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a  b  s  t  r  a  c  t

Despite  the  introduction  of salt  iodization  programmes  as national  measures  to  control  iodine  deficiency,
several  European  countries  are  still  suffering  from  mild  iodine  deficiency  (MID).  In iodine  sufficient  or
mildly  iodine  deficient  areas,  iodine  deficiency  during  pregnancy  frequently  appears  in  case  the  mater-
nal thyroid  gland  cannot  meet  the  demand  for increasing  production  of  thyroid  hormones  (TH)  and
its  effect  may  be damaging  for  the  neurodevelopment  of  the  foetus.  MID  during  pregnancy  may  lead
to  hypothyroxinaemia  in  the  mother  and/or  elevated  thyroid-stimulating  hormone  (TSH) levels  in  the
foetus,  and  these  conditions  have  been  found  to  be related  to  mild  and  subclinical  cognitive  and  psy-
sychomotor development
ognitive development
hildren

chomotor  deficits  in  neonates,  infants  and  children.  The  consequences  depend  upon  the  timing  and
severity  of  the  hypothyroxinaemia.  However,  it  needs  to be  noted  that  it is difficult  to  establish  a  direct
link  between  maternal  iodine  deficiency  and  maternal  hypothyroxinaemia,  as  well  as  between  maternal
iodine  deficiency  and  elevated  neonatal  TSH  levels  at birth.  Finally,  some  studies  suggest  that  iodine
supplementation  from  the  first trimester  until  the end  of  pregnancy  may  decrease  the  risk  of cognitive
and  psychomotor  developmental  delay  in  the  offspring.
© 2013 Published by Elsevier GmbH.
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Iodine is an essential micronutrient for the production of the
hyroid hormones (TH): thyroxin (T4) and tri-iodothyronine (T3).
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These hormones play an important role in various functions of the
human body, including the development of the central nervous sys-
tem (CNS). According to the World Health Organization (WHO), 2.2
billion people are at risk of iodine deficiency worldwide, making it
the leading cause of preventable brain damage [1]. Severe iodine
cy in pregnancy in Europe and its consequences for cognitive and
013), http://dx.doi.org/10.1016/j.jtemb.2013.01.002

deficiency during pregnancy may  cause goitre, but also miscar-
riage, increased infant mortality [2] and congenital abnormalities
like cretinism, which is an irreversible state of mental retardation

dx.doi.org/10.1016/j.jtemb.2013.01.002
dx.doi.org/10.1016/j.jtemb.2013.01.002
http://www.sciencedirect.com/science/journal/0946672X
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Fig. 1. Iodine pathway in the thyroid cell: Iodide (I−) is transported into the thy-
rocyte by the sodium/iodide symporter (NIS) at the basal membrane and migrates
to  the apical membrane. I− is oxidised by the enzymes thyroperoxidase (TPO) and
hydrogen peroxidase (H2O2) and attached to tyrosyl residues in thyroglobulin (Tg)
to  produce the hormone precursors iodotyrosine (MIT) and di-iodotyrosine (DIT).
Residues then couple to form thyroxine (T4) and tri-iodothyronine (T3) within the

During the first half of pregnancy, concentrations of T4 and T3
increase significantly in order to maintain maternal euthyroidism.
ARTICLETEMB-25437; No. of Pages 10
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ppearing in combination with dwarfism, deaf-mutism and spas-
icity [3].

Severe endemic cretinism has mainly been observed in Cen-
ral Africa and Asia. While in Europe severe iodine deficiency has
een considered as a vanished problem, endemic goitre (with

 prevalence of up to 90%) can still be found in several moun-
ainous areas of Italy and Turkey [4,5]. Although the number of
uropean countries in which iodine deficiency is a public health
roblem decreased from 23 in 2003 to 14 [6],  it is a matter of
oncern that iodine deficiency has reappeared in countries whose
revious iodine intake was sufficient, such as the UK [7].  Fur-
her, it is important to note that in countries in which iodized
alt programmes supply sufficient iodine to the general popu-
ation and pregnant women, weaning infants might still be at
isk of inadequate iodine intakes [8].  Apart from being iodine
eficient, some European countries have been shown to suffer
rom selenium deficiency, which may  aggravate the consequences
f mild iodine deficiency during pregnancy [9] because sele-
ium deficiency may  impair thyroid hormone metabolism [10].

odine deficiency associated with selenium deficiency has been
hown to aggravate the risk of developing myxodematous cre-
inism in Africa [11]. Nevertheless, it is important to note that
elenium deficiency also could have a protective effect against
odine deficiency [12]. The effects of iodine deficiency become

ore manifest during pregnancy, even in regions with border-
ine iodine supply, in case the thyroid gland cannot meet the
emand for an increased production of TH. Even mild-to-moderate

odine deficiency (MID) in pregnancy may  lead to isolated mater-
al hypothyroxinaemia, defined as a level of T4 below the normal
ange associated with a thyroid-stimulating hormone (TSH) level
ithin the reference range [13–16].  In Europe, mild and sub-

linical cognitive and psychomotor deficits have been observed
n neonates, infants and children, both in mildly iodine-deficient
reas and even in iodine-sufficient areas when maternal T4 con-
entrations were in the low normal range during pregnancy
17–19].

