)levels of difficulty and with the require-
ments of the secondary task at its constant level of difficulty, d = k:

1. All individuals reach a data-limiting point in the performance of the easy
primary task.

2. All individuals are resource limited in the performanceof the hard primary
task.

Comment. One of the primary tasks used in our experiments provides an
illustration of these assumptions. The task required active rehearsal of either a
small or large numberofletter-digit pairs. When there are only a few pairs to be
rehearsed, subjects report that the task can be done with less than maximum

output of effort, and most perform at a very high level. However,perfect perfor-
mance is usually not attained due to momentary lapses or failure to code a
stimulus correctly whenit is presented. If there are manypairs to be rehearsed, it
is difficult to reach the last pair before the first pair is forgotten, and the effec-
tiveness of rehearsal is closely tied to the effort put into the task.

3. All individuals reach a data-limiting point in the performance of the secon-
dary task donealone.

4. All individuals are resource limited in the performance of the secondary

task done in conjunction with the primary task.

Comment. Assumption 3 states that if a person is able to devote all atten-
tional resources to the secondarytask, a point will be reached at whichstructural

limitations determine performance. In our work, secondary task performance

generally required a simple motor response to a visual or auditory probe. At a

certain point, the reaction time (RT) to such a signal will be determined by

equipment andstructural, rather than resource, variables. Assumption 3 asserts

that people reached this point.

Assumption 4 can be evaluated by inspecting the data. As the secondary task

does not changeits difficulty level, any difference in performance of an indi-

vidual in the 0 and 1+ conditions will have to be associated with a change in

resource allocation. If performance deteriorates from the 0 to 1+ condition then,

perforce, performance in the 1+ condition must have been resource limited. This

situation alwaysarises in the experiments that we have completed on dual task

performance.

5. Whenever any two tasks are done concurrently, some amount of atten-

tional resources, A, will be diverted to the superordinate task of coordinat-

ing the two concurrent tasks.
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Comment. Assumption 5 has been introduced to cope with the common

observation that in a wide range of dual task studies primary task performanceis

worse in dual than single task conditions, despite instructions that primary task

performance should be maintained (Kerr, 1973). Assumption 5 amounts to an

assertion that individuals set aside an economically appropriate amountof re-

sources, r¥; (c), for primary task performance butthatthis allocation is preemp-

ted by the obligatory high priority assigned to intertask coordination. Note that A

is not subscripted, indicating that individual differences in intertask coordination

ability will not be considered. This might appear to many to be an unrealistic

assumption. Somewhat surprisingly, though, experimental attempts to identify

consistent individual differences in intertask coordination have produced nega-

tive results (Hawkins, Rodriguez, & Reicher, 1979; Poltrock, Lansman, & Hunt,

1980). Presently available evidence indicates that treating A as a constant across

subjects will not be too crude an approximation.

These assumptions lead to the following performance-resource functions,

each of which is accompanied by a description.

PuiG) = filrtiC), ev. U Primary task, alone, easy condition. 5.13

The performer devotes an economically appropriate amount of resources to the

primary task, thus reaching the data-limiting point (see Equation 5.18).

put) = fi {irtiAl, eu, Primary task, dual, easy

condition. 5.14

Performanceis slightly below the data-limiting point due to the diversion of some

resources to the coordinating task.

Pruil2) = fi(Ri, eri, 2) Primary task, alone, hard condition. 5.15

Performanceis limited by the individual’s resource capacity.

Po(0) = fo (r5,(0), @2;, 2) Secondarytask, alone. 5.16

The performer devotes an economically appropriate amount of resources to the

secondary task and, hence,is data limited (see Equation 5.19).

polit) = AA{[R; — ri], e2;, k} Secondary task, dual, with

easy primary task. 5.17

Secondary task performance is determined by the resources remaining after an

economically appropriate amount of resources has been assigned to the primary

and coordination tasks. By virtue of the assumptions concerning data limitations

(Assumptions | and 3):

Pui) = D, (ex, YD 5.18

and

P2(O) = Dyo(e2;, k). 5.19
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On occasion, we refer to a variable itself rather than to a specific value of the
variable. In such cases, we write p,(c), suppressing the subscript for the indi-
vidual. To refer to a set of observations for a particular task and condition we
write:

1,2

1...N

0,1, 1

Pic) = {pric} t

i

Cc +, 2. 5.20

An analogous notation is used to refer to structural and resource variables e,, é.,

and R.

Assumptions About Unobservables

The variables e,, e,, and R play a role analogousto the role of latent traits in

psychometric theories of intelligence. In principle, they are unobservable, but
they are presumed to establish the observable values. In this section, some

assumptions are made aboutthe relationship between the unobservable variables.

In the following section, these are combined with the assumptions about the

unobservable-observable relations expressed in Equations 5.13 through 5.17 in
order to derive predictions about the relations between observables. This proce-

dure resembles the data handling techniques used in the analysis of causal models

(Bentler, 1980). The mathematics are different because we limit our assumptions

about observable-unobservable relations to the concept of a performance-

resource function and because weallow for the possibility of nonlinearrelations.

Therefore, we base our analysis on information-theoretic concepts rather than on

the partitioning of covariances into components.

Summary Comments on Information Theory

This section presents some information-theoretic concepts used in this chapter.
The presentation is intended to be a reminder of such concepts rather than a
tutorial discussion. (Luce, 1960, provides an excellent in-depth presentation.)
For ease of exposition, a simplified notation is used. It is elaborated on in the fol-

lowing section, which deals with the application of information theory to resource-
allocation experiments.

Imagine two abstract variables, x and y, with associated sets of probabilities:

X = {p (x = a)} a € range of x

Y={p(y = dD) b € range of y 5.21

The information in each of these variables is defined as:

H(x) = — Yq p(x = a): log, [p (x = a)] 5.22
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and similarly for H(y). The set of probabilities

XxX Y={p(x=a&y= bd) 5.23

states the probabilities of pairs of values for x and y, and

H(x, y) = ->,>)P (* = 4, y = b) log, p(x = a, y = Bb). 5.24

Equation 5.23 can be used to define the sets of conditional probabilities p(x =

aly = b) and p(y b|x = a), with the associated information measures
H(x|y = b) and H(y|x = a). The average informationin y, given x, is defined by:

H(y|x) = Xq p(x = a):HQy|x = a). 5.25

The information in a pair of observations can be expressed in terms of the

information in the individual observations and the conditional probabilities as:

H(x, y) A(x) + H(y|x)
= H(y) + H(xly). 5.26

The maximum value of H(x, y) is

Amax (x, y) = H(x) + A(y), 5.27

which is reached only when

H(y|x) = H(y) and H(x|y) = H(x). 5.28

This is sometimes stated in terms of the information transmitted from x to y,

whichis defined by:

T(x, y) = Amax(X, y) ~ A(x, y)

= H(x) — H(xly)
H(y) — H(y|x). 5.29

Two variables are said to be independent if T(x, y) is zero. This is a more

general definition of independence than the more familiar one, in which the
product-momentcorrelation is zero. The former definition rules out any relation

between the two variables, whereas the latter rules out any linear relation.

Transmitted information [T(x, y)] is bidirectional. One could speak of the

information transmitted from y to x or from x to y. This is apparentin thefirst
line of Equation 5.29, which defines T(x, y). Predictability, however, is not

symmetric because it depends on both t(x, y) and the value of H(x) and H(y).

This can be seen by examining the bottom twolines of Equation 5.29. The point
can be illustrated with a simple example. Suppose that variable x may take the
values —1, 1, —2, or 2 with equal probability and that y = x”. It is easy to show

that in this case:

H(x) = 2

A(y) = 1
A(x, y) = 2. 5.30
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In terms of conditional information:

T(x, y) = 1
H(x\|y) = 1
H(y|x) = 0. 5.31

Thus, y is perfectly predictable from x, but not vice versa. This situation can be

expected to arise in observable-unobservable relationships. Observable perfor-

mance should be predictable given the values of unobservable parameters, but

two or more combinations of parameters might give rise to the same observation.

Now consider the case of three variables, x, y, and z, with their associated

probability distributions. If H(x, y, z) is the informationin thesetoftriplets, {(x,

y, z)}, then the information transmitted from the (x, y) pair to the z variable, or

vice versa, iS:

T\(x, y), 2] = H(x, y) + H(z) — HG,y,2). 5.32

The conditional information transmitted from x to z or from z to x, after

allowing for the information transmitted by y,is:

T(x, zly) = H(x, y) + H(y, z) — Hy) — A(x, y, 2). 5.33

The expressions for T(y, z|x) and T(x, y|z) are similar.
There is a particular meaning of T(x, y) that should be kept in mind. If the

transmitted information between a pair of variables is greater than zero, thenit is

possible to use knowledge of one variable to make a good estimate of the other,

provided that good estimate is defined in terms of the probability distributions.

To use an illustration that takes on importancelater, suppose the best estimate is

one that minimizes the conventional least squares loss function,

L = Xy p(y(y — ¥)? 5.34

where jy is the estimate of y. If T(x, y) > 0, then there is some function g(x) such

that

y = g(x) 5.35

will, on the average, produce a lowervalue of L than simply using the expecta-

tion of y [E(y)] as the estimate of y.

Resource-Allocation Models

Expressed in Information-Theoretic Terms

One maythink of all conceivable values of the parameters, e,, e,, and R, as

having certain a priori probabilities of occurrence, both individually [p (e1; =

a), etc.] and in pairs [p(e4 = a; ex, = b)] and triplets. In order to maintain a

meaningful distinction between resources and structure, these are required to be

statistically independent over individuals.
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6. An individual’s attentional resource capacity is independent of the indi-

vidual’s structural parameters.

In information-theoretic terms

T(R, €,) = T (R, en) = 0. 5.36

This assumption defines resourcesas those capacities of the individual that are

relevant to performance but independentofthe ability to do any one task. Such a

definition is at first reminiscent of g, the general ability from classic intelligence

theory. At the empirical level there is a slight difference in definitions because

resource capacity could be identified by nonlinear relationships between perfor-

mance over different tasks, whereas g, as strictly defined in factor analytic

studies, is determined by linear relations. We suspect that most intelligence

theorists would regard this as a minor technical quibble, and weagree.

There is also a conceptual distinction. Resource allocation is an ‘“‘energy”’

concept. Resources are looked upon as commodities to be parceled out in re-

sponse to competing demands. Assuch, resource capacity might be thoughtof as

one component of g. The concept of general intelligence itself is broader. It

would have to include any structure that is involved in a variety of cognitive

activities. It should also include the effectiveness of the strategies that people use

in deciding how to approach a problem, including the policies that they follow in

allocating resources to various activities during problem solving. Sternberg

(1980) has referred to such strategies as ‘‘metacomponents.’’

General structures and metacomponentsare part of g, but they are notatten-

tional resources in themselves. There are probably individual differences in the

efficiency of widely used structures, in the possession of different metacompo-

nential strategies, and in resource capacity. They all would contribute to a g

factor in an analysis of the correlations betweenintellectual tasks done one at a

time. There seems to us to be no way of distinguishing between the ideas of

general attentional resources and general intellectual competence so long as one

deals only with statistical relationships between performance on different tasks

done oneat a time. The distinction between the two concepts depends on perfor-

mance when tasks can compete for attention.

In order to test the model, some constraints must be stated on the relationships

between observables. This is done by designating performance on the primary
task alone, at the hard level of difficulty [variable p,(2)] as a target variable, and

expressing this variable in termsof the other observable variables. The approach
regards performance-resource functions as mappings betweensets of observable
and unobservable variables. The information-theoretic consequences of these
mappings are then examined. To aid in following the argument, Table 5.1

summarizes the mappings involved. The same information is shown graphically
in Fig. 5.7, which depicts the unobservable variables e,, e,, and R as being

connected to the observable variables by arrows, whosedirection is intended to
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TABLE5.1

Summaryof the Mappings Between Observable and

Unobservable Variables in the Easy-to-Hard Paradigm

Primary Task

Equation Mapping

PuiG) =filr#Q), eu, I fi: Ey pi)

put) = fi tlr#() — Als eu, I} fi: Ey p,dt)

Pul2) = fi(Ri, eu, 2) fi: Ey X R> pi)

Secondary Task

Equation Mapping

p»(O) = fo(rF, ex, k) fx: E.— p»(9)

Px At) = fo[Ri — r&C), ex, kK) fo: E.s X E, X R—>p.(t)

illustrate causation. Unobservable variables e, and e, are connected to each other

by a double-headed arrow, indicating that the model permits statistical associa-

tion between these variables without any implication of causation. Variable R

stands alone because, by assumption, it is independentof the structural variables.

The method of predicting target-variable performance from performance on

other variables can first be presented in an informal argument, which may be

followed graphically by examining Fig. 5.7. It is clear from the figure that

target-variable performance, p,(2), depends jointly on e, and R. Thus, any

information that improves the ability to predict e, and R should improve predic-

tion of target-variable performance. What sources of information can be used to

estimate the two unobservables?

Suppose, for the moment, that one knew the performance-resource functions

and could state a priori probabilities for all values of the unobservables. In

general, a performance-resource function establishes a many:one mapping from

the set of possible values of unobservable parameters into the set of possible

values of an observable performance. Conversely, there is a one:many mapping

from observable performance back into the unobservable parameters. This means

that although one cannot determine a set of parameter values uniquely from

performance, it is possible to alter one’s estimate of the likelihood of a parameter

value by observing performance. This, in turn, should makeit possible to predict

performance in a new situation, providing that the new performance depends

(partly) on the same unobservable parameters. However, there will be redundan-

cies between predictor variables. There may be two or more performance mea-

sures that yield the same, or nearly the same, information about unobservables.

With these considerations in mind, let us examine waysto predict target-variable

performance.
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Primary Task Measures Secondary Task Measures

Unobservabl

p5(0)

po(1+)

FIG. 5.7. A diagram showing the causal connections between the three unob-
servable parameters, e,, e,, and R, and five single and dual task measures.

Performance on the easy version of the primary task [variables p,(1) and

p,(1+)] dependson the primarytask structural parameter, e,. This is an example
of the general rule that if performance is data limited, then there is a mapping
from the structural parameter for that task into performance. Thus p,(1) and
pi01+) provide information about e,. Whether or not these two information

sources are redundant depends on the value of A, the amount of resources

devoted to coordination betweentasks in a dual task condition. If A is zero, then

p,(1) and p,(1+) are completely redundant.

Information about e, may also be obtained by examining secondary task
performanceeither alone or in the dual task condition [p.(0) and p,(1+)]. Con-

sider first the case of secondary task performance alone, variable p.(0). Inas-
much as this performance is data limited, there will be a mapping onto perfor-
mance from the set of possible e, values, making it possible to improve our
estimate of the secondary task structural parameter. If there is a statistical (not
causal) association between the twostructural parameters, this relationship can
be used to estimate the value of e,. The logic is similar to the logic of using a
measure of arm strength to estimate leg strength; there is no direct causal connec-
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tion between the two measures, but knowledge of one would probably improve
prediction of the other.

The case of secondary task performance in the dual task condition, variable
p»(1+), 1s more complicated. Variable e, can be estimated indirectly through

estimation of e,, as described earlier. Variable p.(1+), however, is a resource-

limited variable. Resources madeavailable to the secondary task in the dual task

condition will be equal to the difference between the individual’s resource capac-

ity and the resources required to bring the primary task to its data limit, the

difference between R; and r%; (1+). The latter variable is determined by e,;, the

individual’s primary task structural parameter. Thus, secondary task perfor-

mancein the dual task condition will be partly dependent on the primary task

structural parameter.

Resource capacity, R, enters into the determination of only two performance

variables—the target variable itself and the secondary task performance in the

dual task condition. Thus, secondary task performancein the dual task condition

is connected to target-variable performance bythree chains of information—links

through e, and e,, which may be partly or wholly redundant to the links

connecting target-variable performanceto other predictors and a link through R,

which is independent of the chains of information involving other predictor

variables.

Turning again to Fig. 5.7, we see that each of these links correspondsto a path

in the graph. There are paths from p,(1), p,(1+), and p.(1+) to p,(2) going

though e,. There are paths that go from p.(0) and p.(1+) to p,(2) by moving

first to e, and then to e,. Only p.(1+) has a path that movesto p,(2) through R.

Thus, p.(1+) should make a contribution to the prediction of p,(2) that is

independent of any other prediction. The information-theoretic basis for the

assertions can now be given.

The performance-resource function states that the value of p,(2) is completely

established (within the limits of measurementerror) whenthe pair of parameters

(e,, R) is known. Furthermore, by the definition of a performance-resource

function, any change in R will cause a change in performance, as difficult

primary task performanceis resource limited. The information transmitted from

R to p,(2), independently of e,, 1s:

T(R, p,(2) | e:) = Hey, R) + Hey, pi(2)] — H(e1) — Ale, R,

pi(2)]. 5.37

Because p,(2) is completely determined by e, and R:

Ale,, R, Pil2)] = A(eé,, R). 5.38

Substituting Equation 5.38 into 5.37:

T[R, px(2) | e:] = Ales, ps(2)] — Ae)

= H[p,(2) | e:]

= Ya p (e, = a) A[p,(2) | é; = al. 5.39
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By the definition of a resource limitation, and the performance-resource func-

tion, it is true that for every pair of values R;, R;’, Ri # Ri,

fi(Ri | Cn, 2) FA(Ri | ey», 2) 5.40

if e,; # €,;'. Thus forfixed e,, there is a one:one mapping from R to p,(2). This

meansthat

H[p,(2) | e, = a] = A(R | e, = a). 5.4]

By assumption 6, e, and R are independent. Therefore,

H(R | e, = a) = H(R) 5.42

and therefore

T[R, pi(2) | e:] = H(R). 5.43

Equation 5.43 states that unless R is known completely, there will be uncer-

tainty in predicting the target variable regardless of how accurately we have

established the value of the structural parameter e,. Thus, it always paysto

improve the prediction of R because this always reduces the uncertainty in

estimating the target variable.

Thesituation is not quite the same with respect to e,. By reasoning similar to

the derivation of Equation 5.39:

T[e,, pi(2) | R] H[pi(2) | R]
Lp P(R = b)-H[p,(2)| R = 4}. 5.44

I
|

However, the performance-resource function does not define any condition for

fixed R and varying e,. In fact, quite reasonable functions can be drawn that

show €,; # €,;-, but for some R:

fi(R = b | Cri» 2) = fi(R = b | Cri" 2). 5.45

In words, these equations show that if one knowsthestructural capacities of

an individual, it is still necessary to know the amount of resources allocated in

order to predict performance. On the other hand, if one knows the resource

allocated, it may not be necessary to know an individial’s precise structural

capacity in order to make a prediction. Why is there this asymmetry between

resource and structural capacity? The question requires two answers—one to

establish an intuitive understanding of what the asymmetry meansand anotherto

explain howit arises.

Figure 5.8 illustrates how the asymmetry arises. The figure shows primary

task performance [p,(2)] as a function of the resources committed to the primary

task. Three performance-resource functions are plotted for levels a, b, and c of

the primary task structural variable, e,. Each of the performance-resource

functions can be thought of as the function expected from an individual with

structural variable e, = a, b, or c, as that individual varies the amount of

resources committed to the primary task. Performanceonthattask will thus vary
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FIG. 5.8. Performance-resource functions illustrating the point that R must be
knownperfectly, but e, may be knownonly partially, in estimating target variable
performance.

in a manner characteristic of the individual. Hence, although twoindividuals
may show identical performance at some level of resource commitment, there
must also be some level at which performance differs. If such a level did not
exist, then the two individuals would have identical performance-resource
functions throughoutthe range of possible levels of resource commitment, and,
by definition, they would have the samestructural capacity.

Graphically, suppose that e, is known, so that an individual has been iden-
tified as being either on curve a, b, or c in Fig. 5.8. It would clearly be

necessary to know whatlevel of resource had been committed to the primary task

before one could estimate performance. Conversely, suppose that one knew both

the level of resource committed and the performancelevel achieved. Would one

then necessarily be able to identify the structural parameter, e,, and thus locate a

person as having a particular performance-resource function? The answerto this

is ‘‘it depends,’’ and Fig. 5.8 shows why. If a person committed resource level
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R* to the task and showed performance level p*, then the performance-resource

function for that person would be uniquely defined (within the set of functions

shown in Fig. 5.8). If resource level R** were committed, the e, = c

performance-resource function could be distinguished from those associated with

e, = a and e, = Db, butthe latter two functions could not be distinguished from

each other.

Apart from the abstract mathematics, whyare structural and resource parame-

ters treated asymmetrically? The reason is that ‘‘structural parameters’’ and

‘‘data limits’’ are defined in termsof the relation between resourceallocation and

performance. Thus, althoughit is possible to observe performancedirectly and to

infer resource allocation from performance on single and dual tasks of varying

priority, there is no way to ‘‘observe’’ structural limits other than by watching

the variation between performanceon specific task and resources allocated to

that task. One could conceive of a theory that did offer independentdefinitions of

structural capacities. (Indeed, some factor analytic theories of mental perfor-

mance could be framed in this way.) Such theories could then, conceivably, be

coordinated with models of resource allocation, but this has not yet been done.

In our own experimental work, which has beencarried outstrictly within the

confines of the resource-allocation model, our interest is in predicting primary

task performance in the hard condition, variable p,(2). As Fig. 5.8 shows,

whenever performanceis resource limited, one must knowthe level of resource

allocation to a task before predicting performance, even if structural capacity is

already known. However,as the figure also shows, it is sometimes necessary to

know both resource allocation and structural capacity before a prediction of task

performance can be made. Stating this in the information-theoretic notation,

information that alters the probability that e,; = c, p(e, = c), will transmit

information aboutthe value of the target variable. Information that changes p(e,

= a) and p(e, = b) relative to each other, but leaves unchangedthe probability

that the value is either a or b, will not influence the accuracy of a prediction.

The results just given generalize to the prediction of performance in any

resource-limited situation. Inasmuch as information transmission is defined by a

statistical relationship rather than by aninterpretation of causality, prediction is

possible in both directions. (The accuracy of prediction may vary.) This may also
be seen by examining Fig. 5.8. If performance wereto be observedat point p*,

then resource capacity would haveto be either at point R* or R**. The results
also apply to residual uncertainties. Suppose that by utilizing one set of observa-

tions one obtained an imperfect estimate of the e,s and the R value. The reason-

ing just given could be applied to an analysis of residual variation in the unob-
servables, after allowance had been madefor the reduction in uncertainty due to
the initial observations.

The next step is to apply the method of analysis to the easy-to-hard prediction.

This is done by showing that knowledge of secondary task performance in the

easy primary (1+) condition provides information about an individual’s
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resource-capacity level, R. This information is required for complete prediction
of performance on the primary task in the hard primary (2) condition. Fur-
thermore, the information neededis available only by analysis of secondary task
performance in the easy primary condition. Therefore, secondary task perfor-
mancein the 1+ condition [p.(1+)] can be shownto provide a unique source of

information about performancein the hard primary condition [p,(2)].

Considerfirst the source of the statistical relation between performance on the
primary task in the easy and hard conditions without any secondary task present

[variables p,(1) and p,(2)]. Figure 5.7 and Table 5.1 show that this relation is

due to the joint dependence of the variables on e,, the primary task structural
variable. The performance-resource function establishes a many:one mapping
from e,(1) to p,(1). Hence,

Tle,, piCl)] = Alpi] + A(e,) — H(py, e1)

= Alp,(1)] + A(e,) — [A(e,) + A(p,(1) | e,)). 5.46

Because p,(1) is data limited, as H[p,(1) | e,] = 0, Equation 5.46 reducesto:

Tle,, pil)] = Alp,()]. 5.47

Thus, individual variation in observable primary task performance in the easy-

alone condition can be used to gain information about individual differences in

the primary task structural parameter, e,. Whether or not this information will

aid in determining primary task performance when the task becomes harder

depends onthe role of resource capacity in establishing primary task performance

in the hard (2) condition. Information about e, may help in prediction, and our

intuitions are that it usually will. But, as was shown in discussing Equations 5.44

and 5.45, structural information must be supplemented by information about

resource capacity.

A similar argument applies to the prediction of the target variable, hard

primary task performance, from performance on the secondarytask alone, vari-

able p.(O). Here the prediction involves two steps. Given observed performance,

the secondary task structural parameter, e,, can be estimated. If T(e,, e2) is not

zero (and the assumptions of the model permit this), then prediction of e, is

possible, indirectly, through e,. Again, our intuitions are that such information

will assist in predicting the target variable, but the model does not demand that

this be so.

The foregoing considerations show that primary task performance in a hard

condition cannotbe predicted completely either from knowledge of primary task

performance alone, in an easy condition, or from knowledge of secondary task

performancealone. The reasonis that neither of these measures provides informa-

tion about resource capacity, R, and such information is needed in predicting

resource-limited performance. Some relevant information about R can be ob-

tained, however, by considering secondary task performance done in the pres-

ence of the easy primary task, variable p.(1+). From Table 5.1, p.,(1+) is a

function of the secondary task structural paramater, e,, the individual’s resource
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capacity, R, and the level of resources used on the primarytask in orderto bring

its level of performance up to the data limit, r*(1+). The variable rj (1+),

however,is itself a function of e,. Thus, the performance-resource function for

the secondary task in the dual condition can be written:

pit) = f§ (R | e) 5.48

where

e= (e,, €,). 5.49

The information shared by the observable performance, p.(1+), and the theoret-

ical variable R, can be expressed as:

T[p.(1+), R| e] = H(R). 5.50

The equality is justified because resource capacity has been defined to be inde-

pendentof structural capacity (i.e., independent of information associated with

e). Equation 5.50 does not imply that R be perfectly predictable from knowledge

of secondary task performancein the dual task condition, but it does meanthat by

observing secondary task performance one can improve one’s guess concerning

the value of R (see the analogousillustration associated with Fig. 5.8). As

improving one’s prediction of R will always help in predicting the target vari-

able, the model demandsthat there be an association between the target, p,(2),

and p,(1+). This association will be independent of any association dueto joint

statistical relations between these variables and the other observables.

The information-theoretic analysis can be summarized in a form that approx-

imates conventionalstatistical analysis. Two variables are said to be associatedif

there is a Statistically reliable correlation between the first variable, y, and a

prediction function of the second variable, ¥ = g(x). The foregoing arguments

show that there ‘“‘may exist’’ two functions that associate the target variable,
primary task performance in the hard-alone condition [p,(2)] with primary task
performance in the easy-alone condition [p,(1)] and secondary task performance
in the secondary task alone condition [p.(0)]. Call these functions g,[p,(1)] and

8[p2(0)]. There must exist a function gy[p.(1+)] that associates secondary task

performancein the dual task condition with the target variable. Furthermore, this
association is at least partially independent of the two previous and possibly
nonexistent functions.

Approximation by Linear Polynomials

If the prediction functions gy, g,, and g. were known,one could simply contrast
the predicted and obtained values. This would providea strong test of the model.
The problem is that there is no wayto identify the prediction functions unless a
task-specific model of response production is also stated. Furthermore, the
strong test of the resource-competition model would also be test of the as-
sociated response-production models.
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Fortunately, there is a way to construct a test of the resource-competition

model alone. This test makes use of the fact that the information-theoretic
analysis has shown what predictor functions must exist, even though it has not

shown whatthey are. Our approach hasbeento find arbitrary (and not psycholog-
ically interpretable) approximations to each g function. These are constructed by
using the fact that if x and y are arbitrary real variables and y is a single valued
function y = g(x) of x, then g may be approximated to any desired level of

accuracy by the linear polynomial function

(xX) = Dhan GX" 5.51

with suitably chosen K and {a,}. At the extreme, if one has N data points (x;, y;)

and if x; = x; implies that y; = y,, then the relation between x and in this data

set can be stated exactly by Equation 5.51, with K =< N — 1. (If the equality

condition is not met, the problem may be reformulated by replacing the various

ys at a given x value by their average. Fluctuation about this point is thus

assumed to be due to variation in y not associated with x.)

In practice, K would not be allowed to be as high as N - 1, as the resulting

{a,} would capitalize on chance fluctuations in the data. Limits on K are appro-

priate. One limit is simply intuition: It is hard to imagine reasonable psychologi-

cal functions that would require approximationsusing terms higher than K = 5.

In practice, we have used 6 and 10 as limits on K (see Tukey, 1977, for a

discussion of the introduction of such arbitrary assumptions). A second limit is

established by the reliability of the data. If the reliability of the predictor is only

r, there is little point in choosing K to be so large that the correlation between y

and g(x) exceeds r.

The following method was used. Given two observables, x and y, with y to be

predicted using a possibly nonlinear function of x, we calculated the’ multiple

regression of y on the variables x, = x”, for v = 1... K, where K is either an

arbitrarily established limit or the value of v at which the multiple regressionfirst

exceedsthe reliability imposed by the data. Predictor variables were entered in

order of ascending vs. Any regression weight a, not reliably different from zero

was set to zero. The .O1 criterion of reliability was adopted, but it was not

followed slavishly. That is, if a significance level of .02 or .03 was found, we

experimented with regression equations that did or did not use the variable.

Multiple regressions were calculated using only the reliable relations. At each

step, the change between the multiple regression levels at the current and previ-

ous value of K was examined. If there was no large change, the process was

terminated, and the resulting function was used as an approximationofg. If there

was a change, we experimented with various combinationsof predictor variables

to determine whether or not we had uncovered a suppressor variable. (We did

uncover one case of ‘‘classical suppression’’ in one of our analyses. The

mathematical basis is described by Cohen & Cohen, 1975). If suppressor var-

iables were discovered, they were included in the equation.
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The linear polynomial approximation procedure may involve substantial
capitalization on chancefluctuations in the data. Therefore, it was used only for a
large secondary task study involving 81 subjects. To deal with smaller studies,
we applied the much morearbitrary criterion of dealing only with linear relations
(i.e., K=1) and using conventional correlational analyses. The resource-
competition model provides some justification for doing so in dealing with a
relation between observables that is dependent on resource capacity (R). By the
definition of a performance-resource function, performanceis always an increas-
ing function of R in resource-limited situations. Hence, there should always be a
positive linear term in the function relating two observables to R. If the relation-
ship between observables is traced through oneofthe structural parameters, ¢, or
é», a linear analysis introduces an additional assumption. This assumptionis that
the task structural parameter is unidimensional andthatthere is the sameordinal
relationship betweenthestructural variable and both the observable performance
variables. This assumption does not seem to be unreasonable andis not required
in the nonlinear analysis.

The use ofa linear analysis would perhapsbe leastjustified in examining the
independenceofpredictions of the target variable based on different predictors.
Supposethat there is some predictability in the y variable associated with a linear
function of x (as in conventionalcorrelational analysis) andthatthere is a further
componentof y that can be predicted by a linear analysis using a second predic-
tor, z. Itis possible that the additional component, which appearsto be predicta-
ble only from z, might be predictable by a nonlinear association between x and
y. Although this may seem to be an unlikely possibility in practice, there is
nothing in either the resource-competition model or in the mathematics of ap-
proximation that guards against such a spuriousresult.

In summary, the technique of approximation of predictor functions by linear
polynomial analysis provides a justifiable way of examining the implications of
the resource-competition model. The approximation technique, however, re-
quires precise data that can be obtainedonly in a large experiment. Conventional
linear analysis can be justified in some cases, butit may suppress relationships
that could cause one to question the model. In practice, a linear analysis was
applied to smaller experiments, and a nonlinear analysis to very similar larger
studies. Fortunately, the results of the two analyses were consistent.

EXPERIMENTAL RESULTS

The resource-competition model has been used to reanalyze several experiments
reportedin a series of studies of dual task performance (Lansman & Hunt, 1980).
All of the experiments used the easy-to-hard paradigm in which performance on a
difficult primary task, done alone, was predicted from various combinations of
primary and secondary task performance measures. A linear analysis of two
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smaller experiments involving about 50 subjects each is reported first, and then a

nonlinear analysis of a larger study involving 81 subjects.

The first two experiments used a verbal short-term memory task as the pri-

mary task. The sequence of events observed bythe subject is shownin Table 5.2.

First, several letter-digit pairs were presented to establish an initial set of paired

associates to be retained in memory. Each subsequenttrial contained a test phase

and a study phase. During the test phase, a letter was presented with a question

mark, and the subject attempted to recall the digit most recently paired with that

letter. In the study phase, the sameletter would be paired with a new digit. The

difficulty of this task was manipulated by varying the numberofletter-digit pairs

involved.

This task is generally referred to as a continuouspaired associates task. The

present form was developed by Atkinson and Shiffrin (1968), who usedit to test

their buffer model of short-term memory. A similar task was used by Yntema and

Meuser (1962) someyears earlier. Performanceonthe task has been shownto be

related to scores on tests of scholastic aptitude (Huntet al., 1973) and to the

performance of computer programmers (Love, 1977).

A probe reaction-time task was used as a secondary task. In dual task condi-

tions, a probe was presented during the study phase of 75% of the trials. In one

experiment, the probe signal wasa setof asterisks shown immediately above the

letter-digit pair. In the other, the probe wasa tone presented through headphones.

Subjects respondedto the asterisks by pressing a key; they respondedto the tone

by uttering the syllable bop into a microphone. Paired associate and probe tasks

never required a response during the sameinterval.

If paired associate and probe tasks compete for resources, then performance

on the secondary task should decrease as the difficulty of the primary task is

increased. Figure 5.9 shows probereaction time as a function of the difficulty of

TABLE5.2

Sequence of Events for the Paired Associate Task

nt

Event Display Duration

I

Sequential presentation of initial pairs. A=7 3 sec

B= 3 3 sec

Question. The correct answeris 3. B=? Subject paced.

Rehearsal interval. Letter just queried is B=4 3 sec

paired with a new number.

Probe. A probe may occur 500, 1000, or (****) >robe is presented until subject responds

1500 msecafter presentation of a new B=4 for a maximum of 1500 msec.

pair.

Question. The correct answeris 7. A=? Question remains on screen until subject

responds.

Rehearsal interval. Letter just queried is A= 5 3 sec

paired with a new number.
e

e
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FIG. 5.9. Mean probe RT for the visual-manual and auditory-vocal secondary
tasks as a function of memory load in the paired associate primary task.

the concurrent memory task. The zero memory-load condition represents the
probe task done alone. Probe RT increased sharply from the control to the dual
task conditions and also increased with the numberof paired associates to be
rehearsed. Figure 5.10 shows performance on the paired associate task as a
function of the numberof pairs to be maintained in memory and of the presence
and type of probe task. The presence of either type of probe task caused a slight
but significant drop in paired associate recall. This pattern of interference be-
tween tasks is typical of that found in many experiments.

If our model of individual differences is correct, then we would expect per-
formance on easy and hard versions of the primary task to be correlated because
they are both influenced by e,, the structural parameter for the primary task.
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FIG. 5.10. Proportion of paired associate items correctly recalled in single and

dual task conditions as a function of memory load.

TABLE 5.3

Correlations Between the Target Variable and Three Predictor Variables

in the Paired Associate Task, Experiments 1 and 22

 

First Order Correlations Partial Correlations

Predictor Variable Predictor Variable: Covariate

polit) pe2CUt) p(t)

PiG) p20) pet) tpi) pe) = pi), p2()

Experiment1:

Paired associates with 52 — .05 — .40 — .32 —.44 — .36

visual probe, manual

response

Experiment2:

 

Paired associates with 28 — 37 — .39 — 37 — 28 —.28

auditory probe, vocal

response

p.(1) = Accuracy in the easy paired associate task done alone.

p»(0O) = RTin the probe task done alone.

p»(1+) = RTin the probe task during the easy paired associate task.
ET

“ Correlations greater than .27 are significant at the .05 level.

YAN
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Performance on the hard primary may also bepredicted by RT in the secondary
task done alone due to a correlation between e, and e,. However, RT to the

probe in the dual task condition should improve prediction of accuracy on the
hard primary task because RT in the dual task condition is influenced by resource

capacity, R, as well as by ey.

Table 5.3 summarizesthe linear correlations obtained in the two experiments.

Of greatest interest are the partial correlations between accuracy on the hard

primary task (the target variable in our theoretical analysis) and probe RTin the
dual task condition. The variable ‘‘held constant’’ by the partial correlation
techniqueis either accuracy in the easy primary task done alone, probe RTin the

secondary task done alone, or both of these. The partial correlations are shown in

the three right-hand columnsofthe table. In each case, the correlation is reliably
different from zero. Thus, probe RT in the dual task condition did convey
information about the target variable, even after the information associated with
the two single task variables was removedstatistically.

 

Event Display Duration

 

Standard pattern

(Probe could occur

500, l|O00, or |500 3 sec

msec after onset of

standard pattern.

 

Mask. | sec

 

Test pattern. Subject

responds as to whether Test pattern remains

test pattern is the on screen until the

same or different from subject responds.

the standard.

 

FIG. 5.11. Sequence of events in the spatial memory primary task.
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A third experiment involved 81 subjects, selected from a wide adult age range

in order to maximize individual differences. Thefirst part of this experiment was

essentially a replication of the previous work. The primary task was the continu-

ous paired associates task, and the secondary task involved manual response to

an auditory probe. The second part of the experiment involved a new primary

task. Subjects were shown a random pattern of plus (+) signs on a computer

display screen. This standard pattern was followed by a mask and then by a

pattern of plus signs that waseither identical to the standard or differed from it by

the movementof a single plus. The subject’s task was to indicate whether the

second pattern was identical to or different from the standard. In the easy version

of this task, patterns were composedof four plus signs in a three-by-three matrix.

In the hard version, there were ten plus signs in a seven-by-seven matrix. As in

the case of the paired associates task, probes were presented during the study

phase of 75% of the trials. The exact sequence of events is shown in Fig. 5.11.

Table 5.4 shows data from the paired associates task. Presented are correla-

tions of the target variable and performance onthe hard paired associates task,

with linear and nonlinear functions of several predictor variables. Of particular

interest is the correlation between the target variable and performance on the

secondary task in the dual condition, after the effects of the other two predictors

have been held constantby partial correlation. This correlation is reliably greater

than zero in both the linear and nonlinear analyses.

A glanceat the table showsthat there are only slight differences between the

linear and nonlinear analyses. These differences would not change our conclu-

sions in any way. This result strengthens our confidence in the linear analyses of

TABLE 5.4

Correlations Between the Target Variable and Linear and Nonlinear Functions

of Three Predictor Variables in the Paired Associate Task, Experiment 3°
a

First Order Correlations Partial Correlations

Predictor Variable Predictor Variable: Covariate

p(t) p2Ut) p»(it+)

PiQ) p»(0) p(t) > pi) > p»(0) : pi (1), p»(0)
a

Correlations with the 57 — 21 — 49 — 30 — 47 — 36

variable itself

Correlations with a .60 — 21 — 49 — 32 — 47 — 3]

nonlinear function of

the variable
a

p,(1) = Accuracy in the easy paired associate task done alone.

p»(O) = RTin the probe task donealone.

p»(1+) = RTin the probe task during the easy paired associate task.

“ Correlations greater than .22 are significant at the .05 level.
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the smaller experiments. Visual inspection of the form of the nonlinear analyses
indicates that they all have strong linear components and that the nonlinearities
are usually introduced to modulate extreme effects (e.g., to correct for exces-
sively pessimistic predictions of recall that are associated with extremely long
RTs).

A rather different picture emerged from examination of the data from the
spatial memory task. Two observations led us to suspect that even the difficult
version of this task wasnot resource limited. First, although the primary task did

650

600

950

900

£ o
n O

£ Oo O

350 M
e
a
n

P
r
o
b
e
R
T

(
m
s
e
c
)

 Paired Associate Primary
300 <

———-— Spatial Memory Primary

fy.
Control Easy Hard

(No Primary)

Primary Task Difficulty

FIG. 5.12. Mean probe RT duringpaired associate and spatial memory primary
tasks as a function of primary task difficulty.
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interfere with the secondary, the effect was much smaller than in the experiments

using the paired associate primary task. Figure 5.12 comparesthe effects of the

spatial memory and paired associate tasks on probe RT. The second observation

wasthat subjects reported quite different strategies in attacking the two tasks.

The paired associates task was almost always attacked by concentrated rehearsal

of the current pairs. No such rehearsal strategy is available for the spatial mem-

ory task. Instead, subjects reported that a passive approach of simply looking at

the standard patterns was mosteffective. If active rehearsal strategies are ineffec-

tive in the spatial memory task, then we would expect data rather than resource

limitations to be important in determining performance on that task.

Table 5.5 presents the linear and nonlinear correlations for the spatial memory

task. Consider first the linear analysis. No reliable partial correlation remains

between RT in the dual task condition and accuracy in the hard spatial memory

task, after allowing for individual variability in single task conditions. The same

holds true in the nonlinear analysis. Although the nonlinear analysis is not

identical to the linear analysis (because of the change in correlation between the

target variable and performancein the probe alone condition), the partial correla-

tions measuring the predictability of the target from secondary task performance

in the dual condition remain low. In terms of the model, there does not seem to

be a path leading to the target variable via the resource latent variable (R). This

situation would arise if performance were data limited thoughoutlevels of diffi-

culty of the spatial memorytask.

TABLE5.5

Correlations Between the Target Variable and Linear and Nonlinear Functions

of Three Predictor Variables in the Spatial Memory Task“

 

First Order Correlations Partial Correlations

Predictor Variable Predictor Variable: Covariate

po(it+)  p.(t) p+)

Pid) p20) p2+) tpi): p20): pi), p2 (9)

 

Correlations with the 27 —.27 — 29 — 23 —.14 —.11

variable itself

Correlations with a 27 44 — 29 — 22 —.14 — 11

nonlinear function of

the variable

 

p,(1) = Accuracy in the easy paired associate task donealone.

p»(0) RT in the probe task done alone.

p»(1+) = RTin the probe task during the easy paired associate task.
ee

“Correlations greater than .22 are significant at the .05 level.
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CONCLUSIONS

One reason for studying individual differences in information processing is to
relate these differences to variation along other cognitive and noncognitive di-
mensions. This is the reason for studying information processing in people whose
intelligence test scores vary and for contrasting the verbal and spatial
information-processing abilities of men and women. A second reasonfor study-
ing information-processing ability is to generalize nomothetic models of cogni-
tion to the realm of individual differences. Such generalization both widens the
scope of the nomothetic models and providesa test of their validity (Underwood,
1975). The research reported here was directed toward the second, more theoret-

ical goal. Previously, models of competition for attentional resources have been
used to explain average performance of groups of individuals in a variety of
situations. By logical analysis, we have shownthat a resource-competition model
implies the existence of certain patterns of individual differences in single and
dual task performance. Our experimental studies demonstrate that the patterns do
exist.

These results have implications at several levels. The present studies of indi-
vidual differences in attention can be fit into the framework established by
previous theoretical studies of individual differences in information processing.
The idea that individual differences in attentional capacity partially determine
cognitive performance forces us to rethink our idea of what intelligence is. In
addition, the analytic techniques that have been introduced here may be applica-
ble in other studies of information-processing ability. These conceptual and
methodological points are discussed in the following subsections.

Attention, Individual Differences, and Intelligence

Muchrecent research on information-processing ability has dealt with individual
differences in memory. Examples include our own work on speed of access to
information in semantic memory (Hunt, 1978; Hunt, Davidson, & Lansman,
1980), Chiang and Atkinson’s (1976) study of short-term memory processes, and
Underwood, Boruch, and Malmi’s (1978) study of episodic memory. This em-
phasis on memoryis hardly surprising, given the prominent role that memory
plays in modern theories of cognition. But memory is certainly not the only
source of individual differences in cognition. Indeed, there is a substantial body
of literature on cognitive style stemming from the Gestalt view that thinking is
primarily a reflection of perceptual capacity.

Modern experimental psychologists focus on memory as a source of indi-
vidual differences because memory is central to their theory of cognition,
whereas Gestaltists focused on individual differences in perception because per-
ceptual processes were central to their cognitive theories. The two views are
complementary rather than mutually exclusive. In this chapter, we have related
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the study of individual differences to another conceptualization of the mind—a

conceptualization that emphasizesthe role of attention andattention allocation.

The basic premise of attentional resource theory is that performanceis limited

by the amountof attentional resources devotedto a task, in addition to any limits

imposed by task relevant processes and structures. This premise has been put

forward in the experimental literature by Moray (1967), Kahneman (1973),

Norman and Bobrow (1975), and others. In order to apply attentional resource

theory to the study of individual differences, we assignedall task-specific struc-

ture and process variables to a single category, which we referred to as “‘struc-

tural parameters.’’ We then madethe assumption that performanceis determined

by two factors: structural parameters and attentional sources. This assumption

was combined with a number of more specific assumptions concerning the condi-

tions under which performance is determined by structural parameters alone

(i.e., is data limited) or by both resources and structural parameters (1.e., 1s

resource limited). The easy-to-hard prediction was then derived: Performance on

a secondary task done concurrently with an easy version of a primary task should

predict performance on a harder version of the same primary task. The easy-to-

hard prediction was then verified.

This work is an example of a theory-oriented study of individual differences.

The performance measures used in the study were dictated by a particular model

of cognition rather than by usefulness in predicting performance in some applied

setting. The purpose wasnotto relate variation in attentional processesto varia-

tion along some other dimension, but rather to study the interrelationships be-

tween measures assumedtoreflect either structural parameters alone or structural

parameters and general resources.

Introducing the concept of attention to the study of individual differences

extends that study to include a rather different theoretical entity than those

incorporated in many models of cognition. These models often makethe distinc-

tion between structure and process (e.g., Atkinson & Shiffrin, 1968). The term

‘‘structure’’ generally refers to invariant information-processing mechanisms

that underlie thought. These mechanismsare often comparedto the circuits of a

digital computer. The term ‘‘process’’ refers to a sequence of actions in which

the structures are employed to produce somecognitive product. This is analogous

to a computer program rather than to circuit elements. The concept of ‘‘atten-

tion,’’ as used here, refers to neither a structure nor a process. Rather, attentionis

senn as an energy concept. There is an implied analogy to an electrical power

source.

How doesthe energy conceptfit into our thinking about thinking? The notion

would be of limited interest if its relevance were restricted to the paradigms

discussed here. Intuitively, though, it seems that many tasksare resourcelimited.

That is, they are performed at a point on the performance-resource function at

which an increase in resources would producean increase in performance. Given

that attentional capacity is an important limitation on individual performanceof
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cognitive tasks, whatis the relationship betweenattentional capacity and general

cognitive competence or ‘‘intelligence?”’

The concepts of intelligence and attention have previously been used in sepa-

rate contexts. Intelligence is seen as a relatively permanentcharacteristic of the

individual. Certainly we do not think of intelligence as changing from minute to

minute. Attention is seen as an allocatable resource that can be parceled out

according to the momentary demands of competing tasks. A person mayfail to

pay attention to the task at hand and, as a consequence, fail to act intelligently

even thoughretaining the quality of being intelligent. In this chapter, we have

argued that ‘‘total attentional resources’’ is a relatively constant individual

characteristic that influences performance in many situations. Howis this charac-

teristic related to intelligence?

According to the reasoning presented here, task performance dependsjointly

on specific abilities and attentional capacity. These two types of individual

characteristics must underlie the correlations between performance on various

cognitive measures. A possible pattern of relationships can be illustrated by

considering the performance-resource functions of several tasks. Expanding

somewhaton ourearlier notation, performance on a task (t) can be considered a

function f;(7; 5,, S:) of the resources assigned to the task (7), as modulated by the

structural parameters (s,, 5) of the performance-resource function. Consider two

additional tasks (t’ and t*) with performance-resource functions f;/(r; sz, 53) and

his(’> 54, S55). The relationship between observable performance on the three

tasks and the various unobservable structure and resource parameters are shown
in Fig. 5.13. All three resource-limited tasks are connected through their com-

mon dependence onattentional capacity, and tasks ¢ and ¢’ are further connected

by a commonstructural parameter.
Figure 5.13 bears an obvious resemblance to Spearman’s (1927) theory of

special and general intelligence. Indeed, Spearman himself suggested that g

might be thought of as ‘‘mental energy.’’ The view of attention presented here
amplifies on Spearman’s idea. According to this view, all resource-limited tasks

will be intercorrelated with one another. Similar tasks will share additional

variance because of their dependence on commonstructural parameters. If g can
indeed beidentified with attentional capacity, then it follows that tasks which
load highly on g are resource limited. Some evidence has been offered that the
Raven’s Progressive Matrices Test, usually considered an indicator of g, is in
fact resource limited (Hunt, 1980), but a good deal of further research is needed

to explore this suggestion. There is an additional means by which g andatten-
tional capacity could be linked. It could be that attentional capacity is necessary
during the acquisition of certain knowledge or skills but unimportant during the
measurementof these characteristics. For example, attentional capacity may be a
factor in acquiring vocabulary but may not be a factor when taking a vocabulary
test. If this were the case, we would expect a positive correlation between
knowledge tests, where performanceis not resource limited, and other tests, such
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A

FIG. 5.13. Relation between performance, structural, and resource variables.

as the Raven’s Progressive Matrices Test, where performance is resource lim-

ited.

The concept of attention may also be helpful in understanding a finding that

has been something of a puzzle to those who wish to relate conventional mea-

sures of intelligence to measures of information processing. In the typical

information-processing study, a theoretical model is used to interpret the rela-

tionship between performance in several experimental conditions. For example,

Clark and Chase’s (1972) model of sentence verification was based on reaction

times to different types of sentences: true versus false, positively worded versus

negatively worded, marked versus unmarked. According to their analysis, the

contrast between conditions measures the duration of specific information-

processing steps. In our terminology, such measures representstructural parame-
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ters because they measure structures that are used in some information-

processing tasks but not others. A byproduct of the analysis of contrasts in

performance over conditions is a parameter that measures the influence of any
variable that has an effect in all conditions of the experiment. (In practice, the
parameteris usually the intercept term in a linear regression equation.) Sternberg
(1977) has referred to such terms as ‘‘wastebasket parameters.’’ A frequent
finding is that the wastebasket parameteris as highly correlated with standardized
test scores as are parameters than can be identified with specific information-
processing steps. From the viewpoint of attentional resource theory, such a
correlation would be expected as long as both the experimental tasks and the
standardized tests were resource limited.

These arguments are concerned with the correlations between cognitive tasks
done singly rather than in combination. In fact, most psychometric research
concerns the ability to perform onetask at a time, and our conceptofintelligence
is generally related to maximum performance under suchsingle task conditions.
In many situations though, people are forced to handle several tasks at once. Is
there a distinct ability to divide attention between multiple tasks—anability that
is distinct from the ability to do the same tasks in isolation? The ability to do
several things at once has been discussed extensively in the applied literature
(Damos, 1978; Fleishman, 1965; Gabriel & Burrows, 1968; Jennings & Chiles,
1977; Ogden, Levine, & Eisner, 1979), where it is sometimes referred to as

‘‘time-sharing ability.’’ In spite of the intuitive appeal of the notion that there are
people who are good (or bad) at time-sharing activities, it has been difficult to
find experimental evidence for the existence of a general time-sharing factor
(Hawkinset al., 1979). Failure to find such a factor may result from the lack of

an appropriate model to guide the search.
Suppose that the ability to do several tasks at once depends primarily on

attentional capacity. What patterns of correlations would we expect to find be-
tween tasks done singly and in combination (single and dual tasks)? The answer
depends on whetherthe tasks to be studied are resource limited or data limited.
For simplicity, consider just two tasks to be done in both single and dual-task
conditions. If both tasks were resource limited when performed alone, then
performance in single and dual task conditions would be determined by both
attentional capacity andbythestructural parameters relevant to the tasks. Thus,
single and dual task performance should be highly correlated. Often, this pattern
of results has been obtained in the limited research that has been done on the
issue. Performance on tasks done singly predicts performance on the same tasks
when performed in combination, without any need to introduce a time-sharing
factor (Lansman, 1978; Poltrock et al., 1980).

Suppose, on the other hand, that performancein the single task condition is
data limited but that performance in the dual task condition is resource limited.
This would be the case if neither componenttask alone required the individual’s
total attentional capacity but the two tasks in combination exceeded attentional
capacity. In this situation, performance on the componenttasks alone would be
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determined by structural parameters, but performance in dual task situations

would be determined by structural parameters and attentional capacity. Perfor-

mance in the single task conditions would not predict performance in the dual
task conditions perfectly.

The second set of conditions was assumed to have been metin the current
experiments. Performance on both the secondary probe task and the easy primary

tasks was assumed to be data limited, whereas performance in the dual task

condition was assumedto be resource limited. Furthermore, the resource limita-

tion was assumedto bereflected primarily in the secondary (probe) task because

subjects were instructed to devote all necessary attention to the primary task.

