
Chapter 17

Genomic Selection in Aquaculture Species
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Abstract

To date, genomic prediction has been conducted in about 20 aquaculture species, with a preference for
intra-family genomic selection (GS). For every trait under GS, the increase in accuracy obtained by genomic
estimated breeding values instead of classical pedigree-based estimation of breeding values is very important
in aquaculture species ranging from 15% to 89% for growth traits, and from 0% to 567% for disease
resistance. Although the implementation of GS in aquaculture is of little additional investment in breeding
programs already implementing sib testing on pedigree, the deployment of GS remains sparse, but could be
boosted by adaptation of cost-effective imputation from low-density panels. Moreover, GS could help to
anticipate the effect of climate change by improving sustainability-related traits such as production yield
(e.g., carcass or fillet yields), feed efficiency or disease resistance, and by improving resistance to environ-
mental variation (tolerance to temperature or salinity variation). This chapter synthesized the literature in
applications of GS in finfish, crustaceans and molluscs aquaculture in the present and future breeding
programs.
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1 General Introduction

Since the 1980s, seafood aquaculture production (i.e., excluding
seaweeds) has been multiplied by more than ten and its economic
value by more than 25 (Fig. 1). Aquaculture is today the worldwide
fastest-growing food production sector now exceeding fisheries
production. In 2019, aquaculture produced more than 85 million
tons of seafood for a total value of over 250 million dollars [1].

However, most of the producers use wild fish and shellfish or
stocks just entered in domestication for a few generations
[2]. Aquaculture breeding programs are recent and limited to
about 60 species [3] (out of ~1200 species reared in aquacul-
ture—[1]). Many started with simple mass selection for growth
and morphology. But, in the last decades, selective breeding
demonstrated its important role in boosting the domestication of
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aquaculture species and improving the performances and the sus-
tainability of seafood production [3, 4], to meet the growing global
demand for animal protein [2]. As a result, conventional genetic
improvement based on pedigree and phenotype has successfully
improved the productivity of many aquaculture species, with an
average genetic gain of 5–18% per generation for growth traits
[3, 5, 6]. Most genetic improvement programs have focused on
selecting for rapid growth, mainly due to its ease of measurements
and its supposed economic importance in production systems.
However, several studies underline the importance to select traits
linked to efficiency (feed efficiency, processing yields. . .) [7–11] or
resilience-related traits (disease resistance [12, 13], hypoxia, or
salinity tolerance. . .) to meet a sustainable development of aquacul-
ture. Those traits are often lowly heritable or difficult/expensive to
measure, such as disease resistance that requires challenge tests, or
carcass and flesh quality that requires slaughter of siblings of breed-
ing candidates, are not well studied [8, 14]. When genetic improve-
ment programs are underway, the breeding objective for
aquaculture species should be broadened by including new traits
to meet the growing demands of the sector as well as to deal with
environmental challenges (e.g., salinity, temperature, or disease
tolerance). Family-based breeding programs with sib selection
allowed to integrate those traits recorded on the collaterals of the
selection candidates. Such breeding programs were applied either,
keeping families separately (like for Atlantic salmon [4, 15], Atlan-
tic cod [4], or Pacific oyster [4, 16]), or mixing families with a

Fig. 1 Evolution of aquaculture seafood production per year in million tons and

economic value in million dollars
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posteriori DNA-based pedigree recovery [17] (like for European
sea bass (Dicentrarchus labrax) [18, 19], gilthead sea bream [4], or
rainbow trout [20–22]). However, quantitative genetic improve-
ment for traits measured on siblings of the selection candidates
captures only a half of their genetic variation and hence, reduces
genetic progress made for these traits in commercial aquatic animal
populations. Since 1990s, several attempts have been made to
assess possibilities for using molecular and genomic information
for the genetic improvement of such “difficult to measure” traits.
Nevertheless, application of marker-assisted selection (MAS) in
commercial selective breeding programs is limited across aquacul-
ture species, primarily due to limited marker availability, the small
markers effect, high genotyping cost, inconsistent associations
between markers and quantitative trait loci (QTL) across popula-
tions, the interaction of marker and QTL effects with genetic
background and environment, and the overestimation of QTL
effects [23]. In aquaculture species, only two applications of MAS
have been reported for: (1) Infectious Pancreatic Necrosis (IPN) in
Atlantic salmon [12], and (2) Lymphocystis resistance in Japanese
flounder [24]. However, these two cases are not representative of
what is more commonly found, since single QTLs are rarely found
to explain such a large proportion of the variation in quantitative
traits.

