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Abstract

Substantial genetic liability is shared across psychiatric disorders but less is known about risk variants that are specific to a

given disorder. We used multi-trait conditional and joint analysis (mtCOJO) to adjust GWAS summary statistics of one

disorder for the effects of genetically correlated traits to identify putative disorder-specific SNP associations. We applied

mtCOJO to summary statistics for five psychiatric disorders from the Psychiatric Genomics Consortium—schizophrenia

(SCZ), bipolar disorder (BIP), major depression (MD), attention-deficit hyperactivity disorder (ADHD) and autism (AUT).

Most genome-wide significant variants for these disorders had evidence of pleiotropy (i.e., impact on multiple psychiatric

disorders) and hence have reduced mtCOJO conditional effect sizes. However, subsets of genome-wide significant variants

had larger conditional effect sizes consistent with disorder-specific effects: 15 of 130 genome-wide significant variants for

schizophrenia, 5 of 40 for major depression, 3 of 11 for ADHD and 1 of 2 for autism. We show that decreased expression of

VPS29 in the brain may increase risk to SCZ only and increased expression of CSE1L is associated with SCZ and MD, but

not with BIP. Likewise, decreased expression of PCDHA7 in the brain is linked to increased risk of MD but decreased risk of

SCZ and BIP.

Introduction

Pervasive sharing of genetic risk factors between common

psychiatric disorders (i.e., pleiotropy) has now been unequi-

vocably demonstrated from genome-wide association studies

(GWAS), as quantified by estimates of genetic correlation (rg)

[1, 2]. The rg estimates are highest between schizophrenia

(SCZ) and bipolar disorder (BIP) (0.67, standard error

(s.e.)= 0.03) but are >0.15 for any combination of the five

common disorders of SCZ, BIP, ADHD, major depression

(MD) and autism spectrum disorders (AUT) [2, 3]. Cross-

diagnosis analyses can leverage power to identify genetic risk

loci shared across classical diagnostic boundaries [4] and can

increase power for risk prediction of disorders in independent

samples [5, 6]. The shared genetic basis for psychiatric dis-

orders contributes to an evidence base supporting a trans-

diagnostic approach in clinical practice [7]. Nonetheless, tra-

ditional diagnostic classes reflect real symptom differences at

patient presentation even though it can be difficult to classify

some individuals given a high degree of concurrent and

longitudinal comordibity. Since rg estimates are higher

between data sets of the same disorder than between data sets

of different disorders [4, 8], it implies some real biological

basis to the classical diagnostic classes. Hence, a key question

of importance in psychiatry is identification of genetic factors

that are disorder-specific rather than those shared across
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classical diagnostic groupings. Identifying such variants could

aid in understanding the biological pathways that underlie the

constellation of symptoms seen in each disorder.

One method for identifying disorder-specific variants is

to conduct a case–case GWAS with cases of one disorder

compared with cases of another. The SCZ/BIP working

group of the Psychiatric Genomics Consortium (PGC)

conducted an association analysis comparing in logistic

regression SCZ (N= 23,585) vs. BIP (N= 15,270) cases to

identify variants specific to each disorder. The cases were

matched on ancestry and genotyping platform, hence the

sample sizes were smaller than those available for

the disorder-specific GWAS, which limits the statistical

power. Conducting such analysis requires access to the raw

genotypes, which is not always feasible for all cohorts due

to privacy laws. Methods that use summary statistics can

utilise larger sample sizes without the need to provide

access to raw data to researchers. In addition, case–case

GWAS can identify differences between pairs of disorders

[9], but does not generalise to the multivariate space to

identify SNPs primarily associated one disorder.

We conditioned the effect of SNPs estimated for one

disorder on those of other disorders using multi-trait, con-

ditional and joint analysis (mtCOJO) [10], a summary-

statistics-based method that accounts for overlap in samples

contributing to the disorder-specific GWAS. We report

results from conditional analyses of five psychiatric dis-

orders: SCZ, BIP, MD, ADHD and AUT using association

summary statistics from meta-analyses conducted by the

PGC including data from 23andMe. Each disorder is con-

ditioned on the other four disorders in one model.

Methods

We applied the mtCOJO method as described in Zhu et al.

[10]. This method approximates a conditional analysis where

the effect of a SNP on a disease is conditioned upon the

covariates of the disease, but only requires summary statistics

as input. As an example, if we are interested in estimating the

effect of a SNP (z) on risk to SCZ (y) accounting for the effect

of a covarying factor such as bipolar (x), we condition upon

the effect of bipolar on SCZ b̂xy, as estimated using gen-

eralised summary-based Mendelian randomisation (GSMR).