According to this reasoning, probe RT in the single task condition should not

predict probe RT in the dual task condition because attentional capacity influ-

enced the latter but not the former. This is a reasonably strong prediction because

the probe task was quite reliable within conditions. (The reliability of the probe

task ranged from .76 to .99 in the various conditions.) As predicted, the correla-

tion between probe RT in single and dual task conditions was far lower than the

reliabilities of the measures. (The correlations ranged from .40 to .61).

This discussion of individual differences in attentional capacity has assumed a

single, completely general attentional resource. But this assumption has been

seriously questioned (Navon & Gopher, 1978; Wickens, 1978). It could well be

that our cognitive machinery requires a variety of mental fuels. Whether or not a

task is resource limited may depend on whatfuel is in short supply. The question

may be resolvable by systematic study of the extent to which different tasks

interfere with each other, as has been suggested by Wickens (1978), and study of

the correlations among various dual task measures.

Methodological Implications

The application of information-processing models to the study of individual

differences has been hampered somewhat(although investigators have not been

deterred!) by a logical problem. The goal of the researchis to interpret individual

differences in performancein termsofthe variables of cognitive process models.

In most of these models, however, behavior is assumed to be only ordinally

related to theoretical variables. This raises a problem in interpreting results based

upon the analysis of product-momentcorrelations. From a strict measurement-

theory point of view, the only statistics that may be computed on ordinal mea-

surements are those that are invariant overall order-preserving transformations.

Suchstatistics are said to be formally meaningful for ordinally represented data

(Suppes & Zinnes, 1963). It is easy to show that the product-momentcorrelation

is not formally meaningful for ordinal data. Covariances may be similarly at-

tacked.

The measurementproblem is generally ignored in the traditional psychometric

approachto intelligence, and two arguments have been advancedfor using corre-

lations in spite of measurement problems. First, in spite of the logical case
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against correlational analysis, it does produce coherent results. Second, mea-

surementtheorists have not offered an alternative to correlational analysis (Nun-

nally, 1978). This second argumentis not simply a know-nothing position. A

serious argument can be made that the psychometric approach to intelligence

involves an inductive definition of theoretical as opposed to observed variables

and that, as a consequence, psychometric theoriesare basically descriptive rather

than deductive. Correlational analysis provides an economical description of the

data, and the measurement-theory argumentisirrelevant.

It is clear that the atheoretical approach to measurementis not appropriate if

models of individual differences are to be derived from information-processing

models of cognition. Information-processing models deal with the relationships

between unobservable theoretical variables. Tests of the models are only possible

to the extent that a relationship between unobservables and observablesis stated

as part of the model. In most cases the stated relationship is ordinality. In fact,

this is explicit in Norman and Bobrow’s (1975) analysis of dual task perfor-

mance. Norman and Bobrow quite carefully avoid assuming anything more than

an ordinal relationship between performance on a task and the amountofre-

sources committed to the task.

An analysis of information-processing models, including but not limited to

analyses of resource-competition models, may lead to the prediction of fairly

complex interactions between theoretical variables. The easy-to-hard prediction

is a good example. In order to test these predictions the power of correlational

analysis is needed. Therefore, we need some justification for correlational

analysis that does not depend on the assumption that the particular values of the

correlations are formally meaningful.

In this chapter, such a justification was provided by the use of the mathemati-

cal theory of information, which does not even depend on anordinalrelationship

between theoretical and observed variables. The axioms of a resource-

competition model were reworded into information-theoretic terms. This enabled

us to prove that the easy-to-hard prediction must hold for some unknownsetof

functions relating performance on the various observable variables to each other.

Extension of the analysis to the relation between twovariables, conditional upon

knowledge of the value of a third, resulted in a nonlinear analogue to partial

correlations.

Information-theory analysis could only be usedto assert that certain unknown

functions ‘‘must exist’’ (if the model is correct). In order to identify these

functions, we resorted to what might be considered a mathematical trick. We

made use of the fact that any function of a real-valued variable can be approxi-

mated by a linear polynomial in that variable. The easy-to-hard prediction could

thus be formulated in terms of relationships between linear polynomials in the

observed variables and tested using standard methods ofpartial correlation.

The combination of information theory and linear polynomial analysis pro-

duces two things:a list of reliably established associations between variables and

a list of the linear polynomial functions used to describe those associations. It is
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importantto distinguish between the empirically derived linear polynomials and
the theoretical functions they are presumed to describe. The two are not the
same, and it will require further elaboration of the theory (especially with respect
to performance measures on a specific task) before it would be appropriate to
interpret the relationships that we observed. To illustrate, in several of our
analyses we found that there was a linear relation between performances in
different pairs of resource-limited tasks. This does not mean that the relation
between the attentional resources allocated to each task was linear or that the
within-task performance-resource functions were linear. It does mean that any
more elaborate model of the performance-resource function for these tasks must
account for the observedlinear relationship.

The method of analysis that we have used does not depend on any assump-
tions that are specific to attentional resource theories. The analytic technique
should be widely applicable to studies in which individual differences in perfor-
manceare to be related to models of information processing in cognition.
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The Chronometry of
Intelligence

Arthur R. Jensen

Institute of Human Learning

University of California at Berkeley

A clearly formulated hypothesis, a well-designed experiment, and a generaliza-

ble conclusion of theoretical or practical importance are all products of much

analysis and cogitation. But what initiates such analysis and cogitationin thefirst

place? The answer calls for autobiographical retrospection, and so here, of

course, I can only speak for myself. By way of introduction, it might be useful to

try to discern what kindsof things get me going as an investigator. Someofthese

general reaction tendencies that seem to be recurrent throughout my career in

psychological research also quite likely account for my current fascination with

the connection betweenreaction time andintelligence, which is mainly whatthis

chapter is about.

In general, five things seem to arouse my research impulse. In no particular

order of importance, theyare:

1. In reading the psychological literature, if I repeatedly encounter what

seems to be a popular or commonly accepted belief, generalization, or theory,

which for some reason looks questionable to meorcries out to be debunked, I am

apt to go to work onit (provided thatits technical aspects as a research problem

fall more or less within what I perceive as my sphere of competenceoratleast a

compentence that I think I could acquire without an unfeasible expenditure of

time and effort). Certain topics in psychology are notably rich in this vein, and

the literature on intelligence may well be the richest. At least it is difficult for me

to think of any other major topic in psychology, as treated in general textbooks,

that presents what seem to me more potentially debunkable popular beliefs than

the topic of intelligence. Hence, the fact that my investigative tendency is

aroused by anything I perceive (for whatever reason) as an unfoundedbeliefis

255
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probably a factor in myattraction to intelligence as a research topic. It offers us
many unfoundedbut popular beliefs, and someof these apparently refuse to die
even in the face of decisively contradictory evidence. In such a case, one’s
research efforts must simply move on to more genuinely unsettled questions, in
the realization that there will always be some small carp of critics who will
forever cling to the belief that the earth is flat.

2. This is almost a corollary of the first point: I am aroused by findings or
phenomenathat would seem to contradict a commonbelief or explanation we had
regarded as too obvious to question. The contradictory fact can be a springboard
for investigations that may support a better scientific explanation. Any seemingly
contradictory phenomenon must, of course, also becritically examined to rule
out possible artifacts and to insureits replicability. If it stands up, we have a new
lead for investigation.

3. Another quality of a phenomenonthat enhancesits interest for me isits
being counterintuitive, surprising, or inexplicable in terms of any established
principles. Once such a a phenomenonattracts my attention, of course, the first
job is to establish its reality and makesureit is not just a fluke—an experimental
or statistical artifact. The researcher’s nightmare, it seems to me, is the risk of
Squandering resources on the investigation of some apparently interesting phe-
nomenonthat turns out to be merely somekind of artifact. Almost as bad but
even morelikely is the risk that the phenomenon, althoughreal, is so narrowly
specific to a particular laboratory procedure, measuring device, or sample so
unrepresentative of the general populationthatit is scientifically and theoretically
trivial. I seek evidence that a phenomenonisfairly ‘‘robust’’ before making any
strong research commitment, recognizing, however,that whatatfirst may appear
to be an ephemeral or unreliable phenomenon might be turned into a robust
phenomenon by improved measurements, procedures, or analytic techniques.

4. A psychological phenomenonthat can be measuredreliably or has poten-
tially quantifiable properties is thereby a more attractive subject for scientific
study. It is not necessarily a more important phenomenonthan onethat does not
lend itself so readily to quantification; but the study of measurable phenomena,I
believe, more surely and quickly yields objective knowledge. Similarly, I am
more closely drawn to a phenomenon whenit displays what appears to be a
simple, regular, or ‘‘lawful’’ relationship to some other variable or whenit
shows invariance over a wide range of conditions. (The well-known serial-
position effect in serial rote learning is a good example of a highly invariant
phenomenon.) Invariance usually signifies that the causal mechanisms are
robust, general, and probably more biologically wired in rather than experiential.
A phenomenon that showsessentially the same lawfulness and invariance in
different species of animals, including humans, is thereby made even more
attractive; this interspecies continuity of the phenomenon suggests that it is a
product of biological evolution, which I find much moreinteresting than any
predominantly cultural phenomenon. This preferance for biological rather than
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cultural phenomena is merely a personal idiosyncracy to which I attach no

general importance.

5. Psychology has many unsolved problems and unexplained phenomenathat

have been around for a very long time. There are basic, recurring questions.

Unsuccessful early attempts to understand a phenomenon maylead toits aban-

donmentas a topic of inquiry, but the basic questions that prompted investigation

in the first place remain unanswered. On the other hand, there are short-lived

fads in psychological research that distract from the enduring basic issues. Ac-

quaintance with the history of the major topics of psychology affords one a

perspective and context for appreciating a phenomenon.Overthe years, research

questions with little or no past history have seemed less and less interesting to

me. Too many PhD dissertations deal with questions that have no history and,

most likely, no future. A science cannot develop by a continual succession of

unanswered or half-answered questions about an ever increasing multitude of

phenomena. Hence, I am mostattractedto the still unresolved questions in those

topics that are strongly rooted in the history of our field. The nature ofintelli-

gence and the measurement of individual differences in intelligence are such

topics. There are many phenomenain this domain that evinceall the features of

attractiveness for investigation that I have indicated. In addition, the topic of

intelligence is commonly regarded as having great relevance to education and,

indeed, to society and the quality of life. This is a bonus, but not the intrinsic

attraction, from the standpoint of research.

DEFINITION OF INTELLIGENCE

It is a mistake to waste time arguing aboutthe definition ofintelligence, except to

makesure everyone understandsthat the term doesnot refer to a ‘‘thing.’’ Nearly

everyone understands its lexical meaning—intelligence would bea relatively

easy word in a vocabulary test, for example. Scientifically, intelligence is

perhaps best characterized at present as an unclear hypothetical construct (or

class of constructs) that has sprung from observations of individual differencesin

a class of behaviors called ‘‘abilities,’’ specifically ‘‘mental’’ abilities, meaning

that individual differences in performance are not mainly attributable to differ-

ences in sensory or motor functions per se. An ability is distinguished from other

types of behaviorbythefactthatit is performance that can essentially be quantified

in terms of a wholly objective or universally agreed upon standardof ‘‘goodness,”’

quite aside from any value judgment asto the moral, social, or cultural value of

the performance.

But I am content, for the time being, to let intelligence be a vague concept. In

that respect it is in quite good company in the history of science. As a

philosopher of science, H. A. Kramers (quoted in Elkana, 1974) has noted: *‘In

the world of human thought generally and in physical science particularly, the
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most fruitful concepts are those to whichit is impossible to attach a well-defined
meaning [p. 52].’’

Psychologists’ conceptions of intelligence are bound up with their methods of
measuring it. But rather than debate whether an IQ test, for example, really
measures intelligence, we should heed Miles’ (1957) advice: ‘‘The important
point is not whether what we measure can appropriately be labelled ‘intelli-
gence,’ but whether we have discovered something worth measuring. Andthis is
not a matter that can be settled by an appeal to whatis oris not the correct use of
the word ‘intelligent’ [p. 157].”’

NOTIONS ABOUT MEASURED INTELLIGENCE

Standardized intelligence tests, or so-called IQ tests, undoubtedly yield quite
highly reliable measurements or scores. What these scores represent, besides
themselves, can only be known throughtheir correlations with other variables
that are independentofthe test yielding the scores in question. It is well estab-
lished that IQ is substantially correlated with children’s scholastic performance
and with their eventual occupational status—facts that lend the IQits popularly
recognized importance. These socially important correlates of IQ, however,
provide very little psychological information about whatit is that the IQ tests
measure, a point on which prominent psychologists still express strongly differ-
ing notions.

Consider the dispute between Albee and Hebb appearing in a recentissue of
the American Psychologist. Albee (1980) states:

Hebb’s letter makes it clear that he believes in an underlying intelligence separate
from IQ test scores. He describes the IQ as an accuratereflection of this underlying
intelligence. This view is not shared by many experts in measurement, who view
the IQ test as a measureofprior learning of skills and knowledge, not as a measure
of some underlying native ability [p. 386].

Hebb’s and Albee’s viewsclearly reflect quite different notions about what our
present IQ tests measure; their dispute epitomizes two of the most opposing
viewpoints.

Oneof the aims of scientific research is to settle such arguments. This is done
best by subdividing the problem into its elemental units and formulating strong
hypotheses about each unit. Strong hypotheses can be refuted by evidence and
are therefore scientifically useful. Weak hypotheses do not compel strong con-
clusions, whatever the evidence shows. Strong hypotheses often seem more
extreme and less reasonable than weak hypotheses, but they are surely more
vulnerable to refutation, and that is their virtue. They permit us to reject empiri-

cally and decisively those elements of our notions that are false.
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From Albee’s previously quoted statement we find certain implicit hypotheses

about what IQ tests measure. These can be stated in a weak form, which may

permit anyoneto escape the implications or constraints of any empirical findings

and cling to a favored hypothesis. On the other hand, hypothesescanbestated in

a strong form, which risks compelling empirical refutation. For example:

Hypothesis 1: What do !Q Tests Measure?

Weak Form. The IQ test measures individual differences in prior learning of

skills and knowledge.

Strong Form. The IQ test measures individual differences only in prior

learning of skills and knowledge.

In its weak form the hypothesis seems too obviousortrivial even to arouse

one’s investigative impulse, at least that of anyone familiar with, say, the content

of the Stanford-Binet or Wechsler IQ tests. In contrast, the strong form of the

hypothesis invites curiosity and a search for contradictory evidence. Several lines

of evidence, including research on reaction time, clearly refute this hypothesis in

its strong form (as I showlater). If this strong hypothesis is one of the elements of

Albee’s (or anyoneelse’s) belief about IQ tests, they have the benefit of knowing

it is decisively refuted.

Hypothesis 2: Is 1Q Inherited?

Weak Form. TheIQ test is not a measure of some underlying nativeability.

Strong Form. When correctly estimated by appropriate methods of quantita-

tive genetics, the heritability of IQ in the general population is zero.

This hypothesis is overwhelmingly rejected by a perponderance of the evi-

dence, including the most recent studies of IQ heritability (Plomin & De Fries,

1980).

If we try to imagine doing a factor analysis of current notions about whatit is

that standard IQ tests measure, the ‘‘pure’’ factors might be described as follows:

1. IQ tests measure prior learned knowledge (e.g., vocabulary, general in-
formation).

2. IQ tests measure prior learned skills or strategies for solving certain
classes of problems (e.g., analogies, matrices, number-series completion,
block designs).

. IQ tests measure innate learning ability.
. IQ tests measure innate information-processing capacity.

. IQ tests measure motivation or willingness and effort to perform well ona
certain class oftests.
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Individual differences in IQ are viewed, in terms of each of these factors, as
being the result of inequalities of opportunity to learn the particular knowledge or
problem-solvingstrategies called for by the test (1 and 2) or inborn inequalities in
learning ability or in information-processing capacity (3 and 4) or motivation (5).

Although I have represented these views as ‘‘pure factors’’ in the entire
domain of notions about what IQ tests measure, they are more often found in
various combinations, with different degrees of importance attributed to each
factor.

One aim of research onintelligence at this stage is to determine, on the basis
of evidence, which of these views are correct and which are incorrect or, if a
numberof these factors contribute to IQ variance, whatis their relative impor-
tance? One would imagine that the relative importance of these factors would
differ to some extent from one IQ test (or subtest) to another. Someofthefactors
may be more importantin terms of the amountof variance accounted for in some
tests, whereas others might be more importantin terms of the numberofdifferent
tests to which they contribute variance. What are my own hunches concerning
these notions about what IQ tests measure?

Weall begin researching with some background of hunches aboutthe nature
of the phenomenonofinterest based on our impressions gained from previous
research. We carry on new researchessentially to produce evidence that will
confirm or disconfirm our hunches, andthis in turn gives rise to new hunches,
and so on. Whenthe confirming or disconfirming evidence is sufficiently rigor-
ous and solid at eachstep in this process, the result is cumulative, systematic
scientific knowledge—an increased understanding of the phenomenon. Myinter-
est in reaction time in relation to IQ can perhaps be best introduced in terms of
my hunchesaboutintelligence and aboutthe particular notions it may be possible
to confirm or disconfirm through studies of reaction time, which is now better
termed mental chronometry because the method involves considerably more than
just reaction time perse.

Some of my hunchesaboutintelligence concern:

I. IQ as Knowledge. I see items of knowledge or prior learned information
merely as one possible vehicle for the measurementofintelligence, which itself
is not the specific knowledge per se. If this is ture, it might be possible to
measure intelligence without requiring personsto recall past learned knowledge.
The amount of knowledge acquired in a given period of time with equal accessto
the experiences that convey the knowledge, however, may be monotonically
related to intelligence. Archimedes and Einstein undoubtedly possessed quite
different knowledge, but they may well have been equally intelligent.

2. IQ as Learned Cognitive Skills and Problem-Solving Strategies. These,
too, are merely reflections or indicators of intelligence, and their number and

efficiency are monotonically related to intelligence, given equal opportunity. I
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doubtthat the level of complex information processing that we ordinarily think of

as cognitive skills or strategies is innate or ‘‘wired’’ into the brain, like a

spider’s ability to construct a particular form of web. Rather, skills have to be

learned through certain experiences, but the ease of such learning and the com-

plexity of the strategies that can be learned and applied in a given amountof time

are directly related to intelligence. If true, it should be possible, at least in

principle, to measure individual differences in intelligence by meansthat do not

involve what we generally mean by an acquired skill or strategy.

3. IQ as Learning Ability. Some IQ tests undoubtedly use prior learned

knowledge and skills as a vehicle for the measurementofintelligence. Is intelli-

gence, therefore, the same as learning ability, and are individual differencesin

IQ mainly a reflection of differences in learning ability? I once thought this was

probable, but now I strongly doubt that individual differences in learning speed

or retention are the same as intelligence. The ‘‘purer’’ we make our learning

tasks and the less dependentthey are on reasoning, problem solving, or transfer

from prior learning, the less they correlate with IQ. Performance on laboratory

rote learning tasks is a surprisingly poor indicator of IQ. Some form of complex-

ity (not just difficulty) has to be added to the learning task to makeit correlate

substantially with IQ. It is also of interest that different species of animals that we

intuitively perceive as differing markedly in intelligence (e.g., chickens, dogs,

and chimpanzees) do not differ nearly as much in tests involving primarily

learning and memoryasin tests involving reasoning and problem solving or more

complex formsof relational learning. Learning and memoryper se seem to be a

poor paradigm for understanding intelligence.

The hypothesis that IQ tests measure only innate learning ability and the

products of prior learning (i.e., knowledge andstrategies) would be disconfirmed

if it could be shown that some kinds of preformance, which do not involve any

past or present learning at all, are correlated with IQ.

4. IO as Motivation, Effort, Willingness, Compliance, etc. Motivation, in

the sense of making a conscious, voluntary effort to perform well, does not seem

to be an important source of variance in IQ. There are paper-and-penciltests or

other performance tasks that do not superficially look very different from some

IQ tests, that can be shownto be sensitive to motivational factors by experimen-

tally varying motivational instructions and incentives, and that show highly

reliable individual differences in performance but show no correlation with IQ.

Differences in IQ are not the result of some people simply trying harder than

others. In fact, there is some indication that, at least under certain conditions,

low scorers try harder than high scorers. Ahern and Beatty (1979) measured the

degree of pupillary dilation as an indicator of effort and autonomic arousal when

subjects are presented with test problems and foundthat: (1) pupillary dilationis

directly related to level of problem difficulty (as indexed both by the objective
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complexity of the problem and the percentage of subjects giving the correct
answer); (2) subjects with higher psychometrically measuredintelligence show
less pupillary dilation to problemsat any given level of difficulty. (All subjects
were university students.) Ahern and Beatty (1979) conclude:

These results help to clarify the biological basis of psychometrically-defined intelli-
gence. They suggest that more intelligent individuals do not solve a tractable cog-
nitive problem by bringing increased activation, *‘mental energy’’ or ‘‘mental ef-
fort’’ to bear. On the contrary, these individuals show less task-induced activation
in solving a problem ofa given level of difficulty. This suggests that individuals
differing in intelligence mustalso differ in the efficiency of those brain processes
which mediate the particular cognitive task [p. 1292].

This strikes me as one of the mostinteresting and important findings in recent
research on mental ability. I wonder howit ties in with Bastendorf’s (1960)
finding that the galvanic skin response (palmer conductance level), which is
another indicator of autonomic arousal, is positively correlated with both age and
Wechsler IQs in school children.

5. Intelligence as a Product of Biological Evolution. Several lines of evi-
dence lead me to believethat intelligence is a productof biological evolution: (1)
differences between various animal species in what we generally think of as
intelligence; (2) certain similarities and continuities between animal and human
intelligence; (3) the interspecies relationship between brain size (particularly the
cerebral cortex) and apparentintelligence; (4) the marked increasein brain size in
the course of human evolution; and (5) the dependenceofintellectual functions
on the anatomic intactness and physiologicalstate of the brain. If intelligence is a
product of biological evolution, it must depend on certain physical properties of
the brain, the development of which is, to a large extent, conditioned by
polygenetic factors. The question, then, is to what extent do scores on IQ tests
reflect this ‘biological intelligence’? The evidence on the heritability of IQ
scores suggests that genetic factors contribute to individual differences. But
another, more direct, way to determine if IQ scores reflect biological intelli-
gence, rather than cultural acquisition, would be to look for correlations between
IQ and direct measurements of anatomical properties or physiological functions
of the brain. As Miles (1957), in a critical discussion of the the factor analysis of

ability tests, aptly observed:

We can be most sure of progress when links are found, not between one test and
another, but between a person’s test behavior and the behavior of genes and neurones.
Genes and neurones, beit noted, are parts of the body; and, to put the matterepi-
grammatically, we could perhaps say that factors have a real existence, not when
they are ‘‘factors of the mind’’ (whatever that means) but when they are factors of
the body [p. 165].



6. THE CHRONOMETRYOF INTELLIGENCE 263

Quantitative genetic analyses, of course, can prove that there is a biological

substrate of individual differences in IQ, but more direct methodsof study, at the

interface of brain and behavior, are required for us to understand the mechanisms

and processes that constitute this substrate. At present, there are two available

techniques that leave the nervous system wholly intact and do not interfere in the

least with its normal functioning, yet afford a means of analyzing the processes

underlying intelligence. They are evoked potentials and mental chronometry.

Both techniques yield measurements that are significantly related to IQ.

THE ROLE OF FACTOR ANALYSIS

The block designs and vocabulary subtests of the Wechsler Adult Intelligence

Scale (WAIS) are correlated about .60 (corrected for attenuation) among indi-

viduals 18- to 19-years of age. These twotests look as different from each other

in terms of content and task requirements as one could imagine. A fine-grained

‘task analysis’’ of each test wouldreveallittle, if anything, in common between

them. Therelatively high correlation between thesetests, therefore, strikes me as

a highly arresting phenomenon.Asinteresting as the causes of individual dif-

ferences on either task in itself mightbe, of muchgreater interest, I think, is the

correlation between them. It epitomizes the central problem—the fundamental

phenomenon—fora theory of ability. An adequate theory of intelligence must

explain not only why people differ from each other in performance on the block

designs test or on vocabulary (or any other mental test), but why there is a

substantial correlation between individual differences on such widely different

tests.

If the correlation between any twotests is of greater interest than the variance

on either test alone, then it seems that the common factor among a large number

of diverse tests should be of even greater interest—not moretractable, to be sure,

but theoretically more challenging. Hence the importance of Spearman’s g (the

generalfactor of mental ability) for psychological research. I am not referring to

any particular theory Spearman may have suggested about g but merely to the

empirical observation that g best summarizes what Thurstone termed ‘‘positive

manifold’’—the fact that all tests of ability, however superficially diverse, are

positively intercorrelated. Any particular test might be of greater interest than

someothertest for a variety of practical reasons or becauseit is more amenable to

experimental analysis. But it is really the fact that diverse tests are intercorre-

lated, and therefore g loaded, which is the central phenomenonthat a theory of

intelligence must attempt to explain.

Factor analysis, then, is best viewed not as a theory in itself, nor as an

explanation of anything, but as a means for mostclearly highlighting phenomena

worthy of scientific investigation and theoretical explanation. These phenomena
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are the general factor (g) and the major group factors identified by common
factor analysis.

Becausevirtually all tests share in g, I give research priority to g. Also, the g
factor comes closest to common-sense notions of intelligence. I consider g a
“working definition’’ of intelligence. By working definition I simply meana set
of general operations by means of which different investigators can arrive at
similar measurementsand identify the same phenomenonfor investigation, more
or less regardless of the specific tests they employ, so long as the tests are
diverse, numerous, and yield

a

largefirst principal factor. The g factor loosely
fulfills these purposes. It permits identification of the most g-loadedtests, which
can be used as reference variables in the analyses of newly devised tasks. By
their simplicity or amenability to experimental manipulation and fine-grained
analysis of performance, these tests may be more revealing of the nature of g
than the majority of highly g loaded standardtests.

In addition, factor analysis (or at least reference tests that factor analysis has
shown to be highly g loaded) provides a kind of insurance to the researcher. It
insures that one is not wasting efforts on a highly specific, nongeneralizable
phenomenonwithlittle or no importance in the practical world. Thetests ortest
items that most clearly discriminate between criterion groups of low and high
intelligence selected by common-sense judgments in which there is virtually
universal agreementare the very tests or items that are also the most g loaded.

It is an interesting fact, too, that a test’s g loadingis related to its subjectively
judged ‘‘complexity,’’ whatever that term may mean to naive observers asked to
rate the complexity of test items. I have tried this with groups of students who
have never heard of g or factor analysis. When asked to rate test items or
homogeneoussubtests (ranging in item difficulty as indexed by percentage pass-
ing) on ‘‘complexity’’ (the meaning of whichis left to the raters), these students
made ratings that showed considerable correspondence between the rated com-
plexity of subtests and their g loading ascertained by factor analysis. For exam-
ple, the Number Series Completiontest (e. g., 1,4, 3, 6, 5, —)was alwaysrated
as more complex than the Memory for Numberstest(recalling a string of num-
bers after one presentation), and the g loadings of these two tests (when factor
analyzed among 18 other diverse tests) were .79 and .46, respectively. We have
found the same direct relationship of g loadings to complexity whentests have
been specially constructed to differ objectively in complexity.

Anothertelling point is that g is related to common-sense notions of ‘‘think-
ing.’’ That is, tests’ g loadings seem to reflect the degree to which people judge
that the task requires ‘‘thought’’ or ‘‘mental effort.’’ This coincides with the
finding that very small g loadings are seen ontests of sensory and motorabilities
or rote learning and memory. Even within any one of these domains, thefirst
principal factor of a battery of varied tests is remarkably meager when compared
to the first principal factor of a comparably sized battery of more ‘‘cognitive’’
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tests, even though these may appear extremely diverse in the kinds of knowledge

and skills they require.

Choice of Factor Model

If our interest is in the general factor of a collection of diverse tests, orthogonal

rotation of factors is immediately ruled out because orthogonally rotated factors

necessarily hide the general factor. Thisstill leaves us with a choice among other

factor models that allow the extraction of g. But, at least theoretically, these

could result in gs that might vary from one method to another. So we are faced

with the practical question of which of the available methodsyields the bestg.

This is a question to which I have not been able to find a clear-cut or generally

agreed upon answer amongleading experts in factor analysis. The question calls

for a thorough discussion and resolution, if possible, by the experts. Meanwhile,

I can only make some pragmatic suggestions based on my own experience in

applying different factor models to a variety of test data.

There are basically two aspects of the problem. First, there is the purely

mathematicalandstatistical question of the robustness, reliability , and invariance

of the extracted g involving questions such as:

1. How stableis the g for a given battery of tests across different samples (of

a given N) from the same population, or across samples from different

populations?

2. More important, how stable or invariant is the g for different batteries of

tests (given to the same groupsof subjects), and how muchis the degree of

invariance of g at the mercyof the particular tests in the battery?

These questions could be answered, in principle, without knowing anythingatall

about the specific tests that were subjected to analysis, aside from the fact that

they are all truly ability tests. If they are, the intercorrelations will show positive

manifold, which is the phenomenonof primary interest and which the g factor1s

intended to represent.

The second aspect of the problem concerns the theoretical or psychological

interpretation of the extracted g. From countless previous factor analyses—from

the time of Spearman upto the present day—we have gained someideas about

the psychological nature of g and about the observable features of test items that

are typically the most g loaded. Sometests, such as Raven’s Progressive Ma-

trices, have become regarded as reference or marker tests for g because of their

fairly consistent record of high g loadings when factor analyzed among many

different test batteries. Thus, the question is: Which factor method, when applied

to different test batteries and different populations, most consistently accentuates

the g loadings of these reference tests that best typify our psychological notions

of g?
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It boils down to a choice between the following methods for representing g:
(1) the first principal component; (2) the unrotated first principal factor (common
factor analysis, iterated to get conforming communalities); or (3) a higher-order
g (first principal factor) extracted from the intercorrelations among the obliquely
rotated first-order factors. How dothese alternatives compareas indices of g in
terms of the criteria described in the preceding paragraphs?

The first principal component (FPC)andthefirst principal factor (FPF) gener-
ally differ very little in the relative magnitudes oftheir loadings on the various
tests included in a given analysis; the Pearson correlation between the loadings
is, in my experience, almost never below .95 andis typically about .97 or .98.
(The Burt-Tucker congruence coefficient is even higher.) Thus, the FPC and
FPFrarely lead to different conclusions when they are used merely to identify the
most g loaded tests or to rank order the tests on g. Beyond this use, there are
advantages and disadvantages of each model, which generally weigh in favor of
the FPF. The FPCis slightly larger, accounting for more variance thanis ac-
counted for by the FPF, becauseit includes somefraction of each test’s ‘‘unique-
ness’’ (i.e., variance not shared by other tests in the battery) as a result of
beginning the analysis with unities in the principal diagonal. This fraction of
unique variance in unwanted if weare trying to get as ‘‘clean’’ a g as possible.
The FPF,in which the analysis begins with estimated communalities (the propor-
tion of the total variance that a given test has in commonwithall the other tests)
in the principal diagonal, is theoretically a ‘‘cleaner’’ g factor. Differences
between test’s g loadings on the FPF invariably appear more accentuated and
clean-cut than on the FPC. However, more interesting psychologically is that,
even thoughit is not inevitable mathematically, it turns out, in fact, that the most
and the least ‘‘g-ish’’ tests in the psychological, Spearmanian sense are the very
tests on which the highest and lowest loadings on the FPF stand out most sharply,
more so than on the FPC. Whenoneor twoofthe reputedly best g referencetests
are included in a battery, they more often have the highest loadings on the FPF,
not on the FPC. Therefore, I believe the FPF better represents Spearman’s g.
Those advantages of the FPF outweigh the one slight advantage that the FPC
possesses when the subject sample is not very large. The FPC appears less
Sensitive to sampling fluctuations and population differences because the FPF,
unlike the FPC, depends on the estimated communalities, which are influenced
by the numberof factors extracted and are subject to sampling error.

I am most impressed, however, by the almost incredible robustnessor stabil-
ity of either the FPF or FPCacross very widely differing samples taking the same
battery of tests and across quite different batteries of tests given to the same
sample. The g factor scores (based on the FPF)are highly correlated across quite
different test batteries, provided that each battery contains a sufficient variety of
tests so that no battery predominantly represents some narrow group factor or
what Spearman (1927) regarded as ‘‘overlapping specifics.’’ The six verbal
subtests and the five performancesubtests of the Wechsler, for example,are very
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different batteries. Each of the verbal tests requires the subject to give spoken

answers to questions presented orally; each of the performancetests requires

manipulation of some kind of puzzle or task such as block designs and object

assembly. Yet g scores on the verbal and performancebatteries, based on the g

factors extracted separately from each battery, are correlated over .80. When

different batteries are larger and even more heterogeneous in content and task

requirementsthan the verbal or performancescalesof the Wechsler, their respec-

tive separate g factors are even more highly similar. Such findings suggest that

individual differences in g have some objectivereality that exists independently

of any particular test or any particular battery of tests. This is not to reify g asa

thing. Butit implies that there is some substrate of processes, independentoftest

content, that accounts for g and that, therefore, should be detectable and poten-

tially measurable by meansother than the usual mentaltests, at least in principle.

Whatare the strengths and weaknessesof the extraction of g as a higher-order

factor (usually second- or at mostthird-order) derived from the obliquely rotated

first-order (or primary) factors? Theoretically, this hierarchical model should

yield a g that is more invariant across different test batteries. The hierarchical g

is less affected than the FPC or FPF by the overrepresentation of certain group

factors in somecollections of tests. For example, if the verbal tests in a battery

outnumber the nonverbal tests (or greatly outweigh the nonverbaltests in total

amount of true score variance), the g represented by the FPC or FPF will be

somewhat ‘‘contaminated’’ by a verbal factor, whereas the hierarchical g is

muchless liable to such contamination. In brief, the hierarchical g is less influ-

enced by variations in the particular collection of tests entering into the factor

analysis, whereas g as represented by the FPC or FPF is moreat the mercy of the

particular collection of tests, and its degree of invariance is more dependent on

good ‘‘psychometric sampling.’’ The chief weakness of the hierarchical g is its

comparative statistical unreliability. It is more susceptible to subject sampling

error in the original correlations, and the error is compounded at each higher

level of the hierarchy so that in samples of fewer than 100 subjects the hierarchi-

cal g may be considerably less invariant than the FPC or FPF.It boils down to

weighing the risk of loss of invariance of the estimated g due either to: (1)

fluctuations in psychometric sampling of the abilities domain (in which case

hierarchical g is the more invariant); or (2) fluctuations in subject sampling or the

use of samples from different populations (in which case FPF is the more invar-

iant). Hierarchical g is madeless risky by using very large samples; the FPF g is

improved by including a greater numberanddiversity of tests, with no one type

of test overrepresented. When these sampling conditions are reasonably well met

for both tests and subjects, I have generally found that the hierarchical g and FPF

g are very similar in the relative magnitudes of g loadings on the varioustests,

although the FPF g loadings are generally larger overall. The two typesof g,

based on the sametest battery and subject sample, usually correlate above .80 in

my experience, and experts in the mathematical basis of factor analysis tell me



subject sampling are improved (i.e., sampling errors of both types are de-
creased).

All things considered, the FPF seemsto be the preferred methodfor represent-
ing g and for obtaining reliable factor scores in most practical situations. Our
confidence in this generalization could be improved by some elaborate studies
using Monte Carlo techniques based onartificial, hypothetical ‘‘tests’’ of known
factorial composition, from which FPF g and hierarchical g are extracted and
compared for invariance under systematic variations of ‘‘psychometric’’ and
‘subject’ sampling from theartificially constructed populations of ‘‘tests’’ and
““subjects.’’ The same could be done withreal data, if the tests and subjects were
sufficiently varied and numerous.

The importance of obtaining a good g factor for the measurementofindi-
vidual differences in research on the chronometric analysis of intelligence is not
only that g is the best working definition of intelligence and best represents the
common factor of the great variety of intelligence tests, but that it minimizes
variance attributable to any specific prior learned content, skills, talents, or
interests—variance that is apt to be less indicative of the more basic levels of
cognitive processing (and their physiological substrate) presumably assessed by
chronometric techniques. The use of g factor scores or good g referencetests
helps to winnow the psychometric chaff from the individual differences to be
subjected to chronometric study, the principal aim of which,as see it, is not to
accountfor variancein anyparticular test or performance,but in psychometric g.
The practical compromise of using only one or two g referencetests attenuates
analysis, but this can be taken into account andis not a serious problem in the
initial exploratory stage of this research. Ultimately, however, it will be impor-
tant to demonstrate the amountof intelligence variance that can be accounted for
by an optimal combination of chronometric indices, and this will depend on very
adequate measurementof individual differences in g. That cannot be assured by
any single test.

CHRONOMETRIC ANALYSIS OF g

It seems a reasonable hypothesis that g itself can be analyzed at some level. It is
mainly a question of how muchof the g variance can be accounted for at each
level of analysis. The most implausible hypothesis is that g is an absolutely
reducible, unitary property of the brain—the bottom line ofall analyses. This is
not even true of the proton. Borrowing a metaphor from neurophysiology, a
psychometric test score—even performance ona single test item—can be viewed
as the ‘‘final commonpath”’ of a numberof distinct, more elemental, processes.
And conceivably, for any given item different processes (or different combina-
tions or different weightings of the same process) can result in the same ‘‘final
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common path’’ for different individuals or for the same individual at different

times. We hypothesize a small numberof processesthat enter into all cognitive

tests in varying degrees. Individual differences in test scores will be reflected in

individual differences in processes, but identical test scores do not assure identi-

cal processes.

The immediate aim of chronometric analysis is to measure individual dif-

ferences in performance on simple tasks that are correlated with psychometric

factors (especially g, at this point) but that are much simpler and, hence, more

representative of certain hypothesized elemental processes than the *‘final com-

mon path’’ of typical intelligence test items at a suitable level of difficulty for

measuring individual differences in terms of dichotomously (i.e., “‘right’’ or

‘“‘wrong’’) scored responses. Because of the extreme simplicity of the

information-processing tasks best suited for this purpose, the correct ‘‘final

commonpath’’ is achieved byall subjects. Hence, individual differences in these

simple tasks can be measured only by speed of performance. The simpler the

task, the less is the varianceattributable to individual differencesin prior learning

of knowledge orskills.

Some of the aims andpitfalls of the chronometric analysis of ability can be

seen in reference to the simplified schema shown in Fig. 6.1. All that we can

observe directly are scores on various tests (A, B, C) that are all correlated with

g. (Connecting lines all represent correlations.) Processes X, Y, and Z are unob-

servable hypothetical constructs that are functionally correlated with test perfor-

mance.If tests A and B are highly g loaded but too complex for the contributing

processes to be discerned, we may use one of them (e.g., B) as a referencetest

and find an analytically much simpler task (e.g., C) that affords more measura-

ble parameters of the individual’s performance and allows experimental manipu-

lation of task parameters, such as some of the reaction-time paradigms described

later. Or, C could be some more directly brain-related measurement, such as the

amplitude or latency of the average evoked potential or the chemical products

of brain activity.

If the target measurementC is correlated with reference test B, the analysis of

C may elucidate the nature of the underlying processes commonto C and B. But

this is true only if the correlation between B and C represents a functional

relationship between them due to commonprocesses. Notall correlations indi-

cate functional relationships in this sense. Figure 6.1 illustrates a functional

correlation between tests A and B, which share processes X and Y, whereasthe

correlation between B and C is nonfunctional—tis the result of a purely genetic

correlation between the genotypes y and z underlying the development of pro-
cesses Y and Z, which are represented here as nonfunctionally correlated. Such
purely genetic correlations come about through the commonassortment of genes

for different characteristics that have no intrinsic relationship to one another. The

cause of the commonassortment of functionally unrelated genes is related to
cross-assortative mating for the particular traits. Althoughthis is of sociological
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Factor 5

Tests AmB---—-—C

Processes X You--Z

Genotypes x yr=——-—2Z

FIG. 6.1. Relationships between g, tests, processes, and genotypes. Dashed

lines represent correlations without functional relationships; arrowsare functional

correlations; wavy line is functional relationship due to mutual underlying pro-

cesses.

interest, it contributes nothing to a psychological understandingof g. If test C 1s

g loaded only by reason of its purely genetic correlation with other g loadedtests,

it is a blind alley in research on g. Avoiding blind-alley variables that are

nonfunctionally correlated with g (or any other cognitive referencetests of inter-

est) becomes especially important in seeking out physical correlates of g that

may afford clues as to its nature. Spearman (1927), for example, madea point of

the fact that g has certain physical correlates such as height. But this pointis

psychologically useless because the correlation of height with g is, as best as we

can determine,a strictly genetic correlation without any functional significance,

and the sameis probably true for many other physical features that are known to

be correlated with IQ. The simplest method for detecting such purely genetic (or

purely environmental) correlations, which are nonfunctional, is by means of a
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sibling study. A correlation between two variables that is found in a sample of

nonsiblings but fails to appear within sibships is a nonfunctional correlation,

which should be ignored in research on the nature of g (as contrasted with

studies of the mere correlates of g or the practical predictive validity of g). The

rationale and methodology of the sibling method for distinguishing intrinsic

(functional) and extrinsic (nonfunctional) correlations have been fully explicated

elsewhere (Jensen, 1980c).

Ageis not essentially a psychological variable and should be completely

partialed out of the correlation matrix before extracting g. The best solutionis to

use homogeneous age groups. This is not to say that g should notbe studied in

relation to age as an independentvariable, but only warns that g measurements

should not be confounded by age.

Various reaction-time paradigms have been used asthe target tasks in the

schema of Fig. 6.1. The first requirementin this research is to establish the target

tasks’ correlations with g or with two or three g referencetests.

REACTION-TIME RESEARCH
WITH THE MENTALLY RETARDED

For various historical reasons (see Jensen, 1980a), attempts to measure intelli-

gence by means of reaction time (RT), which began with Galton in the late

1800s, were prematurely abandonedin the eraly 1900s, and the field of research

on RT in relation to psychometrics lay dormantfor nearly half a century. Begin-

ning around the mid-1906s, the only research on the relationship of RT to
intelligence was conducted with the mentally retarded. The results of these

investigations have been comprehensively reviewed elsewhere (Baumeister &
Kellas, 1968; Nettelbeck & Brewer, 1981). Unfortunately, much of this excel-

lent research has made little impression on the general study of the nature of

intelligence. Psychologists have usually viewed the retarded as a groupthatis so
set apart from the nonretarded population that research on the retarded is believed

to have little or no general theoretical implications for individual differences
throughout the normal distribution of IQ above the level of retardation. Until
recently, it was a commonbelief that although RT wascorrelated with IQ among
the retarded, there was little, if any, relationship in the nonretarded. The demon-
stration of significant differences in RT between the retarded and nonretarded has

been regardedastrivial or theoretically uninteresting because it was thought to
indicate not so mucha relationship between RTandintelligence as a difference
between ‘“‘defective’’ and ‘‘normal,’’ despite the fact that most of the RT re-
search is based on mildly retarded persons (classed as cultural-familial retarda-

tion) with no signs of brain damage or sensory-motor impairment. But the defect
conception of the distinction between ‘‘retarded’’ and ‘‘normal’’ as being a
dichotomyor a qualitative distinction, rather than a quantitative one, is deeply
ingrained in laypeople and professionals alike.
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However, in my own work with retarded and nonretarded groups using
exactly the same RT paradigmsand proceduresin both groups, we have found no
phenomenain the retarded groups, either of the most severely retarded (with IQs
between 15 and 50) or of the moderately retarded (IQs of 50 to 80), that are not
also apparent in groupsof university students. Although the retarded and superior
groups differ about as much in various RT parameters (when differences are
expressed in standard scores) as they differ in IQ, we have not found any
differences in RT pheonmenain the range of IQs from 15 to 150 that do not
appearto be a part of continuousvariation in the RT parameters. The differences
are systematically quantitative rather than qualitative. Also, virtually all of the
important relationships reported in the literature that have been discovered be-
tween RT and IQ within retarded groups have recently been rediscovered in
university students. For example, one of the clearest phenomenais the difference
between the severely and mildly retarded (and normals) in response consistency
as measured byintraindividual (intertrial) variability in RT, which is higher in
low-IQ subjects. We have found the same differences to the same degree be-
tween groups of college students who differ in IQ but who are all above the
average IQ of the general population. Contrasts of RT phenomena between
retarded and normal groups merely magnify the differences that are observed
between low- and high-IQ groups within relatively homogeneous segments of the
total IQ distribution. One of the aimsof our research in the immediatefutureis to

determine if the various RT phenomena that discriminate among lower and
higher subgroups in the IQ range (from the severely retarded to university stu-
dents) will discriminate similarly between groups of the ‘‘gifted’’ IQs 130-150)
and the ‘‘supergifted’’ (IQs above 150). My hypothesis is that the same RT

differences will be found between the gifted and supergifted as between the
severely and the mildly retarded or between the mildly retarded and persons of

average IQ. Confirmation of this hypothesis will clinch the demonstration, which

is already well supported in the IQ range below the supergifted, that certain RT

phenomena are systematically related to general mental ability throughout the

entire measurable range of humanintelligence.

Such a demonstration would not enforce the conclusion that faster RT is a

cause of higher intelligence, or vice versa. In my view, individual differences in

both RT (and its various parameters) and psychometric g are merely correlated

because they both reflect individual differences at some sub-behavioral,

neurophysiological, and electrochemical level. My hypothesis is not that RT

parameters are themselves components (or even reflections of other cognitive

components) of g or the kinds of cognitive activities into which performance on

any specific g loaded psychometric test items may be analyzed. Thus, my pro-

posed use of RT parameters is rather different from Sternberg’s (1977) compo-

nential analysis of relatively complex cognitive tasks such as analogical reason-

ing. In my approach, it is wholly unimportant whether or not correlations be-

tween more elemental and more complextasks (e.g., RT parameters and Raven
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Matrices scores) make any sense psychologically. Chancesare that the correlated

chronometric variables that do make sense will prove to be the least important

because they are merely instances of the same behavior that is manifested in

performance on the more complex psychometric task. The important requirement

for potential fruitfulness is that the elemental and complex measurements be

intrinsically correlated, rather than just genetically or environmentally corre-

lated, as I have previously explained. The value of more elemental measures

such as RT parameters, provided theyare intrinsically correlated with g, is not

that they are themselves elements of intelligence test performance but that their

comparative simplicity, their various manipulable experimental facets, and their

considerable physiological sensitivity may afford a more direct(or at least a quite

different) basis for hypotheses about causes of individual differences in g than

are afforded by inferences based on more complex cognitive tasks. The position
of Sternberg’s components of complex reasoning tasks, yielded by chronometric

analysis, is no less uncertain as to the causal underpinnings of individual dif-

ferences in mental ability. It remains to be seen to what extent specifically

task-derived components can account for the correlation between such highly

diverse tasks as, say verbal analogies and block designs. Componential analysis,
like research with other RT paradigms, is a potentially fruitful intermediate stage
toward discovering the nature of g. At this intermediate stage, the hypothesized

cognitive processes are useful psychological or computer metaphors. The true

causal processes, however, are neurophysiological.

REACTION-TIME PARADIGMS
AND COGNITIVE PROCESSES

Reaction time has becomea generic term for a numberof tasks and procedural
paradigmsthat reflect some form of cognitive processing in which the dependent
variable is a time measurement. In this section, the term RT is used in this

generic sense.

Several distinct RT paradigms have become important in the study of indi-
vidual differences because each onereflects what seems to be some basic com-
ponent of information-processing capacity, such as stimulus encoding or percep-
tual speed, decision time, scanning of information in short-term memory, and

retrieval of highly overlearned information from long-term memory. It is
hypothesized that the relatively complex items typically found in psychometric
tests of generalintelligence call uponall of these elemental cognitive processesin
varying degrees. Therefore, independent measurements of these processes afford
one meansof analyzing the nature of individual differences in intelligence,or g.
Moreover, if some substantial proportion of the true variance in psychometric g
can eventually be accounted for by the measurement of some optimal combina-
tion of these more elemental cognitive processes, psychologists would possess a
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truly analytic means for the clinical assessment of intelligence and cognitive

disabilities.

The three most important general advantagesin all of these RT techniquesare:

1. The use of time as the dependent variable makesit possible to minimize

the importance of differences in prior learning, which are moreaptto be reflected

in traditional test scores based on the number of correct, incorrect, and omitted

answers. Most of the RT tasks are so simple as to have a near-zero error rate in

virtually all persons except very young children and the severely retarded. One

aim of the RT methods is to eliminate or minimize individual-differences var-

lance attributable to knowledge and acquired skills.

2. Reaction-time measurements, unlike traditional test scores, are a ratio

scale with all of its well-known advantages. Various scores, indices, and parame-

ters derived from time measurements can also have the properties ofa ratio scale.

Such measurements can enter into mathematical formulations with a rigor thatis

not possible with the usual psychometric scores. A ratio scale, with a true zero

point and equalintervals, is also helpful for studies of the growth or developmen-

tal course of any trait and is practically essential for rigorous study of the precise

form of the growth curve of any ability as a function of chronological age.

Therefore, RT techniques are destined to become a powerful tool in the devel-

opmental psychology of cognition. Reaction time need not be norm referenced to

be meaningful, as in the case of test scores, although the means of measuring RT,

of course, must be standardized and calibrated, as with all physical mea-

surements in scientific research.

3. The extreme simplicity of RT tasks makes the identical test procedure

applicable over a very wide range of ability and age. Younger andolder children

or retarded and gifted individuals cannot be directly compared on ordinary

psychometric tests because their scores are based on quite different test items,

which tap different types and amounts of knowledge and acquired skills and may

involve different cognitive processes.

The main disadvantages of RT techniques, even assuming they can account

for a substantial proportion of g variance, are purely practical in nature. The

precise measurement of RT involves fairly expensive electronic apparatus, and

any apparatus maypresent problemsnot found with ordinary psychometrictests.

Reaction-time measurements also appear to be much moresensitive to the sub-

ject’s temporary physiological state and, hence, are less stable than the usualtest

scores. The correlation of RT with other variables is thereby attenuated. This

greater sensitivity to physiological variables, of course, is also an advantage for

certain research purposes, such as discovering a person’s diurnal peak of cogni-

tive efficiency and the effects of diet, drugs, or other experimental treatments on

performance.
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General Methodology of Reaction-Time Research

In exploratory research aimed at discovering RT parameters that are related to

intelligence, it is probably more efficient to compare the mean RT measurements

of criterion groups specially selected from different sectors of the IQ scale than to

obtain a coefficient of correlation between RT and IQ within a single sample.

The main reason for this is that most RT measurements have much lower day-

to-day test-retest reliability than do psychometric tests. This instability of RT, as

measured at any given time, precludes a high correlation between RT and other

variables. Interestingly, it is just those parameters of the RT paradigms (such as

slope of RT as a function of bits and intertrial, intraindividual variability) that

show the strongest relationship to g that are also the most unstable from one day

to the next. Day-to-day intercorrelations of the same RT parameter as low as .50

to .60 are the rule. Yet, the mean and standard deviation of RT for any given

group remains highly constant from day to day. Subjects merely change their

rank order within the group from one testing session to another. In any given

testing session, however, the split-half internal consistency (odd-even trials)

reliability of all RT parameters is very high (usually above .90), and it can be

madeas high as desired simply by increasing the numberoftrials. Consequently,

even when the correlation between RT and IQ is quite low (usually between .20

and .40) within groups drawn from different segments of the IQ scale, the mean

difference in RT between the groups is usually about the same as their mean

difference in IQ, when the mean differences in RT and IQ are both expressed in

standard deviation units.

The advantage of the correlation coefficient (7) is that it expresses the degree

of linear relationship between twovariables; r? indicates the proportion of var-
lance in the one variable accounted for by its linear regression on the other.

However, in most of the RT research literature, it is a mistake to pay too much
attention to the size of the reported correlation between RT and IQ without
careful evaluation. More often than not, the correlations are misleadingly low

due to attenuation (i.e., the instability already mentioned) and the restricted
‘‘range-of-talent’’ in the subject samples typically used in RT research, such as
the mentally retarded and college students. Considering both of these limiting
factors on the correlation between RT and IQ, the typical range of r between .25
and .45, with a central tendency near .35, seems remarkably high. When these
correlations are corrected for attentuation due to the day-to-day instability of RT
and the restricted range of IQ in the sample, the correlations are generally
boosted to the .50 to .70 range.
My ownapproach to establishing relationships between various RT parame-

ters and psychometric test scores has employed a combination of methods: (1)

comparison of groups selected from different segments of the IQ scale; (2)
correlations between RT and test scores within groups; (3) repeated mea-
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surements of RT on different days to estimate stability coefficients of each of the
RT parametersto be correlated with IQ, to permit correction for attentuation; and
(4) the use of a psychometric referencetest of intelligence, for which the distribu-
tion of scores in the general population is known, from which to estimate the
effect on the obtained correlation of a restricted range of test scores in a selected
sample.