Since 2001, the paradigm in animal breeding has shifted
toward genomic selection (GS) which use a large number of mar-
kers across the entire genome to predict animal genetic merits
(breeding values) [25]. The GS technology has been quickly
adopted by the dairy industry [26] and also expanded to other
farmed animal industries, including aquaculture species
[27]. Despite the potential benefits of applying GS across the
sectors, research in aquatic animal species has begun recently in a
limited number of species. This is because not many in-depth
pedigreed populations of fish, crustaceans, or mollusc are currently
available. In addition, phenotypic records (needed to train the
genomic models) are often not maintained and there is a lack of
industry structure in terms of the sector’s size and organization.
Another constraint is that currently, single-nucleotide polymor-
phism (SNP) chips are not widely deployed for fish, crustacean,
and mollusc species [28, 29], and high-density SNP panels must be
developed de novo at substantial costs. The advent of high-
throughput genome sequencing technologies, especially
genotyping-by-sequencing (GBS) that can generate a large amount
of high-quality genetic markers at a reasonable cost, opens possibi-
lities for genomic selection in non-model aquaculture species [28].

This chapter reviews recent genomic prediction studies
reported for aquaculture species. Specificities of GS implementa-
tion in aquaculture are examined. The interest of GS for increasing
the accuracy of prediction of breeding values is discussed, with
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examples from the most important aquaculture species. Imputation
strategies applied to aquaculture as well as genotype-by-environ-
ment interactions are treated. The use of GS to reduce the time
generation and the association of GS with surrogate breeders is
briefly addressed. Finally, prospects of GS in aquaculture are
discussed.

2 Specificities of Genomic Selection in Aquaculture Species

As for livestock, in GS applied to aquaculture, a genomic prediction
equation is built from a reference population genotyped for
genome-wide markers and phenotyped for desirable traits. This
equation is used to predict the genomic estimated breeding values
(gEBV) of the selection candidates.

Classical aquaculture selective breeding programs have allowed
to improve some target traits in several finfish, crustacean, and
mollusc species [3]. However, numerous desirable traits (i.e., dis-
ease resistance, feed efficiency, processing yields, flesh quality) are
difficult to measure on candidates and require evaluation of sib-
lings. With a classical pedigree-based sib selection, the genetic gain
achieved is limited because the selection candidates of a given family
have the same genetic value, ignoring the intra-family genetic vari-
ation due to the Mendelian sampling. The main interest of GS in
aquaculture breeding programs is to improve the genetic response,
enhancing the accuracy of prediction by capturing this within-
family genetic variation component. A second interest is, for some
species, to reduce the generation interval [4, 29–32]. Furthermore,
GS can reduce the rate of inbreeding [33] and in some cases, also
results in increased selection intensity.

An important specificity of aquaculture species, contrary to
terrestrial animals, is the external fecundation and the extraordinary
fecundity allowing large-scale artificial crossing (e.g., 50 dams by
50 sires, for 1000 families). This permits the production of
thousands of animals (over 10,000) with very large sire half-sibs
families and dam half-sibs families, allowing to accurately estimate
the genetic parameters of traits (heritability, genetic correlations)
[34]. Furthermore, animals in the reference population and the
candidate population are closely related (from the same families).
This allows maintaining a high selection accuracy, even at low
marker density (i.e., 1000–5000 SNPs) [29]. However, the limita-
tion of the reference population size is often linked to the genotyp-
ing costs that can be prohibitive while thousands of animals per year
need to be genotyped (see the following section). Finally, such large
reference populations (over 2000 animals) allow multiple pheno-
typing strategies: growth survey in different production facilities
(e.g., sea cages, tanks, etc.) and different environmental areas (e.g.,
cold or warm); resistance to disease by controlled viral/bacterial/
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parasite challenges. An example of a GS breeding programme
adapted from Houston et al. [29] is given in Fig. 2. Interestingly,
the typical scheme of GS implementation in aquaculture programs
is very similar to family-mixed selective breeding schemes with, as
sole difference, the genotyping of dense genome-wide markers to
estimate the genomic relationship among siblings, instead of few
markers for pedigree reconstruction. Such breeding programs are
good candidates for GS implementation without important opera-
tional changes. The Fig. 3 depicts a typical breeding programme for
the European sea bass that have shifted to GS. In this example of
breeding programme monitored by SYSAAF (Syndicat des Sélec-
tionneurs Avicoles et Aquacoles Français), the breeding scheme has
been little impacted by the evolution toward GS. The main differ-
ence is the technology used for the genotyping of the animals. In
the previous traditional breeding programme (before 2017), the

