72-27,239

BRELAND, Nancy Schacht, 1946HEREDITARV AND ENVIRONMENTAL SOURCES OF TRAIT VARIATION AND COVARIATION.
State University of New York at Buffalo, Ph.D., 1972
Education, psychology

University Microfilms, A XEROX Company, Ann Arbor, Michigan

HEREDITARY AND ENVIRONMENTAL SOURCES OF TRAIT VARIATION AND COVARIATION

by
Nancy Schacht Breland

A dissertation submitted to the Faculty of the Graduate School of the State University of New York at Buffalo in partial fulfillment of the requirements for the degree of Doctor of Philosophy

May, 1972

PLEASE NOTE:

Some pages may have
indistinct print.

Filmed as received.

University Microfilms, A Xerox Education Company

Abstract

The twin design for estimating proportions of hereditary and environmental sources of trait variation vas presented and applied to a national sample of 806 twin sets who took the National Merit Scholarship Test in 1962. Parental report of differential treatment of their twins was used to test the assumption of equivalent within family environments by zygosity. A comparison of the sum of items reflecting differential treatment reported by the parents showed that identical twins are reported to be treated more alike than fraternal twins. Correlations of the treatment difference score with twin differences on the NMSQT and CPI scores showed a small but positive relationship between differential treatment and differences in measured achievement and personality. Within each actual zygosity group, the treatment difference scores of twins whose parents were correct about the zygosity diagnosis were compared to the scores of twins whose parents misdiagnosed them. These results indicated that parental behavior tovards their twins is determined largely by the degree of genetic relatedness of their twins. Hovever, the ordering of the treatment difference score means indicated that parental belief about zyqosity also determined to some small degree their treatment of their twins. Within each zygosity group, the score differences on the NMSQT and CPI scales of twins correctly and incorrectly diagnosed by their parents were also compared, and the results showed that parental belief about zygosity has a small but consistant relationship to twin differences on measured achievement and personality. This series of analyses indicated that the assumption of equal between family environments by zygosity cannot be made, and that the environmental bias is greater for dersonality measures than for achievement measures. The assumption of equivalent between family environments by zygosity was also tested, and it was concluded that this assumption does not introduce a serious bias in this sample. probable ranges of proportions of trait variance due to heredity, between family and within family environment were computed for each measure. Hereditary variation generally accounted for the majority of the variation in the NMSQT scales, and the between family environmental component was generally larger that the within family component. The heritability estimates of the CPI scales were quite varied, but in general the within family environmental component was larger than the between family component.

A multivariate method by wich trait covariation can be partitioned into hereditary and environmental sources was presented and applied to the NMSQT scales. Matrices of cross twin correlations and correlations among twin differences were manipulated to produce hereditary and within and between family environmental matrices. The factor structures of these three component matrices were compared to the factor structure of the NMSQT. The verbal and math-science factor in the NMSQT were found in the hereditary and the within family environmental

matrices. Only a general factor was apparent in the between family envirommental matrix. This indicated that the two factors in the NMSOT are controlled by somewhat different hereditary mechanisms as well as different within family onvironmental influences.

TABLE OF CONTENTS

Acknowledgements 2
Chapter 1 Introduction. 3
Chapter 2 Sampling Procedures and Data Description. 20
Chapter 3 Explaining Twin Differences 23
Chapter 4 Estimated Heritebility of Achievement And Personality. 47
Chapter 5 Multivariate Analysis of Twin Data 63
Chapter 6 Conclusions and Implications for Education. 98
References 102
Appendix I Zygosity Guestionnaire. 106
Appendix II Twin Questionnaire 105
Appendix III Parent Questionnaire 128
Appendix IV Iteme Included in Different Treatment Score. 144

ACKNOWLEDGEMENTS

This large data set vas kindly provided by Robert C. Nichols. All computer programs used in these analyses were vritten by him or with his assistance. I wish to thank him for his inspiration, guidance, and extreme patience. Paul R. Lohnes, J. Ronald Gentile, S.David Farr, and Jeremy D. Finn contributed many useful suggestions in the preparation of this manuscript. Hunter Breland provided the necessary supportive and encouraging environment for its completion.

CHAPTER 1

Introduction

Trine have been used for almost 100 years to investigate the relative effects of heredity and environment on human behavior. The first studies of twins (Galton, 1875; Thorndike, 1905; Merriman, 1924; Lauterbach, 1925; Kramer and Lauterbach, 1928) compared like-sexed twins to unlike-sexed twins. Wilder (1904) distinguiahed the biological difference between fraternal and duplicate (identical) twins, but Newman (1928) vas the first to recognize the importance of this distinction for psychological studies and to give set of rules for establishing the zygosity of a set of twins. Since that time, many psychological studies of twins have been done, most comparing the degree of similarity of identical twin sets to that of likesexed fraternal twin sets. Results of previous studiea of twins have been revieved critically by Breland and Nichois (1972). The rationale behind twin comparisons is a simple one. Identical twins have the same genetic make-up, and thus differences between them are due only to pre and post natal environmental diseimilarities. Like-sexed fraternal twins have about half their genes in common, and differences between twins of a set are due to genetic as well as environmental differences. The extent to which identical tuina raised together are more
alike on a measured trait than are like-gexed fraternal twins raised together indicates the degree of genetic influence on that trait.

The most appropriate and commoniy reported index of twin similarity ia the intra-class correlation, which is calculated aeparately for $M Z$ (identical) and $D Z$ (fraternal) twine. A product moment correlation 1 s inappropriate for emtablighing the common variance vithin tvin eets, since there is no objective way to assign one twin to the x or y variable. Hovever, with a large sample the intra-clams correlation and the product-moment correlation with randon assignment of twins to the x and y variable are practically identical numerically. Fiaher (1958) noted that "The intra-class correlation 10 not an estimate equivalent to an inter-class (product-moment) correlation, but is somewhat more accurate." (E1sher, 1958, p.212) Fisher also noted that the intra-class correlation can be directiy interpreted as variance component. "The intra-class correlation will be merely the fraction of the total variance due to that cause which observations in the same family have in cormon." (Fisher, 1958, p.224)

The formula for calculating the intra-ciase correlation for $M Z$ or $D Z$ twin seta is:

$$
r_{1}=\frac{M S B-M S W}{M S B+M S W}
$$

where MSB is the mean squared deviation of twin set meane about
the qrand mean, and MS' is the mean squared deviation of each twin about his set mean.

Nichols (1965) orooosed a model by which observed twin correlations can be manipulated to provide theoretical estimates of the relative effects of heredity and environment on a measured trait. He proposed a schematic representation which describes the categories of events cadable of producing individual differences on a measured trait. This diagram is shown in figure 1 . As the diagram shows, the ma ior difference between the two kinds of twins in sources of individual differences is the presence of within family genetic variance (WG) in $D Z$ twins which is absent in MZ twins. Nith certain assumptions, the proportion of variance due to wG can be represented by the difference between the two intra-class correlations, If it can be assumed that $D L$ twins have half theif genes in common (reflected in the estimate of within family genetic variance) then the estimate of between family genetic variance ($B G$) can be obtained by equating it in value to WG.

