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Negative selection on complex traits limits
phenotype prediction accuracy between populations

Arun Durvasula1 and Kirk E. Lohmueller1,2,3,*

Summary

Phenotype prediction is a key goal for medical genetics. Unfortunately, most genome-wide association studies are done in European pop-

ulations, which reduces the accuracy of predictions via polygenic scores in non-European populations. Here, we use population genetic

models to show that human demographic history and negative selection on complex traits can result in population-specific genetic ar-

chitectures. For traits where alleles with the largest effect on the trait are under the strongest negative selection, approximately half of the

heritability can be accounted for by variants in Europe that are absent from Africa, leading to poor performance in phenotype prediction

across these populations. Further, under such a model, individuals in the tails of the genetic risk distribution may not be identified via

polygenic scores generated in another population. We empirically test these predictions by building a model to stratify heritability be-

tween European-specific and shared variants and applied it to 37 traits and diseases in the UK Biobank. Across these phenotypes, �30%

of the heritability comes from European-specific variants. We conclude that genetic association studies need to include more diverse

populations to enable the utility of phenotype prediction in all populations.

Introduction

The past decade of genome wide association studies

(GWASs) has uncovered a plethora of trait-associated loci

scattered across the genome.1–4 Geneticists have devoted

many resources to turning these associations into pheno-

type prediction models that aggregate variants across the

genome into a polygenic score. Such scores can be used

to guide healthcare decisions for a variety of traits and dis-

eases,5 and recent work has suggested these polygenic

scores may be ready for clinical use.6,7 While individuals

with high polygenic risk for diseases have been found via

these scores, for example in atherosclerosis8 and breast

cancer,9 challenges remain in applying these polygenic

scores uniformly across populations. Recent analyses

have suggested that because many of the largest studies

are concentrated on European populations, polygenic

scores may be biased and less informative in non-European

populations.10–15 There are several reasons why polygenic

scores may not transfer well across populations. One possi-

bility is that alleles have different effect sizes in different

populations, owing to differences in interactions with

the environment.16 Another possibility is that differences

in linkage disequilibrium (LD) between variants across

populations means that causal variants may be tagged

differently in non-European populations, leading to differ-

ences in effect sizes.11,17 Finally, the original polygenic

score performance in Europeans may be inflated because

of population stratification.18,19

Here, we propose that an additional reason for the lack of

transferability of polygenic scores is that each population

has its own genetic architecture, owing to the evolutionary

processes that give rise to traits. Under this reasoning, a

population’s demographic history influences the number

of causal variants and their frequencies, resulting in some

phenotypic variance coming from causal variants that

are population specific. For example, work on the genetic

architecture of skin color in African populations has un-

covered distinct loci affecting the trait in each population,

suggesting that populations with independent demo-

graphic histories can end up with different genetic archi-

tectures and causal variants for the same traits.20 Indeed,

modeling work suggests that genetic architecture is an

outcome of the evolutionary process rather than a trait-

specific property.21

Recent exponential growth in human populations has

created an excess of new variants that tend to be low fre-

quency and population specific (private variation22–24).

Population genetic models of genetic architecture that

include negative selection suggest that, in aggregate, low-

frequency variants could contribute substantially to

traits.25–27 Application of these models to large-scale ge-

netic datasets has discovered that many traits are under

apparent negative selection, ranging from anthropometric

traits to molecular phenotypes.28–33 Depending on the

interplay between allele frequency and effect size, these

variants could make up a large portion of the heritability

for many traits, as demonstrated by a recent GWAS on

height and BMI using whole-genome sequencing data.34,

35 Because narrow-sense heritability is the proportion of

variance explained by additive genetic factors, it is directly

related to the accuracy of phenotypic prediction as the

variance explained by the polygenic score.36 If these pri-

vate variants contribute substantially to heritability, it
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follows that the variants will not be useful for phenotype

prediction between populations because they are not pre-

sent in other populations. The proportion of narrow-sense

heritability that private variants explain places an upper

bound on the accuracy of polygenic scores between

populations.

In this study, we use simulations under demographic sce-

narios of recent explosive population growth with varying

amounts of negative selection as well as analyses of empir-

ical data to test the role of private variants in complex traits.

Material and methods

Population genetic modeling and simulations

We performed forward simulations by using SLiM v.3.37 We simu-

lated a demographic history for a European and an African popula-

tion according to the demographic model fit by Gravel et al.38

(including migration). The African population size expanded to

14,474 individuals and the European population began at a size

of 1,032 individuals after splitting from Africa and grew exponen-

tially at a rate of 0.38% per generation for 920 generations. We

simulated a mutational target size of 5 Mb with a mutation

rate of 1.2 3 10�8 per base pair (bp) and a recombination rate of

1 3 10�8 per bp. To simulate selection across the entire region,

we drew selection coefficients for newmutations from a gamma dis-

tribution with parameters fit by Kim et al.39 (mean¼�0.01026, a¼

0.186).We sampled 10,000haploid genomes fromeach population.

To simulate a quantitative trait, we followed themodel described by

Eyre-Walker25 and the framework set by Lohmueller21 where a

SNP’s effect on a trait, b, is given by

b¼ dstð1þ εÞC;

where d˛f�1; 1g with equal probability, ε � Nð0; 0:5Þ, and s is the

selection coefficient of a variant segregating in the population at

the endof the simulation.C is a scaling factor for effect sizes and con-

trols the heritability for a given mutational target size. In these sim-

ulations, C was set to obtain a heritability of �0.4 (see Table S1).

Finally, t reflects the relationship between a SNP’s effect on fitness

and the trait. t ¼ 0 indicates no relationship between fitness and

the trait, while t > 0 indicates that mutations that are more evolu-

tionarily deleterious are those that have larger effects on the trait. In

thismodel,when t > 0, the trait itselfmay be under direct selection

or it may be correlated with a trait under selection. We call variants

private and shared on the basis of their allele frequency in a sample

of 10,000 chromosomes from both populations (see below).

To compare our simulation results to the empirical data from the

Exome Aggregation Consortium (ExAC), which includes African

American individuals, we computed the expected allele frequency

for SNP i in simulated admixed African American individuals

ðpAA; iÞ as

pAA;i ¼aipEUR;i þ ð1�aiÞpAFR;i

where pEUR; i and pAFR; i denote the allele frequencies in Europe and

Africa, respectively. For each SNP, we drew an admixture propor-

tion ai � Betað2; 8Þ in order to incorporate variance in the admix-

ture proportion along the genome. The parameters of the beta

distribution were chosen to match the observed variation in

admixture proportion in African American individuals40 and

result in a mean proportion of African ancestry of 80%.

Defining the proportion of heritability from private

variants: h2private
Webegin by describing amodel in which an individual, i; in a pop-

ulation, f; has a phenotype, yi; that is a linear combination of ge-

notypes (xi, xij˛fxi1;.;xiMg), effect sizes b; bj˛ b1;.;bMf g
� �

, and

a normally distributed term describing the effect of the environ-

ment, ei � Nð0; VEÞ:

yi ¼xT
i bþ ei:

The narrow-sense heritability, h2, of the phenotype, y; in the

population is given by

h2 ¼
VA

VarðyÞ

where the variance of the phenotype can be decomposed into ad-

ditive, dominance, interacting, and environmental terms:

VarðyÞ ¼ VA þ VD þ VI þ VE. The additive genetic variance is

VA ¼ 2
PM
j¼1

pjð1�pjÞb
2
j when there are M variants, where pj is the

allele frequency for variant j and bj is the effect size of variant j.

