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Abstract
Head movements are typically viewed as a nuisance to functional magnetic resonance imaging (fMRI) analysis, and are
particularly problematic for resting state fMRI. However, there is growing evidence that head motion is a behavioral trait
with neural and genetic underpinnings. Using data from a large randomly ascertained extended pedigree sample of Mexican
Americans (n = 689), we modeled the genetic structure of head motion during resting state fMRI and its relation to 48 other
demographic and behavioral phenotypes. A replication analysis was performed using data from the Human Connectome
Project, which uses an extended twin design (n = 864). In both samples, head motion was significantly heritable (h2 = 0.313
and 0.427, respectively), and phenotypically correlated with numerous traits. The most strongly replicated relationship was
between head motion and body mass index, which showed evidence of shared genetic influences in both data sets. These
results highlight the need to view head motion in fMRI as a complex neurobehavioral trait correlated with a number of
other demographic and behavioral phenotypes. Given this, when examining individual differences in functional
connectivity, the confounding of head motion with other traits of interest needs to be taken into consideration alongside
the critical important of addressing head motion artifacts.
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Introduction
Head movements during functional magnetic resonance
imaging (fMRI) can be detected in all subjects, even with head

restraint. These movements shift the position of the brain in
space, disrupting the spatial and temporal precision of blood
oxygen level dependent signal acquisition (Jiang et al. 1995;
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Friston et al. 1996; Thacker et al. 1999; Oakes et al. 2005). While
data from subjects who display large head motion are often
removed from analyses, even small movements within the
scanner can be problematic, particularly for functional connect-
ivity studies (Power et al. 2012; Satterthwaite et al. 2012; Van
Dijk et al. 2012). Measure of functional connectivity are often
based on the covariance of signals between voxels over time;
head motion can confound between voxels covariance patterns,
depending on the type of motion and the position of each voxel.
Power and colleagues demonstrated that head motion typically
leads to increases in covariance when voxels are proximal to one
another, but often reduces covariance for more distant voxels,
creating spurious spatially structured patterns of artifactual sig-
nal in functional connectivity data (Power et al. 2012, 2014).
Importantly, even after standard motion correction methods,
these artifacts can be pervasive (Satterthwaite et al. 2013),
biasing functional connectivity analyses (Power et al. 2012;
Satterthwaite et al. 2012; Van Dijk et al. 2012).

Whereas motion during scanning is customarily conceived
as a source of artifact, it can also be conceptualized as a fine-
grained behavioral measurement, given that many sources of
gross head movement reflect actions that are under voluntary
motor control (such as swallowing or fidgeting). Indeed, there is
increasing evidence that the degree of motion during MRI scan-
ning is trait-like. Among healthy young adults, scanner move-
ment is moderately stable over time, with intra-individual
correlations of r = 0.53–0.66 among subjects who completed at
least 2 scanning sessions (Van Dijk et al. 2012; Couvy-Duchesne
et al. 2014; Zeng et al. 2014). In samples of children, head motion
tends to decrease with age (Satterthwaite et al. 2012), potentially
reflecting the development of cognitive control processes, as
head motion has been shown to correlate with impulsivity mea-
sures in both child and adult samples (Kong et al. 2014). Zeng
and colleagues (2014) found that individuals with reduced long-
range connectivity observed during high motion scans also had
lower than expected connectivity during low motion scans, sug-
gesting that the level of observed functional connectivity was
not entirely due to motion artifacts and may reflect biological
differences between individuals (Zeng et al. 2014). Furthermore,
individual differences in head motion appear to be genetically
mediated. Using a young adult twin sample (n = 462), motion
was reported to be between 37% and 51% heritable, depending
on the specific head motion measurement (Couvy-Duchesne
et al. 2014). This suggests that at least a portion of the complex
behavioral, motoric, or neurobiological factors related to remaining
still during MRI scanning are due to genetic variation.

