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2

1Department of Mathematics, University of Sussex, Brighton BN1 9RF, UK
2Department of Mathematics and Statistics, University of North Carolina

Greensboro, Greensboro, NC 27402, USA

There is a growing interest in the study of evolutionary dynamics on populations with
some non-homogeneous structure. In this paper we follow the model of Lieberman et al.
(Lieberman et al. 2005 Nature 433, 312–316) of evolutionary dynamics on a graph. We
investigate the case of non-directed equally weighted graphs and find solutions for the
fixation probability of a single mutant in two classes of simple graphs. We further
demonstrate that finding similar solutions on graphs outside these classes is far more
complex. Finally, we investigate our chosen classes numerically and discuss a number of
features of the graphs; for example, we find the fixation probabilities for different initial
starting positions and observe that average fixation probabilities are always increased for
advantageous mutants as compared with those of unstructured populations.

Keywords: evolutionary dynamics; star; linear graph; random walk; Markov chain

1. Introduction

Evolutionary dynamics models are widespread, but have generally assumed
homogeneous populations. The study of evolutionary dynamics on graphs was
investigated in the paper by Lieberman et al. (2005), other important work on this
subject being in Erdös & Renyi (1960), Nagylaki & Lucier (1980) and Barabasi &
Albert (1999). Each vertex or node represents an individual in the population, and
individuals can reproduce into neighbouring vertices, i.e. those connected by an
edge. In Lieberman et al. (2005), at each stage an individual was selected randomly,
with probability proportional to its fitness, which then copied itself into one of the
vertices it was connected to. It should be noted that there are other possible
dynamics. An example is the biased voter model, e.g. see Bramson & Griffeath
(1981), where an individual is chosen at random to be removed and is replaced by a
copy of one of its neighbours. Lieberman et al. (2005) considered directed graphs
where connections between vertices can be one-way only (e.g. it is possible for an
individual at 1 to reproduce into 2, but not for one at 2 to reproduce into 1), with
general weightings indicating the probability that any particular vertex would be
replaced, given the chosen replacing vertex. They showed several interesting and
important results; for instance, different graph structures could yield different
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probabilities for the fixation of a single mutant. In homogeneous populations, the
probability of fixation in a population withN individuals (and soN vertices) is given
by the Moran probability,

PMoran Z
1K1=r

1K1=rN
; ð1:1Þ

where resident individuals have baseline fitness 1 and mutants have fitness r (each
individual being chosen as the reproducing individual with probability proportional
to its fitness). It was shown in Lieberman et al. (2005) that this probability holds
under a condition on the weightings on the graph, any graph satisfying this
condition being referred to as an isothermal graph. However, other graph structures
allow the probability of fixation of an advantageous mutant (rO1) to converge to
either 0 or 1 as N tends to infinity.

Most of the interesting results from Lieberman et al. (2005) relied on graphs
being directed and the weights of connections from a given vertex to be different
from each other. In this paper we look at non-directed graphs with equal weights.
We show that in this setting, the formula (1.1) holds for regular graphs, graphs
where every vertex has the same degree, and only for them. We then show that
evolutionary dynamics on a graph with N vertices leads to a system of 2N

equations; with the exception of a circle (a regular graph case) and a line (a non-
regular graph). We use symmetries to reduce the number of equations to 2nC1
for a star with NZnC1 vertices. In Lieberman et al. (2005), the approximation
of the fixation probability for stars for large n was given by

P Z
1K1=r 2

1K1=r 2n
: ð1:2Þ

Here we find the exact fixation probabilities for any r and n.
We then analyse the dynamics on the line. The analysis is quite hard to

perform even in this simple case, although we make substantial progress. We also
make suggestions about how to attack the more general problem without simply
resorting to numerical methods and simulation.

2. Evolutionary dynamics on graphs

Let GZ(V, E ) be a finite, undirected and connected graph, where V is the set of
vertices andE is the set of edges.We assume that the graph is simple, i.e. no vertex is
connected to itself and there are noparallel edges.We study evolutionary dynamics as
described in Lieberman et al. (2005; see alsoNowak 2006).We treat the dynamics as a
discrete timeMarkov chain. At the beginning, a vertex is chosen uniformly at random
and replaced by a mutant with fitness r, all remaining vertices having fitness 1.

If the mutants already inhabit precisely the vertices in the set C3V, then in
the next step the mutants will inhabit vertices in either

(i) a set Cg( j ), j;C, provided (a) a vertex i2C is chosen for reproduction
and (b) it places its offspring into vertex j, or

(ii) a set C n fig, i2C, provided (a) a vertex j;C is selected for reproduction
and (b) it places its offspring into i, or

(iii) the set C, provided an individual from C ðV nC Þ replaces another
individual from C ðV nC Þ.
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The states 0/ and V are the absorbing points of the dynamics. The transition
probabilities of the above Markov chain are determined by (i) the probability
that a given vertex will be selected for reproduction and (ii) the probability that,
once selected, it places its offspring into another given vertex.

We set the fitness of an individual at vertex i as fi2{1,r}, where fiZr means
that the individual is a mutant. An individual at i is selected for reproduction
with the probability

si Z
fiP

j2V

fj
: ð2:1Þ

The graph structure is represented by a matrix WZ(wij), where wij is the
probability of replacing a vertex j by a copy of a vertex i, provided vertex i was
selected for reproduction,

wij Z

1

ei
; if i and j are connected;

0; otherwise;

8><
>:

where ei is the number of edges incident to the vertex i, so that edges have
equal weights.