Wewishtoexamine theproportionofheritability thatcomes from

a particular class of variants. Consider a sister population, j; that

diverged from thepopulation described above ðfÞ. Variants in popu-

lation f can be partitioned into those that appear only in f (private

variants) or those that appear in both populations (shared variants).

The total number of variants is the sumof the number of shared and

number of private variants, M ¼ Mp þMs. We wish to partition the

heritability into these twoclasses,h2
p andh

2
s ,whichmakeupthe total

heritability: h2 ¼ h2
p þ h2

s . Define h2
private to be the proportion of the

heritability accounted for by the private variants.

The quantity of interest, then, is

h2
private ¼

h2
p

h2
¼

VA;p

VA

:

The additive genetic variance from private variants is

VA;p ¼ 2
PM
j¼1

pjð1 � pjÞb
2
j zj, where zj is an indicator function that is 1

when the variant j is private (with probability PðujÞ) to the popula-

tion and 0 otherwise. We describe how zj is estimated below when

analyzing empirical data (see model to identify private variants).

Polygenic score calculation

We compute three sets of polygenic scores on the simulated individ-

uals: (1) using all variants, (2) using variants private to the simulated

population of interest, and (3) using variants shared between the

simulated European and African populations. For each haploid

genome,wesumtheeffect sizes,b; for eachclassofvariants, resulting

in three scores for each genome. We standardize the scores by sub-

tracting the mean of the true polygenic score (class 1) and dividing

by the standard deviation of the true polygenic score (class 1). We

compute the Pearson correlation between classes 1 and 2 as well as

classes 1 and 3 and report the r2 value as a percentage.

Model to identify private variants

When analyzing the empirical UK Biobank data, it is challenging

to assess whether a particular variant is private or shared. If a

variant is seen only in one population, it is possible that it is truly

private to that population, or instead, it is shared but at too low a

frequency to have been discovered with the number of individuals
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samples from the other population. To address this issue, we built

a probabilistic model to evaluate the probability that a variant is

private to a population given the number of copies of the allele

in that population (that is, the allele frequency).

We begin with the intuition that rare alleles tend to be private

and common alleles tend to be shared between populations,

even in the presence of migration. Migration can be thought of

as sampling alleles from one population and placing them in the

other population. Under this model, rare alleles will tend to stay

within a population and not transfer between populations. This

suggests that allele frequency is informative in determining

whether an allele is private or not.

Wakeley and Hey41 use coalescent theory to determine the fre-

quency spectrum of private variants. An application of Bayes’

rule allows us to calculate the following probability:

Pðu

����iÞ¼
PðijuÞPðuÞ

PðiÞ
;

where i˛f1;.;ng is the number of copies of the allele in the sam-

ple ðnÞ and u˛f0;1g is 1 if the allele is private and 0 if not.

Pðiju¼ 1Þ is the site frequency spectrum of private variants, and

PðiÞ is given by the full site frequency spectrum. For example, in

a constant-sized equilibrium population, PðiÞ ¼ ðq =iÞ=ð
Pn
i

q =iÞ.

PðuÞ is the probability of a variant’s being private to a population.

Wakeley and Hey41 provide expressions to obtain these quanti-

ties in a constant-sized equilibrium population without natural se-

lection. However, here we are concerned with populations that are

not in equilibrium and with variants under negative selection, so

we obtain these probabilities via simulation under a particular de-

mographic model and distribution of fitness effects.

In the results presented here, we use the demographic model

fromGravel et al.38 that relates European and African populations.

We use a distribution of fitness effects from Kim et al.,39 assuming

that mutations are additive (that is, h ¼ 0.5) and that selection co-

efficients, s, are drawn from a gamma distribution with mean ¼

�0.01026 and shape¼ 0.186. Using these parameters, we simulate

data for 10,000 European chromosomes by using SLiM37 and

compute (1) the proportional site frequency spectrum for private

variants ðPðijuÞÞ, (2) the proportional site frequency spectrum for

all variants ðPðiÞÞ, and (3) the proportion of private variants

ðPðuÞÞ. We defined private variants in the simulation as those

that appear in the simulated European population but not the

simulated African population.

Next, we store these quantities in a lookup table and use them to

compute the probability that a variant is private given the number

of copies of the allele in the empirical data. In the UK

Biobank dataset, alleles are present at frequency 1 3 10�6 and

higher. However, in simulations, the lowest allele frequency is

1 3 10�4. For alleles below this frequency, we set the probability

equal to the probability for alleles at a frequency of 1 in 10,000.

Testing our probabilistic model to infer private variants

We evaluated the ability of our model to distinguish between pri-

vate and shared variants by simulating new data and performing

binary classification, calling a variant private if the PðujiÞ exceeded

some threshold, t. We varied this threshold and computed the

number of true positive (private variants that are truly private),

false positives (private variants that are truly shared), false nega-

tives (shared variants that are truly private), and true negatives

(shared variants that are truly shared). We summarized this by us-

ing receiver operator characteristic and precision recall curves

(Figure S1; Tables S2 and S3).

We also validated our model by using data from ExAC.42 For

each variant in ExAC, we used ourmodel to compute the probabil-

ity that the variant is private to the non-Finnish European popu-

lation on the basis of the allele frequency in that population.

Then, we checked whether variants were observed in a sample of

10,406 African and African American samples.

Partitioning heritability

We applied our Bayesian model to predict which variants are pri-

vate to GWAS summary statistics from 37 traits in the UK Biobank

released by the Neale lab (see web resources). We computed the ad-

ditive genetic variance for variants with a high posterior probabil-

ity of being private to the British cohort and divided that by the

total amount of additive genetic variance explained by SNPs to

obtain our estimate of h2private (Note S1). We also performed the

inference by using a randomized algorithm to correct for the ef-

fects of LD and misestimated effect sizes as well as population

stratification (Notes S2, S3, S4, and S5; Figures S3, S4, S5, S6, S7,

S8, and S9). Finally, we also independently replicated the results

on BMI by using data from the GIANT consortium43 (Note S1).

Importantly, this partitioning of the heritability into shared and

private components does not make use of the t-model25 that re-

lates a mutation’s effect on fitness to its effect on the trait.

Results

The distribution of European-specific variants in data

and models

We begin by precisely defining private variants in the data-

sets and models that we consider. Studies of genomic vari-

ation point to the out-of-Africa bottleneck and subsequent

explosive growth in population size as a key driver of the

distribution of genomic variation.We focus on a simplified

model of this history (Figure 1A; Gravel et al.38). We define

private variants as those that are found in Europe but are

absent from Africa and shared variants as those that are

found in both populations. Note that by our definition,

private variants may be shared between other out-of-Africa

populations (e.g., between Europe and East Asia) because

of shared recent history.

One potential concern with this definition of whether a

variant is private to Europe is that it may depend on the

sample size of the African population used in the compar-

ison. We examined this possibility by computing the prob-

ability of not observing an allele present in a sample of

African individuals across a range of minor allele fre-

quencies (MAFs) with a sample size of 10,000 chromo-

somes. This sample size is approximately similar to the

sample size of the ExAC dataset (Lek et al.42). We find

that variants with a frequency as low as 10�3 in the African

population have a nearly 100% probability of being

sampled in ExAC (Figure S2). Thus, we would correctly

classify variants segregating at low frequency in Africa as

being shared.

Next, we examined the number of private variants in Eu-

ropean populations compared to African populations in
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two datasets: the 1000 Genomes (1KG) data and the ExAC

data. In order to meaningfully compare the two datasets,

we focused on variants contained in the exome. For both

datasets, there are many more private variants in the

European population compared to shared variants

(Figure 1B). This is expected undermodels of humanhistory

wheremany shared alleles were lost during the out-of-Africa

bottleneck and newmutations accumulated independently

in the out-of-Africa population. Because of the small popu-

lation size, some of these mutations could drift to a higher

frequency than they would have in a larger population.