This can be extended to condition upon multiple covarying

diseases so that the effect of the SNP on risk on the disorder

of interest is estimated conditional upon the covariates on the

disorder (see Supplementary Material for detailed description

of the method).

To identify independent genome-wide significant (GWS)

SNPs for use as genetic instruments in mtCOJO analysis,

each data set was clumped to select independent GWS

SNPs (p < 5 × 10−8) using 7762 unrelated individuals

from the Atherosclerosis Risk In Community (ARIC) data

set [11], imputed to 1000 Genomes Phase III as a

Linkage Disequlibrium (LD) reference sample. GWS SNPs

more than 1MB apart or with an r2 value < 0.05 were

considered to be independent. GSMR accounts for any

remaining LD between instruments. GSMR analysis with

filtering to remove SNPs with outlier pleiotropic effects

(compared with other GWS SNPs) using the HEIDI test

[12] was performed with each disorder included both as an

exposure and an outcome in combination with the other

disorders. Owing to having fewer than ten independent

GWS SNPs, independent SNPs significant at p < 10−7 were

used for GSMR analysis with autism as the exposure vari-

able. In order to compare the estimated effects of one dis-

order on another from MR, we derived a conversion of the

estimated effects from GSMR to the liability scale

(see Supplementary Material, Supplementary Fig. 1).

We performed mtCOJO analysis (implemented in GCTA

[13] (http://cnsgenomics.com/software/gcta/#mtCOJO) of

five genetically correlated psychiatric disorders using the

results from large GWAS from the Psychiatric GWAS

consortium (Table 1), running the analysis in turn with each

disorder as the outcome with the other disorders as cov-

ariates. A total of 5,275,400 SNPs with matching alleles that

were in common across the five disorders were used for

further analysis. Indels were excluded from the analysis.

For each disorder, SNP effects conditional upon the other

disorders were calculated. Results were uploaded to FUMA

for annotation [14]. Ranking SNPs according to the dif-

ference between the marginal and conditional effect sizes

for each disorder is not necessarily meaningful because, for

example, a SNP that has a low estimated marginal effect, so

no effect on the outcome trait, will have a large conditional

effect if the SNP has a large effect on the covariate traits.

For the purposes of identifying which SNPs show evidence

of disorder specificity, we focus on presenting results for

SNPs that were GWS with the outcome disorder in the

original GWAS. We further estimated whether the differ-

ence between the conditional and raw effect size of each

SNP was significant (Supplementary Material).

MAGMA gene-set analysis

MAGMA gene-set analysis [15] as implemented in FUMA

was used to investigate which sets of biologically related

genes show the strongest evidence of association in the

conditional analyses.

Genetic correlation

LD-score regression [16] was used to estimate the genetic

correlation between the conditional and unadjusted GWAS

results.

E. M. Byrne et al.

http://cnsgenomics.com/software/gcta/#mtCOJO


Summary-data-based Mendelian randomisation

To investigate the potential functional relevance of SNPs

with disorder-specific effects, we applied the SMR

approach [12], integrating eQTL (SNP-gene expression

association) and mQTL (SNP-DNA methylation associa-

tion) to the results from the conditional analyses. eQTL

data from brain tissue were derived from a meta-analysis

of the GTEx study, the Common Mind Consortium and

the Religious Orders Study and Memory and Aging Pro-

ject (ROSMAP). The details of the meta-analysis have

been described elsewhere [17]. Using meta-analysis

results across brain tissues and studies is justified owing

to the high correlation in effect sizes between tissues [17].

Only genes with a cis-eQTL with peQTL < 5 × 10−8 were

included in the analysis. Experiment-wide significance

accounting for testing multiple SNPs across multiple traits

was set at pSMR= 1.9 × 10−06 and the threshold for no

evidence of heterogeneity due to pleiotropy at pHEIDI >

0.01. Individual-level genotypes from the ARIC data (n=

7762 unrelated individuals) [11] were used to estimate LD

for the HEIDI test.