Given that head motion-related artifacts are ubiquitous in
brain imaging studies and the initial evidence that one’s ability
to stay still for prolonged periods of time reflects true biologic-
ally based individual differences, we set out to further docu-
ment the genetic basis of individual differences in head motion
and determine if common environmental or genetic factors
influence head motion and other demographic and behavioral
traits. Using 689 individuals from randomly selected extended
pedigrees who participated in the “Genetics of Brain Structure
and Function” study (GOBS), and 864 individuals in an extended
twin design from the “Human Connectome Project” (HCP), we
confirm that head motion is heritable and show significant
phenotypic correlations between head motion with body mass
index (BMI), waist circumference, diabetes, hypertension, his-
tory of smoking, and performance on delay discounting tasks.
The largest of these associations is with BMI, where there is
strong evidence in both samples of pleiotropy between head
motion and BMI.

Materials and Methods
The Genetics of Brain Structure and Function Study

Sample Details
Subjects participated in the GOBS, an extension of the San
Antonio Family study (Puppala et al. 2006). This cohort recruited
Mexican Americans who were part of a large family from the San
Antonio region (Texas, USA) (for full recruitment details see Olvera
et al. 2011; McKay et al. 2014). Exclusion criteria included MRI con-
traindications, documented history of neurological illness, or any
major neurological event. All participants provided written
informed consent approved by the institutional review boards at
the University of Texas Health Science Center San Antonio and
Yale University. This analysis includes 689 individuals with head
motion data available from a 7.5min resting state fMRI scan (see
Supplementary Materials for imaging protocols). These indivi-
duals come from69 pedigrees, with between 2 and 79 in each pedi-
gree (mean pedigree size = 9.42), plus an additional 39 individuals
who were genetically unrelated (see Supplementary Materials for
details of familial relationships). The sample is 60.5% female, with
an age range of 18–85 years (mean= 43.36).

Head Motion Measures in GOBS
The primary head motion measure was mean frame-wise dis-
placement, calculated using the method described by Power
et al. (2012), referred to as FD(Power) throughout the manuscript.
To avoid gross head movements, we excluded all individuals
where FD(Power) > 3 standard deviations from the mean (n = 5).
Inclusion of these individuals does not change the pattern of
results. To assess the robustness of our findings, we confirmed
all significant findings using 3 additional measures of head
motion: root mean square, maximum rotation, and maximum
translation. We note that all measure of head motion show
highly significant correlation with one another (r = 0.55–0.85, in
all cases, P< 1 × 10–15), see Supplementary Materials.

Traits Available in the GOBS Sample
A total of 55 available traits were considered in GOBS, covering
demographic details, medical and psychiatric history, neuro-
cognitive traits, and blood-based biomarkers. ‘‘Body size mea-
sures’’—weight and height were used to calculate BMI, a measure
of obesity based upon weight scaled to height. Waist circumfer-
ence was measured as an index of central adiposity. ‘‘Blood-
based biomarkers’’—14 blood-based biomarkers were assayed.
Further details can be found elsewhere (Mitchell et al. 1996; Arar
et al. 2008). Briefly, blood samples where collected following a
12 h fast. These samples were used to measure fasting plasma
glucose, using an Abbott V/P Analyzer. A standardized 75 g oral
glucose load (Orangedex or Koladex, Custom Laboratories,
Baltimore, MD) was then given and plasma glucose levels were
measured 2 h after administration. Total plasma cholesterol and
triglycerides were assayed enzymatically (using commercial
regents from Boehringer-Mannheim Diagnostics and Stanbio,
respectively). High density lipoprotein (HDL) cholesterol mea-
sured after precipitation of apoB-containing particles with dex-
tran sulfate-Mg2+ (Warnick et al. 1982). Very low density
lipoprotein (VLDL) cholesterol was estimated as one fifth of total
triglyceride levels (Friedewald et al. 1972) and low density lipo-
protein (LDL) cholesterol derived by subtracting HDL cholesterol
and VLDL cholesterol from total cholesterol. LDL cholesterol con-
centrations were computed only for those individuals with trigly-
ceride levels of <400mg/dL. Serum levels of creatinine, blood
urea nitrogen, potassium, calcium, and sodium levels were
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estimated using the Beckman Synchron LX System. ‘‘Medical and
psychiatric history’’—all subjects received face-to-face medical
and psychiatric interviews in the subject’s language of choice
(English or Spanish). The psychiatric interview was conducted
using the semi-structured Mini International Psychiatric
Interview Plus (MINI-Plus; Sheehan et al. 1998), with additional
questions to establish lifetime history of psychiatric disorders.
History of smoking was defined as ever having smoked cigar-
ettes, cigars or a pipe every day for a month or more. Psychiatric
trait measures were also collected including the Beck Depression
Inventory (Beck et al. 1961), State-Trait Anxiety Inventory
(STAI; Spielberger 2010), and a global assessment of functioning
score (according to DSM-IV criteria). ‘‘Neurocognitive traits’’—
The South Texas Assessment of Neurocognition, a 90min battery
comprising of standardized and computerized measures was
administered, which includes measures of attention/concentra-
tion, executive processing, workingmemory, declarativememory,
language processing, intelligence, and emotional processing
(Glahn et al. 2007, 2010).