We next conducted simulations under this model of hu-

man evolution, where an ancestral population splits into a

group that underwent a genetic bottleneck out of Africa

(representing a European population) and a group that

stayed within Africa without a bottleneck (representing

an African population; Figure 1A 38), coupled with varying

levels of negative selection on traits (including no negative

selection). We include negative selection by modifying the

relationship between amutation’s effect on the trait and its

effect on reproductive fitness by using the model put forth

by Eyre-Walker in 201025 (see material and methods). This

model includes a parameter, t, which ties the selection co-

efficient of a mutation to its effect on a trait.25 Larger

values of t imply that more evolutionarily deleterious mu-

tations have larger effects on the trait. Importantly, our

model includes exponential growth in the out-of-Africa

population, which creates an excess of private variants,

as well as low levels of migration between the European

and African populations, which can turn some private var-

iants into shared variants. We compared our simulations to

data from ExAC and found that our simulations predicted

more higher-frequency private alleles than are observed in

the data (Figure 1C). However, the ExAC data contains ad-

mixed African American individuals. Admixture can intro-

duce variants that are private to Europe into the sample

labeled ‘‘African.’’ We simulated this admixture process

(see material and methods) and found that the resulting

simulation matches the data closely, suggesting that our

model is a reasonable approximation of human demog-

raphy and selection (Figure 1C).

Population genetic models predict population-specific

variants account for heritability and impact polygenic

scores

We reasoned that since there are many private causal vari-

ants in our simulations, they may account for a substantial

proportion of the heritability in aggregate. We examined

the contribution of private variants to heritability and

found that when traits are not tied to fitness ðt¼ 0Þ, pri-

vate variants account for �30% of the heritability

(Figure 2A). However, when the coupling between trait ef-

fects and fitness effects is moderate ðt¼ 0:25Þ or strong

ðt¼ 0:5Þ, private variants account for over half of the her-

itability, and there is a maximum of �79% under strong

coupling (Figures 2B and 2C). These results suggest that

many causal variants, which jointly explain much of the

heritability, tend to be population specific. This effect is a

consequence of how the trait relates to fitness as well as

the demographic history of the population.

The fact that many of the variants that affect the trait are

not shared across populations may limit the applicability

of polygenic scores derived from European populations

to other populations. This effect would be distinct from

Figure 1. Human population history generates population-specific variants
(A) Model for variants that are shared (common to Europe [EUR] and Africa [AFR]) and private (occurring only in EUR and absent from
AFR). Bottom, examples of private and shared variants from ExAC.42

(B) The number of non-synonymous variants that are private to European populations and absent from African populations (blue bars)
and the number of non-synonymous variants that are shared between the two populations in the 1KG exome dataset and the ExAC
dataset (orange bars).
(C) The proportion of non-synonymous alleles above a given frequency that are private to Europe and absent from Africa in the ExAC
dataset and in simulations based on human history. Note that because the ExAC dataset contains admixed African American individuals,
the proportion of private variants is reduced compared with the original simulation (black dots). Modeling this admixture (red dots)
shows a better fit to this dataset. Error bars denote standard deviation across simulation replicates.

4 The American Journal of Human Genetics 108, 1–12, April 1, 2021

Please cite this article in press as: Durvasula and Lohmueller, Negative selection on complex traits limits phenotype prediction accuracy
between populations, The American Journal of Human Genetics (2021), https://doi.org/10.1016/j.ajhg.2021.02.013



imperfect tagging of causal variants due to differences in

LD patterns between populations. To test for this effect

in simulated data, we calculated true polygenic scores for

individuals in the simulated European and African popula-

tions and asked how well polygenic scores derived from

only private variants and only shared variants correlated

with the true polygenic scores. Polygenic scores derived

from only shared variants represent the case where a poly-

genic score can be transferred from Europe to another pop-

ulation. If shared variant effect sizes correlate well between

populations, despite not contributing to amajority of addi-

tive genetic variance, polygenic scores may still be accurate

across populations.We note that these simulations include

identification of the true causal SNPs and, as such, are

much higher than polygenic score accuracies reported else-

where.13 These simulations represent the best-case sce-

nario for polygenic scores. We found that when traits are

independent of fitness, the shared polygenic score has a

91% correlation in Europe and 96% correlation in Africa

with the true polygenic score, suggesting that polygenic

scores can be applied between populations (Figure 3A).

However, we found that when trait effects are tied to

fitness effects, the correlation between shared polygenic

scores and the true polygenic scores decreases (Figures 3B

and 3C) and the correlation between private polygenic

scores and true polygenic scores increases (Figures 3D,

3E, and 3F). Note that in the analysis with private poly-

genic scores, each population uses variants private to

that population but not from the other population. That

is, the African private polygenic score uses variants private

to Africa. This suggests that the reduction in accuracy does

not depend on the population’s specific demography, as

the same pattern is present in European and African popu-

lations. For traits with strong coupling between trait effects

and fitness effects (t ¼ 0.5), the correlation between the

true polygenic scores and the polygenic scores derived

from shared variants drops to 62% in Europe and 57% in

Africa (Table S4). These findings suggest that polygenic

scores based solely on shared variants may be substantially

less accurate than polygenic scores using all variants and

may not transfer between populations well when the vari-

ants with the greatest effects on the trait are those under

the most negative selection.

While shared variants do not capture the full distribu-

tion of polygenic scores, we asked whether individuals in

the tail of the true polygenic score distribution remained

in the tail when examining shared variants only. When

there is no coupling between fitness and trait effects

(t ¼ 0), shared variants capture 35% of the tail correctly

in Europe and 28% of the tail correctly in Africa (Table

1). However, when there is moderate coupling (t ¼ 0.25),

this number drops to 11% in Europe and 7% in Africa.

When there is strong coupling, the polygenic score based

on shared variants identifies none of the individuals in

the tails of the distribution. If the trait under consideration

is a disease, this analysis suggests that a polygenic score

based on shared variation cannot identify individuals at

the highest risk for that disease. In contrast, when consid-

ering only private variants, the polygenic score correctly

identifies 44%–46% of individuals who are at the extremes

of the distribution. These results suggest that when using

scores derived from European populations, individuals

who are truly in the tails of the polygenic score distribution

will not be identified via shared variants alone, corre-

sponding to a high false-negative error rate. In addition,

the low recall for both of these polygenic scores suggests

many individuals that are in the tails of the distribution

will be missed.

While our simulations suggest private variants may be

an important component of the heritability and may limit

Figure 2. The effect of natural selection on the relationship between heritability and allele frequency
(A–C) Cumulative fraction of heritability explained by private and shared variants under (A) no relation between a mutation’s effect on
fitness and the trait ðt¼ 0Þ, (B) moderate coupling between amutation’s effect on fitness and the trait ðt¼ 0:25Þ, and (C) strong coupling
between a mutation’s effect on fitness and the traitðt¼ 0:5Þ. Note that the x axis is on a log scale. As t increases, a greater fraction of
heritability comes from variation that is found only within Europe.
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phenotype prediction across populations, their precise role

depends on the extent of negative selection acting on traits

(either directly or through pleiotropy), which remains an

open question.28–30,32,33 Thus, we next tested how much

of the heritability private variants account for in real

GWAS data in European populations, where GWAS data

is abundant.