EMPIRICAL FINDINGS
WITH REACTION-TIME PARADIGMS

Inspection Time

This paradigm, invented by Nettelbeck and Lally (1976), is intended to measure

the speed of sensory registration or stimulus encoding. Two vertical lines 24 mm

and 34 mm long and 10 mm apart, connected at the upper ends by a horizontal
line, are presented tachistoscopically for durations of from 10 to 100 msec,

followed by a backward masking stimulus. The shorter of the two lines appears

randomly onthe right or the left side on each presentation, and the subject simply

states the location of the shorter line. The subject’s score, termed inspection time

(IT), is the duration of the stimulus exposure at which almost errorless (97.5%

correct) performance occurs. This procedure obviates the problem of trade-off

between speed and accuracy, as the level of accuracy is made constantforall

subjects. There are large and reliable individual differences in IT.

Nettelbeck and Lally (1976) found correlations of —.92 and —.89 between

two separate estimates of IT and IQ in 10 young adult subjects whose IQs ranged

from 47 to 119 (7 subjects were below 85). A larger study by these investigators

showed a correlation of —.80 between WAIS Performance IQs and IT in 48

subjects with IQs ranging from 57 to 138. The very wide range of IQs in these

samples, of course, favors finding substantial correlations between IQ andIT.

A series of four studies reported by Brand (1979), using a similar technique,

showed correlations between IQ and IT ranging between — .31 and — .98 (with a

central tendency around —.75) in various groups that were mostly very

heterogeneous in IQ, often spanning the range from retarded to gifted. The size

of the IQ x IT correlation is highly related to the range of IQ in the sample. In

my own lab, we have found an r of only —.31 between IT and scores on the

Advanced Raven Matrices in university students whose IQsareall in the upper

quartile of the general population.

The average IT for nonretarded young adults is about 100-150 msec, whereas

it is about twice as long for mildly retarded young adults. Something other than a

difference in mental age is suggested, however, because the mean IT of non-

retarded children in the age range from 7 to 10 yearsis only slightly greater (141

msec) than for nonretarded adults (130 msec) and is muchless than for mildly
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retarded adults (256 msec) (Nettelbeck & Lally, 1979). Although IT is correlated

with psychometric g, it differs markedly from traditional g loaded tests in show-

ing little relationship to chronological age (CA) beyond about age 7. It has not

yet been determined to what extent this is a result of the correlation between

psychometric g and CAreflecting experiential factors in the development of g

and to whatextent it is a result of the simplicity of IT not reflecting the more

complex components of information processing that only become functional at

later ages. Developmental studies of these various elemental components of

information processing are clearly needed. It seemslikely that different compo-

nents will show different growth curves (Chi, 1977). Because the measurements

are on a ratio scale (time), comparisons of mental growth curves will have the

samescientifically desirable properties as growth curves for physical characteris-

tics.

REACTION TIME-MOVEMENT TIME PARADIGM

The apparatus for this paradigm is called the reaction time-movement time

(RT-MT) apparatus (Fig. 6.2). (It is described in more detail by Jensen &
Munro, 1979.) The subject places the preferred index finger on the ‘‘home’’
button, a “‘beep’’ ready signal sounds for 1 second, and, after a random interval

of 1 to 4 seconds, oneof the green lights goes on. The subject turns off the light
as rapidly as possible by touching the button adjacent to it. Reaction timeis the
interval, measured in milliseconds, between the light’s going on and the removal
of the subject’s finger from the home button. Movementtime (MT)is the interval
betweenrelease of the home button and touching the response button that turns
out the light. Different templates are placed over the whole console to expose any
numberof light/button alternatives from | to 8. In most of our research we have
used 1, 2, 4, and 8 alternatives, corresponding to 0, 1, 2, and 3 bits of informa-

tion. Following instructions and several practice trials, subjects are given 15
trials on each numberofalternatives (60 trials in all) in a single session.

The main individual-difference parameters derived from this paradigm for
each subject can be most easily described with reference to Fig. 6.3:

1. RT intercept (i.e., the intercept of the regression of RT onbits).
2. RT slope (i.e., the slope of the regression of RT onbits).
3. Total RT (i.e., the sum of all RTs overall 60trials).

4. Mean intraindividual variability of RT: symbolized o; of RT (i.e., the

subject’s standard deviations of RT over each set of n, usually 15 or 30,
trials at O, 1, 2, and 3 bits, averaged over the foursets).

5. RT slope of o;: Intertrial or intraindividual variability (0;) of RT increases

regularly as a function of bits, and there are reliable individual differences
in the rate of increase. This is measured for each subject by the slope of the
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FIG. 6.2. Subject’s console of the reaction time-movementtime apparatus. Push

buttons are indicated by circles; green jeweled lights by circled crosses. The

‘“‘home’’ button is in the lower center, 6 inches from each response button.

regression of a; on bits, where a; is the standard deviation of RTs over a

set of n trials for each level of bits.

6. Mean median MT: The regression of MT on bits shows no significant

slope in any of the samples we have tested, hence only the mean of the

median MTs overall conditions (i.e., bits) is used.

7. Intraindividual variability of MT: analogous to o; for RT.

General Characteristics of RT-MT Data

1. Reliability and Stability. Reliability refers to the consistency of mea-

surements from trial to trial in a single testing session, as determined by the

correlated split-half method (odd vs. even trials), boosted by the Spearman-

Brown formula to estimate thereliability of subjects’ mean RTsoverall trials.
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FIG. 6.3. Mean RT and MT,as a function of bits, and mean intraindividual

variability (vertical dashed lines = mean intraindividual standard deviation of RT

over 15 trials), in 46 borderline retarded young adults (from Vernon, 1981).

The number(n) of trials for any one condition (bits) in our studies is usually

either 15 or 30.

Stability is the Pearson r between measures obtained on different days, usu-

ally not separated by more than 1 or 2 days. The stability coefficient is the more

important for evaluating the correlation between any RT or MT parameter and
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external variables such as chronological age or scores on psychometric tests.
Reliability and stability can differ markedly for any given RT parameter. Typi-
cally, intertrial reliability is much higher than day-to-daystability. The day-to-
day stability of individual measurements of RT or MT parameters is generally
much lowerthan the stability of most standardtest scores. Reliability and stabil-
ity coefficients for various RT and MT measurements obtained on 100 university
students are shown in Table 6.1. Because oftherestriction of range in a univer-
sity sample, these coefficients are probably somewhat lower than would be found
in the general population, but the relative magnitudes of the reliability and
stability coefficients for the various parameters probably have considerable gen-
erality.

Lowstability, of course, imposesa lowceiling on the highest possible correla-
tion (viz., the square root of the stability coefficient) that any measurement can
have with any other variable. Measurements of RT parameters are apparently
sensitive to a person’s momentary physiological and emotional state. They fluc-
tuate from day to day and even within a single day. This is not measurementerror
in the instrumental sense, but seemsto be an intrinsic organismic phenomenon.
All the same, it must be reckoned with in any correlational study. It is notewor-
thy that the RT-MT parameters that generally correlate most highly with
psychometric tests of g (even whenthe correlations are not corrected for attenua-
tion) also have the loweststability coefficients. It is as if those aspects of the RT
paradigm that most reflect the “‘higher’’ mental processes are the least stable.

2. Absence of Practice Effects. We have found no indication of practice
effects in any of the samplestested for any of the RT-MTvariables, either across
trials in a single session or across sessions from day to day. In one study, 10

TABLE6.1

Reliability and Stability Coefficients
for Measurements of Various RT and MT

Parameters Obtained on 100 University

 

Students

Parameter Reliability® Stability”

RT intercept 97 72

RT slope 1S 35

RT o; 65 42

Mean MT .96 84

MTo; 81 56

*Odd-even  split-half reliability, Spearman-

Brown boosted to 15 trials.

> Correlation (r) between day 1 and day 2, based

on the mean of 15 trials each day.
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university students were tested every other weekday for 3 weeks—60 trials in

each of nine sessions. Analysis of variance showed nosignificant main effects

for trials, sessions, or their interaction for any of the RT-MT variables used in

our studies. Moreover, the matrix of covariances among trials for RT is

homogeneous, that is, we cannot reject the hypothesis that all the covariances

differ by more than chance from the overall average covariance of RT among

trials. This suggests that the between-trials fluctuations of RT are purely

random—everytrial is essentially equivalent to every other trial, except for

random fluctuations, and there are no order effects or systematic changes in

performance over the course of practice.

These findings are consistent with the hypothesis that the RT-MT paradigm

does not involve anything that could be called learning, association, or memory

scanning. Certainly, the task does not involve cognitive strategies in the usual

sense of the term. Whatever simple acquired skills are called for are apparently

already asymptotic for all subjects when they begin the test. In the case of the

severely retarded (IQs below 40), however, we have routinely given 3 to 5

minutes of demonstration and practice trials to insure the necessary skills for this

task. With this condition, the actual test trials evince no practice effect.

3. Involuntary Nature ofRT. In the RT-MT paradigm, RT does not appear

to be under the subject’s voluntary control. For one thing, subjects cannot per-

ceive the short time differences in the range of fluctuations in their own RTs

when they are voluntarily performing at their normal ‘‘best.’’ When asked to

judge whethertheir RT on a giventrial was faster or slower than the immediately

precedingtrial, their subjective judgments are no better than chance guessing.

The majority of subjects feel that their RT is much faster than their MT, whereas

in fact, for nonretarded subjects, RT averages 100 to 150 msec slower than MT.

Most subjects are amazed that, regardless of their conscious effort, the average

RTto three bits of information (i.e., eight light/button alternatives) is greater (by

about 70 to 100 msec) than to zero bits (i.e., one light/button). Subjects are even

more surprised that they cannot voluntarily slow down their RT in the one-bit

condition to equal their RT in the three-bits condition. The least conscious

intention of the subject to ‘“‘relax’’ the effort to respond as quickly as possible

results in RTs that fall beyond the normal range of RTs. Subjects’ attempts to

‘‘fake’’ slower RTs consciously usually exceed their own ‘‘unfaked’’ RT by

several standard deviations.

The most likely explanation of this apparent lack of voluntary control of RT

within the normal range of RT variation is the fact—discovered in experiments
by Libet, Alberts, Wright, and Feinstein (1965, 1971) involving direct electrical

stimulation of the brain—that the speed of conscious awarenessof a peripheral

stimulus is about 500 msec, whereas the RTs of nonretarded subjects to three bits

average faster than 500 msec and are therefore executed before the subject is
even consciously aware of the stimulus. The RT is thus beyond the subject’s
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intentional control or subjective evaluation. This finding, along with the lack of
practice effects in RT, has the theoretically interesting implication that the com-
ponent of psychometric g that is correlated with the RT parameters is based in the
sphere of involuntary biological functions.

4. Age Trends in RT-MT Parameters. We have investigated age trends in
each of the RT-MT parameters in a sample of 160 normal children ranging in age
from 9 to 14 years. Every RT-MTparameter(except intraindividual variability in
MT) showsa highly significant and regular trend as a function of age in the
direction of ‘‘better’’ performance with increasing age. The trends are fairly
linear in the 9- to 14-year range. Data on older adolescents and college students

suggest that the age trend for all RT-MT parameters becomes very negatively
accelerated after puberty and is probably asymptotic at about age 15 or 16.

Perhaps the most interesting theoretical aspect of the age trends is that the
slope of the regression of mean RTon age increases almostlinearly as a function

of the number of bits (light/button alternatives); the same is true for intrain-

dividual variability (0;) in RT (Fig. 6.4). This is in marked contrast to MT,

which although showing an age trend, shows no systematic relationship to the
numberof bits of information. Thus, it is the information-processing aspect of

the RT-MT variables that displays the most pronounced improvements with age

during the preadolescent period.

Becauseof the correlation between age and the more ‘‘cognitive’’ aspects of

RT such as the linear increase in RT as a function ofbits of information conveyed

by the reaction stimulus, it is essential in studies with children to take age into

account when computing the correlations between RT parameters and mentaltest

scores. Both the zero-order correlations and correlations with age (in months)

partialed out should always be reported. If the reliabilities of the variables are

known, the zero-order correlations should be corrected for attenuation before

computing the partial correlations. Our analyses clearly indicate that RT var-

lables are significantly related to age independently of the ability measured by

raw scores on g loaded psychometric tests such as Raven’s Progressive Matrices.

In addition, RT variables are significantly related to mental test scores indepen-

dently of age.

5. Relationship Between RT and MT. Manystudies of RT have not distin-

guished between decision time (here labeled RT, 1.e., the time for overt reaction

to the reaction stimulus such as removing the index finger from a push button

whena light goes on) and movement time(here labeled MT,i.e., the time needed

to make an additional response such as touching another button to turn off the

light). With our RT-MT apparatus, we can measure these two response times

separately. The data clearly show that they do notreflect only one and the same

process.

Reaction time and movementtime reveal their independence in several ways.

The most consistent difference, manifest in every study, is that RT always
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regression of mean RT and intraindividual variability (o0;) of RT on age, as a

function of bits of information, for 160 school children aged 9 to 14 years.

increases as a function of the amountof uncertainty as to the reaction stimulus,

measured as bits of information(i.e., the logarithm, to the base 2, of the number

of different alternative forms, colors, or spatial locations in which the reaction

stimulus can occur). Reaction time in all samples we have tested, except the

severely retarded, increases as a linear function of bits of information in the array

of reaction stimuli. Also, intraindividual trial-to-trial variability in RT (o;) in-

creases exponentially as a function of bits. In marked contrast, neither MT nor

intraindividual variability in MT varies as a function of bits. The typical relation-

ships of RT and MTto bits is shown in Fig. 6.3.

Another important difference between RT and MT can be found in their

correlations with psychometric g. Reaction-time parameters, especially o0;, more

consistently show significant correlations with psychometric g than does MT,
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although mean MT(i.e., MT averaged overall levels of information [bits]) also
showssignificant correlations with g in preadolsecentchildren and in both mildly
and severely retarded adults. But it is a striking fact that the correlation between
RT and g generally increases as a function of the numberof bits to which the RT
is made, whereasthe correlation between MTwith g doesnotvary in any regular
wayas a function of bits. Lally and Nettelbeck (1977), using a very heterogene-
ous sample of subjects with WAIS Performance IQs ranging from 57 to 115,
found the correlation between RT and IQ to increaselinearly as a function of bits
in the range of one to three, as shown in Fig. 6.5. We have found the same
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of bits in the multiple-choice RT paradigm (from Lally & Nettelbeck, 1977).
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FIG. 6.6. Correlation of Raven Matrices scores with RT as a function ofbits for:

(A) female ninth graders (N = 39) and (B) university students (NV = 50), who,

probably because they are morerestricted in variability on g, show the smaller

correlations.

general relationship, although with smaller correlations, on unspeeded tests

(Standard and Advanced Raven Matrices) in relatively homogeneous groups of

above-average school children and university students, as shown in Fig. 6.6.

Although there is a significant positive correlation between individual dif-

ferences in RT and MT,the is usually quite low, typically +.20 to +.40 in

nonretarded samples. This suggests that RT and MT must involve different
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processes or sources of variance. (The is raised only about .10 by correction for
attenuation.) Intraindividual variability (o;) in RT and MT generally shows a
nonsignificant intercorrelation. When individual differences in RT and MTfor0,
1, 2, 2.58, and 3 bits are all intercorrelated and factor analyzed, with varimax
rotation (i.e., orthogonal factors), RT and MT load quite distinctly on two
different factors, again showing that they do not reflect one and the same source
of individual differences.

Reaction time and movementtime jointly seem to berelated to intelligence
level in a complex way even for 0 bit (one light/button), that is, simple RT.
Reaction time is relatively longer than MT in higher IQ groups. Theratio of
mean RT/mean MT(for 0 bit) in groups with different average levels of IQ is seen
in Fig. 6.7. A suggested explanation of this phenomenonis that, although high-
IQ subjects are faster than low-IQ subjects in both RT and MT,in high-IQ
subjects the ballistic response reflected in MT is more completely or more
adequately ‘‘programmed’’ (adding to the time that is a part of RT) before
subjects take their finger off the ‘‘home’’ button. This could result in relatively
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FIG. 6.7. Ratio of mean of simple RT (zero bits) to mean MTasa function of

average intelligence levels of adult criterion groups: severely retarded, borderline

retarded, vocational students, and university students.
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longer RTs and shorter MTs for higher-IQ subjects. This finding is at least

superficially similar to what has become a rather commonfinding in the compo-

nential analysis of more complex cognitive tasks. For example, Sternberg (1977,

1980) and Sternberg and Rifkin (1979) have reported that whenthetotal time for

solving analogy problems is decomposedinto five componentprocesses, the time

for the first-stage process (stimulus encoding) is /onger for high scorers on a

psychometric reasoning test, whereas these same subjects have shorter latencies

than less bright subjects on the later-stage components, especially the component

reflecting multiple-choice response selection. This, I believe, is one of the most

important recent findings in this field; it underscores the necessity of examining

separate components of performance on complex tasks if interpretable correla-

tions between latencies and psychometric g are to be discovered. For complex

cognitive tasks, at least, there is now convincing evidence that subjects of dif-

ferent levels of psychometric g maydistribute their total time quite differently

over the various processes involved in attaining the correct solution.

Somethingat least analogous to Sternberg’s finding seemsto be evident in the

RT/MTratio in relation to general intelligence. I emphasize analogous because

there is presently no warrantfor believing that the same processesare involved in

the RT-MT phenomenaas in Sternberg’s analogical reasoning components. The

latencies in the Sternberg paradigms are greater by anywhere from a factor of 10

to 20 (depending on the task and the age of the subjects), which suggests that the

Sternberg components are much less ‘‘elemental’’ than those in the RT-MT

paradigm.It would be useful theoretically to know howindividual differences in

the Sternberg componentlatencies are related to RT and MT.I venture that RT

and intraindividual variability in RT would be substantially loaded (after correc-

tion for attenuation) on the general factor of Sternberg’s verbal and pictorial

analogical reasoning components.

Evidence that somepart of the subject’s total RT is taken up by the response

preparation (later reflected in faster MT) was obtained on 25 college students

under two conditions: (1) double response—both RT and MT responses were

required in response to the reaction stimulus (i.e., our usual procedure); (2)

single response—only RT wasrequired (i.e., subjects only had to removetheir

index finger from the ‘‘home’’ button; no other response was required). On the

average, RT was about 30 msec(or about 10%) faster under the single response

condition, which required no ballistic movement (see Fig. 6.8). Interestingly,

Hick’s law concerning the increase in RT asa linear function of bits (Hick, 1952)

does not depend on subjects having to make a differential response to the reac-

tion stimulus. Thus, Hick’s law depends essentially on the uncertainty of the

reaction stimulus per se, rather than on making different responses to the various

reaction stimuli. Individual differences in RT in the single and double conditions

are correlated .63, .63, .56, and .57 for 0, 1, 2, and 3 bits, respectively. The

single response condition results in slightly (but nonsignificantly) larger (nega-

tive) correlations of RT (and o; of RT) with intelligence (Raven Advanced
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FIG. 6.8. Median RT (in msec)as a function ofbits for university students (N =

25) on RT-MT apparatus under conditions requiring: (1) a differential ballistic
responseto the reaction stimulus (double response) and (2) removing index finger
from ‘‘home’’ button when reaction stimulus occurs (single response).

Progressive Matrices) than the double response condition. This is at least consis-
tent with the hypothesis that brighter subjects use relatively more of their RT in
programming the ballistic MT response, and this programming slightly at-
tenuates the correlation of RT with g. This is offered only as a speculative
hypothesis.

If a longer ballistic response programmingtime resulted in faster MT for any
given trial, as would be dictated by a direct causal hypothesis, one should expect

to find a negative correlation between RT and MT within individual subjects. It
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turns out, however, that the within-subject correlations between RT and MT over

30 trials at each of 0, 1, 2, 2.58, and 3 bits for 162 subjects did not differ

significantly from zero. At each level of bits, the correlations were normally

distributed about means close to zero (rs = .008, .000, .024, —.007, and

— .037). The between-subject correlations of RT and MT,on the other hand,are

all significant beyond the .01 level, averaging close to +.30. One possible

interpretation of these findings would be that the tendency to devote a greater

proportion of the RT to programmingthe ballistic response is a general disposi-

tion of brighter subjects. But, there appears to be no directsingle, trial-by-trial

causal effect on MT because the small increment of programming time that

contributes to the total RT may berelatively constant across trials and therefore

would be so swamped by the muchlargertrial-by-trial intraindividual variability

of RT and MTasto prevent any appreciable within-subject correlation between

RT and MT.

6. Group Differences in RT-MT Parameters and Psychometric g. Because

of the low individual stability of some of the RT parameters and the restricted

range of psychometric g in most study samples, the observed relationship be-

tween RT and g appears much less tenuous in comparisons between the mean

RTsof groups differing in IQ or general intelligence (here labeled g), as assessed

by standardtests, than in correlations between RT andg within anyofthe relatively

homogeneous groupsusedin ourstudies. I am not aware of any adequate estimation

of the correlation between RT parameters and g in a truly representative sample

of the general population. I suspect, however, that such correlations properly

corrected for attenuation might be substantial. The multiple correlation (R) be-

tween several optimally weighted RT-MT parameters and IQ scores might even

approach the average intercorrelations among many standardtests. Figure 6.9

shows the mean RT asa function of bits in several diverse groups. All of the
groups, except the most severely retarded with a mean IQ of 39, conform to
Hick’s law.! (The trend analysis reveals that data points, which are omitted for
the sake of graphic clarity, do not evince any significant nonlinear trends in any
of the groups with the exception of Group F.) Although some of the groups do
not differ significantly at zero bits, all except the two retarded groups differ

'We have found, virtually without exception, that RT increases linearly with bits (1.e., Hick’s

law) (Hick, 1952; Hyman, 1953) for all individuals except the severely retarded (mostly IQs below

40). (The failure of Hick’s law might also be found for preschool-aged children, but there is as yet no

adequate evidence on this age group.) A possible explanation for the apparent failure of Hick’s law in

the retarded groupis that the relationship of RT to bits is actually not linear. Ratherit is a parabolic

curve that asymptotesat the limit of the subject’s information-processing capacity, which is less than

three bits for the severely retarded. The parabolic curve, however, is statistically (and visually)

indistinguishable from linear trendin the range of zero to three bits for nonretarded subjects and the

mildly retarded. (Jensen, Schafer, & Crinella, 1981, present a more detailed discussion of this

hypothesis.)
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FIG. 6.9. Reaction time as a function of bits, illustrating Hick’s law and dif-

ferences in intercepts and slopesfor diverse groups varying in age andintelligence:

(A) university students; (B) ninth-grade girls; (C) sixth graders in a high SES-high

IQ school; (D and E) white and black, respectively, male vocational college

freshmen with approximately equal scholastic aptitude scores; (F) severely men-

tally retarded young adults (mean IQ 39); (G) mildly retarded and borderline

young adults (mean IQ 70) (from Jensen, 1980a, p.. 697).

significantly at three bits. What may appear as small differences graphically are,

in fact, not only statistically significant but are as large, in standard deviation (o)

units, as the average difference in IQ between the groups. For example, the

vocational college students and university students, who differ about lo in

scholastic aptitude scores, differ in mean RT by 1.20 (in vocational college

units ) and 1.90 (in university o units). The same groups differ by .680 in mean

intraindividual variability for simple RT (ie., one light/button or zero bits).

Borderline retarded young adults (mean IQ 70) differ from college students
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(mean IQ 120) by about 60 on Raven’s Matrices and about 7o in mean RT

(based on o of college students). If we select only the one fastest simple RT out

of 15 trials produced by each subject in each group, the mean group difference of

111 msec is 1.20 (in the retarded o units) and 4.800 (in the college-student o

units). In fact, the mean of the students’ slowest simple RT (in 15 trials) is 32

msecfaster than the retarded group’s fastest RT. These results are shownin Figs.

6.10 and 6.11 when simple RTsin 15 trials for each individual are ranked from

fastest to slowest (omitting the 15th rank to eliminate possible outliers).

700

600

500

Retarded

200

lOO 
0 2 4 6 8 lO 12 14

Rank

FIG. 6.10. Mean simple RT plotted after ranking individual RTs on 15 trials
from the fastest to the slowesttrial (omitting the 15th rank) for retarded subjects (N

= 46) and normal university students (NV = 50).
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FIG. 6.11. Differences in simple RT between retarded and normal subjects,

expressed in both normal and retarded o units, when simple RTs for 15 trials are

ranked from fastest to slowest.

We have found no significant sex differences in any of the RT parameters.

Female university students, however, show significantly slower MTsthan males,

but MT wasnot significantly correlated with intelligence test scores in these

groups of university students. Females usually appear to be less aggressive and

more delicate than males in their manner of ‘‘hitting’’ the push buttons, which

may slow their MT.
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7. Relationship Between RT-MT Parameters and Psychometric g within Di-

verse Groups. In the typical fairly homogeneous groups on which RT studies

have been reported, correlations between RT and IQ can be generally charac-

terized as quite low compared to the usual correlations among more complex

mental tests. But in reviewing the body of literature on RTin relation to general

mental ability as assessed by standard psychometric tests, I have found virtually

no correlations on the ‘‘wrong”’ side of zero. Most rs are in the range from 0 to

— 50, with a central tendency close to —.30. It appears that correlations are

generally somewhatlarger in retarded groups than in above-average groups of

similar age, although there are insufficient data on the reliabilities and variances

of RT within these two types of groups to warrant a definitive interpretation of

this point.

Myownresearch with the RT-MTprocedure,in its initial, exploratory stage,

has been aimed at discovering if there are significant correlations between g

loaded psychometric test scores and various parameters of the RT-MT paradigm.

This was not undertaken with the intention of showing that the low (butsignifi-

cant) correlations, if found, could ‘‘explain’’ g, but to establish reliable

phenomenain needoftheoretical explanation. An adequate theory of intelligence

could not ignore the intuitively surprising finding that anything as content-free as

the RT-MT parameters is significantly related to g as measured by the usual

psychometric tests. And this is true even if the correlations are quite small. To

obviate the most common (but probably overly superficial) explanation of the

correlation between RT-MT parameters and test scores, we have always given

the psychometric tests without time limit or time pressure of any kind. After

being given instructions, subjects take the tests alone in a room andare required

to attempt every item. In the one study of 50 university students in which we

recorded each subject’s total time for completing Raven’s Matrices under these

test conditions, without the subject’s being aware of being timed, we found the

correlation between Raven scores and total time to be exactly zero. It is hard to

see how one could easily explain a correlation between Raven scores and RT-MT

variables in terms of test-taking speed per se. Such an explanation would be

rendered even more improbable by correlations between test scores and RT-MT

variables that do not reflect speed per se, such as: (1) the slope of RT as a

function of bits; (2) intraindividual variability (o0;) of RT.

Significant relationships of RT-MTvariables to scores on g loaded tests have

been found in all of the samples we have tested. Examples from several highly

diverse groups in age and general ability level are summarized below.

Severely Retarded Adults. Jensen, Schafer, and Crinella (1981) obtained a

battery of 15 diverse, individually administered, unspeeded verbal and perfor-

mance tests on 54 mentally retarded adults with IQs ranging from 14 to 62 (mean

= 39, s.d. = 14). The matrix of intercorrelations was subjected to a common

factor analysis, and the first principal factor, which was interpreted as a good

estimate of Spearman’s g in this population, was used for calculating a g factor
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score for each subject. Average evoked potentials (AEP) to auditory stimuli
(clicks) were also obtained under conditions in which the stimuli were adminis-
tered either automatically at brief random intervals or were self-administered by
the subject, thereby creating an expectancy. A ‘‘neural adaptibility’’ (NA) index
derived from these measures represents essentially the percentage difference
between the latency of the AEP underthe automatic and self-stimulation condi-
tions. Previous studies (see Jensen et al., 1981) with nonretarded subjects have
shownthat this NA indexis positively correlated with generalintelligencelevel.

Table 6.2 showsthe correlations between g factor scores and several variables
derived from the RT-MT paradigm as well as the NA measure. The slope of RT
as a function of bits was not included in this study becausethis retarded sample
did not display Hick’s law. The RT-MT composite (i.e., the mean of the standard
scores on the four RT-MTvariables) is correlated —.33 (p < .01, one-tailed test)
with NA. The RT-MT composite and NA together yield an unbiased (i.e.,
shrunken) multiple correlation of .54 (p < .001) with g factor scores. It is
noteworthy that intraindividual variability (o;) in both RT and MT accountfor
most ofthe correlation with g scores. This has also been found, although to a less
pronounced degree, in mildly retarded and above-average nonretarded groups
Jensen, 1979, 1980b; Vernon, 1981). Regarding this phenomenon, Jensen et
al. (1981) state:

TABLE 6.2

Correlation (r) of RT-MT Variables

and Neural Adaptability

with Psychometric g Factor Scores
in Severely Retarded Adults (NV = 54)¢

 

Variable r

Median RT —.13

Median MT —.19

a; of RT — .44"

a; of MT — 57"
RT + MT composite? — 54"
Neural adaptability (NA)° + .31°
 

“From Jensen, Schafer, and Crinella, 1981.

’ The mean (for each subject) of the standardized

(z) values of the median RT, median MT, o;, of RT,

and o; of MT. Each of these componentvariables

for each subject is derived from total of 60 trials.

“For a detailed description of the NA index,

which is derived from the latency of the average

evoked potential, see Jensen et al., 1981.

“p < .01, one-tailed test.

*p < .05, one-tailed test.
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Our theoretical speculation concerning the relationship between intraindividual

variability and g is based on a conceptof a rapidly oscillating cortical potential for

response;stimuli that occur during the below-threshold phaseof the wave ofoscilla-

tion fail to elicit a response until the wave goes above threshold. Because the occur-

rence of the reaction stimulus is completely random with respect to the wave phase

of cortical potential on each trial, the RT will vary from trial to trial. Individual

differences in the amountof this variability are hypothesized to be the result of

differences in the rate of oscillation of cortical potential, with faster oscillation pro-

ducing both shorter average RT overtrials and less variability from trial to trial.

Morerapid oscillation means that more information is processed per unitof time,

with consequently faster acquisition of the types of knowledge and cognitive skills

reflected in psychometric g [p. 195].

Mildly Retarded Adults. Vernon (1981), using the RT-MT apparatus with

46 borderline retarded adults (IQ 70) in a vocational training institute, obtained

correlations between Raven Standard Progressive Matrices (SPM), the Figure

Copying Test (FCT), and several RT-MT variables. Table 6.3 showsthe correla-

tions of each of the RT-MT variables with the SPM and FCT andthe loadings of

each variable on the first principal componentofall eight variables. The lower

correlations for the FCT are mostlikely due to its having lowerreliability than

the SPM. The quite restricted range of psychometric g in this sample militates

against high correlations in general. Yet there is considerable agreement between

the pattern of correlations of SPM and FCT with the RT-MTvariables. The two

TABLE6.3

Correlations of RT and MT Variables

with Standard Progressive Matrices (STM)

and Figure Copying Test (FCT) and Loadings

on the First Principal Component (PCI)

of All the Variables in Mildly Retarded Adults

(NV = 46)

Variable SPM®  FCT® PCI¢

Median RT(0 bit) — .25 — .09 —.72

Median RT (1 bit) —.27 —.10 — .84

Median RT (2 bits) —.3]1 —.19 — .84

Median RT (3 bits) — 06 — .O1 — .66

Median MT — .25 — .26 — .66

o; of RT — .35 — 22 — .64

Raven (SPM) + .54 +.55

Figure copying (FCT) + .54 + .48

“From Vernon (1981).

’ Correlations greater than .24 are significant be-

yond the .05 level (one-tailed test).

“The first principal component accounts for

46.8% of the total variance.



296 JENSEN

columnsof correlations are themselves correlated .74. The SPM and FCT are
correlated .55 and .48, respectively, with the first principal component, which
largely represents the RT-MTvariables.

The one seeming anomaly in Table 6.3 is the near zero correlation of median
RT for three bits with the mental test scores. It is the lowest correlation for both
SPM and FCT. It seems anomalous because in nonretarded samples the correla-
tion between RT andtest scores usually increases going from zeroto threebits.
Vernon hypothesizes that, beyond a certain degree of complexity, individual
differences in intelligence have a decreasing correlation with response latencies,
and this point is reached somewhere between two and three bits of information
for the borderline retarded. The hypothesis is not ad hoc butis consistent with the
findings of near zero correlations between IQ and responselatenciestorelatively
complex information-processing tasks requiring in excess of 1 second with non-
retarded subjects (reviewed in Jensen, 1980b). It is noteworthy that these re-
tarded subjects (none of them below about IQ 60 and averaging IQ 70) show
about the same average RTto the three-bits condition as do the severe retardates
with a mean IQ of 39 (described in the study by Jensen et al., 1981), although the
two groups differ by about 160 msec (or 1.2) in RT for zerobits.

Junior High School Pupils. Jensen and Munro (1979) obtained RT-MT data
and Raven Matrices (SPM) on 39 ninth-grade girls aged 14 to 15. Dividing the
sample into the high, middle, and low thirds of the distribution of SPM scores
reveals the quite regular relationship of SPM level to RT and MT (Fig. 6.12).
The Raven scores are correlated with RT-MTvariables as follows:

RT (overall mean): r = —.39(p < .02)

ao; of RT: r = —.31 (p < .05)
Slope of RT: r = —.30(p < .06)
MT (overall mean): r = —.43 (p < .01)

ao, of MT: r= +.07 ns.

RT (mean) + MT (mean): multiple R= .50(p < .01)
All five RT — MT variables: multiple R .66 (shrunken R = .49)

Jensen and Munro (1979) note that manyof these correlations are not appreciably

different from the correlations of Raven scores with other psychometric tests
reported for unselected samples of school children (e.g., Peabody Picture Vo-
cabulary Test IQ, r = .35, WISC Full Scale IQ in several studies, median r

= .51).

University Students. Jensen (1979, 1980a) presented the loadings on the

first principal component (PC I) of a number of RT-MTvariables along with
several other variables including verbal (Terman’s Concept Mastery Test) and
nonverbal (Raven’s Advanced Progressive Matrices) psychometric tests obtained

from 50 university students. These loadings are highly similar to the loadings on

the first principal factor (PF I) when iterated for six common factors with latent
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FIG. 6.12. Mean RT and MTasa function of bits in the RT-MT paradigm for
high (H), middle (M), and low (L) thirds of a sample of ninth graders on Raven’s

Standard Progressive Matrices (from Jensen & Munro, 1979).

roots greater than 1. My interest here is in the one mostgeneral factor ofthis set
of variables (i.e., the one that accounts for more of the total variance than any
other single factor) and in observing the manner in which the RT-MT and
psychometric variables loaded on this one large factor, which both sets of var-
lables share in common(see Table 6.4). It is not claimed that the PC I or PFI are

to be interpreted as Spearman’s g, but it should be noted that the Raven, whichis

generally considered a good g reference test, has the highest loading on this
factor followed by the Concept Mastery Test (CMT), whichis a high-level test of
verbal reasoning ability. The Raven and CMTareintercorrelated only +.40 in
this highly restricted college population, which represents about the top 12% of
high school graduates in scholastic ability. It seems of some interest that the RT
slope (RT o;) and RT slope of o; over bits all have substantial loadings onthis
factor—a result entirely consistent with an information-processing interpretation
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TABLE 6.4
Loadings on theFirst Principal

Component(PCI) and First Principal Factor
(PFI) of a Number of RT-MT and

Psychometric Variables

  

Variable PCI* PFI

1. RT intercept +.42 +.42

2. RT slope (on bits) —-.65 —.60
3. o; of RT —-.50 —.50
4. Slope of RT a; (on bits) —.73 —.66

5. MT mean —.18 —.15
6. o; of MT —.08 —.06
7. Serial rote learning (errors) —.07. —.07

8. Digit span memory +.41 4+.31

9. Raven Advanced Matrices +.73 +.78

10. Concept Mastery Test +.57 +.53

Eysenck Personality Inventory

11. Extraversion — 32 —.24

12. Neuroticism +.09 +.07

13. Lie scale —.19 —.12

Percentage of Total Variance 20 18

 

“For PC and PF loadings greater than .36, p <

.01; for loadings greater than .46, p < .001.

of these RT parameters. However, in a methodological critique of this analysis
Carroll (1979) used a maximum liklihood factor analysis and extracted three
orthogonally rotated factors, on which the Raven and CMT havetheir largest
loadings on two different factors. The Concept Mastery Test loads .99 on a factor
on which the next two largest loadings are Digit Span Memory(.44) and Raven
(.34). But the Ravenstill has its highest loading (.53) on the factor defined by the
RT slope (— .82), RT o (—.54), and RT slope of o; (—.66), on which the CMT
loads only .12. I view the PF I andthe rotated factors as a matter of preference,
each one permitting examination of the data from different perspectives. Neither
analysis is compelling to the exclusion of the other.

For a definitive statistical test of the relationship between the RT-MT var-
iables and each of the psychometric tests, which measure nonverbal and verbal
reasoning ability or perhaps fluid and crystallized g, we must look at the simple
correlations (Table 6.5). Because of our prior hypotheses of how each of the
RT-MT variables should be related to g in terms of an information-processing
interpretation of the independent variables, one-tailed tests of significance are
called for. The Raven is more clearly related to the RT variables than is the

CMT,and this should be expected if the Raven and CMTare viewed as measures
of fluid and crystallized g, respectively. None of the RT-MTvariablesis signifi-
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TABLE6.5

Correlation of the RT-MT Variables,

Rote Learning, and Digit Span

with Raven’s AdvancedProgressive Matrices

and Terman’s Concept Mastery Test (CMT)

for 50 University Students

  

Variable Raven CMT

1. RT intercept 15 20

2. RT slope (on bits) —.41° .00

3. o; of RT — 35% —.08

4. Slope of RT o; (on bits) —.325 —.25%

5. MT mean — 25° —.16

6. o; of MT 10 02

7. Serial rote learning (errors) —.25° —.02

8. Digit span memory 22 44°

Variables 1-8: Multiple R 644 56"

4p < 01.

’n < .05.

cantly correlated with either serial rote learning or digit span memory,a finding

consistent with our view that the RT-MT variables in this paradigm do not

involve learning or memoryprocesses. It is noteworthy that the multiple correla-

tions of all the experimental variables with the Raven and CMTapproach the

upper limit of the correlations found among standard psychometric tests in this

restricted university population. These multiple correlations (which are not cor-

rected for attentuation) suggest that a combination of tests virtually free of

intellectual content are capable of predicting a substantial proportion of the
psychometric ability variance among bright young adults.

8. The RT-IQ Correlation and Task Complexity. We have already seen that

the correlation between RT and IQ generally increases as a function of task

complexity or bits of information (Figs. 6.5 and 6.6). However,this relationship

appears to hold only for relatively simple tasks such as the RT-MT paradigm in
which the information-processing time is less than 1 second for nonretarded

subjects. Beyonda certain information load, probably in the range of three to five
bits, further increases in task complexity do not regularly show an increasing
correlation between response latency and IQ. For example, Speigel and Bryant

(1978) found correlations of around — .6 between IQ and choice RTs to cognitive

tasks at three levels of complexity given to 94 sixth graders. But, task complexity
was unrelated to RT. All of the tasks used by Spiegel and Bryant, however, were
of much greater complexity than those involving only zero to three bits of
information, as shownbythe fact that the range of mean RTsfor these tasks was
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from 4500 to 8300 msec compared with a range from 250 to 500 msec for RTs to

stimulus arrays ranging from zero to three bits of information.

For tasks as complex as Raven Matrices items, which take several secondsor

more to solve, the meanlatencies over single correctly answered items have been

found to correlate near zero with psychometric intelligence (Jensen, 1980b;

Snow, Marshalek, & Lohman, 1976; White, 1973). Using a geometric figure-

analogies task of more intermediate complexity, Mulholland, Pellegrino, and

Glaser (1980) found a significant correlation (—.44) between overall response

latency and psychometric scores but found nonsignificant correlations between

rates of increase in processing time as a function of task complexity and

psychometric scores using the Cognitive Abilities Test. They interpret this out-

come as a result of individual differences in processing strategies involving a

speed-accuracy trade-off and different allocations of effort and time to different

stages of task solution. They suggest, following Sternberg (1977), that abler

individuals spend relatively more time on theinitial stimulus encoding phase of

problem solving, making for relatively greater speed in the subsequenttransfor-

mations required for solution. When the information load of the reaction stimulus

exceeds the subject’s asymptotic capacity for one-stage processing, other stages

and types of cognitive processing must come into play (e.g., chunking, rehear-

sal, transfer of information into short-term or intermediate memory, and re-

trieval). Thus, response latencies in complex tasks can reflect an amalgam of

processes and could consistently show correlations with g only if the latencies of

the various processes could each be measured separately and then combined in a

multiple regression equation.

SHORT-TERM MEMORY SCAN PARADIGM

This technique, invented by S. Sternberg (1966), measures the speed of scanning

information in short-term memory. Numbersets of differing lengths (two to

seven digits), presented either simultaneously or successively, are shown and

then followed a few secondslater by a probe digit, which was either present or

absentin the target set. Subjects respond ‘‘present’’ (or ‘‘yes’’) or “‘absent’’ (or

‘‘no’’) by push buttons, and the RT is measured. Reaction time increases as a

linear function of set size. (Set size, not the location of the probe digit in the set,

is the crucial factor as it seems the memory scanning doesnot terminate when the

probe digit is found but is always exhau~‘‘ve.) Both the intercept and slope of the

regression of RT (to the probe) on set ze are related to psychometric intelli-

gence (Fig. 6.13).

Other studies show highly significant differences between retarded and non-

retarded subjects in scanning rate (i.e., slope) (Dugas & Kellas, 1974; Harris &

Fleer, 1974; Maisto & Jerome, 1977; Silverman, 1974). The retarded groups in

these studies appear to employ the same short-term memory scanningstrategies
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FIG. 6.13. Mean RTsfor correct ‘‘ves’’ and ‘‘no”’ (i.e., presence or absence of
probe digit in target set) for moderate-IQ (95 or below, X = 88) and high-IQ (115
or above, X = 126)fifth and sixth grade children. The equations for the two lines
are: moderate-IQ RT = 1265 + 58s and high-IQ RT = 1210 + 40s, where RTis
in milliseconds and s = numberof digits in the target set (from McCauleyetal.,
1976).

(serial and exhaustive search) as the nonretarded. Like RT in the decision-time
paradigm, the short-term memory scanning rate is more related to IQ than to
mental age. Children 10 to 12 years of age with IQs comparable to those of
university students show about the same scanning rate as the university students
(about 40 msec per digit) (cf. Chiang & Atkinson, 1976; McCauley, Dugas,
Kellas, & DeVellis, 1976). This observation is consistent with other evidence on
the developmental aspects of short-term memory scanning and information pro-
cessing (Chi, 1977).
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The parameters of this paradigm are related to intelligence even among very

superior subjects. The first investigations to showsignificant differences in scan-

ning rates between university students scoring in the upper and lower quartiles of

the SAT Verbal were reported by Milliman, Frost, and Hunt (1972) and Hunt,

Frost, and Lunneborg (1973). In a study by Snowet al., 1976, individual dif-

ferences in the intercept and slope of the short-term memory scan were predicted

on the basis of scores on several psychometric tests and sex of subject (university

students) with multiple Rs of .88 and .70, respectively. The intercept and slope

predicted SAT Verbal and SAT Quantitative scores with Rs of .54 and.21,

respectively, in a group of Stanford University students representing a very

restricted range of general ability. The prediction of scan parameters by the much

larger R for the psychometric scores, rather than vice versa, suggests that nearly

all of the scan components operate in the much more complex psychometric

tests, whereas the tests involve many other information-processing components

(as well as specific knowledge) not measured by the intercept and slope of the

scan paradigm.

The memory scan paradigm has a sensory counterpart in the visual scan

paradigm, in which

a

single target digit is presented first, followed by a set of

digits. The subject’s latency of response as to the presence or absence of the

target digit in the set is a measure of visual scanning. As with memory scanning,

visual scanning latency increaseslinearly as a functionofset size. The reciprocal

of the slope of this function is a measure of the rate of visual scanning. Chiang

and Atkinson (1976) found, in a sample of 30 university students, a nonsignifi-

cant but suggestive correlation (r = .43) between visual and memory scanning

rates. (Intercepts correlated .97.) Keating, Keniston, Manis, and Bobbitt (1980),

in a similar study with school children, ages 9 to 15, were able to correct the

correlation between the slopes (or scanning rates) for the visual and memory

modes for attenuation, yielding a corrected r of 50 (p <.001). Visual and

memory scanning rates in this study were significantly related to age in the

expected direction, but there was no significant relationship of scanning rate to

psychometric ability as measured by the California Test of Mental Maturity. In a

previous study based on groups of more heterogeneous ability, Keating and

Bobbitt (1978) found a significant (p < .05) relationship between memory scan-

ning rates and Raven scores.

LONG-TERM MEMORYRETRIEVAL

OF SEMANTIC CODES

This paradigm, originated by Posner (1969, 1978; Posner, Boies, Eichelman, &

Taylor, 1968), measures the speed with which highly overlearned information

stored in long-term memory (e.g., the names of letters and numbers) can be

retrieved. The procedure consists of measuring discriminative (‘‘same’’ vs. *‘dif-
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ferent’’) RT to pairs of stimuli, which are the same (identical) or different either

physically or semantically. Discrimination of a physical difference does not

require accessto a prior learned semantic code, whereas discrimination of seman-

tic differences requires access to information stored in long-term memory. The
difference between RT to physical identity and RT to nameidentity is taken as a

measure of speed of access to long-term memory. A pair of letters is presented
that are physically identical (e.g., AA, aa, BB, bb), physically different (Aa, bB,

AB), semantically identical (Aa, Bb), or semantically different (AB, aB, ab).

Under each condition (physical or semantic), subjects are required to respond
‘‘same’’ or ‘‘different’’ by corresponding push buttons, and RT is recorded. The
RTs of interest are those to physical and semantic identity (RT on ‘‘same’’ push
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on the SAT Verbal (from Hunt, 1976).
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button). It takes young adult subjects an average of about 70 msec longer to

respond ‘‘same’’ for semantic identity (Aa) than for physical identity (AA).

Hunt (1976) was the first to demonstrate a relationship between speed of

accessing long-term memory, as measured by the difference in RT between Aa

and AA, and scores on the SAT Verbal (Fig. 6.14). The average RT difference of

75 msec between Aa and AA (i.e., the semantic encoding time) for university

students is the same as the average RT difference between zero andthree bits of

information in the decision time paradigm.

Goldberg, Schwartz, and Stewart (1977) have made this long-term memory

paradigm morediscriminating for verbal IQ by using three conditions of *‘same”’

versus ‘‘different’’ word pairs: (1) physical identity (cow-cow); (2) homophonic

identity (bare -bear); (3) taxonomic category identity (hand-foot; cello-violin).

All the wordsare so easy and highly familiar to university students that errors in

responding are very few and are uncorrelated with IQ. Individual differences in

this task clearly do notreflect a difference between **knowing’’ or “‘not know-

ing’’ the correct answers; rather they reflect the speed with which the information

is accessed in long-term memory. The mean RTs of high- and low-scoring

university students on Lorge-Thorndike Verbal IQ are shown for each of the

three conditions in Fig. 6.15. Correlations of RT with Verbal IQ under each of

the three conditions are: physical identity,.32; taxonomic identity, .63;

homophonic identity, .68. This againillustrates the commonfinding that RTs to

stimuli requiring greater complexity of information processing are more highly

correlated with IQ or g.

RELATIONSHIPS AMONG

REACTION-TIME PARADIGMS

Each of the four RT paradigmsrepresenting different types of information pro-

cessing has been shown to relate RT to psychometric intelligence. The only

paradigm that involves prior knowledgeas suchis the access to semantic codes in

long-term memory, but the prior acquired knowledge per se is probably notthe

main source of individual differences.

An important theoretical question is the extent to which the four paradigms

measure the same or different sources of individual differences. If they all tap

one and the same source of variance, except for purely task-specific or

paradigm-specific variance, then we should expect that whenall are entered into

a stepwise multiple correlation with psychometric g, only one ofthe variables

would carry all of the predictive variance. Asa corollary to this, the correlations

among the paradigms would be reduced to zero by partialing out psychometric g,

unless the paradigms shared somesource of variance that is unrelafed to g. On

the other hand, if the unbiased(i.e., corrected for shrinkage) stepwise multiple R

for predicting g was significantly increased by the addition of variables from
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each RT paradigm to the regression equation, it would mean that each paradigm

is tapping a different cognitive process that contributes to g.

As yet, however, we have only an inkling of the answer to this question.

Much more systematic investigation is needed. A good beginning1sillustrated in

a study by Keating and Bobbitt (1978), who used three chronometric paradigms:

(1) simple and choice RT; (2) physical and semantic letter identification; (3)

memory scanning. They hypothesized various combinations of a four-step se-

quence of cognitive processes as operating in each of three chronometric

paradigms, the steps being: (1) encoding; (2) operation; (3) binary decision; (4)

response. Parameters of each chronometric paradigm can be expressed in terms

of the various component processes. For example, simple RT (SRT)is 1 + 4,

choice RT (CRT) is 1 + 3 + 4, and hence CRT — SRTis 3. Keating and Bobbitt

hypothesized that chronometric parameters in the three paradigms involving

similar processes would be more highly intercorrelated than the parameters in-

volving dissimilar processes. The averageintercorrelations were .66 for parame-

ters involving similar processes and .30 for dissimilar processes. The pattern of

intercorrelations implies that individual differences in different parameters (e.g.,

intercept, slope) and in different paradigmsare attributable to a general factor

commonto all of the parameters and paradigmsas well as to group factors that

are specific to each parameter and paradigm.If this is indeed the case, the only

hope for accounting for any really substantial proportion of the variance in

psychometric g by means of chronometric techniques would be by discovering

an optimal combination of various chronometric paradigms and parameters, each

independently tapping different parts of the total g variance.

This is clearly one of the next important steps in the research agenda ofthis

field. We will be in a much better position to evaluate the potential fruitfulness of

chronometric research on intelligence after we have estimated the proportion of

true variance in g that can be accounted for by the RT parameters derived from

all four of the basic chronometric paradigmsI have described. I would not expect

the RT paradigmsto account for most of the true score variance in scores on any

single psychometric test or a composite of just a few tests because most standard

tests involve specific or group factors linked to certain kinds of past-learned

knowledge and skills (vocabulary, arithmetic, information, etc.), which are

strongly influenced by experiential factors in addition to reflecting biological

intelligence. A very substantial proportion of the g factor variance commonto a

numberof cognitive tests of considerable diversity, however, might be predicta-

ble from a combination of chronometric parameters derived from these funda-

mental paradigms. To account for most of the variance in any particular type of

test (e.g., analogies, numberseries, matrices, etc.), it would probably be neces-

sary to hypothesize individual differences in more complex processes or

strategies. It should also be remembered that any particular test item measures

much more of some specific factor (or at least a non-g factor) than g, andthis is

true even of items in the most g loaded tests taken as a whole (e.g., Raven’s

Matrices).
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The few studies using two or more of the RT paradigms on the same group

afford only a hint of what might be discovered in more ambitious investigations.

For example, Lally and Nettelbeck (1977) found nosignificant correlation be-

tween inspection time (IT) and choice RT in groups of retarded and nonretarded

subjects, but they did find a correlation of — .63 between IT andthe reciprocal of

slope (i.e., rate of information processing) of choice RTsto tasks involving one
to three bits (2, 4, 6, and 8 choices). The multiple R for predicting WAIS

Performance IQ from IT and the slope of RT in the combined retarded and

nonretarded groupsis .84.

In a study performed in our lab by Vernon with 25 university students, IT was

found to correlate — .31 with Advanced Raven Matrices scores and only .10 with
intraindividual variability (ao; in choice RT—o;, being the RT parameter most

highly correlated [—.43] with the Raven. The multiple R of IT and o; with
Raven scores was .51 (p < .04). (It should be noted that even two high-level

psychometric tests of intelligence, the Advanced Raven and the Terman Concept
Mastery Test, are correlated only about .50 in this restricted university popula-

tion, whereas the correlations between similar verbal and nonverbaltests in the

general population are commonly .70 to .80.) In this sample, IT had generally
low (and mostly nonsignificant) correlations with all of the RT and MT parame-
ters.