Fig. 2 Aquaculture breeding programme applying genomic selection. Hundreds of selection candidates are

separated from collaterals (siblings of the selection candidates) kept for phenotypic evaluation. Collaterals are

evaluated for growth in productive environments, disease resistance, lethal processing traits, or other

desirable traits. All siblings are genotyped with genome-wide SNP markers. With the genomic relationship

matrix and the collected phenotypes, genomic estimated breeding values (gEBV) for the selection candidates

are computed using genomic selection models. Selected breeders with the highest genetic merits are used for

obtaining the next generation. In the phenotyping box, on the left the big and the small fish symbolize growth

survey and on the right of the box the red cross on the dead fish is for fish susceptible to a disease challenge
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animals were genotype for 14 short sequence repeats (SSR or
microsatellite) markers for parentage assignment and further Best
Linear Unbiased Prediction (BLUP) of the breeding values. In the
current GS breeding programme the same traits are targeted
including disease resistance (by controlled infectious challenges at
the FORTIOR Genetics platform [36]), processing yields and
growth in different environments. However, the genotyping is
done with a 57,000 SNP chips [35]. This genotypic data are then
used to compute the genomic relationship matrix [37] for the
genomic prediction equation (genomic-BLUP–GBLUP).

Although the high fecundity of aquaculture species is theoreti-
cally an advantage, the required genotyping of all siblings (reference
population and selection candidates) is a strong limitation for the
adoption GS in aquaculture. However, the first limitation of GS
deployment in aquaculture species is the lack of molecular resources
and the cost of genotyping methods. For some advanced aquacul-
ture species, low- to high-density SNP arrays were developed
[29]. However, SNP arrays are expensive genotyping platform
(over 40$ per animal), while a random aquatic animal often has a
low individual economic value. Nevertheless, for most aquaculture
species no or sparse genomic resources are available preventing the
possible design of such genomic tools. To implement GS in such
aquaculture species, it is crucial to develop cost-effective specific
genomic tools. SNP panels can be produced de novo by NGS-based
reduced-representation approaches, such as genotyping-by-
sequencing (GBS) or restriction site-associated DNA (RAD)
sequencing [23] or diversity array technology sequencing (DArT-
seq) [38]. Although GBS, RAD, or DarT technologies allow to
identify and genotype, thousands of SNPs in a target population,
the repeatability of genotyping is limited and the quality of geno-
typing is weaker than using a proven SNP array.

3 Accuracy of Genomic Prediction for Important Traits in Aquaculture Species

Table 1 summarizes the comparison between pedigree-based and
genomic-based accuracy of prediction in few important finfish
(13 species), crustaceans (2 species), and molluscs (3 species)
reviewed by Houston et al. [29] and completed by a recent litera-
ture review. Regarding growth-related traits, the average pedigree-
base accuracy across all species is 0.48 (0.45 for finfish) but with a
large range of variation depending on species and the population
studied. With genomic prediction of growth trait (0.59 on average)
the overall increase in accuracy is about 25% (26% for finfish) but
with large intraspecific variation (e.g., increase of accuracy ranging
from 15% to 89% in Nile tilapia). For instance, Tsai et al. [39]
compared the accuracy of genomic prediction (GBLUP) and
pedigree-BLUP (PBLUP) breeding values for growth traits
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(weight and length at one-year-old post-hatching) in a population
of 712 fish, from 61 families reared separately, generated from
Landcatch Natural Selection (LNS, Ormsary, UK) broodstock
fish, and genotyped for 111,908 informative SNPs. The accuracy
of EBVs for weight and length was respectively 0.58 and 0.56 for
PBLUP and 0.70 and 0.66 for GBLUP, depicting a relative increase
of accuracy of 21% and 18% [39]. Likewise, Griot et al. [35]
compared the accuracy of GBLUP and PBLUP for predicting
resistance to nodavirus in a European sea bass breeding programme
managed by SYSAAF: reference population of 800 animals, pheno-
typed by a controlled infectious challenge at FORTIOR Genetics
platform [36], and genotyped for DlabCHIP SNP array (44,772
SNPs) [35] at the GENTYANE platform (INRAE, Clermont-
Ferrand, France). The accuracy of EBVs was of 0.54 for PBLUP
and 0.64 for GBLUP, representing an improvement of 23%
[35]. At the whole aquaculture species level, the accuracy of EBVs
for diseases related traits was on average, 0.56 for genomic