To test for the effects of disorder-specific variants on

DNA methylation, we used SMR to integrating trait asso-

ciation data with meta-analysed brain mQTL data set from

Jaffe et al. (n= 526) ROSMAP (n= 486) and foetal brain

mQTL data from Hannon et al. [18]. Only probes with at

least one cis-mQTL with p < 5 × 10−8 were included in the

SMR analysis. Probes that passed the significance threshold

of 1.56 × 10−7 and did not show evidence of heterogeneity

as indicated by the HEIDI test were considered to be

significant.

Cell-type specificity for disorders

To gain insight into the cell types that are important for each

disorder, we evaluated whether genes associated with spe-

cific brain cell types are enriched for association with each

of the disorders. Using data from single-cell sequencing

experiments in mice, the cell-type specificity of each gene

was calculated by comparing the expression of a gene in a

given cell-type to that across all cell types [19]. MAGMA

was used to calculate gene-based association statistics and

to evaluate whether genes with high specificity in a given

cell-type are enriched for association with a disorder. The

enrichment analysis was performed for both unadjusted and

conditional GWAS for all five disorders. To investigate

whether there was a significant change in the cell-type

enrichment after conditioning, MAGMA analysis was per-

formed using the enrichment Z-scores from the unadjusted

GWAS as covariates in the analysis and a conditional

enrichment for all level-1 cell types analysed in Skene et al.

[19] was estimated.T
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Results

Baseline statistics

After merging GWAS summary statistics for the five psy-

chiatric disorders 5,275,400 autosomal SNPs remained

(Table 1). The number of independent GWS SNPs annotated

by FUMA [14] is much greater for SCZ (M= 130) compared

with the other disorders (M= 16, 40, 11 and 2 for BIP, MD,

ADHD and AUT, respectively) reflecting mostly sample size,

but also genetic architecture and population risk. Linkage

disequilibrium score regression estimates of SNP-based her-

itability on the liability scale and genetic correlations were all

significantly different from zero (Table 2). Genetic correla-

tions were highest between SCZ and BIP (rg= 0.67 (s.e.=

0.03)) and lowest between BIP and ADHD (rg= 0.15 (s.e.=

0.04)). The LD-score regression intercept was significantly >0

for the majority of pairs of disorders reflecting sample overlap

in the GWAS studies. The intercept was highest between

ADHD and AUT due to substantial overlap in controls.

See Supplementary Material for discussion of interpretation of

results in the context of sample overlap.

The GSMR analyses highlights some asymmetries in the

estimates of the causal effects of one disorder on another

(Table 3). In particular, the estimated liability b̂xy when

considering MD as an exposure for each trait is higher than

the estimates in the reverse direction. One explanation is

that since MD is so common and is frequently comorbid

with other disorders that MD samples include those diag-

nosed and undiagnosed with other disorders. However, if

model assumptions are violated it may have greater impact

when there is a large difference in lifetime risk between the

pairs of disorder. However, countering this, we find a higher

b̂xy from AUT to ADHD than from ADHD to AUT, but the

s.e.'s on estimates are much higher for these disorders.

Interpretation of these b̂xy estimates depends on the nature

of the shared genetic contributions to psychiatric disorders

that may reflect a complex mix of types of pleiotropy, where

some sets of shared variants may have more correlated

effect sizes than other sets of shared variants.

Changes in genetic correlation

The impact of the conditioning is demonstrated by the

changes in the estimates of brg comparing original and

conditional GWAS results. The brg between SCZ conditional

on the other disorders (denoted SCZcond) and SCZ remained

high at 0.93, while between SCZcond and BIP it was much

reduced (from 0.67 prior to conditioning to 0.36, after

conditioning). It is noted that bzy is eliminated in the con-

ditional analysis only if the SNP effect is mediated by trait

x. Therefore, there is remaining genetic correlation because

of pleiotropic SNP effects. A similar pattern of changes in

genetic correlation with other traits was seen for the ana-

lyses with the other disorders as the outcome variable

(Supplementary Table 1).

mtCOJO GWS SNP results

As expected because of pleiotropy between disorders,

conditional analysis leads to a reduction in the mean test

statistic across all SNPs in the genome and hence the

number of independent SNPs reaching the significance

threshold (5 × 10−8) is reduced (Table 1). For each disorder,

we present results for all independent SNPs significant in

the unadjusted analysis or the conditional analysis (Sup-

plementary Table 2). GWS SNPs that are more significantly

associated in the conditional analysis than the unadjusted

analysis are shown in Table 4. A larger conditional effect

size suggests that these variants are disorder-specific or

have heterogeneous effects across disorders.