Differences within sets of identical twins are due to different environmental experiences to which the twins were exposed. An estimate of the vithin family environmental variance (WE) can be computed by comparing the identical tuin correlation to unity. The remaining environmental variance component, variance due to different environments between

Figure 1

Sources of Variance in Tvin Data

The two vertical lines are of unit length and represent the total variance of a measured variable in $i Z$ and $D Z$ twins. The horizontal lines divide these variances into proportions attributable to genetic and environmental influences. Each of these oroportions is divided into between family (influences that affect both twins of a set in the same way) and within family (influences with different effects on the two twins of a set) components. The intra-class correlations indicate the proportion of varlance cormon to twins of a set and are, thus, operational measures of the between family variances $B E+B G$. (adapted from ivichols, 1965, p. 232.)
families (BE), can be calculated by subtracting the estimate of $B G$ from the $D Z$ correlation. On the basis of twin data alone, error cannot be separated from WE. However, correction of the intra-class correlations for attenuation due to unreliability vill eliminate error variance from the diagram. The four theoretical variance components, then, can be calculated an follovs!

```
WE = 1 - rMZ
BG = rMZ - rDZ
BE = WG
BE = rDZ - BG
    H=NG + BG
```


Assumptions of the Trin Method

The assumptions on which the above formulas are based may not be entirely justifiable in any given instance, and they deserve careful consideration. The four major aesumptiona of the twin method are as follows,

1. Any greater behavioral similarity of $M Z$ twins over DZ twins is the reault of their greater genetic aimilarity. This asaumption is implied when the proportion of variance due to within family genetic influences is calculated by subtracting the $D Z$ correlation from the $M Z$ correlation. There are two classes of environmental variablee that might invalidate this assumptioni (a) Environmental influences on the trait in question that produce more eimilar effects for $M Z$ than for $D Z$ twing. For example, $M Z$ twins tend to dress alike, to spend more time together, and to be more frequently mistaken for each other than do DZ twins (Smith, 1965; Wilson, 1934; Scarr, 1969). To the extent that such variables influence the trait under investigation, WE vill be underestimated and WG overestimated by the formulas given above. (b) Environmental influences on the trait in question that produce more similar effects for DZ than for MZ tvine. For example, there may be more prenatal competition for blood and nutrients for $M Z$ than for $D Z$ twins (Price, 1950). The effect of some postnatal environmental influences may make DZ twins more alike. For example, the DZ twin that is genetically more extreme on some trait may
be subjected to pressures to conform to the more normal twin. Vandenberg (1967) has suggested that some parents of twins tend to magnify differences within $M Z$ sets; parents of DZ twins may minimize these differences. To the extent that these variables influence the trait under inveetigation, WG vill be underestimated by the formulas given above.
2. Environmental influences affecting twins are not different from those affecting more typical family configurations. Choice of the twin design assumes that inferences tala be made from them concerning human behavior general1Y. It is likely that both $M Z$ and $D Z$ twins share more common experiences within a family than do ordinary siblinge (wilson, 1934). If only because the twins are the same age. To the extent that these more comon experiences influence the trait being studied, WE will be underestimated and $B E$ will be overestimated by using only a tvin sample. In terms of Figure 1 , violations of this assumption will spuriously raise (or concelvably lover) both rMZ and rDZ , altering the proportions of variance attributed to $w E$ and $B E$ without affecting the estimates of the genetic variance.
3. Random mating for the trait exista in the population, and all genetic variance is additive. These two assumptions allow for the calculation of $W=B G$, and heritability as 2 (rMZ - rDZ).

Aesortative mating, the preferential mating of like
phenotypes (or, in the case of negative assortative mating, the preferential mating of unlike phenotypes) clearly occurrs for intelligence and some personality traits. To the extent that the phenotype of the parents indicates their genotype, that ie, to the extent that the trait ia heritable, the genotypes of the parents vill be more gimilar than those of two people chosen at randam from the population. An increase in genetic similarity of the parents will increase the genetic similarity of their offspring. Positive assortative mating for heritable traits reduces the within family genetic varlance, and increases the population genetic variance. Uaing the formula $W G=B G$, then, will underestimate $B G$, and 2 ($r M Z-r D Z$) will undereotimate heritability. The effect of assortative mating on heritability estimates is dependent on the heritability of the trait and on the observed phenotypic correlation between mates on that trait. Spuhler (1967) has summarized the correlation between mates for selected measures reported in the literature. his summary is reported in Table 1. Inbreeding, the mating of people with some degree of conmon ancestry, has the same effect of increasing the aimilarity of the offepring. Hovever. in the case of inbreeding, all segregating loci are affected, whereas in apsortative mating, only those loci associated with the trait are affected. It im unlikely that inbreeding plays an important role in

IABIt 1

1 cm	Sowrce	N pairs	r
Intelligence sicrer 174			
Stanford- Mance	Burks. 1928	174	.47 + 04
Otis	Freeman elat . 10.8	150	. 49 ± 04
Army Alpha	jones, 19:n	105	60 ± 04
Progresshe llatico		324	76
Varmes rests	Smuth 10+1	433	10 ± 03
Vocabuiary	Carter, 193:	108	$21 \pm 0 \%$
Arithametic	Carser. 193?	108	$03 \pm .06$
Mental Girale	Penrose. 1934	100	. 44
Persomality ratarer			
Neurotic lerndo:		100	16 ± 0
Neuronic lende:		128	.11 21 - 0
Neurnem Tenk:		-15	22 ± 04
Neuron Temdins		100	.27 ± 05
Self sutficienı		100	. 09 ± 0
Selfesurfickot		215	12 ± 04
Self-sufticatis	Terman and Bareonue or bic	12n	. 02 ± 0
Domunatice	Hofledita list	100	15 ± 0
Domuname		126	$24 \pm$
Dotumatice		215	20 ± 0
Incroversmincerencewn		126	
Introversioncormersum	Itramand Buttonumer	2	$16 \pm$
Aiscellmeons			
Temperament			06
Insanity	Cioring deth	1433	20
Crmmoblir:	Ciorma, 1\% ${ }^{\text {d }}$	474	20

from Spuhler, 1967, p. 262.
most twin amples, however.
Genetic variance can be reduced to two parts, that accounted for by the additive effects of the genes, and a non-additive component, which inciudes dominance and epiatasis effects. This non-additive effect arises from the additional effects of combining genes into pairs or into groupe of pairs. Dominance is the interaction of genes at more than one locus. Existence of dominance and epistasis increases the genetic variance over that which is accounted for by the additive effects of the spearate genes influencing the trait.

Falconer (1960) showed how these genetic components explain variance within and between twin seta. From Table 2 it can be seen that doubling the difference between the the $M Z$ and $D Z$ correlations provides an estimate of $V_{A}=1 l_{i} V_{D}$. which is an overestimate of heritability. Existence of epistasis will cause the heritability estimate to be further overestimated. Unfortunately, the precize amount of nonadditive variance in human trait variation is unknovn, and their effects cannot be investigated by the twin method alone. Positive assortative mating will decrease the bias introduced by dominance, however. If the DZ twins share more than half their genes, the joint probability of their being identical at two loci is greater than. 25. As this

Table 2

Composition of the Components of Variance

```
Between and within pairs of Tvins:
```


probability approaches .50, the biasing effect of dominance on the heritability estimate will disappear.
4. An important factor in twin research is obtaining accurate diagnosis of twin sets as $M Z$ or $D Z$. Thim is done by comparing the twins of a set on a number of different characteristics known to be genetically determined. If the twina are definitely unlike on any one genetically determined characteriatic, they are diagnosed aa DZ. If the twins are alike on a number of genetically determined characteristics, it is probable that they are MZ. However, there is always the possibility that $D Z$ twins may be alike on the observed characteristics by chance. The probability of erroncous diagnosis of $D Z$ twins as $M Z$ deperde on the number of characteristics examined, the gene frequency in the population from which the twins are sampled, and the parental genotype. Accurate diagnosis of zygosity is esesential to the twin method, since misclassified tuin sets will artificially reduce the difference between the observed intraclass correlations for MZ and DZ twins.