The Human Connectome Project

Sample Details
For replication of significant findings, we used the WU-Minn
consortium HCP S900 sample (humanconnectome.org), released
in December 2015. This sample includes 900 healthy indivi-
duals from families with twin and non-twin siblings recruited
through the Missouri Family and Twin Registry. All subjects
provided written informed consent and the study was
approved by the Institutional Review Board of Washington
University in St Louis. Further details of recruitment protocols
are given elsewhere (Van Essen et al. 2013). This analysis
included 864 individuals with head motion measures from
resting state fMRI scans (details and references for imagining
protocols in the Supplementary Materials), from 380 pedigrees
with 91 monozygotic and 89 dizygotic twin pairs (mean pedi-
gree size = 2.33, maximum pedigree size = 6). The sample is
56.1% female, aged between 22 and 37 years (mean = 28.8
years) and racially and ethnically mixed (see Supplementary
Materials for further details).

Head Motion Measures in HCP
In the HCP sample, we index head motion using frame-wise
displacement as calculated in FSL McFlirt (Jenkinson et al. 2002)
(FD(FSL)). Mean FD(FSL) was calculated across the 4 runs (2 ses-
sions) resting state acquisition. The 2 sessions of data acquisi-
tion were typically conducted on Day 1 and Day 2 of the 2-day
data collection protocol.

Replication Traits in the HCP
The HCP includes data from a broad range of behavioral and
demographic measures for replication of the significant find-
ings we observe in GOBS. As such, we extracted information on
BMI, hypertension and history of smoking for individuals with
head motion measures. History of smoking was defined as
those who have at one point in their lives been regular smokers
(compared with those who had never smoked or experimented
less that 100 times). There were insufficient numbers of indivi-
duals with diabetes in the HCP to conduct an analysis; instead
we used the available HbA1C (glycated hemoglobin) measures
to index the 3-month average plasma glucose concentration.
Waist circumference was not measured in the HCP.

We also sought the replicate the previously published finding
that links head motion to impulsivity (specifically self-control)

(Kong et al. 2014), using the behavioral measures of self-
regulation that are included in the HCP data set; delay discount-
ing using a low ($200) and a high ($40 000) monetary amount
were assessed. Lower monetary amounts are generally dis-
counted more steeply than larger amounts. AUC values were cal-
culated (Myerson et al. 2001), whereby smaller AUCs indicate
greater discounting by delay, or reduced self-control. No equiva-
lent measure of self-control is available in the GOBS data set.

Analysis

All analyses were conducted within SOLAR (Almasy and
Blangero 1998), which uses maximum likelihood variance com-
ponent methods to partition trait covariance between family
members into genetic and environmental components, as a
function of genetic proximity. First, we calculated the heritabil-
ity of each trait in GOBS, which represents the proportion of
phenotypic variance accounted for by additive genetic variance.
Then, bivariate analyses were conducted for all traits with sig-
nificant heritability estimates (n = 48 in GOBS), calculating the
phenotypic correlation with head motion (FDPower) for each
trait. These phenotypic correlations were decomposed into
their genetic and environmental components utilizing all avail-
able pedigree information; genetic correlations indicate shared
genetic influences (pleiotropy). A multivariate normal threshold
model was used for analysis of combined dichotomous and
continuous traits (Williams et al. 1999). As 48 traits were con-
sidered in a pairwise fashion with respect to head motion in
GOBS, a false discovery rate (Benjamini and Hochberg 1995) of
FDR < 0.05 was used to determine significant correlations. Next,
we applied this analysis framework in the HCP sample, using
FD(FSL) to index head motion and using an FDR < 0.05 correction
across the 6 heritable replication traits in the HCP.