Only one study (Keating & Bobbitt, 1978) has reported correlations among
information-processing indices derived from as many as three distinct RT
paradigms: (a) decision speed as measured by choice RT (onebit) minus simple
RT (zero bit); (b) long-term memory accessing time as measured by semantic

minus physical identity of letter pairs; (c) short-term memory scanning rate as
measuredby the slope of RT to probe digits for set sizes of one, three, and five
digits. The intercorrelations amongthese indices are: rz) = .35, rae = .26, and

roe = .19. It is evident that these three indices (a, b, and c) do not measure

entirely common sources of individual differences. The multiple Rs of these
variables with Raven scores among school children of average and superior
intelligence in age groups 9, 13, and 17 were .59, .57, and .60, respectively. (In
all age groups combined, age alone accounts for 47% of the variance in Raven
scores, and the three central processing variables together account for 15%,
which corresponds to a multiple R, with age partialed out, of .39.) It would have
been informative to have used at least one other standard psychometric test of
intelligence to see how much moreit would be correlated with the Raven than the
three indices of information-processing speed in combination. But the fact that
each of the RT indices madea significant independent contribution to the multi-
ple R with the Raven at least suggests that the component of information-
processing speed, whichis correlated with g, is not an entirely unitary compo-
nent. Rather it represents different, albeit slightly intercorrelated, components
involved in the different information-processing systems.

Further studies now in progress in our lab use all four of the RT paradigms
that I have described and are aimedatsettling, as definitively as possible, the
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question of unitary versus multiple sources of RT variance in g and determining

the proportion of g variance that can be accounted for by an optimal combination

of RT parameters derived from the four information-processing paradigms. Once

these points have been firmly established, we can use the various RT paradigms

and their g loaded parameters to learn more about the nature of g. The RT

paradigms and parameters afford many more facets from which elemental pro-

cesses and neural mechanisms can be more clearly inferred than do ordinary

psychometric tests and test items, however sophisticated ourstatistical analyses

may be.

The study of the RT correlates of g also brings us closer to the interface of

brain and behavior—the point at which individual differences in intelligence

must ultimately be understood. Already, very direct connections have been

shown between RT and such neurophysiological phenomenaasthe latency and

amplitude of evoked brain potentials (Jensen et al., 1981; Kutas, McCarthy, &

Donchin, 1977), cardiac deceleration (Krupski, 1975; Obrist, Webb, Stutterer,

& Howard, 1970; Runcie & O’Bannon, 1975; Sroufe, 1971), body temperature,

high altitude anoxia, and neuroactive drugs (Woodworth & Schlosberg, 1954).

All such physical correlates of RT should prove useful in developing a biologi-

cally based theory of individual differences in RTin all its aspects and thereby in

the variance that these variables may explain in Spearman’s g as well.
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INTRODUCTION

Approachesto the Study of Aptitude and Intelligence

The past decade has been particularly significant with respect to the emergence of

renewed interest in the psychological study of individual differences in aptitude

and intelligence. A number of important volumes have appeared (e.g., Resnick,
1976; Snow, Federico, & Montague, 1980a, b; Sternberg, 1977), and all have

been centrally concerned with an improveddefinition and understanding of the
rather nebulous constructs knownas aptitude and intelligence. In large part, the

issues discussed in these volumesreflect a concern with developing a psychology

of aptitude and intelligence in addition to the prevailing psychometry of these
constructs. This reflects both pressing social and philosophical concernsrelative
to tests and an awarenessof the possible relevance of developments in cognitive
and developmental psychology for explaining what is typically assessed by
psychometric instruments.

Oneof several possible approaches to studying the nature of intelligence and
aptitude is to apply cognitive process theory and methodologyto the analysis of
performance on tasks that are found on various specific aptitude and general
intelligence test batteries. This so-called ‘‘cognitive components’’ approach (Pel-
legrino & Glaser, 1979) does not presuppose that intelligence and aptitude are
uniquely defined by the circumscribed performancesrequired byintelligence and
aptitude tests. Obviously, intelligence covers a much wider range of knowledge
and skill. However, the cognitive components approach recognizes that various
tests have been devised that reliably assess individual differences in cognitive
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abilities and that these differences are predictive of success and achievementin
diverse real-world settings. The question then is: What are the skills that are
being assessed by such instruments and how can we understand the basis for
individual variation? Thus, the goal is to treat the tasks found on aptitude and
intelligence tests as ‘‘cognitive tasks’’ (Carroll, 1976) that can be approached
and analyzed in the same way that cognitive and developmental psychologists
have approached and analyzed memory search, visual scanning, sentence verifi-
cation, and mental arithmetic tasks, to name just a few.

Mostof the research that can be described as cognitive components analyses
has been summarized in a numberof papers (e.g., Carroll & Maxwell, 1979;
Pellegrino & Glaser, 1979, 1980, in press; Sternberg, 1977, 1979), and it fo-

cuses primarily on inductive and deductive tasks. Relatively little has been re-

ported on processanalyses of tasks representing spatial aptitude (but see Cooper,

1980; Egan, 1979). In this chapter, we discuss research that we have pursued

jointly and individually on the analysis of individual differences in spatial ap-

titude. Our studies represent an attempt to employ cognitive process methods for
the analysis of performance differences on tasks representing common measures

of spatial ability. The different studies that have been conducted can be best

understood in the context of a general plan or framework for the analysis of

individual differences in any cognitive aptitude or ability (see Pellegrino &

Glaser, 1980, in press). Such a plan or framework is necessary for cognitive

componentsresearch to yield data and theory that lead to a better understanding of

spatial ability. |

The initial step in a systematic analysis of individual differences in spatial

aptitude (or any aptitude construct) 1s to identify the domain oftasks that serve to

define it. This involves identifying a core or prototypical set of tasks that fre-

quently occur across many widely used spatial-aptitude tests and that have a

history of consistent association with the spatial-aptitude construct. Such an

initial step delineates the task forms that should serve as the target for rational,

empirical, and theoretical analysis. A multitask approach is important because an

adequate understanding of individual differences in spatial ability cannot be

based uponan intensive analysis of only a single task with a high loading on the

spatial-aptitude factor(s). Rather, it is necessary to conduct analysesthat consider

the various tasks that yield correlated performance and, in so doing, specify a set

of performancesthat define the aptitude construct. A successful process analysis

of multiple tasks should provide a basis for understanding the patterns of inter-

correlations among tasks. More importantly, the analysis of multiple related

tasks should permit the differentiation of general and specific cognitive processes

and knowledge. This differentiation can lead to a level of analysis where research

can be pursued onthe feasibility of process training and transfer.

Having identified the domain of tasks that define spatial aptitude, we must

then develop and validate information-processing theories and models for the

different tasks. The theories and models can be derived from computer-
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simulation programsor from empirical studies of the effects of task properties on

latency, solution protocols, and error patterns. These models must contain in-

formation about multiple levels of cognitive processing, including both basic

processes andstrategies that control process integration and sequencing. Such a

multilevel approach is necessary because individual differences may exist at

different levels over the entire range and distribution of age and ability that can

be considered.

The third majorstep in the analysis is to use the models of task performanceas

the basis for individual-differences analyses in each task. In this way, the utility

of a model for explaining the source(s) of individual differences can be further

tested and validated. Thus, we are explicitly proposing the idea that a modelthat

serves to capture group performance must also be shown to be valid at the

individual-subject level. Individual differences can be investigated in terms of

the parameters of a single model or in terms of the applicability of different

models for the performance of different individuals. Part of such an analysis

involves the investigation of the sources of inter-age and intra-age individual

differences. An approach combining developmental and individual-differences

analyses is particularly important to the validation and application of task-

performance models. Theories and models of task performance should be able to

account for overall developmental changes in a specific aptitude as well as the

sources of individual differences within separate age groups. With respect to the

latter issue, there is no reason to assumethat the sourcesof individual differences

within one age group are necessarily applicable to other age groups.

The next step in the analysis is the examination of cross-task consistency in

the sources of individual differences. Based upon the outcomesof the preceding

stages, one can attempt to specify and test the cognitive components that are

general acrossall task forms representative of spatial aptitude and those that may

be specific to a given task form or stimulus type. Analyses of cross-task consis-

tency are particularly important with respect to providing a basis for explaining

the consistent correlational patterns found in the psychometric literature. Such

analyses are also critical with respect to verifying some important implicit as-

sumptions at the core of cognitive theory and methodology. Wediscussthelatter

issue at the end of this chapter.

In the remainder of the chapter, we present the results of research that follow

from the preceding analytic scheme. First, we briefly discuss spatial aptitude as a
psychometric construct. This discussion also serves as a means for describing the

various tasks that represent the spatial-aptitude domain. Then, we present data

and theory on processing in both simple and complex spatial-relations and
spatial-visualization tasks. Our most complete and detailed treatment of process-
ing involves simple spatial-relations or ‘‘mental-rotation’’ tasks. Here, we dis-

cuss sources of individual, sex, and developmental differences in performance,
as well as developmental changes in the sources of individual differences. The
discussion of performance in complex spatial-relations and visualization tasksis
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limited to process models and sources of adult individual differences in perfor-
mance. Thefinal section of the chapter attempts an integration and interpretation
of our findings and considers some issues associated with the analysis of spatial
aptitude in particular and the analysis of individual differences in general.

An Overview of Spatial Aptitude

Hierarchical theories of aptitude, such as those developed by Cattell (1971) and
Vernon (1965) based upon procedures of factor analysis, typically distinguish
among verbal, general reasoning, and spatial-mechanical aptitude factors. In
Cattell’s theory, this distinction is represented by the partition amongcrystallized
(g-), fluid (g,), and visualization (g,) intelligences. Vernon’s hierarchy distin-

guishes between a verbal-educational construct (v-ed) and a practical-mechanical

construct (k:m). The latter is then further subdivided into more specific ap-
titudes, some of which involve commonspatial-processing tasks. Recently, two
reviews of factor analytic research on spatial aptitude have appeared (Lohman,
1979; McGee, 1979a). Both have reemphasized points made by Smith (1964) in
an earlier review of spatial ability. First, they were clear in noting that all major
factor analytic studies have identified mechanical/spatial factors that are distinct
from other general and specific factors. However, both also point outthat spatial

aptitude is still an ill-defined construct after 70 years of psychometric research.
There appears to be little agreement among majorstudies as to the numberof
distinct spatial abilities that may exist and how best to characterize each one.
Lohman (1979) has provided an overview of some of the problems encountered

in trying to integrate the major factor analytic work that has been done onspatial

aptitude. First, identical tests appear with different names in different studies,

and tests with the same name are often quite different in appearance and de-

mands. A second problem is that subtle changesin test format and administration

can have effects on the resultant factor structures (e.g., the use of solution time as

opposed to numbercorrect as the measure of performance). Finally, perhaps the

most important difference relates to procedural variation in factor extraction and

rotation.

To correct for some of these problems, Lohman (1979) reanalyzed the data

from several major studies in an attempt to isolate a commonset of spatial

factors. The result of these efforts was the delineation of three distinct factors,

two of which are of direct concern in this chapter. One factor was labeled spatial

orientation and appeared to involve the ability to imagine how stimulus or

stimulus array would appear from another perspective. Typically, such tasks

require individuals to reorient themselves relative to the array, as would be the

case when a planeor boat shifts heading relative to some land mass. The other

two factors were labeled spatial relations and spatial visualization. The spatial-

relations factor appears to involve the ability to engage rapidly and accurately in

mental rotation processesthat are necessary for judgments aboutthe identity of a
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pair of stimuli. Examples of common spatial-relations tasks are shown in Fig.

7.1. The first problem type is drawn from the Primary Mental Abilities Space

Test (hereafter referred to as the PMA) and requires the individual to identify

those alternatives that are identical to the standard on theleft. Identity is defined

in termsof rotation in the picture plane whereas mismatchesinvolve rotation plus

mirror-image reversal. The second problem type in Fig. 7.1, similar in format to

the PMA,is the Cards Test from the French Reference Kit for Cognitive Factors

(French, Ekstrom, & Price, 1963). The third problem type is the Cube Compari-

sons Test from the French Reference Kit. The individual’s task is to determineif

two cubes are logically consistent (same) or inconsistent (different), and this

requires the 90° rotation of one or more surfaces to bring the two stimuli into

congruence for a consistency check. The final problem type is taken from test

developed by Vandenberg based uponstimuli originally used by Metzler and

Shepard (1974). The individual’s task is to find the two stimuli that are the same

as the standard on theleft.

The spatial-visualization factor is defined by tests that are relatively un-

speeded and more complex. Such tasks frequently require a manipulation in

which there is movement amongthe internal parts of the stimulus configuration

or the folding and unfolding of flat patterns. Examples of representative tasks are

provided in Fig. 7.2. The first problem type shownin Fig. 7.2 is taken from the

 
FIG. 7.1. Examples of common spatial-relations tasks.
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FIG. 7.2. Examples of commonspatial-visualization tasks.

Minnesota Paper Form Board Test. The individual’s task is to select the com-
pleted figure that can be constructed from the set of randomly arranged pieces
shown in the upper left corner of the item. The second problem type is the
Punched Holes Test taken from the French Reference Kit. The problem shows a
series of hypothetical folds of a square of paper followed by the punching of a
single hole. The individual’s task is to determine the numberand location of the
holes when the paper is unfolded and select the appropriate answer. The third
problem type is a paper-folding or surface-development item taken from the
Differential Aptitude Test. The problem contains a representation of a flat un-
folded object and several complete objects. The individual’s task is to select the
completed object that can be made from the unfolded object.

The differences between spatial-relations and visualization tasks seem to re-
flect two complementary dimensions of performance (Lohman, 1979). One of
these is the speed-power dimension. Individual spatial-relations problems are
solved more rapidly than spatial-visualization problems, and the tests themselves

are administered in a format that emphasizes speed in the former case and both
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speed and accuracyin the latter case. The second dimension involves stimulus

complexity. A gross index of complexity is the number of individual stimulus

elements or parts that must be processed. Spatial-relations problems, although

varying among themselves in complexity, involve less complex stimuli than do

spatial-visualization problems. This particular conception of these two dimen-

sions as mapped onto thetasks and aptitude factors is represented in Fig. 7.3. In

terms of a process analysis of spatial aptitude, the important question is whether

individual differences in performance on these various tasks reflect differential

contributions of the speed and accuracy of executing specific cognitive pro-

cesses. The remainderof this chapter reports our initial attempts to address this

question in the course of considering the components of processing that contrib-

ute to individual differences in performance on specific tasks.

PROCESS ANALYSES

OF SIMPLE SPATIAL RELATIONS

Our research on performance in simple spatial-relations tasks has primarily fo-

cused on a single task—the PMA (Thurstone & Thurstone, 1949). This test was

chosen for several reasons. First, as indicated earlier, the PMA is typical of many

measures of spatial aptitude in which an individual must ‘‘mentally rotate’’ a

stimulus in the picture plane in orderto differentiate it from other similar stimuli

and match it against some standard. Second, the PMA loads heavily on the

spatial-relations factor in factor analytic studies of the structure ofintelligence

(Cattell, 1971; Lohman, 1979; Smith, 1964; Thurstone, 1938). Third, the PMA

SPATIAL ABILITY

Zs ™

  

Spatial Relations Spatial Visualization

J

2-D Mental Cube 3-D Mental Form Paper Surface

Rotation Comparison Rotation Board Folding Development

Speed Power

Simple Complex

FIG. 7.3. Simplified representation of spatial-aptitude factors, tasks, and per-

formance dimensions.
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is appropriate acrossa relatively broad developmental range, beginning at 10 or
11 years of age and continuing through adulthood (Thurstone & Thurstone,
1949).

Performance on simple spatial-relations problems such as those found on the
PMAcanberelated to the general model of the processes required for mental
rotation problems proposed by Cooper and Shepard (1973). The process model
was based upon data obtained in a paradigm that required individuals to decide,
as rapidly as possible, if two stimuli presented in different visual orientations
were the same. This single-trial comparison of a stimulus pair closely resembles
the individual comparisons that must be made to solve PMA problems(see Fig.
7.1). An example of the application of this paradigm is a study by Cooper
(1975), in which she presented two nonsenseshapesthat differed in orientation
from 0-300°; subjects judged whether the shapes were identical or mirror images
of one another. Responselatencies in this task were a linearly increasing function
of the difference in orientation (angular disparity) between the two shapes. Such
a result has been interpreted as indicating that subjects mentally rotate the stimuli
in a manner analogousto the actual physical rotation of the object. The greater
the ‘‘mental distance’’ to be traveled, the longer it takes to solve the problem.

Cooper and Shepard (1973) presented evidence that response latency on these
problemsreflects four discrete stages of processing. The model that they pro-
posed is illustrated in Fig. 7.4. The first stage of processing requires encoding of
the stimuli, which involves representing the stimuli (i.e., their identity and
orientation) and storing this information in working memory. The second phase
of processing involves rotation of the mental representation of the nonvertical
stimulus to bring it into congruence with the vertical stimulus. This phase is
followed by a comparisonofthe stimulus representations to determineif they are
identical. The outcome of the comparison leads to a positive or negative re-
sponse. As shownin Fig. 7.4, only the secondstage of processing (i.e., mental
rotation) is affected by the orientation of the stimulus (Cooper & Shepard, 1973).
Encoding, comparing, and responding take approximately the same amount of
time, regardless of the orientation of the stimulus. The most controversial of
these claims is the suggestion that the rate of encoding is unaffected by stimulus
orientation, but supporting evidence includes:

1. Cuing subjects regarding the orientation or identity of a to-be-presented
stimulus affects the intercept but not the slope of the function relating
reaction time to angular disparity (Cooper & Shepard, 1973).

2. When encodingandrotation are separated experimentally by having sub-

jects first view a stimulusbriefly and then instructing them to rotate it toa
particular orientation, rotation rates are quite similar to those found in

other studies that measure encoding and rotation simultaneously (Cooper,

1975).
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Latency=e

Rotate

Comparison Latency=r(Degrees of Rotation)

Stimulus

Compare
. . Latency =c

Stimuli 
RT =r(Degrees of Rotation)+(e+c +m)

total

FIG. 7.4. Representation of the Cooper and Shepard (1973) model for the solu-

tion of simple mental rotation problems.

Consequently, the overall equation for reaction time in this task is generally

written as: RT = x(r) + (e + c + m), where x represents the angular disparity

between the stimuli being compared, and r, e, c, and m represent the times for
rotation, encoding, comparison, and motor response. The slope of the function

relating response time to stimulus orientation is used to estimate the rate of

mental rotation, whereas the intercept provides an estimate of the total time
necessary for the remaining processes that are constant over problems.

Individual Differences

The process analysis of performance on a mental rotation problem provides an

obvious schemefor the analysis of individual and developmental differences in

simple spatial-relations performance. If the processes involved in solving mental
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rotation problemscan bereliably estimated for individuals, then what remainsto
be determined is the respective contributions of these processes to age and skill
differences in this cognitive aptitude.

Individual differences in performance on a speeded test such as the PMA may
well be due entirely to speed differences in the cognitive process of mental
rotation. To estimate this process in its simplest form, one can determine the
slope value for the rotation of familiar stimuli such as alphanumerics. Theinter-
cept of the function for processing alphanumeric stimuli is an estimate of the time
to encode, compare, and respond to familiar stimuli, and it, too, may be related

to individual differences in reference test performance. A potentially important
aspect of performance on a test such as the PMA may involvethe capacity to
encode, compare, and rotate unfamiliar stimuli that lack representations and

labels in permanent memory. Previous studies have shownthatit takes longer to
rotate unfamiliar stimuli such as PMA characters than to rotate familiar al-
phanumerics. Similarly, there is a higher intercept for processing unfamiliar
stimuli of the PMA type. Thus, it is necessary to consider the additional times
associated with encoding, comparing, and rotating unfamiliar stimuli as poten-
tially important aspects of skill differences on a reference test such as the PMA.
All of these aspects of processing were considered in a study conducted by
Pellegrino, Mumaw,Kail, and Carter (1979).

The Pellegrino et al. (1979) analysis of spatial relations and mental rotation
performance involved the testing of 99 adults (46 males and 53 females) who
represented the entire range of performance on the PMASpatial-Relations Test.
This included low scores near 0 and high scores at the upper limit of 70. The
sample had a deliberately disproportionate representation in the tails of the distribu-
tion, although the total distribution of skill preserved the general characteristics
of normality. Each subject was tested individually in experimental sessions in-
volving the presentation of over 275 stimulus pairs. The pairs represented actual
PMAstimuli or asymmetric alphanumerics. Eachtrial involved the presentation
of an upright PMA character or alphanumeric and a comparison stimulus rotated
O-150° from upright. ‘‘Same’’ and ‘‘different’’ judgment trials were intermixed,
as were the different stimulus types. A total of eight different PMA characters
and eight different alphanumerics were usedto create the stimulusset.

The overall performance data for ‘‘same’’ judgmenttrials are shownin Fig.

7.5. As can be seen, alphanumeric stimuli had both a smaller slope and intercept

value than the PMA stimuli. Both functions represented in Fig. 7.5 clearly show

that there is a relatively constant increase in the time to solve an item as the

degree of angular disparity between the standard and comparison stimulus in-

creases. Error rates on both types of stimuli wererelatively low, with an overall

error rate of .03 for alphanumerics and .09 for PMA characters.
Individual subject data showed the same linear trends exhibited in the group

mean data. Least squares regression lines were obtained for both stimulus types,

and these were used to provide individual subject estimates of the four basic
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FIG. 7.5. Mental rotation latency data as a function of stimulus type and angular

disparity of stimuluspair.

processing components. An importantissue relative to these process estimatesis

their reliability. Table 7.1 shows both the pattern of intercorrelations among the

parameters and their individual split-half reliabilities (along the diagonal). As

might be expected, the highest correlations are between measures that are as-

sumed to share some commonality of processing operations. Thus, the intercept

for alphanumeric stimuli is highly correlated with the intercept for PMA stimuli,

and there is less shared variance between slope and intercept measures. The

correlations, even when corrected for attenuation, are not at the level where one

TABLE 7.1

Parameter Intercorrelations and Reliabilities
 

Alphanumeric PMA Alphanumeric PMA

Intercept Intercept Slope Slope

Alphanumeric intercept (.82)¢ .774 22? 14
PMAintercept (.84)? 52° 32°

Alphanumeric slope (.87)"% 72°

PMAslope (.82)°

“pn < .001.

yn < .05.

fp < Ol.
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TABLE7.2

Parameter Descriptions

Parameter Label Process and Operational Definition

Alphanumeric intercept Time to encode, compare, and respondto alphanumeric stimuli; inter-

cept of alphanumeric linear function.

Intercept difference Additional time to encode and compare unfamiliar PMA stimuli; inter-

cept of PMA linear function minus intercept of alphanumeric linear

function.

Alphanumeric slope Time to rotate alphanumeric stimuli; slope of alphanumeric linear

function.

Slope difference Additional time to rotate unfamiliar PMA stimuli; slope of PMA linear

function minus slope of alphanumeric linear function.

 

should assumethat the two slope measures nor the two intercept measures assess

completely identical sources of variance.

The slope and intercept measures were used to derive four specific parameters

that formed the basis of the analysis of individual differences. These are de-

scribed in Table 7.2, and they represent: (1) the time to encode, compare, and

respond to familiar stimuli; (2) the additional time for encoding and comparing

unfamiliar PMA stimuli; (3) the time to rotate familiar alphanumeric stimuli; and

(4) the additional time for rotating unfamiliar PMA stimuli. As can be seen in

Table 7.3, the simple correlations show that PMA test performance is most

highly correlated with the speed of the mental rotation process for familiar

stimuli and the processes associated with encoding and comparing unfamiliar

stimuli (i.e., the intercept difference parameter). The multiple regression

analysis showsthat the slope difference parameter (i.e., the additional time to

TABLE7.3

Correlational Results with PMAas Criterion

 

Multiple

Regression

Predictor Simple r F B

Error rate —.18 2.37 —.15

Alphanumeric intercept —.24 2.83 —.15

Intercept difference — 41% 4,909 —.24

Alphanumeric slope —.42% 5.119 —.26

Slope difference —.14 4.67° —.20

R = .57

R? = .32

 

pn < .01.

2p < .05.
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rotate unfamiliar PMAstimuli) is also a significant predictor of PMA perfor-

mance. Twoadditional points must be maderelative to the results of the multiple

regression analysis. First, the least important latency parameter for predicting

performanceis the intercept for alphanumeric stimuli. Such result is of interest

because this parameter accounts for approximately 50% of the total time to solve

a typical rotation item. Second, errors are generally low on both PMA and

alphanumeric rotation problems, and individual differences in error rates on

experimental items are not related to skill differences on the PMA. Thus, dif-

ferences in speed rather than accuracy seem to account for spatial aptitude dif-

ferences as measured by the PMA.Theparticular speed differences that account

for aptitude differences involve a basic mental rotation process and the speed of

encoding, comparing, and rotating unfamiliar stimuli. Estimates of these compo-

nents yield a multiple R of .57 when PMAperformanceis the criterion.

Although the simple and multiple correlation analyses are informative, they

involve sets of assumptions about linear combinations of processing components

that may be inappropriate. In essence, there may be a variety of ways in which

individuals can achieve moderate to high scores on aptitude tests by trading off

one process against another. In an attempt to look at such a possibility, as well as

to get a more graphic representation of the differences among our subjects, a

series of cluster and scaling analyses were conducted. Thefirst analysis involved

the clustering of individuals on the basis of their similarities over the four basic

processing parameters. The 99 subjects could be reasonably divided into 12 sepa-

rate groups. Table 7.4 identifies and orders the groups with respect to mean

performance on the PMA.Additional data are provided on error rates on experi-

TABLE 7.4
Group Characteristics in the 2-Dimensional Mental

Rotation Study

 

Group Mean PMA Mean Error Rate Males Females

A 53.4 14.0 9 4

B 49.9 10.6 2 5

C 48.7 11.6 7 2

D 47.7 6.0 3 6

E 43.7 9.7 4 2

F 42.8 6.0 4 ]

G 40.7 13.4 1 6

H 40.0 21.7 2 3

I 39.0 10.0 3 5

J 37.8 7.1 3 5

K 31.2 12.0 4 1

L 27.7 12.0 4 11
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mental items and the total N in each group as well as on the distribution of males
and females. The similarities among the groups were analyzed by using INDSCAL,
and a clear picture emerged with respect to the group relationships and dimen-
sions. Each of the three dimensions represented a speed continuum for: (1)
the rotation of familiar alphanumerics; (2) the additional rotation time for un-

familiar PMA stimuli; and (3) the additional time to encode and compare un-

familiar PMA stimuli. Figure 7.6 shows the group patterning for each pair of
dimensionsandthe results of a group-cluster analysis. The separate figures have
been drawnso that the upper right quadrant represents above average speed on
both dimensions; the lowerleft quadrant represents below average speed on both
dimensions.

The combined cluster and multidimensional scaling analyses clearly indicate
that the groups with the highest average PMA performance consistently appearin
the upper right quadrant (groups A-E); the groups with the lowest average PMA

performance consistently appear in the lower and/or leftmost quadrants (groups
J-L). The four groups with intermediate levels of performance (groups F-I) form

two different clusters that are average on some dimensions and above or below

average on others. Someof the differences among groups also seem to be linked

to sex differences as well as possible speed-accuracy trade-offs as evidenced by
high or low error rates on the experimental items. Most importantly, the analyses

indicate that superior performance on the spatial-aptitude measure is generally

associated with greater speed in all the different components of processing.
Intermediate performance typically involves weakness in one or perhaps two

components. The source of the difficulty can vary over individuals and groups.

Poor performance seems to involve extreme weakness in two orall three major

processing components.

The regression analysis, cluster analysis, and multidimensional scaling data

that were obtained by Pellegrino et al. (1979) suggest some of the important

 
FIG. 7.6. Multidimensional scaling representations of groups differing in latency

parameters and PMAperformance. Dimension | represents additional time to en-

code and compare unfamiliar stimuli. Dimension 2 represents additional time to

rotate unfamiliar stimuli. Dimension 3 represents time to rotate familiar stimull.
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processing components that contribute to overall individual differences in per-

formanceonspatial-relations tasks such as the PMA. Thedata alsoindicate that

there may be a variety of ways in which individuals can achieve low, moderate,

and high scores on such tests. A number of issues remain to be addressed with

respectto the group and individual differences that were found, particularly with

regard to the encoding, comparison,androtation of the unfamiliar PMA stimuli.

One issue is why such stimuli take longer to rotate and show greater variability

with respect to the duration of the rotation process. Related to this is the question

of why someindividuals have such difficulty in processing these stimuli. One

hypothesisis that for unfamiliar stimuli, and perhapsalso for familiar stimuli, rota-

tion may be a composite of several processes ratherthan an holistic analogue pro-

cess as some have postulated (e.g., Shepard, 1975). The solution of even a simple

mental rotation problem may involve repetitive processing ofa series of separate

stimulus elements. Such an assumption can begin to explain why alphanumerics,

which maybeholistically processed given the availability of a long-term memory

representation, are rotated more rapidly than PMAstimuli. The latter may often

require stimulus fractionationpriorto rotation. Individuals who showparticularly

long latencies for rotating such stimuli may be forced to execute a rotation

process several times because of their inability to achieve a sufficiently stable

internal representation that can be operated on holistically. Similarly, the

additional time to encode and compare unfamiliar PMA stimuli maybe dueto the

need to execute a comparison process for each separate stimulus element that is

rotated. What we are suggesting is that individual differences in spatial ability

may emanate from fundamental representational and ‘‘visual memory”’ skills

that affect the total time and course of item processing. We considerthis possibil-

ity in greater detail in the context of other individual difference data to be

presented subsequently.

Sex Differences

Sex differences are found on many psychometric measures of spatial aptitude,

including spatial-relations tests such as the PMA (McGee, 1979b; Thurstone,

1958). The typical finding is that females score lower than males, and such a

trend wasalso evident in the data just reported on individual differences in PMA

performance. Much of the research on sex differences in spatial aptitude has

focused on several biological factors that might account for these differences.

Onepossibility that has been consideredis that sex differences in spatial aptitude

may beattributable to a sex-linked recessive gene (e.g., Bock & Kolakowski,

1973; Boles, 1980). Another possibility relates to androgyny and sex differences

in the gonadal hormones such as estrogen and testosterone. An hypothesized

quadratic relationship between testosterone levels and spatial ability in adults has

recently been verified by Cantoni (1981). One reason for exploring a possible

hormonal basis for sex differences in spatial ability is evidence that reliable test
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differences do not appear until early adolescence and then are maintained
throughout adulthood (Maccoby & Jacklin, 1974). Other research has investi-
gated differences in lateralization of the cerebral hemispheres as a basis for sex
differences in spatial aptitude (Harris, 1978; Kail & Siegel, 1978).

Only recently, however, have investigators attempted to identify the specific
cognitive processes that are implicated in sex differences in spatial aptitude. For
example Metzler and Shepard (1974), reported a series of experiments in which
subjects processedpairs of abstract three-dimensionalobjects, of the type shown
in Fig. 7.1, that differed in orientation by up to 180°. Womentended to have
steeper slopes(i.e., slower mentalrotation), but the effects were not significant.
In one experiment, womenalso had nonsignificantly greater intercepts and error
rates. Interpretation of these findings, however, is complicated by the fact that
subjects in the experiments were selected onthe basis of their high scores on two
psychometric measuresof spatial ability.

Tapley and Bryden (1977) conducted several experiments similar to those of
Metzler and Shepard (1974). Twoof these involved concrete rather than abstract
three-dimensional stimuli. In both studies, women had nonsignificantly larger
intercepts and, in one, women were less accurate. In a third experiment, the
Metzler-Shepard abstract stimuli were used. Womenhadsignificantly steeper
slopes than men and had nonsignificantly greater intercepts. Differences in accu-
racy favoring males emerged in one analysis of the error data but not in the
second.

In these studies, we see trends rather than definitive patterns. For the abstract
three-dimensional stimuli, women generally had steeper slopes and, less fre-
quently, larger intercepts and error rates. For the realistic three-dimensional
stimuli, sex differences seem to be limited to a small difference in the intercept.
Perhaps the most revealing aspect of these two studies, then, is the finding that
sex differences in spatial ability may be dependent on the type of stimuli pre-
sented, with sex differences morelikely with unfamiliar stimuli. To evaluate this
possibility, Kail, Carter, and Pellegrino (1979) tested a different and totally
random sample of 51 men and 53 women in the paradigm described in the
previous section, in which pairs of PMA characters and alphanumeric symbols
that differed in orientation by 0-150° were presented.

As before, the principal data of interest are the slopes and intercepts of the
functions relating response times on correct responses to the difference in
stimulus orientation. However, two ancillary findings should be mentionedfirst.
Errors were infrequent for both males (6%) and females (5%). Also, although
errors increased as a function of the difference in orientation, this increase was

comparable for men and women.In short, men and women were both capable of
performing the task.

Equally important was the finding that the latency data were quite linear for
both men and women.Linear functionsfit to the group data account for 90-97%
of the variance in latencies. When functions were calculated for individuals,
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latencies from men on alphanumeric stimuli were fit slightly more accurately by

the linear model than were latencies on PMA characters (r’s of .75 and .72),

whereas the reverse was true of females (r?s of .66 and .77). More important,

however,is the fact that the linear model accounts for a large proportion of the

variance in subjects’ response times, which suggests that both men and women

were solving the problems using the processes described by Cooper and Shepard

(1973).

Of greater interest are the findings for the slopes and intercepts. The intercepts

for men and women were quite similar on both the alphanumeric stimuli (760

msec vs. 814) and the PMAcharacters (1064 msec vs. 1101). This suggests that

males and females executed encoding, comparison, and response processesat

comparable rates, although because the intercept is a composite measure, a sex

difference in only one of these processes might not be evident in our data. An

intercept difference parameteralso fails to show any evidenceof a sex difference.

Turning now to the slope parameter, males mentally rotated stimuli more

rapidly than did females. Further, the sex difference, although reliable for both

types of stimuli, was greater for PMA characters (4.61 msec/deg vs. 6.66) than

for alphanumeric stimuli (2.93 msec/deg vs. 3.88). Thus, not only was there a

sex difference in the time to rotate familiar stimuli, but there was also a sex

difference in the additional time needed to rotate unfamiliar PMA stimuli.

Analysis of individual differences in slopes within each sex shed considerable

light on the nature of the sex difference in the meansfor slopes. Figure 7.7 shows

the distribution of slope values within each sex. For men, the distributions for

both alphanumeric and PMAstimuli were generally normal, with some positive

skew. For women,the distribution of alphanumeric slopes differed significantly

from normality due to considerable positive skew. A similar pattern, in extreme

form, was found in the women’s distribution of slopes for PMA stimuli. The

distribution was clearly bimodal: One mode, 3.5 msec/deg, approximates the

male mode of 4.5 msec/deg. The second mode, 8.5 msec/deg, was essentially

outside the range of the male distribution. Stated another way, 70% of the

womenhad slopesin the range of the male distribution, whereas 30% fell outside

that distribution.

Thus, the findings of Kail, Carter, and Pellegrino (1979) implicate a single

componentof spatial processing—the rate of mental rotation—as the major locus

of sex differences in performance on a prototypic measure of simple spatial

relations (see also Petrusic, Varro, & Jamieson, 1979). Men mentally rotated

stimuli, especially unfamiliar ones, at a much faster rate than women did. Fur-

thermore, this sex difference in average rate of mental rotation wasattributable to

greater variability among women.In all other aspects of processing—including

the ability to perform the task (error data), the extent to which their data con-

formed to the predictions of the Cooper and Shepard (1973) model (r? values),

and the estimates of encoding, comparison, and response processes—men and

womenwere quite alike. The Kail, Carter, and Pellegrino (1979) analysis of sex
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FIG. 7.7. Frequency distributionsof slopes and intercepts on alphanumeric and
PMAstimuli plotted separately for men and women. From Kail, Carter, and
Pellegrino (1979).

differences also serves to emphasize two other points. First, the majority of the
variance in performance wasassociated with individual differences rather than
with a sex difference per se. This is most obvious in the comparisonofthe slope
distributions. Second, finding a sex difference in the rate of mental rotation such
that certain women seem to execute this process more slowly than others does not
constitute an explanation of the effect. One possibility is that individuals exhibit-
ing longer times execute a rotation process several times and/or behave more
cautiously in responding. Given that there are important differences in the rate of
mental rotation, it remains to be determined if they are associated with identifi-
able differences in the strategy or process sequence for performing the task.

Developmental Change

There is a large body of literature in developmental psychology on spatial
perspective taking that originated with Piaget and Inhelder’s (1956) work on the
‘‘three mountains’’ task. In this problem, a child is shown a model depicting
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three mountains, each with a distinctive object at the summit. The childis asked

to imagine how the mountains appearto a doll, who is placed in several positions

around the model. The child responds by selecting the photograph that depicts

the doll’s view.

Piaget and Inhelder (1956) found that prior to 7 or 8 years of age, children

selected photographs corresponding to their own view of the mountains rather

than to the view of the doll. Beginning at 7 or 8 years, children realize that the

doll’s view differs from their own, but they often select an incorrect photograph

because they relate the doll’s position to one mountain rather thanto the entire

group. Not until 9 or 10 years of age do children consistently select the appro-

priate photograph. According to Piaget and Inhelder (1956), this demonstrates

the knowledgethat: ‘‘to each position of the observer there correspondsa particu-

lar set of left-right, before-behindrelations between the objects constituting the

group of mountains. These are governed by the projections and sections appro-

priate to the visual plane of the observer [p. 241].”’

The literature stemming from Piaget and Inhelder’s (1956) findings hasat-

tempted to reveal conditions that would facilitate young children’s ability to

coordinate perspectives (e.g., Liben, 1978); to determinethe relations between

perspective taking in which an arrayis stationary and the observer moves versus

rotation problems in which a stationary observer anticipates the appearance of

an array after it moves (e.g., Huttenlocher & Presson, 1973); and research

concerning rotation and perspective-taking skill in large-scale spaces (e.g.,

Hardwick, McIntyre, & Pick, 1976). Common to much ofthis research is an

emphasis on spatial processing in young children. According to the Piagetian

account, the critical developmental changes occur between 4 and 10 yearsofage,

so adolescents and adults typically are not studied, and, when theyare, it is

primarily to provide a baseline against which to assess the performance of the

younger children of interest. Yet, the fact that there are consistent individual

differences in spatial aptitude among adolescents and adults suggests that, al-

though all children may acquire the rudiments of spatial processing by middle

childhood, development in this realm continues, with individuals ultimately at-

taining different levels of skill.

To investigate the development of spatial processing in late childhood and

adolescence, we (Kail, Pellegrino, & Carter, 1980) tested 37 8-year-olds, 22

9-year-olds, 44 11-year-olds, and 58 19-year-olds using the general procedures

described previously. That is, two versions of a stimulus—a standard and a

comparison—were presented on eachtrial, and the comparison stimulus was

rotated 0-150° from the standard. Subjects determinedif the standard and com-

parison stimuli would be identical or mirror images (i.e., reflections) if the

standard and comparison stimuli were to appear at the same orientation. On 72

trials, the stimuli were pairs of alphanumeric symbols; on 72, they were characters

from the PMA.

As wasthe case in our study of sex differences (Kail, Carter, & Pellegrino,

1979), the error data and r? values, although not the parameters of primary
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consideration, are of more than passinginterest. Errors were infrequentat all age
levels, with values of 6%, 8%, 4%, and 5% for 8-, 9-, 11-, and 19-year-olds,
respectively. Consistent with the Piagetian position, by middle childhood chil-
dren are quite capable of anticipating the appearance of an object that is to be
rotated. Similar developmental invariance was generally the case for r? valuesas
well. The r’ values for alphanumerics based on group data were .91, .87, .91,
and .94 for 8-, 9-, 11-, and 19-year-olds, respectively; corresponding valuesfor
PMAcharacters were .80, .97, .90, and .96. The r? values were smaller when
derived from functionsfit to individuals’ data. Mean r?s ranged from .68 to .78,
with the exception of the 8-year-olds’ mean r? for PMA characters, which
was .52. Thus, with the exception of this one instance, the linear fit was quite
good for individuals, indicating that their performance was consistent with the
expectations of the Cooper and Shepard (1973) model.

Developmental changes in the parameters of primary interest are depicted in
Fig. 7.8, and three features of these data are noteworthy. First, there was a
regular developmental change in rate of mental rotation from approximately 7
msec/deg among 8- and 9-year-olds to somewhatless than 4 msec/deg for 19-
year-olds. Second, unfamiliar stimuli were rotated approximately 2.5 msec/deg
more slowly than alphanumerics by all groups except 8-year-olds, for whom
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FIG. 7.8. Mean parameter values for individual subjects plotted as a function of
age. From Kail, Pellegrino, and Carter (1980).
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interpretation of the parameters is problematic due to the smaller r’ values.

Finally, the difference betweenthe intercepts (i.e., PMA intercept-alphanumeric

intercept) also declines systematically over development. Assuming that the

response-time componentof these two intercepts is the same, then this decline

reflects a developmental change in the speed with which unfamiliar stimuli are

encoded and compared.

These findings were based on slopes and intercepts computedforall individu-

als. However, at each age level, there were some individuals whose r? values

were not significant. In these cases, interpretation of the slope and intercept

parameters is not straightforward. Consequently, we repeated the analyses in-

cluding only individuals with significant r? values for both types of stimuli. The

percentage of individuals who metthis criterion increased developmentally, with

values of 38%, 50%, 50%, and 59%, for 8-, 9-, 11-, and 19-year-olds, respec-

tively. However, the pattern of results is remarkably similar to that found when

we analyzed the data forall individuals: The mean slope declines with develop-

ment, as does the mean difference between intercepts. The difference between

slopes, in contrast, is essentially constant developmentally, changing less than |

msec/deg between 8 and 19 years ofage.

What factors account for the developmental change observed in the various

parameters? Age differences in the slope parameter might reflect a developmen-

tal shift toward a more efficient alogorithm for mentally rotating stimuli (a

suggestion we examinein detail in the next section). Regarding the greater speed

with which older individuals encoded and compared stimuli (1.e., the intercept

difference), note that encoding of an alphanumeric stimulus presumably involves

the activation of information already stored in long-term memory, whereas en-

coding of PMA characters involves generating such a pattern anew for eachtrial.

Thus, the age differences may reflect the greater speed with which older indi-

viduals construct such internal representations of unfamiliar stimuli.

To this point, we have focused exclusively on change in the average speed

with which individual processes are executed at different ages. An important

related issue concerns the development of individual differences in spatial skill.

Wehave been particularly interested in: (1) the magnitude of within-age indi-

vidual variation in the different processing parameters; and (2) whether such

within-age individual variation is associated with psychometric performancedif-

ferences.

Evidence regarding the first of these issues comes from the Kail et al. (1980)

study discussed previously. The standard deviations for each of the parameters

were comparable for 9-, 11-, and 19-year-olds (8-year-olds are not considered

here becauseof the interpretive problems associated with the low r? values). Yet,

this similarity is somewhat misleading due to the large developmental changesin

the means associated with these standard deviations. A more insightful view of

the range of individual variation is provided by the following analysis. We

compared the performance of a hypothetical individualin the 5th percentile of his
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or her age group (i.e., X + 2 .s.d., because superior performanceis associated
with smaller parameter values) with that of a person in the 50th percentile. Such
comparisons were made for three parameters: the intercept for alphanumeric
stimuli, the intercept difference (i.e., PMA intercept-alphanumeric intercept),
and the slope for PMA stimuli. The results are shown in Fig. 7.9 in which the
parameter values for the hypothetical 5th-percentile person are expressed as a
percentage of the value for the 50th-percentile individual(i.e., the group mean).

First, consider the alphanumeric intercept. Values for the Sth percentile are
approximately 50% greater than the mean, for all age groups. The intercept
difference showssimilar developmental invariance, but the Sth-percentile values
are more than twice as large as the mean. Quite a different pattern is found for the
slope parameter. Among 8-year-olds, the Sth-percentile value is nearly 70%
larger than the mean, but, among adults, the value is approximately 110% larger.
In short, among young children, the additional time to encode and compare
unfamiliar stimuli is the source of greatest individual variation; among adults,
these processes plus the rate of mental rotation are equally large sources of
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FIG. 7.9. Parameter values for a hypothetical 5th-percentile individual expressed

as multiples of corresponding values for a 50th-percentile individual at each age

level.
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TABLE 7.5

Correlations Between Parameters

and PMA Scores

 

Predictor 9-Year-Olds 13-Year-Olds

Slope —.23 (—.31)4 —.40° (—.57)

Intercept — 42° (—.53) — 45° (—.57)

 

“ Values in parenthesesare adjustedfor reliability

of measures.

2n < .05.

individual differences. Rate of encoding and comparing alphanumeric stimuli
and responding has the smallest range of individual variation at all ages.

In a subsequent study (Kail, Carter, & Pazak, 1979), it was shown that

individual differences in these parameters are systematically and differentially
related to differences in psychometric test performance. Slope and intercept
parameters were estimated for an additional 26 9-year-olds and 42 13-year-olds
who werefirst tested on the PMA Spatial Relations Test, then were given 100
trials in which pairs of PMAstimuli were presented, which differed in orientation
by 0-135° in 15° increments. Raw and corrected correlations are depicted in
Table 7.5. Consistent with the findings presented in Fig. 7.9, the intercept
parameter wassignificantly correlated with PMA performance for both younger
and older children, whereas the slope was correlated only for the older group.
Thus, someas yet undetermined combination of speedin encoding, comparison,
and response processesis associated with superior spatial skill for both children
and adolescents. Presumably, this result is attributable to the special demands of
encoding and comparing unfamiliar stimuli, as is the case for adults. In contrast,
rate of mental rotation is linked to psychometrically measured ability only for
adolescents and adults. It would appear that individual differences in spatial
aptitude are initially associated with basic encoding and comparison processes,
that such differences persist over development, and that the differences are then
accompanied by additional differences in the speed of mentally rotating or trans-
forming the information that has been encoded. These developmental changesin
the sources of individual differences are coincident with overall developmental
trendsindicating general improvementin the encoding, comparison, androtation
of unfamiliar stimuli. Thus, it seemsthat the overall developmental improvement
in mental rotation speed is not uniform over individuals, and thusit may become
a primary basis of individual differences in adolescents and adults.

Alternative Process Models

The research described thus far has been based entirely upon the aforementioned
Cooper and Shepard (1973) model. Generally, the model has proven quite satis-
factory in the sense that it accounts for substantial proportions of variance when
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applied either to group or individual data. However,in each case, the Cooper and

Shepard (1973) model was applied only to judgments for identical pairs; when

applied to judgments based on mirror-image pairs, the model encounters difficul-

ties that have led usto reviseit.

Data from a study by Carter, Pazak, and Kail (1981) indicate the nature of the

problem.In this experiment, 9- and 13-year-olds and adults were shownpairs of

PMAstimuli that differed in orientation by 0-135°. Meanlatencyas a function of

the difference in orientation is depicted in Fig. 7.10 forall three age groups. The

salient feature in all sets of data is an interaction between orientation and re-

sponse. Onidentical pairs, latencies increased as a function of the difference in

orientation; on mirror-image pairs, the increase was more gradual and not as

regular.

Wefirst fit the Cooper and Shepard (1973) model to the group data in Fig.

7.10 with three parameters: the slope, the intercept for judgments on identical

pairs, and the difference between the intercepts for identical and mirror-image

pairs, whichreflects the time needed to change the response index from “‘same’’

to ‘‘different.’’ This model accounted for 87%, 87%, and 85% of the variance in

latency data for 9- and 13-year-olds and adults, respectively. Although account-

ing for highly significant proportions of variance, this model is less than com-

pletely satisfactory because it predicts that the slope for identical and mirror-

image pairs should be the same, butin all three sets of data the slope is greater for

identical pairs.

Our efforts to modify the Cooper and Shepard (1973) model were guided by

two considerations. First, some individuals reported that after rotating mirror-

image pairs to a commonorientation, they did not immediately respond ‘‘dif-
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FIG. 7.10. Mean latency data for ‘‘same’’ and ‘‘different’’ judgmentitems as a

function of age and angular disparity.
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ferent.’’ Instead, they would attempt to discover some other way in which
rotation (in the picture plane) would result in identical stimuli. Second, on tasks
like the present one in which individuals are encouraged to respond rapidly,
subjects often impose deadlines on themselves (e.g., Ollman & Billington,
1972). If the self-imposed deadline is reached, processing in halted, and the
individual responds on the basis of processing completed prior to the deadline.

Modifying the Cooper and Shepard (1973) model to reflect these notions
resulted in the simple ‘‘deadline’’ model depicted in Fig. 7.11. This model
differs from that of Cooper and Shepard in its description of processing of
mirror-image pairs. On such pairs, subjects continue processing until they reach
a deadline, at which point they respond ‘‘different.’’ Thus, the model includes
three parameters: the slope and intercept from the Cooper and Shepard (1973)
model plus a deadline value.

The deadline model accounted for 86%, 82%, and 80% of the variance in
latency for the three age groups. Hence, it does not fare as well as the Cooper and
Shepard model in terms of the proportion of variance it explains. Further, the
deadline model predicts flat latency functions for mirror-image pairs, which
clearly is not the case for the data in Fig. 7.10.

Onepossibility is that the group data in Fig. 7.10 reflect a mixture of indi-
viduals using the two algorithms. That is, if both algorithms were used by a
substantial number of individuals at each age level, then latencies on mirror-

image pairs would increase as a functionof orientation, but not as rapidly as on
identical pairs. We evaluated this possibility by fitting both models to individu-
al’s data. The percentage of individuals at the three age levels who werebestfit
with the Cooper and Shepard model were 38, 35, and 44. Comparable percent-
ages for the deadline model were 15, 24, and 25. Finally, 26, 21, and 13% were
fit equally well by the two models. Thus, there were consistent individual dif-
ferences at each age levelin the algorithmsused to solve problemslike those on
the PMA,but there was no evidence of developmental change in the preferred
algorithm.

One other outcome of this experiment is noteworthy. Some adults’ data re-
sembled the group data in Fig. 7.10 in that latencies increased linearly for both
identical and mirror-image pairs, but more rapidly for identical pairs. A single
change in the deadline model makes it compatible with such results at both the
individual subject and group level, as well as with typical findings for mental
rotation of familiar alphanumeric symbols. The latter type of stimuli produce
equivalent slopes for both identical and mirror-imagepairs (Carpenter & Eisen-
berg, 1978; Cooper & Shepard, 1973). The changeisillustrated in Fig. 7.11 and
involves a more elaborate comparison process—onein the spirit of models pro-
posed by Atkinson and Juola (1974) and Kreuger (1978). Put simply, the com-
parison process can now havethree outcomes:(1) pairs can be judged asidenti-
cal, in which case processing ceases with a ‘‘same’’ response; (2) pairs can be
judged as different, in which case processing terminates with a ‘‘different’’
response, or (3) pairs can be judged as indeterminate, in which case processing
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FIG. 7.11. Representations of the pure deadline and modified deadline process

models for mental rotation performance.

iterates. Thus, this modelis, in effect, a compromise between the previous two,

with the iterative processing of the deadline model presumed to occur on some

but not all trials. The advantage of such a modelatthe outset is that the slope of

the latency function for mirror-image pairs can vary from being identical to the

slope for identical pairs (the outcome whennopairs are judged indeterminate) to

perfectly flat (the outcome whenall pairs are judged indeterminate). This ‘‘modi-

fied deadline’? model emerged as the preferred model for 18% of the adults but

not for 9- or 13-year-olds. The model also provides the ‘‘best’’ fit to the overall

group mean data shownin Fig. 7.10. The latter result, however, is artifactual
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because the modified deadline model is not the preferred model at the individual
subject level. This anomaly illustrates the need for evaluating process models at
the individual subject level in addition to evaluations at the group meanlevel.

It must be emphasized that the presence of model or Strategy differences as
another possible source of individual differences does not call into question the
data and interpretations of individual, sex, and developmental differences pre-
sented in previous sections. The model differences pertain to the sequence of
processing operations that may occurfor different judgmenttrials. The slope and
‘ntercept values obtained for ‘‘same’’ judgmenttrials remain unaffected by the
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need to include the assumption of a comparison process that can lead to indeter-

minate outcomes or a response deadline. What remains to be determined is

whether individual differences in reference test performance are systematically

related to the presence (and values) of such processes in addition to the demon-

strated relationships to encoding, comparison, and rotation speed.