The characteristice most frequently used for diagnosis in paychological atudies are hair color, texture and curliness; eye color; height; skin complexion; ear lobe attachment; mid-digital hairi prc tasting; fingerprintsi and generel facial physiogamy. Some recent studies have relied almost exclusively on blood groups for diagnosit. Blood groupt
have the desirable characteristics of very high penetrance of the genotype, high reliablilty of measurement and apparently complete independence of the behavioral traits under investigation. If carefully done, the major errors In blood diagnosis are the mieclassification of $D Z$ twins who are alike on all measured blood groupa by chance. Maynard-Smith and Penrose (1955) have tabled the probability of chance alailarity for various blood groups, and from their data errors of misclassification in Caucasian populations may be estimated as about 2%.

Nichols and bilbro (1965) compared the accuracy of zygosity diagnosis based on questionnaire reports of observable physical characteriatics with blood diagnosis, and found the questionnaire diagnosis to be about 93% accurate. They concluded that diagnosis on the basis of readily observable phyaical characteriatics could easily be accomplished with about this degree of accuracy, However, some $M Z$ twins do not look exactly alike, and vould be misclassified as DZ, despite most careful observations.

Blood diagnosis tends to misclassify some DZ twins as MZ (about 2\%) and diagnosis on the basis of observable physical characteristics tends to misclassify some MZ twins as DZ (about 7\%). Twin correlations can be corrected for any mesumed degree of misclassification by the following formulas.

$$
r_{M Z \text { true }}=\frac{r_{M Z} \text { observed }-\left(r D Z E_{M Z}\right)}{1-E_{M Z}}
$$

and

$$
r_{D Z \text { true }}=\frac{r_{D Z} \text { observed }-\left(r M Z E_{D Z}\right)}{1-E_{D Z}}
$$

where $E_{D Z}$ is the proportion of $D Z$ twins erroneously diagnosed

$E_{M Z}$ is the proportion of $M Z$ twins erroneously diagnosed

Adiustments for Assumptions

Loehlin (in press) has proposed an expansion of the formulas for estimating variance components from twin data by the addition of constants that make adjustments for deviations from the assumptions previously discussed. These constants may be set to reasonable values based upon additional observations or theory, or they may be varied systematically to study their effect upon estimates of variance components for any given trait. The formulas for the estimation of hereditary and environmental variance components proposed by Loehlin are as follows:

```
        NE = K1 (1 - rMZ)
        WG - (1 - K2 rDZ) - WE
        BG=K3 WG
        BE = (K2 rDZ) - BG
```

where k is a constant which reflects the effect of differential environmental similarity of $M Z$ twins as compared to ordinary giblings.
$K 2$ is constant which reflects the effect of differential environmental similarity of $D L$ twins as compared to ordinary siblings, and

K3 is a constant which adjusts for the degree of assortative mating, genetic dominance and opistasis.

[^0]For greater ease in computing heritability estimates from twin data, Loehiin's formulas may be altered in a manner that does not affect his logic. These are the formulas which will be used in further calculations:

```
WE = Kl (1 - rMZ)
WG = (1 - rDZ) - NE
BG = K3 WG
BE = rDZ - BG
```

K1 has been redefined as a constant which reflecta the differential within family environments of $M Z$ and $D Z$ twins. This value, the theoretical ratio of WE for DZ sets to WE for MZ sets, can be investigated with a twin sample alone, and it is the only environmental adjustment which affects estimates of heritability. The observation that twins in general may have more similar environments than do singletons vill alter the relative proportions of $B E$ and WE, but vill not affect the estimates of genetic componente. In the case where $M Z$ twins have more similar environments than do DZ twins, Kl will be greater than unity. In the case that $M Z$ tvins have less similar environmente than do $D Z$ twins, the value vill be less than unity. K3, the adjustment factor which accounts for violation of the assumptions of random mating and purely additive genetic effects, is the same as that suggested by Loenlin.

If assortative mating can be shown for the trait, wo must be multiplied by some constant $K 3$, to yield en estimate of BG. In the case of positive maortative mating, this conatant vill be greater than unity. In the case of negative assortative mating, it will be lese than unity. The resulting heritability estimate, derived from the sum of the $B 6$ and W components, can then be considered as the upper lidit to the true population heritability, since it may be somewhat inflated due to dominance and epistaais effects.

CHAPTER 2

Sampling Procedure and Simple Data Description

In the epring of 1962, the National Merit Scholarship Qualifying Test was administered to 596,241 high school juniors throughout the United States. As part of the general information collected from this sample, each participant was asked if he or she had a twin. A total of 1507 pairs of participants reported the same last name, address, high school and sex.

Each twin was then sent a questionnaire developed by Nichole and Bilbro (1965) to determine their zygosity. The questionnaire included items concerning the twins' physical characteristics and the frequency of their being mistaken for one another. A copy of this questionnaire is reproduced in Appendix 1. Seventy-nine per cent returned this zygosity questionnaire.

All twins who returned the zygosity questionnaire were then sent package of questionnaire materials which required about three hours to answer. Complete packets were obtained from 72% of this sample. Questionnaires vere also sent to the twins . mother, teacher and friend. The data used in the present study were taken from only the student and parent questionnairea, which have been reporduced in Appendices 2 and 3. The present sample includes 489 identical twin sets and 317 traternal twin sets.

This sample is not a random sample of all twins who were born in 1945-6, hovever. Students of lower ability are not as likely to have taken the NMSQT, and therefore were missed by this sampling procedure. The restriction that both co-twins attend the same school excluded sets reared apart, as well as twins with great ability differences such that one twin of a set vas in a different grade level or attended apecial school. While it is expected that there are approximately equal numbers of identical tvins as like sexed fraternal twins in the population, the present sample includes a disproportionate number of identical twins. Likewize, as often is the case with mailed quentionnaires, more females responded than did males.

Two sets of dependent variables were chosen from those available. The five NMSQT subscales and the NMSQT selection score vere obtained from the testing program. Included with the student questionnaire was the California Psychological Inventory. All 18 original scales of the CPI (Gough, 1967) were scored, as vell as 6 additional scales: Rigidity (Rehfisch, 1958), Managerial (Goodstein and Schrader, 1963), Aquiescence and Social Desirability (Dicken, 1963), and Factor I, Value orientation and Factor II, Person Orientation (Nichols and Schne11, 1963).

Means and standard deviations of average twin set acores on all dependent variables are shown in Table 3.

Tanle 3
Means and Standard Deviations of Average Twin
Set Scores on the NMSQT and CPI
$($ NMZ $=489, ~ N D Z=317)$

Scale	Mean	S.D.	Mean	S.D.
NMSQT Scalea	MZ	MZ	DZ	DZ

English Usage	19.54	4.44	20.05	3.93
Mathematics Usene	20.99	5.88	21.42	5.45
Social Studies Reading	20.59	4.58	20.58	4.28
Natural Science Reading	19.75	5.33	20.32	4.94
Word Usage	20.97	4.67	21.10	4.14
Selection Score	101.84	21.45	103.47	19.62

CPI Scales

Dominance	27.12	5.19	27.48	4.74
Capacity for Status	18.45	3.43	18.57	3.55
Sociability	24.48	4.38	24.34	4.18
Social Presence	33.68	4.78	33.59	4.58
Self Acceptance	20.97	3.25	21.14	3.03
Sense of Well Being	36.06	4.00	35.51	3.79
Responsibility	32.42	3.66	32.58	3.33
Socialization	40.56	4.37	40.17	4.21
Self Control	29.32	6.97	28.37	6.07
Tolerance	22.48	4.18	22.59	3.98
Good Imoression	17.19	5.09	16.37	4.74
Communality	26.26	1.60	26.30	1.28
Achievement via Conform.	27.57	3.76	26.97	3.44
Achievement via Indepen.	19.60	3.78	19.55	3.42
Intellectual Efficiency	38.84	4.45	38.68	3.97
Psychological Mindedness	10.91	2.24	10.69	2.10
Flexibility	9.36	3.22	9.22	2.82
Femininity	21.10	4.53	20.99	4.50
Factor I	73.65	11.99	71.75	11.19
Factor II	30.24	6.90	30.25	6.51
Rigidity	13.34	3.01	13.32	2.79
Managerial	142.25	16.24	142.36	14.36
Acquiescence	15.11	2.86	15.26	2.54
Social Desirability	19.58	3.64	19.06	3.62

CHAPTER 3
Explaining 'rwin Differences

One asmumption of the heritability formulas previously described $i s$ that the environmental similarity of ldentical twins is not different from that of fraternal twins on within family variables relevant to the dependent variables under study. Errors in heritability estimates due to the violation of this assumption can be adjusted by the proposed K1 constant.