Let PC denote the probability of mutant fixation, given mutants currently
inhabit a set C. The rules of the dynamics yield (see Lieberman et al. 2005)

PC Z

P
i2C

P
j;C

ðrwijPCgfjg CwjiPC nfigÞP
i2C

P
j;C

ðrwij CwjiÞ
; ð2:2Þ

with P0/Z0 and PVZ1.
This system has a unique solution following from the uniqueness of a Markov

chain, given a known initial distribution. There is a unique distribution over the
states at time 0 (a single mutant is introduced to the population at a randomly
chosen vertex). The Kolmogorov equations then give a unique distribution at step
sC1, conditional on uniqueness at step s. As s tends to infinity, there is convergence
to the set of absorbing states (either allmutants or all residents). This yields a unique
limiting distribution, thus a unique fixation probability from the initial distribution.

The system (2.2) of linear equations is very large (typically of the order of 2jV j

equations, see §4) and very sparse (from any state C, one can go to at most jV j
other states).

3. Regular graphs

Agraph is called isothermal if
P

jwji is constant as a function of i.Agraph is isothermal
if and only if the matrixWZ(wij) is double stochastic (Lieberman et al. 2005), i.e.X

j

wji Z 1:

It is proved in Lieberman et al. (2005) that if a graph is isothermal then

PC Z
1K 1

r jC j

1K 1
r jV j

: ð3:1Þ
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Here we give a different proof of this statement and one more equivalent condition to
being isothermal.

Theorem 3.1. A simple connected undirected graph GZ(V, E ) is isothermal if
and only if it is regular.

Proof. Clearly, if G is regular, ei is constant, and thus G is isothermal. Now
suppose that the relation in the other direction is not true. Consider a set
CZfi; eiZminfev; v 2Vgg. Since, by our assumption, CsV, there must be a
vertex i2C that is connected to a vertex j 2V n C . Then,X

v

wvi Zwji C
X
vsj

wvi!
1

ei
C
X
vsj

wvi%
1

ei
C

ei K1

ei
Z 1;

a contradiction. &

In order to solve (2.2) for an isothermal graph, let us assume that PC only
depends upon the size of C, so that

PC Z x jC j: ð3:2Þ
By theorem 3.1, wij attains only one non-zero value (1/k, where k is the degree of
any vertex in G) and thus (2.2) reduces to

x jC j Z
r

r C1
x jC jC1 C

1

1Cr
x jC jK1: ð3:3Þ

This is a standard difference equation that gives the required Moran probabilities.
Consequently, our assumption (3.2) leads to a solution of (2.2) and by the
uniqueness of the solution, the solution must satisfy the property (3.2).

4. Complexity of the dynamics

Since at every vertex of a graphGZ(V, E ) there can be either a resident or amutant,
there are up to 2jVj potentialmutant formations and thus up to 2jV j equations in (2.2).

Some formations of mutants on a given graph are identical owing to symmetries
(automorphisms) of the graph. Certain graphs (like a complete graph, or a star
graph—see §5) thus have only a few possible mutant–resident patterns since their
automorphism group is very rich. For other graphs, like a line, the graph structure
itself yields only symbolic reduction of the number of patterns because the
automorphism group consists of only a few non-trivial elements.

Taking the automorphism group of a graph G, Aut(G), into account, we can
use Burnside’s orbit-counting theorem (Tucker 1994) to find the exact number of
possible formations. Consider the set X consisting of all possible 2jV j mutant–
resident patterns. For f2Aut(G), let Fix( f )Z{v2V, f(v)Zv}. If Fix( f )sV,
then f fixes 2jFix( f )jC1 elements of X (one has freedom to put a mutant or a
resident in any vertex v2Fix( f ), and one can place either mutants or residents
into all vertices of V n Fixð f Þ). Clearly, identity on G is the only f2Aut(G) that
fixes all elements of G. Burnside’s theorem then yields the total number of
mutant–resident formations (MRF) of G as

MRFðGÞZ 1

jAutðGÞj 2jV j C
X

f2AutðGÞ; fsidG

2jFixð f ÞjC1

0
@

1
A: ð4:1Þ
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The above equation considers the graph structure only, not the rules of the
dynamics at all. Clearly, any non-initial state of the dynamics contains at least one
parent–offspring pair of connected vertices. Consequently, alternating patterns, i.e.
patterns where any pair of connected vertices is inhabited by a mutant at one vertex
and a resident at the other vertex, cannot be attained as a result of the dynamics.
Alternating patters are possible if and only if the graph does not contain an odd
cycle (i.e. if the graph is bipartite). There are at most two alternating patterns.

On a circle or on a line, any mutant formation resulting from the dynamics
consists of a connected segment. Hence, they are of the order of jV j2 patterns on
a circle (jV j possibilities where the segment starts and jV jK1 possibilities where
it ends, plus the patterns with all or no mutants) and jV j2/2 patterns on a line
(jV j possibilities to start and on average jV j/2 possibilities where the segment
can end). Moreover, the rotations on the circle help us to reduce the number of
equations to jV j; the symmetry of a line also reduces the number of equations by
a factor 1/2 to approximately jV j2/4.

The theorem 4.1 shows that for the vast majority of graphs, the system (2.2)
consists of roughly MRF(G) equations.

Theorem 4.1. If a graph contains a vertex of degree of at least 3 (i.e. the graph
is neither a line nor a circle) and the dynamics is in any non-absorbing state, then
there is a non-zero probability that the dynamics will evolve to any of the possible
MRF(G) states (MRF(G)K2 states if the graph is bipartite).