Today, in several European countries, the iodine intake dur-
ng pregnancy is considered to be insufficient [20–23] and iodine
upplementation is recommended for pregnant women.

The WHO  has recently increased the recommended iodine
ntake for pregnant women from 200 to 250 �g/day [24,25] and
mphasized that periodic monitoring and adjustment of salt iodide
oncentrations is needed. Even in apparently iodine-sufficient
egions in both Eastern and Western Europe, urinary iodine con-
entration (UIC) below 150 �g/day has been found in 50–92%
nd isolated hypothyroxinaemia has been detected in 4–10% of
regnant women [26–29].  Beside the prevalence of maternal iso-

ated hypothyroxinaemia during pregnancy, the TSH screening in
ew-borns has been used to assess the severity of iodine deficiency
uring pregnancy [30]. In several European studies, elevated TSH
alues during the first days of life were found to be associated with
uboptimal cognitive and psychomotor outcomes [31–34].  How-
ver, factors other than maternal iodine status may  influence the
SH concentration, such as the TSH assay used [35], the timing of
pecimen collection [36–38] and the presence of several medical
onditions in the mother [39–41].

The aim of this review was to investigate the importance of suf-
cient iodine intake during pregnancy by discussing the impact of
ID during pregnancy on neurodevelopment of children. For this

urpose, studies about thyroid function and iodine metabolism in
regnancy, transfer of TH and iodine from the mother to the foetus,
he role of TH in foetal brain development, the neurodevelopmental
utcomes of European children exposed to maternal hypothyrox-
naemia and MID  during pregnancy, and the effect of iodine or
Please cite this article in press as: Trumpff C, et al. Mild iodine deficien
psychomotor development of children: A review. J Trace Elem Med Biol (2

H supplementation in pregnancy on cognitive and psychomotor
utcomes were reviewed.
Tg molecule in the follicular lumen. Tg enters the cell by endocytosis and is digested.
T4  and T3 are released into the circulation, and iodine on MIT  and DIT is recycled
within the thyrocyte.

Thyroid function during pregnancy

In the human body, 70–80% of iodine is located in the thyroid
gland. Fig. 1 (adapted from Zimmermann et al., 2008 [42]) shows
how iodine is used in the synthesis of TH. Iodine is oxidised in the
follicular cells of the gland by a peroxidase and transformed into
I2 [43]. I2 reacts with tyrosine of thyroglobulin (TG), which is the
protein matrix on which TH are synthesized [44]. This reaction leads
to the creation of monoidotyrosine (MIT) and diiodotyrosine (DIT)
[43]. Association of two  molecules of DIT forms T4 and association
of one DIT with one MIT  forms T3. The thyroid gland secretes mainly
T4 molecules, while T3 is provided by type I deiodinase by outer ring
deiodination of T4 in target cells [44]. The blood transport of thyroid
hormones occurs with one of the following proteins: thyroxine-
binding globulin (TBG), transthyretin or albumin [45].

TSH, which is synthesized in the anterior pituitary gland, con-
trols and stimulates the production of TH. TSH is produced in
response to a hypothalamic peptide TSH-releasing hormone (TRH).
In order to maintain circulating TH levels within the required range,
an increase of TH concentrations in blood (fT3 and fT4) results in a
negative feedback on the production and release of TSH and TRH.

During pregnancy, hormonal changes and metabolic demands
result in significant changes in thyroid function [46]. In pregnancy,
there is an increased need for iodine supply [47] because of: (1)
an increased production of TH, (2) an elevated renal clearance of
iodine, and (3) the foetoplacental acquisition of maternal iodine
and TH (Fig. 2) [48]

Increased production of TH
cy in pregnancy in Europe and its consequences for cognitive and
013), http://dx.doi.org/10.1016/j.jtemb.2013.01.002

At the beginning of the second trimester T4 and T3 concentrations
are 30–100% higher than before pregnancy [44,49]. This increased

dx.doi.org/10.1016/j.jtemb.2013.01.002
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Fig. 2. Iodine metabolism in pregnancy.

roduction of TH can be explained by the following factors: (1) the
ncrease in thyroxine-binding globulin TBG concentration, (2) the
hyrotropic action of human chorionic gonadotropin (hCG), and (3)
he increased activity of the enzyme type 3 iodothyronine deiodi-
ase (D3).