Onefinal commentis also required relative to the presence of a more complex

comparison process with an accompanying response deadline. We have implied

that the need to consider such a set of processes andtheir probability of influenc-

ing different judgment-latency data is a function of stimulus familiarity or com-

plexity. When twostimuli are being compared, one of which has been mentally

transformed, there may exist various levels of uncertainty about the failure to

establish their identity. When the stimuli are familiar, as is the case for al-

phanumerics, there is little or no question. An R and A do not correspond. The

likelihood that the mental rotation process is at fault is generally low. However,

this is not the case when dealing with unfamiliar, nonlabelable stimuli such as the

PMAcharacters. When twostimuli fail to correspond following rotation, the

individual may question the adequacy of the rotation process and attempt to

execute it again. If all attempts to achieve congruence fail and the deadline is

reached, then the individual responds negatively. The implicationof this analysis

is that the difference between ‘‘same’’ and ‘‘different’’ judgment slopes should

systematically increase as one moves along a continuum of stimulus familiarity

and/or complexity. Evidence for this type of orderly progression is provided by

some of our adult data. A set of 42 subjects who received an equivalent number

of same and different judgmenttrials on both alphanumeric and PMA stimuli

provided the following overall mean slope values: alphanumeric *“‘same’’ =

3.49; alphanumeric ‘‘Different’’ = 3.04; PMA ‘“‘same’’ = 5.42; PMA ‘‘dif-

ferent’? = 3.39. These data confirm previous studies showinglittle in the way of

a slope difference for alphanumeric ‘‘same’’ and ‘‘different”’ judgmenttrials and

a substantial slope difference for PMA ‘‘same’’ and ‘‘different”’ judgmenttrials.

These results lead to two further predictions that are borne outin our analysis of

complex spatial-relations tasks that follow: (1) the slope difference for ‘‘same’”’

and ‘‘different’’ judgment trials should be even larger than that obtained for

PMAstimuli; (2) aspects of different judgment processing will become increas-

ingly important in understanding individual differences.

PROCESS ANALYSES

OF COMPLEX SPATIAL RELATIONS

Studies of different spatial-relations tasks have highlighted important similarities

and differences in performancethat are related to stimulus complexity. This is

most readily illustrated by the data shownin Fig. 7.12, which contrasts perfor-

mance observed in the rotation of simple alphanumeric stimuli with that obtained
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FIG. 7.12. Prototypical latency data for simple and complex mental rotation
problems. From Pellegrino and Glaser (1979).

for the rotation of more complex, three-dimensional block configurations. Both
stimulus types produce systematic linear increases in solution latency as a func-
tion of angular disparity of the stimuluspair. In both cases, the slope has been
generally interpreted as an index of the rate of mental rotation. The important
differences between stimuli rest in the greater intercept and slope valuesthat are
observed. These differences far exceed any differences we have previously re-
ported for the contrast between alphanumeric and PMA stimuli. The higher
intercept obtained for the three-dimensional block configurations can be readily
interpreted in terms of longer encoding and comparison times associated with
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these more complex, abstract stimuli. What is of greater concern, however,is the

magnitude of the slope difference. The slope for the three-dimensional stimulus

is several orders of magnitude greater than that observed for alphanumerics (or

PMAstimuli). There are several important implications of such a result, one of

which relates to assumptions about the processesreflected in the slope (e.g., Just

& Carpenter, 1976). Wereturn to this issue later. For our present purposes, the

important implication is that the solution of spatial-relations problems involving

the rotation of complex three-dimensional stimuli may be considerably more

difficult (i.e., if the latency of problem solution is taken as an index of diffi-

culty). In terms of a speed-power continuum, it certainly seems that these prob-

lems may represent a significant shift toward involvement of both speed and

accuracy of process execution as aspects of individual differences.

The available data on performance in this complex spatial-relations task are

relatively limited and do not permit strong conclusionsrelative to task difficulty

and individual differences. The most thorough analysis of performance in this

task was reported by Metzler and Shepard (1974). The emphasis in their studies

was on analyzing a small number of subjects who were preselectedfor their high

levels of spatial ability (i.e., their ability to perform the task). Even so, there

appeared to be substantial differences between subjects in certain parameters of

task performance, as noted earlier relative to sex differences. Similarly, Tapley

and Bryden (1978) obtained evidence of differences among individuals in pro-

cessing parameters and error rates. However, no attempt was made to link

performance measures to aptitude differences as measured by reference tests.

The one major attempt to do so was a study by Egan (1978), which examinedthe

performance of Naval pilot and flight officer candidates. His data indicated

significant individual differences in both speed and accuracy measures that were

correlated with reference test performance as well as achievement and perfor-

mance scores in training courses. Unfortunately, his range of ability was re-

stricted, and his processing measures tended to be somewhat unreliable.

Another issue that is typically ignored in most studies dealing with mental

rotation of these complex, three-dimensional stimuli is the contrast between

performance on same-different judgment trials. The data for ‘‘different’’ judg-

ment trials are seldom reported, partly because they tend to be “‘less reliable. ’’

Wesuspect that the linear trend observed for ‘‘same”’ judgments is neither as

obvious nor of the same magnitudefor ‘‘different’’ judgments. However, such a

result would be important given ourearlier discussion of ‘‘different’’ judgment

processing for unfamiliar and complex stimuli. An indeterminate comparison

process and the imposition of a response deadline are perhaps most likely to

occur when individuals must compare these stimuli. The reasons for increased

uncertainty about the mismatch between twostimuli include the fact that com-

plementary stimuli are used to create “‘different’’ judgment pairs and rotation

about any of the three major axesis a possibility.

In an attempt to examine performance on complex spatial-relations problems,

Pellegrino and Mumaw (1980) conducted a study of individual differences that
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systematically explored these issues. The subjects were 56 college students (27
males and 29 females) who represented the entire range of spatial ability as
measured bya battery of reference tests. One of the reference tests was modeled
after the one developed by Vandenberg (see Fig. 7.1), which used stimuli of the type
generated by Metzler and Shepard (1974). But rather than following the format
used by Vandenberg, our test contained problems that represented individual
stimulus pairs. For each pair, the subject marked an answer sheet indicating
whetherthe stimuli were the same ordifferent. A total of 72 pairs was presented
with a total time limit of 6 minutes. No individuals completed all problems
within the time period, and the average score (after correction for guessing) was
33.7 with a range of 11 to 69. The subjects were then individually tested in an
experimentthat included 168 separate trials. On eachtrial, a pair of stimuli was
presented, and the subject’s task was to respond ‘‘same’’ or ‘‘different’’ as
rapidly and accurately as possible. The 168 trials represented eight different
block configurations, rotation about the X, Y, or Z axes, and rotation values that
ranged from 0 to 180° in 30° increments. Equal numbers of same-different
judgmenttrials were used.

The individual subjects differed substantially in terms of both their latency
and accuracy data. Rather than reporting overall means forthe entire sample, we
have chosento illustrate performancein the tasks in terms of the top and bottom
quartiles of our distribution of subjects based upon their performance on the
paper-and-pencil reference test. Figure 7.13 showsthe relevant latency and accu-
racy data that were obtained for these extreme groups. The points plotted in Fig.
7.13 represent group means. As can be seen, both groups showed the typical
pattern for ‘‘same’’ judgments with a highly significant linear trend. Theleast
Squares regression lines are also shown, and the r? value for each group was
above .97. Also apparentin the figure is the substantial difference between the
two groups in the slope of the linear function. The ratio of slopes is 2.25:1,
whereasthe ratio of ‘‘same’’ judgment intercepts is 1.27:1. Another important
aspect of the data involves performance on ‘‘different’’ judgmenttrials. For both
groups of subjects the linear trend wassignificant, r?2 = .89, albeit providing a
less adequate fit than was the case for ‘‘same”’ judgments. The slope for ‘‘dif-
ferent’’ judgments is substantially shallower than the slope for ‘‘same’’ judg-
ments, and the ratio of different-to-same judgmentslopesis roughly equivalent
for both groups (~.65). Whenthe twoskill groups are compared with respect to
““different’’ judgment performance,the ratio of slopes is 2.42:1, and the ratio of
intercepts is 1.75:1.

The mean data indicate several measures of performancethat differentiate the
upper and lowerskill groups. However, both groups show the predicted pattern
wherebythe slope for ‘‘different’’ judgmenttrials is significantly shallower, with
convergence of the two functions at the 180° value. These results Support the
assumption that there is a significant probability that the comparison process on
“‘different’’ judgmenttrials yields an indeterminate outcome leading to sub-
sequent processing that finally terminates when a response deadline is reached.
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FIG. 7.13. Meanlatency and error data for ‘‘same’’ and ‘‘different’’ judgment

items for top and bottom quartile subjects.

Whensuch a modified deadline modelis fit to the same-different judgment data

for each group, the values obtained for the probability of an indeterminate out-

come and the deadline were .37 and 3326 msecforthe skilled subjects and .32

and 7668 msecfor the less skilled subjects. The r? and RMSD values were .95

and 180 for the skilled subjects and .97 and 335 for the less skilled subjects.

Another measure of performance shownin Fig. 7.13 1s errorrate. Within each

group, the probability of error significantly increased as a function of angular

disparity on ‘‘same’’ judgmenttrials. The most marked increase appears follow-

ing the 90° rotation value, and there appears to be a difference between the

groupsin the likelihood of error at high rotation values. The ‘‘different’’ judg-

menttrials show less of a relationship between error rate and angular disparity

and a larger overall difference between the two skill groups. The shallower

error-rate function for ‘‘different’’ judgment trials in both groups is also in

accord with the assumptions of a response deadline. If a deadline is reached on a

significant number of ‘‘different’’ judgment trials and if the subject employs a

response rule of different for such cases, then errors should be more uniform over
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rotation values. If the subject employs a guessing strategy, then errors should
also be uniform but equivalent to or higher than the values observed for ‘‘same’’
judgmenttrials.

Linear functions were also fit to individual subject latency data and, as ex-
pected, the fits were morevariable butstill highly significant. Table 7.6 provides
illustrative individual subject data by again contrasting the top and bottom skill
groups, whose mean performance wasjust illustrated. Means and standard de-
viations are shown, andit is apparent that there is considerably more variation
within the lower skill group than within the skilled group for almost every
measure of performance. The major exception involves the r? values obtained for
linear fits to both ‘‘same’’ and ‘‘different’’ judgment latency data. Error data are
also illustrated in the Table, and it appears that the less skilled individuals have
more difficulty with ‘‘different’’ than ‘‘same’’ judgment pairs and that the
greatest difference between skill groups is for such pairs.

The superiorfit of the modified deadline model at the group level was not an
artifact of averaging over subjects. The data of each subject within the top and
bottom quartiles were fit by the original Cooper and Shepard (1973) model, the
simple deadline model, and the modified deadline model. For all subjects, the
simple deadline model provided the poorest fit to the data. In the top quartile
group, 13 of 14 individuals werebest fit by the modified deadline model with the
increase in r’ ranging from .02 to.19 and an average r? of .84. The remaining
subject’s data were fit equally well by the Cooper and Shepard model and the
modified deadline model. A similar pattern was found within the bottom quartile
group, with 12 of 14 individuals showing a best fit for the modified deadline
model. The increase in r* ranged from .01 to .21, and the average r? was .86. Of
the remaining two subjects, one showed no difference in thefits of the Cooper
and Shepard and modified deadline model, whereas the other showed a slight
superiority of the Cooper and Shepard model. Thus, the individual subject data

TABLE 7.6
Characteristics of Individual Subject Performance
————

Mean Standard Deviation

 

Top Bottom Top Bottom
Quartile Quartile Quartile Quartile

eee

Slope Same 15.03 33.80 5.16 25.85
Different 9.43 22.78 4.28 18.93

Intercept Same 1313 1666 283 543
Different 2064 3618 388 2138

> Same .88 .89 .12 .12
f Different 77 67 13 22
Errors Same .09 .14 .08 .06

Different 07 .17 .04 12
ee
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support the modelingat the group level, in contrast to what was observedearlier

in modeling performance on simple spatial-relations problems.

The data of all subjects were used for a complete analysis of individual

differences. Slope and intercept values for ‘‘same’’ and ‘‘different’’ judgment

trials were determined as well as error rates on both trial types. Table 7.7 shows

the pattern of intercorrelations as well as reliability data (along the diagonal). The

reliabilities were high for all measures except the ‘‘same’’ judgmentintercept.

The conclusions that emerge from this pattern are: (1) errors on same-different

judgmenttrials are only partially related; (2) the intercept for “‘same”’ judgment

trials assesses components of performancethat are largely unrelated to the other

latency measures; (3) the components of processing required on ‘‘different”’

judgmenttrials are highly related to the processes assessed by the slope for

“same’’ judgmenttrials; and (4) greater processing speed is associated with

highererrors (i.e., there is a slight speed-accuracy trade-off across individuals).

Each of the latency and error measures was used in simple and multiple

regression analyses with reference test performance as the criterion. The results

of these analyses are shown in Table 7.8. As might be expected given the data

already presented, the slope-same, slope-different, and intercept-different param-

eters all showed approximately the same significant simple correlation with

reference test scores. However, when entered in the multiple regression analysis,

only the slope-different measure was significant. The “‘same”’ judgment inter-

cept showed a marginal simple correlation with the reference test but a highly

significant contribution in the multiple regression. Finally, the overall speed-

accuracy trade-off produced nonsignificant simple correlations between error

rates and reference test performance. However, the multiple regression analysis

indicated that ‘‘different’’ judgment errors were also significantly related to

reference test performance. The overall multiple R was quite high. The results of

the simple and multiple regression analyses are consistent with the more global

contrast between top and bottom quartile subjects shownearlier.

TABLE 7.7

Parameter Intercorrelations and Reliabilities

en

S
n

Slope Slope Intercept Intercept Errors Errors

Same Different Same Different Same Different

ne

Slope same (.90)? 82° — .23 744 —.25 — .22

Slope different (.82)? —.14 60% — 30° — 32°

Intercept same (.44)° 05 19 .24

Intercept different (.94)¢ — 27° — 11

Errors same (.83)* 45°

Errors different (.81)?

LD

@p < .001.

°n < .0S.

fp < .O1.
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TABLE 7.8

Correlational Results with Three-Dimensional

Rotation Test as Criterion
nr

 

Multiple

Regression

Predictor Simple r F B

Slope same — .534 <1 —.12
Slope different — 574 11.099 —.54
Intercept same ~ .25 7.769 —.28
Intercept different —.54¢ 1.35 —.17
Errors same — .03 <] — .06
Errors different — .23 11.728 —.36

R = .79

R?® = .63
ee

*p < .001.

°n < .01.

The analysis of individual differences supports two general predictionsrela-
tive to performance in complex spatial-relations tasks. First, individual dif-
ferences are a result of both speed and accuracy of processing. This is consistent
with the assumption that a speed-power continuum is appropriate not only for the
contrast between spatial-relations and visualization tasks but also within the
domainof spatial-relations tasks. Not only do three-dimensional mental rotation
problems take longer to solve, but they are more difficult, and this difficulty
contributes to differences amongindividuals in reference test scores. The second
general prediction is that in more complex spatial-processing tasks, individual
differences are also related to the special processing demandsassociated with
making ‘‘different’’ judgments. The exactnature of these processing demandsre-
mains to be specified, but it appears to involvecriteria and confidence relative to
detecting differences between stimuli.

Theresults that we have obtained for sources ofindividual differences in task
performance are in general agreement with those previously reported by Egan
(1978). The identification of slope and intercept differences suggests possible
components of processing that mayserve to differentiate individuals. However,
the major problem with such datais that they are relatively crude with respect to
precise models of task performance. We have avoided the assumption that the
Slope measure for ‘‘same’’ judgmenttrials assesses only mental rotation speed,
whereasthe intercept assesses encoding, comparison, and motor response speed.
The reason for doing so relates to some logical problems associated with such
assumptions. The nature of the problem is best illustrated by again referring to
the contrast between simple and complex mental rotation data as shown in Fig.
7.12. If the slope of both functionsis interpreted as an index of mentalrotation
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speed, then, logically, we cannot bereferring to the same psychological process

if process invarianceis also to be maintained as an assumption. There are at least

two possible interpretations of the very substantial slope difference that exists.

Oneis that the process of mental rotation can assume a very wide range of values

andthat it is dependenton thenatureof the information being operated on. Using

the analogy between mental and physical rotation, heavier and/or larger objects

are more difficult to move and thus are moved more slowly through physical

space given some constant force (f = ma). Thus, perhaps mental rotation is

similar to physical rotation, and three-dimensional stimuli are ‘‘mentally

heavier’? and more difficult to move through psychological space. Such an

explanation begs the question, however. Leaving such analogies aside, perhapsit

is to be concluded that basic or elementary cognitive processes such as mental

rotation are not invariant but contextually determined.

An alternative explanation of the substantial slope differences that are found

for simple and complex spatial-relations problemsis that the slope obtained for

processing complex stimuli is a composite of several processes or represents

several iterations of the same process. This alternative receives support in the

analysis of performance conducted by Just and Carpenter (1976). They examined

eye-movement patterns and fixation durations in the solution of three-

dimensional rotation problems. Their data led them to suggest a more complex

model of performance than the one postulated for the solution of simple

spatial-relation tasks. The basic processes specified in their model include encod-

ing, search, rotation, comparison, confirmation, and response. The slope of the

function for ‘‘same’’ judgments is a composite of several processes, each of

which increases in duration as a function of angular disparity. These include

search and a combined rotation and comparison process. The intercept of the

function for ‘‘same’’ judgments seems to reflect encoding, confirmation, and

response processes. In their subsequent eye-movement analysis of performance

on simple spatial-relations tasks (Carpenter & Just, 1978), they were able to

confirm the validity of the Cooper and Shepard (1973) model and show that

estimates of the basic rotation and comparison components were equivalent for

the two types of stimuli. Thus, there does appear to be invariance in the duration

of the mental rotation process, at least as determined for a small sample of

individuals who are capable of performing mentalrotation tasks.

Ideally, the process analysis of individual differences in spatial-relations

tasks, particularly complex spatial relations, should involve the estimation of

individual rather than conglomerate process values. To do so in complex spatial-

relations tasks requires the use of different problem types that vary in their

process composition. Such a design permits the use of subtractive logic to esti-

mate each process and to decompose the slope measure into separate compo-

nents. We provide anillustration of such an analytic strategy in the next section

on spatial visualization. At present, this type of task decomposition has not been

done for complex spatial-relations performance. Nevertheless, our analyses
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Suggest that substantial individual differences exist in the speed and accuracy of
encoding, search, rotation, and comparison processes. This conclusion is based
upon the slope, intercept, and error differences that have been observed and
appropriate possible interpretations of the individual processes that contribute to
such measures.

PROCESS ANALYSES
OF SPATIAL VISUALIZATION

The tasks associated with spatial visualization have received considerably less
attention than spatial-relations tasks. Relatively little has been done to develop
and validate information-processing theories and models for such tasks. There
are two major exceptions, and these include the early work of Shepard and Feng
(1972) and our own recent work (Mumaw, Pellegrino, & Glaser, 1980). Shepard
and Feng (1972) studied performance in a mental paper-folding or surface-
development task (an example of such a task was shownearlier in Fig. 7.2). In
the Shepard and Feng (1972)study, individuals were presented with a representa-
tion of a flat, unfolded cube. Two of the surfaces had marked edges, and the task
was to decide if these marked edges would be adjacent when the pattern was
folded to form the cube. The items that were used varied in number of 90° folds
that were required to bring the two marked edges together. Items were also
classified by the numberof surfaces that had to be carried along with each fold
(i.e., the numberof surfaces that had to be moved mentally to complete each new
fold). Ten different stimulus values were obtained, and decision timesfor items
showed a general linear trend consistent with the total number of folds and
surfaces that had to be processed to solve a problem. Shepard and Feng (1972)
were not explicit about a model of performancefor this task. Thus, the compo-
nent processes and their sequencing are not well understood at present, and no
Systematic process analysis of individual differences has been conducted.

The specific performance that Mumawetal. (1980) analyzed wasthe solution
of Paper Form Board items. These items are found on a variety of spatial-ability
batteries and are most commonly associated with the visualization factor of
general spatial ability. Such tasks typically emphasize a combination of both
speed and accuracyofspatial-information processing (an exampleof such a task
was shownearlier in Fig. 7.2). The example was selected from the Minnesota
Paper Form Board Test, and it requires the individual to match a series of
completed figures against an array of individual stimulus elements or pieces.
Thus, a series of same-different judgments must be executed to solve the prob-
lem. Items on form board tests vary in the number of pieces that must be
processed, the similarity of the pieces, and the number of mismatched pieces.
Mumawetal. (1980) developed a laboratory task that emulated the problems and
processing required by psychometrictest items. The experimental item form that
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was created involved individual stimulus pairs that consisted of a complete figure

and an array of individual pieces. The stimuli that they used were both selected

from psychometric tests and constructed so that they would permit the evaluation

of several models of performance.

A possible process model for performance on an item from the experimental

tasks is shown in Fig. 7.14. According to this model, it is assumed thatthere is

an initial encoding of one of the pieces followed by a search for a potentially

corresponding piece. Given the identification of a possible match, there is rota-

tion to bring the two stimuli into congruence so that a comparison process can be

executed. If the two pieces correspondandall pieces have been examined,then a

positive response is executed. If all pieces have not been examined, then the

entire process recycles for examination of another stimulus element. There are

three required processes and two optional processesthat depend on the nature of

the stimulus type. The example problem shownin Fig. 7.14 is one that presum-

ably requiresall five processes. The search processis required because the pieces

are randomly arranged and have beendisplacedrelative to each other, given their

position in the completed figure. The rotation process is required because each

piece has also been rotated in the picture plane in addition to being spatially

displaced. Both rotation and displacement characterize items on psychometric

tests. The appropriate general reaction-time equation for such items is also shown

oo
S

Laboratory Form Board Item

e $ r Cc X

COMPARE RESPOND

Match Yes SAME

Mismatch

RESPOND

DIFFERENT

No

 

   
  

  

SEARCH for all

POSSIBLE

MATCH

Coptional)

ENCODE

Piece.

  
   
      

 
 

pieces

checked?    
   

 

(optional)  

n = total number of pieces

n, = number of spatially displaced pieces

n| = number of rotated pieces

RT = n(e+c) + ns +n irs x

FIG. 7.14. Example of a form board item and a process model for its solution.
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in Fig. 7.14. By varying the number of pieces for a given stimulus pair, we
would expect to obtain a linear function for reaction time. The slope of that
function would represent encoding, comparison, search, and rotation. The inter-
cept would represent preparation-response time.

In order to test the viability of this model as well as to Separate the different
processing parameters, Mumawetal. (1980) designed several types of stimuli.
The different stimulus types are shownin Fig. 7.15 together with initial assump-
tions about the processes required for item solution. At the top is shown the
prototypical case whereindividual stimulus elements have been both rotated and
displaced in the picture plane. This condition should require executionofall five
processes. The second stimulus type is one that involves only rotation. This
condition should require four of the five processes and mayalso require a search
process. The third stimulus type involves the physical displacement of elements
but without any rotation. Thus, this condition should only require four ofthe five
processes. The fourth involves neither rotation nor displacement of stimulus

/] C1 Rotated & Displaced

ON Encoding, Search, Rotation, Comparison, Response

re, Rotated

{> J Encoding, (Search), Rotation, Comparison, Response

\ ? Displaced

Vy Encoding, Search, Comparison, Response

Ol Separated

G) US Encoding, Comparison, Response

Wholistic

Encoding, Comparison, Response

 

FIG. 7.15. Examples of different item types used in the study of form board
performance.
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elements. This condition is designed to assess stimulus-element encoding and

comparison. The final stimulus type is a wholistic presentation condition that

provides a base line for encoding, comparison, and response.

The different assumptions about item processing were tested in an experiment

conducted with 34 college students who varied in spatial ability as measured by a

battery of reference tests. Included in the battery was the revised Minnesota

Paper Form Board Test. The subjects were presented 300 separate stimulus pairs

representing both positive and negative trial types. The positive trials included

the five different problem types shown in Fig. 7.15. The number of stimulus

elements for a given problem type ranged from twoto six. Similar manipulations

were employed for negative trials, and items were made incorrect by having

either one mismatched elementin the array or all mismatched elements.

Wefirst focus on the latency results obtained for the positive trials. These data

are shownin the left-hand panel of Fig. 7.16. The data for both the rotated and

rotated and displaced problem types have been combined because they did not

differ. The linear functions shownin the figure represent the least squares regres-

sion lines for each of the four problem types. As can be seen, performance in

each condition was consistent with a simple additive model. As expected, the

condition with the steepest slope was the one requiring search and rotation in

addition to encoding, comparison, and response. The next steepest slope oc-

curred in the condition that required only search in addition to encoding, com-

parison, and response. The shallowest significant slope occurred in the separated

condition, which presumably required only encoding, comparison, and response.
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FIG. 7.16. Mean latency data for positive and negative trials as a function of

item type and numberof stimulus elements.
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Finally the base-line wholistic condition showed a basically flat function, as
expected.

The adequacy of the model shown in Fig. 7.14 and the assumptions about
processing for each problem type were tested by fitting the data from all condi-
tions simultaneously (Table 7.9). When group meandata were used,the overall
fit of the model was quite good. The values obtained for each of the individual
parameters were plausible, and there were no major deviations from the model.
Modelfitting was also done for each individual subject. Almost all subjects had
r* values above .90, and only three subjects had poor modelfits. Thus, the model
was not only representative of the group data, but it also provided a good
characterization of the performance of each individual.

The latency data for negative trials complementthe data for positive trials and
allow us to determine if task performance is consistent with the use ofa self-
terminating processing strategy. An examination of the model shownin Fig. 7.14
reveals that when there is a mismatched stimulus element, the individual may
exit from further processing and immediately execute a negative response. This
can occur if no potential match is found during search or if the comparison
process indicates a mismatch.If individuals use such a self-terminating process-
ing strategy, then the functions relating reaction time to numberof stimulus
elements should be flatter than in the case of positive trials, where exhaustive
processing of all elements is required.

The actual latency data for negative trials are shownin the right-hand panel of
Fig. 7.16. The least squares regression lines for each problem type are also
illustrated. Certain points are not represented because of unreliability due to an
extremely high error rate. The latency data are consistent with the assumptionsof
a self-terminating processing strategy. The slopes of the least squares regression
lines are less than the corresponding functions for positive trials. The results of
jointly fitting both positive and negative trial data are shown in Table 7.9. The
overall model fit remains quite good, and the parameter estimates do not change
substantially. In addition, the value of the negation parameter is consistent with

  

TABLE7.9

Results of Model Fitting for Positive and Negative Trials

Positive Trials Positive and Negative Trials
(N = 25) (N = 41)

R? = .965 R*? = .94

RMSD = 461 RMSD = 545
Parameters Parameters

Encode and compare = 538 Encode and compare = 556
Rotate = 255 Rotate = 299

Search = 687 Search = 689
Preparation-Response = 760 Preparation-Response = 624

Index reset (negation) = 859
a
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previous values for such a component. Finally, model fitting that assumes

exhaustive processing provided a poorer fit and also produced an unacceptable

negative value for the negation parameter.

Theerror data for both positive and negative trials were also systematic and of

considerable importance relative to individual differences. The error data for

positive trials are shown in the left-hand section of Fig. 7.17. As can be seen,

positive trial errors were related to the presence of the rotation component. There

was a significant increase in overall errors as a function of the number of times

that the rotation process needed to be executed. The other processing compo-

nents, with the possible exception of search, did not systematically contribute to

errors for positive trial types. Individual subjects differed substantially in error

rates, with an overall range of 0-23% forall positive trial types. For the problem

types involving rotation, the range was 0-43% errors.

Of particular interest is the different patterning of error data for the negative

trial types. The highest error rates were obtained for the conditions that did not

require rotation. This is not to say, however,that the presenceof rotation did not

lead to errors. Rather, errors were highest when the ratio of matched to mis-

matched pieces was high and when processing could proceed rapidly because of

the absence of a rotation component. It appears as if individuals may have

processed elements superficially for comparison purposes and thereby failed to

Positive Trials Negative Trials
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Rotated

Rotated & Displaced
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FIG. 7.17. Mean error data for positive and negativetrials as a function of item

type and numberof stimulus elements.
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detect differences in size and shape for globally corresponding elements. The
individual subjecterror rates on the negative trials ranged from 8-55%.

The error data for the positive and negative trials support the notion of
different mechanisms contributing to incorrect final decisions. In the case of
positive trials, errors seem to result from the inability to determine the corre-
spondence between two stimulus elements that must be rotated into actual con-
gruence. Thus, either rotation is incorrectly executed or the resultant representa-
tion followingrotation is imprecise, leading to a rejection of a matching element.
Errors resulting from executionofthe rotation process also appearin the negative
trials, where there is a tendency to accept the match between two similar but
nonidentical pieces that are in different orientations. However, the largest error
rates were obtainedfor pairs of stimulus elements that have the same orientation,
a similar but nonidentical shape, and occur in the context of a larger numberof
matching pieces. Such a pattern supports the interpretation that individuals may
be using a global stimulus-comparison process that often leads to errors. With
respect to individual differences, there may be twoseparate aspects of incorrect
performance—the encoding and comparison process and the rotation process.
Evidence for such an assumption was provided by the lack of correlation between
subjects’ error rates on positive and negativetrial items. The overall correlation
across subjects was zero. However, both error rates were significantly correlated
with overall performance on the referencetest.

The analysis of individual differences in spatial-visualization ability utilized
both latency and accuracy data. An individual subject’s positivetrial latency data
were usedto estimate the four basic processing parametersof the general model.
In addition, error rates for both positive and negativetrial types were determined
for each subject. The latency-parameter intercorrelations and split-half re-
liabilities (along the diagonal) are shown in Table 7.10. The only significant
correlation between parameters involved the encoding and comparison measure

TABLE 7.10
Parameter Intercorrelations and ReliabilitiesOO

Encode and Preparation Same Different
Compare Search Rotation Response Error Erroreee

Encode and compare (.77)2 .07 52? — .33 .26 — .28
Search (.83)4 30 — 33 .20 43
Rotation (.54)° — 34 .06 —.15
Preparation-Response (.65)° ~ .04 — .07
Sameerror (.88)¢ .00
Different error

(.91)?

_—_—

rl

“p< .001.

"p< .Ol.
Sp < .05.
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and the rotation measure. Parameterreliabilities were greatest for the encoding

and comparison and search measures. The four latency parameters and the two

error parameters were then entered into a multiple regression analysis with per-

formance on the Minnesota Paper Form Board as the criterion variable. The

results of both simple and multiple regression analyses are shownin Table 7.11.

The simple correlations show that reference test performance is significantly

correlated with ‘‘same’’ and ‘‘different’’ judgmenterrors and the value for the

search parameter. The multiple regression analysis shows that the overall level of

prediction was quite high, especially given the reliability of the reference test

scores, whichis in the mid to upper 70s. Three of the predictors were significant.

With respect to the latency parameters, the combined encoding and comparison

parameter was nowalso shownto berelated to spatial-visualization skill. Skilled

individuals are faster at encoding and comparison of stimulus elements, and they

are also faster at searching through anarray to find a potentially corresponding

stimulus element. With respect to accuracy measures, skilled individuals make

fewer errors on problemsinvolvingrotation, and they also are more accurate in

detecting mismatches between similar stimuli.

The data thus support a conclusionthat skill in a visualization task such as the

form boardis related to the speed and quality of the stimulus representation that

is achieved. A more precise representation of individual stimulus elements may

permit both a more rapid search for a corresponding stimulus element anda faster

and more accurate decision about correspondence between two target stimull.

Suchan interpretation of spatial ability is also consistent with some of our other

research indicating that skilled individuals are more adeptat encoding unfamiliar

stimuli. In the previously discussed research involving mental rotation tasks,

TABLE 7.11

Correlational Results with Minnesota Paper Form

Board as Criterion

i

Multiple Regression

 

Predictor Simple r F B

a

Encode and compare —.27 3.87 —.27

Search — 42° <1 —.10

Rotation —.17 — —

Preparation-Response 13 — —

Positive trial errors — 58? 14.40° — .49

Negative trial errors — 44° 10.53? — 48

R = .78°

R? = 61
a

4p < .05.

%n < .O1.
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skilled individuals were found to be faster at encoding and comparing unfamiliar
stimuli of the type found on psychometric tests. Skilled individuals were also
foundto befasterin rotating such unfamiliar stimuli. One possible interpretation
of facility in encoding and comparison speed is that more precise and stable
representations are initially formed. Such high quality representations then en-
hance the speed and accuracy of subsequent processing. In spatial-relations or
rotation tasks, this would primarily appear as speed differences in executing
simple and complex rotation processes. In more complex visualization tasks such
as the form board, this could appear as differences in both the speed and accuracy
of executing several different components of processing, each of which must be
executed several times in an iterative manner.

In summary, we have shown that it is possible to construct and validate a
process model for performance in a spatial-visualization task that reliably as-
sesses individual differences in spatial ability. The model not only provides a
good characterization of group performance,but it also captures the performance
of individual subjects. The componentprocess parameter values estimated from
individual subject model fitting, together with individual subject errorpatterns,
captured a significant proportion of the variance in reference test performance.
The latency and error componentsrelated to skill differences are suggestive of
more fundamental differences in representational processes. The speed and qual-
ity of visual stimulus representation may underlie speed and accuracy differences
in components of processing in both simple spatial-relations and more complex
spatial-visualization tasks. Several issues remain to be explored in our owndata,
including the possibility that subjects differed in their strategy for task execution
as a function of representational and memory demands imposed by different
types of stimuli (e.g., those that could be labeled vs. those that could not) andthe
total number of stimulus elements to be processed. Finally, we must emphasize
that the particular task we have modeledis only one exampleof a constellation of
visualization tasks that need to be similarly studied.

GENERAL ISSUES

Relations Among Tasks and Processes

Our primary concern in this chapter has been the description of research that
focuses on the process analysis of spatial aptitude as defined by psychometric
tests. A general framework for aptitude analysis provided the schemafor organiz-
ing and presenting our findings. That schemaalso serves as a basis for briefly
summarizing and discussing the major implications of our efforts to date.

The domain ofspatial aptitude was described in termsofthe sets of tasks that
define two major subfactors or specific aptitude constructs. The spatial-relations
and spatial-visualization factors, although significantly related, seem to em-
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phasize somewhatdifferent aspects of spatial information-processing skill. This

has been characterized in terms of a speed-powercontinuum that coincides with a

continuum involving simple to complex tasks and stimuli (Lohman, 1979).

These continua reflect an intuitive, rational analysis of major factor analytic

results and the psychometric tasks that produce them. Theintuitive analysis is

supported, however, by several aspects of our data and those of others. First, if

we look only at the time to solve typical problemsrepresentative of simplespatial

relations, complex spatial relations, and form board tasks, there are clear and

substantial differences. The time to evaluate the identity of a pair of stimuli

drawn from the PMAis approximately 1.5 seconds, whereas the times for similar

judgments for complex spatial relations and form board stimuli are 3.0 and 6.0

seconds, respectively. A similar ordering of tasks emerges if we examine the

overall level of accuracy on these different types of problems. The latency and

error differences that exist among problem types can be readily mapped back

onto differences in the process models that characterize performance on each

problem type. The model for simple spatial relations involves fewer processes

than those assumed for complex spatial relations and form board tasks. Not only

are there differences among tasks in the number of processes that need to be

executed, but there are also differences in the numberof times a given process

must be executed. This is seen in the contrast between simple and complex

spatial relations and also in the contrast between complex spatial relations and

form board tasks. Thus, the total time and likelihood of a correct response are

systematic functions of the number and type of processing operations to be

performed. This relationship is expected because the models that were postulated

and then verified were designedto reflect the apparent complexity of each task.

The speed-power continuum is also supported by data on individual dif-

ferences in the performanceof each task. The primary sourcesof individual, sex,

and developmental differences in simple spatial-relations tasks were speed of

processing measures. Both speed and accuracy measures were important in com-

plex spatial-relations performance. Accuracy measures were even more impor-

tant in accounting for individual differences in form board performance. We

suspect that more complex spatial-visualization tasks would show that dif-

ferences in accuracy rather than speed were critical. Thus, our individual-

difference data support the idea that speed and poweror accuracy of processing

are separate sources of individual differences. This argument has also been

advanced by Egan (1978), based upon patterns of intercorrelations involving

speed and accuracy measures. Our own individual-difference data support the

conclusions of Egan by showing low correlations between speed and accuracy

measures obtained within the same task.

Although task differences and a general speed-power continuum have been

supported, it must be remembered that these are highly related sets of tasks. Our

analyses were primarily designed to determine the commonprocesses underlying

their interrelationships. The strategy for doing so involved developing, validat-
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ing, and applying cognitive process models for performance on

a

representative
Set of spatial-aptitude tasks. It is important that we briefly review what has been
learned about each task before attempting to discuss their interrelationships. In
the case of performance on simple spatial-relations tasks, we have shownthat
extant (and modified) process models can be applied to the analysis of individual,
sex, and developmentaldifferences. The results are quite consistent in showing
that substantial speed differences exist in the encoding and comparison of un-
familiar stimuli and in the execution of a rotation or transformation process that
Operates on the internal stimulus representation. Adult individual differences
exist in all these components of processing, and individual differences mirror
overall developmental trends. The limited analyses of age changes in sources of
individual differences further suggest that individual differences initially relate to
encoding and comparison processes and that the rotation process subsequently
becomesan increasingly important source of individual differences. A further
potential source, which needs further analysis, involves the Strategy for task
execution as reflected by the contrast between ‘‘same’’ and ‘‘different’’ judg-
ment performance. Systematic individual differences mayalso exist in the speed
and criteria for judging the mismatch between stimuli in different orientations.

The differences in encoding, comparison, and rotation that exist for simple
spatial-relations tasks are of even greater magnitude in complex tasks. The com-
plexity and abstractness of the stimuli leads to substantial errors on these prob-
lems that are also related to individual differences in reference test scores. The
particular errors that seem most importantfor differentiating among individuals
involve the processes associated with making different judgments. Latency data
for different judgment performancealso contribute to predicting individual dif-
ferences in reference test performance. A more sophisticated analysis of indi-
vidualdifferences in terms of specific processing componentsandstrategies for
task execution is now required. The current data, when interpreted in terms of a
model such as the one proposed by Just and Carpenter (1976), would imply
that individuals experience considerable difficulty in establishing the corre-
spondences between the common segments of these complex stimuli, leading to
several iterations through a sequence of processes, and often culminating in an
incorrect evaluation or guess.

The spatial-visualization task that was examined also showed substantial dif-
ferences amongindividuals in both speed and accuracy measures. A general
process model for performance on form board problems provided an adequate
initial representation of task performanceat both the group and individual subject
level. The speed of encoding and comparison and search processes estimated for
individual subjects is related to individual differences in reference test perfor-
mance together with differences in error rates on same-different judgmentitems.
The error patterns seemedto indicate that comparison following rotation leads to
errors, particularly for someless skilled individuals. Other less skilled individu-
als show a high preponderanceoferrors on ‘‘different’’ judgmentproblemsthat
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do not involve rotation. The interpretation of these errors is in terms of a super-

ficial encoding or representation that is inadequate for precise comparisons of

stimulus elements. Individual differences may also exist in the strategy or pro-

cess sequence for task execution, and these differences remain to be explored.

The process models and individual-difference data obtainedin all three tasks

can be considered together to formulate a preliminary answerto the question of

what constitutes general spatial aptitude. By looking acrossall three tasks, one

might initially conclude that spatial aptitude is associated with the ability to

establish sufficiently precise and stable internal representations of unfamiliar

visual stimuli that can be subsequently transformed or operated on with a mini-

mal information loss. In all three spatial-aptitude tasks, speed of encoding and

comparison wassignificantly related to skill. In the more complex tasks, accu-

racy of encoding and comparison wasalso significantly related to skill. Thus,

individuals who are high in spatial aptitude are faster at representing unfamiliar

visual stimuli, and whatis ultimately represented is more precise. Differences in

representation, mostlikely quality differences, may also give rise to other speed

differences such as the superiorrotation and search rates exhibited in the different

tasks. Problems of representation are most apparent in the more complex tasks

that involve the representation and processing of stimuli having several inter-

related elements. If we assumethatstimulus representation and processing involve

a visual short-term or working memory, then skill differences may be a function

of coding and capacity within such a memory system. Differences between the

spatial-relations and spatial-visualization tasks (factors) may reflect a difference

in emphasis on coding versus transformation processes within this system.

Another difference between the two factors may involve single versus sequential

transformations and the ability to coordinate and monitorthelatter.

Commonalities among spatial-aptitude tasks and factors can also be ap-

proached by considering the commonprocesses specified within the models for

task performance. The models for spatial-relations and visualization tasks all

include encoding, rotation, comparison, decision, and response processes. The

more complex tasks include an additional search process. Thus, there would

appear to be a process basis for establishing overall performance correlations

amongthe three tasks. However, differences exist amongtasks in the complexity

of the process sequence for task solution. The processes that are executed only

once in simple spatial-relations tasks are necessary but not sufficient to account

for performance on complex spatial-relations and visualization tasks. Neverthe-

less, we shouldbe able to establish correspondencesacrosstasksat the individual

process level. An important step in the analysis of spatial aptitude is the analysis

of consistencies across tasks in measures of performance. Such an analysis

provides a further meansof validating assumptions about processing in each task

and about common processes acrosstasks.

In a previous section, we considered differences between spatial-relations

tasks as reflected by intercept and slope differences for ‘‘same’’ judgmenttrials
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(see Fig. 7.12). The predominant interpretation of these measures of perfor-

mance involves encoding, comparison, and response processes for the intercept
and rotation processesfor the slope. A logical difficulty arises when the substan-

tial differences in slope values are considered. It does not seem plausible that the
same process could assume such enormously different values. Either the process
is not the same, or other processes also contribute to the slope measure for the
more complex stimuli. Performance analyses by Just and Carpenter (1976; Car-
penter & Just, 1978) help resolve the problem by showing that the slope measure
for complex stimulus processing is a composite of different processes and that
values obtained for the rotation component are consistent over simple and com-
plex spatial-relations tasks. Thus, establishing process commonality depends on
the ability to estimate individual processes for individual subjects and then show-
ing consistency within and between individuals overtasks.

Twofurther examples can be provided onthe use of individual-difference data

to examine consistency across tasks in measures of mental rotation performance.
Thefirst involves data that we have already presented on performancein spatial-
relations tasks. Our subjects were required to solve problems involving familiar
alphanumerics and unfamiliar PMA stimuli. Slope and intercept measures were
obtained for each stimulus type. Under the assumptionthat the slope reflects rate
of mental rotation, whereas the intercept reflects encoding, comparison, and

response processes, high correlations between corresponding measures would be
expected. Such correlations were obtained (see Table 7.1), but the values indi-

cated that the slope and intercept measures were not measuring exactly the same
processes. A failure to find significant and high correlations for corresponding
measures could havecalled into serious question our basic processing assump-
tions for one or both stimulus types. The second example involves expectationsif
we correlate slope and intercept measures from simple and complex spatial-
relations tasks. The general expectation, given our previous discussion of the
multiprocess nature of the slope for the complex task, is that the correlations
should drop. This expectation is borne out in data available for 56 subjects who
performed both sets of tasks. The correlations of the slope measures did not
exceed .56. However, it must be noted that a highly significant relation still
exists, and this, too, is expected. The intercept measures werealso significantly
correlated acrosstasks but again at a lower level. Thecorrelations ofthe intercept
for three-dimensional stimuli with intercepts for alphanumerics and PMAstimuli
were .31 and .44, respectively.

The analysis of process commonalities across tasks through the use of
individual-difference datais particularly importantin the refinement of models of
processing for sets of related tasks. The typical procedure in modeling perfor-
mance on a given task is to designate some latency measure (e.g., slope, inter-
cept, or a difference score) as an index of process x. A similar task is then
modeled, and,in an effort to achieve consistency of language, the same elemen-
tary process x is labeled and estimated in the new task. It may in fact turn outthat
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the times associated with x are similar for the two tasks, or the times may be

widely different. The latter occurred in the case of spatial-relations tasks.

Whether x is actually the same process can only be determined by reliably

estimating it at the individual subject level and showing that there is at least

relative consistency in the values obtained for x by different individuals. The

magnitude of the obtained correlation indicates whether the measures of perfor-

mancethat are being considered reflect a complete, partial, or nonexistent pro-

cess commonality.

Our analyses of spatial aptitude are far from complete, given the general

framework outlined in the introduction. Additional tasks within the spatial-

visualization domain require analysis and modeling. The models that we cur-

rently have for spatial-relations and visualization tasks require refinement, and

intensive analyses are needed to determine the underlying basesof the individual

differences that have been observed. A systematic analysis of process commonal-

ity across tasks also needs to be attempted. Nevertheless, we feel that we have

made reasonable progress toward understanding individual differencesin spatial

aptitude. Such an understanding is essential if individual differences in aptitude

are to be useful for purposes of creating adaptive instructional environments that

facilitate the course of learning and skill acquisition. Spatial aptitude is not

highly related to typical academic achievement, which is better predicted by

verbal and quantitative aptitude and intelligence measures. However, spatial-

aptitude measures are correlated with achievement and success in a variety of

technical training courses and environments (e.g., courses in engineering design

and graphics and mechanical drawing). If we wish to optimize instruction and

achievement in these types of practical competencies, then we need to have a

better way to assess and understand the spatial-processing skills that individuals

bring to the instructional setting and the impact that these skills can have on

instructional design and skill acquisition.

Individual Differences and Cognitive Theory

The research reported here, like that of Hunt, Frost, and Lunneborg (1973) and

Sternberg (1977), represents a belated response to Cronbach’s (1957) well-

known plea for a rapprochement between the two disciplines of scientific psy-

chology. We think that our research demonstrates three important ways in which

cognitive theory can achieve both greater precision and greater breadth through

the consideration of individual differences. First, an old lesson—but one that

each generation of experimental psychologists seems to learn anew—is that

evaluating theories and models with group data is a risky endeavor. The pattern

observed in such data can often be a hybrid that is not found in any one individu-

al’s data. This point was wellillustrated in the learning literature whencontrast-

ing conclusions were reached from forward learning curves based on group data

and backwards learning curves that adjusted for individual differencesin rate of
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learning (Estes, 1964; Hayes, 1953). In our research on processing of simple
spatial relations, a similar situation arose in which the modelthat best described
the group data (the modified deadline model) was not an accurate model of most
individuals’ data. Because of cases like these, we feel that individuals’ data

should be seen as the principal evidence with which cognitive models are

evaluated, not merely as supplementary evidence as is currently the general
practice.

There is a second way in which earnest consideration of individual differences
can enhancecognitive theory. Given group means from various conditions in an
experiment, the goal of the typical cognitive theorist is to find the model that best
describes the data, where ‘‘best describes’’ is usually defined in terms of the
fewest free parameters and the smallest unexplained variance. However, most
cognitive psychologists never seriously consider the possibility that the most
appropriate model might vary from personto person. Put another way, the notion
that there might be multiple equally appropriate models of performance on a
given task simply is not part of the zeitgeist of contemporary cognitive psychol-
ogy. We question the wisdom of attempting to identify the definitive cognitive
theory for performance on a given task. Our findings, as well as those of
Sternberg (1977), suggest that analyses of most tasks will reveal multiple possi-
ble models or classes of models, many or all of which may characterize the
performance of at least some individuals on the task.

The third way in whichthe study of individual differences can affect cognitive
theory is by forcing greater precision in the description and measurement of
individual cognitive processes. Current cognitive psychology embraces assump-
tions about a core set of elementary information processes that serve as the
building blocks for all cognitive activity (e.g., Chase, 1978; Simon, 1976).
Psychologists currently use the same limited set of process labels to describe
performance on a wide range of simple and complex tasks. Examples include
encoding, search, retrieval, decision, rotation, comparison, inference, and re-
sponse. Thus, we appear to have a very powerful and general set of basic
processing components. Unfortunately, little has been done to support or docu-
ment its generality and existence. Data on the duration and existence of specific
mental processes come from independentstudies, using different stimuli, with
different groups of individuals. All that appears to be commonis the labels and
the assumption that the processes are the same across tasks, subjects, etc.
Individual-difference data can and must play an importantrole in validating some
of our very basic assumptions about humancognition (e.g., process invariance).
Underwood (1975) referred to the study of individual differences in cognitive
processes as a ‘‘crucible in theory construction.’’ By studying individual dif-
ferences in cognitive processes, we can beginto verify some general assumptions
about cognitive processing and at the sametime openuppossibilities for identify-
ing elementary processes and higher level strategies that contribute to general
theory development.
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Finally, consider the impact of cognitive theory on our understanding of

individual differences. The first benefit is perhaps obvious, but it should be

mentioned. For most of the 20th century, research on individual differences in

cognition has been the exclusive domain of factor analytic theorists. A shortcom-

ing of factor analysis—and henceof almostall research on individual differences

until recently—is that it fails to identify the processes underlying cognition as

well as individual differences in these processes (McNemar, 1964). Thus, ‘for

example, finding that two spatial tests load heavily on the same factortells us

only that people who do well on onetest generally excel on the other; it does not

indicate the processes that are used to solve problems appearing oneithertest.

The infusion of cognitive theory (and methods) has madeit possible, for the first

time, to indicate the processes underlying individual differencesin intelligence.

One immediate outcome of this process-based analysis of individual dif-

ferences has been to reveal the numberof distinct ways in which people solve

problems. In our research, as well as in that of Huntet al. (1973) and Sternberg

(1977), there are instances in which different individuals solve a problem using

the same algorithm but vary in the speed and/or accuracy with which they

execute the componentsofthat algorithm.In other cases, individuals differ in the

emphasisthat they place on executing the different components ofthe algorithm.

Finally, in still other cases, individuals rely on different algorithmsto solve the

same problem.In our opinion, this demonstrates that a process-based description

of individual differences can be considerably richer than is possible by relying

solely on factor analysis and derivative methods.
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Theoretical and Empirical Methodology

The theories we have developed to describe problem-solving behavior have been

formalized as stochastic models in the form of computer programs. Webelieve

that the construction of such models, although admittedly an oneroustask, results

in theories that are more precise and testable. Unlike a theory presented as

descriptive prose, a process modelof a task requires the concrete specification of

the actions and decisions that a solver performs. Consider, for example, the

selection of potential moves. A less specific theory might merely state that a

move is selected for consideration, whereas the computer formalism forces us to

decide the order in which movesare chosen. We can do this at different levels of

detail, however. We can specify an order, which becomesa testable tenet of the

theory. Alternatively, we can introduce a free parameter that represents the

coding parameter of our models is the condensation of a great deal of research

about memory storage and retrieval into a single parameter that represents the

likelihood that a given state will be remembered when appropriate. Because

memory for states is not of central interest to us, we condense some complex

concepts into a simplified process governed by(in this case) a single parameter.

In other cases, our ignorance of the underlying processes leads to a similar

introduction of parameters.

The second use of free parameters1s to eliminate individual-difference var-

‘ance. This is because ourinterest has been on the commonprocesses used by the

majority of problem solvers. A free parameter can be used in situations where we

might expect large ‘ndividual differences to exist in how the process was per™

formed when those differences are not of primary interest. Note that this im-

plicitly assumesthat the basic processes used byall subjects are the same except

that they differ in the speed, efficiency, consistency, etc., with which they are

performed.

A third use of stochastic parameters Occurs whenthe process under considera-

tion is assumedto be truly random. This may be because the controlling event is

external to the organism (e.g., presentation order, which could be randomized,

might control the order of move consideration) or simply a random internal

process. In such a case, the parameteris notfree to vary, but its value is chosen

consistent with the most plausible underlying distribution (usually equiproba-

bility).

The precision with which the model mustbe specified enables us to obtain, by

the manipulation of the free parameters, quantitative estimates of performance on
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specific tasks. The modelis validated to the extentthatit predicts the quantitative
performance of subjects, using parameter estimates that are psychologically
plausible and that vary across conditions only whenit is reasonable to assume a
change in the processes involved. This contrasts with less precisely specified
models, which at best can make claims aboutthe relative difficulty of different
experimental conditions.

In addition to being testable as a whole, many of the model’s individual
assumptions can be tested separately. With an explicit postulate such as ‘‘moves
are selected in this specific order,’’ experiments can be designedto isolate one
process from the others and verify it separately. Furthermore, the explicitness of
these assumptions frequently leads the model to make concrete predictions in
areas where a less specific model may be mute. These predictions are not always
verified, but the activity of testing and modifying the model should lead closer
and closer to a correct description of the process.