Before proving theorem 4.1, we prove a result required for the proof.

Lemma 4.2. Let vertices v1 and v2 be connected to a vertex t. Furthermore,
assume that there is a mutant in v2 and a resident in v1. Then, we can fill any
pattern to any subtree structure connected to t and not containing v1 and v2.

Proof of lemma 4.2. The proof goes by the induction on the height of the
subtree structure. If the height is 1 (i.e. the structure is only the vertex t), we can
clearly fill it by a mutant or a resident. Now assume that we can fill any pattern
to the subtree of height nK1 and that our structure has a height n.

First, spread the residents (from v1) to get the structure that contains only
residents (figure 1a). Next, spread the mutants (from v2) to every vertex but the
leaves where there are residents in the target pattern. After this step, all of the
leaves have the inhabitants of the target pattern (figure 1b). Cut the leaves and
what remains is the structure of height nK1. This can be filled by any pattern by
the induction hypothesis. This concludes the proof of lemma 4.2. &

Proof of lemma 4.1. We now prove theorem 4.1 using multiple applications of
lemma 4.2. To do this, there are some technical difficulties that have to be
overcome. Firstly, the original graph has to be ‘trimmed’ to become a tree so we
can apply the lemma. Secondly, we need space to manoeuvre since lemma 4.2
does not allow us to fill patterns ‘behind’ the vertices v1 and v2, and thus we need
to arbitrarily flip the roles of vertices connected to t. We obtain this space by
collapsing the target pattern by a single vertex, which allows us to have the
central vertex completely free for our use. Finally, the trimming could cause
some patterns to become inaccessible (alternating) on the tree, although they
were not alternating on the original graph, so we have to deal with these patterns
in one more step.

2613An analysis of the fixation probability
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Firstly, we trim the graph to get a tree. Denote one of the vertices with a
degree of at least 3 by t0 and label three of its neighbours as t1, t2, t3. Next, trim
the graph by cutting a sufficient number of edges to get a connected tree (a graph
with no cycle) consisting of all of the original vertices and yet keeping all of the
edges t0tj, iZ1, 2, 3 intact. Label the remaining neighbours (if any) of t0 by
t4,.,tk. We will show that we can reach any state that is non-alternating (on this
tree) from any non-absorbing state even if only the edges of this trimmed graph
are used.

Then we collapse a pattern to get the central vertex t0 for free usage. Since the
target state is not alternating, there are two connected vertices with the same
type of inhabitants. We may assume that the vertices are on the branch (linear
set) BZb0b1b2b3$$$bl with b0Zt0 and b1Zt1; let bi and biC1 be the two vertices
with the same inhabitants and with the lowest index i possible. Let S denote the
target state and S� the state that is the same as the target state except that at
vertices bj, jZ1,.,i it has inhabitants from the vertices bjK1 of the target state.
Note that S and S� are each attainable from the other by a shift of the pattern
along the line (see figure 2a,b for an illustration of this).

We now move the mutants into a position where lemma 4.2 can be applied.
From above it is enough to reach the state S�. Also, we may assume that in S�, t1
is inhabited by a mutant (i.e. in the original target state, t0 is inhabited by a
mutant). If the contrary is true, we would just interchange the role of residents
and mutants in the following arguments.

Clearly, any non-absorbing state can evolve into a state with one mutant only.
If the mutant is not at t2 already, we can relabel t2 and t3 such that the shortest
path from the mutant’s position to t2 goes through t0. Now the mutants can
spread to t2 by this shortest path, leaving the trail of mutants behind. The
trail can be cleared by spreading residents from either t1 or t3 (see figure 2c–e
for illustration).

Applying lemma 4.2 for the first time, we can fill any pattern to subtrees
starting at t3, t4,.,tk.

We now rotate the mutant–resident pattern around t0 and fill the branch behind
vertex t1; we then rotate again and fill behind t2. We use lemma 4.2 to place a
resident at t3 (thus having a mutant at t2 and a resident at t3) and use lemma 4.2
again to fill the pattern S� to the subtree starting at t1. At the end, there will be a
mutant in t1. Since now we have a mutant in t1 and a resident in t3, we can fill the
required pattern to the subtree starting at t2. If there has to be a mutant at t3,
place it there by spreading from t1 through t0. In any case, finish by shifting the
pattern from S� to S.

(a) (b) (c) (d ) (e)

Figure 1. Filling a given pattern on a subtree connected to (e) from the original configuration with
a mutant in v2 and a resident in v1 (a), using intermediate steps (b–d).
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So far, we have been able to reach any state that is not alternating on the
trimmed graph. It is possible that an alternating state on the trimmed graph is
not an alternating state on the original graph. If we want to reach this pattern,
let us pick vertices w1, w2 witnessing that the pattern is not alternating on the
original graph. We may assume that they are both inhabited by mutants. If we
change the mutant in w1 into a resident, we get a pattern that is not alternating
on the trimmed graph. In particular, we can reach it as shown above. To reach
the required pattern, it only remains to spread the mutant from w2 into w1; we
can do that because vertices w1 and w2 are connected in the original graph. &

5. Dynamics on stars

In this section, we consider a star—a non-directed graph with NZnC1 vertices
labelled 0, 1, ., n where the only edges are between vertices 0 and i, iZ1,., n.
The vertex 0 is called a centre and the vertices 1,., n can be called the leaves.
The automorphism group is isomorphic to the group of permutations on leaves
and the state of the dynamics can be described by the number of mutants at the
leaves and by an indicator of whether or not there is a mutant at the centre (see
figure 3 for a scheme of the dynamics). Let P 0

i ðP 0/
i Þ denote the probability of

fixation, given that there are i mutants at the leaves and there is a (there is no,
respectively) mutant at the centre. The rules of the dynamics yield the following
system of 2nC1 equations:

P 0
i Z

r

rCn
P 0

iC1 C
n

rCn
P 0/

i ð5:1Þ

and

P 0/
i Z

nr

nrC1
P 0

i C
1

nrC1
P 0/

iK1; ð5:2Þ

for iZ0, ., n with boundary conditions P 0/
0Z0 and P 0

nZ1. The equation (5.1)
can be rearranged to

P 0
i ZP 0

iK1 C
n

r
ðP 0

iK1KP 0/
iK1Þ: ð5:3Þ

I.

II.

III

(a)

I.

II.

III.

(b)

(c) (d ) (e)

Figure 2. (a,b) Shifting between patterns on the line and (c–e) moving a single mutant from a
general position to t2.
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We can use (5.3) and (5.2) to inductively calculate P 0/
1;P

0
2;P

0/
2;. as a function of

P 0
1 to get

P 0
i ZP 0

1$ 1C
n

nCr

XiK1

jZ1

nCr

rðnrC1Þ

� �j
 !

:

Since P 0
nZ1, we get

P 0
1 Z

1

1C n
nCr

PnK1

jZ1

nCr
rðnrC1Þ

� �j :

Since, by (5.1) and (5.2),

P 0
0 Z

r

r Cn
P 0

1

and

P 0/
1 Z

nr

nrC1
P 0

1;

we get as the average fixation probability for a mutant,

9Z
n nr

nrC1 C
r

rCn

ðnC1Þ$ 1C n
nCr

PnK1

jZ1

nCr
rðnrC1Þ

� �j ! :

Note that for large n we get

9z
1

1C
PnK1

jZ1

1
r2j

Z
1K 1

r2

1K 1
r2n

;

which means that we are recovering the formula (1.2) from Lieberman et al. (2005).
Figure 4 contains illustrations of the results for fixation probability and a

comparison with the formula (1.2) and with the fixation for a Moran process (1.1).

Figure 3. States of a dynamics on a star with nZ5 leaves.
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6. Dynamics on lines

In this section we consider a line with NZnC1 vertices labelled 0, 1,., n, which
is a non-directed graph where vertices i and j are connected if and only if jiKjjZ1.
Hence, the vertices 0 and n are connected to just a single vertex, and will be
referred to as the end vertices, while all other vertices are connected to exactly
two others.

In this section, we code the admissible mutant configuration by a pair of
numbers (i, j ), 0%i%j%nC1, translate the dynamics (2.2) into this coding,
identify the evolution under this dynamics with a random walk on a triangle in a
two-dimensional square lattice and then reduce the number of equations from the
order of n2/4 to n.

(a ) States and transition probabilities

The mutant population starts with a single individual; new mutants can arise
only in vertices on neighbouring points on the line, and mutants can only be lost
from vertices connected to a resident individual. Thus, the population of mutants
forms a line segment i, iC1,., jK1 for some pair (i, j ) where i%j, and the state of
the system can be described by this pair of numbers only. The evolution of the
population can thus be seen as a two-dimensional random walk on a triangular set,

T Z fði; jÞ; 0% i% j%nC1g:
Let Pi, j denote the probability of mutant fixation given that we are at the state
(i, j ). Once the population reaches the diagonal state (i, j ) for 0%i%nC1, the
mutants are extinct, i.e.

Pi;i Z 0: ð6:1Þ

Once a mutant reaches an end vertex, i.e. the population is in the state (0, j ) or
( j, nC1) for some 0%j%nC1, it will never be removed from the end vertex unless
through extinction, since it can only be removed by a resident on its sole

0.35

0.40

0.45

0.50

fi
xa

tio
n 

pr
ob

ab
ili

ty

0.55

20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

2 4 106 8

(a) (b)

Figure 4. The mean fixation probability for a star (middle curve) and comparison to PMoran given in
(1.1) (lower curve) and formula (1.2) (upper curve). This comparison is shown in (a) for a range of
values of n and rZ1.5 and in (b) for a range of values of r and nZ10.
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neighbouring vertex, which in turn can only be present if the end vertex individual
is the sole mutant in the population. Hence, the population stays on these
boundary lines once it reaches them. In §6b we calculate that

P0; j ZPnC1Kj;nC1 Z
2rnC1KrnKrnC1Kj

2rnC1Krn CrK2
: ð6:2Þ

We thus have to solve the two-dimensional random walk on a set T given the
boundary conditions (6.1) and (6.2).