Given that SCZ is the disorder with the largest number of

significant SNPs and for which the power to detect changes

in effects is largest, we focus mostly on the results from the

SCZ conditional analysis. Of the 130 SNPs from the

unadjusted SCZ GWAS, five were more significant after

adjusting for the other disorders (all of which had opposite

direction of effects for BIP—Supplementary Table 2) and a

further eight had a larger estimated effect size after con-

ditioning. Forest plots for the four most significant SCZ

SNPs from the conditional analysis (two of which were

Table 2 Estimated SNP-based

heritability on the liability scale,

genetic correlation and LD-score

intercepts estimated from LD-

score regression.

SCZ BIP MDD ADHD AUT

SCZ 0.23 (0.01) 0.21 (0.01) 0.03 (0.01) 0.02 (0.01) 0.008 (0.01)

BIP 0.67 (0.02) 0.19 (0.01) 0.05 (0.007) 0.03 (0.006) 0.009 (0.008)

MD 0.36 (0.02) 0.35 (0.02) 0.08 (0.004) 0.10 (0.008) 0.09 (0.008)

ADHD 0.18 (0.03) 0.15 (0.04) 0.43 (0.03) 0.22 (0.01) 0.35 (0.008)

AUT 0.23 (0.05) 0.15 (0.05) 0.43 (0.04) 0.36 (0.05) 0.12 (0.01)

LD-score SNP-based heritability on the liability scale and standard error reported on diagonal.

rg and standard error reported below the diagonal.

Bivariate LDSC intercept reported above the diagonal. Value significantly >0 (in italics) quantifies sample

overlap.

E. M. Byrne et al.



associated p < 5 × 10−8 in the unadjusted analysis) are

shown in Fig. 1.

For all disorders except for AUT, a number of SNPs

surpass the significance threshold that were not significant

in the original GWAS. For SCZ, ten SNPs that were sig-

nificant in the conditional analysis and not in the original

GWAS (Table 4). All ten SNPs have opposite effects for

BIP, so that the allele that predisposes to SCZ is in the

protective direction for BIP. Although these opposite effects

could be due to ascertainment, among them are variants in

or near genes with annotated biological functions that are

potentially relevant for SCZ. For instance a SNP that was

significant in the conditional analysis (rs2973038—padj=

1.28 × 10−08; pscz= 1.72 × 10−06) is located in the glial cell-

derived neurotrophic factor (GDNF), a gene that encodes a

protein that enhances the survival of midbrain dopaminergic

neurons [20], and is expressed during development [21].

All SNPs that were associated with BIP at p < 5 × 10−8 in

the original GWAS were less significant in the conditional

analysis, showing evidence that they have some pleiotropic

effect across disorders. Notably, this includes genes

involved in calcium signalling, dopaminergic signalling and

synaptic plasticity, indicating these processes may be

important across psychiatric disorders. Three SNPs that

were not significant in the BIP GWAS were significant in

the conditional analysis (Table 4, Supplementary Table 2

and Supplementary Fig. 2).

For each of the remaining disorders (MD, ADHD and

AUT), we found that a small proportion of the existing sig-

nificant SNPs had larger conditional effect sizes and one MD

SNP and two ADHD SNPs that were not significant in the

original GWAS became significant after conditioning

(Table 4 and Supplementary Table 2). However the difference

in effect size after conditioning is not statistically significant

for these SNPs, due to low statistical power (Supplementary

Table 2). Forest plots for significant SNPs that had increased

conditional effect sizes are shown in Supplementary Figs. 3–5

SMR analysis

Changes in the expression of nine genes were significantly

associated with the five disorders (0 for BIP, 5 for SCZ, 3

for MD and 1 for ADHD, 0 for AUT) after conditioning and

removal of genes in the MHC (Supplementary Tables 3, 4),

and a total of 72 DNA methylation sites (2 for BIP, 18 for

SCZ, 37 for MD, 8 for ADHD and 6 for AUT) were sig-

nificantly associated with the five conditional traits (Sup-

plementary Tables 3, 4).

Significant SMR results for gene expression where the

associated SNP is more significant in the conditional ana-

lysis are presented in Supplementary Table 3. Three out of

five significant SMR associations for SCZ were with SNPs

where the conditional significance was greater than in the

unadjusted analysis. One SNP—rs3759384—is associated

Table 3 GSMR estimates of

causal effect of each psychiatric

disorder on the others with

conversion to the log odds ratio

and liability scales.