A model for private variation

Webuilt a Bayesianmodel to classify variants segregating in

the UK Biobank as private or shared by using the allele fre-

quency conditional on a demographic model and distribu-

tion of fitness effects inferred for a European population

(seematerial andmethods). To validate ourmodel,we simu-

lated a new dataset under the same European demographic

model and recorded whether each allele was observed in

both populations. Then, we calculated the probability of

each allele’s being private to the European population. We

classified variants as private if the probability PðujiÞR t,

u˛f0;1g is 1 if the allele is private and 0 if not, i˛

f1;.;ng is the number of copies of the allele in the sample,

and t is some probability cutoff. For each cutoff, we calcu-

lated (1) the number of variants that we predict are private

and are truly private (true positives), (2) the number of var-

iants that we predict are private and are truly not private

(false positives), (3) the number of variants that we predict

are not private and are truly private (false negatives), and

(4) the number of variants that we predict are not private

and are truly not private (true negatives).

We summarize these numbers by using two curves: a pre-

cision-recall curve (Figure S1A) and a receiver operator char-

acteristic (ROC) curve (Figure S1B). We find that at a preci-

sion of 94%, we have a recall of 99% and that the area

under the ROC curve is 0.80, suggesting that our model is

able to distinguish between private and shared variants on

the basis of allele frequency alone (Table S3).We also tested

themodel on a simulated dataset including five timesmore

individuals than the 10,000 individuals used in the initial

simulation. Importantly, for this comparison, we used the

same lookup table, based on 10,000 individuals, as before.

This allows us to test how sample size affects our inferences.

We find that the precision-recall curve is largely the same,

but there is a decrease in the ROC curve (AUROC ¼ 0.70).

In addition, examining PðujiÞ versus the allele frequency

in the simulated independent dataset (Figure S1C), we

find that alleles higher than �10% frequency have a negli-

gible probability of being private. This is consistent with

the intuition that common alleles are unlikely to be

private.

We also examined several posterior probability thresh-

olds in detail (t˛f0:1; 0:23; 0:4g; Table S3). Across these

thresholds, we find that the false discovery rate (FDR)

from simulations is �5%, suggesting that the model is

relatively robust to the threshold used.

Figure 3. The relationship between polygenic scores and natural selection
(A–F) Polygenic score accuracy for shared variants only (top row) and private variants only (bottom row) in Europe and Africa on simu-
lated data with different degrees of negative selection. In the bottom row, each score uses private variants from within the population
being considered (e.g., for Africa, we use variants private to Africa) but not from the other population. The black line shows the 1:1 line.
(A and D) No relationship between a mutation’s effect on fitness and its effect on the trait ðt¼ 0Þ: (B and E) Moderate coupling between
fitness and trait effects ðt¼ 0:25Þ: ðC and FÞ Strong coupling ðt¼ 0:5Þ. As the strength of coupling increases, polygenic scores computed
from shared variation become less correlated with the true polygenic score. However, at the same time, polygenic scores computed from
private variation become more correlated with the true polygenic scores.
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Next, we empirically validated the performance of our

model to infer whether variants are private. Using data

from ExAC,42 we use our framework described above to

calculate the probability that each variant is private by

using the allele frequency in the non-Finnish Europeans

(NFE). In Figure S1D, we plot this probability for a random

subset of 10,000 variants. We see that variants above 10%

frequency have a very low probability of being private and

that variants below that frequency increase in probability

of being private as their frequency decreases.

In addition, we classified variants in ExAC as private to

‘‘EUR’’ by using the simulation-based FDR of 5%

ðPðujiÞ R0:23Þ and checked whether those variants were

present in the ‘‘AFR’’ subset of samples (Table S2). We see

that 83% of the variants we call private are not observed

in ‘‘AFR’’ in a sample of 10,406 chromosomes. This sug-

gests that our empirical-based FDR is 17% and is higher

than the simulation-based FDR. However, the ‘‘AFR’’

sample in ExAC is a mixture of African American and

African samples. Importantly, African American samples

are admixed between European and African popula-

tions.42 This has the effect of introducing European vari-

ants into the ‘‘AFR’’ samples, making variants we expect

to be private to ‘‘EUR’’ appear shared. Therefore, this

estimate of the accuracy is most likely an underestimate.

Nonetheless, these simulations and empirical evalua-

tions suggest that our model is able to distinguish between

private and shared variants on the basis of allele frequency

alone. Additionally, out of an abundance of caution, we

utilize two different empirically based FDRs of 17% in

downstream inferences as described below. Importantly,

our determination of whether a variant is private or shared

is expected to hold regardless of the sample size taken from

either population (Table S2).

Inference of heritability accounted for by private

variants: h2private
We used summary statistics for 37 different traits and dis-

eases from the UK Biobank relating to anthropometric

and blood-related traits as well as cancer-related and non-

cancer related diseases (see web resources) to infer the

proportion of the SNP-based heritability attributable to pri-

vate variants, h2private. Using these data and our probabilistic

method to determine whether a variant is private or not, we

find that the average h2private¼ 31%, and there is substantial

variation across traits (standard deviation: 11%; Figure 4).

Examining categories of diseases, we find that cancer-

related diseases have h2private ¼ 12%, while non-cancer-

related diseases have h2private ¼ 32%. Similarly, private vari-

ants account for �30% of the heritability in blood-related

and anthropometric traits. We observe substantial vari-

ability across different traits within a category. Two blood

pressure-related traits have h2private of nearly 50%, while

other blood-related traits have a lower proportion.

The effect of falsely identified private variants on our

inference of h2private
To ensure that our results from the UK Biobank data

described above were not driven by shared SNPs that we

mistakenly classified as private, we adjusted for an empiri-

cally based FDR. At the threshold used for classifying vari-

ants as being private ðPðujiÞ¼ 0:23Þ, validation in the

empirical data suggest the FDR is �17% (see above). In

other words, approximately 17% of SNPs that we identify

as private may actually be shared. Thus, we adjusted our es-

timates of h2private by randomly reclassifying 17% of the

private SNPs as shared and re-computed h2private (‘‘17%

FDR correction’’ in Figure 4). Despite the extremely conser-

vative nature of this correction (because the empirical FDR

is based on an admixed sample), we find that a sizeable

proportion of the heritability (about 22%) still comes

from private variants (Figure 4).

In addition to this conservative correction, we also per-

formed an even more stringent correction where we sorted

the SNPs we call private by their heritability and removed

17% of the SNPs that explain the most heritability. As ex-

pected, the amount of heritability from private variants

goes down, but for most traits, the heritability explained

by private variants is still greater than 10% (‘‘Max FDR

correction’’ in Figure 4). This suggests that our central

claim, that private variants contribute to heritability, re-

mains true even if our classification method is imperfect.

The effect of population stratification

Recent studies have highlighted the effects of stratification

on polygenic scores.18,19 We considered whether stratifica-

tion could have an effect on our analyses. To test this, we

repeated our analyses by using only those SNPs showing

stronger associations with the trait. Specifically, we em-

ployed p value cutoffs, using only SNPs with a p value

lower than the cutoff (Figure S3). Broadly, for quantitative

traits, we observe that as the p value threshold becomes

stricter, the proportion of the heritability attributable to

private variants decreases. This is due to the power to

detect associations for private variants. The power to detect

an association will be lower for private variants than

shared variants because private variants tend to have lower

allele frequencies. Therefore, as the p value cutoff

Table 1. The effect of natural selection on identifying high-risk
individuals

t

Shared
(Europe)

Private
(Europe)

Shared
(Africa)

Private
(Africa)

0 35% 22% 28% 11%

0.25 11% 20% 7% 18%

0.5 0% 46% 0% 44%

Percentage of individuals in the extreme 5% tail of the true polygenic score dis-
tribution that are recovered when using only private variants and shared vari-
ants in simulated European and African populations. Overall, the percentage of
individuals correctly classified is low, suggesting that there will be many false
negatives when using polygenic scores to identify individuals in the tails of
the risk distribution. Further, as the degree of coupling between fitness effects
and trait effects increases, shared variants correctly classify fewer individuals,
while private variants classify more individuals correctly.