We proceed to investigate the transitions in the interior of T. First, it should
be noted that for most choices of a vertex for reproduction, the population does
not change. The only change occurs when we choose a vertex on a boundary
between mutants and non-mutants. When 2%i!j%nK1, there are two
boundaries and a change of state may occur if any of the vertices iK1, i, jK1
or j are chosen. None of these vertices is an end vertex and thus

Pi; j Z
r

2ðr C1Þ PiK1; j C
r

2ðr C1Þ Pi; jC1C
1

2ðr C1Þ PiC1; j C
1

2ðrC1Þ Pi; jK1:

ð6:3Þ
When a mutant occupies one of the end vertices, there is just one mutant–

resident boundary, and only two choices of vertices allow a change of state,

P0;1 Z
r

r C 1
2

P0;2; ð6:4Þ

P0;j Z
r

rC1
P0; jC1C

1

r C1
P0; jK1; 2% j%nK1; ð6:5Þ

P0;n Z
1

1C r
2

P0;nK1 C
r
2

1C r
2

ð6:6Þ

and

Pj;nC1 ZP0;nC1Kj ; 0% j%nC1: ð6:7Þ

When a mutant occupies a vertex next to an end vertex (1 or nK1), with a
resident at the corresponding end vertex, we have, for 2%j%nK1,

P1; j Z
r
2

r C 3
2

P0; j C
r
2

r C 3
2

P1; jC1 C
1
2

r C 3
2

P1; jK1 C
1

r C 3
2

P2; j ; ð6:8Þ

P1;n Z
r
2

r C2
P0;n C

r
2

r C2
P1;nC1 C

1

r C2
P1;nK1C

1

rC2
P2;n; ð6:9Þ

Pj;n ZP1;nC1Kj : ð6:10Þ

The system (6.3)–(6.10) is of the order of n2/2 equations. By symmetry
(equations (6.7) and (6.10)), the system reduces to the order of n2/4 equations.
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(b ) Boundary conditions

The equations (6.4)–(6.6) are difference equations for P0, j. Using standard
methods (e.g. Norris 1997, ch. 1), by (6.5), we have to find the roots of

Kðr C1ÞxCrx2C1Z 0:

Since the roots are xZ1 and 1/r, we get

P0; j ZACB
1

r

� �j

: ð6:11Þ

The values A, B are determined after technical calculation using equations (6.4)
and (6.6). This yields, for 0%j%nC1,

P0; j ZPnC1Kj;nC1 Z
rnC1Kj CrnK2rnC1

2Kr CrnK2rnC1

Z rnC1Kj 1CrC/Cr jK2 C2r jK1

2CrCr2 C/CrnK1C2rn
: ð6:12Þ

(c ) The inner boundary

Using the equations (6.8)–(6.10), we obtain

K
r

2
P1; jC1 C r C

3

2

� �
P1;jK

1

2
P1; jK1 Z

r

2
P0; j CP2; j ; ð6:13Þ

ðr C2ÞP1;nK2P1;nK1 Z rP0;n: ð6:14Þ

Since we can calculate P0, j, jZ0,., n, we just need to calculate P2, j in terms
of P1,k, kZ1,., n to get a system of n equations for n unknowns P1,k, kZ1,., n.

(d ) Interior points

In Miller (1994), a two-dimensional random walk on a square lattice,

S Z fði; jÞ; 0% i; j%nC1g;
with arbitrary boundary conditions at states

ð0; jÞ; ðnC1; jÞ; ði; 0Þ; ði; nC1Þ; 0% i; j%nC1;

was solved. In this paper, we relabel the boundary coordinates of the square to be
appropriate to the application from our problem, giving

S Z fði; jÞ; 1% i; j%ng;
with boundary conditions at states,

ð1; jÞ; ðn; jÞ; ði; 1Þ; ði;nÞ; 1% i; j%n:

Our goal is to extend the random walk from T to S while giving fictional
boundary conditions on S such that the restriction of the extended walk will give
us exactly the original walk on T with the boundary conditions (6.1) and (6.2).
This is illustrated in figure 5.
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In the notation of Miller (1994), we have

Pi; j Z
1

2ðr C1Þ
XnK1

aZ2

fPa;1Tða;2Þij CrP1;aTð2;aÞij CrPa;nTða;nK1Þij CPn;aTðnK1;aÞijg;

ð6:15Þ

where T(a, b)ij is the expected number of times the state (a, b) is visited given that
the initial state is (i, j ). By Miller (1994, eqn (4.3)),

Tða;bÞij Z rðiKaKjCbÞ=2f ðaK1; bK1; iK1; j K 1Þ; ð6:16Þ

where

f ða; b; i; jÞZ 4

ðnK1Þ2
XnK2

k;sZ1

sin ikp
nK1

� �
sin akp

nK1

� �
sin bsp

nK1

� �
sin jsp

nK1

� �
1K

ffiffi
r

p

rC1 cos kp
nK1

� �
Ccos sp

nK1

� �� 	 :

Note that

f ða; b; j; jÞZ f ðb; a; j; jÞ: ð6:17Þ

(e ) Fictitious boundary conditions

It should be noted that in this section we are not dealing with the fixation
probabilities as such, but rather finding methods of solving an arbitrary set of
equations. Thus, we will have expressions in terms that resemble probabilities,
though they are not so (e.g. Pi, j where iOj ), which have negative solutions.
These solutions, however, obey the correct transition equations and have the
correct boundary conditions for the region of interest.

Figure 5. States of a dynamics on a line with nC1Z6 vertices (below the ‘stairs’). The larger
rectangle represents where the dynamics will be extended in §6d. The dotted arrows represent
fictional transitions that will be used for the extension. The states on the boundary of the larger
rectangle are absorbing states of the fictional extension. The smaller rectangle shows the states
where the transitions depend only on the direction and not on the actual state. The black circles
represent mutants. The lines with grey circles represent the fictional states (i, j ) for j!i.