Prior to analysis, all continuous traits were transformed
using an inverse normal transformation. The covariates of age,
age2, sex, and the interactions between these were included in
all analyses (with race and ethnicity also included for analyses
in the HCP sample).

Results
Head Motion is a Reliable and Heritable Trait

Descriptive statistics and heritability estimates for head motion
in the GOBS and HCP samples are described in Table 1. Across
the 2 scanning sessions in the HCP, there is a high test-retest
reliability of head motion (FD(FSL)) estimates (ICC agreement =
0.814, 95% CI = 0.790–0.836, F(838,839) = 9.76 , P = 1.67–200), indi-
cating trait stability across days. Heritability estimates were
significant in both samples, and of a similar magnitude. Sex
was a significant covariate in GOBS (P = 0.012, males show
greater head motion than females), while age was a significant
covariate in the HCP (P = 9.73 × 10–3), with older subjects
moving more (the age range for the HCP is 22–37 years). All
other covariates included in the heritability models were not
significant.

Phenotypic and Genetic Correlations of Traits with Head
Motion

Correlations within GOBS
Among the 48 demographic and behavioral traits with signifi-
cant heritability estimates, 5 showed significant phenotypic
correlation with head motion after controlling for multiple
comparisons (Table 2; see Supplementary Results for full
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description). Increased levels of head motion was linked to
greater BMI, waist circumference, and the presence of hyper-
tension, diabetes or smoking history. The relationship between
head motion and BMI for this sample (the strongest phenotypic
correlation observed) is depicted in Figure 1A. Decomposing
these phenotypic relationships using a bivariate genetic model,
substantial genetic correlations with head motion were seen
for BMI and waist circumference. No environmental correla-
tions were statistically significant. Confirming the robustness
of these results within GOBS, we observed a similar pattern of
results for these 5 traits across 3 alternative head motion mea-
sures in the sample (see Supplementary Materials). We note
that BMI is significantly phenotypically correlated with waist
circumference, diabetes, and hypertension, but not smoking
(see Supplementary Materials). Intracranial volume was unre-
lated to either head motion (ρp = 0.045, P = 0.262) or BMI
(ρp = −0.030, P = 0.484) and inclusion of intracranial volume as a
covariate in our analyses did not change the pattern of results
shown.

Replicating Correlations within HCP
All of the 6 traits analyzed in the HCP (BMI, HbA1C, showing
glycated hemoglobin related to the average plasma glucose
concentration over 3 months, hypertension, history of smoking,
and 2 measures of delayed discounting) were heritable and
showed significant phenotypic correlations with head motion
(Table 2). The strongest phenotypic relationship is observed
between head motion and BMI, as depicted in Figure 1B. The
negative correlations between the delay discounting measures
and head motion indicate that increased head motion is corre-
lated with greater discounting of delayed monetary rewards (an
index reflecting greater impulsivity). All traits except for history
of smoking show significant genetic correlations with head
motion, but only BMI shows a significant environmental correl-
ation (ρE = 0.430, P = 4.29 × 10–7, FDR = 2.57 × 10–6).

Further analysis within the HCP data (shown in
Supplementary Materials) demonstrates that BMI is correlated
with both hypertension and HbA1c. For delay discounting with
higher amounts ($40 000) there is a small phenotypic associ-
ation with BMI, although this does not pass the FDR threshold
for significance (ρP = −0.078, PP = 0.038, FDRP = 0.063). BMI is not
correlated with delay discounting with lower monetary values
($200), or with history of smoking.