There is an association between the rise of T4 and TBG [2,44].
BG is the only protein of the three transport proteins which
ncreases during pregnancy [2]. Its concentration is 2 or 3 times
igher in pregnant women than among non-pregnant women  [2].
he excess of TBG leads to an increase in the amount of circulating
4 [44] and to a decrease of T4 and T3 reserves in the thyroid gland
f the mother [48]. The decrease in free hormone concentration
eads to a rise of TSH concentration and TSH stimulates the thyroid
land in order to produce TH [2,48].

hCG may  have a TSH-like effect because of the homologies
etween hCG and TSH molecules and their receptors [44,50,51].
uring pregnancy, a high hCG concentration is associated with

 decrease in serum TSH, which indicates an inverse relation-
hip between these hormones [52,53,49,54].  Moreover, the hCG
ncrease is associated with an elevation of TG. hCG may  stim-
late the production of TH by enhancing the production of TG
53]. TG is the protein matrix where TH are synthesized [44]. TG
ncreases at the beginning of the first trimester and also dur-
ng late gestation especially near term [55–59].  The thyrotropic
ction of hCG guarantees a maternal transfer to the foetus of TH
n amounts necessary for foetal development, particularly during
he stage of cerebral organogenesis which depends exclusively on
H supply from the mother [60]. This thyrotropic activity was docu-
ented in human pathologic conditions (hyperemesis gravidarum

r trophoblastic tumours) and experimentally in rats [51,52].  In
ontrast, in non-pregnant women hCG administration had no effect
Please cite this article in press as: Trumpff C, et al. Mild iodine deficien
psychomotor development of children: A review. J Trace Elem Med Biol (2

n hypothalamic–pituitary–thyroid axis [61].
Another factor explaining the increased production of TH during

regnancy, to a lesser extent, is the foetal–placental activity of type
 iodothyronine deiodinase (D3). D3 is a selenoenzyme inactivator
 PRESS
edicine and Biology xxx (2013) xxx– xxx 3

of TH, it turns T4 into reverse T3 (rT3) and T3 into diiodothyronine
(T2) [62]. During pregnancy, the placenta D3 activity is important.
In consequence, the maternal thyroid needs more supply of iodine
in order to maintain a normal level of TH [44,63].

Elevated renal clearance of iodine

In addition to the increased production of TH, iodine losses
in pregnancy are higher because of the increase in renal iodine
clearance caused by the increase of glomerular filtration rate due
to hyperoestrogenism [64–66].  Renal clearance of iodine starts to
increase during the first week of gestation and persists until term
[67–69].

Transfer of maternal iodine and TH to the foetus

The increased iodine requirement during pregnancy can also
be explained by the transplacental transfer of TH from the mother
to the foetus [2,70–72]. Thyroid development of the foetus starts
at 10–12 weeks of gestation [73,74] and from the 18–20th week
T4 is secreted by the foetal thyroid gland [2].  During this period,
trans-placental transfer of iodine takes place from the mother to
the foetal thyroid gland. Iodine transfer allows the foetal thyroid
gland to produce its own TH [75–77].

Maternal TH supply and foetal brain development

For a long time, researchers assumed there is no transfer of
maternal TH to the foetus. But more recently such a transfer has
been demonstrated. First, maternal T4 is present in the coelomic
fluid of the exocoelomic cavity of the foetus at the second month of
gestation [78]. This maternal T4 is able to reach the embryo passing
by the yolk sac, which is inside of exoceolomic cavity and connected
with the digestive tract and circulatory system of the foetus [78].
Second, in foetus born without thyroid gland, T4 was detected in
cord serum [79]. A study investigated TH in foetal blood by cordo-
centesis of normal foetus at 14 weeks of gestation or between 17th
and 37th week of gestation. The conclusion of this study was that
before the foetal hypothalamic–pituitary–thyroid system becomes
operative, maternal T4 transfer is crucial for the foetus [80]. Finally,
another study showed that one third of the amount of fT4 in extra-
embryonic fluid is from maternal origin [71]. Transfer of maternal
T4 varies during gestation [78,81] and during some period of ges-
tation, a relationship between maternal and foetal level of T4 can
be observed [82,83].

The foetal thyroid grows between 12 and 39 weeks of gesta-
tion. The most marked increase in the maternal thyroid size takes
place during the second trimester when the foetal thyroid becomes
functionally active [84].