Fig. 3 Evolution of typical French European sea bass breeding programs from pedigree-based sib selection

(gray boxes and arrows) to genomic selection (blue boxes and arrows). Some siblings of the selection

candidates are challenged for diseases resistance (e.g., nodavirus, vibriosis, etc.), some are surveyed for

growth and processing yield phenotyping in the breeding programs environment and in the typical Greek

customers’ environments. Mass selection for growth and morphology control is applied at a selection intensity

of 2%. In the pedigree-based selection scheme, the siblings measured and the remaining selection candidates

are tagged and genotyped for 14 short sequence repeats (SSR or microsatellite) markers while for genomic

selection the genotyping is done by the DLabCHIP 57K SNPs array [35]. In the pedigree-based breeding

programme, the genotyping is used to reconstruct the pedigree, further estimation of the breeding values

(EBVs) using Best Linear Unbiased Prediction (BLUP) method. In the genomic selection, the dense genotyping

is used to build the genomic similarity matrix used to estimate the genomic-EBVs by genomic-BLUP methods
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prediction and, 0.42 for pedigree-based prediction (Table 1).
However, we notice very large variations, ranging from 0% to
567%, depending on species, disease, and measurement methods.
Note that, the gains in prediction accuracy are independent of the
genotyping platforms (SNP arrays, GBS, RAD, or whole-genome
sequencing) involved.

Of course, accuracies of prediction depend on population
structure, the density of genotyping, and the size of the reference
population. For example, Griot et al. [13] analyzed the impact of
marker density (from 1000 to 44,000 SNPs) and the size of the
reference population (from 50 to 800 animals) on the accuracy of
genomic prediction. They compare the genomic prediction of two
commercial populations of European sea bass for resistance to viral
nervous necrosis and vibriosis, and one commercial population of
Gilthead sea bream (Sparus aurata) for resistance to pasteurellosis.
The effect of the reference population size was important and did
not reach a plateau even with 800 individuals. In contrast, from
6000 SNPs on, the genomic accuracy reached at least 90% of the
accuracy obtained with the maximum density of markers.

4 Imputation as a Key for Cost-Effective GS in Aquaculture

Imputation aims usually to correct for genotyping errors and to
complete missing values in genotypes. However, regarding the
objective of adoption of GS for minor aquaculture species, imputa-
tion brings a novel opportunity for cheap GS development. Indeed
cost-effective genotyping of low to very-low-density SNP panels
are now possible using targeted GBS techniques, such as
Genotyping-in-thousands by sequencing (GT-seq) [75], or
specific-locus amplified fragment sequencing (SLAF-seq)
[76]. Under this strategy, only the parents and the selected candi-
dates are genotyped for the high-density SNP panel. Individuals of
the reference population are genotyped for a small subset of the
SNPs. Imputation is therefore used to infer the full density geno-
type of the siblings using the pedigree and the dense genotyping of
the parents [77]. As mentioned above (Subheading 2), the very
high fecundity, the ease of gamete handling, and the possible
artificial mating allow producing thousands of siblings in factorial
designs (several dams crossed with several males), resulting in large
half-sibs families and a gradient of closely related siblings [29]. Due
to this close relationship between animals in aquaculture reference
populations, the imputation strategy of low-density SNP panel
often allows reaching the accuracy of genomic selection with
dense genotypes [77–79]. Moreover, this strategy can be adapted
with little investment to existing breeding programs using a few
hundred SNPs for a posteriori pedigree assignment by molecular
markers [17].
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5 GS to Tackle Genotype-by-Environment Interactions in Aquaculture