The American Journal of Human Genetics 108, 1–12, April 1, 2021 7

Please cite this article in press as: Durvasula and Lohmueller, Negative selection on complex traits limits phenotype prediction accuracy
between populations, The American Journal of Human Genetics (2021), https://doi.org/10.1016/j.ajhg.2021.02.013



decreases, we expect a lower proportion of heritability to

come from private variants. We found that the total vari-

ance explained by SNPs for dichotomous traits was much

lower than for quantitative traits. This effect produced a

statistical artifact where the heritability from private vari-

ants tended to be very high for dichotomous traits

(Figure S4).

In addition to this analysis, we were also concerned

with the effect of differential population structure from

rare variants.35,44 Therefore, we checked the robustness

of our results to allele frequency filters. We computed

h2private for atrial fibrillation, BMI, standing height,

diastolic blood pressure, and type 2 diabetes with MAF

cutoffs from 10�5, 10�4, 10�3, and 10�2 (Figure 5). We

find that although h2private decreases, it still remains

substantial up to a cutoff of 10�2. Although this analysis

removes both real and spurious signals, it suggests that

private variants do indeed explain a non-negligible

proportion of heritability.

Across different p value thresholds, a non-negligible pro-

portion of heritability comes from private variants. How-

ever, this analysis does not alleviate all concerns about

population stratification, as at a large enough sample

size, an association due to stratification can be arbitrarily

strong. Similarly, stratification could still occur when using

variants at different MAF cutoffs. While these analyses pro-

vide evidence that our results are not primarily driven by

stratification, they cannot completely rule it out. Further

advances in controlling for stratification of rare variants

Figure 4. Estimates of the amount of
heritability from private variants
The expected reduction in accuracy when
transferring a polygenic score from Europe
to Africa (expressed as the percentage of
heritability explained by private variants)
across 37 traits and diseases in the UK
Biobank. We only include SNPs with an
MAF > 10�3. The mean reduction is
26.7% (SD across traits is 14.7%). ‘‘17%
FDR correction’’ refers to randomly setting
17% of the SNPs that we call private to
shared. ‘‘Max 17% FDR correction’’ refers
to setting the 17% of the SNPs that explain
the most heritability from private to
shared. Lines indicate standard errors ob-
tained via a 1 Mb block jackknife.

will be crucial to understand the full

contribution of private variants to

heritability.

The effect of unmodeled LD on our

inferences

Our inferences of h2private make the

assumption that the estimated effect

sizes for the GWAS SNPs were the

true effect sizes of the causal variants.

Further, we assumed that the variants

were all independent of each other. In truth, these assump-

tions are violated for a variety of reasons. First, because of

LD, SNPs may be correlated with one another. Second,

some of the non-zero effect sizes of GWAS SNPs may be

due to the fact that the GWAS SNP is tagging (in LD

with) an untyped causal variant and is itself not causal.

Third, even if the GWAS variants analyzed in our study

are the true causal variants, their effect sizes may be mises-

timated by the effects at nearby SNPs in LD with them.

Thus, given these challenges, we carefully considered the

effect that unmodeled LD may have on our inferences

(see Note S2).

First, we developed an estimator of the SNP-based herita-

bility that downsamples the number of SNPs to be inde-

pendent of each other. We checked the robustness of our

results to this effect by randomly selecting a single SNP

in a window and computing the proportion of heritability

from private variants by using these randomly selected

SNPs. We select only one SNP per window to avoid count-

ing SNPs located nearby each other that are in LD with

each other. We randomly selected SNPs to avoid biases

due to the fact that more sophisticated methods for fine-

mapping SNPs by using LD patterns may have different

performance for different allele frequencies. We find

similar results via our LD-pruned estimator compared

with the full data (Note S3; Figures S5, S6, and S7). We

also ensure that our estimates are sensible by estimating

the proportion of additive genetic variance from variants

we infer to be shared (Figure S8). If the inference procedure
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works correctly, this number should be 1� dh2
private . In

Figure S8, we see that this is indeed the case.

Second, based on first principles, our estimates of h2private
most likely underestimate the true proportion due to LD be-

tween tagging and causal variants (see Note S2). Because

shared variants tend to be more common, they will tend

to be in LD with more (and therefore tag more) variants.

Because of this effect, shared variants could have inflated

marginal effect sizes compared to private variants. This

would lead to overestimating the heritability from shared

variants compared to private variants, making our infer-

ences conservative. We tested for this effect in real data

by testing the correlation between marginal effect sizes

and recombination rate for variants we predict to be private

and variants we predict to be shared (Note S4). We found

that variants we predict to be private have lower correlation

than variants we predict to be shared, consistent with the

idea that shared variants tagmore variants than private var-

iants (we also note that this reasoning is the motivation for

LD score regression45). In addition, coalescent simulations

show that our estimator of h2private is indeed slightly down-

wardly biased (Note S5; Figure S9).

Discussion

In this work, we have shown that recent population

growth and negative selection create population-specific
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Figure 5. The effect of MAF cutoffs on
heritability from private variants
‘‘Filter’’ refers to a quality and allele fre-
quency filter that removes variants with a
frequency below 10�3, a Hardy Weinberg
equilibrium p value < 10�10, or SNP infor-
mation score < 0.8. We show results for
five commonly studied traits. For BMI, dia-
stolic blood pressure, and standing height,
the ‘‘filter yes’’ lines are behind the ‘‘filter
no’’ lines. This suggests that the variant fil-
ter has no effect on the estimated heritabil-
ity. Lines indicate standard errors obtained
via a 1 Mb block jackknife.

genetic architectures for phenotypes,

which has the direct effect of

reducing the accuracy of polygenic

scores when applied between popula-

tions. The reduction in accuracy will

depend on how differentiated popu-

lations are and accuracy decreases as

populations become more differenti-

ated. Another case to consider is

admixed populations where some

causal variants could be introduced

and thus become shared variants. In

these cases, we expect the utility of

polygenic scores to be higher, but

this will depend on how recent the

admixture was and how many causal

variants are transferred between populations, which can

vary between individuals.

In our simulation results, we found that when there was

no coupling between trait effects and fitness, approxi-

mately 30% of the heritability comes from private variants

and that this proportion increases as the coupling in-

creases. Although we expect this general pattern to hold,

the specific values will depend on the distribution of

fitness effect for causal alleles, the mutation target size,

and the demographic history of the populations under

study. We have used a distribution of fitness effects that

was fit to non-synonymous variants39 and note that the es-

timates of selection on causal alleles could be revised in

future studies. In addition, our model with admixture fits

the observed data better than a model without admixture

(Figure 1C), but we may still be underestimating the num-

ber of private alleles, which would cause our estimates to

be a lower bound. Nevertheless, our results suggest that a

non-negligible proportion of the heritability comes from

private alleles.

We find that phenotypes with a majority of heritability

explained by private variants are not likely to be predicted

well in non-European populations, even if effect sizes

are accurately inferred. Our analysis of the UK Biobank

data suggests that most traits examined here have at

least 20% of the heritability explained by private variants

(h2private > 20%), indicating that cross-population

polygenic scores are limited in accuracy and many
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population-specific causal variants remain to be discov-

ered. We note that our inferences on the empirical data

do not make use of the Eyre-Walker t model.25 As such,

our inferences from empirical data do not make any

assumptions about the relationship between a mutation’s

effect on fitness and the trait.