Exposure Outcome N SNPs bxy bxy_se bxy_liability OR bxy_pval

SCZ BIP 111 0.417 0.019 0.417 3.06 5.0E− 109

SCZ MD 111 0.074 0.007 0.109 1.22 4.9E− 26

SCZ ADHD 111 0.054 0.019 0.066 1.16 5.2E− 03

SCZ AUT 111 0.144 0.019 0.144 1.47 2.9E− 09

BIP SCZ 16 0.498 0.039 0.498 3.82 1.6E− 37

BIP MD 16 0.091 0.016 0.134 1.28 2.0E− 08

BIP ADHD 16 0.028 0.043 0.034 1.08 5.2E− 01

BIP AUT 16 0.123 0.046 0.123 1.39 7.4E− 03

MD SCZ 40 0.414 0.059 0.281 2.13 2.7E− 12

MD BIP 40 0.600 0.068 0.408 2.97 1.1E− 18

MD ADHD 40 0.402 0.072 0.339 2.09 2.9E− 08

MD AUT 40 0.463 0.078 0.314 2.33 3.7E− 11

ADHD BIP 13 0.135 0.052 0.109 1.34 8.9E− 03

ADHD MD 13 0.086 0.019 0.102 1.21 9.1E− 06

ADHD SCZ 13 0.156 0.043 0.126 1.40 2.8E− 04

ADHD AUT 11 0.333 0.060 0.269 2.06 2.9E− 08

AUT* SCZ 11 0.063 0.041 0.063 1.19 1.3E− 01

AUT* BIP 11 0.053 0.057 0.053 1.15 2.9E− 01

AUT* MD 11 0.011 0.021 0.016 1.03 5.9E− 01

AUT* ADHD 11 0.413 0.062 0.512 3.03 3.60E− 11

*Estimates using autism as the exposure used instruments with p < 10E− 06 due to lack of genome-wide

significant SNPs for autism.
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with decreased expression of VPS29 in the brain and sig-

nificantly increased risk for SCZ in the unadjusted analysis

and has a larger conditional effect size (Supplementary

Fig. 6), indicating that VPS29 may be linked to the devel-

opment of SCZ and not other disorders. The VPS29 protein

is a component of the retromer complex that prevents the

degradation of certain proteins including signalling recep-

tors, ion channels and small molecule transporters. The

complex is essential for maintenance of neurons and has

been implicated in the aetiology of a number of neurode-

generative disorders [22].

One of the three associations for MD was with a SNP

(rs7732179) with greater significance in the conditional ana-

lysis. The same variant shows evidence of association with

SCZ but with opposite directions of effect (bSCZ=−0.045;

pSCZ= 1.7 × 10−6 and bBIP=−0.029; pBIP= 0.027). The A

allele confers risk to MDD but is protective for SCZ and BIP

(Supplementary Fig. 7). The SNP is associated with expres-

sion of PCDHA7 in the brain. This gene encodes a member of

the protocadherin family of genes located together on

chromosome 5. A significant association was also found in

this region in the DNA methylation analysis of MD. Little is

known about the exact function of these genes, however they

are concentrated at the synaptic junction suggesting a key role

in neuronal signalling [23].

Out of 72 significant DNA methylation sites, 34 were

associated with SNPs with higher significance in the con-

ditional analyses (1 for BIP, 3 for SCZ, 21 for MD, 4 for

ADHD and 5 for AUT) (Supplementary Table 3). It is

noteworthy that one variant (rs2064853) was significantly

associated with both SCZ and MD and DNA methylation

near the CSE1L gene, but with opposite alleles increasing

risk to each disorder (Supplementary Fig. 8).

We investigated whether genes identified in the gene

expression SMR or that are the closest gene to a significant

methylation site are the primary target for FDA-approved

drugs. We identified two genes that are targeted by medi-

cations. The serotonin receptor gene HTR1D, which was

identified in the DNA methylation analysis for MD, is the

primary target of the migraine drug naratriptan. Individuals
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Fig. 1 Forest plots for the four most significant SNPs in SCZ mtCOJO analysis with larger conditional effect sizes. SCZ_cond = effect size

from schizophrenia conditional analysis. SCZ = effect size from schizophrenia GWAS. BIP = effect size from bipolar GWAS. MDD = effect size

from major depression GWAS. ADHD = effect size from ADHD GWAS. AUT = effect size from autism GWAS.
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with migraine are at 2–4-fold higher risk of developing

depression and these results may suggest that triptans, used

to treat migraines, could also be effective for MD.