The environment of an aquaculture breeding programme, often in
a biosecured onshore facility, differs from the environment of the
operational production sites. Moreover, the breeding companies
are often selling fertilized eggs, shellfish seeds, or fingerlings to
grower industries located in various environments. For example,
in European sea bass aquaculture, it is usual that French hatcheries
implementing selective breeding sell fingerlings to be reared in
on-land facilities, or sea cages all around the Mediterranean Sea
(see Fig. 3). Those areas differ from the selection site for numerous
parameters such as the water temperature (mean, range and stabil-
ity) and quality (including salinity, oxygen saturation, acidity, etc.),
the photoperiod (natural, artificial, etc.). The evolution of pheno-
types across those environments results in reaction norms (Fig. 4).
Taking into account genotype-by-environment (GxE) interactions
is of major importance for aquaculture selective breeding
programme. When slopes of the reaction norms are equivalent
between genotypes, no interaction is concluded (Fig. 4a, b).
When slopes are different, it may result in the re-ranking of the
best animals (Fig. 4c) limiting the realized response to selection
[14]. Such re-ranking is highly significant for growth traits and
disease resistance [80], that are of major economic importance.
Such interaction can be estimated as the genetic correlation
between traits measured in different environments. For instance,
the genetic correlation between growth at different temperatures
was reported to be between 0.18 and 0.54 on Rainbow trout [80]
and 0.49 for European sea bass [81]. The current context of global
changes is characterized by rising seasonal temperatures, more
importantly, higher frequency, intensity, and duration of summer
heatwaves, and hypoxia (reduced availability of dissolved oxygen).
These changes cause severe problems in many aquatic ecosystems
[82, 83]. Warming and hypoxia being major physiological chal-
lenges for aquatic species [84, 85]. Therefore, it is crucial to
accompany the adaptation of reared aquaculture populations to
cope with these ongoing changes. Genomic selection may acceler-
ate the breeding of more resilient animals able to cope with various
and unstable environments [80, 86]. The genetic variation in the
slope of a linear reaction norm model of different genotypes can be
considered as genetic variation for environmental sensitivity
[80]. In GS using reaction norm (RN) model, this slope becomes
the trait under selection [80] to reduce the environmental sensibil-
ity. Mulder [86] compared the use of such RN models, integrating
the genetic variation of the slope across environments with geno-
mic selection, with multivariate models. The RN models with
genomic selection allowed decreasing environmental sensibility
1.09–319 times better than the classical multivariate models not
accounting for the slope stability.
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6 Genomic Selection and Surrogate Breeders to Reduce Generation Time

GS contributes to increased genetic gain, and consequently, to
greater productivity of an individual carrying the desired qualities.
The genetic gain equation, ΔG is as follows:

ΔG ¼

i r σA
L

with σA as the genetic variance; r as the accuracy of selection, i as
the selection intensity, and L as the generation time/interval. For
boosting the genetic gain, an important way is the reduction of
generation time (L) by selecting candidates early in life based on
their genomic breeding value [28]. However, in aquaculture spe-
cies, generation interval is typically short (2–5 years), and most trait
measurements can be performed before sexual maturity. Thus,
conventional reduction of generation time by estimating breeding
value before the potential phenotyping has little interest and has
not been applied to aquaculture breeding programs to our knowl-
edge. Nevertheless, the reduction of generation time is expected by
association with germ stem cells transplantation in short-

Fig. 4 Genotype-by-Environment (GxE) reaction norms. The solid green line and

the dash blue line represent the phenotypic variation of two genotypes across an

environmental gradient. (a) and (b) depict no GxE interaction. (c) indicates GxE

interaction by the re-ranking of the genotype performances across the

environmental gradient
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generation interval species [87, 88]. The principle of the method is
to use a surrogate closely related species, having a shorter genera-
tion time, to produce the progeny of the desired species. In prac-
tice, primordial germ cells are collected from the selected breeders
of the target species and transplanted into sterile animals of the
surrogate species which thus produce gametes of the selected bree-
ders [87]. This technic was successfully implemented in Rainbow
trout using as surrogate sterile species the Masu salmon (Oncor-
hynchus masou) [88]. In the future, this method is expected to
further accelerate GS for important finfish aquaculture species,
with generation intervals usually between 2 to 5 years. Moreover,
this will allow initiating GS in species with very long generation
intervals such as Sturgeons (20 years) or Bluefin tuna (12 years).