M. Broom and J. Rychtář2620
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In this section, we give the fictitious boundary conditions for the random walk
on the whole square. So far, in §6c we have equations for P1,a and Pa,n for all
1%a%n. We need to calculate Pa,1 and Pn,a. By (6.1) and (6.15)–(6.17)

0ZPj; j

Z
1

2ðr C1Þ
XnK1

aZ2

ff ða; 2; j; jÞ½Pa;1r
ð2KaÞ=2 CP1;ar

a=2�

C f ða; nK1; j; jÞ½Pa;nr
ðnC1KaÞ=2CPn;ar

ðaC1KnÞ=2�g:
The above can be true if

Pa;1r
ð2KaÞ=2CP1;ar

a=2 Z 0;

Pa;nr
ðnC1KaÞ=2 CPn;ar

ðaC1KnÞ=2 Z 0:

This implies that

Pa;1 ZKraK1P1;a;

Pn;a ZKrnKaPa;n:

(f ) Reduction to n equations

Denote

d i; j
x; y Z f ðx; y; i; jÞKf ðy; x; i; jÞ:

Consequently, by (6.10), (6.15) and (6.16),

Pi; j Z
r ðiKjÞ=2

2ðr C1Þ
XnK1

aZ2

P1;ar
a=2d i; j

2;a CPa;nr
ðnC1KaÞ=2d i; j

a;nK1

n o

Z
r ðiKjÞ=2

2ðr C1Þ
XnK1

aZ2

P1;ar
a=2d i; j

2;a CP1;nKaC1r
ðnC1KaÞ=2d i; j

a;nK1

n o
: ð6:18Þ

Referring back to (6.13) and (6.14), this gives us the following linear
simultaneous equations in the probabilities P1, j, 2%j%nK1 and P1,n,

r

2
P0; j ZK

r ð2KjÞ=2

2ðr C1Þ
XnK1

aZ2

P1;ar
a=2d 2; j

2;a CP1;nKaC1r
ðnC1KaÞ=2d 2; j

a;nK1

n o

K
r

2
P1; jC1C rC

3

2

� �
P1; jK

1

2
P1; jK1;

rP0;n Z ðrC2ÞP1;nK2P1;nK1:

After solving the above system for P1,k, we can reconstruct Pi, j for all i, j by
(6.18). The fixation probability for a line is then given by

P½fix�Z 1

nC1

Xn
iZ0

Pi;iC1: ð6:19Þ
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7. A comparison between line and circle with a numerical example

Using the above equations, we can find the fixation probabilities for any given
position, and thus the overall fixation probability for a line for a particular case.
A circle is a regular graph and hence by theorem 3.1 it has the Moran fixation
probability. In general, the fixation probability of a random mutant is greater on
a line than on a circle for mutants that are fitter than the residents rO1 and is
less on a line for mutants that are less fit. In figure 6, we can see how the average
fixation probability for a line decreases as the number of vertices increases. The
decrease is much steeper for r!1. For any r, the average fixation probability for
a line approaches the Moran probability (demonstrated in figure 7). If rO1, the
fixation probability for a line is greater than the fixation probability for
the Moran process and it is smaller otherwise. Figure 8 shows how the absolute
and relative differences change as r changes from 0 to larger numbers. The
absolute difference is at its largest for mutants that are advantageous, but not
overwhelmingly so. This is reasonable as these have an intermediate probability
of fixation and so structural changes have the greatest possibility of altering this
probability. Highly advantageous mutants are likely to achieve fixation whatever
the structure, and non-advantageous ones are unlikely to do so (note that the
large relative difference for small r in figure 8b corresponds to a very small
fixation probability in each case). The dependence of the difference between a
line and a circle on r is more or less the same for other n as the one shown for a
line with nC1Z10 vertices.

Why is the mutant fitter on a line than a circle if and only if rO1? The key
reason for this is related to the behaviour at the end vertices. The fixation
probabilities for a mutant placed into a specific vertex are given in figure 9. The
end vertices 0 and n have the highest fixation probability—because the only way
the mutant can go extinct is by being replaced by a resident from vertex 1 or
nK1. But even if a resident at 1 or nK1 is selected for reproduction, it has only a
50% chance (if nC1O3) of placing its offspring in the corner.

There is a steep drop in fixation probabilities for the vertex adjacent to the
corner, 1 or nK1, since a mutant placed at 1 has a very high chance of being
replaced by a resident from 0 (which, if selected has to place its offspring at 1).

As a vertex gets closer to the middle of the line, then the fixation probability
increases if rO1, and decreases if r!1. If rO1, then when the line is sufficiently
long, the vertices close to the middle have approximately the same fixation
probability as given by the formula for the Moran process. Generally, the higher
the value of r, the shorter the line can be to have the central vertices equivalent
to the corresponding Moran process. In other words, the higher the r, the shorter
is the range of the effect of the corner endpoint. Being near the centre can be
thought of as equivalent to being in a circle; for an advantageous mutant once it
has spread to be next to the corner (the first time it is influenced by the corner),
it is likely that there will be many mutants and fixation will be almost assured.
Usually advantageous mutants are eliminated early, due to bad luck, and so the
corners do not affect the fixation probability of such mutants much (and hence
the larger r, the stronger this effect).

However, this is not true for the case r!1. This is an interesting qualitative
distinction between r!1 and rO1, and occurs because non-advantageous
mutants are unlikely to reach fixation unless by chance they reach a large
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proportion of the population, and so the corner will influence their fixation
probability no matter where they start. In fact, securing a corner position seems
important for their eventual survival, so being near a corner is better than being
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Figure 6. Dependence of the average fixation probability for a line on the number of vertices (nC1)
in the line; (a) rZ1.1 and (b) rZ0.9.
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in the centre, even though this means that very early removal is more likely
(the non-advantageous mutant needs to be lucky to reach fixation).