The second drug target identified is with MPL and

ADHD. This gene is targeted by romiplostim, an orphan

drug developed for treatment of chronic idiopathic throm-

bocytopenic purpura.

MAGMA gene-set analyses

We conducted MAGMA gene-set analysis in FUMA to

identify pathways and gene sets that are enriched for asso-

ciation with the disorders after conditional analyses and to

identify which sets become more or less significant after

conditioning. Results for each disorder are presented in Sup-

plementary Table 5. After conservative Bonferroni correction

for the number of gene sets tested for each disorder, three gene

sets were significant—two for SCZ conditional analysis and

one for AUT. For SCZ, the two significant sets were Go:

establishment of localisation in the cell and GO:Dendrite, of

which establishment of localisation had a more significant p

value in the conditional analysis (Supplementary Table 5). For

AUT, the gene-set GO:Dendrite_morphogenesis was sig-

nificant after multiple testing and had a more significant p

value in the conditional analysis, potentially implicating genes

expressed in dendrites in autism-specific pathology.

Cell-type specificity for disorders

The results from the cell-type enrichment analyses of raw and

conditional analyses are shown in Fig. 2. Consistent with

previous results, the original SCZ results were enriched in

medium spiny neurons (MSNs), pyramidal CA1 cells, pyr-

amidal SS1 cells, interneurons and serotonergic neurons

(Supplementary Table 6). All of these cell types also show

some evidence of association with BIP and to a lesser extent

MD, consistent with the genetic correlation between disorders

and hence show reduced enrichment in the SCZ conditional

analysis. All enriched cell-types for SCZ remained significant

after conditioning except for serotonergic neurons, indicating

that genes specific to this cell type may increase risk to all five

disorders. Enrichment in interneurons was found for SCZ,

BIP and MDD indicating their potential importance across all

three disorders. After conditioning, this cell type was still

significantly enriched in SCZ and MDD, but not BIP. This

may reflect that the sample size of the BIP analysis is smaller

than for SCZ and MDD.

Discussion

Our goal was to identify genetic variants that show

disorder-specific association by conducting a summary-

statistics-based GWAS analysis for each of five psychiatric

disorders conditioning on GWAS results from the other

disorders. As expected, given the high degree of pleiotropy

across disorders, compared with original GWAS results the

number of SNPs associated at the threshold of genome-wide

significance is very much reduced for each conditional

GWAS. We utilise mtCOJO as a method that uses summary

statistics to quickly screen for SNP associations. Functional

annotation can help prioritise the associations of most

interest. It will be important to understand why a variant

increases risk only to that disorder and not to others.

By integrating conditional GWAS results with SNP-gene

expression and SNP-methylation results, we identify

decreased expression of VPS29 as a potential biological

mechanism underlying SCZ. The variant that increases risk to

SCZ and is associated with decreased expression of VPS29 in

brain tissue shows no evidence for association with other

psychiatric disorders. The retromer complex, of which VPS29

is a subunit, is highly conserved across eukaryotes. The

complex plays a role in the recycling, delivery and degrada-

tion of proteins in the cell and is crucial in the maintenance of

cell homeostasis [24]. Rare exonic mutations in members of

the complex have been associated with Parkinson’s disease

and post-mortem studies have revealed decreased expression

of all members of the complex in the brains of patients with

Parkinson’s and Alzheimer’s disease. The expression of all

three members of the complex is linked such that decreasing

expression of one leads to decreased expression of all of them.

Knocking down VPS35 using siRNA leads to elevated gen-

eration of amyloid-beta and reduced synaptic transmission

[25, 26]. There is therefore considerable interest in identifying

pharmacological agents that prevent the degradation of the

retromer complex as a therapeutic mechanism for neurode-

generative disease. Small molecule screens have identified

potential therapeutic agents that have shown promise in vitro

[27]. Our results provide that such compounds may be of

interest in targeting biological mechnisms specific to SCZ.

Furthermore, SNPs associated with decreased expression

of PCDH7 and decreased methylation near other members

of the protocadherin gene family on chromosome 5 may

increase risk of MD, but be protective for SCZ and BIP. The

protocadherins are a large family of genes involved in

cell–cell adhesion that are primarily expressed in the ner-

vous system. They play a major role in the development of

the nervous system and in regulating dendritic branching.