7 Prospect of Genomic Selection in Aquaculture

7.1 Is Genomic

Selection a

Replacement of

Conventional

Pedigree- and

Phenotype-Based

Selection?

Although GS provides opportunities to enhance genetic gain of
breeding programs, the initial expectation, discontinued phenotyp-
ing for all traits and in particular for those that are expensive or
difficult to measure was not entirely realized. While some breeding
programs have completely shifted to genomic selection (e.g., the
European sea bass breeding programme of Ecloserie Marine de
Graveline, France; the gilthead sea bream programme of Ferme
Marine de Douhet, France), to date, GS is not a replacement for
the conventional selection method based on phenotypic and pedi-
gree information, but can, in conjunction with the pedigree- and
phenotype-based selection approach, further improve genetic gain
for disease and flesh quality traits. Furthermore, the advantages of
GS need to be validated by future empirical and economic appraisal
studies for alternative breeding schemes. Even when genomic selec-
tion programs are underway, re-genotyping/resequencing and
continuing collection of phenotype data are also needed to main-
tain a high level of accuracy in breeding value estimation as well as
broadening the breeding objectives when new traits are included.

7.2 Is a Genome

Assembly Needed to

Apply Genomic

Selection?

Aquaculture species with available genome assemblies were
reviewed by Abdelrahman et al. [89]. As suggested in Subheading
4, the genomic resources of the exploited species in aquaculture are
sparse. In principle, genomic selection can be implemented without
a reference genome, GBS providing de novo DNA markers for
genomic selection. However, genome assemblies are useful tools.
First, mapping the SNP panel used for GS onto a genome allows
ensuring the even distribution of the SNPs. This is in particular
important when a sparse genotyping is used, like in the study of
Besson et al. [8] using only 3000 SNPs for the 700 Mb genome of
the European sea bass. Thus, genome assembly is also important to
produce SNP chips that are useful for making repeatable the
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genotyping across the breeding programs and the generations.
Second, with additional resequencing of many individuals at low
coverage (called “1xWGS”), an imputation-like approach can be
used to build consensus haplotypes and finally impute full sequence
information based on the reference haplotypes [90]. The 1xWGS
approach was able to detect signals in genome-wide association
studies (GWAS) missed by standard imputation of SNP arrays
[91]. Furthermore, well-annotated genome assemblies can allow
the preselection of variants with potential causal effects to improve
the accuracy of genomic prediction [92].

7.3 Can Genomic

Selection be Combined

with Other “omics”

Approaches?

Integration of multi-omics approaches to improve genomic predic-
tion accuracy has not been reported for aquaculture species. How-
ever, functional genomics of alternate genotypes, by means of
transcriptomic approaches, have proven to improve genome-wide
prediction of genes of aquaculture species [93] and to identify
causative genetic variants to be used in marker-assisted selection
[94]. Incorporation of such functional genomic information into
genomic prediction, including the potential use of intermediate
phenotypes such as gene expression or DNA methylation, may
further improve prediction accuracy. The breeding environment
may imprint epigenetic marks (cytosine methylation, histone mod-
ifications, chromatin accessibility state) due to breeding environ-
mental conditions, as reported by Luyer et al. in Pacific salmon in
hatchery facilities [95]. This may result in a variable phenotypic
response of a single genotype, affecting the realized genetic
response [29]. Epigenetic programming may also be an opportu-
nity to drive the selected population toward better performances
[96–98]. As an example, the early nutritional programming of
Rainbow trouts induced better growth under plant-based sustain-
able diets [99]. An alternate example is the use of epigenetic marks
to predict the sex of European sea bass individuals [100], consti-
tuting an important issue for European sea bass aquaculture
[18]. Finally, microbiota evaluation constitutes a promising field
of research to improve the genetic gain in breeding programs, by
improving the performances and health of farmed animals
[101, 102]. All these, “omics” evaluations may be used as alternate
or intermediate phenotypes for improvement of GS.

7.4 Can Genomic

Selection be Combined

with Genome Editing?