A similar pattern holds for larger groups of mutants on the line. Figure 10
shows the situation once a small group of mutants has been established,
comparing the fixation probabilities for such a configuration of several mutants
in their different possible positions.
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Figure 8. The difference between the average fixation probability for a line and for a circle (Moran
process) when there are 10 vertices; (a) absolute difference (line–circle) and (b) relative difference
((line–circle)/circle).
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Proc. R. Soc. A (2008)

 on March 2, 2015http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


Any ‘middle’ configuration of k mutants has approximately the same fixation
probability. The corner configuration has a probability equivalent to having one
more vertex in a non-corner position; the reason for this relates to the fact that
the fixation probability of a corner mutant is approximately twice that of its
neighbour for mutants whose fitness is close to that of the residents. This is true
for various line lengths and numbers of mutants (note that this approximation
becomes less good as the number of mutants increases, and the fixation
probability becomes high).

8. Discussion

In this paper, we have considered the use of evolutionary dynamics on graphs
popularized by Lieberman et al. (2005). We have found an analytic way, using
the work of Miller (1994), to obtain the fixation probability of mutant
populations for one particular type of graph, a line. We cannot find explicit
functional forms, but rather a set of N simultaneous linear equations, where N is
the population size, which need to be solved and then yield the probability of
fixation in any allowable situation. This is a significant saving on the order of N2

equations derived directly by considering the transition probabilities between the
states of our system.

We have used our solutions to consider various examples and explore the
relationship between the fixation probability of a mutant on the circle, given by
the Moran probability, and the fixation probability on the line, both the average
of such probability and its value for given starting positions. We find that for
mutants that are fitter than the resident population, the fixation probability on
the line is larger than on the circle. There is also an interesting pattern in the
fixation probability for the different starting positions on the line. The best place
for a mutant to start is always in the corner. For advantageous mutants, the
place next to the corner is the worst and fixation probabilities increase towards
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Figure 10. Fixation probabilities at vertices in a line with nC1 vertices. Circles, single mutant
present; diamonds, two mutants present in neighbouring vertices; boxes, three mutants present in
neighbouring vertices. (a) rZ0.9, nC1Z10 and (b) rZ1.1, nC1Z10. The horizontal lines
correspond to the level of the Moran process fixation probabilities when 1, 2 or 3 mutants are
present in the population.
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the central positions. For mutants that are not advantageous, the further from
the corner they are, the worse the position they are in. It should be noted that the
probability of fixation for non-advantageous mutants for graphs with more than
a small number of vertices is generally low, thus the results for advantageous
mutations are more interesting.

In §4 we show that for more complex graphs (which are the vast majority of
graphs not of our linear type), almost all system states are reachable from almost
all others, and so the number of equations generated by considering the
transition probabilities is not of the order of N2 but much larger. For some graphs
with a lot of symmetry, the number of equations can be reduced considerably,
and in §5 we analyse one such well-known case, the star, to produce an exact
solution for the fixation probability of a mutant. However, graphs that can be
solved in this way are special cases and the approaches that we take here for a
line or a star will be hard to take elsewhere. Thus, it is probable that we will have
to resort to more numerical methods, as in Santos et al. (2006), Paley et al.
(2007) and Rychtář & Stadler (2008).

However, to gain an insight into the deeper aspects of the problem and the
effect of various structures, analysis is useful, and in future work we intend to use
approximation methods to investigate this. This has the benefit of extending to
larger more complex graphical systems, such as the small-world networks of
Bollobas & Chung (1988; see also Watts & Strogatz 1998; Newman & Watts
1999; Newman et al. 2006; Durrett 2007). Small-world graphs are regular in form
with most vertices unconnected, but with a few added random connections that
generally make the path length between any two vertices short.

In summary, in this paper, we have found analytic solutions for the mutant
fixation probabilities of important classes of graphs, used these solutions to gain
further understanding of the underlying processes on graphs in general and also
demonstrated the practical limitations to extending our methods. We have thus
taken a small step in our journey towards understanding the complex nature of
evolutionary dynamics on graphs.

The research was supported by EPSRC grant EP/E043402/1 and by NSF 0634182.
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ADDENDUM

Two results on evolutionary processes on
general non-directed graphs

Keywords: evolutionary dynamics; random drift; Markov chain; irregular graphs

1. Introduction

The paper Broom & Rychtář (2008) analytically investigated the probability
for mutants to fixate in an otherwise uniform population on two types of
heterogeneous graphs (lines and stars) by evolutionary dynamics. The main
motivation for concentrating on those two types of graphs only was the potentially
exponential size of the system of linear equations (see equation (1.1) below)
yielding the fixation probability on general heterogeneous graphs. The size of
the system was given by formula (4.1) from Broom & Rychtář (2008). It turns
out that formula (4.1) is in fact only a lower bound for the size of the system
and in this paper we correct this by deriving a formula for the exact size of the
system (1.1). We also solve the system (1.1) for general heterogeneous graphs in
the case of random drift.

Let G = (V , E) be an undirected graph, where V is the set of vertices and E is
the set of edges. We assume that the graph is finite, connected and simple, i.e. no
vertex is connected to itself and there are no parallel edges. The graph structure
is represented by a matrix W = (wij), where

wij =
{

d−1
i , if i and j are connected,

0, otherwise,

where di is the degree of the vertex i, i.e. the number of edges incident to the
vertex i.