At 10 weeks of gestation, nuclear T3 receptors can be identified
in the foetal brain, showing a tenfold increase at week 16 [85,86].
TH used by the foetus is mainly T3. The supply of T3 is derived
from foetal activity of type 2 and 3 iodothyronine deiodinase (D2
and D3) which takes place in order to transform maternal T4 in T3
[87]. This activity is modulated in case of iodine deficiency [88]. A
level of maternal T4 within the normal range is needed to avoid
T3 deficiency in the foetus. Indeed, early treatment of new-borns
with congenital hypothyroidism born from mothers with sufficient
T4 concentration showed good neurologic outcome results [89]. In
contrast, normal values of maternal T3 associated with insufficient
T4 showed no protective effect against foetal brain impairment
[89]. An adequate maternal T4 supply is thus needed for the foetus
cy in pregnancy in Europe and its consequences for cognitive and
013), http://dx.doi.org/10.1016/j.jtemb.2013.01.002

in order to transform T4 into active T3 [71].
The maternal T4 transfer to the foetus is particularly important

during early gestation because before 12–14 weeks of gestation
the foetus is not able to produce its own T3 and T4 [48], while

dx.doi.org/10.1016/j.jtemb.2013.01.002
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H hormones are essential for a normal brain development of
he foetus [90]. Indeed, TH are involved in several important pro-
esses of brain development [91] through genomic [92–96] and
on-genomic actions in glial cells and neurons [90]. TH plays a
ole in neural migration [97], neural differentiation [98], myelin-
sation [95,99–103], synaptogenesis [104] and neurotransmission
105–110]. TH are involved principally in the development of neu-
al processes in the cerebral cortex, cochlea and basal ganglia [98].
hose areas are always affected in condition of endemic cretinism
111]. TH deficiency in the foetus may  lead to a reduction of the
umber and distribution of dendritic spines in the auditory cor-
ex [112]. A comparable effect was found in the pyramidal cells of
he visual cortex [113,114].  Besides, in neocortex of therapeutically
borted foetuses from an iodine-deficient area, abnormal cytoar-
hitecture and heterotopic neurons were found. These alterations
re similar to those found in rats exposed to maternal hypothyroxi-
aemia in early pregnancy [115–118]. This could indicate that brain

oetal impairment could appear in iodine-sufficient areas. Insuffi-
ient supply of TH could have a long-term effect on the brain [119].
ndeed, in T4 treated adult rats a decrease in whole brain glucose
se was observed after neonatal thyroidectomy [119].

aternal hypothyroxinaemia and cognitive and
sychomotor development during childhood

Several studies in Europe showed that isolated hypothyroxi-
aemia during pregnancy is associated with impaired cognitive
evelopment among children. These studies are summarized in
able 1.

A Dutch prospective cohort study showed that infants (n = 220)
f women with hypothyroxinaemia at 12 weeks of gestation had
ignificantly lower scores at the motor scale of Bayley Scales
f Infant Development (BSID) at 10 months in comparison with
nfants of euthyroid women. No differences were seen when
ypothyroxinaemia occurred at 32 weeks of gestation [17].

Another Dutch prospective cohort study showed that older
nfants (tested at 1 and 2 years; n = 125) of hypothyroxemic women
t 12 weeks of gestation had delayed cognitive and motor devel-
pment, as assessed by the BSID. In comparison with controls, they
cored 10 points less on average on the mental scale and 8 points
ess on average on the motor scale at 2 years [18].

A Russian prospective cohort study showed that maternal
ypothyroxinaemia at 5–9 weeks of gestation was associated with
elayed cognitive performance of the offspring at 6 months, 9
onths and 12 months [120].
A third Dutch prospective cohort study showed that neonates

aged 3 weeks) born from pregnant women with documented
ypothyroxinaemia at 12 weeks of gestation had lower scores at
he Neonatal Behavioural Assessment scale (NBAS) than control
eonates, whereas hypothyroxinaemia occurring later in gestation
ad no effects on the NBAS score [19].

Another Dutch prospective cohort study evaluated the associa-
ion between mild or severe hypothyroxinaemia during pregnancy
nd verbal and non-verbal development of children (aged 18, or
0 months). Mild hypothyroxinaemia was related to expressive

anguage delay at ages of 18 and 30 months. Severe hypothyroxi-
aemia was shown to be a risk factor for expressive language delay
t 18 and 30 months and across age [121].

A Portuguese prospective cohort study evaluated the develop-
ent of 86 children, assessed by the BSID, at 12, 18 and 24 months

nd found that children born from mothers which had low fT4
Please cite this article in press as: Trumpff C, et al. Mild iodine deficien
psychomotor development of children: A review. J Trace Elem Med Biol (2

oncentration in the first trimester of pregnancy had lower motor
cores at BSID than controls at 18 and 24 months [122].

A Spanish study evaluated 147 pregnant women and their
hild aged between 3 and 5 years. Hypothyroxinaemia in pregnant
 PRESS
edicine and Biology xxx (2013) xxx– xxx

women at 37 weeks of gestation was related to significant lower
performance of children on the general cognitive score, on the
perceptual-manipulative score and the memory score evaluated
with McCarthy Scale for Children Abilities (MSCA) [123].