We used a gene by sex interaction model to test for sex dif-
ferences in the heritability of head motion in each data set.
These methods are described elsewhere in detail (Almasy et al.
2001; Glahn et al. 2013). Briefly we test sex as an environmental
variable within a gene by environment model and assess
whether there are heritability differences in head motion
between the sexes (either in terms of the magnitude of the gen-
etic influence or in the specific set of genes involved). We found
no evidence of gene by sex interactions in either GOBS or the
HCP, indicating that while there may be phenotypic differences
between the sexes in terms of head motion, in these samples
there is no evidence that the genetic influences on head motion
vary between males and females.

Neither GOBS nor the HCP included data on eye tracking or
wakefulness during the resting state scanning protocol, so it is
not possible to directly examine the effect of wakefulness
on head motion. However, in the HCP is there a general
measure of sleep quality in the form of the Pittsburgh Sleep
Questionnaire Index, which could be considered a proxy of gen-
eral alertness. Including this trait as a covariate did not alter

Table 1 Head motion measures in GOBS and HCP data sets

GOBS HCP

N 684 864
Age mean 43.46 years 28.8 years
Age range 18–85 years 22–37 years
% Female 60.5% 56.1%
Head motion measure FD(Power) FD(FSL)

Head motion mean 0.125 0.162
Head motion SD 0.049 0.050
Head motion range 0.052–0.381 0.073–0.339
Heritability of head motion
H2 0.313 0.427
P value 5.94 × 10–4 2.42 × 10–9

SE 0.106 0.071
Heritability covariates Beta P value Beta P value
Age 0.001 0.809 0.040 0.010
Sex −0.258 0.012 −0.060 0.544
Age × sex −2.16 × 10–5 0.997 −0.007 0.723
Age2 −2.16 × 10–5 0.533 −0.004 0.329
Age2 × sex −1.32 × 10–4 0.673 0.007 0.153

Note that given differences in image acquisition and motion calculation proto-

cols between samples, the values cannot be compared directly.

Table 2 Traits showing significant correlation with head motion. Significant correlations (FDR < 0.05) are bolded

Trait N Mean
(SD)/cases

Heritability
(P values)

Phenotypic correlation with
FD(Power)

Genetic correlation with
FD(Power)

ρp P valueP FDRP ρG P valueG FDRG

GOBS sample
BMI 606 30.93 (6.56) 0.445 (5.31E-5) 0.287 2.01E-12 9.65E-11 0.843 6.34E-05 3.04E-03
Waist circum. (cm) 586 101.40 (14.701) 0.430 (3.34E-5) 0.279 8.69E-12 2.09E-10 0.687 3.53E-04 8.47E-03
Diabetes 688 108 cases 0.781 (1.86E-5) 0.189 2.71E-03 0.026 −0.026 0.914 0.953
Hypertension 690 201 cases 0.393 (7.96E-3) 0.169 1.81E-03 0.023 0.296 0.329 0.953
Smoking 689 233 cases 0.719 (2.90E-6) 0.162 1.93E-03 0.023 0.108 0.613 0.953
HCP sample
BMI 863 26.37 (5.03) 0.683 (9.88E-20) 0.622 <2.2E-16 1.32E-15 0.797 1.11E-13 6.66E-13
HbA1C 583 5.25 (0.35) 0.729 (6.97E-16) 0.167 2.32E-04 4.64E-04 0.164 0.138 0.166
Hypertension 856 109 cases 0.622 (5.33E-05) 0.264 1.73E-5 5.19E-05 0.717 2.61E-03 5.22E-03
Smoking 858 216 cases 0.753 (1.11E-12) 0.130 8.35E-3 0.010 0.164 0.183 0.183
Delay discounting (AUC $200) 858 0.253 (0.201) 0.361 (1.00E-7) −0.089 0.013 0.013 −0.481 6.89E-04 2.07E-03
Delay discounting (AUC $40 000) 858 0.499 (0.287) 0.496 (1.54E-13) −0.120 8.72E-4 1.31E-03 −0.297 0.011 0.017
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the pattern of our results (see Supplementary Materials). We
also considered the effect of respiration, using the data avail-
able in the HCP collected using a respiration belt (no such data
was collected in the GOBS sample). Again, including this trait
as a covariate did not alter the pattern of results (as shown in
the Supplementary Materials).