At first glance, our result that many traits have a popula-

tion-specific genetic component seems at odds with

recently reported results suggesting that the genetic corre-

lation between traits in European and East Asian popula-

tions is very high.46,47 However, we note that both of these

studies examined common variants (MAF > 5%), which

are more likely to be shared. Our study explicitly considers

a larger range of allele frequencies, which is more likely to

include population-specific variants.

Our results have several implications for users of poly-

genic scores. First, we show that the transferability of poly-

genic scores depends on the particular trait being examined.

For traits with larger values of h2private (such as diastolic and

systolic blood pressure), the transferability would be lower

because we find these traits derive more of their heritability

from variants that are more likely to be private (h2private:

z48% for both). In contrast, we find that traits with lower

values of h2private, such as white blood cell count, can be

more easily transferred because the heritability is spread

more evenly across the spectrum of MAFs (h2private: 28%).

Although we include standard errors estimated via a jack-

knife, this procedure may not account for all the uncer-

tainty. Therefore, specific differences across traits should

be interpreted cautiously. In addition, our inferences, like

those in Lam et al.46 and Liu et al.,47 focus on the SNP her-

itability rather than the total heritability of particular traits.

Several recent reviews and commentaries have pointed

out the potential for misuse of polygenic scores to justify

racism and white supremacy, especially when comparing

polygenic scores across populations.16,48–51 Importantly,

although our study indicates that population-specific vari-

ants play a role in complex traits, it is incorrect to conclude

that population-specific variants lead to differences in

traits between populations. Previous simulation studies

have suggested that the interplay between demography

and negative selection will not lead to large differences in

trait heritability between populations.21,27 Instead, these

evolutionary forces can change how the heritability is ac-

counted for. For example, as we show here, population

growth and negative selection can lead to heritability’s

being accounted for by lower-frequency variants that are

population specific instead of common variants shared

across populations. Further, non-genetic factors most

likely play an important role in differences in phenotype

between populations.52

We also highlight a crucial issue in identifying individ-

uals in the tails of the phenotype distribution. If polygenic

scores are to be used more commonly in the clinic, false-

negative rates must be more closely examined across pop-

ulations and phenotypes. Our work suggests that many

causal variants may not be shared between populations,

indicating that variants ascertained in European popula-

tions may not be informative in other populations. This

could occur because, on average, more European-specific

variants have been either directly included in GWASs or

imputedmore often than variants specific to other non-Eu-

ropean populations. To ensure equal predictive power of

polygenic scores across populations, whole-genome

sequencing-based association studies must be undertaken

in non-European populations. Such studies would allow

for unbiased discovery of private variants accounting for

much of the heritability, resulting in improved polygenic

prediction in non-European populations. Finally, large

imputation panels from the relevant population of interest

are necessary to include variation that is not present in

Europe.
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Figure S1: Private variant prediction model performance. Performance and external
validation of our model for inferring whether a variant is private or shared. a) precision-
recall and b) receiver operating characteristic curve. c) The probability that a variant is
private versus the allele frequency (log scale) in simulated test data. We see that for variants
above 10%, the probability they are private is very low. In panels a,b, and c, the grey lines
and points indicate results from a simulation with 50,000 haplotypes. d) The probability
that a variant is private versus the allele frequency (log scale) for 10,000 randomly sampled
variants from ExAC. Variants with a frequency below 1 × 10−3 automatically set to have
a probability equal to a variant at frequency 0.001 since these variants are outside the
frequency range of our simulations.
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Figure S2: Private variant misclassification probability. The probability of misclas-
sifying a shared variant as private to Europe as a function of the true allele frequency in
a sample of 10,000 African chromosomes. For variants more common than ≈ 1 × 103, the
probability is very low.
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Figure S3: Effect of p-value cutoffs. The fraction of heritability explained by private
variants for quantitative traits. For each trait, we calculated this fraction using a p-value
cutoff (indicated by color). They grey dots represent no filter.
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while it is much higher for quantitative phenotypes (orange and red)
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Figure S5: LD pruned estimator for the percentage of heritability from private
variants. We use 500 SNPs per window. Lines indicate 95% confidence intervals obtained
via a jackknife over the windows.



Breast cancer
Skin cancer
Leukaemia

Throat cancer
Tongue cancer

Oesophageal cancer
Stomach cancer

Small intestine cancer
Colorectal cancer

Colon cancer
Rectal cancer

Prostate cancer
Hypertension
Heart attack

Heart arrhythmia
Irritable bowel syndrome

Renal failure
Type 2 diabetes

Schizophrenia
Bipolar disorder

Gout
Atrial fibrillation

High Cholesterol
Sciatica

FEV1
FVC
BMI

Heel bone mineral density (BMD)
Standing height

Waist Circumference
White blood cell count

Red blood cell count
Haemoglobin concentration

Mean corpuscular volume
Mean corpuscular haemoglobin

Red blood cell width
Platelet count

Platelet distribution width
Lymphocyte count

Monocyte count
Neutrophill count

Systolic blood pressure
Diastolic blood pressure

% SNP heritability from private variants

0

2
0

4
0

6
0

8
0

1
0

0

Figure S6: LD pruned estimator for the percentage of heritability from private
variants. We use 5,000 SNPs per window. Lines indicate 95% confidence intervals obtained
via a jackknife over the windows.
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Figure S7: LD pruned estimator for the percentage of heritability from private
variants. We use 50,000 SNPs per window. Lines indicate 95% confidence intervals ob-
tained via a jackknife over the windows.
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Figure S8: Heritability from shared variants. LD pruned estimator for the percentage
of heritability from shared variants. We use 5,000 SNPs per window. Lines indicate 95%
confidence intervals obtained via a jackknife over the windows.
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Figure S9: Bias of the LD-pruned estimator based on coalescent simulations. a) We

plot the expected value of ĥ2
private versus the true value of h

2
private. Using 10,000 simulations,

we compute E[ĥ2
private] as well as h

2
private and plot the difference. The distribution represents

bootstrap re-sampled values across simulations. We see that the estimate of the proportion
of Va from private variants is underestimated by 6 − 8%. b) Estimated Va versus the true
Va from simulations for private variants. The red dashed line represents the 1:1 line. All
points fall below this line, again suggesting this inference is downwardly biased.



τ C h2

0 0.1 0.38
0.25 0.6 0.41
0.5 1.8 0.39

Table S1: Scaling constant and realized heritability for simulations. Values of C
used in simulations for varying values of τ and the average resulting heritability. Values of
C were chosen to obtain h2 ≈ 0.4.

AFR frequency cutoff 0 0.001 0.005 0.01 0.05

Predicted private, not observed in AFR 0.83 0.93 0.95 0.96 0.97
Predicted private, observed in AFR 0.15 0.06 0.04 0.03 0.01
Not predicted private, observed in AFR 0 0 0 0 0
Not predicted private, not observed in AFR 0.015 0.015 0.015 0.015 0.015

Table S2: Empirical validation of private allele model with allele frequency fil-
ters. We tested the ability of our model to correctly call alleles private in a sample of
66,740 chromosomes from Europe and 10,406 chromosomes from a mixture of African and
African-American samples from the Exome Aggregation Consotrium (ExAC) with a poste-
rior probability cutoff of 0.23. Because private European alleles can occur at a low frequency
in the African-American samples due to admixture, we use a frequency filter in the AFR
sample to remove these false shared variants.