Hypothyroxinaemia was defined in all of these studies as
the 10th lowest percentile of value of fT4 of the study sample
of pregnant women. These studies suggest that hypothyroxi-
naemia during pregnancy may  affect cognitive development when
appearing before or at 12 weeks of pregnancy. Moderate cogni-
tive impairments have been observed in children from the age
of 3 weeks up to 5 years. However, the low level of thyroid hor-
mones observed in these studies cannot be directly attributed to
iodine deficiency during pregnancy. Nevertheless, it must be noted
that iodine deficiency is considered as the most common cause of
hypothyroxinaemia [124]. The large Controlled Thyroid Screening
Study recently failed to demonstrate improved neurocognitive out-
come in 3-year-old children of mothers who were randomized to
treatment of mild hypothyroxinaemia in pregnancy in comparison
with children of untreated controls [125]. However, it is important
to note that in this study treatment only started after 12 weeks of
gestation.

Neonatal hyperthyrotropinaemia and cognitive and
psychomotor development during childhood

Several studies in Europe evaluated the association between
neonatal TSH level and the intellectual and psychomotor devel-
opment of children. These studies are summarized in Table 2.

In Italy a case–control study assessed cognitive development
with Wechsler scale of 9 children aged between 6 and 9 years with
transient congenital hypothyroidism (TCH) or hyperthyrotrophi-
naemia (TNH) at birth and of 9 control children. Global and
performance scores were significantly lower in the TCH/TNF than
in control group [31].

A retrospective cohort study in Spain (n = 178) showed that chil-
dren aged 3 years old with elevated TSH level at birth had lower
scores at MSCA than those with normal TSH level, with significant
differences in perceptual performance skills, memory development
and general cognitive index [32].

Another Spanish retrospective cohort study evaluated the asso-
ciation between TSH level at birth and MSCA score among 178
children from a general population. They found that elevated TSH in
cord blood was  related to significant lower performance for general
cognitive score and quantitative score of MSCA [33].

An Italian retrospective cohort study found that in a group of 102
preterm infants, a neonatal TSH value above 4.3 mU/L was related
to a suboptimal neuromotor outcome at 18 months [34].

In contrast, one Italian prospective cohort study found no asso-
ciation between persistent subclinical hypothyroidism in children
aged 4 up to 18 years (n = 36) and cognitive function [126].

The findings of all these studies suggest that abnormalities in
thyroid function at birth, even when transient, might adversely
affect intellectual or psychomotor development in early childhood.
However, it is hard to claim that the observed impairments in cog-
nitive functioning are a direct consequence of MID  during gestation.
An elevated TSH level at birth can be caused by several factors
[35–41,127–131] and some of them affect both TSH levels and IQ in
childhood [33,131–162]. Those factors are summarized in Table 3.

Maternal MID  during pregnancy, iodine supplementation
during pregnancy and cognitive and psychomotor
cy in pregnancy in Europe and its consequences for cognitive and
013), http://dx.doi.org/10.1016/j.jtemb.2013.01.002

development during childhood

Few studies in Europe have investigated the effect of iodine
status and the effect of iodine supplementation of mildly

dx.doi.org/10.1016/j.jtemb.2013.01.002
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Table  1
Relationship between maternal hypothyroxinaemia and cognitive and psychomotor development during childhood: results from European prospective cohort studies.

Country Subjects Outcomes
measured

Tools used Main results References

The Netherlands Pregnant women (12
and 32 weeks of
gestation) and their
child tested (at 10
months of age), n = 220.

Cognitive and
psychomotor
performance of
infants

BSID Children of mothers with low fT4 levels at
12 weeks’ gestation had significantly lower
scores on the Bayley PDI compared to CC:

Pop et al. [17]

-fT4 below 9.8 pmol/L (t test: mean
difference: 14.1 (95% CI: 5.9–22.3) (n = 11
vs 209)
-fT4 below 10.4 pmol/L (t test: mean
difference: 7.4 (95% CI: 1.1–13.9) (n = 22 vs
198)
At 32 weeks of gestation, no significant
differences were found with CC.
In the group of pregnant women with ft4
below 10.4 pmol/L, the lower the level of
fT4, the lower was  the PDI performance
(n = 22, R: 0.46, p = 0.03).

The  Netherlands Pregnant women
(hypothyroxinaemia
fT4 < 10.4 pmol/L n = 63
vs CC n = 62) and their
child at 1 and 2 years.

Intellectual and
psychomotor
development of
children

BSID Children of women with
hypothyroxinaemia and TSH within the
reference range (0.15–2.0 mU/L) at 12
weeks’ gestation had:

Pop et al., [18]

-At 1 years: A MDI  which was 10 points
lower (p = 0.003) and a PID which was 8
points lower (p = 0.02) than the CC.
-At 2 years: A mental score which was 8
points lower (p = 0.02), and a motor score
which was 10 points lower (p = 0.005) than
CC.
Decrease in maternal fT4 at 24 and 32
weeks’ gestation did not affect
performance of children.