Discussion
We demonstrate that head motion during an MRI scan is herit-
able and correlated with an individual’s BMI, waist circumfer-
ence, hypertension, diabetes (or plasma glucose concentration),
history of smoking, and impulsivity. These findings are in line
with a growing body of literature indicating head motion is a
stable and consistent phenotype, with a genetic basis and bio-
logical correlates (Couvy-Duchesne et al. 2014; Kong et al. 2014;
Zeng et al. 2014). The strongest association is between head
motion and BMI; this is observed in 2 independent samples and
using bivariate genetic analyses we show that this phenotypic
relationship is underpinned by shared genetic factors influen-
cing both head motion and BMI.

Given the relationship between BMI with waist circumfer-
ence, diabetes/plasma glucose concentration and hypertension,
it seems likely that BMI drives the observed associations
between these traits with head motion. However, history of
smoking is not correlated with BMI in either samples, which
suggests the phenotypic relationship between head motion and
smoking is independent of any BMI-linked effect.

In the HCP, the association we find between head motion
and behavioral impulsivity measures (as indexed by delay dis-
counting tasks) replicate previous findings using self-report
measures of impulsivity (specifically self-control; Kong et al.
2014), and extend this work to show genetic correlations
between the traits. However, the correlations between head
motion and delay discounting is much smaller in magnitude
that that between head motion and BMI. Further, the relation-
ship between BMI and delay discounting is unclear; BMI is not
related to delay discounting with a low monetary amount, but
for high monetary amounts, the results were not clear-cut. As
previous work has shown robust relationships between BMI
and delay discounting tasks (e.g., see Jarmolowicz et al. 2014),
we suggest that further work is needed (potentially using a
range of measures of self-control) to investigate the interrela-
tionships between BMI, impulsivity, and head motion.

Head motion is an important confound in the analysis of
resting state fMRI connectivity data (Power et al. 2012;
Satterthwaite et al. 2012; Van Dijk et al. 2012). However, our
findings demonstrate that head motion is not only a nuisance
variable that produces technical artifact in an imaging data set
but also a stable trait with a genetic basis and strong interrela-
tionships, both phenotypic and genetic, to other measures of
interest. If head motion is not only an incidental source of
noise in the data, but varies between subjects in a way that is
interconnected to their genetics and other traits, the way in
which motion should be modeled within a data set should be
carefully considered. Apparent motion-related artifact could in

Figure 1. Phenotypic relationship between head motion and BMI (adjusted for covariates) in (A) the GOBS (n = 606) and (B) the HCP (n = 863). BMI category indicated by

shading.
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fact be a result of motion-correlated variables such as BMI, his-
tory of smoking, or impulsivity. In other words differences in
connectivity between high and low motion groups might be a
result of the technical effects of head motion on the imaging
data collection (e.g., motion-induced bias). However, it is also
possible that some independent factor is associated with both
reduced connectivity and an increased likelihood for motion
(e.g., including genetic differences and/or differences in BMI).
This possibility is further supported by a previous report show-
ing neurobiological correlates of head motion (Zeng et al. 2014).
Indeed the study design used in that report, comparing high
and low motion scans (or scanning periods) from the same
individuals, may be fruitful for attempting to disentangle
motion-induced artifact from connectivity differences resulting
from motion-correlated traits, though this may also reflect
habituation to the MRI scanning environment over time.

If the nature and relationship between motion-induced
artifact and connectivity differences resulting from motion-
correlated traits can be better characterized using such within-
subject designs, then researchers can begin developing appro-
priate modeling methods to handle any potential confounding
effects, aiming to remove the artifactual effects of motion while
accounting for connectivity differences driven by motion-
correlated variables.