The PCDHA7 gene is part of a complex cluster of proto-

cadherin alpha genes in the same genomic locus. The

expression of the different isoforms at the locus is con-

trolled by upstream CpG sites. Owing to their functional

role in nervous-system development and their location in

linkage peaks, the PCDHA genes have been investigated as

candidate genes for bipolar and SCZ [28]. Moreover, an

epigenetic study of concordant and discordant MZ twins for

E. M. Byrne et al.



depression showed that affected twins had increased var-

iation in methylation in the PCDHA region, highlighting

instability in this region as a potential mechanism under-

lying depression [29]. Further studies of the role of the

PCDHA gene cluster in psychopathology are warranted.

Methylation in the promoter of the CSE1L gene, whose

encoded protein influences cellular proliferation and has been

linked to progression of a number of cancers, shows evidence

of increasing risk to SCZ but being protective for MD.

Consistent with the large degree of pleiotropy between

disorders, we found that most of the significant biological

pathways for each disorder had reduced significance after

conditioning. Pathway analysis of conditional results

identified a potential role for genes expressed in dendrites in

both autism and SCZ. Likewise, for the cell-type enrichment

analysis, there was a reduction in the enrichment for most cell

types in each disorder after conditioning. For SCZ, the pre-

viously identified enrichments in pyramidal SS1 and

CA1 cells as well as MSNs remained significant after con-

ditioning, despite also showing evidence for enrichment in

BIP. The largest change in enrichment was for serotonergic

neurons, indicating that genes highly expressed there are

important across all psychiatric disorders.

We provide an analysis framework for conditional cross-

disorder analyses using summary statistics. Our study was

motivated to improve on the SCZ case vs. BIP case analyses

mdd scz
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Fig. 2 Results from MAGMA brain cell-type enrichment analyses

of raw and conditional GWAS analyses. Results for conditional

analysis are shown in red and for raw analysis in blue. All significant

cell-types for the raw analysis were less significant after conditioning

indicating that cell-type specificity of gene expression is largely shared

across disorders.
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that utilised PGC cohorts for which both SCZ and BIP

genotyped samples were available [30], but which neces-

sarily excluded 28% of cases that could not be allocated into

matched cohorts. They identified five SNPs associated at

p < 5 × 10−8. We conducted an analysis of SCZ conditional

on BIP and performed a lookup of those SNPs in the

unadjusted and adjusted results. All but one (rs200005157)

of their associated SNPs were matched directly to an LD

proxy (Supplementary Table 7). All show increased statis-

tical significance in the conditional analysis. We identified

more disorder-specific SNPs (ten specific to SCZ) con-

sistent with the larger sample sizes afforded from using

summary statistics, highlighting that mtCOJO is an efficient

method for screening for disorder-specific SNPs for two or

more related disorders. An in-depth discussion of the

mtCOJO method is given in the Supplementary Material.

Limitations

There are a number of limitations to our analyses that

should be considered. Although methods that utilise sum-

mary statistics have several advantages, they also depend

upon the summary statistics being generated accurately. In

this instance, all studies have gone through the same quality

control and analysis pipeline meaning that systematic dif-

ferences between studies are unlikely. It is not clear how

misdiagnosis of cases would impact upon the results.

There are also substantial differences in sample size

between the GWAS of different disorders, with SCZ and

MD having a larger sample size than the other disorders,

which may disproportionately influence the results. This is

shown by most of the significant differences in effect sizes

between the raw and conditional results being for SCZ. The

disorders that have the most GWS SNPs will also have the

most accurate estimates of their effects on the disorders. As

sample sizes increase for some of the other disorders, the

results for those disorders will become more accurate.

In order to reduce the burden of multiple testing in the

SMR analysis, we only included SNPs that are associated at

the GWS level with gene expression or methylation in cis.

Relaxing the statistical threshold for inclusion may have

identified more SNPs with effects on gene expression in

brain with the trade-off of increasing the experiment-wide

significance level.

Conclusion

In conclusion, our results suggest that mtCOJO is an

efficient method for identifying variants with disorder-

specific effects and they represent a small fraction of

variants identified for each disorder to date, reflecting the

high degree of pleiotropy between disorders. Nonetheless,

we identify several loci that have evidence of being

disorder-specific. Further research in human studies should

focus on whether the disorder-specific variants associate

with specific symptoms in mixed clinical populations.

Code availability

Scripts used to generate the results are available on request

from the corresponding author.
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