Russia Pregnant women (first
trimester:
fT4 < 10.95 ± 0.68 pmol/L
n = 13 vs CC fT4 n = 11,
third trimester:
fT4 < 10.78 ± 1.31 pmol/L
n = 17 vs CC fT4 n = 18)
and their child at 6, 9
and 12 months.

Cognitive
performance of
progeny

Gnome method An association was found between level of
fT4 in the first trimester and the children’s
CMD at 6 months (R = 0.684, p = 0.020), 9
months (R = 0.629, p = 0.038), and 12
months (R = 0.708, p = 0.014). No
association was found in the third
trimester.

Kasatkina et al.
[120]

The  Netherlands Pregnant women (12
weeks of gestation)
with low fT4
(mean = 11.44 pmol/L,
n  = 108) or CC fT4
(mean = 17.0 pmol/L,
n = 96) and their 3
weeks-old neonate.

Behavioural
performance of
progeny

NBAS CC neonates had better score at orientation
cluster of NBAS than children born from
mothers with low fT4 (p = 0.042)

Kooistra et al. [19]

N  = 108 (low fT4: below
the 10th percentile of
the sample/mean:
11.44 pmol/L vs
17 pmol/L)
n = 96 (CC)

The Netherlands Pregnant women
(fT4 < 11.76 pmol/L vs
CC fT4) and their child
(n = 3659) at 18 months
(n = 3411) and 30
months (n = 2819)

Verbal (expressive
vocabulary) and
non-verbal
performance of
children

At 18 months:
MCDI

Mild hypothyroxinaemia
(fT4 < 11.76 pmol/L) was related to
expressive language delay across age of 18
and 30 months (OR = 1.44; 95%
CI = 1.09–1.91; p = 0.010)

Henrichs et al.
[121]

At  30 months:
LDS and PARCA

Severe hypothyroxinaemia
(fT4 < 10.96 pmol/L) is a risk factor for
expressive language delay at 18 months
(OR = 1.77; 95% CI = 1.10–2.84; p = 0.018),
30  months (OR = 1.78; 95% CI = 1.07–2.94;
p  = 0.024) and across age (OR = 1.80; 95%
CI = 1.24–2.61; p = 0.002) and is a risk factor
of non verbal cognitive delay at 30 months
(OR = 2.03; 95% CI = 1.22–3.39; p = 0.007)

dx.doi.org/10.1016/j.jtemb.2013.01.002
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Table 1 (Continued)

Country Subjects Outcomes
measured

Tools used Main results References

Portugal Pregnant women and
their child tested at 12,
18 and 24 months
n  = 86

Cognitive and
psychomotor
outcomes of
children

BSID At 18 months and 24 months, children
born from mothers with low fT4 (below
9 pg/mL) had significantly lower score at
PDI than CC (p < 0.05).

Costeira et al. [122]

Children of mothers with fT4 levels below
the 25th percentile (below 10 pg/ml) had a
twofold higher risk of developmental
delay.

Spain Pregnant women and
their child tested
between 3 and 5 years
of age
n = 147

Cognitive and
psychomotor
outcomes of
children

MSCA Hypothyroxinaemia (fT4 below 9.5 pmol/L)
at 37 weeks of pregnancy was related to
lower performance of children on the GCI
score (p < 0.01), on the
perceptual-manipulative score (p < 0.001)
and memory score (p < 0.05).

Suárez-Rodríguez
et al. [123]

BSID: Bayley Scales of Infant Development; CC: control children; CMD: coefficient of mental development; GCI: general cognitive index; LDS: Language Development Survey;
MCDI:  MacArthur Communicative Development Inventory; MDI: Mental Developmental Index; MSCA: McCarthy Scale for Children Abilities; NBAS: Neonatal Behavioural
Assessment Scale; PARCA: Parent Report of Children’s Abilities; PDI: Psychomotor Developmental Index; RR: relative risk; WISC-III: Wechsler Intelligent Scale for Children
–  third edition.

Table 2
Neonatal hyperthyrotropinaemia and cognitive and psychomotor development during childhood.