In terms of the observed correlations observed between
traits, there are a number of possible models that could explain
these patterns. For example the genetic correlations between
head motion and BMI could result from an overlapping set of
genes exerting independent effects on each trait, or genetic
influences acting via BMI to increase head motion (for instance,
higher BMI might increase discomfort in the scanner and so
increase movement). Alternatively, genes might act via a third
heritable trait that influences the likelihood of both increased
head motion and BMI. In the HCP data set, we also report sig-
nificant environmental correlations between head motion and
BMI, suggesting that non-genetic factors also contribute to
the patterns of covariance between head motion and BMI.
Unfortunately, few environmental measures were included in
the HCP data set, making it difficult to determine the extent to
which any single factor influences the environmental correl-
ation. To disentangle the mechanisms underlying the observed
genetic and environmental correlations, it may be useful to
consider measurements of potential intermediary traits of
interest (such as discomfort within the scanner or respiration
effects) in subsequent studies

Taken together, our results imply that the investigation of
functional connectivity in samples where BMI, waist circumfer-
ence, diabetes, hypertension, history of smoking, and/or impul-
sivity/cognitive control potentially differ between individuals
or groups must carefully consider the most appropriate method
of correcting for motion artifacts. Correction for true motion
artifact remains critical but if apparently motion-related signals
are in fact due to the effects of motion-correlated traits,
inappropriate corrections could bias results in unknown ways.

Despite the similarities between findings in the GOBS and
HCP cohorts, the samples do differ. Due to variation in both cal-
culation methods and MRI data collection protocols, we do not
directly compare values for head motion variables in GOBS ver-
sus the HCP (Power et al. 2014). However, we do observe differ-
ences in the relationship between head motion and covariates;
head motion is significantly associated with sex but not age in
GOBS, while in the HCP it is significantly associated with age
but not sex. Additionally in both GOBS and HCP, there is a
highly significant phenotypic relationship between head

motion and BMI, but the magnitude of this correlation differs
between the 2 samples (GOBS ρp = 0.287, HCP ρp = 0.622).
Despite these differences in phenotypic correlations, the
genetic correlation between head motion and BMI is both
substantial and significant in both data sets (GOBS ρG = 0.843,
HCP ρG = 0.797).

Differences such as these may be explained in part by differ-
ences between the 2 samples. First, while GOBS focuses solely
on Mexican Americans from the San Antonio region (USA), the
HCP protocol did not restrict recruitment by race or ethnicity in
its recruitment from Missouri (USA). Second, both data sets are
adult samples but the HCP data set includes only a restricted
age range (22–37 years). Third, there are minor differences in
the way in which frame-wise displacement is calculated in
each sample, although Yan et al. (2013) show these values are
highly correlated. Fourth, the GOBS data show significantly
higher levels of obesity, hypertension, and smoking than HCP
(see Supplementary Materials for statistics). Finally, GOBS
recruitment was focused on extended pedigrees, while HCP
recruited much smaller sibling/twin pedigrees. This difference
in pedigree structure may affect genetic estimations, though
both samples were analyzed with the same statistical frame-
work. Direct estimation of common environmental influences
are less informative in large extended pedigrees, as members
of the same pedigree typically live in different households. As
previous analyses within a classical twin sample ruled out
shared environmental influences on head motion measures
(Couvy-Duchesne et al. 2014), this information may not be fun-
damental for understanding genetic influence upon head
motion. Finally, the inclusion of multigenerational families in
GOBS mean that the confounding of shared environmental
effects with genetic effects are less likely in this sample (Gur
et al. 2007).

Head motion is an important source of bias in fMRI analysis,
causing artifactual patterns of signal in resting state connectiv-
ity analyses. However, there is growing evidence that move-
ment in the scanner is not a randomly occurring nuisance
variable; it has a biological and genetic basis and here we pre-
sent the first evidence that this genetic basis is pleiotropic with
BMI. While we did not identify the biological pathways linking
head motion and other phenotypes, the current report should
help researchers formulate the best way to consider and
account for the biasing effects of head motion within resting
state connectivity data, given its correlation with other traits.
Our findings specifically highlight the need to consider BMI in
the analyses of connectivity and motion differences and more
generally the complexities of dealing with head motion effects
on connectivity analyses, particularly when genetic approaches
are used.
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Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/
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