Threshold Sample set FDR FNR FPR TPR

0.1 10K Simulated 0.062 0.005 0.483 0.995
0.1 50K Simulated 0.044 0.001 0.692 0.999
0.1 ExAC NFE 0.144 0.001 0.908 0.999
0.23 10K Simulated 0.555 0.017 0.422 0.983
0.23 50K Simulated 0.04 0.004 0.636 0.996
0.23 ExAC NFE 0.141 0.003 0.884 0.997
0.4 10K Simulated 0.049 0.047 0.363 0.952
0.4 50K Simulated 0.039 0.011 0.608 0.989
0.4 ExAC NFE 0.138 0.005 0.865 0.995

Table S3: Simulation and empirical validation of the private allele model across
different posterior probability thresholds. For the results presented in the main text,
we use a posterior probability cutoff of 0.23, which results in an empirical FDR of ≈ 17%.
We use the 0.1 threshold in Figures S3, S5, S6, S7, S8. “ExAC NFE” refers to an empirical
test from the ExAC data set where we use the observed frequency of the allele in the African
American sample to estimate the allele count in a sample of unadmixed African genomes.
‘10K’ refers to a sample size of 10,000 chromosomes and ‘50K’ refers to a sample size of
50,000 chromosomes. ‘FDR’ = false discovery rate, ‘FNR’ = false negative rate, ‘FPR’ =
false positive rate, ‘TPR’ = true positive rate.



τ Shared (Europe) Private (Europe) Shared (Africa) Private (Africa)

0 0.91 0.38 0.96 0.34
0.25 0.76 0.62 0.83 0.57
0.5 0.56 0.83 0.58 0.79

Table S4: Polygenic Score (PS) accuracy. Correlation coefficient (Pearson’s r2) between
the true PS and the PS using shared or private variation in European and African individuals
across values of τ (p < 2×10−16 for all correlations). As negative selection becomes stronger,
the correlation between the true PS and shared variant PS decreases, while the correlation
between true PS and private variant PS increases.



S1 Application to GWAS summary statistic data

We applied our partitioning method to summary statistic GWAS data computed on individ-
uals from the UK Biobank. We used summary statistics for 43 traits and diseases released
by the Neale lab at http://www.nealelab.is/uk-biobank/. Details of the procedure for
GWAS, including quality control can be found at the website, but we briefly summarize it
here.

For sample inclusion, the authors used unrelated samples and subset to British individ-
uals using PCA and self-reported ancestry (‘white-British’/‘Irish’/‘White’). This resulted
in 361,194 samples. SNPs were imputed using the Haplotype Reference Consortium, the
UK10K project, and the 1000 Genomes data. Variants were retained if they had an INFO
score > 0.8, minor allele frequency > 0.0001 (MAF > 1 × 10−6 if annotated as missense
or protein truncating by VEP), and a Hardy-Weinberg equilibrium p-value > 1 × 10−10.
This filter resulted in 13.7 million SNPs. The association testing was done using the first
20 principle components, sex, age, as well as interaction and non-linear terms for sex and
age. We used summary statistics for GWAS performed including both sexes and for quan-
titative phenotypes, we used inverse rank normalized phenotypes (as opposed to the raw
phenotypes).

From the summary statistic data, we use the minor allele frequency in the British cohort
and the effect size to compute the additive genetic variance (Section S3) and the probability
that the variant is private to Europe (See Methods in the main text). In the main text,
we report results using all SNPs reported in the summary statistics. These results use a
probability threshold of P (ω|i) = 0.23, corresponding to a simulated FDR of ≈ 5% and
an empirical FDR of ≈ 17%. In the main text, we also present results using the FDRs to
correct for the fact that some of the SNPs we infer to be private are likely false (i.e. they
are truly shared).

We also show the results of our LD-pruned estimator in Supplemental figures S5, S6, and
S7. For the results from the LD-pruned estimator, we vary the number of SNPs within a
window between 500 SNPs (≈ 100KB), 5,000 SNPs (≈ 1MB), and 50,000 SNPs (≈ 10MB).
We also ensure that our estimates are sensible by estimating the proportion of additive
genetic variance from variants we infer to be shared. If the inference procedure works
correctly, this number should be 1− ĥ2

private. In Supplemental figure S8, we see that this is
indeed the case.

We validated our result on BMI using an external cohort from the GIANT consortium
[12]. This GWAS on BMI was performed on 718,734 individuals using an exome-targeted
genotyping array. Using the LD-pruned estimator and a probability cutoff of 0.1, we found
the proportion of SNP heritability from private variants is 0.522 (95% confidence interval:
0.390-0.653). This value is very close to the inferred value on the full data from the UK
Biobank (0.492), giving us confidence that these results are robust across association studies.

S2 The effect of linkage disequilibrium on our infer-

ences

Our inferences of the heritability due to private variants made the assumption that the
estimated effect sizes for the GWAS SNPs were the true effect sizes of the causal variants.
Further, we assumed that the variants were all independent of each other. In truth, these
assumptions are violated for a variety of reasons. First, due to linkage disequilibrium (LD),



SNPs may be correlated with one another. Second, some of the non-zero effect sizes of
GWAS SNPs may be due to the fact that the GWAS SNP is tagging (in LD with) an
untyped causal variant and is itself not causal. Third, even if the GWAS variants analyzed
in our study are the true causal variants, their effect sizes may be mis-estimated by the
effects at nearby SNPs in LD with them.

Thus, given these challenges, we carefully considered the effect that unmodeled LD may
have on our inferences.

In principle, recent methods such as stratified LD score regression (S-LDSC; [2]), SumHer
[11], or HESS [9] could provide us with the ability to examine the proportion of heritabil-
ity that comes from private variants. These methods attempt to deconvolve the observed
marginal association statistics, b̂j , by modeling linkage disequilibrium (LD) between tagging
variants and causal variants. However, these methods rely on out of sample estimates of
the amount of LD between variants (i.e. from a reference population). While estimates of
LD (measured by r̂2) between common variants can be obtained with minimal variance in
some cases, this depends greatly on allele frequency, as outlined below.

Consider two loci, A and B, with allele frequencies pA and pB of the minor allele. The
correlation coefficient, r2, is defined as:

r2 =
(pAB − pApB)

2

pA(1− pA)pB(1− pB)

An estimator of r2 is obtained by using estimates of p̂AB , p̂A, and p̂B [10, 5]. If the
allele frequencies are assumed to be binomially distributed and if the sample size used
to obtain estimates of allele frequencies is large enough, we can model these frequencies
as approximately normally distributed. Then, the variance of the estimator, V ar(r̂2) ≈
(1 − r2)2 [3]. This relationship suggests that when the correlation is lowest, the variance
will be the largest. Analysis of the mathematical properties of r2 as a measure of LD
suggests that the maximum value of r2 is lowest when pA is much different from pB [13].
Taken together, this suggests that there will be much uncertainty when using LD panels to
estimate LD between common and rare variants.

Here, we are interested in LD patterns between private variants, which tend to be rare,
and shared variants, which tend to be common. Therefore, in lieu of using previous methods
that rely on out of sample LD estimates, we consider several approaches that do not rely on
knowing the patterns of LD between variants: 1) We repeated our inference only considering
a sub-set of SNPs that would have a greater chance of being independent of each other, 2) We
used coalescent simulations to investigate the effect of unaccounted for LD on the inference
of the heritability contained in private variants, and 3) We tested whether the effect sizes
of private variants or shared variants were more likely to be over-estimated due to LD.
All of these analyses suggest that while unmodeled LD between SNPs may bias some of
our inferences, they are biased in the direction of underestimating the heritability due to
private variants. In other words, our estimates are likely to be conservative and our overall
conclusion that a substantial amount of the heritability for anthropometnric and disease
traits is due to private variants is robust to LD. Below we detail these results of these three
analyses.