The complexity of these models becomes in some sense the strongest argu-
ment for their usefulness. All of our models are complex enough, that wefindit
difficult to determine the consequence of a potential experimental manipulation
without runningthe actual simulations. We have frequently assumedthat a model
would predict A easier than B, whenin fact the actual prediction was reversed.
Post hoc, it is usually easy to see what features of the model led to the observed
ordering, but, without the simulations, we would not have taken those aspects
into accountproperly. In other situations, we have correctly inferred a difference
between groups, but the simulation has shownthat the magnitude of the dif-
ference is much smaller than we would have expected. Such simulation results
have helped steer us away from thestatistical problemsof distinguishing a small
difference from no difference. Without the quantitative predictions from the
simulation, such specificity in our empirical work would not have been possible.

Twokinds of evidence are used to show that a particular simulation modelis
an adequate account of performance in a given experimental paradigm. First,
traditional indices of goodness offit are used. These models contain free parame-
ters that are manipulated to produce a ‘‘best’’ fit to the data. Observed and
predicted means and variances for several descriptive statistics are then com-
pared. In addition, correlations between observed and predicted state-to-state
transition matrices are presented. These matrices tabulate the number of moves
made to and from each possible state of the problem. Because of the large
number of possible transitions, these correlations and the percentage-of-
variance-explained statistics derived from them represent sensitive measures of
the fit of the modelto the data. A simulation program is written to generate actual
trial-by-trial performance data for each experimental condition. The program
calculates a set of descriptive statistics from the simulated data that is equivalent
to that obtained from the observeddata. Comparisonsare typically made between
observed performance and the simulated data of 250 Statistical subjects, thus
giving a great dealof stability to the predicted quantities.

The other method of evaluating models involves demonstrating that the theory
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makes adequate predictions about variations in problem difficulty and other

experimental manipulations. Two things are meant by adequate predictions.

First, the theory must fit the data from each of the individual experimental

conditions. Second, the parameters requiredto fit data from individual conditions

must have sensible relationships. For example, experimental manipulations that

should have no effect on the underlying processes, yet should affect problem

difficulty, must be fit with one set of parameters.

The same general procedures have been used in all of our experiments. All

studies were run under computercontrol. In every condition, the currentstate and

other information, which varied from experiment to experiment, were displayed

on a CRT. This information could include the goal to be achieved orthe possible

moves from the current state. Subjects indicated a move by pressing buttons ona

keyboard connected to the computer. Included among the buttons were pro-

visions for subjects to edit a response before the computer actually performedthe

movethey entered. If a valid move was entered, the display was changedin the

fashion appropriate for that move. Illegal moves resulted in a warning message

and a return to the representation of the currentstate. Large numbersof subjects

were run in each experimentalcondition in order to generate enough data to make

stable comparisons between theory and data for individual cells of an experi-

ment. Inasmuch as the objective of many of the experiments wasto show thatthe

model could give a consistent account of performance across different experi-

mental conditions, a much larger number of subjects was required in each cell

than would be needed simply to show that these manipulations producedsignifi-

cant differences in performance.

PROBLEM SOLVING AS SEARCH

This section describes models for water-jug andriver-crossing problemsin which

means—ends search is the dominant problem-solving mechanism. Both the

theoretical framework and the experiments that were designed to test the

framework are described. The success of these models encouraged an attempt to

extend them to other environments. But, the shortcomingsof these simple models

in other problem domainsledus to the view that problem solving is determined by

the interaction of a solver’s partial understanding of the problem and general

search strategies.

The Theoretical Framework

The theoretical framework underlying the Atwood and Polson (1976) and the

Jeffries, Polson, Razran & Atwood (1977) models assumes that move selection

in a transformation problem involves the interaction of evaluation processes and

memory processes. Evaluation processes describe how means-ends heuristics
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and information retrieved from long-term memory are employed to evaluate a
move under consideration. Memoryprocesses, derived from a simplified version
of a multistore memory model, describe how information used in the move-
selection process is stored and retrieved. A three-stage process modelintegrates
the information from the memory and evaluation processes and leads to the
Selection of the next move.It is assumedthat subjects use only information about
the current state and its immediate successors to select the next move.

Evaluation Processes. There are five aspects of the evaluation processes:(1)
State evaluation; (2) the acceptability criterion; (3) optimal moveselection; (4) a
noticing order; and (5) anillegal movefilter.

Current state from the goal. A moveis evaluated by comparing the evaluation of
the current state (e;) with the evaluation of the state resulting from the move
under consideration (e;). We assume that the evaluation function is used to
classify movesaseither acceptable or unacceptable. Movesthatleadto a signifi-
cant improvement in the evaluation function are classified as acceptable. The
Solver is indifferent to small differences, and such moves are also acceptable.
(The value of the difference required for a move to be judged as similar is termed
the acceptability criterion.) All other movesareclassified as unacceptable. The
evaluation function, the acceptability criterion, and the process of comparing the
evaluation of the current state with the evaluation ofthe resulting state make up
the means-endsprocess.

Since each moveselection process continues until an acceptable candidate
move is found, in general fewer moves will need to be examined if the most
likely candidates are consideredfirst. In many tasks, it is possible to rank order
the desirability of various moves independentof the state they arerelated to. If
this is the case, we assume that moves are considered in the order of their
desirability. Desirability is derived from considerations of means-endsheuristics
and other specialized properties of the particular problem.If the desirability of a
move depends on the current state or the resulting state in some idiosyncratic
fashion, we assume that moves are considered in a random order.

The moveselection processes generate movesfor consideration independently
of their legality. All physically possible movesare evaluated, evenif they violate
otherrestrictions of the problem. Illegal movesare detected only after a move has
been proposed for execution. This detection process is fallible, and the probabil-
ity of successfully detecting an illegal move depends on the precise characteris-
tics of the resulting illegal state.

Memory Processes. The memorystructure and Storage and retrieval pro-
cesses can be described by a simplified version of a multistore model of memory



374 POLSON AND JEFFRIES

(Bower, 1975; Kintsch & Polson, 1979). During the move-selection processes,

information about the current state and its successors is stored in short-term

memory. Information about states visited during previous episodes is stored in

long-term memory; this information 1s used by both the evaluation and move-

selection processes.

During the first stage of the move-selection processes, the framework assumes

that the solver computes and stores in short-term memory information about the

move underconsideration, the resulting state, its evaluation, and other charac-

teristics of that state. Accurate information about at most 7 moves can be stored

in short-term memory. A solveris unable to store accurate information aboutall

of the various successors if the current state has more than r successors.

Representations of states actually entered during the course of problem solv-

ing are stored in long-term memory. A simple all-or-none modelis assumedfor

the storage process. The representationofa state that has been enteredis stored in

long-term memory with probability s. We assume that there is no forgetting and

that information that has been stored can always be successfully retrieved. In

other words, ‘‘old’’ states can always be recognized; ‘‘new’’ states are those that

have never been entered or for which a representation has not been stored during

some previous entry.

The Move-Selection Processes. A complex three-stage process is used to

integrate the information from the evaluation processes and the memory pro-

cesses in order to select a move. Each stage incorporates a serial self-terminating

process in which different criteria are used to evaluate successors of the current

state. Once a moveis selected, the process terminates, and the subject attempts to

execute that move. If all moves have been evaluated during one stage and no

moveselected, the subject goes on to the next stage. The order in which moves

are chosen for evaluation is determined by the noticing order if there is one, orit

is random.

The following decision rules are used by the solver during Stage I of the

process (Atwood & Polson, 1976):

1. An unacceptable move is never taken.

2. The move leading to the immediately preceding state is never taken.

3. A moveleading to the goal state is always taken.

4. Anacceptable move leadingto a *‘new’’ state is taken with probability a.

5. An acceptable move leading to an ‘‘old’’ state is taken with probability 6

[p. 197].

These decision rules describe how movesthatsatisfy the means-endscriteria are

evaluated. Means-ends movesthat lead to new States are taken with a fairly high

probability, a. Moves that satisfy the means-ends criterion, but lead to old

states, are taken with a lower probability, 6.
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During Stage II, a solver again serially evaluates the successors ofthe current
State in the order specified by the noticing order. The first move that leads to a
new state is taken. StageIII is entered only if there are no new successors to the
current state. There are two move-selection processes that may be executed
during Stage III. If the current state has more than r successors, the information
necessary to select an optimal movewill have beenlost from short-term memory;
it is assumedthat the solver randomly selects any of the successors of the current
state. If the current state has r or fewer Successors, accurate information about
these states and the moves leading to them remainsin short-term memory. In this
case, the solver selects the move that leads to the best value of the evaluation
function with probability a. Otherwise, a random move is selected.

The Water-Jug Task

The water-jug task was selected for the original series of experiments for three
reasons. First, the initial situation, goal, and legal moves are easily understood
by subjects. Furthermore, subjects can facilely perform the mental operations
necessary to calculate the consequences of a move. The theoretical framework
just outlined assumes that solvers have a low-level understanding of the basic
elements of the problem, including a characterization of the initial, intermediate,
and final states and the basic operations that define legal moves. Second, the
water-jug task environmentallows the definition of whole families of problems
with different structures and presumably varying sources of difficulty. Thus, it ispossible to evaluate a model for this task by using a variety of problems with
different structures. Third, the structure ofthe water-jug task permits a stringenttest of the means-ends assumptions.

Our water-jug problems are similar to those used by Luchins (1942) in hisexperiments on set. The task involves three jugs (A, B, C)of varying sizes; forexample, (8, 5, 3) indicates that the A jug has a capacity of eight units, the B jugfive units, and the C jug threeunits. Initially, the largest jug is full, and the twosmaller jugs are empty. The subject’s task is to determine a series of moves thatdivides the contents ofthe largest jug evenly between jugs A and B. Legal movesare defined by two pouring operations. Wateris either transferred from a jug untilthat jug is empty or the jug being pouredinto is filled. Water cannot be added ordeleted during the course of solving the problem.
Graphsofthe (8, 5, 3) and (24, 21, 3) problems are shown in Fig. 8.1. Otherproblemsusedin thesestudies had similar structures. All had the same configura-
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FIG. 8.1. Graphs of the possible states and legal moves for both the (8, 5, 3)

(panel A) and the (24, 21, 3) water-jug problems (panel B). For each state, the

three numbersin parentheses are the current contents of jugs A, B, and C respec-

tively (from Atwood & Polson, 1976).

leading to states R and L, respectively. From states R and L there are three

reversible moves: one forward move, a move to the transition state, and a

backward moveto the start state. From the remaining states of the problem, there

are always four possible moves: a reversible forward move, a reversible back-

ward move,and irreversible moves up to two of the four states at the top of the

graph (S, T, R, L). These irreversible moves are errors, and the subject’s ten-

dency to take certain irreversible moves causes much of the difficulty in a

water-jug problem.

The state-evaluation process or evaluation function is given by:

e, = [C,(A) — G(A)] + [C:(B) — GB) 8.1

where C,(A)is the numberof units of waterin jug A forthe ith state and G(A) is

the numberof units in A specified by the goal; similar quantities are defined for

jug B. Equation 8.1 is defined such that moves perceived as being closer to the

goal have smaller values. Thus, if the value of Equation 8.1 for the state resulting

from the move currently under evaluation is significantly larger than the eval-

uation of the current state, the subject perceives that the move under consid-

eration leads to a state thatis ‘ ‘further away” from the goal state, and the move is
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considered unacceptable. Recall that only acceptable movesare considered dur-
ing the first stage of the move-selection process.

There are other aspects of the evaluation process for the water-jug model.
There is no error filter in this model. We have never attempted to model the
process thatleadsto errors on this problem, even though approximately 10% of
the moves were illegal. Moves areselected in a random order by the model. This
is justified by the fact thatit is not possible to describe the effects of any given
move(e.g., pouring the contents of A into B) consistently. The effects of such a
move are completely dependent on the currentstate.

Wereview three experiments that provide support for the model of the water-
jug task developed from the theoretical framework just described. The first
experiment provides a test of the means-—ends process incorporated into the
framework. The second validates the model by showing that it can describe
performance from water-jug problemsthat differ widely in difficulty. The third
experimentis a test of the assumption that subjects do not plan in this task and
that they only consider information about the successors of the current state in the
process of selecting moves.

Experiment | reported by Atwood and Polson (1976) provides a test of the
means-endsheuristic incorporated into the model and Equation 8.1. This exper-
iment compared performance on two problems: (8, 5, 3) and (24, 21, 3). The
graphs of these problems are nearly identical, but they have quite different
patterns of acceptable and unacceptable movesas defined by Equation 8.1 and
the means-ends heuristics (see Fig. 8.1). For two of the states in the (8, 5, 3)
problem, the correct forward moveis classified by the evaluation function as
being unacceptable. Furthermore, from a majority of the states in this problem,
there are acceptable incorrect moves leading back to oneofthe four states at the
top of the graph. Forthe (24, 21, 3) problem,there are no unacceptablecorrect
moves, and the correct forward moveis the only acceptable moveforall but two
of the states in the entire problem. The model predicts that subjects solving the
(8, 5, 3) problem should findthis problem far more difficult than the (24, 21, 3)
problem because the move-selection heuristics incorporated into Stage I can
cause them to take movesbackto theinitial states of the problem and prevent
them from taking the correct forward move from two of the states.

Table 8.1 gives means and standard deviations of the numberof legal moves
to solution along with predictions derived from the model by simulation. Atwood
and Polson (1976) concluded that the pattern of acceptable and unacceptable
moves was the primary determinant of move choicesin the water-jug problem,
not the graph structure. The results are clear as Shownin the table. The (24, 21 ,
3) problem was almosttrivial for these Subjects, whereas the (8, 5, 3) problem
was quite difficult to solve. Thus, the means—ends heuristic is clearly a major
determinant of moveselection in these problems. .

In a second experiment, Atwood and Polson evaluated their model by testingits ability to account for performance on four water-jug problems that vary
widely in difficulty. All four problems had the same general structure shown in



378 POLSON AND JEFFRIES

TABLE8.1

Observed and Predicted Mean Legal Moves

and Standard Deviations

for Two Water-Jug Problems

(Adapted from Atwood & Polson, 1976,

p. 204, Table 3)
a

a
e

Legal Moves

 

Problem Observed Predicted

(8, 5, 3)

Mean 24.90 23.69

SD 14.75 15.31

(24, 21, 3)

Mean 12.03. 11.84

SD 7.44 6.66

e
e

Fig. 8.1. The problems used were (8, 5, 3), (12, 7, 4), (14, 9, 5), and (16, 10,

3). These problems differed in the lengths of their right and left paths, the

number of correct forward moves that were classified as unacceptable by the

means-—endsheuristic, and the numberof acceptable movesthat lead back to one

of the four states at the start of the problem. Problems ranged in difficulty from

the (8, 5, 3) problem, which hadright and left solution-path lengths of 7 and 8

respectively, to the (16, 10, 3) problem with solution-path lengths of 11 and 14.

There was

a

large difference in the lengths of the solution paths for the (12, 7, 4)

problem withthe right solution path being 7 moveslong and the left solution path

being 14 moves long. The number of correct forward movesthat were classified

as unacceptable by the means-ends heuristic was, in general, a function of the

length of the solution path, as wasthe numberof acceptable movesthat cause the

subject to back track to a state at or near the start of a problem.

The observed performance measures along with predicted values obtained by

simulation are shown in Table 8.2. Included are the observed and predicted

values for the mean number of movesto solution. If subjects failed to solve the

problem within 100 moves, they were given an arbitrary score of 100 moves.

Also displayed are the observed and predicted proportions of solution types—the

proportion of subjects who solve the problem by traversing the right solution

path, the left solution path, and those that failed to solve in 100 trials. The

predictions shown in Table 8.2 were obtained using a single set of parameters to

account for performance inall experimental conditions. We feel that the results

shownin the table clearly demonstrate that the model is capable of providing an

accurate account of changes in problem structure that lead to wide variations in

performance.

Although Atwood and Polson (1976) showed that a model derived from the

framework is able to make accurate predictions about problem-solving perfor-
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TABLE 8.2
Observed and Predicted“ PerformanceStatistics for Four Water-Jug Problems

(Adapted from Atwood & Polson, 1976, p. 208, Table 5)

——--

—_—_——

Problem

(8, 5, 3) (12, 7, 4) (14, 9, 5) (16, 10, 3)

Legal Moves
eee

Mean 34.23 (31.90) 49.90 (43.59) 64.15 (62.01) 68.12 (68.60)
SD 27.21 (30.18) 27.11 (35.90) 25.88 (33.64) 22.92 (32.23)eee

Proportions Using Each Solution Patheee
Right path .64 (.50) ./7 (.60) .46 (.25) 32 (.23)
Left path .18 (.36) .0O (.11) 08 (.23) .28 (.16)
Nonsolver .18 (.14) .23 (.29) .46 (.52) .40 (.61)ee

“ Predictions in parentheses.

mance across a range of water-jug tasks, neither of the aforementioned experi-
ments directly tested the assumption that subjects use only information about the
current problem state and its immediate successors to select a move. Earlier
proposals concerning problem-solving processes in transformation problemsas-
serted that moveselection involved the planning and execution of multistep move
Sequences (Egan & Greeno, 1974; Greeno, 1974; Thomas, 1974). Atwoodetal.
(1980) report experiments that attempt to test the no-planning assumption incor-
porated into the frameworkdescribed here. They showedthat various assumptions
aboutpossible planning mechanismsin the water-jug task wouldleadto predicted
patterns of performance that were quite different than those observed. Further,
they showedthat there were waysthat subjects could discoverthe primary cause of
difficulty in this problem and gain a limited understanding of the problem’s under-
lying structure. Recall that two of the four moves on each Step of both solution paths
are irreversible movesthat lead to one ofthe fourstates at the top of the graph.
There are several ways that subjects could discover characteristics of these ir-
reversible movesand learn to avoid them once they have encoded the identity of
the four critical states in long-term memory. Avoiding movesthat lead back to
the top of the graph and movesthatleadto the immediately preceding state would
enable the subjectto solve any of these problemsat or near the minimum number
of moves. Atwood et al. ( 1980) evaluated the possibility that subjects could

the planning process.
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Experiment 2 of Atwoodet al. (1980) tested the conjecture that subjects are

attempting to use more complex move-selection processes (e.g., forward plan-

ning) but are unable to do so reliably because of resource limitations. One

interpretation of Atwood and Polson’s (1976)results is that requiring a subject to

calculate the consequences of each move mentally, as well as to select the next

move, uses mostof the subject’s processing and memory resources. Thus, a subject

is unable to execute more complex move-selection processes consistently. This

experiment compares performance of subjects in control conditions with subjects

in move-availability and memory conditions. In the control conditions, subjects

were provided only with the goal andthe currentstate of the problem;they had to

calculate the consequencesof each possible move. This was the procedure used by

Atwood and Polson (1976). Subjects in the move-availability conditions were

given the currentstate, all possible successors of the current state, and the move

necessary to reach each successor. Subjects in the memory conditions were

provided with the same information given to the subjects in the move-availability

conditions(i.e., all successors of the currentstate and the move required to reach

each successor) plus information showing which successors of the current state

they had entered previously. There were 12 groups in the experiment: control,

move-availability, and memory conditions with four different problems for each

of the three conditions. The water-jug problems were similar to those used

previously and ranged widely in difficulty.

The observed and predicted mean legal movesto solution from Experiment 2

in Atwoodetal. (1980) are shownin Fig. 8.2. An analysis of the legal moves to

solution showed significant differences among the four problems and amongthe

three conditions, but the interaction was notsignificant. Atwoodet al. were able

to obtain excellentfits to the data from all 12 experimental conditions with a priori

shifts in some parameter values, with common values for a and s in all condi-

tions, and by manipulating the single remaining free parameter, 6, the probabil-

ity of making an acceptable move to a previously visited state. For example, the

best-fitting value for the parameter r, the number of successors that could be

perfectly retained in short-term memory, was found to be 3 for the control

condition. Atwoodetal. argued that the value for r in the move-availability and

memory conditions would equal4 (the maximum possible value) because a large

amount of the information that the subjects had to retain in short-term memory

was now presented on the display in the experimental conditions. Furthermore,

they arguedthatthe good fits to the data from all experimental conditions and the

fact that only a single free parameter had to be manipulated gave strong support

to the argument that the model was a good account of performance in control

conditions and that, with the plausible auxilary assumptions, it could account for

the data from move-availability and memory conditions.

In addition, Atwood et al. developed an insight model of a possible under-

standing processthat they incorporated into the simulation model. They assumed

that with probability p the solver would discover the underlying structure of the

water-jug problem in an insightful fashion. This insight process was assumedto
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--——=— Observed Control

 
1853) (12, 7,4) (10,7, 3) (16,10, 3)

Problem
FIG. 8.2. Observed and predicted values of legal movesto solution of Experi-
ment 2 in Atwood etal. (1980).

presented here to account for performance on various isomorphs of themissionaries-cannibals problem. Their objectives were to provide additional sup-
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port for the theoretical paradigm outlined earlier and at the same time attemptto

disprove the conjectures concerning planning processesthat several investigators

had concluded underlie performancein river-crossing problems (Greeno, 1974;

Reed, Ernst, & Banerji, 1974; Thomas, 1974). Our study used isomorphic var-

iants of the following problem. Three missionaries and three cannibals have to

cross a river in a boatthat holds only two travellers. The problem is complicated

by the fact that missionaries can never be outnumbered by cannibals at any point

during the ferrying process. We employed four isomorphic versions each involv-

ing different characters and giving different motivations to the outnumbering

restriction. Figure 8.3 shows the graph of both legal and illegal states for the

problem. The legal problem states are shown as rectangles. Illegal states, in

which the outnumberingrestriction is violated, are shown as ovals. M stands for

missionaries; C stands for cannibals. The numbersare state identifiers.

Jeffries, Polson, Razran, & Atwood (1977) made several additions and

modifications to the Atwood and Polson (1976) model in order to fit the data

from river-crossing problems. All of their changes were confined to the evalua-

tion processes. Recall that the evaluation processes are the way the model repre-

sents the subject’s understanding of the problem. The most significant change

made to the framework was the addition of a process to account for illegal

moves. The move-selection processes of the model considerall physically possi-

ble moves from any state. Moves that are illegal because they violate the out-

numberingrestriction are includedin this initial move-selection process. Legality

of a proposed moveis evaluated after it has been selected for execution. This

evaluation process, termed the error filter, was assumed to be fallible, and the

probability of successfully detecting an illegal move was a function of the percep-

tual characteristics of the state and, thus, the saliency of the rule violation.

The next change was to incorporate a different evaluation function into the

model. The function used was:

ej = aC; + bM; + cP;
8.2

where C; is the number of cannibals on the goal bank for state ij, M,is the

numberof missionaries, P; 1s the numberof missionary-cannibalpairs, and a, b,

and c are positive constants. A similar concept of an acceptability criterion was

incorporated into this model. Acceptable moves were those that did not signifi-

cantly decrease the value of @;.

Jeffries et al. also incorporated a fixed noticing order. In the missionaries-

cannibals problem, the desirability of the move can be determined independently

of the configuration of travelers in a state. The rank ordering for movesthat they

incorporated into the model was as follows: a pair, two missionaries, two canni-

bals, one missionary, or one cannibal. It was assumed that the preference order-

ing reversed when returning from the goal bank to the start bank. The noticing

order was derived from two considerations that govern moveselections in this

problem. The first is that the outnumberingrestriction is most easily satisfied by
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FIG. 8.3. Graph of possible moves and legal andillegal states for (3, 2) version
of the missionaries-cannibals problem.
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moving a pair of travelers on each move.If this move is physically possible and

legal, the problem solver is always assuredthat the resulting state is also legal.

The second criterion involves means-ends considerations. One would always

want to take as manytravelers from start to goal bankaspossible and return as

few as possible.

Four groups of 60 subjects each solved one of four different isomorphsof the

missionaries-cannibals problems. Jeffries et al. found no differences in the

numberof legal movesto solution orin the profiles of the mean numberof times

subjects entered various legal states of the problem. In addition, the legal move

data were similar to those obtained from other studies using missionaries-

cannibals problems. However, there were significant differences in the number

and patterns of illegal moves. For all isomorphs, the largest numberofillegal

moves were made at states 5 and 8, but the relative numbers ofillegal moves

made in these two states varied as a function of isomorph.

Jeffries et al. were able to develop models that gave excellent fits to the data

from the four isomorphs. The observed and predicted means and standard de-

viations of legal and illegal moves are shown in Table 8.3.1 Four models were

derived from the general framework having the additions described in the preced-

ing paragraphs. Certain components of the evaluation structure were varied as a

function of isomorph. The samenoticing order was used inall four conditions as

well as the same evaluation function with commonvalues of the weightsa, b,

and c. The patternsof illegal moves were fit by manipulating the values of the

illegal move-rejection parameters for each of the four isomorphs. The model

turned outto predict similar patterns of legal movesfor a range of weights in the

evaluation function and illegal move-filter parameters. This invariance in the

pattern of legal moves was found by Jeffries et al. and in other studies of

missionaries-cannibals.

The data from river-crossing problems were fit by making some additions and

modifications to the original Atwood and Polson (1976) model for water-jug

problems. Most of these changes involve the manner in which moves are

evaluated (e.g., noticing order, evaluation function). We interpret these

modifications as incorporating into the model the fragmentary and frequently

incorrect understanding that solvers have of this problem. In domains where

more understanding occurs, we found it more productive to model this under-

standing explicitly rather than incorporateit into various processesof the original

framework.

 

\After the publication of Jeffries, Polson, Razran & Atwood (1977), we discovered a ‘‘bug’’ in

the simulation model that affected the number of backward moves a solver would take. After

correcting this error, the simulation for the hobbits-orcs isomorph was rerun. In the corrected

simulation, the ad hoc assumptionthat state 6 was unacceptable was dropped. With minor parameter

changes, the modelfits the data evenbetter, accounting for 96% of the variance of legal andillegal

moves. (The previous model accounted for 94% of the variance.) All subsequent simulations using

this framework include the corrected model.



8. PROBLEM SOLVING AS SEARCH AND UNDERSTANDING 385

TABLE 8.3
Observed and Predicted* Means and Standard Deviationsfor Legal and Illegal Moves

to Solve Four Ilsomorphsof the Missionaries-Cannibals Problem
(Adapted from Jeffries, Polson, Razran, and Atwood, 1977, p. 430, Table 1)
i

Isomorph
eee

Hobbits-Orcs Elves-Men I Elves-Men IT Silver-Goldeee

Legal Moves

Mean 18.62 (17.75) 18.97 (18.19) 18.67 (17.86) 20.27 (19.59)
SD 10.54 (9.05) 11.05 (10.84) 9.35 (11.11) 11.77 (15.03)

Illegal Moves

Mean 2.75 (2.51) 5.42 (4.88) 5.50 (5.72) 6.65 (6.32)
SD 2.38 (1.88) 7.16 (3.63) 5.74 (4.48) 3.77 (5.83)

SSSSSRS

SSSA

SSSSSSssiSSfiesssese

“ Predictions in parentheses.

PROBLEM SOLVING
AS PARTIAL UNDERSTANDING

The framework from which the modelsfor water-jug and river-crossing problems
were derived has no mechanismsfor planning or generating subgoals. It was
assumed that solvers used only local information when solving these problems,
because of their limited understanding of the problem’s overall structure. For
naive subjects at least, water-jug and river-crossing problems have no obvious
subgoals. The problem instructions, which simply describe the goal state, the
Start state, and the rules for legal moves, evidently give subjects no insights into
the global structure of these tasks. Obviously, this is not true in general. The
claim to be explored in this section is that solvers do plan in situations where they
have at least a partial understanding ofthe structure of the problem.

Hobbits, Orcs, and Gold

Karat, Polson, Jeffries, and Razran (1978) conjecturedthat subjects may set up
and manipulate subgoals when they attempt to solve a problem with obvious
subcomponents. They combined the hobbits-orcs isomorph of the river-crossing
problem with the additional concurrent task of ferrying some bagsof gold across
the river, one bag at a time. Four different versions of the basic problem, which
we call hobbits, orcs, and gold, were constructed. The number of bags of gold
could be either three or six. Orthogonalto that, half of the versions introduced a
complication:If all three orcs andall the bags of gold are everleft alone on either
side of the river, the orcs steal the gold. This introduces two potential detours
into the problem.

This family of problemshasseveral interesting characteristics. It factors into
two obvious subproblems: (1) ferrying the gold across the river; (2) ferrying the



386 POLSON AND JEFFRIES

travelers across. The gold problemistrivial, whereas ferrying the travelers across

has been shownto be solved by means-endsdriven search. Also, the addition of

the complication of the orcs stealing the gold produces aninteraction between the

two subproblems, whose resolution may not be apparent to someone who does

not understand the underlying structure of the missionaries-cannibals problem.

Figure 8.4 diagramsthe problemstates of the three-bag interaction versionof the

problem.

Karat et al. distinguished amongthreesets of solution paths and the problem-

solving strategies associated with each of them. The gold-first strategy involves

using some combination of travelers to ferry the gold across the river first and

then moving the travelers across. This takes one across the top of the graph in

Fig. 8.4 and then downtheright-hand side. In the no-interaction versions, one

can travel straight down the right-hand side of the graph; in the interaction

versions, this requires a detour. The secondstrategy, travelers first, requires one

first to solve the travelers subproblem andthen ferry the gold across. In Fig. 8.4,

this moves one downtheleft-hand side and then across the bottom of the graph.

Again note that a detour is required to solve the interaction versions. The final

strategy is to solve both problems concurrently (combined strategy); such a

solution path moves one diagonally across Fig. 8.4. Note that either of the two

sequential strategies, gold first or travelers first, defines a longer than minimum

solution path. Moreover, in the interaction versions, solvers are required to

detour around an illegal state. The combined strategy solution paths are of

minimum length and avoid the detour in the interaction versions.

In the empirical results, two types of solution paths are observed: gold first

and combined. Subjects are classified as gold-first solvers if they make a series of

movesthat results in all the gold being carried across before reaching state 6 of

the missionaries-cannibals problem (see Figs. 8.3 and 8.4). The solvers not

meeting this criterion are classified as combined solvers. In several replications

and variations using these problems, only one subject showed any evidence of

using the travelers-first strategy.

This criterion for distinguishing gold-first from combined solvers motivates

the use of both three- and six-bag versions of the problem. One can consider

stochastic models of the type previously described as analogous to a random walk

through the problem space, constrained to move from the upper left to the lower

right corner of the problem graph. A model with no planning processes should

predict that the likelihood of any path is a function of how directly it heads

toward the goal state. Such a random-walk model might produce a sequence that

ferried three bags of gold fairly frequently. A sequence involving six bags of

gold, however, should occur much less often. On the other hand, for a model

with an explicit ferrying process, the length ofthe ferrying sequence should make

no difference in the frequency of its occurrence.

Karat et al. (1978) compared groups of subjects solving one of the four

versions of the hobbits, orcs, and gold problem. The empirical results are shown
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FIG. 8.4. Problem graph ofthe legal states of the three-bag, interaction version
of the hobbits, orcs, and gold problem. H stands for a hobbit; O stands for an orc;
G stands for a bag of gold; « is the position of the boat.

in Table 8.4. The six bags of gold versions were moredifficult than the three-bags versions. Theinteraction versions of the problem were moredifficult than
the no-i
type (combined or gold first), a better understanding of the results emerges.
These results are shown in Table 8.5.
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TABLE8.4

Observed and Predicted* Means and Standard Deviations for

Legal Moves andCorrelations Between Observed and

Predicted Move Choices for Four Versions of the Hobbits,

Orcs, and Gold Problem

i

Condition

I

3-Bag: 3-Bag: 6-Bag: 6-Bag:

No Interaction Interaction No Interaction Interaction

I

Legal Moves

Mean 22.3 (20.9) 27.0 (28.4) 24.6 (26.5) 31.1 (29.2)

SD 11.8 (13.7) 16.0 (16.4) 9.4(10.1) 15.9 (15.8)

Correlation 93 89 .92 87

i

¢ Predictions in parentheses.

The number of gold-first solvers varies across conditions from 50% in the

three-bag interaction version of the problem to 31% in the six-bag interaction

version. There were no differences in movesto solution between interaction and

no-interaction versions of the problems for the combined solvers. In the no-

interaction versions, the gold-first solvers took approximately the combined

numbers of moves subjects take to solve the two problems separately. The

subjects who used the gold-first strategy in the interaction versions of the prob-

lem had a great deal of difficulty detouring around the illegal state that the

interaction generates. They took many more moves to solve the problem than

either the combined solvers on the same problem or the gold-first solvers on the

no-interaction versions.

Wefirst attempted to fit the data with a straightforward extension of the

Jeffries et al. model. The model was modified by simply defining a noticing

order for the 10 possible moves from eachstate. The best fits were obtained by

adopting a generalized means-—endscriterion for the noticing order. The first

three moves involve combining one bag of gold with: (1) a pair; (2) two hobbits;

(3) two orcs. Moves4 through 6 include the sametraveler sequence, but without

any gold. The remaining moves were: (7) a hobbit with a bag of gold; (8) an ore

with a bag of gold; (9) a hobbit; and (10) an orc. This model gave a reasonable

account of the behavior of the combined solvers. However, it had two shortcom-

ings. First, it was unable to predict the necessary percentage of gold-first solvers.

Second, the model had a difficult time detouring aroundthe illegal state in the

interaction version of the problem.

Inasmuchas the noticing order going from the goal bank backto the start bank

is the reverse of the noticing order just presented, the model could not execute an

efficient detour aroundtheillegal state. The top two moves on the noticing order

did not involve moving a bag of gold; therefore, the model had a tendency to
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TABLE 8.5
Observed and Predicted“ Meansand Standard Deviations for Legal Movesas a Function of Solution Path Choice

and Percentages of Solvers Selecting the Gold-first Solution Path for Four Versions of the Hobbits, Orcs, and Gold Problem

TT

eee

aeeeeae

3 Bag:No Interaction 3-Bag:Interaction 6-Bag:No Interaction 6-Bag:Interactionnn

Combined Gold-first Combined Gold-first Combined Gold-first Combined Gold-first

TT

SS

Legal Moves

Mean 19.5 (18.9) 26.1 (23.8) 17.5 (18.4) 36.5 (38.3) 21.0 (21.8) 29.3 (31.8) 23.8 (21.4) 57.3 (45.3)SD 9.6 (12.8) 14.0 (14.6) 7.9 (8.6) 16.6 (18.8) 8.9 (6.5) 7.8 (12.0) 10.3 (7.0) 20.2 (21.2)%Gold-first 41% (40%) 50% (53%) 44% (42%) 31% (36%)eee
“ Predictions in parentheses.
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return to the start bank without taking a bag of gold, a movethat is necessary to

get aroundthe illegal state. Furthermore, once it had succeededin getting a bag

of gold back acrossthe river, the moves atthe top of the noticing order on the

next moveall included gold. Thus, the model would tend to get trapped in the

upper right-hand corner of the graph (see Fig. 8.4) and oscillate.

To account for these two aspects of the data successfully, a new model was

constructed that includes two assumptions about the type of understanding that

occurs in this problem. First, the model understandsthat the two subproblemsare

independent and can be treated separately. Second, the idea of ferrying the

remaining bags of gold across the river is discovered in an insightful fashion and

is modeled by a simple all-or-none model of the insight process.

The model assumes that the solver treats the two subproblems separately:

Flags are kept in working memory that indicate which, if either, of the two

subproblemsis solved. First, the solver attempts to deal with the gold subprob-

lem. If it is not yet solved, with probability f the solver decides to ferry the

remaining bags of gold acrossthe river. The ferry strategy involves a repetition

of the last legal move carrying a bag of gold whentraveling from thestart to the

goal bank. If the solver decides not to ferry, a decision is still required as to

whether gold should be taken on this move. Gold will be movedwith probability

g if the moveis from the start bank and with probability / if the move is from the

goal bank. g will be a high probability, whereas h will be low. Once a decision

to move gold or not has been made, the simulation calls on the Jeffries et al.

model to select hobbits and orcs to be moved, that moveis combined with the

gold choice, and the move is executed.

The model claims that understanding and search in this problem factor per-

fectly. The search processes involving the gold subproblem are trivial. Choices

of moves involving travelers are made by the Jeffries et al. model, which is

called as a subroutine, with the same parameters used in both models. Observed

and predicted means and standard deviations for moves to solution for the no-

interaction conditions are shown in Tables 8.4 and 8.5. The modelfits the data

well. It can correctly account for the percentage of subjects who usedthe gold-

first strategy. Correlations between observed and predicted state to state transi-

tion frequencies for the no-interaction conditions range from .91 to .94.

Two modifications were made to the model to account for the data from the

interaction conditions. First, a temporary change in the probability of moving

gold is introduced wheneverthe solver is trapped in the upper right-hand corner

of the graph. The modelrealizesit is trapped once it considers the moveinto the

illegal state that permits the gold to be stolen. It immediately takes one bag of

gold back across the river. Next, the probability of moving gold atall 1s drasti-

cally reduced for the next two or three moves. At the end of this sequence, when

the solver has detoured aroundtheillegal state, the same processes described for

the no-interaction version are used to complete the solution to the problem. These

modifications describe solvers’ understanding of the fact that it is necessary to
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take at least one bag of gold back across the river and keep it there for several
movesuntil the illegal state is detoured.

The second modification to the model incorporates the realization of some
subjects that they could avoid the difficulty introduced by the interactionif they
ferried all but one of the bags of gold across the river and then solved the
travelers subproblem. The ferrying process is the same for both the interaction
and no-interaction versions of the model. However,if a solver has not decided to
ferry but has movedall but one of the bags of gold acrosstheriver, the probabil-
ity of moving a bag of gold is greatly decreased until most of the travelers have
crossed the river.

With these additions, the model also accounts for the results in the interaction
conditions. The same parameter values are usedtofill all four conditions in the
experiment. The model’s results for the interaction conditions are also shownin
Tables 8.4 and 8.5. The percentage of gold-first solvers is well accountedfor,
and the state-to-state transition frequencies correlations range from .85 to .91.

These results demonstrate that problem solving in these sorts of tasks can be
characterized as a subtle mixture of understanding and search. They suggest that
subjects will exploit all of the information that can be derived from the descrip-
tion of the problem and from experience with various subproblems encountered
during the solution. The model contains a detailed and deterministic description
of the aspects of the problem grasped by all subjects. The Jeffries et al. model
proves to be a good description of the default means—ends search process that
was uSed to select movesin situations wherelittle understanding occurs.

Tower of Hanoi

A transformation problem with a very different flavor from water-jug and river-
crossing problemsis the Tower of Hanoi. This problem has a numberofinterest-
ing structural and perceptual properties. The problem solutionis hierarchically
structured, with each version containing all smaller variants as subproblems.
Moreover, even a naive subject can infer a great deal from only thestart state,
goal state, and problem rules about possible subgoals and reasonable courses of
action. The problem involves some numberof graduated disks (three to six in the
experiments reported here), which are initially stacked on oneofthree pegs. The
task is to transfer the disks to anotherpeg (the goal peg). The rules of the problem
specify that the disks are to be moved oneat a time, with therestriction that a
larger disk may never be placed on top of a smaller one.

The Tower of Hanoi has been oneof the most extensively studied transforma-
tion problems. It has been usedto study transfer (Hayes & Simon, 1976a) and the
understanding of written instructions (Hayes & Simon, 1976b). Simon (1975)
has presented an analysis of the kinds of Strategies that could be used to solve
such problems in a minimal number of moves. The Tower of Hanoi was one of
the tasks given to GPS in Ernst and Newell’s (1969) study of problem solving
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and generality. Anzai and Simon (1979) studied the learning processes of a

subject who repeatedly solved the Tower problem andrapidly gained a complete

understanding of a general strategy sufficient to solve all such problems.

The problem graph of the three-disk problem is presented in Fig. 8.5; a

schematic ofthe five-disk problem is presented in Fig. 8.6. Figure 8.5 showsall

possible legal configurations of disks for the three-disk problem. Lines connect-

ing each node represent the legal moves. There are 27 states for this problem. In

general, there are 3‘ possible states in the N-disk Tower of Hanoi problem; the

minimal number of movesto solution is 2‘ — 1. Figure 8.6 abstracts the legal

movesfor the five-disk problem by treating each three-disk problem as

a

single

move. Thus, each triangle in Fig. 8.6 could be expanded into

a

replica of Fig. 8.5

with additions of disks 4 and 5 and other changesin labeling.

The recursive characteristics of this problem are apparentin the illustrations.

First, the three-disk problem graph consists of three two-disk problem graphs

connected by movesof the largest disk. Second, the five-disk problem can be

broken down into three four-disk problems connected by movesof the largest

 
FIG. 8.5. Problem graph of the legal moves and states for the three-disk Tower

of Hanoi problem. Disks are represented by the numbers |, 2, and 3, with 1 being

the smallest disk. (from Karat, in press)
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1 Three -Disk
2 Subproblem
3

Four - Disk
Subproblem

FIG. 8.6. A schematic problem graph of the five-disk Tower of Hanoi problem
where each three-disk subproblem is represented as a single move. Disks are
represented by the numbers | to 5. (from Karat, in press)

disk, and each four-disk problem can be similarly broken downinto three-disk
subproblems. In general, the graph of any N-disk Tower of Hanoi problem is
composed of three (NV — 1)-disk problem graphs connected by movesof the
largest disk. This property of the problem permits an elegant, recursive charac-
terization ofthe solution in termsof solutions to the smaller problems of whichit
is composed.

Karat (in press) has developed a model that accounts for the behavior of
subjects solving Tower of Hanoi problems (both legal moves and movelaten-
cies). The model is based on the assumption that subjects have some limited
understanding of how to go about solvingthe problem butare not able to generate
a complete solution plan. Solution of the problem involves a mixture of under-
standing and search, similar to that observed in the hobbits, orcs, and gold
problem. Karat describes the model as a hierarchical production system. The
productions making up the model are groupedinto three subsystemsreferred to
as the execute, propose, and evaluate subsystems.
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Productions in the execute subsystem monitor the contents of working mem-

ory for the presence of information about approved moves that must be executed.

If such a moveis in working memory, the execute subsystem causes the moveto

be taken. If no moveis currently in working memory, the propose subsystem is

activated. This subsystem consists of rules for generating moves given informa-

tion about the current state. There are two subsets of such rules, which corre-

spondto situations where the solver does or does not have an understanding of an

appropriate course of action. In the former, configurational properties of the

situation cause specific moves to be deterministically selected; in the latter,

moves that are consistent with a means-endscriterion are stochastically selected.

The evaluate subsystem examines proposed movesforlegality.

This model is intended to account for the performance of subjects who have

had minimalpretraining on other versions of the task. With this small amountof

experience, subjects appear to acquire information about both the local and

global attributes of the problem.

The local information is derived from two simple heuristics. The first is thatit

is never useful to move the same disk on two successive moves because the same

result could have always been accomplished in a single move. Because of the

structure of the task, this leads to the realization that the smallest disk (disk 1)

should be moved on odd-numbered moves, whereas some other disk should be

moved on even-numbered moves. The secondheuristic is to avoid undoing the

effects of moves recently made. This heuristic, combined with the realization

about alternating moves of the smallest disk, leads to solving the problem by

repetition of the following four-movepattern: (1) move the smallest disk; (2)

movedisk 2 to the only available peg; (3) put disk 1 on disk 2; (4) move the only

possible other disk. Any other move sequence leads to the undoing of a recently

accomplished state; in particular, if disk | is not replaced on top of disk 2, the

effects of moving disk 2 must be undone. Note that in this sequence, where the

smallest disk is to be movedin step | is not specified. Additional heuristics are

required to select among the two possible movesat this point.

Solvers also appear to acquire an understanding of some of the major subgoals

in the solution to this problem. They realize that the movement of the largest disk

‘s the most constrained. Therefore, once it is placed on the goal peg, it is

importantthat it not be moved again. Once the largest disk is on the goal peg, the

second largest disk becomes the critical disk, and so on.

The model assumesthat the solver uses means-ends driven search in situa-

tions where the foregoing heuristics do not lead to the choice of a unique move

(i.e., in the move of disk 1 in step 1). When a single execution of the four-step

cycle leads to the solution of the current subgoal, the correct move of disk | is

selected. Otherwise, with probability p,, the movethat leads closer to the goal

according to a means-endscriterion is chosen. The means-endscriterion is also

occasionally applied to the moveofdisk | in step 3. This moveis often counter to

a means-endsstrategy. Mostof the time (probability p2), a solver will make the
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move dictated by the avoid loops heuristic; however, occasionally this process
fails, and the other moveofdisk 1, which is consistent with a means-ends rule, is
chosen.

To make the workings of this model clearer, a short description of how it
solves three-, four-, and five-disk Tower of Hanoi problems follows. The three-
disk problem istrivial for both subjects and the model. It first moves disks 1 and
2 out of the way of the largest disk; then it moves the largest disk over to the goal
peg, thus accomplishing its current subgoal; and finally it moves disks 1 and 2 on
top of disk 3.

The four-disk problem is more difficult. The model begins by establishing the
subgoal of moving disk 4 to the goal peg. It now decides to move disk 1, but the
solution to the subgoal is far enough awaythat it cannot determine which moveto
take. Since for the four-disk problem, the correct initial move is counter to the
means-endsstrategy, the correct move will be chosen with probability (1 — Pi):
If the correct first move is chosen, the modelhasa high probability of solving the
problem in a minimum path. The only errors made will be failures of the avoid
loops rule, but these occur infrequently. If the wrong first move is chosen, the
model wanders through the problem graph until it manages to accomplish the
current subgoal. The remainder of the problem, which is equivalent to a three-
disk problem, is solved in a near minimum path as before.

Note that the model does not divide the four-disk problem into two three-disk
subproblems with an intervening move of the largest disk. However, once the
largest disk is moved to the goal peg, the model is able to treat the remainder of
the problem exactly asif it were a three-disk problem (whichit is).

The five-disk problem presents even moredifficulties for the model. It essen-
tially wanders through the problem graph until the first subgoalis accomplished.
It then solves the remainder of the problem exactly as it solved the four-disk
problem.

Karat (in press) reports an experiment in which he recorded both move
choices and latencies for four groups of subjects solving a series of pretraining
problems followed by a five-disk problem. The groups varied in the nature of
their pretraining. The first group had a single three-disk training problem. The
second group had six three-disk training problems, defined by the variouspossi-
ble combinations of the start and goal peg. The third group hadthree three-disk
problems followed by three four-disk problems. The fourth group had one
three-disk training problem followed by twofive-disk problems. Subjects’ per-
formance on the final five-disk problem was very similar for groups 2-4, even
though group 4 had twofive-disk problems during pretraining.

The modelfits the data very well. It accounts nicely for the relative difficulties
of the three-, four-, and five-disk problems. Moreover,its predictions about the
relative difficulties of the two halves of the five-disk problem are supported.
Table 8.6 showsthe observed and predicted moves to solution for groups 3 and 4
on the five-disk problem and its various subproblems. Not only does the model
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TABLE 8.6

Observed and Predicted Mean Legal Moves

to Solve Five-disk Tower of Hanoi, Selected Subproblems,

and Training Problems (adapted from Karat, in press)
na
s

Observed Predicted

Group 3 Group 4

 

Full five-disk problem 47.4 46.3 46.0

First four-disk subproblem 29.2 26.7 27.2

Second four-disk subproblem 18.2 19.6 18.8

Third three-disk subproblem 10.8 12.3 11.8

Final three-disk subproblem 7.3 7.3 7.0

Final four-disk training problem 17.6 —

Final three-disk training problem 7.5 —

a

A

match the subjects’ overall data, but its predictions that the final four-disk and

three-disk subproblemsare solved exactly the sameasin isolation are borneout.

The mean numberof movesto solve the final four-disk and three-disk subprob-

lems within the five-disk problem are indistinguishable from the number of

moves required to solve the three-disk and four-disk training problems.

River-Crossing Problems Revisited

Schmalhofer, Polson, and Karat (in preparation) have developed a model for

river-crossing problems from the same framework that motivated Karat’s (in

press) model for the Tower of Hanoi problem. The components of this

framework are: (1) the model is formalized as a production system;(2) there are

productions that describe a solver’s understanding of the structure of the problem

and of the deterministic move choices that are the results of this understanding;

(3) there are productions that describe general search processes (e.g., Means-

ends analysis) as they manifest themselvesin this particular task environment; (4)

the production system can be partitioned into execute, propose, and evaluate

subsystems.

The propose subsystem of the Schmalhoferetal. model generates up to three

potential moves from the current state for the evaluate subsystem to consider.

These movesare either selected randomly from the possible moves, or they are

selected to be consistent with a strategy of keepingthe travelers balanced. Which

selection criterion is used varies from move to move. Once the set of movesis

selected, they are stored in a means-ends order before being passed to the

evaluate subsystem.

The evaluate subsystem evaluates each of the selected moves. With some

probability, a move will be taken if it is acceptable according to the current

criterion; otherwise, the evaluation process will continue to a deeper level. First,

a proposed move maybe taken without any evaluation. At the second level, the
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model tests to see if the move returns to the just previously visited state or to
another particularly salient state (e.g., the start State). If it does, the move is
rejected; otherwise, the move may be accepted, or the analysis may continue. In
the final level of analysis, the move is evaluated to seeifit satisfies the means-
ends criterion or if it would undo a desirable configuration. The model recog-
nizes that having the missionariesall on the goal bankis highly desirable. At this
level of evaluation, it will reject any move that returns missionaries to the start
bank once all missionaries have been movedto the goal bank.

In the execute subsystem, the moveis evaluated for legality and for whetherit
returns to an already visited state. Both of these processes are fallible. The
representation of the resulting state is then stored in long-term memory.

The Schmalhofer et al. model provides a more useful characterization of the
relationship between search and understanding components in the solution of
river-crossing problemsthan did the earlier model. In attempting to extend the
Jeffries et al. model to more complex river-crossing problems, we found that
aspects of subjects’ understanding of the problem were being introducedinto the
model in baroque and ad hoc ways. The propose, evaluate, execute framework
makes the distinction between understanding and search processes clearer. In
addition, other problemscan easily be incorporated into this theory, as well as
notions about learning andtransfer.

legal and illegal moves and correlations between observed and predicted state-
to-state transition frequencies for an experimentthat compared three versions of
the hobbits-orcs problem. A single set of parameters was usedtofit all three
problems. The resulting fits are quite reasonable.

TABLE8.7
Observed and Predicted* Means and Standard Deviations

for Legal and Illegal Moves and Correlations
Between Observed and Predicted Move Choices

for Three Versions of the Missionaries-Cannibals Problemee

Problem

(3,2) (4,3) (5,3)eee

Legal Moves

Mean 16.55 (17.34) 18.90 (18.45) 28.25 (27.37)
SD 6.85 (7.72) 12.48 (9.51) 17.67 (15.28)

legal Moves

Mean 3.73 (2.86) 3.13 (2.69) 5.63 (5.24)
SD 5.47 (3.09) 3.60 (2.77) 6.23 (4.73)

Correlations

Legal Moves 97 9] 93
legal Moves 9] .90 9]ee

“Predictions in parentheses.
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COMPLETE UNDERSTANDING:

LEARNING AND TRANSFER

We have characterized the performanceof naive subjects solving transformation

problems as a mixture of search and understanding. We now consider the per-

formance of subjects who have acquired a fairly complete understanding of a

problem through learning. We focus on what is learned in such tasks rather than

on a detailed description of the mechanisms underlying the learning process. This

section examines the kind of understanding a subject acquires through experience

and how the conditions of acquisition can affect that understanding. First, we

consider a problem in which the understanding necessary for a minimum path

solution is acquired in an insightful, all-or-none manner. Then, we explore what

is learned when subjects repeatedly solve a river-crossing problem. Finally, we

show that river-crossing problemscan beusedfruitfully to investigate educational

issues such as differences between discovery and expository learning.

These experiments make extensive use of versions of the missionaries-

cannibals problem. The experiments utilize problems involving ferrying n mis-

sionaries and n cannibals in a boat that holds k travelers, with the usual restric-

tion that the cannibals can never outnumberthe missionaries on either bank of the

river. We denote such a river-crossing problem by the tuple (1, k).

The set of problemsused in these studies can be solved by one of two general

strategies. The first is a repetitive solution in which two pairs of travelers are

taken across theriver, the boat returns with onepair andthe cycle repeats untilall

the travelers have been transferred to the goal bank. Any river-crossing problem

involving a boat that holdsat least four travelers can be solved with this strategy.

Examples include (4, 4), ©, 4), (6, 4), (8, 4), and (8, 5). We call such problems

four-in-the-boat problemsandrefer to this move sequence as the pairs strategy.