Country Study design Subjects Tools used Main results References

Italy Case–control study Children (6–9 years) with
TCH (elevated TSH and low
T4 at birth and return to
normal value 1–3 months
after birth) or TNH
(elevated TSH at birth and
return to normal value 1–3
months after birth) (n = 9)
and euthyroid children
(n = 9)

WISC-R Performance IQ and total IQ were
significantly lower in TCH/TNH group
than in CC.
QIP: 89.2 ± 12.5 and 75 ± 8.5 (p < 0.01)
QIT: 90.9 ± 14.2 and 78.3 ± 11.1
(p  < 0.05)

Calaciura et al. [31]

Spain Retrospective
cohort  study

Children of 40 months
(n = 61): TNH (mean TSH:
3.90 ± 2.12 mU/L, TSH max
value: 10 mU/L, 21.4% with
TSH >5 mU/L) vs euthyroid
children

MSCA Score of TNH was significantly lower
(p  < 0.005) than score of CC for:
perceptual performance skills (5.5),
memory development (6.5) and GCI
(9.8)

Riano et al. [32]

Spain  Retrospective
cohort study

Boys of 4 years (n = 178)
with cord blood TSH range
0.24–17 mU/L

MSCA Elevated TSH at birth predicted lower
performance at general cognitive score
(−3.52; p = 0.04) and lower
performance at executive function
score (−3.15; p = 0.05).

Freire et al. [33]

Lower scores were found for children
with neonatal TSH level >4.19 mU/L in
comparison with children with
neonatal TSH level <2.05 mU/L for
general cognitive score (−5.42;
p = 0.05) and quantitative score
(OR = 4.92; p = 0.02).

Italy  Retrospective
cohort study

Preterm children (born
between 26-32 week,
n = 102) of 18 months

Griffiths Scales of
Mental development

A strong correlation was found
between elevated TSH values
(>4.3 mU/L) and suboptimal motor
score (OR = 14.6; (95% CI: 2.49–86.2)

Belcari et al. [34]

Italy  Prospective cohort
study

Children of 4–18 years
with TSH level between
4.2 mU/L and 10 mU/L
(n  = 30) and euthyroid
children (n = 36)

Age appropriate IQ
scale:
4–6 years: WPPSI
6–16 years: WISC-III
Over 16 years: WAIS-R

Verbal score (99.1 ± 2.2), performance
score (100.4 ± 1.9), and full-scale IQ
(99.7 ± 1.9) were within the normal
range and was not significantly
different from scores of CC.

Cerbone et al. [126]

BSID: Bayley Scales of Infant Development; E: euthyroid; FTII: Fagan Test of Infant Intelligence (measure of recognition memory and speed processing: variable: percentage
o dren A
W gent S
I

i
p
m

b

f  novelty preference); GCI: general cognitive index. MSCA: McCarthy Scale for Chil
AIS-R: Wechsler Intelligent Scale for Children revised; WISC-III: Wechsler Intelli

ntelligence.

odine deficient women during pregnancy on the cognitive and
Please cite this article in press as: Trumpff C, et al. Mild iodine deficien
psychomotor development of children: A review. J Trace Elem Med Biol (2

sychomotor development of the offspring. These studies are sum-
arized in Table 4.
In an Italian cohort study, IQ score of children aged

etween 8 and 10 years from a MID  region was significantly
bilities; TCH: transient congenital hypothyroidism; TNH: hyperthyrotropinaemia;
cale for Children – third edition; WPPSI: Wechsler Preschool and Primary Scale of

lower compared to those from a marginally sufficient area
cy in pregnancy in Europe and its consequences for cognitive and
013), http://dx.doi.org/10.1016/j.jtemb.2013.01.002

[163].
A Spanish cohort study showed that preschool children (aged

3 years) of pregnant women with urinary iodine excretion (UIE)
lower than 200 �g/L at 12 weeks of gestation, had a significantly
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Table  3
Factors explaining the increase associated or not with neurodeveloppement impairement.

Association of elevation of TSH and impaired neurodeveloppement Elevation of TSH

In utero exposure to:
Iodine excess [132–135] TSH-receptor blocking antibodies from mothers with autoimmune thyroid disease [39–41]
Iodine  containing drugs [136–139] Antithyroid drugs (PTU, methimazole) [127,128]
Contrast agents [140]
Organochlorides [33,141–143]
Lithium [143–145]
During neonatal period:
Exposure to iodine-containing antiseptics [146–148] Exposition to cold [129]
Perinatal anoxia [131,149,150] Surgical hypothermia [130]
Multiple birth [151–153] Delivery by forceps extraction [131]
Preterm birth [154–160]
Low weight at birth [159,154,161,162]
TSH testing:

Timing of blood sampling [36–38]
TSH assay used [35]

PTU: propylthiouracil.

Table 4
Effect of MID  and iodine supplementation during pregnancy on intellectual, cognitive and psychomotor functioning during childhood: results from European prospective
cohort studies.

Country Subjects Tools used Main results References

Italy Pregnant women from MID  vs
marginally sufficient areas and their
child (8–10 years), n = 16

WISC-III IQ score of child from MID  region was  significantly
lower (p < 0.05) than IQ score of child from
marginally sufficient area.