The nypothesis of differential within family treatment by zygosity can be tested in part by examining selected items from the parent questionnaire. The parent was asked to respond to a number of items concerning the past and present family environments of the twins. Those items which were judged as reflecting different parental treatment of the twins were selected, and are listed in Appendix 4.* Each of these items was scored dichotomously. A score of zero indicated that the twins were treated alike on the item, that is the parent indicated that the item was true of both twins or neither twin. The item was scored lif the parent indicated that it was true of one twin but not of the other. The scores were summed across 69 items vinich

[^1]included reports about infant, preshcool, childhood and adolescent treatment differences. The total score for each twin set indicated the degree of differential treatment the tvin set reportediy received. A low score indicated that the set was reported to be treated alike on these dimensions; a high score indicated that the twins vere reported to be treated differently.

A one-way analysis of variance by zygosity was performed on the within family treatment difference score for each twin set. The means and standard deviations for the groups are reported in Table 4. A test of the zygosity difference yielded an F of 143.79, evaluated with 1 and 823 degrees of freedom, which is significant at the . Ol level. However, the corresponding eta was. 148, indicating that only about 2% of the variance in the vithin family treatment difference score could be explained by zygosity. A comparison of the means showed that $D Z$ twins are only .79 standard deviations above the mean for $M Z$ twins on this score.

Existence of a difference on the within family treatment score by zygosity allows for further analysis in two directions. First, this different treatment scale can be used as a predictor for twin differences on measured abilities and personality. Secondly, Dossible causes of the zygoaity difference can be investigated.

The relatively small difference between zygosity groups

Table 4

Means and Standard Deviations by Zygosity			
On the Within Family Treatment Difference Score			

on this differential treatment score may be due to several factors. The questionnaire asked the parent, usually the mother, to report about the early development of the twins, Who were high school juniors at the t me of the study. It is quite likely that the parent could not accurately recall all of the early treatment differences requested by these items. Secondly, this item set includes only a limited number of dimensions upon which twin treatment differences might have occurred. The items include questions concerning only gross treatment differences by the parents, and may not sample all of the subtle treatment differences which could yield a larger discrepancy between zygosity groups. Likewize, differential treatment by the twins teachers, friends or other relatives would not be reflected by the different treatment score. This observed zygosity difference on the within family treatment score, then, might be considered as a very conservative estimate of the actual treatment differences experienced by the twins.

It is hypothesized that differential treatment within Eamilies is one of the factors causing the tuins of a set to have different scores on measured achievement and personality. An absolute difference between each of the twing' scores on all ability and personality scales was computed spearately for MZ and DZ twins. A one-way analyeis of variance by zygosity was computed on these difference scores,
and the results are reported in Table 5. As was expected, dizygotic twins were significantly more different than monozygotic twins on all NMSOT scales. All CPI scales showed greater average score differences between $D Z$ sets than between $M Z$ sets, though 5 of the comparisons did not reach significance at the . 01 level.

Differential within family treatment as measured by the previously selected parent questionnaire items should explain some of the variance of the twin differences on these criterion variables. The differontial treatment scores vere therefore correlated with the tuin difference acores separately for $M Z$ and $D Z$ sets, and are reported in Table 6.

The correlations of treatment difference scores and the within set difference scores on measured ability and personality proved to be quite low. The different treatment score did not predict a statistically significant proportion of the variance of twin differences on any of the NMSQT Ecales. While some of the correlations between the treatment difference score and twin differences on the CPI scales reached statistical significance, the strength of prediction was very weak. The highest correlation observed was . 192 between reported treatment differences and Self Control Difference for $D Z$ twing. Thie indicated that less than 4% of the variance in Self Control difference betveen DZ aets could be explained by the parents' report of different treatment

TABLE 5
Means and Standard Deviations of Twin Difference Scorea (Absolute Values)
on The NMSQT and CPI Scales

TABLE 6
Correlations of Treatment Difference Score
and Twin Difference Scores (Absolute Values)

[^2]of their twins.
While few of the individual correlations between the treatment difference score and the criterion scores reached statistical significance, the consistency of the results warrant further interpretation. All but two of the 12 correlations computed between NMSQT difference scores and the treatment difference score were positive. This consistency indicates that, while the relationship is very weak, in general the greater the reported treatment differences, the greater the difference between the twins on measured ability. The very mall correlations may be explained in part by the low reliability of the treatment difference score and twin differences on the NMSQT scales. While the average reliability of the five NMSQT scales reported in the test manual is about .88 , the reliability of the differences between twins within a set on any NMSOT scale is much lower, derhaps in the .4 range. The reliability of the treatment difference score is not known, but might be estimated at .5. If the average correlation of . 046 between measured ability differences and the treatment difference score is corrected for this estimated unreliability, a theoretical correlation of about .10 is obtained, which still indicates a weak relationship. However, the items which were summed to create the different treatment score most likely repregent only a small proportion of the actual
dimensions upon which the twins may have been treated differently. Subtle treatment differences not sampled by these items may be a major determinant of twin differencea in achievement. In addition, parents are being asked to recall some treatment differences to which they subjected their twins in infancy and childhood, and the accuracy of their report 16 years later is somevhat questionable. Furthermore, twin differences in measured achievement may be related to treatment by individuals other than the perent, such as teachers, friends, or other siblings, or to the interaction between a twin and his co-twin. All of these factors vould tend to supress the true relationship between differential treatment of the twins within a set and their difference in actual achievement. The corrected correlation between the two measured variables of .10 , then, must be considered as the lower limit of the true correlation. If all relevant dimensions could be observed and measured, this correlation might be considerably greater.

The correlations between CPI score differences and the parental treatment score may be corrected in a similar manner. All but one of the 48 correlations vere positive, again indicating a consistent positive relationship between reported treatment differences and measured personality differences. The average reliability of the CPI Bcales reported in the test manual is about . 65 . The average
reliability of twin differences on any CPI scale would be much lower, and might be estimated as about. 3. Assuming that the reliability of the parental report of differential treatment is about. 5, the average correlation of the CPI differences and the different treatment score can be corrected. The correlation of .067 corrected by these two reliability eatimates yields a theoretical correlation of about . 17.

The true relationship between differential treatment and twin differences in personality is obscured as well by the validity of the parents' report of their differential treatment of their twins. Furthermore, the CPI scales most likely measure only part of all relevant dimensions of adolescent personality. The theoretical correlation of twin differences in personality and the total differential treatment they received throughout their development is most 1ikely greater than . 17.

While the observed correlations between reported treatment differences of twins and twin differences on achievement and personality measures is very low, a positive relationship persists on almost all individual subscales despite low reliability and questionable validity. This suggests that differential treatment by zygosity may introduce an appreciable bias in heritability estimates of achievement and pergonality. while the environmental bias appara to be smalif for the achievement measures, these resulta indicate that it may be considerably larger in the personality domain.