All river crossing problemscanalso be solved by a secondstrategy: (1) take the

orcs across the river; (2) interchange the positions of the hobbits and the orcs; (3)

ferry the remaining orcs back across the river. Werefer to this strategy as the

orcs-switch-orcs strategy.

The more complex river-crossing problems have multiple, empirically distin-

guishable solutions. To evaluate what has been learned during the training pro-

cess, we examine subjects’ performance on novel problems that have several

distinct solutions. It is possible to evaluate how various training problem proce-

dures andinstructionsaffect what is learned by observing changesin the distribu-

tion of subjects using various solutions to a particular transfer problem.

Four-in-the-Boat Problems

In some problem-solving situations, the understanding of a problem can be

characterized as an insight process. A subject’s discovery of the pairs strategy

whensolving a four-in-the-boat problem is an example of such a process. The
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e investigated
, Razran, and Tinsley(1977), Jeffries, Polson, and Tinsley (1978), and Jeffries and Polson (in prepara-

in-the-boaton paths. Various groups solved either(4,Jeffries et al. distinguished three kinds of solutions

problemsthat had varying length soluti
4), (5, 4), or (6, 4) problems.



400 POLSON AND JEFFRIES

TABLE 8.8

Classification of Subjects by Type of Plan

and Mean Legal Moves for Each Plan Type

of Subjects Solving Three

Four-in-the-boat Problems

mm
Problem

2

(4,4) (5,4) (6, 4)

Percent classified as®

14% 11% 14%
Preplanners

Insight Planners 38% 42% 48%

Gradual Planners 0% 16% 29%

Nonplanners 48% 32% 10%

Legal moves

Preplanners 5.0 7.0 9.0

Insight Planners 6.3 9.0 11.3

15.6 12.5
Gradual Planners —

Nonplanners 8.4 13.3 20.8

4 Percentages may not add to 100% due to round-

ing error.

perfectly to a second problem.

The training procedure involved having s

the (4, 4), (5, 4), or (6, 4) problem. Subjects were then given the (6, 4) problem

i ts using isomorphs of the (3, 2) problem have

shown that there was surprisingly little improvement in subjects’

after a single solution (Reed et al., 1974). In contrast, Jeffries

found that 91% of their subjects who discovered the pairs strategy on the first

problem used it exclusively on the second problem. This supported their claim

that subjects understood the strategy and its applicability to new problems.

ubjects in three groups solving either

Learning and Transfer

in Other River-Crossing Problems

situations in which the learning process occurs over several

blem. Jeffries (1978, 1979) focused on two ques-

ndividual learns by solving a sequential problem

terion. Jeffries was particularly interested

Next we describe

repetitions of the training pro

tions. The first was what an 1

until reaching a strict performance cri

in whether subjects’ understanding cou
ubject simply

the general structure underlying solution of whether the s

memorizes the sequence of moves. She evaluated these two possibilities by



problem-solving situation in which the task is to discover how previously ac-quired knowledge can be applied in a novel situation. Currently, very little isunderstood about how individuals solve transfer problems.In fact, problemsthat

Jeffries used three versions of the hobbits-orcs problems in her experiment:(3, 2), (5, 3), and (6, 4). All of these problems can be solved by the orcs-Switch-orcsstrategy. In addition, the pairs Strategy can be usedto solvethe (6, 4)problem. Two water-jug problems werealso used, the (24, 21, 3) and (8, 5, 3)problems(from Atwood & Polson, 1976). Recall that the (24, 21, 3) problem can

naive subjects on both water-jug and river-crossing problems. The Strategy-transformation model of Neches and Hayes (1978) and Neches (1979) suggeststhat extensive experience with a process should lead to better integrated, more

The eight groups were: (1-2) control groups given only a test problem, either(6, 4) or (5, 3); (3-4) groups trained on the (24, 21, 3) water-jug problemfollowing by one of the two test problems, either (6, 4) or (5, 3): (5-6) groups

problems; (7-8) groups trained on the (3, 2) Tiver-crossing problem and thentransferred to one of the twotest problems. The data on thefirst trial of thesecond problem were used to evaluate performance on thetest problemsafterbeing trained on a single river-crossing problem. Subjects were trained on this
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new problem until they reach

to the other test problem. T

comparisons: transfer performance after training on a

performanceafter training on a second river-crossing task.

Twosorts of analyses were carried out on the data from the test problems. The

first involved characterizing subjects performance in terms of mean numberof

legal moves to solve the test problems. The results for the various groups are

shown in Table 8.9. Asterisks indicate those groups that were significantly

different from their appropriate control. The results for the (5, 3) problem show

that training on one or more river-crossing problemsled to significant improve-

ments in performanceonthetest task. The results for the (6, 4) transfer problem

show little or no improvementas a function of training. This was due to the fact

that even naive subjects solved this problem in nearly a minimal number of

moves, using the pairs strategy.

Moves to solution as a dependent measure are not very illuminating for a

sequential problem of any complexity. For these problems, there are solutions

having widely differing structures. An analysis of the twotest problems, (5, 3)

and (6, 4), was performed, and a set of templates that describe possible solution

strategies was developed.

A computer program was written that matched subjects’ move sequences

against the templates representing eachstrategy. If the subject made more than

three errors (e.g., illegal moves) or took more than 18 legal movesto solve the

problem, none of the templates would match, and the subject was considered to

have used somesort of trial-and-error process. Thus, all of the strategy templates

assume that utilization of the strategy would enable the subject to solve the

problem in a near minimal number of moves, making at most one or two errors.

hus, these last two groups provided data for two

single problem and then

TABLE 8.9

MeanLegal Movesto Solve Two

Missionaries-Cannibals Problems

as a Function of Training Condition

(Adapted from Jeffries, 1978)

nl

Test Problem

ee

Training Problem (5, 3) (6, 4)

a

None 31.5 11.2

(24, 21, 3) 31.3 11.5

(8, 5, 3) 26.4 11.9

(3, 2) 16.4* 10.4

(3, 2) & (5, 3) — 9.5

(3, 2) & (6, 4) 16.1* —

a

* differs significantly (p < .01) from the appro-

priate control.



lying strategy. A template was consi
deviations from one of the move s

used somevariation of the general orcs-switch-orcs strategy in order to Solve the test prob-lem. A detailed description ofthestTategy is as follows: First, ferry almostall ofthe orcs across the river. Next, movethe hobbits So that

to a problem thatis not better describ
outlined earlier. Finally, the pairs Strategy, whiproblem, involves bringing twopairs oftravelers from the start to the goal bankreturning with a pair, and cycling that mov
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TABLE 8.10

Percentages of Subjects Conforming to Each Strategy Template

on Two Missionaries-Cannibals Test Problems as a Function of Training Problem

(Adapted from Jeffries, 1978)

Strategy

co

Simple Sophisticated Orcs-

Training Test Memorized Memorized Switch-

|

Means-

Condition Problem Moves Moves Orcs Ends Pairs None

None (5, 3) 0 5 6 3 — 87

(6, 4) 0 0 0 3 60 38

(24, 21, 3) (5, 3) 0 0 3 7 — 90

(6, 4) 0 0 4 8 80 6

(8, 5, 3) (5, 3) 0 0 3 13 — 85

(6, 4) 0 0 3 17 70 10

(3, 2) (5, 3) 8 5 58 10 — 20

(6, 4) 0 13 58 15 13 3

(3, 2) & (6, 4) (5, 3) 3 8 56 8 — 28

0 0 78 10 3 10

(3, 2) & (5, 3) (6, 4)

replaced in this condition because they failed to reachcriterion on both training

task and test problem in the time allotted.

Examination of the bottom half of Table 8.10 showsthattraining on hobbits-

orcs problems had a dramatic effect on transfer performance. A majority of the

trained subjects use the orcs-switch-orcs strategy. Another interesting point

comes from the comparison of the transfer performance of the two groups that

received a single (3, 2) training problem. Note that the distribution of strategies

used to solve the transfer problems is very similar for both (5, 3) and (6, 4)

problems, even though the overt manifestations are quite different for these two

tasks. In addition, observe that there is a dramatic reductionin the use of the pairs

strategy in the (6, 4) problem. Naive subjects almost exclusively use this strategy

to solve the (6, 4) problem.

The results give credence to the c

of the structure of problemsthatare solvable b

exposure to a single realization of the strategy.

derived from memoryfor the actual sequence of moves used to solve the (3, 2)

problem, rather than from an abstract understanding of the orcs-switch-orcs

strategy. A significant portion of the subjects showed patterns of solution per-

directly identified with the solution to the training prob-

ed memorized move strategies).

-jug problems had little effect on perfor-

manceofthe testing problems either in terms of moves to solution or in changes

to strategies suggests that there is very little, if any, in the way of generalized

transfer from one transformation problem to another. The training procedure

used in the Jeffries experiment seems to have led to a narrow kindof understand-

laim that subjects acquire an understanding

y the orcs-switch-orcs strategy from

Further, this understanding 1S

lem (i.e., simple and sophisticat

The fact that training on the water
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‘“bottom-up’’ trainin
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ository (‘‘top-down’’) condi-
he problem. Subjects in the exp

n of the general orcs-switch-giventhe rules for t

tions were given a brief, quite abstract, descriptio

almost 2:1 superiority in terms of

number of problem repetitions tor on for those subjects receiving the

expository instructions. Analysesof the solution paths chosen by subjects during

tions to the training problem showedthat this superiority occurred

acquired various components of the

bottom-up subjects. Bottom-up sub-

tions before finally discover-

had a great dealof difficulty

the river as their

repeated solu

because top-down subjects more rapidly

general orcs-switch-ores strategy than did

jects explored a numberof alternative incorrect solu

ing the orcs-switch-orcsstrategy. In particular, they

in discoveringthat they had to take almost all of the orcs across

initial sequence of moves.
ere no differences in performance for botto

McDaniel found that there w

and top-down trained subjects in terms of legal movesto solution and other such
m-up

d during training were recast in
bility of knowledge acquire

f subjects used on the inl
strategies that various groups 0

transfer problem.

McDaniel identified

general orcs-switch-orcs schema; two mixed strategies in which

or last half of the problem, the move sequence

orcs and a pairs solution path was use

tial solution to the

Percentages of Subjects

on Two Missionaries-Canniba
ls T

(Adapted from McDaniel, 1980)°

Strategy

Orcs- Orcs- Orcs- Orcs- Pair/Orcs-

Test Training  Switch- Switch- Switch- Switch- Switch-

Problem Condition Orcs-! Orcs-2. Orcs-3 Orcs/Pair Orcs Pair None

(8, 4) Bottom-up 38 13 10 30 0) 3 8

Top-down 53 3 5 20 5 3 10

(8, 5) Bottom-up 33 38 18 0 0 3 10

0 0 5 10

Top-down 53 30 3

¢ Rows may not add up to 100% because of rounding error.



general problem-solving
through problem spaces. An understanding proc
solution of a particular problem in a form that c

Solving behavior in two different tasks.
subjects’ problem-solving behavior invo
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Although we are reasonably confident that our original theoretical framework

‘th the Tower of Hanoi and the more complex

river-crossing problems, we rejected this course of action for three reasons. First,

our initial framework did not clear

understanding of the task environment and the

to solve a class of problems. The evaluation

other aspects of the model confounded general problem-solving mechanisms and

task-specific information. The lack of a clean separation in the theory between

the solver’s understanding of the task and the search component was not a

desirable characteristic. Second, we had no evidence for the complex serial

control structure that was part of the framework. Neisser (1976) has criticized

such models on the grounds that the human information-processing system 1S

more flexible. This is a reasonable criticism and is one of the major motivations

for the developmentof production-system models of various cognitive processes

(Anderson, 1976). Third, the most important reason for developmentof the new

framework is that our original theoretical framework had no principled way to

describe the effects of learning. Current theoretical work on a cognitive theory of

learning (e.g., Anderson, Kline, & Beasley, 1978) partially characterizes learn-

ing as the acquisition of new productions. We feel that this is a reasonable

mechanism for the acquisition of new knowledge in puzzlelike problems. As a

subject gains experience with these tasks, he or she beginsto acquire fragments of

information about their structure. These are then integrated into a coherent de-

scription of the underlying structure of the task.
made, and will continue to

erstanding of problem-solving

mechanisms and cognitive processes in general. How adults solve puzzlelike

olving; we feel it

problemsis the basis for much modern work on problem s

represents one of the real triumphs of modern psychology. Our work is just one

small part of the ongoing developments. The understanding of these tasksis rich

and detailed. However, we feel that developments in understanding how such

problems are solved no longer are a central area of research on problem-solving

mechanisms. The theoretical basis provided by research using puzzles has caused

the frontier to expand to textbook-level problemssuch as Larkin’s (1977) work in

physics problem solving and Greeno, Magone, and Chaiklin’s (1979) work in

geometry.

Intelligence differences ought to manifest themselves most directly as dif-

ferences in learning a task. In our experiments on learning and transfer, there

were indeed large differences across subjects in the generality of what was

learned andthe rate at which it was acquired. We do not, however, have any data

that shed light on how these variations are related to intelligence. Gathering such

data would clearly be a productive research endeavor. But, in orderto understand

the relationship of intelligence variables to learning, it may first be necessary to

explicate the basic mechanisms that underlie the learning process.
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One of the curious omissions of cognitive psychology
cently there has been no cognitive theory oflearning,
transfer is still in its earliest Stages.
environmentin which to study basic |
have used the Tower of Hanoi as at

is that until very re-
and a cognitive theory of

Wefeel that puzzlelike tasks are an ideal
earning processes. Anzai and Simon (1979)
ask environmentto Study the transition of asubject from a state of partial understanding to complete understanding of theproblem. Wearein theinitial phasesofa project to develop quantitative modelsof the acquisition process used in the Jeffries (1978) and McDaniel (1980)dissertations.

|

, discover structure underlying the Sequencing ofmoves, and induce information about the structure u
Wefeel that studies using puzzlelike tasks have fundamental contributions tomaketo the understandingoftransfer mechanisms. Our understanding of transferhas advancedverylittle beyond Woodworth’s (1938) ‘*
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The work described in this review is the joint effort of many people. We wish to
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A Componential Approach to
Intellectual Development

Robert J. Sternberg
Yale University

The question of ‘‘what develops’’ is probably the most central one in develop-mental psychology. Most theoretical and empirical works in developmental psy-chology attempt to deal with this question in greater or lesser degree, and,indeed, the form a particular investigation takes is in large part shaped by theinvestigator’s presuppositions as to the sources of intellectual development.Manyaspects of behavior change with age, but only some of them help elucidatethe basic mechanismsresponsible for developmental change. !
In this chapter, I propose one approach to addressing, although not, of course,to answering in full, the question of what develops in human intelligence. Theapproach, which I call the ‘‘componential approach,’ attempts to understandintellectual developmentin termsof changesin the availability, accessibility, andease of execution of a variety of kinds of information-processing components.

perspective, information-processing approaches can be contrasted with alterna-

rere

‘Some alternative contemporary approaches to the question of what develops in thinking, ingeneral, are presented in a recent book edited by Siegler (1978); alternative approaches to thequestion of what develops in intelligence, in particular, are presented in a recent chapter by Sternbergand Powell (in press).
A recent description of the componential approach to understanding human intelligence can befound in Sternberg (1980e; see also Sternberg, 1977, 1978, 1979b). Examples of the application ofcomponential analysis to the studyofintellectual developmentare described in this article.
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tive psychometric and Piagetian approaches, among others. No claim is made,

however, that the present approach is in some sense the correct one or even that

the information-processing paradigm provides the right way to understand in-

tellectual development. To the contrary, a detailed review of alternative ap-

proaches to the development of intelligence has convinced me that alternative

viewpoints (e.g., psychometric, Piagetian, and information-processing) are for

the most part complementary rather than mutually exclusive. In addition, they

can be used to greater benefit in combination than in isolation (Sternberg &

Powell, in press).

The proposals in this chapter are presented in five main parts. In the first, the

main terms used in discussing intellectual development are defined and briefly

illustrated. In the second, it is shown how the components of information pro-

cessing represented by these terms develop in a variety of task contexts as people

grow older. In the third, some speculations are presented as to possible

mechanisms by which observed changes in behavior may take place with age. In

the fourth, the constructs of the proposed componential approach are related to

constructs in alternative approachesto intellectual development and are found to

be highly compatible with them. In the fifth and final part, it is claimed thatat

least some aspects of intelligence may be viewed as continuous throughout a

person’s life span.

THE COMPONENTIAL FRAMEWORK

The basic construct in the componential framework for understanding human

intelligence is the component. A component is an elementary information pro-

cess that operates on internal representations of objects or symbols (Sternberg,

1977; see also Newell & Simon, 1972). The component maytranslate a sensory

input into a conceptual representation, transform one conceptual representation

into another, or translate a conceptual representation into a motoroutput. Whatis

considered to be ‘‘elementary’’ is viewedas a property of the level of theorizing

one attempts, rather than of the human mind. A given component may or may not

be elementary, depending on the theoretical context in whichit is presented.

Each component has three important properties associated with it: duration,

difficulty (i.e., probability of being performed incorrectly), and probability of

execution. In order to estimate these properties, one needsto select appropriate

dependent variables (e.g., response latencies for duration, error rates for diffi-

culty, and response-choice probabilities for probability of execution).

I have referred to five kinds of components, with each kind performing a

different function (Sternberg, 1980e). Metacomponents are higher-order control

processes that are used for executive planning and decision making in problem

solving. Deciding what problem or problemsto solve or deciding how to solve

the problem(s) are examples of metacomponential decisions. Performance com-
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LOCI OF INTELLECTUAL DEVELOPMENT

Reitman, 1965; Spearman, 1927: Terman & Merrill, 1973; Thurstone, 1938; seealso Sternberg & Powell, in press) and

, Butterfield and Belmont (1977), Campione and Brown (1979),
‘‘metacomponents;’’ Jensen (1979), Miller,» Newell and Simon (1972), Pellegrino and Glaser (1979, 1980), and
;’’ and Atkinson and Shiffrin (1968) andBower(1972) on whatI call ‘acquisition, ”’ “‘retention,’’ and ‘‘transfer’’ components.
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their interactions, as well as the motivational processes that drive the cognitive

ones (see Sternberg, 1981b, 1981d; Zigler, 1969, 1971). Alternative entrees into

the realm of intelligent functioning may be sought through the study of problem

solving (e.g., Beilin, 1969; Brainerd, 1973, 1974; Inhelder & Piaget, 1958;

Klahr, 1978; Klahr & Wallace, 1973, 1976; Siegler, 1976, 1978), verbal com-

prehension (€.g., Hunt, 1978; Keating & Bobbitt, 1978; Keating, Keniston,

Manis, & Bobbitt, 1980; Powell & Sternberg, 1981; Werner & Kaplan, 1952),

numberability (e.g., Gelman & Gallistel, 1978; Groen & Parkman, 1972; Res-

nick & Ford, 1981; Suppes & Groen, 1967; Woods, Resnick, & Groen, 1975),

spatial ability (e.g., Huttenlocher & Presson, 1973; Kail, Pellegrino, & Carter,

1980; Marmor, 1975, 1977; Shepard & Metzler, 1971), and memory (Brown,

1978; Butterfield & Belmont, 1977; Campione & Brown, 1979; Flavell, 1977, in

press; Markman, in press). Moreover, the approach I take to reasoning is only

one of the manythat are possible (see, €.g., Achenbach, 1970, 1971; Gallagher

& Wright, 1979; Levinson & Carpenter, 1974; Osherson, 1974, 1975; Pellegrino

& Glaser, 1980; Trabasso, 1975, for related but distinguishable approaches).

Nevertheless, like at least some others, I believe that alternative approaches to

studying intelligent behavior are leading us to highly overlapping sets of macro-

scopic principles of cognitive development(€.g., Brown, 1978; Brown & De-

Loache, 1978; Sternberg, 1980e; Sternberg & Powell, in press), if not always to

the same microscopicprinciples that in some cases are probably domain specific.

Hence, I present this analysis as one first pass at the identification of loci of

intellectual development, recognizing that other analyses are possible, but believ-

ing that others would overlap in major respects.

The task domain for the developmental research upon which I draw heavily

here includespictorial analogies (Sternberg & Rifkin, 1979) and verbal analogies

(Sternberg & Nigro, 1980) in the realm of inductive reasoning and linear syl-

logisms (Sternberg, 1980a) and logical connectives (Sternberg, 1979a) in the

domain of deductive reasoning. All but the pictorial analogies require a substan-

tial measure of language comprehension for task solution; hence, one can view

verbal comprehensionabilities as being tapped as well.

In the pictorial analogies experiment (Sternberg & Rifkin, 1979, Experiment

2), between 15 and 21 parochial school children (in each of grades 2,4, and 6)

e-level adults were timed as they solved analogies consisting of

pieces) varying in four binary attributes:

k-white), sex (male-female), and weight

old to choose as their answer the one of two options

third analogy term in the same way

and colleg

schematic figures of people (people

(thin-fat). Subjects were t

that was the same as and different from the

that the second term was the sameas and different from thefirst term. A typical

analogy is presented in Fig. 9.1. Analogies were presented in 24 test

booklets, each containing 16 analogies. Items within each of the booklets were

homogeneous in terms of the numberof attributes that varied from the first
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A B C | 2

@
An example of a people piece pictorial analogy. Analogies vary on

four binary attributes: height (tall-short), garment color (black-white), sex
(male-female), and weight (fat-thin).

 

term to the second, from thefirst term to the third, and between the two answeroptions. Inasmuch as identities of actual values on attributes varied acrossanalogies, however, no two analogies were identical. Subjects were given 64seconds to work on each booklet. The main dependentvariable, solution latencyfor itemscorrectly answered, was computed by dividing 64 by the numberofitems
correctly completed in a given booklet. Response time was hypothesized to equalthe sum of the amounts of time Spent on eachof a set of performance components(to be described later). A simple linear model predicted responsetimeas the sumacross the different information-processing components of the numberof timeseach component was executed (as an independentvariable) multiplied by theduration of that component (as an estimated parameter). Parameter estimation

-Class suburb of New Haven.All subjects received the same 180 verbal analogies. Vocabulary level wasre-stricted to grade 3 or below according to the Thorndike-Lorge norms. The 180analogies were cross-classified in two different ways. Of the 180 items, 36 wereclassified into each of the following semantic relations: Synonym (e.g., UNDER:BENEATH:: PAIN : [pleasure, doctor, feeling, hurt}); antonym (e.g., START:FINISH :: FAR : [near, away, travel, farther}); functional (e.g., SHOES : FEET::HAT : [head, bucket, clothes, cap]); linear ordering (e.g., YESTERDAY :TODAY:: BEFORE:[now, when, after, time]); and category membership(e.g.,
rection, subset, east, northwest]). Crossed with this
S presented in each of three formats. The formats
ers of terms in the analogy stem versusthe numberin
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the analogy options. Specifically, the numberof terms in the analogy stem could

be either three, two, or one. The remaining terms were in the options. Consider

an example of each format:

1. NARROW : WIDE :: QUESTION: (trial) (statement) (answer) (ask).

2. WIN :- LOSE::(dislike : hate) (ear : hear) (enjoy: like) (above : below).

3. WEAK: (sick :: circle : shape) (strong :: poor - rich) (small :: garden :

grow) (health :: solid : firm).

Each option appeared on a separate line of print. Numbers of answer options

varied from two to four and were equally represented across semantic relations

and item formats. Furthermore, the answer options were balanced overthe five

verbal relations. Subjects were timed in their latency for solution of each item.

Items were presented tachistoscopically via a portable tachistoscope with an

attached centisecond clock. Again, a simple linear model was used to predict

response time as the sum across performance components of the numberof times

each component was executed multiplied by the duration of that component. The

three formats provided the means for separating independent variables used to

estimate parameters representing the latencies of the various components.

In the linear syllogisms experiment, between 24 and 26 children in each of

grades 3, 5,7, 9, 11 of aschooldistrict in a suburb of New Haven were tested on

their ability to solve linear syllogisms. Stimuli were two-term series problems

(e.g., John is taller than Bill. Who is shortest? John, Bill.) and three-term series

problems(e.g., Johnis taller than Mary. Mary is taller than Pete. Whois tallest?

John, Pete, Mary.).4 The eight types of two-term series problems varied di-

chotomously along three dimensions: (1) whether the premise adjective was

marked (e.g., shorter) or unmarked (e.g., taller); (2) whether the question

adjective was marked or unmarked; and (3) whether the premise was af-

firmative or negative. The 32 types of three-term series problems varied

dichotomously along five dimensions: (1) whether the first premise adjective was

marked or unmarked; (2) whether the second premise adjective was marked or

unmarked; (3) whether the question adjective was marked or unmarked; (4)

whether the premises were affirmative or negative; and (5) whether the correct

answer wasin the first or second premise. All terms of the problems were boys’

or girls’ names, and connecting adjectives were the pairs taller-shorter and

_worse (where worse was the marked form). Order of terms in the answer

options was random. Problems were administered via a homemade, portable

ES

4Eor the two-term series proble

consistency with the three-term seri

kind (see Clark, 1969).

ms, the ungrammatical superlative was used in the question for

es problems. This procedure is standard in experimentsof this
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In the experiment on logical connectives, a total of 224 subjects in grades2,4, 6, 8, high school, and college solved problems requiring comprehension orreasoning with the logical connectives and,or, if-then, only if, and ifand only if,as well as the terms is and is not. Elementary and secondary school studentswere from a suburb of New Haven: college students were Yale undergraduates.Two different tasks—encoding and combination—were presented in crossed
, banana) and shapes
to cover the box. and9

or a cardboardcircle and square

(circle, square). Props for the tasks included a box, a towel
two objects(either an artificial apple and banana
covered with silver paper).

In the encoding task, each problem consisted of
poster board andalso read aloud that described the
premise and a conclusion drawn from that premi
evaluate the validity of the conclusion. Premises w
six logical relationships expressed by seven differ
scribed earlier. Typical premises were There is a ci

{wo sentences printed on
contents of the box, namely,a
se. The subjects’ task was to

were seven different premiseconnectives and four different conclusions, there were a total of 28 differentencoding problems for each content.
In the combination task, each problem consisted ofthree sentences describingthe contents of the box, namely, a major premise, a minor premise, and aconclusion. Only conjunction, disjunction, conditionality, and biconditionalitywere used for the major premise because the other relationships studied do notapply to pairs of items. Major premises in the combination task were identical in

, again correspondingto each ofthe 22 possibilities that each itemwas or was not in the box. There werefive different logical connectives in themajor premises and eight possible pairings between minor premises and conclu-sions, yielding a total of 40 different combinati
dependentvariablein this experiment wasthe subje

In, Staudenmayer, &
’ patterns of responses to each of the
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bination task) enabled meto infer subjects’ truth tables in responding. For exam-

ple, suppose one is presented with the following problem and gives the following

pattern of responses:

The apple is in the box or the bananais in the box.

Can one conclude that:

There is only an apple in the box and nothing else? ... ‘‘Maybe”’

There is only a banana in the box and nothing else? ... ‘‘Maybe”’

There is an apple in the box and there is a bananain the box? ... ‘‘False’’

There is not an apple in the box and there is not a banana in the box?...

‘*False’’

9

One could infer uniquely that the subject's truth table is that of ‘‘exclusive or. ’

Had the third response been ‘‘Maybe,’’ the truth table would have been that of

“inclusive or.’’ In general, it was possible to infer the truth table uniquely

(assuming a consistenttruth table existed) from patterns of responses such as

these.

Having r

the analysis to follow, I turn now to a discussio

from a componential point of view.

eviewed the scope of the tasks that receive primary consideration in

n of intellectual development

Metacomponents

that I believe are critical in understanding
I have proposed six metacomponents

berg, 1980e). I list these metacomponents
intelligence and its development (Stern

here and giveillustrations of how they develop.

1. Recognition of Just What the Problem Is that Needs to be

Solved. Anyone who has done research with young children knowsthat half the

battle is getting the children to understand what is being asked of them. Their

problem is often not in actually solving a problem,but in figuring out just what

the problem is that needs to be solved (see, e.g., Flavell, 1977). A major feature

distinguishing retarded from normal personsis the needof retarded personsto be

instructed very explicitly and completely as to the nature of the particular task

they are solving and how it should be performed (Butterfield, Wambold, &

Belmont, 1973; Campione & Brown, 1977, 1979). The importance of figuring

out the nature of the problem is not limited to children and retarded persons.

Resnick and Glaser (1976) have argued that intelligence is in large part the ability

the absence of direct or complete instruction. Indeed, distractors on
to learn in

s to be the right answers to the wrong
intelligence tests are frequently chosen so a

problems.

Unfortunately, in researc

whether failure to understand a task is due to inadequacies i
h with young children, one can never be certain

n the instructions
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and in Hebrew in the afternoon; and (3) we happened to be doing ourtesting inthe afternoon. Apparently, some of these young children perseverated in theirnormal afternoon right-to-left visual scanning, even in a task presented in Englishwhere it was explicitly stated that the options were at the right. In the verbalanalogies experiment, someofthe younger children (third and sixth grades) usedassociation rather heavily in solving analogy items, despite the fact that the taskwas presented as an analogical reasoning task. Achenbach (1970, 1971) hasdevised a test, the Children’s Associative Responding Test (CART), that enables

presented incompletely, inadequately, or possibly not at all. This sense of prob-lem recognition is the one addressed in Resnick and Glaser’s (1976) definition ofintelligence in termsof the ability to function well with incomplete or inadequateinstruction; it is also addressed by Flavell’s (in press) and Markman’s ( 1977,1979, in press) work on comprehension monitoring. This comprehension-
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operational or postformaloperational thinking. | explicate my own viewsfurther

later on (see section on the continuity of intelligence).

An individual must select a set
2. Selection of Lower-Order Components.

ntion, or transfer) components to
of lower-order (performance, acquisition, rete

use in the solution of a given task. Selection of a nonoptimal set of components

can result in incorrector inefficient task performance. In some instances, choice

of components will be partially attributable to differential availability or accessi-

bility of various components. For example, young children may lack certain

components that are necessary OF desirable for the accomplishmentof particular

tasks, or they may not yet execute these components in a way that is efficient

enough to facilitate task solution.

Twoexamples of the development 0

studies of analogical reasoning. These examples involv

associative components in the solution of analogies.

A performance component of particular interest in reasoning by analogy is

mapping, which requires an individual to link the first half of the analogy to the

second half by conceiving the higher-order relation between two lower-order

relations, one linking the first term of the analogy to the second and the other

linking the third term of the analogy to the fourth. The ability to conceive a

second-order relation between relations is of particular interest to developmental

theorists because, in Piaget’s theory of intellectual development, this ability

marks the transition between concrete and formal operational thinking (Inhelder

& Piaget, 1958). One might therefore expect concrete operational children to

have great difficulty mapping higher-order relations, or to be unable to map at

all. Mapping was one of the parameters estimated in the pictorial analogies

study. Estimated latencies of this component were .72 second, .57 second,

and .33 second at the grade 4, grade 6, and adult levels, respectively. The

parameter could not be estimated at all at the grade 2 level, however. The

independent variable used to estimate the mapping parameter (numberofattri-

bute values changed from thefirst analogy term to the third analogy term) was

simply not a source of incremental latency in the solution of analogies by these

children. This result could mean two things. First, it could mean that second

graders always map ina fixed amount oftime, regardless of the difficulty of the

mapping with which they are presented. This explanation of the finding seems

implausible, although not totally impossible. It would suggest that no matter how

nearly or distantly related the first two terms are to the second two terms, the time

to maptherelation is the same at the second-grade level. Second, it could mean

that second graders for the most part simply don’t map higher-order relations—

that they find some way of solving the pictorial analogies that bypasses the need

for mapping altogether. In fact, the data we collected regarding subjects’

strategies and the data of other individuals seem to support this latter view: The

youngest children simply did not map. The older children were able to map, and

the rate at which they did so decreased with age, as might be expected. Although

f componentselection can be found in our

e the use of mapping and
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one might normally expect a considerable number of fourth graders as well tohave difficulty in mapping, the fact that the children in this study were upper-
middle-class to upper-class children from a Jewish parochial school mightsuggest that, on the average, the developmentof these children was more preco-cious than that of typical children.

This finding ontherelatively late appearance of mapping in children’s reper-
toires of componentskills has been replicated in a numberofdifferent ways bydifferent investigators using different languages to describe whatI believe to be

Levinson and Carpenter (1974) presented verbal analogies (e.g., bird is to air as
fish is to ) and quasi-analogies (e.g., A bird uses alr; a fish uses
to 9-, 12-, and 15-year-old children. The standard an
of the higher-order analogical relationship; the quasi-analogies essentiallysuppliedthis relationship. The investigators found that whereas 9-year-olds couldanswer significantly more quasi-analogies than analogies correctly, 12- and 15-year-olds answered approximately equal numbersof each kind of item correctly.Moreover, whereas performance on the standard analogies increasedmonotonically across age levels, performance on the quasi-analogies did not

  

alogies required recognition
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Another performance component of special interest in analogical reasoning is

an associative one. In our own investigation of children’s solution of verbal

analogies, we found that younger children were morelikely to guide their solu-

tion of analogies by use of word association, whereas older children were more

likely to solve the analogies strictly on the basis of inductive reasoning. It is

instructive, in this regard, to compare correlations between response time for

analogy solution on the one hand and either an associative component or an

inference component onthe other. The associative componentis alogical, involv-

ing only associative relatedness of the last word in the analogy stem tothefirst

word in each analogy option; the inference component is logical, involving

discovery of the relation between the first two terms of an analogy. Correlations

between associative relatedness and response time were .50, .45, .08, and —.02

at grades 3, 6, 9, and adulthood, respectively. Correlations between inference

difficulty and response time were .12, .27, .64, and .73 at grades 3, 6, 9, and

adulthood, respectively. The patterns of correlations show a clear trend with age

away from the use of association and toward the use of logical inference.

Again, there is ample evidence for these basic findings in the research of

others. The pioneering studies on the role of word association in analogy solution

were conducted by Achenbach (1970, 1971), who found that use of word associ-

ation decreases with age. But at any given age level, there was wide variation in

the extent to which children used word association as a means for choosing one

of several answer options. Moreover, the extent to which children use word

association serves aS a moderator variable in predicting classroom performance:

Correlations between performance on IQ tests and school achievement were

substantially lower for children who relied primarily on word association for

analogy solution than for children who relied primarily on reasoning. Gentile,

Tedesco-Stratton, David, Lund, and Agunanne (1977) further investigated chil-

dren’s associative responding, using Achenbach’s CART. They found that as-

sociative priming can have a marked effect on test scores, leading children either

toward or away from correct solutions. In summary, then, there is a clear devel-

opmental trend away from the use of an associative component in analogical

reasoning and toward the use of reasoning components. At any given age, there

are individual differences in the use of wordassociation, and Achenbach’s results

suggest that analogies predict scholastic performance well only for children who

solve them by reasoning. This finding is reasonable becauseit is only for these

children that the analogy tests measure what they were designed to measure.

3. Selection of a Strategy for Combining Lower-Order Components. Init-

self, a set of performance(or other) componentsis insufficient to perform

a

task.

Onealso needs to sequence these components in a way that permits task solution,

to decide how nearly exhaustively each component will be performed, and to

decide which components to execute serially and which to execute in parallel. In

an analogies task, for example, alternative possible strategies for problem solv-
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ing differ in terms of which components are exhaustive and whichare self-
terminating. Consider again two examples from the research on pictorial andverbal analogies. Each example deals with the tendency of children to becomemore nearly exhaustive in their information processing with increasing age (see
also Brown & DeLoache, 1978; Sternberg & Powell, in press), although eachdeals with a different sense of exhaustive versus self-terminating processing.
We have investigated a rather large numberof different Strategies for the

solution of pictorial analogies (Sternberg, 1977; Sternberg & Rifkin, 1979), andthe strategies that we have examined do not by any meansaccountforall of thepossibilities (see, e. g., Evans, 1968; Mulholland, Pellegrino, & Glaser, 1980).Threeof thesestrategi
Flow charts

es are ofparticular interest in the present context, however.
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FIG. 9.2. Flow charts depicting strate
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gies usedin the solution of analogiesof the
2). The left panel shows the Strategy used by second

graders in solving pictorial analogies with integral attributes; the middle panelShows the strategy used by fourth graders in Solving pictorial analogies withintegral attributes; the right panel shows the Strategy used by sixth graders and
adults in solving pictorial analogies with integral attributes.
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The first strategy (Fig. 9.2, far left) is a fully self-terminating one, which I

have referred to as Model IVM inthe past (Sternberg & Rifkin, 1979). In this

strategy, subjects encode and compare the minimal possible numberof attribute

values. For example, consider how subjects using this strategy might solve the

pictorial analogy in Fig. 9. 1. First, subjects initialize an attribute counter to zero

and then incrementit by one, thereby readying themselvesto view

a

first attribute.

Suppose subjects decide to start by encoding sex ofthe figure. They encode the

sex of the first analogy figure and then the sex of the second analogy figure.

Next, they infer the relation betweenthe sexesofthe first two figures, in this case

realizing that sex changes from male to female. Then, subjects encode the sex of

the third figure and then the fourth and fifth figures (the answer options). They

can now apply from the third analogy term to each of the answeroptionsthe rule

inferred from the first analogy term to the second, seeking to find an option that

differs in sex from the third analogy term. Unfortunately, a unique solution

cannotbe foundonthe basisofthis attribute because both of the answer optionsare

female in sex. Hence, it is necessary to return to the beginning of the ‘‘self-

terminating’’ loop, selecting another attribute and running it through the loop.

Suppose subjects select height this time. Once they haveiterated execution of the

loop, they will find that only one of the two optionsis the sameheight as the third

figure, as required by the constraints of the analogy. Hence, they will be able to

choose a unique solution and thus to respond. Hadthe subjects selected height as

the first attribute to examine, self-termination in solution would have been possi-

ble after examination of just this single attribute of the analogy. In general, the

order in whichattributes are chosen for examination can have a major effect upon

solution latency in execution of a self-terminating strategy because certain attrib-

utes can be used to disconfirm the wrong option or options, whereas other

attributes cannot.

The second strategy (Fig. 9.2, middle) is an intermediate strategy in which

encoding of analogy termsis exhaustive in the sense that subjects encode all of

the attributes they can find in their first examination of each analogy term, up to

some unspecified criterion for stopping encoding.In the first term of the sample

analogy, subjects would encode that the figure is of the male sex, is wearing

black clothing, is tall, and is thin. All other performance components are self-

terminating, however, as in the first strategy. The self-terminating loop starts

later in the problem thanis the case with the first strategy, reflecting the exhaus-

tive encoding of the first two analogy terms. (Other encodings are also outside

the loop.) I havereferred to this strategy as Model IV in past writings (Sternberg,

1977; Sternberg & Rifkin, 1979).

The third strategy (Fig. 9.2, far right) is also an intermediate one in which

inference of the relation between thefirst two analogy terms as well as encoding

of each analogy term is exhaustive.In the example, subjects would encodeall of

the attribute values for the first two terms and then infer that sex changes from

male to female, clothing color changes from black to white, height stays the same

at tall, and weight stays the sameat thin. Mapping and application,as in the two
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previous models, are self-terminating. Here, the self-terminating loop starts even
later in the problem than it does in the previous strategy, reflecting the smaller
scope of the self-terminating performance components. I have referred to this
strategy as Model III in past writings (Sternberg, 1977: Sternberg & Rifkin,
1979).

These three models are of particular interest in the present context because
they represent the developmental shift that occurs in the solution of at least some
pictorial analogies (those with integral attributes; see Garner, 1974; Sternberg &
Rifkin, 1979). The first model is used by most second graders; the second model
is used by most fourth graders; and the third model is used by mostsixth graders
and adults. These conclusions are based uponthefitting of alternative strategy
models to the latency data andthe selection of one modelas generally ‘‘best’’ on
the basis of a numberofstatistical and psychologicalcriteria (see Sternberg &
Rifkin, 1979). In the present instance, Squared correlations between predicted
and observed latencies were .82, .80, .86, and .89 at grades 2, 4, 6, and adult-
hood, respectively.

The shift in strategy from grade 2 to adulthood represents a tendencyfor
individuals to become more nearly exhaustive in their information processing as
they grow older. But why should subjects become more nearly exhaustive with
increasing age? One highly practical reason appears to be that greater use of
exhaustive information processing is associated with (and probably leads to)
higher accuracy in solution. Whenerrorrates for analogy solution usingpictorial
analogiesjustlike the onesin the study described here were modeled on the basis
of the performance components in the model for adults, it was found that among
adults almost all errors were due to inaccurate execution of performance compo-
nents executed with self-termination (Sternberg, 1977). And indeed,in the pres-
ent developmental data, error rates decreased substantially with age, perhaps
reflecting in part the shift in strategy. These error rates were. 15, .10, .07,
and .02 at grades 2, 4, 6, and adulthood, respectively.

Qualitative trends in the latency data for children solving our verbal analogies
madeit clear from the start that there was a shift in strategy for analogy solution
with increasing age. Figure 9.3 showsthese trends, plotting response time
against the number of terms missing in each analogy (see the description of our
verbal analogies paradigm presented earlier). In order to ascertain the nature of
the strategy shift, we compared alternative models for verbal analogysolution at
different age levels.

sample analogies and how they would be solved under each of these alternative
models (as proposed by Sternberg & Nigro, 1980):

1. NARROW : WIDE :: QUESTION: (trial) (statement) (answer) (ask).
2. WIN : LOSE :: (dislike : hate) (ear : hear) (enjoy :like) (above : below).
3. WEAK:(sick :: circle : shape) (strong :: poor : rich) (small :: garden :

grow) (health :: solid : firm).
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FIG. 9.3. Mean responsetimes on verbal analogies for each item format at each

grade level.

The first model (Model A)posits that information processing is fully exhaus-

tive with respect to all of the answer options. Subjects scan each option in the

order presented and then select the best one. Thus, the time to solve an item will

depend on the number of answer options, but not on the placement of the correct

option within a given option set. In each of these sample problems, therefore,
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scanning of each of the four answer options would precede the selection of one
answeras best.

The second model (Model B)posits that information processing is fully self-
terminating and ordered with respectto all of the answer options. Subjects scan
each option in the order presented until they reach an option that is deemed
acceptable. They then select this option without further consultation ofthe re-
maining options. Because the keyed options werethe third, fourth, and secondin
each of the respective analogy items, the number of options to be scanned would
be three, four, and twoin the three analogies, respectively (assuming termination
of responding at the keyed response).

The third model (Model C) also posits that information processing is fully
self-terminating, but the order of option examination is hypothesized to be as-
sociatively guided. This meansthat subjects scan the options in orderof the level
of word association of the first (or only) word in each option to the last word in
the analogy stem. Level of association is assumed to have been computed during
a preencoding of analogy terms. In thefirst example, the answer option having
the highest association value to the last word of the stem (QUESTION)is an-
swer. This also happensto be the keyed response. Hence, solution of this item is
assumed to take place after the scanning of just one option. In the second
example, above is only weakly associated with thelast term in the stem (LOSE),
and therefore the correct answer option is not reached until later (actually, the
third pass). In the third example, the correct option is again the one in which the
first word of the option (strong) has the highest association value to the last (and
here only) term of the stem (WEAK)so that only one pass through

a

single option
is necessary.

The fourth model (Model D) is a mixture of Models A and C. It posits that
search through the answeroptions is exhaustive if subjects are able to hold all of
the terms of the analogy in working memory, butit is self-terminating with
associative guiding of response search if the subjects are unable to hold all of
these terms in working memory. We assumed, following Pascual-Leone (1970)
and Case (1974a, 1974b), that working-memory capacity, or M-space, increases
with age and further speculated (after looking at the data) that third and sixth
graders werelikely to encounterdifficulties in storing all of the termsin the third
analogy format in working memory, whereas ninth graders and adults werenot.
Webelieved that this third format in particular was potentially difficult because
of the very large number of termsin the analogy that needed to be stored in
working memory.

The data indicated that third and sixth graders used ModelD in their analogy
solution, whereas ninth graders and adults used Model A. Multiple correlations
betweenthe twobest predictors of the preferred modelat each level and response
times were .85 for third graders, .88 for sixth graders, .89 for ninth graders, and
.92 for adults. Thus, subjects changed from a self-terminating to an exhaustive
Strategy for scanning answer options with increasing age. The tendencyto be-



430 STERNBERG

come more nearly exhaustive thus applies across terms of an analogy as well as

within the attributes of an analogy term.

The changein strategy accounted for the qualitative shifts observed in the data

presented in Fig. 9.3. Third and sixth graders took longer on the second item type

than on the first because of the increase in the number of analogy termsto be

processed exhaustively, but they took less time on the third type than on the

second because the increased number of terms in this case was processed with

self-termination. Ninth graders and adults showeda linear increase in response

time with increasing numbers of terms because of their use of exhaustive infor-

mation processing for each item type, resulting in increased response timeasthe

number of analogy terms increased.

In these examples, the data of interest were embeddedwithin strategy changes

that occurred during the course of intellectual development. In most instances,

interactions between age and strategy provide the data of greatest theoretical

interest because a primary goal of developmental research is to ascertain qualita-

tive changes in performance with age. Sometimes, however, constancies in

strategy over age can be of as great or greater theoretical interest.

Consider, for example, Bryant and Trabasso’s (1971) pioneering work on the

role of memory in transitive inference. These investigators suggested that dif-

ferences in performanceon transitive inference problems between preoperational

and concrete operationalchildren reflected notthe acquisition of new reasoning

componentsandstrategies, but rather the acquisition of sufficient memory capa-

bility to implement components and strategies of reasoning that were already

potentially available, if still somewhat inaccessible. Subsequent research by

Trabasso and his colleagues has further substantiated and elaborated the initial

finding (Riley, 1976; Riley & Trabasso, 1974; Trabasso & Riley, 1975;

Trabasso, Riley, & Wilson, 1975). In my own experiment on linear syllogistic

reasoning described earlier, I, too, found no significant change in children’s

strategies for solving linear syllogisms, at least over the age range from grade 3

upward: Subjects of all ages used essentially the same efficient strategy for

solving linear syllogisms—one employing a set of performance components

operating on a combination oflinguistic and spatial representations for informa-

tion (see also Sternberg, 1980c, 1980d; Sternberg & Weil, 1980).

Consider as a second example the case of pictorial analogies. The strategy

changes described earlier apply to pictures with integral (not clearly separable)

attributes. The large majority of objects in the world are in fact composed of

integral attributes, and even wordsare probably encodedintegrally; usually one

does not think about each separate attribute of an object represented by a word

when one encodes that word. However,if pictures are constructed so that their

attributes are encoded separately rather than these attributes being integrated,

then subjects of all ages use the samestrategy for solving these analogies that

second graders use for solving pictorial analogies with integral attributes: ‘The

subjects are maximally self-terminating, encoding and comparing just the



9. INTELLECTUAL DEVELOPMENT 431

minimum possible numberofattributes. The useofthis Strategy may derive from
the ease with which each attribute in the individual terms of such an analogy can
be processed in isolation from every other attribute.

4. Selection of One or More Representations or Organizations for Informa-
tion. A given componentis often able to operate upon any one of a numberof
different possible representations or organizations for information. The choice of
representation or organization can facilitate or impede the efficacy with which
the componentoperates. So closely intertwined are components, strategies, and
representationsthatit is difficult to discuss any of them sensibly without discuss-
ing all of them together.
An example of this close intertwining can be seen in the caseof solutionsto

the pictorial analogies. Representation of the attributes separably is associated
with the useof a fully self-terminating Strategy that does not employ the mapping
component. This generalization is true forall ages of subjects and for pictorial
analogies with both integral (Fig. 9.1), and separable attributes. It would be
difficult to assign any single direction of causality, at least in our present
state of knowledge: Whether the particular way of representing information
leads to a choice of performance components that in turn leads to a choice of
strategy, whether the choice of strategy leads to a choice of performance com-
ponents that in turn leads to a choice of representation, or whether any other
permutation is uniquely correct, is simply impossible to say at this point. But
it can be said with confidence that the choice of components, strategy, and
representation are closely intertwined, and any one choice can be understood
only incompletely in isolation.
A second example of representational development can be seen in the de-

velopmentof truth-table representations for various logical connectives. At one
extreme, the representation of what is probably the simplest connective, and, did
not change in the grade 2 to college age range: Subjects of all ages represented
and with its correct logical truth table. At the other extreme, representation of the
mostdifficult connective we studied, if and only if, was nevercorrect (for most
subjects) at any age: Even the oldest subjects interpreted it as a unidirectional
conditional relation rather than as a bidirectional biconditional relation. Of par-
ticular interest, however, were subjects’ truth-table representations of or. This
connective has two ‘‘correct’’ meanings. The exclusive meaning of or, ‘‘one or
the other but not both,’’ is commonly used in everyday parlance; the inclusive
meaning of or, ‘‘one or the other and possibly both,’ is commonly used in
formal logic. Table 9.1 shows modelfits (expressed as badnessesoffit in terms
of root-mean-square deviations of observed from predicted values) for each of
the twotruth-table patterns representing these different meaningsof or. Data are
group average results for the encoding and combination tasks administered to
subjects in the grade 2 to college range. The important trend is the shift from
using or in an inclusive sense at the younger age levels to using or in an
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TABLE9.1

Model Fits for the Logical Connective “Or”
a

Interpretation

 

Grade Level Inclusive Exclusive

en

Encoding Task
a

2 .26 .69

4 31 39

6 41 22

8 35 17

High school 36 18

College 42 10

a

Combination Task

a

24 — —

4 40 54

6 43 65

8 40 38

High school 54 20

College 64 O09

a

Note: Modelfits are expressed in termsofroot-

mean-square deviations of observed from predicted

response patterns.

2 Data for this condition were unreliable.

exclusive sense at the older age levels (see also Paris, 1973). The switch-over

occurs earlier in the encoding task than in the combination task, and this ten-

dency toward an earlier switch-over in truth tables was general across the other

connectives as well. It suggests the possibility that children use less recently

acquired meaningsfor logical connectives when confronted with a moredifficult

(combination) task, perhaps because they have not yet established the new mean-

ing well enoughto use it in a task that severely taxes their intellectual resources.

In any case, subjects of all ages studied here interpreted or correctly, switching

from the logical meaning of or to the everyday meaning as they grew older.

5. Decision Regarding Allocation of Componential Resources. Problem

solvers sometimes encounter various barriers to their efforts. Some of these

barriers are external, such as the total time made available for problem solution;

others are internal, such as the amountof processing capacity one has to bring to

bear upon a problem. The problem solver must decide how many resources to

bring to bear upon a problem and then decide how to allocate the resources that

are in fact brought to bear upon the problem.
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Although none of my published research has directly addressed the issue of
resource allocation, its importance has nevertheless cometo the fore. Consider,
for example, the solution of pictorial analogies with separable attributes
(Sternberg & Rifkin, 1979, Experiment 1) such as hat color (black-white),
footwear (shoes—boots), handgear (umbrella-briefcase), and suit pattern
(striped—polka-dot). Figure 9.4 showsdistributions of performance-component
times for the solution of these analogies. Plotted in the figure are composite time,
encoding time, response time, and inference-application time. This last time,
referring to the sum of the times to infer the relation between the first two
analogy terms and to apply this relation between the last two terms, was esti-
mated in the experiment as a confounded parameter. The major result is that
whereas response time (including confounded metacomponential times) de-
creases monotonically with age and inference-application time also decreases and
then levels off (the slight increase at the end is Statistically nonsignificant),
encoding time first decreases and then increases (significantly). Why might
encoding timefirst decrease and then increase? One possibility is that the initial
decrease represents straightforward development in encoding facility and that
this developmentlevels off at around the fourth grade; thereafter, the increase in
encoding time represents a decision on the part of the subject to spendrelatively
more time encoding stimuli so as to be able to spend relatively less time in
operating upon these encodings later. The idea would be to obtain a relatively
good fix on the nature of the stimulus so that later one would not have to keep
reencoding different aspects of the stimulus, or even the same ones. The viability
of this hypothesis is supported by data obtained with adults solving pictorial
analogies: Better reasoners tend to spend relatively more time encoding the
stimulus terms than do poorer reasoners, but they spendrelatively less time
operating upon these encodings (asin inference, mapping, and application). The
result is a net savings in overall solution latency (Sternberg, 1977). A parallel
might be drawnto a lending library: Slower and morecareful cataloging of books
(encoding of analogy terms) requires a greater initial time investment, but this
investment is more than repaid by the more rapid and efficient borrowing and
lending (inference, mapping, application, etc.) that can later take place because
of the more efficient retrieval of sought-after volumes.