Vermiglio et al.
[163]

Spain  Pregnant women and their child tested
at 3 years.
N = 61

MSCA Significantly better score (p < 0.005) in perceptual
performance skills (5.5 points), memory
development (6.8) and GCI (9.8) when UIE
>200 �g/L during pregnancy

Riano et al. [32]

Spain Pregnant women who did/did not
receive potassium iodine (300 �g/d)
supplementation from the first
trimester until the end of pregnancy
and their child (3–18 months), n = 133

BSID Children born from mothers who received iodine
supplementation from the first trimester of
pregnancy had higher score (p = 0.02) at PDI than
children from mothers who did not receive
supplementation

Velasco et al. [164]

Spain  Mild hypothyroxinaemic pregnant
women  (fT4 < 0.82 ng/dL) who did/did
not receive potassium iodine
(200 �g/d) supplementation from the
first pregnancy visit (4–6 weeks or
12–14 weeks) until the end of lactation
and their child (18 months), n = 34

Brunet–Lezine scale No significant difference was observed between
children born from mildly hypothyroxinaemic
mothers and children born from mothers without
hypothyroxinaemia

Berbel et al. [165]

Spain Pregnant women (from 13 weeks of
pregnancy) and their children
(between 11 and 16 months of age),
n = 691

BSID Maternal UIE, consumption of iodized salt and
foods with high iodine content was not associated
with infant neurodevelopment

Murcia et al. [166]

Iodine supplement intake during pregnancy of
≥150 �g/day was  associated with a decrease of 5.5
points at PDI (only for girls) (p = 0.001) and with a
4-fold increase in the odds of a PDI < 85 for girls
(95% CI: 1.4–11.4).
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SID: Bayley Scales of Infant Development; MID: mild iodine deficiency; MSCA: M
echsler Intelligence Scale for Children – third edition.

ower score at MSCA than children of pregnant women with a
igher UIE [32].

In a Spanish cohort study, significantly higher motor scores
f the BSID testing were found in young and older infants (aged
–18 months) whose mother received iodine supplementation
rom the first trimester until the end of pregnancy (potassium
odide – 300 �g per day) in comparison with infants of mothers

ho did not receive supplementation [164]. On the other hand, in
nother Spanish cohort study, the IQ score by the Brunet–Lezine
cale in older infants (aged 18 months) born from women  with iso-
ated hypothyroxinaemia diagnosed during the first 12–14 weeks
Please cite this article in press as: Trumpff C, et al. Mild iodine deficien
psychomotor development of children: A review. J Trace Elem Med Biol (2

f pregnancy and who received iodine supplementation (potas-
ium iodide – 200 �g per day) from their first pregnancy visit
nwards was not significantly different from the score of infants
hose hypothyroxinaemic mothers were not supplemented [165].
hy Scale for Children Abilities; PDI: Psychomotor Developmental Index; WISC-III:

Both studies were, however, not randomized, placebo-controlled
trials.

Interestingly, a Spanish study even showed a negative impact of
iodine supplementation on psychomotor development of girls at
one year of age. No effect on psychomotor development was found
for boys [166].

These studies suggest that mild iodine deficiency is associ-
ated with altered neurodevelopment of children from 3 to 10
years. A supplementation of potassium iodine of 200 �g per
day seems to have no effect on infant neurodevelopment [165],
whereas a supplementation of 300 �g per day, starting in the
cy in pregnancy in Europe and its consequences for cognitive and
013), http://dx.doi.org/10.1016/j.jtemb.2013.01.002

first trimester of pregnancy, may  have a positive effect on infant
psychomotor development [164]. Nevertheless, supplementation
via iodine-containing multivitamins during pregnancy showed to
affect psychomotor development of girls at one year of age [166].
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here is a need for additional studies to understand the potential
eneficial/harmful effect of iodine supplementation on child neu-
odevelopment.

onclusion

Even in iodine-sufficient European countries pregnant women
ay  be at risk of MID, because of the major physiological changes

n thyroid function occurring during pregnancy leading to impor-
ant losses of iodine and the need of much higher iodine supply.

ID  during pregnancy may, depending on the timing of occurrence
nd the severity of isolated maternal hypothyroxinaemia, affect the
eurocognitive development of the offspring to some extent. Weak
vidence is emerging that iodine supplementation of pregnant
omen from the first trimester until the end of pregnancy, even

n mildly iodine-deficient pregnant women, is beneficial for neu-
ocognitive development. Elevated neonatal TSH values, which
ay  reflect exposure to iodine deficiency in utero when congen-

tal hypothyroidism and other interfering conditions are excluded,
ight be prevented by adequate iodine supplementation during

regnancy. However it is difficult to establish a direct link between
aternal iodine deficiency and maternal hypothyroxinaemia as
ell as between maternal iodine deficiency and elevated neonatal

SH levels at birth.
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