Eactors Determining Differential Treatment

While it has been shown that, within the present sample, MZ twins are reported to be treated more alike by their parents than are $D Z$ twins, further analysis is needed to discover the origin of the difference. Scarr (1969) noted that this fact alone is not eufficient to conclude that an environmental bias artificially inflates heritability estimates derived from twin comparisons. She suggeated two alternative hypotheses which could explain the reported treatment differences by zygosity. If parents of twins encourage the development of differences between $D Z$ twina and discourage the development of differences between $M Z$ twins because they believe $D Z$ twins ought to be different and $M Z$ twins ought to be alike, then an environmental bias Would exist. If this is the case, intra-pair differences for $M Z$ twins will be artificially reduced and differences within DZ sets will be artiflcially inflated. Since the excese of $D Z$ twin differences it proposed to be purely genetic in origin, the existence of parental pressures would introduce an envirommental bias.

However, another explanation of differential parental treatment by zygosity can be proposed which would not indicate the existence of an environmental bias. More similar treatment of $M Z$ twins may be due to their greater genotypic, and therefore greater phenotypic similarity. If parental treatment is simply a resoonse to the similarity of the
tvins' behavior which arises from their degree of genetic similarity, then an envirommental bias does not exist.

Scarr (1969) proposed a clever design by which these two opposing hypotheses can be tested. She noted that parente are not always correct in diagnosing their twins' zygosity. If $M Z$ twins believed to be $D Z$ by their parents are treated more differently than $M Z$ twins correctly diagnosed by their parents, it can be concluded that parental beliefs determine their behavior toward their twins. The same comparison can be made between correctiy and incorrectly classified DZ twins. However, if parents who are mistaken about their twins" zygosity treat them more like their actual zygoeity group, then it car be concluded that differential treatment by zygosity is induced by the degree of genetic relatedness of the twins. Unfortunately, Scarr's sample of twins was too small to yield statistically significant results. Her findings indicated, however, that differential treatment by zygosity was due to the degree of genetic similarity of the twins, and that the alleged environmental bias did not exist.

Scarr'a design can be applied to the present data.
Item 24 of the Parent Questionnaire asked;
"As you know, there are two kinds of twinsi identical tuins which have the same heredity, and fraternal twine which have different heredity. Which kind are your twine?

```
I am certain they are identical twins
I think they are identical twins, but \(I\) am not
    certain
I don"t know which kind they are
I think they are fraternal twins, but I am not
    certain
I am certain they are fraternal twins."
```

The parents bellef about the zygosity of their twins was Compared with the diagnosis of tuin zygosity based on the zygosity questionnaire. Eighty-eight sets of twins who were diagnosed as MZ by the zygoaity questionmire were thought to be DZ by their parents. Fifty-three aets of twins diagnosed $D Z$ by the zygosity questionnalre were thought to be MZ by their parents. Tha 23 sets vhose parente reaponded "I don't know which kind they are" mere onitted from this ansiysis.

The total different treatment score was used to indi \rightarrow cate the degree of amilarity of parental treatment of the twins. Recall that, according to the parents* report, DZ twins are treated oignificantly more differently than MZ sets when the zygoaity questionaire diagnosis vas used. (See Table 4.) The different treatment scores of the twina correctly diagnosed by their parents were compared to the scores of thote twins incorfectly diagnosed within each actual zygosity group. The means and atandard deviations for these two comparisone are shown in Table 7.

The comparison of the treatment difference score of $M Z$ twins thought to be $D Z$ by their parents to the score of

TABLE 7
Means and Standard Deviations of Different Treatment Score by Parental Diagnosis Within Actual Diagnosis

	Parents Diagnose MZ ($\mathrm{N}=406$)	$\begin{aligned} & \text { Parents Diagnome } D Z \\ & (N=88) \end{aligned}$
Mean	11.70	11.53
S.D.	3.37	$2.84 \quad F=.18$
	Parents Diagnose DZ ($\mathrm{N}=257$)	Parenta Diagnose MZ $(N=53)$
Mean	14.91	13.45
S.D.	3.73	$3.84 \quad F=6.71 *$

* Significant at the . 05 level

MZ twins correctiy diagnosed yielded no significant difference. Within the actual $D Z$ group, hovever, a significant difference was tound between the treatment difference score of the twins correctiy diagnosed by their parenta and those incorrectiy diagnosed. While $D Z$ twins thought to be $M Z$ by their parents are treated more alike than DZ twins correctly diagnosed, the mean difference ie quite small. However, the ordering of the four groupa along the dimension of reported parental treatment difference is that which vould be predicted by the hypothesis that parental beliefs determine differential treatment. The twins rhose treatment difference scores are the lovest are the $M Z$ twins correctly diagnosed by their parents, folloved by the actual MZ twins thought to be DZ by their parents. DZ twins whose parents believe them to be MZ have lover treatment difference scores than the DZ twins correctly diagnosed by their parents. Again, low reliability and questionable validity of the treatment difference score would tend to supress actual differences among thene four group means. If all relevant dimenaions of treatment difference could be measured accuratly, the apread among the four group means might be considerably greater. These results indicate that the major determinant of the degree of treatment difference reported by the parents is the actual genetic similarity of the twins. While parental belief about the zygosity of their twins does not produce large differences within actual zygosity groupe,
the orderirg of the group means lends support to the hypothesis that parental belief about zygosity also determines to some extent their reported treatment of their twins. It seems reasonable to conclude, therefore, that heritability estimates based on twin comparisons are contaminated to some emall degree by this enviromental bias, and that some correction factor is justified.

Parental belief about thair twins' zygoaity has been shown to have a small but convincing relationship to the arnount of differential treatment the twing reportediy received. In addition, the reported differential treatment has a small but consistent relationship to twin differences on measured achievement and personality. The relationship between parental belief about zygosity and twin differences in measured achievement and personality might indicate the extent to which the environmental blas affects neritability estimates of these measures.

The twins' belief about their own zygosity most likely coincides with the zygosity diagnosis provided by their parents. It is not unreasonable to assume that significant others such as friends, teachers, or other relatives aleo share the parents' belief about the twins' zygosity. Perhape MZ twins" behavior is more similar than that of $D Z$ twins because they believe that they ought to be alike, or because othere in their life space belleve they should
be alike. If this is the case, it would be expected that MZ twins whose parents, and presumably the twins themselves, think they are $D Z$ ought to show greater behavioral differences as measured by achievement and personality scales. Likewize, under this hypothesis, $D Z$ twins who are misdiagnosed as $M Z$ ought to show gmaller behavioral differences than DZ twins correctly diagnosed. If these relationshipe hold, evidence for an environmental bias in heritability estimates of achievement and personality ecales would gain further support. However, if twin differences on measured achievement and personality are identical regardless of the parental disgnosis of zygosity, existence of an environmental bias for these measures vould be questionable.

The twin aet difference scores on the NMSOT and CPI scales were analyzed separately for actual $M Z$ and $D Z$ sets as determined by the zygosity questionnaire. Within each actual zygosity group, the difference scores of the trins whose parents, and presumably the twins themselves, vere correct about their zygosity were compared to those whose parents were incorrect about their zygosity. The means and standard deviations of these difference score comparisons are shown in Table 8 and Table 9.

On the NMSQT scales within the actual MZ group, one comparison reached significance at the . 05 level. MZ twine claseified correctly by their parents vere actually more different on English Ueeage than $M Z$ twine misclaseified.