This finding dovetails with other findings in the developmental literature.
Siegler (1978) has found that a major source of improved performance on his
balance-scale (and other) tasks in older children can be attributed to more
thorough encoding ofthe stimulus situation on the part of the older children. And
in solving physics problems, experts also seem to spend relatively more time
encoding the terms of problems than do novices, but relatively less time operat-
ing upon these encodings. Moreover, there are major qualitative differences in
the sophistication with which problems are encoded by the experts versus the
novices (Chi, Feltovich, & Glaser, in press; Larkin, McDermott, Simon, &
Simon, 1980).
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Wehavealso found

a

closely related result in a study of reasoning with
complex analogies (multiple terms missing) in adulthood. In extracting
metacomponential latencies from overall latency data in a complex analogical
reasoning task, Bill Salter and I found that better reasoners tend to spend rela-
tively more time than poorer reasoners in global planning for an entire set of
problems, but they spendrelatively less time in local planning for each individual
problem in the set (see Sternberg, in 198 1a).

6. Solution Monitoring. As individuals proceed through a problem, they
must keep track of what they have already done, what they are currently doing,
and whatthey still need to do; the relative importance of these three items may
differ across problems. Moreover, if things are not proceeding as expected, an
accounting of one’s progress may be needed, and the possibility of a change in
goals may even need to be considered. Often, new, morerealistic goals must be
formulated asa person realizes that the old goals cannot be reached. In a sense,
solution monitoring may be viewed as a ‘‘metametacomponent’’ becauseit is
needed to keep track of the operations of the metacomponents as well as of the
other kinds of components. I would be most unenthusiastic, however, about
supporting the notion of a clearly demarcated distinction between or among
levels of metacomponents.

The use of solution monitoring in even the reasoning of very youngchildren
can be seen in the metacomponential decision of children as young asthe third-
grade level to use a justification component in the solution of verbal analogies.
The componentcontinues to be used until adulthood. This performance compo-
nent is elicited upon the recognition by a subject that none of the presented
answer options in a multiple-choice analogy provides an ideal completion for the
given problem. In such an event, the subject may have to justify one of the
presented options as nonideal, but superior to the alternatives. The justification
component is something of a ‘‘catchall’’ in that it includes in its latency any
reexecution of previously executed performance components that may beat-
tempted in an effort to see whether a mistaken intermediate result has been
responsible for the subject’s failure to find an optimal solution. The decision to
use this componentreflects an awareness on the part of the subject that things are
not going quite right: The path to solution has reached a dead end, and some
route must be found that will yield an ideal answer, or else an answer must be
selected that is acceptable, if nonideal.

That younger children are often less apt at solution monitoring than are older
children is seen in the tendency of some of the second graders in the pictorial
analogies experimentto circle one of the two analogy termsat the left rather than
at the right of the problem. Almostall of the second graders were able to solve
most analogies successfully, given that they understood what to do. The insen-
sitivity of these subjects to the factthat right-to-left solution almost never yielded
a suitable solution, much less a suitable analogy, can be viewed asa failure of
these subjects to monitor their solution processes adequately.
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The importance of solution monitoring in intelligent performance has been

recognized by a numberof investigators studying metacognitive skills. In the

memory domain, it has been shown that if retarded subjects can be taught to

rehearse and to monitor their rehearsal, their memory performance can be

brought up to normal or near normallevels (Belmont & Butterfield, 1971; see

also Brown, 1978). In the domain of verbal comprehension, Markman’s (1977,

1979) research showing the failure of younger children to monitor their com-

prehension adequately is an example ofa failure in solution monitoring. And in

the numerical domain, the implementation of Gelman and Gallistel’s (1978)

one-oneprinciple requires solution monitoring. The principle states that items in

an array mustbe ticked off such that one and only one tick is used for each item.

Implementation of this principle is hypothesized to involve coordinating two

component processes: partitioning and tagging. Partitioning is the step-by-step

maintenance of two categories of items—those to be counted and those that have

already been counted; items need to be transferred one at a time from the first

category to the second. Tagging is the elicitation from long-term memory of

distinct tags to be assigned to each object. These two processes working in

conjunction represent a kind of solution monitoring whereby children (and

adults) can keep track of their progress in counting members of a set of objects.

In summary, I have proposed six metacomponents thatI believe play a key

role in intellectual development. My reading of my ownresearch as well as that

of others leads meto believe that these metacomponentsare rather generalacross

executions of a variety of tasks and that a fairly diverse set of developmental

findings can be explained, at somelevel, metacomponentially.

In order for the metacomponential construct to be construct validated, there

must be some way of isolating metacomponents from task performance. Bill

Salter and I have proposed one way of doing so in the context of an analogical

reasoning task (see Sternberg, 1981a). I present our task and method briefly as

one example of how metacomponents can be isolated: The general principles of

task decomposition seem relevant to tasks other than analogies.

Subjects were presented with analogies in which from oneto three analogy

terms were missing and in which the positions of the missing terms varied from

one problem to another. Either two or three alternative answer options were

substituted for each missing term. In this respect, the problems were like those

used by Lunzer (1965) to study the development of analogical reasoning pro-

cesses. An example of such a problem is: man : skin :: (dog, tree) : (bark, cat),

where the correct answers are tree and bark. Possible missing terms were the

first, second, third, fourth, first and third, first and fourth, second and third,

second andfourth, third and fourth, and second andthird and fourth. Our particu-

lar interest in this work (done with adults) was to isolate two formsof strategy

planning, which we referred to as ‘‘slobal planning’’ and ‘‘local planning.”

Global planning refers to the formation of a macrostrategy that applies to a set

of problems, regardless of the particular characteristics of a particular problem
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that is a memberof a given set. The need for global planning can be largely a
function of the context in which

a

set of problems is presented. We manipulated
the amount of global planning required by presenting sets of analogies in two
conditions, one mixedandthe other blocked. In the mixed condition,each analogy
within a given set of 10 items appeared in oneofthe different formats previously
described (different sets of missing terms). Subjects in this condition were pre-
sumed to need considerable global planning to deal with the fact that problems
within a given problem set were constantly shifting in nature. Regardless of the
particular item type encountered at a particular time, this item context is not
conducive to the rapid or automatic planning of a global strategy. In the blocked
condition, all analogies within a given set of 10 items had the same format (1.e.,
were the samewith respectto the positions of the missing terms). Subjects in this
condition were presumedto needless global planning becauseall items within a
given set were of the samestructural format. Once a Strategy was planned,it
could be followed for all problems with minimal or no revision.

Local planningrefers to the formation of a microstrategythat will be sufficient
for solving a particular problem within a given set. Whereas global planning is
assumed to be highly sensitive to the context of the surrounding problems, local
planning is assumedto be context insensitive, applying to each item individually.
It consists of the specific planning operations that are needed for a given item
(e.g., tailoring the globalplanto a specific item). We manipulated the amountof
local planning required by presenting analogies in the various formats described
earlier. More difficult formats were assumedto require more local planning;less
difficult formats were assumed to require less local planning. Difficulty of a
format was defined in terms of a strategic complexity index measuring the
number of performance components that were disrupted by the construction of
the item. Performance components were isolated separately. A simple linear
model including the twoaspects of strategy planning plus the performance com-
ponents (lumped together into one ‘‘macrocomponent’’) and a regression con-
stant accounted for .97 of the variance in the latency data. Mostinteresting was
the fact that more intelligent subjects (as indicated by IQ test scores) spent
relatively more time than didless intelligent subjects in global planning, with
relatively less time in local planning. Apparently, careful global planning, like
careful stimulus encoding, paysoff its dividendslater in facilitated execution of
performance components.

Performance Components

On the whole, performance components tend to be more limited in the task
domains to which they apply than do metacomponents,but there is nevertheless a
considerable range of applicability: Performance components such as encoding
and response are general across a wide range oftasks (althoughit is not clear at
this point that they are the same psychological component in each task, and,
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most likely, there are several variants of each); performance componentssuch as

inference, mapping, application, and justification (as described earlier) are

commonto classes of tasks, in this case, inductive reasoning tasks (and these

components do appear to be the sameacrossatleast several induction tasks; see

Sternberg & Gardner, in press); and some performance components are essen-

tially task specific andoflittle psychological interest. I have recently proposed

that it is possible to classify tasks hierarchically according to their complexity as

indexed by the numbers andidentities of the performance components used in

their solution (Sternberg, 1979b, 1981d).

I have also suggested recently that performance componentstend to organize

themselves into stages of task solution that seem to be fairly general across tasks

(Sternberg, 1981d). These stages include encoding of stimuli, combination of or

comparison betweenstimuli, and response. In the analogies tasks, for example, |

have separated encoding and response components (each of which may be

viewed as constituting its own stage) and inference, mapping, application, and

justification components (each of which requires some kind of comparison be-

tween stimuli). In the linear syllogismstask, I have again identified encoding and

response components (each of which may be divided into subcomponents, see

Sternberg, 1980d) that form their own stages and other performance components

that require combination and comparison of information (marking, negation,

pivot search, response search, and noncongruence; see Sternberg, 1980d). Al-

though I have not proposed a process model for the logical connectives task,

performance on this task can be sensibly decomposedinto stages of encoding of

single premises, combination of the major and minor premises (where needed),

and response.

1. Encoding Components. Qualitative and quantitative changes in encoding

seem to constitute a major source of intellectual development. I have already

discussed many of the ways in which encoding develops in the context of

metacomponential decisions about encoding: (1) it tends to become more nearly

exhaustive with increasing age (see also Brown & DeLoache, 1978; Siegler,

1978; Vurpillot, 1968); (2) it tends to be executed more slowly per encoded

attribute with increasing age;and (3) it often operates on different representations

of information with increasing age. The changein the rate at which encodingis

executed in timed tasks, such as the analogies and linear syllogisms, tends to be

fairly large in magnitude. And most of the difficulty in at least one complex

deductive task, reasoning with logical connectives, turns out to be dueto diffi-

culty in encoding the connectives rather than difficulty in combining (reasoning

with) them. Table 9.2 showserrorrates for encoding and encoding plus combina-

tion in our logical connectives study. It is apparent that at every age level

encoding accounts for the bulk of item difficulty. The incremental difficulty of

combination of the premisesis relatively small. This conclusion is consistent with

that of previous investigators who have studied the development of reasoning
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TABLE 9.2

Overall Error Rates for Logical Connectives

 

Task

Grade Level Encoding Combination

2 .90 92

4 .76 .83

6 .67 .76

8 44 .69

High school 47 56

College .33 43

Mean 39 10

 

with logical connectives (e.g., Taplin et al., 1974; but see Staudenmayer &
Bourne, 1977, for an alternative formulation of the theoretical problem).

2. Combination and Comparison Components. Whereas encoding seems to
be a critical source of intellectual developmentin almostall of the tasks I and at
least some others have studied, the importance of development in combination
and comparison components is much more variable. Developmentin these com-
ponents is of considerable importance in analogical reasoning, where mapping
does not begin to appear until the transition into formal operations and where
logical comparison components seem to replace associative comparison compo-
nents with increasing age. In transitive inference tasks, there are not very large
decreases in the latencies of combination and comparison components with in-
creasing age, butit is surprising howlittle qualitative change there is. As noted
earlier, there is a striking consistency across ages in strategy, and manyofthe
differences in performancethat have beenattributed in the past to combinationor
comparison components now seem betterattributed to failures in encoding due to
memorylimitations. In the previously discussed logical connectives task, most of
the difficulty appears to be in encoding rather than in combination of premise
information. I do not meanto denigrate the importance of these components: One
need only investigate complex problem solving (e.g., Klahr, 1978; Klahr &
Wallace, 1976) to see the great importance combination and comparison compo-
nents can have on intelligent functioning. Thus, the importance of these compo-
nents seems to be largely a function of the kind of task being studied.

3. Response Component. In my own research as well as that of others
studying quite different kinds of intellectual abilities (e.g., Kail et al., 1980:
Keating & Bobbitt, 1978), substantial decreases have been observedin the laten-
cies of componentsrepresented bytheinterceptof the regression equation used to
estimate parameters. In some cases, this intercept has explicitly confounded
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encoding and responsetimes (e.g., Keating & Bobbitt, 1978), but in other cases

it has not. I am inclinedto attribute the large decreases in response-component

time over age, as well as the high correlations between response-component time

and IQ that have been observed within age (e.g., Mulholland et al., 1980;

Sternberg, 1977) to the confounding of metacomponent with response-

componentlatency. Presumably, latency for executing at least some metacom-

ponents is constant across the various item types that form the data points of the

regression and, hence, becomespart of the regression constant that is normally

labeled ‘‘response.’’

To summarize, performance components are potentially important sources of

intellectual development, but a joint analysis of their role with that of the

metacomponents leads me to believe that metacomponential developmentis

much more fundamental and that many of the changes that are observed in

performance-componentavailability, accessibility, latency, difficulty, and prob-

ability of execution can best be understood at the metacomponential level.

Changes in metacomponential functioning lead almost inevitably to changes in

the functioning of the performance components, but one can understandthelatter

changes only by looking for their metacomponential sources.

Acquisition, Retention, and Transfer Components

Werner and Kaplan (1952) proposed that:

the child acquires the meaning of wordsprincipally in two ways. Oneis by explicit

reference either verbal or objective; he learns to understand verbal symbols through

the adult’s direct naming of objects or through verbal definition. The second way

is through implicit or contextual reference; the meaning of the word is grasped in

the course of conversation, i.e., it is inferred from the cues of the verbal context

[p. 3].

Our approach to the acquisition, retention, and transfer of information is

loosely based on that of Werner and Kaplan (1952). Unfortunately, our research

into the components of acquisition, retention, and transfer is at so inchoate a

stage that it is possible to present only the bare outline of a theory, plus a

description of the research Janet Powell and I are usingto test it. The task being

used to test the theory is similar to one employed by Heim (1970) (see Powell and

Sternberg, 1981). All subjects in our study (high school students to date) re-

ceived a set of 33 brief reading passages such as might be found in newspapers,

magazines, novels, or textbooks. Embedded within these passages were from

one to four very low-frequency words, which could be repeated from zero to four

times either within or between passages, but not both. An example of such a

passage is the following:
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Twoill-dressed people—the one a tired womanof middle years and the other a tense

young man—sat around a fire where the common meal was almost ready. The

mother, Tanith, peered at her son through the oam of the bubbling stew. It had been

a long time since his last ceilidh and Tobar had changedgreatly; where once he had

seemed all legs and clumsy joints, he now was well-formedand in control of his

hard, young body. Asthey ate, Tobartold of his past year, re-creating for Tanith

how he had wandered long and far in his quest to gain the skills he would need to

be permitted to rejoin the company. Thenall too soon, their brief ceilidh over, Tobar

walked over to touch his mother’s arm and quicklyleft.

 

 

Subjects were divided into two experimental and two control groups. In the

first experimental group, subjects were asked to provide ratings regarding the

low-frequency wordsand their surrounding contexts. These ratings were ofvari-

ous aspects of the passage (described later) that were hypothesized to affect

subjects’ ability to learn the meanings of the new words. When a given word

occurred more than once in a given passage, subjects were also asked to provide

separate ratings for each token occurrence. In the second experimental group,

subjects were asked to state the main idea of the passage andto define as best

they could each of the underlined (low-frequency) words. When a single word

appeared twice in a passage, they only needed to define the word once, butif a

given word appeared again in a later passage, subjects had to redefine the word

later on. Subjects were allowed to view the passage they had just read at the time

they defined the word, but they were not allowed to look back at previous

passages. Subjects in a first control group were asked to read each of the passages

and to provide a title for each passage. The subjects in this group thus had to

understand at some level the contents of the passage in order to perform the task,

but their attention was drawn to aspects of the passage that were irrelevant to
understanding the low-frequency words. Finally, subjects in a second control

group never saw the passageat all. All subjects received a pretest and a retest that

contained passages very much like those in the main part of the study.

Our major concern in this study was with isolating variables that might affect

the operations of acquisition, retention, and transfer components. Some of the
variables we believe to have affected these operations, for which ratings were

collected, were the following:

1. Multiple occurrences of the target information. Higher acquisition, reten-

tion, and transfer of information from one context to another were expected when
information was presented more than once. Thus, the more times a new and
originally unfamiliar word is seen, the more likely a person is to acquire, retain,
or transfer its meaning.

2. Variability in contexts for presentation of target information. Different

contexts are likely to highlight different aspects of a given word’s meaning.
Fuller definitions and therefore higher acquisition, retention, and transfer of
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word meanings are expected when subjects make use of the variability of multi-

ple contexts.

3. Relevance or importance of target information to the overall situation.

Somekinds of information about a given situation are central to the understand-

ing and making of decisions about it, whereas other kinds of informationare only

of minor importance. Similarly, some words are essential to understanding a

given sentence or passage, whereas others are much less important. Higher

acquisition, retention, and transfer of information are expected for those aspects

of a situation that are more central to its overall thrust, and unfamiliar wordsthat

are central to the meaning of a passage are more likely to be learned.

4. Helpfulness ofsurrounding context to the understanding oftarget informa-

tion. Different types of contexts may be moreorless helpful to the inference of a

target word’s meaning. Higher acquisition, retention, and transfer are expected

in those cases where context is more facilitative than whereit is less so.

5. Location of helpful information with respect to the target. The recency of

occurrence of helpful information is important in acquisition, retention, and

transfer of definitions for new words, and other locational variables also have an

effect on these components. For instance, subjects are more likely to utilize

context that comes before an unfamiliar word than context that follows the word.

6. Helpfulness of stored information to understanding of target information.

Previously stored information can facilitate acquisition, retention, and transfer of

information. For example, the knowledge one has of background information

about a situation or topic and whetheror not an unfamiliar wordis related to an

already acquired concept can facilitate the learning of the new word. Higher

acquisition, retention, and transfer of the meanings of new wordsare expected in

those situations in which already existing concepts and frameworks can be

brought to bear upon the new learning situation.

The idea in this research is to model the quality of definitions of words

presented in context on the basis of these structural variables. Obviously, these

do not constitute a complete list of variables that affect learning, but they seem to

serve as a beginning. Acquisition components are based upon modeling of the

quality of definitions of words presented for thefirst time. Transfer components

are based upon modeling of improvementin the quality of definitions of words

from earlier presentations of the words to later presentations. Retention compo-

nents are based upon modeling of performance in a final definitions test pre-

sented outside the context of the reading passages. In each case, the independent

variables listed are the same; only the context of the modeling changes. Asofthis

writing, almost all of the data for this experiment have been collected, but they

have not yet been analyzed. Hence, it is not yet possible to say what weights

these and possibly other variables might have in predicting the quality of defi-

nitions.
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MECHANISMS FOR
INTELLECTUAL DEVELOPMENT

Interrelations Among Kinds of Components

In order to understand the proposed mechanismsforintellectual development,it
is necessary first to understand how the different kinds of components described
earlier interrelate. My speculations regarding the interrelations among the
functionally different kinds of components are shownin Fig. 9.5. The different
kinds of components are closely interrelated.
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FIG. 9.5. Interrelations among components serving different functions. ‘‘M”’
refers to a set of metacomponents, ‘‘A’’ to a set of acquisition components, ‘‘R”’
to a set of retention components, ‘‘T’’ to a set of transfer components, and ‘‘P’’ to
a set of performance components. Direct activation of one kind of component by
another is represented by double solid arrows. Indirect activation of one kind of
componentby anotheris represented by single solid arrows. Direct feedback from
one kind of componentto anotheris represented by single broken arrows. Indirect
feedback from one kind of componentto another proceeds from and to the same
components, as does indirect activation, and so is shown bythe single solid
arrows.
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Four kinds of interrelations need to be considered. Direct activation of one
kind of component by another, referring to the immediate passage of control
from one kind of componentto another, is represented by double solid arrows.

Indirect activation of one kind of componentby another,referring to the mediate

passage of control from one kind of component to another via a third kind of

component, is represented by single solid arrows. Direct feedback from one kind

of componentto another, referring to the immediate passage of information from

one kind of componentto another,is represented by single brokenarrows. Indirect

feedback from one kind of componentto another, referring to the mediate passage

of information from one kind of componentto another via a third kind of compo-

nent, is represented by single solid arrows (following, as it does, the samepaths as

indirect activation).

In the proposed system, only metacomponents can directly activate and re-

ceive feedback from each other kind of component. Thus, all control to the

system passes directly from the metacomponents, and all information from the

system passes directly to the metacomponents. The other kinds of components

can activate and receive information from each other indirectly; in every case,

mediation must be supplied by the metacomponents. For example, acquisition of

information affects retention of information and various kinds of transformations

(performances) upon that information, but only via the link of the three kinds of

components to the metacomponents. Information from the acquisition compo-

nents is filtered to the other kinds of components through the metacomponents.

Consider some examples of how the system might function in the solution of

an analogy problem. As soon as one decides upona certain tentative strategy for

solving the analogy, activation of that strategy can pass directly from the

metacomponent responsible for deciding upon strategy to the performance

component responsible for executing the first step of the strategy, and, sub-

sequently, activation can pass to the successive performance components needed

to execute the strategy. Feedback will return from the performance components

indicating how successfully the strategy is working. If monitoring of this feed-

back indicates lack of success, control may pass to the metacomponentthat is

‘‘empowered’’ to select a new strategy;if no successful change in strategy can be

realized, the solution monitoring metacomponent maychangethe goal altogether

(e.g., deciding to find an answeroptionthat is a high associate of the last term in

the stem rather than logically related to it in the same way that the second term

wasrelated to the first).

Asa givenstrategy is being executed, new information may be acquired about

how to solve analogies in general. This information is also fed back to the

metacomponents, either to be acted upon or ignored. New information that seems

useful is more likely to be directed back from the relevant metacomponentsto the

relevant retention components for retention in long-term memory. Whatis ac-

quired does not directly influence what is retained, hence ‘“‘practice does not

necessarily make perfect’’: Some people may be unable to profit from their
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experience because of inadequacies in metacomponential information process-
ing. Similarly, what is retained does not directly influence whatis later trans-
ferred. The chances of information being transferred to a later context will be
largely dependent on the form in which the metacomponents decided to store the
information for later access. Acquired information also does not directly affect
transformations (performances) uponthat information. The results of acquisition
(or retention ortransfer) must first be fed back into the metacomponents, which
in effect decide what information will filter back indirectly from one type of
component to another.

The metacomponents are able to process only a limited amountof information
at a given time.In a difficult task, especially a new and novel one, the amountof
information being fed back to the metacomponents may exceed their capacity to
act upon it. In this case, the metacomponents become overloaded, and valuable
information that cannot be processed may simply be wasted. The total
information-handling capacity of the metacomponentsof a given system will thus
be an important limiting aspect of that system. Similarly, capacity to allocate
attentional resources so as to minimize the probability of bottlenecks will be part
of what determines the effective capacity of the system (see also Hunt, 1980).

Figure 9.5 does not showinterrelations among various individual members of
each single functional kind of component. These interrelations can be easily
described in words, however. Metacomponents are able to activate and com-
municate with each other directly. It seems likely that the solution-monitoring
metacomponent controls the intercommunication andinteractivation among the
other metacomponents, and there is a certain sense in which this particular
metacomponent might be viewedas a metametacomponent, as mentioned earlier.
Other kinds of components are not able to activate or communicate with each
other directly. But components of a given kind can activate and communicate
indirectly with other components of the same kind. Indirect communication and
activation proceed through the metacomponents, which can direct information or
activation from one componentto another component of the same kind.

Interrelations Among Components
and Intellectual Development

The system ofinterrelations among kinds of componentsjust described implicitly
contains several bases for intellectual change. In this section, at least some of
these bases for change are made explicit.

First, the components of acquisition, retention, and transfer provide the
mechanismsfor a steadily developing knowledge base. Increments in the knowl-
edge base,in turn, allow for more sophisticated forms of acquisition, retention,
and transfer, and possibly for greater ease in execution of performance compo-
nents. For example, sometransfer components may act by relating new knowl-
edge to old knowledge. As the base of old knowledge becomes deeper and
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broader, the possibilities for relating new knowledge to old knowledge, and thus

for incorporating that new knowledgeinto the existing knowledgebase, increase.

There is thus the possibility of an unending feedback loop: The components lead

to an increased knowledge base, which leads to more effective use of the compo-

nents, which leads to further increases in the knowledge base, and so on.

Second, the self-monitoring metacomponents can, in effect, learn from their

own mistakes. Early on, allocation of metacomponential resources to varying

tasks or kinds of components maybeless than optimal, with a resulting loss of

valuable feedback information. Self-monitoring should eventually result in im-

provedallocation of metacomponential resources, particularly to the self-monitor-

ing of the metacomponents. Thus, self-monitoring by the metacomponents

results in improved allocation of metacomponential resources to the self-

monitoring of the metacomponents, which in turn leads to improved self-

monitoring, and so on. Here, too, there exists the possibility of an unending

feedback loopthat is internal to the metacomponents themselves.

Finally, indirect feedback from kinds of components other than metacompo-

nents to each other and direct feedback to the metacomponents should result in

improved effectiveness of performance. Acquisition components, for example,

can provide valuable information to performance components(via the metacom-

ponents) concerning how to perform a task, and the performance components, in

turn, can provide feedback to the acquisition components (via the metacompo-

nents) concerning what else needs to be learned in order to perform the task

optimally. Thus, other kinds of components can also generate unending feedback

loops in which performance improves as a result of interactions between the

kinds of components or between multiple components of the same kind.

There can be no doubt that in the present conceptual scheme, the metacompo-

nents form the majorbasis for the development of intelligence. All activation and

feedbackare filtered through these elements. If they do not perform their func-

tion well, then it won’t matter very much whatthe other kinds of components do.

It is for this reason that the metacomponents are viewed as truly central in

understanding the nature and development of intelligence.

INTERRELATIONS BETWEEN COMPONENTIAL

MECHANISMS FOR INTELLECTUAL

DEVELOPMENT AND THOSEIN OTHER

APPROACHESTO INTELLIGENCE

The componential approach to intellectual developmentthat has been described

here is one of several alternative information-processing approaches that might

be considered. Because this approach, like others, uses its own language, its

concepts might be communicated more effectively in comparisonto the claims of

other approaches, both within the information-processingtradition and outsideit.
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In this way, I attempt to show that although various alternative approaches have
all made their own unique contributions to developmental theory, these contribu-
tions are largely compatible with each other. This compatibility is sometimes
hidden by differences in the languages in which the approachesandtheir theoret-
ical contributions are expressed.

Information-Processing Approaches

Information-processing approachesto intellectual developmentshare thepositing
of some kind of elementary information process as a fundamental unit of be-
havior (see Newell & Simon, 1972). It is assumedthat all behavior of a human
information-processing system can be understood in part as a result of the combi-
nation of these elementary processes. The various approaches differ in the units
they have posited as being central to understanding behavior. I consider here
some ofthe alternative units that have been presented, and how they relate to the
component construct and the theory built upon it. (See also Sternberg & Powell,
in press, for a more detailed description of these units and of research on in-
tellectual development that has been done with each asits basis.)

1. The TOTE. Mi«iller, Galanter, and Pribram (1960) proposed as the fun-
damental unit of intelligent behavior the TOTE (Test-Operate-Test-Exit). Each
unit of behavior starts with a test of the present outcome against the desired
outcome.If the result of the test is congruent with the desired outcome (called an
“Image’’), an Exit is made. If not, another operationis performed in order to
maketheresult of the next test conform asclosely as possible to the Image.If the
result of the next test is congruent with the Image, an Exit is made. Otherwise,
still another operation is performed, and so on downtheline until the Testresult
correspondsto the Image (which may have been modified along the wayin order
to make it conform moreclosely to the demandsof reality). An individual TOTE,
a hierarchy of TOTEs, or a sequence of TOTEs (which mayincludehierarchies)
executed in order to realize an Image is whatI earlier referred to as a Plan.

The loci of intellectual developmentare suggested implicitly by Miller et al.’s
(1960) account of the TOTEandits derivative concepts. Intellectual develop-
mentin the TOTEsystem can be viewed as resulting from the formation of Plans
that are successively more: (1) horizontally elongated, in that the number of
TOTEsneeded to reach the Image from aninitial state increases, allowing oneto
undertake Plans that require successively more Steps to actualize: (2) vertically
elaborated, in that the hierarchical structure of the Plan involves more different
levels of processing than do the simpler Plans more likely to be executed by
younger children, and upon which the more elaborated Plans are likely to have
been built; (3) numerous, in that one learns new kinds of routines that can be used
to attain new Images constructed as one grows older; and (4) efficient, or oth-
erwise generally efficacious, in that older Plans are supplemented or possibly
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replaced by newerPlans that attain Images with greater facility than did the older

Plans.

The TOTEandits derivative concepts are wholly compatible with the compo-

nent andits derivative concepts. A TOTE would be viewed in my own system as

a substrategy consisting of two comparison components (the Tests), one encod-

ing or combination component (the Operation), and a Response component (the

Exit). A Plan is what I have referred to as a strategy, and an Imageis the goal

state the strategy is meant to realize. Miller et al. do not distinguish between

higher-order types of metacomponential constructs, on the one hand, and lower-

order types of componential constructs, on the other. Instead, they (1960) pro-

pose that:

a central notion of the method followed in these pages is that the operational com-

ponents of TOTE units may themselves be TOTEunits. That is to say, the TOTE

pattern describes bothstrategic and tactical units of behavior. Thus the operational

phase of a higher-order TOTE might itself consist of a string of other TOTEunits,

and each of these, in turn, may contain still other strings of TOTEs, and so on

[p. 32].

Thus, their preference (and at one time, mine; see Sternberg, 1977) is to use a

single kind of unit to accomplish both executive and nonexecutive information

processing. I suspect the difference in conceptualizations is largely a linguistic

one: I introduced a higher-level kind of componentbecause I found, like Miller et

al. (1960), that: ‘‘retaining the same pattern of description for the higher, more

strategic units as for the lower, more tactical units may be confusing,’’ at least

‘‘on first acquaintance [p. 32].”’

2. The Production. A production is a condition-action sequence. If a certain

condition is met, then a certain action is performed. Sequencesof ordered prod-

uctions are called production systems.

The executive for a production system is hypothesized to make its way down

the ordered list of productions until one of the conditions is met. The action

correspondingto that condition is executed, and control is returned to the top of

the list. The executive then makes its way downthelist again, trying to satisfy a

condition. When it does so, an action is executed, control returns to the top,

etc. The production construct was popularized in psychology by Newell and

Simon (1972) (see also Newell, 1973) and has been used extensively in devel-

opmental theorizing by Anderson (1976), Klahr and Wallace (1976), and others.

The rules for production systems may be elaborated as required. Anderson

(1976), for example, has suggestedrules for strengthening and weakening prod-

uctions, and Hunt and Poltrock (1974) have suggested that productions may be

probabilistically ordered so that the exact order in whichthe list of productionsis

scanned may differ across scannings of thelist.

Cognitive development is assumed to occur through the operation of self-

modifying production systems. (See Klahr, 1979, for a review ofthe literature on
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Sequence is to build a new production. Anderson, Kline, and Beasley (1980)have proposedfourtransition mechanisms by which modification could occur. Adesignation productionis one that simply hasasits action the instructions to builda new production of a certain kind. A Strengthening mechanism increases theprobability that a production will be activated. A generalization mechanismweakensthe specific conditions that activate a productionso that the production

underlying these last three mechanismsis that productions have differential
strengths that affect the likelihood of being executedif they are reached. A rough
analogy would be to the eliciting conditions necessary to fire a neuron in the
nervous system. Intellectual development thusis a continuing matter throughout
one’s lifetime, and it is largely a matter of learning, which can alter the pro-
ductions constituting a production System and thus the person’s ways of solving
various problems.

The production can easily be mapped into componential terms. Thetest of the
condition is analogous to a comparison component (or a Test in TOTE terminol-
ogy). The action thatis contingent upon meeting the condition is analogousto an
encoding or combination component, or possibly even to another comparison
component, where the comparison is between two new pieces of information
rather than between a new and an old piece of information (or an Operation,in
TOTE terminology), unless the action is a terminal one, in which case it is
analogous to a response (or an Exit in TOTE terminology). The componential
system does not specify any one particular operating system in which compo-
nents are to be embedded. Were components to be embeddedin the context of a
production system, then they would best be viewed as productions of various
kinds. I have preferred to embed them in the context of a flow-chart system,in
which a flow chart constitutes a strategy (Plan) comprising components (TOTEs).
Thus, there is no necessary incompatibility between productions and com-
ponents. A production implies a certain kind of operating system; a component
does not. It has been a matter of my own(and other componential investigators’)
preference to embed components in a flow-chart system rather than in a produc-
tion system; others might choose differently in future research.

3. The Scheme. The notion of a ‘‘scheme’’ proposed by Pascual-Leone(1970) and elaborated by Case (1974a, 1974b, 1978) is viewed as ‘‘neo-Piagetian,’’ drawing as it does on the basic Piagetian notion of the ‘‘schema.”’What these investigators have done, however, is to specify the notion of ascheme more precisely than has Piaget.
There are three basic kinds of schemes—figurative, operative, and executive.Figurative schemes, according to Case (1974b), are ‘‘internal representations of
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items of information with which a subject is familiar, or of perceptual configura-

tions which he can recognize [p. 545].”’ If, for example, a subject described a

photograph as depicting a picture of his or her house, one could say that the

subject assimilated the sensory input to a figurative *‘house scheme.’’ Operative

schemes, according to Case (1974b), are ‘‘internal representations of functions

(rules), which can be applied to one set of figurative schemes, in order to

generate a new Set [p. 545].’’ If, for example, a subject looked at two different

photographsof a house and judged them to be depicting the ‘‘same’’ house, one

would describe the subject as applying an operative scheme representing a

‘“cameness’’ function to the figurative schemes representing the features of each

of the two photographs. Executive schemes, according to Case (1974b), are

‘internal representations of procedures which can be applied in the face of

particular problem situations, in an attempt to reach particular objectives [p.

546].’’ These schemesare to a large extent responsible for determining which

figurative and operative schemes a subject activates in a particular problem

situation. The figurative and operative schemes just suggested in the comparison

of two photographs, for example, would presumably be activated only if they

were part of some larger executive scheme that required the particular compari-

son.

Whether or not a subject actually solves a particular problem is assumed to

depend on four basic factors. The first is the repertoire of schemesthat a subject

brings to the problem. The second is the maximum numberof schemesthat the

subject’s psychological system 1s capable of activating at any one time. The

maximum mental effort a subject can apply to a problem is referred to as ‘‘M-

power’’ and is assumedto vary both within and between age groups. M-poweris

viewed as at least one source of individual differences within and between age

levels in overall general ability (g); it is assumedto increase linearly with age.

The third factor is a subject’s tendency to utilize the full M-powerthat is avail-

able; some subjects are assumed to be more willing than others to apply full

M-power, and, in general, subjects differ in the proportion of M-powerthey

typically exploit. Finally, a fourth factor is the relative weights assigned to cues

from the perceptual field on the one hand and to cues from all other sources

(e.g., task instructions) on the other.

Case (1974b) describes several waysin which new schemes may be acquired

and, hence, intellectual development may occur. First, new schemes can be

acquired by modification of old schemes. Second, new schemescan be acquired

by the combination or consolidation of multiple old schemes. These two ways of

acquiring new schemescan be further subdivided, resulting in multiple means by

which intellectual growth can occur.

These various types of schemes can be mapped into componential terms.

Figurative schemes are unitized internal representations, roughly equivalent to

what Miller (1956) has called ‘‘chunks. ’’ Operative schemes are roughly equiva-

lent to lower-order components (performance, acquisition, retention, transfer),
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or to what Inhelder and Piaget (1958) have referred to as ‘‘transformations”’ and
what Newell and Simon (1972) have referred to as ‘‘elementary information
processes.’’ Executive schemes are equivalent to Strategies as formulated by
higher-order metacomponents, or to what Milleretal. (1960) havereferred to as
‘Plans’? and what Newell and Simon (1972) have referred to as ‘‘executive
programs.’”’

An interesting feature of the system of Pascual-Leone and Caseis the set of
factors assumed to determine whetheror not a given problem is actually solved.
Again, these limiting factors can be mapped into componential terms. First, the
repertoire of schemes is simply a repertoire of Strategies, which is assumed to
increase with age. Second, whatis referred to as M-powerin the scheme system
is referred to as processing capacity or channel capacity in the componential
system and most other information-processing systems. Third, the subject’s ten-
dencyto utilize full M-power would be viewed as a motivational variable in the
componential and most other information-processing systems. I believe that
motivational variables receive far too little attention in information-processing
psychology, however. Hence, the inclusion of this motivational factor is most
auspicious in a theory of intellectual development (see Sternberg, 1981b). Fi-
nally, componential analysis weights the various kinds of inputs to the
information-processing system through parameterestimates. Theseestimatestell
how important each kind of informationis in reachinga final solution to a given
problem.

4. The Rule (or Principle). Rules (Siegler, 1981) and principles (Gelman &
Gallistel, 1978) form the final unit that I consider here. According to Siegler
(1981): **The basic assumption underlying the rule-assessment approachis that
cognitive development can be characterized in large part as the acquisition of
increasingly powerful rulesfor solving problems [p. 3].’’ Rules or principles
emphasize knowledgerather than processas the basic unit of development. What
Siegler refers to as a rule, however,is virtually identical to what I have referred
to as a strategy, or Miller et al. (1960) have referred to as a Plan. As children
grow older, the complexity of their rules increases, generally because earlier
tules fail to take into accountall of the relevant information in a given problem.
The rules of older children tend to reflect more thorough encoding and more
nearly exhaustive information processing than dothe rules of younger children;
as mentionedearlier, a parallel pattern of results has obtained in my own investi-
gations of strategy development in reasoning tasks.

The Psychometric Approach

In most psychometric investigationsofintellectual development,the basic unit of
analysis has been the factor. The paradigm in whichthis unit has been definedand usedis usually referred to as the ‘“psychometric’’ one, but it is also some-
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times called the ‘‘differential’’ or the ‘‘factorial’’ paradigm. Factors are obtained

by ‘‘factor analyzing’’ a matrix of intercorrelations (or covariances) between

scores on tests of measures of ability. Factor analysis tends to group into single

factors observable sources of individual-differences variation that are highly

correlated with each other and to group into different factors observable sources

of variation that are only modestly correlated or wholly uncorrelated with eachother.

These new groupings are each proposedto represent unitary , latent sourcesof indi-

vidual-differences variation at some level of analysis. Theorists would generally

agree that other levels of analysis would be possible as well, in which factors

would either be further subdivided or further combined.

What, exactly, is a factor? There is no single, agreed-upon answerto this

question. Thurstone (1947) notedthat ‘factors may be called by different names,

such as ‘causes,’ ‘faculties,’ ‘parameters,’ ‘functional unities,’ ‘abilities,’ or

‘independent measurements’ [p. 56].”’ Royce (1963) added to this list: *“‘dimen-

sions, determinants, ... and taxonomic categories [p. 522],’’ and Cattell (1971)

has referred to factors as ‘‘source traits.”’

Factor theorists have differed with respect to the particular factors purported

to be basic to intelligence. For example, Spearman (1927) suggested that intelli-

gence comprises one general factor that is commonto all of the tasks that are

used in the assessmentof intelligence and as many specific factors as there are

tasks; Holzinger (1938) suggested the need for a third kind of factor, a group

factor common to some but not all of the tasks used to assess intelligence;

Thurstone (1938) proposedthatintelligence is best understood in terms of multi-

ple factors, or primary mental abilities as he called them; Guilford (1967) has

proposed a theory encompassing 120 factors formed by crossing five operations,

six products, and four contents. The concept of a hierarchical theory can be

traced back at least to Burt (1940), and more sophisticated hierarchical theories

have been proposed by Jensen (1970), Vernon (1971), and others. Detailed

reviews of these and other theories can be found in Brody and Brody (1976),

Butcher (1970), and Cronbach (1970).

There are several possible sources of intellectual developmentin the factorial

conception of humanintelligence. These include (1) changes in numberof fac-

tors with age (Garrett, 1938, 1946; Garrett, Bryan, & Perl, 1935); (2) changesin

the relevance or weights of factors in human intelligence with age (Hofstaetter,

1954; Stott & Ball, 1965); (3) changes in the content (names) of factors within a

given factor structure with age (McCall, Eichorn, & Hogarty, 1977; McCall,

Hogarty, & Hurlburt, 1972); and (4) changesin factor scores of fixed factors with

age (Bayley, 1933, 1970; Dearborn & Rothney, 1941; Honzik, 1938; Sontag,

Baker, & Nelson, 1958). A discussion of these various sources of development

and the evidence supporting them can be found in Sternberg and Powell (in

press).

Factors represent ‘‘underlying”’ sources of individual differences, including

the individual differences generated by differences among individuals in the



9. INTELLECTUAL DEVELOPMENT 453

components they use andthe efficacy with which they use these components in
their information processing. Whereas components are usually isolated by ex-
tracting between-stimulus sources of variance, factors are usually isolated by
extracting between-subject sources of variance. Hence, a given factor might
contain variance attributable to the actions of several different componentsif use
of these components is correlated across subjects. Suppose, for example, that
each of three metacomponents was required to solve all of the problems in a
battery of tests, that each of two performance components was required to solve a
subset of the problems, and that a single acquisition component was required to
Solve a single type of problem. Then, the metacomponents might together form a
general factor, the performance components might form a group factor, and the
acquisition component might form a factor specific to a single test. Moreover,
common contents and modesof presentation of test items (e.g., visual or audi-
tory) might also be confounded in these factors. If all items are presented
visually, then response to visual mode of presentation will be a general source of
individual-differences variancethat mightenter the generalfactor, along with the
varianceattributable to the metacomponents. Note that components, like factors,
are subject to confoundings. In the case of components, the confoundings areattributable to shared variance across stimulus types. If all items in a set are
presented visually, for example, then the global constant will include, in addition
to, say, response latency, any added latency attributable to the visual mode ofpresentation.

I do notbelievethere is any meaningful sense in which onecanrefer to either
components or factors as ‘‘more basic’’: Each extracts a different kind of var-lance, and each can be mappedonto the other. Hence, components and factorsare compatible, elucidating different aspects of a single global phenomenon. (Fora detailed account of how psychometric theories of intelligence can be concep-tualized componentially, see Sternberg, 1980b, 1980e.)

The Piagetian Approach

Piaget (1972) has defined intelligence as ‘‘the most highly developed form ofmental adaptation [p. 7].’’ He has further noted that ‘‘if intelligence is adapta-tion, it is desirable before anythingelse to definethe latter [p. 7].’’ Piaget does soby defining adaptation as ‘‘an equilibrium between the action of the organism onthe environmentand vice versa [p. 7]’’ or, more specifically, as ‘‘an equilibriumbetween assimilation and accommodation, which amounts to the Same as anequilibrium of interaction between subject and object [p. 8].’’
After defining ‘‘adaptation’’ as an equilibrium between assimilation andaccommodation, it becomes necessary to define theselatter terms. Piaget (1972)defines assimilation as ‘‘the action ofthe organism on surrounding objects, in sofar as this action depends on previous behavior involving the same or similarobjects. ... Mental assimilation is thus the incorporation of objects into patterns
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of behavior [pp. 7-8].’’ In assimilation, then, an individual incorporates an

object (whether concrete or abstract) into an existing cognitive structure, if

necessary adapting the perceived properties of the object to fit the structure.

Conversely, in accommodation ‘‘the environment acts on the organism...

,

it

being understood that the individual never suffers the impact of surrounding

stimuli as such, but they simply modify the assimilatory cycle by accommodating

him to themselves [p. 8].’’ In accommodation, then, the individual reverses

priorities, adapting properties of the cognitive structure as needed to fit the

object. Intellectual development is largely attributable to the fittings and refit-

tings of objects to cognitive structures called schemata, and of schemata to

objects, that occuras theresult of assimilation and accommodation, respectively.

After defining assimilation and accommodation, one last definition is still

necessary, that of ‘‘schema.’’ Piaget never defines just what a schemais in any

single, all-encompassing definition (Flavell, 1963); Flavell’s definition of a

schema as ‘‘a cognitive structure which has reference to a class of similar action

sequences, these sequences of necessity being strong, bounded totalities in which

the constituent behavioral elements are tightly interrelated [pp. 52-53]’’ would

seem to define the term as well, if as abstractly, as any definition I have found.

Sucking, prehension, sight, and intuitive qualitative correspondence are exam-

ples of Piagetian schemata (Flavell, 1963).

That Piagetian theory is compatible with information-processing theory is

shownbythe fact that Rumelhart and Norman (1978) have proposed two modes

of knowledge acquisition in information-processing language that correspond

almost exactly to assimilation and accommodation. Accretion is the assimilation

of new information to existing knowledge structures, and restructuring is the

reorganization of existing knowledge structures to accommodate new informa-

tion that does notfit into the knowledge structures that are available. In terms of

the componential system for understanding acquisition, retention, and transfer,

assimilation and accommodation would seem to cross-cut it. For example, in

transferring information from one context to another on the basis of contextual

cues, one may decide that the new information can be incorporated into existing

cognitive structures or representations, Or, alternatively, that the existing struc-

tures or representations have to be modified to incorporate the new information.

Modification of these structures can then result in what might be viewed as

backward transfer, whereby old informationis re-viewedin terms of the new.

To summarize, alternative approaches to intellectual development seem to be

largely compatible with each other. Their compatibility is sometimes obscured

by differences in the languages in which they are presented. Compatibility is not,

of course, tantamountto identity: Each system makes unique contributions by

highlighting aspects of intellectual developmentthat other systems may slight or

ignore. But these unique contributions become clearer when they are distin-

guished from mere linguistic differences among the systems.
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THE DEVELOPMENTAL CONTINUITY
OF INTELLIGENCE

intelligence tests administered in infancy and scores from intelligence tests ad-
ministeredin later childhood and adulthoodreveals a consistent dearth of impres-
Sive correlations between scores on the infant tests and Scores on the tests ad-
ministered to older children and adults (see, e.g., Bayley, 1955, 1970; Broman,
Nichols, & Kennedy, 1975; McCall, Hogarty, & Hurlburt, 1972). The lack of a
substantial relationship between infant andlater intelligence test scores has led
many investigators to concludethat infant intelligence (almostcertainly during
the first year of life and probably during much of the second year as well) is
different in kind from intelligence in postinfancy.

Some recent data have led me to speculate that at least some significant
aspects of intelligence may in fact be continuous overthe life span (Sternberg,
1981c). These findings concern novelty-seeking and novelty-finding behaviorin
children and adults.

Lewis and Brooks-Gunn (1981) have found that “‘habituating to redundant
and recovering to novel stimuli at 3 months of age... predict later intellectual
functioning at 24 months better than 3-month global intelligence or object per-
Manence scores. In terms of information processing skills, recovery predicted
later intelligence test scores better than habituation [p. 131].’’ Thus, inferred in-
creased exploration of novel stimuli following habituation to non-novel stimuli
proved to be indicative of later intelligence; scores on the infant ‘intelligence
tests,’ ’ however, were notindicative oflater intelligence. This interesting finding
was replicated in two independent samples of subjects.

Fagan and McGrath (1981) used a recognition-memory paradigm quite dif-
ferent in kind from the habituation-recovery paradigm of Lewis and Brooks-
Gunn. Fagan and McGrath initially tested children at ages ranging from 4 to 7
months. The main finding of the study wasthat: ‘‘variationsin early recognitionmemory as indexed by preferences for visual novelty both reflect and predict
Variations in intellectual functioning’’ later on, namely, at 4 and 7 years of age.

During the past few years, I have been pursuing the ideathatintelligence inpostinfancy may in part be understood as the ability to acquire and reason withnew conceptual systems (Sternberg, 1981a). On the basis of a recent review ofdifferent conceptual systems for understanding intelligence that has convinced
me of the importance of motivation in intelligence (broadly defined) (Sternberg,1981b; see also Zigler, 1971, for a strong statement supporting this view), Iwould supplement the aforementioned cognitive notion with the motivationalnotionthatintelligence (broadly defined)is also in part one’s interest in, seeking,and finding novel and interesting conceptual systems in which to think. Thus,Iview intelligence as not only the ability to learn and reason with new concepts (as
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well as one’s interest in such concepts) but, more importantly, as the ability to

learn and reason with (and one’s interest in) new kinds of concepts. What makes

a person moreorlessintelligent is not so much the ability to learn or think within

already familiar conceptual systems, but the ability to learn and think within new

conceptual systems, which can then be brought to bear upon already existing

knowledge structures. Thus, an intelligent person must first seek out and find a

new (and useful) conceptual system, then learn it, then reason within it, and

finally apply it analogically to old problems that were previously seen in terms of

formerly acquired conceptual systems. This point of view is consistent with that

of Claparéde (1917), according to whom intelligence is a mental adaptation to

new circumstances. It is also consistent with the views of Piaget (1972), accord-

ing to whomintelligence ‘‘tends towards an all-embracing equilibrium by aiming

at the assimilation of the whole of reality and the accommodationto it of action,

which it thereby frees from its dependence ontheinitial hic and nunc [p. 9].’’

The view is also compatible with viewsof psychologists whose orientation is not

particularly developmental. Psychometricians whohavestressed the role of crea-

tive thinking in intelligence (e.g., Guilford, 1967) have in effect argued for the

importance of behavior with and toward novelty in intelligent performance. And

computer simulators who have attempted to model intelligent thinking have

found that the handling of novelty is importantin an intelligent machine system.

Schank (1980), for example, has suggested that in understanding intelligence,

‘‘what people do in brand newsituations is what is of importance. . . . The ability

to make generalizations from completely new situations that are useful for future

needs is what intelligence is all about [p. 13].’’ To summarize, then, more

intelligent people tend to be those who seek to broaden their perspectives on

problems and who succeed in doing so.

I have studied the performance of adults on two ‘‘novel’’ tasks that require

kinds of strategy formation outside the usual run of experience. In one task,

subjects have to make projections about future states of objects on the basis of

partial and sometimes misleading information aboutthe presentstates of objects;

in the other task, subjects have to solve analogies presented in somewhatbizarre

formats (e.g., with multiple answer options for the first, second, and third terms,

and only the fourth term given). A more detailed description of these tasksis

given in Sternberg (1981a). The major finding of interest for present purposes iS

that, in both experiments, latencies to solve problems were more highly corre-

lated with performance on standard intelligence tests than were latencies on the

more entrenched kinds of response-time tasks that most investigators, including

myself, have studied in the past. Correlations of latencies from the projection and

analogy tasks with scores on intelligence tests were in the .4 to.8 range. We

thereby obtained some empirical support for the notion that ability to perform

well on novel tasks might be a key aspect of intelligence. Intelligence tests,

although perhaps not directly measuring solution of novel kinds of problems,
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probably measure, at least in part, people’s pastinterestin, learning about, and
reasoning with tasksthat at one time were novel but that have since become more
standard parts of many people’s task repertoires.

The proposed notion of intelligence in part as the seeking, finding, learning,
and solving of novel problems and aspects of problems seemsto dovetail nicely
with the findings of Lewis and Brooks-Gunn (1981) and Fagan and McGrath
(1981). The total package of results is consistent with the notion that attitude
toward and performanceon noveltasks or aspects of tasks is an important part of
intelligence, from infancy onward. Obviously, the way in which measurement
operations are conducted for assessing behavior will differ greatly across age
levels. Both our ownresults andthose of the authorsof these articles suggest that
converging operations for measurement of the behaviors of interest are both
possible andfeasible. I am therefore preparedto suggest that attitude toward and
performance on novel tasks or aspects of tasks form the basis for at least one
developmental continuity in intelligence.

Howcanthis view be reconciled with the massive evidence suggesting that
scores on infant intelligence tests do not correlate appreciably with scoresontests
of intelligence administered later? Reconciliation is possible in terms of the
particular aspects of intelligence one chooses to measure. Sensory-motorintelli-
gence is no doubt a majorpart of infantile development, but it is also without a
doubt only a fairly minor part of postinfantile development. There is not now,
and never has been, any reason to expect high correlations between tests of
sensory-motorabilities, on the one hand, andtests of more cognitive abilities, on
the other. Indeed, the two kindsof tests do not evencorrelate highly within age
level, as Galton (1883) discovered years ago and as others have found out again
and again. The problem hasbeen to find some aspect or aspects of intelligence
that are present in both infants and older people and that can be measured in
both. The greatest stumbling block has been in finding measurable aspects of
infant behavior that would continue to be important sources of individual dif-
ferences in intelligence later on. The studies I havecited by Lewis and Brooks-
Gunn and by Fagan and McGrath seem to have found such sources of individual
differences, and I havetried to provideatleast a tentative and sketchy theoretical
framework in whichthese sources of developmentand individual differences can
be understood.
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