The evolutionary dynamics on graphs is described, e.g. in Lieberman et al.
(2005) and is treated as a discrete time Markov chain. At the beginning,
a vertex is chosen at random and replaced by a mutant with fitness r , all
remaining vertices having fitness 1. At subsequent steps, a randomly chosen
individual replicates with a probability proportional to its fitness and its offspring
replaces an individual at a randomly chosen neighbouring vertex. The process
stops when there are no mutants or no resident individuals in the graph. Each
state of the dynamics is described by a set C ⊆ V , a set of vertices inhabited
by mutants.
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Let PC denote the probability of mutant fixation given that mutants currently
inhabit a set C . The rules of the dynamics yield (Lieberman et al. 2005; Broom &
Rychtář 2008)

PC =
∑

i∈C
∑

j �∈C (rwijPC∪{j} + wjiPC\{i})∑
i∈C

∑
j �∈C

(
rwij + wji

) (1.1)

with P∅ = 0 and PV = 1. This system has a unique solution following Broom &
Rychtář (2008).

For what classes of graphs can the system (1.1) be solved explicitly? Lieberman
et al. (2005) solved it for regular graphs (where di takes a constant value
independent of i, so that wij = wji). Broom & Rychtář (2008) solved it for stars
and significantly reduced the size of the system for lines. Below, we shall solve the
system for general graphs and r = 1, but first we consider the size of the system.

2. The number of mutant–resident formations

At every vertex of a graph G, there can be either a resident or a mutant; and
thus there are up to 2|V | potential mutant–resident formations or patterns. Let
a mutant–resident formation be represented by a function m : V �→ {0, 1} (0 for
resident, 1 for mutant).

The (finite) automorphism group Aut(G) of the graph G acts on a set of
formations M = {m : V �→ {0, 1}} by

(f ◦ m)(v) = m(f −1(v)) (2.1)

for every vertex v whenever f ∈ Aut(G), m ∈ M . We say that two formations
m and m′ are equivalent, if there is an automorphism f such that m′ = f ◦ m
(and thus m = f −1 ◦ m′). The number of unknowns in the system (1.1) is equal
to the number of equivalence classes of mutant–resident formations |M/Aut(G)|.
Burnside’s orbit counting theorem (Tucker 1994) yields

|M/Aut(G)| = 1
|Aut(G)|

⎛
⎝ ∑

f ∈Aut(G)

|Mf |
⎞
⎠ (2.2)

where |Mf | denotes the number of the elements of M fixed by f .
It is easy to see that if f is any permutation of vertices (this includes any

automorphism of the graph), then f ◦ m = m exactly for those m that are constant
on the cycles of permutation f . Hence, if C (f ) denotes the number of cycles of
a permutation f (fixed points—as elements of V—of the permutation f count as
one cycle), then every automorphism f fixes exactly 2C (f ) formations m because
one can have only all 0’s or all 1’s on every cycle of f . Thus, the total count
of equivalence classes of m and thus the number of mutant–resident formations,
MRF(G), is given by

MRF(G) = 1
|Aut(G)|

⎛
⎝ ∑

f ∈Aut(G)

2C (f )

⎞
⎠. (2.3)
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Consequently, as the number given by formula (2.3) is at least as large as the
number given by formula (4.1) from Broom & Rychtář (2008), the main point of
that paper is still valid as formula (4.1) was shown to emphasize the large size of
the system (1.1) in a general heterogeneous graph.

3. Random drift, the case when r = 1

For the case of random drift, r = 1, the solution of equation (1.1) is given by

PC =
∑

i∈C di
−1∑

k∈V dk
−1 , (3.1)

which can be checked by direct substitution. To derive the formula (3.1), assume
that, for disjoint sets C , D ⊂ V ,

PC∪D = PC + PD. (3.2)

By equation (3.2), the system (1.1) is equivalent to∑
i∈C

∑
j �∈C

wjiP{i} =
∑
i∈C

∑
j �∈C

wijP{j},

which is satisfied if, for all i, j ,

wjiP{i} = wijP{j}.

Consequently, whenever vertices i and j are connected,

P{i}
P{j}

= dj

di
. (3.3)

As the graph is connected, the repeated application of equation (3.3) along a path
between any two vertices i, j shows that equation (3.3) holds even when i, j are
not connected by an edge. As, by equations (3.2) and (3.3),

1 = PV =
∑
j∈V

P{j} = P{i}
∑
j∈V

di

dj
, (3.4)

we get

P{i} =
(∑

k∈V

di

dk

)−1

. (3.5)

The formula (3.1) then follows from equations (3.5) and (3.2). The assumptions
(3.2) and (3.3) can now be justified by the uniqueness of the solution of the system
(1.1). Note that equation (3.2) cannot hold for general r . For example, if r is very
large, PC∪D ≈ PC ≈ PD ≈ 1 which violates equation (3.2). Yet, as shown above,
equation (3.2) holds when r = 1.
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4. Discussion

The two results that we have presented apply for general graphs. Previous
analytical papers, including Broom & Rychtář (2008), only consider very special
graphs. The large size of the system of equations (1.1) makes it very difficult
to find analytical results in the general case, of which equation (3.1) is a very
special example. In fact, equation (2.3) is very useful in considering whether an
analytical approach should be made, as the larger the value of MRF(G) the more
difficult the system of equations is to deal with in general. Two of the simplest
graphs that have received the most attention so far, the complete graph and the
star, have values of MRF(G) of |V | + 1 and 2|V |, respectively. Interestingly, the
circle and the line, which have also been investigated, have much larger values of
MRF(G), but many states cannot be accessed from the initial state of a single
mutant (it was shown in Broom & Rychtář (2008) that these were the only graphs
for which this was true).
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