TABLE B
Means and Standard Deviations of MZ Twin Differences on NMSQT and CPI Scales by Parental Zygosity Diagnosis

TABLE 9
Means and Standard Deviations of DZ Twin Differences on NMSQT and CPI Scales by Parental Zygosity Diagnosis

NMSQT Scales	ents Diagnose DZ ($\mathrm{N}=261$)		Parents Diagnose$M Z(N=53)$		
	M	SD	M	SD	F
English Usege	3.50	2.48	3.34	2.66	. 19
Mathematics Ueme	5.07	4.13	4.45	4.19	. 99
Social Studies Reading	3.90	3.01	3.34	2.15	1.65
Natural Science Reading	4.19	3.44	4.11	3.21	. 02
Word Unege	3.03	2.49	2.91	2.64	. 12
Selection Score	15.13	11.39	13.32	10.31	1.15
CPI Scales					
Dominance	5.58	4.45	5.06	4.40	. 61
Capacity for Status	3.37	2.72	2.53	2.25	4.45*
Sociablifty	4.84	4.02	3.96	3.76	2.16
Social Presence	5.70	3.49	4.92	3.71	1.47
Self Acceptance	3.48	2.81	3.25	2.53	. 32
Sense of well being	4.33	3.62	3.83	3.31	. 85
Responsibility	3.39	2.97	2.98	3.03	. 84
Socialization	4.38	3.75	3.58	3.33	2.05
Self Control	6.81	5.42	5.94	5.51	1.13
Tolerance	4.46	3.27	3.51	2.89	3.85
Good Impression	5.29	4.53	4.89	4.73	. 35
Communality	1.52	1.46	1.40	1.43	. 31
Achievement via Conform.	4.58	3.81	3.57	2.82	3.39
Achieverment via Indepen.	3.44	2.87	2.79	1.92	2.49
Intellectual efficnency	4.48	3.21	3.45	3.33	4.48*
Psychological Mindedness	2.64	2.04	2.15	2.00	2.53
Flexibility	3.57	2.81	3.13	2.84	1.08
Femininity	3.54	2.71	2.62	2.16	5.40*
Factor I	12.81	10.47	10.28	9.40	2.67
Factor II	7.37	5.80	6.51	6.20	. 95
Rigidity	3.41	2.77	3.26	3.40	. 11
Managerial	16.09	12.68	11.89	11.51	5.01 *
Acquiescence	3.21	2.61	3.34	2.93	. 11
Social Desirability	4.15	3.23	3.64	2.61	1.18

[^3]The mean difference between the difference scores was very small, but not in the hypothesized direction. Within the actual DZ group, none of the comparisons of difference scores on the NMSQT reached statistical aignificance. However, all of the differences were in the hypothesized direction, that is, DZ twins correctly classified have larger difference scores than thoee incorrectly clasaified. The evidence from both sets of analyses suggest that parental belief about zygosity does not appreciably affect tuin differences on measured achievement. Support for the hypothesis that environmental pressures artificially inflate differences between $M Z$ and $D Z$ twins on measured achievement is reak. The conclusion that differences between actual zygosity groups on measured achievement are due almost entirely to the difference in genetic similarity within the groups seeme to be more reasonable.

Comparison of $M Z$ twin differences on the CPI scales yielded two statistically significant differences. On the Good Impression and Comsunality acales, MZ twins thought to be MZ had smaller difference scores than $M Z$ twins incorrectly diagnosed. However, of the 24 comparisons between groups on the CPI scales, 18 yielded mean differences in the hypothesized direction. of the CPI ecale difference comparisons vithin the actual DZ group, four reached statistical aignificance: Capacity for Statue, Intellectual

Efficiency, Femininity and Managerial. Twenty-two of the 24 comparisons within the actual $D Z$ group shoved differences in the hypothesized direction, that is, $D Z$ twins thought to be MZ vere lese different in moasured personality than DZ twins correctly claseified. The sampling error of the difference between two difference ecores on scales with only moderate reliability ia very large, and the obervation that Iev of these comparisonn reached statintical significance la not surprising. The overwheiming consintency of the direction of these comparisons lenda considerable support to the hypothesis that the greater similarity of $M Z$ twins on measured personality is contaminated by an environmental blas. The hypothesia that actual eygoilty group differences on meneured pereonality ia due entirely to the difference in the genetic similarity within the tvo groupe is questionable. Again, it aeams justifiable to make some correction in the heritability estimates of the CPI scales for this environmental bias.

Differencea in Between Family Environment by Zycosity

A seldon discuseed assumption of the previously described heritability formulae is that of equivalent betveen family environments for the two kinds of twins. One of the major components of between family environment is socioeconomic status, and Scarr-Salapatek (1971) has noted that heritability within differing SES groups may be quite different. If large SES differences between the two zygosity groups could be found, heritability estimates derived from the comparison of these two groups vould be somewhat difficult to interpret. In a sample of 243 sets of twins dravn from school populations, Smith (1965) found that DZ twins had significantly lover composite scores on his SES indicatore than did $M Z$ twins, and he concluded that an additional environmental bias existed in his sample.

The amsumption of equal between family environments by zygosity could be tested in part by comparing the SES of the two kinds of twins. From the parent questionnaire, three items relating to SES vere selected, mothers' education, fathers' education, and family incone. The education scales for both parents ranged from a score of 1 (8th grade or leas) to 6 (beyond bachelor'a degree), and scores on the income iten ranged from 1 (lese than $\$ 5,000 /$ year) to 7 (more than $\$ 25,000 /$ year.) In addition, aet of items were drawn from the twin questionnaire asking which of 41

TABLE 10
Means and Standard Deviations on SES Variables by Zygosity

		M	SD	N	F
Mothers' Education	MZ	3.33	1.17	478	
	DZ	3.53	1.25	309	$5.20 *$
Fathers' Education	MZ	3.53	1.51	473	
	DZ	3.67	1.52	309	1.63
Family Income	MZ	3.16	1.57	459	
	DZ	3.33	1.52	290	2.34
Sum of Iters in Howe	MZ	20.02	5.43	509	
	DZ	20.55	5.44	330	

[^4]items they had in their home. Each of these items were scored dichotomously, and the total score was obtained by summing the items.

A onerway analysis of variance for each of these variablea was computed to test the difference between zygosity groupe. Those cases with missing data were excluded from individual analyses. The group means and standard deviations for each of the variables are preaented in Table 10. None of these comparizons reached significance at the . 01 level. Only mothers' education reached significance at the . 05 level, though the means differed only slightly. Unlike the resulta of Smith's (1965) sample, the D L twins had higher scores on each variable. The small but consistant advantage of the $D Z$ twing may be due to the fact that their parents vere about a year older than the parenta of $M Z$ twing. While SES is only one of the components of between family enviromment, the lack of large group differences on these SES varisbles vould indicate that the assumption of equivalent betveen family environments does not appear to be seriously violated in this sample.

CHAPTER 4
Estimated Heritability of Achlevement and Personality

Heritability estimates based on the present twin sample were calculated by the method described in Chapter 1. Firet, the rav intra-clase correlationa were calculated eoparately for $M Z$ and $D Z$ twins uaing the formulat

$$
r_{i}=\frac{M S B-M S W}{M S B+M S W}
$$

where MSB is the mean square betwean, or the mean squared deviation of the family means about the grand mean.

MSW id the mean square within, or the mean squered deviation of individual trin scores about their family mean.
$M S B+M S W$ is the total variance of the scores for the zygosity group.

The F statistic suggented by Clark (1956) was computed for each variable by the formula:

$$
F=\frac{M S H_{D Z}}{M S H_{M Z}}
$$

This statistic provides a test of the existence of heritable variation, and is evaluated with degrees of freedon equal to the number of $D Z$ sets in the numerator and the number of MZ aets in the denominator. While the original h^{2} statietic auggeeted by Holzinger (1929) has often been mieinterpreted,
these values are presented here so that the results might be compared to previous twin studies. These h^{2} values were calculated by the formulat

$$
h^{2}=\frac{\Sigma M Z-r D Z}{1-r D Z}
$$

The F and Holzinger ${ }^{\circ} \mathrm{E}^{\mathbf{2}}$ statiatics are reported in Table 11.
Within the NMSQT scales, the Ftest was aignificant at the . 01 level for all measures. Within the CPI acales, only Communality failed to reach significance. While this indicates that the existence of heritable trait variation For Commality is questionable, this scale has been included in further analyses for comparison. Reaponsibility, Achievement via Independence and Intellectual Efficiency ylelded F statistics significant at the . OS level; the remainder of the CPI eales yielded F statistics aignificant at the .01 level.