Genomic selection can be combined with genome editing to
increase the rate of genetic gain through two main mechanisms:
(1) deletions (knockouts) to turn off or deactivate genes and
(2) insertions (knock-ins) and replacement to introduce new alleles.
Jenko et al. theoretically compared a standard genomic selection
(GS) scheme with the promotion of alleles by genome editing
(PAGE) and reported that PAGE produced four times greater
genetic gain than GS [103]. Recently Johnsson et al. [104] com-
pared two scenarios: selection against carriers (SAC) of deleterious
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alleles and removal of those alleles by genome editing (RAGE) on
the fitness of the animals. The authors reported large advantages of
RAGE to SAC especially when multiple edits were made, regardless
of the inheritance mode of the variants (codominant or recessive).
In aquaculture species, genome editing has been reported for a
range of traits (e.g., disease resistance) in grass carp or salmonids,
see a review by Gratacap et al. [105]. The future potential of the
practical combination of genome editing and GS could concern the
Rainbow trout and the resistance to infectious pancreatic necrosis
(IPN). In the close salmonid species, Atlantic salmon a major QTL
explaining up 80–100% of the genetic variation in resistance to IPN
was discovered [106]. An interspecific transfer from Atlantic
salmon to Rainbow trout by genome editing, associated with the
ongoing GS programs [50] could boost the genetic response to
selection. However, the benefits of combined GS and gene editing
need further studies in practical breeding programs for aquaculture
species.

7.5 Will Remote

High-Throughput

Phenotyping be the

Next Revolution for

Breeding Programs?

Inaccurate measurement of a trait in a breeding programme leads to
a reduced genetic variance, a lower heritability estimate, and thus to
smaller genetic progress. In any aquaculture breeding programme,
the handling of aquatic animals is particularly sensitive, including
the netting (for finfish and crustaceans), anesthesia (for finfish), and
the upkeep of animals outside water during few minutes, this even
for simple weight and length recording. Moreover, sibs-testing
strategies to improve lethal traits (disease resistance or processing
yields) or to estimate GxE interaction, require a large number of
animals [28]. Therefore, to benefit from the potential of GS in
aquaculture, developing cost-effective high-throughput phenotyp-
ing methods in aquaculture is a major critical point. Regarding
disease resistance, phenotyping platforms have been raised such as
FORTIOR Genetics [36], ensuring ethical procedures, accurate
and repeatable phenotyping. In addition, developing in situ surveys
of growth, behavior, and health of the animals by associating optical
sensors (surface camera, stereo video, sonar, and acoustic teleme-
try) and machine vision system (MVS) [107] provides a good
opportunity for precision farming [108] and accurate assessment
of phenotypes for cheap high-throughput phenotyping [28]. Such
approaches, also able to assess fillet quality [109], allows sea lice
monitoring in Atlantic salmon farms [108]. Another recent inno-
vation that could improve fish phenotyping is the development of
sensors. As an example, Martos-Sitcha et al. [110] developed a
device attachable to fish operculum allowing to monitor physical
activity and respiratory frequency. In a near future, the remote
monitoring of the animals and the rearing converted into intelligi-
ble data is expected to develop and to improve aquatic species
survey for breeding programs.
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This phenomic evaluation, defined as “the high-dimensional
phenotypic data recorded on an organism-wide scale,” may be the
next paradigm [111]. Indeed, the phenomic selection was theo-
rized and tested on wheat and poplar by Rincent et al. [112] using
near-infrared spectroscopy (NIRS) variation as a cheap alternative
to genomic markers genotype to compute relationship matrices for
predicting complex traits.

8 Conclusion

Contrasting to most agricultural species, the domestication of
aquaculture species is recent. Although GS in aquaculture concerns
only a dozen of species, the emergence of cost-effective genotyping
methods foresees a rapid deployment of GS in multiple aquaculture
species. Presently, GS exploits mainly the intra-family genetic varia-
tion by estimating Mendelian sampling to improve growth traits,
disease resistance traits, and quality traits. Facing the global need in
protein supply as well as the ongoing climate change, it is expected
that GS will allow to improve fish to be more robust and sober. GS
gives the possibility to better control the genotype-by-environment
interactions that, when not accounted for, limit the genetic gain.
Moreover, it is anticipated that GS could help to select animals with
less sensitivity to environmental variation, and therefore more resil-
ient. Associating recent biotechnological innovations (such as
genome editing or stem cell drafting into receiver species) to GS
in the breeding programs will constitute valuable ways to improve
the sustainability of aquaculture production.
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