S3 Inference of h2
private by pruning for LD

Here, we describe an estimator for proportion of heritability that comes from private variants
when using a sub-set of SNPs within a genomic window. By thinning the SNPs, we should
remove some of the effects of LD between the GWAS SNPs. Our estimator has the form:

ĥ2
private =

V̂A,p

V̂A

.

First, we describe a procedure for estimating V̂A,p. Consider a window w with K SNPs.
We randomly select 1 SNP, k, and compute the additive genetic variance for that SNP:

V̂A,p,w,k = 2p̂k(1− p̂k)β̂
2
kzk

where zk is an indicator function that equals 1 when p(ω|p̂k) ≥ t (see the Methods section
in the main text for a description of this model) and 0 otherwise. We repeat the procedure
T times and take the sum:

V̂A,p,w =

T
∑

k

V̂A,p,w,k

Then, to estimate V̂A,p, we sum over the windows:

V̂A,p =
∑

w

V̂A,p,w

If T is large and w contains a single causal variant, then E[V̂A,p,w] ≈ 2pc(1− pc)(βcr̄
2
c )

2,
where r̄2c is the average LD of variants in the window and the causal variant1.

A similar estimator for V̂A can be obtained:

V̂A,w = 2
T
∑

k

p̂k(1− p̂k)β̂
2
k

V̂A =
W
∑

w

V̂A,w

We obtain standard errors by using a jackknife over the windows [8]. We denote the

estimate of h2
private obtained using the full data set (i.e. all windows) as ĥ2

private. Further,

let ĥ2
private(−w) be the estimate of h2

private obtained by deleting window w and let h̄2
private =

1
W

∑W

w=1 ĥ
2
private(−w). We compute the standard error (SEh2

private
) and bias (Bh2

private
) as

SEh2

private
=

√

√

√

√

w − 1

w

W
∑

w=1

(ĥ2
privatew − h̄2

private)
2

Bh2

private
= (w − 1)(h̄2

private − ĥ2
private)

1We do not know the true allele frequency of the causal variant (pc), so the expectation of the estimator
is not exactly equal to the quantity on the right hand side. However, if r2 is large, then pc ≈ pt where pt is
the allele frequency of the tagging variant and the expectation will hold.



We obtain 95% confidence intervals by first bias correcting the estimate (ĥ2
privatecorr =

ĥ2
private −Bh2

private
). Then, the confidence interval is ĥ2

privatecorr ± z(α)SEh2

private
, where α

is the confidence level, z(α) =
√
2erf−1(α) and erf−1(x) is the inverse error function. In all

plots using this estimator, we plot the bias corrected estimate rather than the full estimate.
This approach to confidence intervals ignores correlations between windows, which could

lead to double counting variants if causal variants are clustered together. We found that
when we varied the window size between 500 SNPs (≈ 100KB), 5,000 SNPs (≈ 1MB), and
50,000 SNPs (≈ 10MB), the results were consistent, suggesting that this was not a practical
issue.

From the expectation above, it is clear that the estimator we propose is biased, E[ĥ2
private] ≤

h2
private. Next, we show that this bias conservatively estimates the proportion of heritability

from private variants.
When r̄c ≈ 1, the average LD in the window between the tagging variants and causal

variants is close to 1, resulting in E[ĥ2
private] ≈ h2

private. However, such tightly linked regions

will not be common in the human genome. Several papers have noted that the range of r2

depends on the allele frequencies of the loci in question (e.g. [13]). Specifically, as the two
allele frequencies diverge, the maximum r2 value decreases. In our case, shared variants tend
to have larger allele frequencies than private variants, suggesting that the maximum allele
frequency difference will occur when the tagging variant is private and the causal variant is
shared or when the tagging variant is shared and the causal variant is private.

In the case where there is a mismatch between the categories of the tagging and causal
variants, it is possible to end up with variation contributing to the wrong additive genetic
variance bin. For example, if the tagging variant is shared and the causal variant is private,
VA that should be in the private bin would be apportioned into the shared bin, leading
to downward bias in the estimate of h2

private. On the other hand, if the tagging variant is
private and the causal variant is shared, VA that should be in the shared bin will be in the
private bin, leading to overestimates of h2

private. However, in both of these cases, because of

the dependency of r2 on allele frequency, we do not expect these cases to contribute much
to VA because r2 will be low between the tagging and causal variants. Further, we expect
the second case (where causal variants are shared and the tagging variants are private) to
be uncommon when a trait is under negative selection because negative selection will push
large effect alleles to lower allele frequencies, increasing the probability that these alleles are
private. Thus, the scenario under which our estimate of h2

private would be upwardly biased
are likely to be unusual.

On the other hand, when both the tagging and causal variant are in the same class (i.e.
both private or both shared), the frequencies will be more similar, leading to estimates of
VA that are reduced by a factor related to the amount of LD between the tag and the causal
variant.

S4 The relationship between marginal effect size esti-

mates and LD

We wondered whether our estimates of h2
private could be biased by differences in tagging

causal variation between private and shared variation. Because shared variants tend to be
more common, they will tend to be in LD with more (and therefore tag more) variants.
If this is the case, then shared variants will have inflated marginal effect sizes compared



to private variants. This would lead to overestimating the additive genetic variance from
shared variants compared to private variants, again making our inferences conservative.

To test this for this effect, we examined the summary statistics from a GWAS on BMI in
the UK Biobank and correlated the marginal effect sizes with recombination rates estimated
from patterns of LD in Europeans [6] for both classes of variants. We found that variants
we predict to be private have a lower correlation (Spearman’s ρ = −0.04, P < 2 × 10−16)
between marginal effect sizes and recombination rates compared with variants we predict
to be shared (Spearman’s ρ = −0.08, P < 2 × 10−16). Said another way, the relationship
between effect size and LD (which is one of the main ideas behind LD score regression;
[1]), is stronger for shared variants than for private variants. This finding suggests that
estimates of additive genetic variance from private variants are downwardly biased compared
to estimates from shared variants, consistent with the intuition from Section S3 and results
from our simulations (Section S5).

S5 Coalescent simulations to assess the performance of

the estimator of h2
private

We tested our intuition in Section S3 by performing coalescent simulations. We simulated
genetic variation data using msprime [7] under the demography from Gutenkunst et al [4].
We simulated a single window and randomly assigned a causal variant within that window
with an effect size β ∼ N(0, 1). Then, for each of the non-causal variants in the window, we

simulated a GWAS by assigning marginal association statistics as β̂ = r2β, where r2 is the
LD between a given variant and the causal variant.

Then, to simulate our estimation procedure (Section S3), we randomly pick a SNP from
the window, and compute the additive genetic variance using the ‘marginal’ association
statistic (V̂A = 2p(1 − p)β̂2). We estimate ĥ2

private using the allele frequency to infer if an
allele is private. We obtain the true additive genetic variance using the true effect size (β)
and determine if an allele is private based on whether it is observed in the simulated African
population. We repeat this procedure 10,000 times for each window and simulate 10,000
windows.

Then, to ensure our simulation is close to our real inference procedure, we compute
E[ĥ2

private] by inferring whether alleles are private or shared (rather than using the true
status from the simulation). In Figure S9b, we plot the estimated additive genetic variance
from each of the windows versus the true additive genetic variance from each of the windows
for private variants. As expected, we see that there is a downward bias, consistent with the
effects of LD on β̂. This means that LD causes us to underestimate the heritability accounted
for by private variants. Finally, we compare E[ĥ2

private] to h2
private (Figure S9a) and see that

the estimator is downwardly biased as well, consistent with a greater effect of bias on private
variants compared to shared variants. Therefore, we conclude that the estimator described
in Section S3 is conservative with respect to the amount of heritability explained by private
variants.
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