The raw intra-clase correlations vere then corrected for attenuation due to unreliablifty. While some researchers may object to this procedure, these corrections are necessary here since the conclusions of heritability studies are made within a theoretical framevork. Oultting the correction for attenuation due to unreliability is equivalent to making the asmumption that these traits have been measured perfectly. Such an assumption is clearly erroneous.

Estimates of the reliability of these measures for this twin eample vere not available. Reilability estimates

Table 11
F Statistics and Holzinger's h^{2} Statistics
for NMSQT and CPI Scales
$(\mathrm{NMZ}=497, \mathrm{NDZ}=319)$

	F	n^{2}
NMSOT Scales		
English Usage	1.65**	. 46
Mathematics Usege	2.10**	. 52
Social Studies Reading	1.99**	. 50
Natural Science Reading	1.36**	.31
Word Ueage	2.22**	. 60
Selection Score	2.76**	. 66
CPI Scales		
Dominance	1.57**	. 37
Capacity for Status	1.43**	. 21
Sociability	1.64**	. 34
Social Presence	1.87**	. 39
Self Acceptance	1.42**	. 29
Sense of Well Being	1.43**	. 27
Responaibility	1.20*	. 25
Socialization	1.49**	. 30
Self Control	1.37**	. 31
Tolerance	1.40**	. 28
Good Impression	1.29**	. 24
Communality	. 94	.21
Achievement via Conformance	1.61**	. 36
Achievement via Independence	1.21*	. 27
Intellectual Efficiency	1.21*	. 27
Psychological Mindedness	1.31**	. 24
Flexibidity	1.40**	. 34
Femininity	1.30**	. 21
Factor I	1.57**	. 35
Factor II	1.73**	. 38
Rigidity	1.55**	. 34
Managerial	1.45**	. 36
Aquiescence	1.33**	. 31
Social Desirability	1.41**	. 23

ueed in the present calculations were taken from the NMSQT and CPI manuals, and from the original articles in which the additional CPI scalea were reported. The reliability estimetes from the NMSQT manual are most likely reasonable approximation to the reliabilities for the present sample, because the NMSOT vas given under controlled conditions, and the reilability information vas gathered from a sample of Merit program participants. The amamption that the reliabilitiee reported in the CPI manual are applicable to the present sample is somewhat questionable for several reasons. The CPI was not administared to the twins under controlled conditions, but was included in the questionnaire material sent to them. While the subjecte were told not to discuss their responses with their twin, sose co-twin commanication may have occurred. The sample used to obtain reliability estimatea for the original CPI scales wre high school students, but the sample size vas small. Reliabilities for the additional CPI scales were not based on equivalent populations. For lack of better data, hovever, these reliability estimates vere used to correct the raw twin correlations.

Reliability estimates for two of the CPI scalen posed special probleme. No reliability estimate vas avallable for the Managerial acale. The large number of items in this scale would contribute to ita reliability, and the value of .75 was therefore asaigned. The reliability estiante of
the Femininity scale reported in the CPI manual was . 62 , but the observed $M Z$ correlation exceeded this value. This indicates that the reliability of the femininity scale for this sample is higher than that reported in the manual. The reliability estimate for this scale wae therefore adjusted to the rMZ for want of a better estimate. Reliabilities used in further calculations are presented in Table 12.

The twin correlations corrected for attenuation due to unreliability were then adjusted for probable zygosity misdiagnosis. In the present sample, the zygosity questionnaire has been shown to be accurate in about 93% of the Cases (Nichols and Bilbro, 1965.) The errors of diagnosis, hovever, are systematic. The questionnaire method errors in diagnosing identical twins as fraternal if the twins do not look exactly alike, or if they are not frequent $1 y$ mistaken for one another. Thus, the $D Z$ correlation is artificially inflated due to the 7% of the $M Z$ twins included in this sample. The $M Z$ correlation is not appreciably affected by these probable errors of diagnosis. The DZ correlation was therefore adjusted by the method described in Chapter 1.

Table 13 lists the raw twin correlations, the correlatione corrected for attenuation due to unreliability, and the rDZ further adjusted for probable errors of diagnosis (noted as $R D Z(A)$). The remainder of this table con-

Table 12
Reliability Estimates for NMSOT and CPI Scales

NMSQT Scalea ${ }^{\text {a }}$				
English Unege	. 89	Natural Scienc	Reading	84
Mathomatice Usage	. 85	Word Usege	Reading	. .94
Social Studies Reading	. 87	Selection Scor		97
CPI Scales b				
Dominance	. 68	Achievement $V i$	Conform.	. 67
Capacity for Status	. 65	Achieverent via	Indepen.	. 60
Sociablilty	. 70	Intellectual Ef	iciency	. 76
Social Presence	. 62	Peychological M	ndedness	. 49
Self Acceptance	.69	Flexibility		. 64
Sense of Well Being	. 72	Fenininity		. 62
Responsibility	. 69	Factor I		. 88
Socialization	. 67	Factor If		. 81
Self Control	. 72	Rigidity		. 72
Tolerance	. 66	Managerial		. 75
Good Impreseion	. 68	Aquiescence		. 59
Comerunality	. 41	Social Desirab	ty	
a. KR20 reliabilities reported in the Interpretive Manual. p.7. Based on data from 1960-1964.				
From CPI manual, averate test-retest reliabilities baced on 125 high school femalea and 101 high school malea. (Gough, 1957, p.19)				
The rav $M Z$ correlation exceeded this value, and the rMZ of .70 vas used for further calculations.				
KR21 based on cross-validation sample of 250 male college freshmen. (Nichols and Schnell, 1963, p.231)				
Split-half reliability based on 60 subjecte. (Rehfisch, 196B, p.14)				
The reliability of this ecale was not reported in the article introducing this scale (Goodetien and Schrader, 1963). Reliability was estimated at. 75 .				
Split-half reliabilities based on a sample of 100 females. (Dicken, 1963, p.704)				

		（10			$\underbrace{0}_{i}$		$\underset{\sim}{0} \underset{\sim}{x}$	$\begin{gathered} x \\ \\ \\ \\ \\ \hline \end{gathered}$	$\stackrel{0}{0}$	号号	$\underset{\sim}{\text { ¢ }}$	$\underset{\sim}{80}$	$\xrightarrow{0}$
\sim	is			\sim \％	\cdots	v	－	－	－i		in	in in	
${ }^{\circ}$	${ }_{\sim}^{\circ}$	${ }_{\sim}^{N}$	$\stackrel{\sim}{n}^{\sim}$	何～。	${ }_{\text {O}}^{\sim}$	枵	응	吕ソの	$\stackrel{\sim}{\square}$	O\％		O\％	式吅
三吕号	－$\sim_{\sim}^{0} \sim_{\sim}^{\sim}$	－	－	E式场	¢	Ex	鿬吕品	르ㅇㅡㅣ	－	－ 0^{00}	2000		二20x
－べ			＂7	二～＂	ํ \％	\cdots	－\％シ	幺～～゙		－	－n	－	＂\％
家脢	佰京	岕它	asio	北空	¢5：	¢is	它宁品	N ${ }_{\sim}^{*}$	－	㐌：	inso	¢	的识：
A	Nix	式或：		牙きス		운즐	只吴	品気会	品只云	品乐：	毟えス	号緼	品这
号	「ごい		－	「号：		－	「	－	M－	－	m吕品	「＂゙	
ご心	吅号它	¢0．	çus	－	${ }_{5}^{5} \dot{5}$	可足答	－ois	－	5呺		－	べ心合	各灾
䁾 ${ }^{1}$	min ${ }^{\text {ar }}$		界曋 ${ }^{\text {² }}$	最的 ${ }^{\text {c }}$	mix	$\mathrm{mm}_{\text {m }}^{\text {m }}$		男岳 ${ }^{\text {x }}$	¢ $\mathrm{m}_{\text {mix }}$	男乐 ${ }^{\text {x }}$	䁾 ${ }^{\text {m }}$	男岳	䍖奚 $=$
O			\cdots										
\％${ }^{\circ}$	号い号	にも	ごこ～	은	읃	Nェ゙心	いご	ぞ認	号ぐ品	～をも．	N～\％	¢～～	\％～N
二心	－¢00	－\％w	－${ }_{\sim}^{\sim}$	－\％	으N	Nas	いとう	NN：	$\because \sim$	Nun	～0\％		NON
会心灾	\＃゙った	－゙心ど	の号が	只尔尔	－¢ ¢	$\stackrel{y y}{*}$	以边	ごい。	こ心が。	Nun	Nust	Gs：	～的㟧
			\cdots										
－尔灾	¢¢心	85	ज゙心̃	号出	为呺	Nちゃ	出口洔	～运安	－6芯	$\underset{\sim}{\sim}$	N～N	－No	Nicos

品品它出品

82＊	65：	¢5：	40．	2¢	2E＊	if＊	0E＊	T₹	T5＊	RE＊			09°			
2t＊	2：	2t＊	27：	［\％	15＊	21．	T：	\＄¢	S：－	2t．	$\begin{aligned} & 38 \\ & 3 \mu \end{aligned}$	$50^{\circ} t=\{$	29°	－ 7 CK		
65＊	昞	55°	$75 *$	55°	95°	95°	65°	Of．	90－	L5．	$\xrightarrow{+}$		29＊＊	2768 $27 \% 8$	85．	22 Cy .2 NC
9：\％	41＊－	07＊－	$80 *$	6月＇＝	！：＊	「！＂－	St＊	90\％	12＊＊	21＇－						
55°	55°	55°	S¢ ${ }^{\text {＊}}$	Or ${ }^{\text {－}}$	15^{2}	as．	5\％	69．	97°	55°	$\begin{aligned} & 38 \\ & 3 \times \end{aligned}$	$\begin{aligned} & 65^{\circ}=728 \\ & 50^{\circ} 8=\{x \end{aligned}$	12.	＝ $=208$ $=20 y$		
00°	61°	52\％	［1＊	14＊	12^{\prime}	00°	20°	15°	$50^{\circ} \mathrm{I}$	46°	$\stackrel{3}{+}$		If．	＝2cy $=1 \mathrm{my}$	［5．	$=2 \mathrm{Ct}$ $=2 \mathrm{my}$
55°	90°	50°	「2＊	5こ＊	65°	ぐ	91.	65°	9\％＇	80°	38		94．	＝ 1		
92°	82°	82°	82°	Of．	62°	12°	92.	O\％${ }^{\circ}$	27°	82.	3 m	$50^{\circ} \mathrm{F}=\left\{{ }^{\text {¢ }}\right.$	89.	＝ 7 Cc	－${ }^{\text {c }}$	
45°	95.	［5＊	25°	05°	25＊	45°	65＊	1＊＊	26°	H5＊	H	C5：$=$ ¢	64°	＝ 2 wy	65°	＝ 2 m

tains seriea of entimates of the three variance components calculated under a variety of assumptions.

The estimates of heritability, within family environment, and between family environment are varled around the estimates of Kl. K3 and reliability ligted in the third column of Table 13. While the $K l$ and $K 3$ constantare not directly calculable, the values used in this analysis were not selected arbitrarily. Recall that k reflects the extent to vhich identical twins are treated more alike than Eraternal twins on environmental dimensions relating to the measured trait. While few of the specific investigations of this environmental bias yielded etatiatically significant results, the consistency of results acroas scalea and acrose research designs led to the conclusion that an environnental bias probably exists for the NMSQF and CPI measures. It was further concluded that this environmental bias was probably greater for the CPI than for the NMSQT. Therefore, the value of $K 1$ was aet to $1 . l$ for the NMSQT scales and to 1.3 for the CPI scales.

The value of $K 3$ reflects the biasing effect introduced by aseortative mating and non-additive genetic effects. No information is avallable about the blas due to non-additive geneticeffects, and the information about the extent of assortative mating for these traits is minimal. Inspection of the correlations between parenta on intelilgence and peraonality ratinge reported by Spuhler (1967) ahown
in Table 1 indicated that positive assortative mating takes place in the populations sampled. The correlationa between mates for the personality measures vere all positive, but quite low. Therefore, the value of $K 3$ for the CPI mcales was set at 1.05 . The correlations between mates on the various intelligence meatures indicated that assortative mating is somewhat greater, and therefore the value of $k 3$ for the NMSQT scalee vas met at 1.20.

The next column in rable 13 gives the estimated theoretical proportione of variance due to heredity, within family environment and between family environment based on the values selected for $k 1, K 3$, and reliability. This column is the one to which further resulta vill be compared. The remainder of the columns in Table 13 show the effects of varying each assumption on these three theoretical proportions of valance.

Uncertainty bout the reliability of each measure for this twin sample, combined with imprecise estimes of k and $k 3$ prevent excat point estimation of the three variance components. An altermative approach is the estimation of the probable range in which the exact estimatea moet probably 1ie. Varying the eatimates of the reliability, $K 1$ and $k 3$ will define the probable rangen for these three values. This procedure will also indicate the effects of "wrong guesses" about the values selected for reliability, Kl and $K 3$.

The tro columns in Table 13 under the heading REL show the effect of decreasing by . 10 and increasing by .10 the value of the reliability coefficient obtained from the sources previously described. Reducing the reliability from the original estimate increases heritability at the expenee of vithin family enviroment. The correction for attenuation due to unreilability increases both raw correlationa, but increases the larger correlations more than the maller one. Since heritability is based on the difference between the two twin correletions, reducing the reliability estimate increases the difference between rMZ and rDZ, and increases heritability. The estimate of the within family environmental component is baged upon the difference between rMZ and 1.0 , and further increase in rMZ reduces the estimate of this variance component.

In some cases, reduction of the estimated reliability by . 10 causea the rmZ to be greater than the reliability, which is theoretically unacceptable. The unreasonably low reliability estimate ylelds negative proportions of variance for Word Usage, Selection Score, Dominance, Capacity for Status, and Social Preaence. Thic indicatea that the true reliability of these sales for this sample is greater than the manual-derived estimate less . 10 , since negative proportions of variance are uninterpretable.

The effects of increasing the rellability by .10 are shown in the next coluan of Table 13. In all casee, in-
creasing the reliability reduces the heritability and increases the vithin family environmental variance. The effect of increasing the reliability by .10 is particularly pronounced in some of the CPI scales. Note that the original estimated proportion of variance due to between faraily environment for some scales yields negative values, which are uninterpretable. For Social Presence, Commanality, Achievement via conformance, Flexibility, Rigidity and Aquiescence scales, the raw rDZ is very low, and correction for unreliability has reiatively mall effect on these correlations relative to the rMZ. The correction greatiy manifies the difference between the two twin correlations, and unreasonably high heritabilities result. The difference between the corrected rMZ and 1.0 is substantial for these measures, and the value of WE is positive. Since the three estimates must sum to 1.0 , the estimate of $B E$ is negative. In the case of these 6 scales, increasing the estimate of reliability by .10 reduces the artificially large difference between the twin correlations, reduces heritability, and increases WE and $B E$. In one case this upwarde adjustment of reliability removed the negative variance component, and in all 6 scales the largent $B E$ obtained vas produced by this adjument. Clearly in the case of these 6 scales, and probably for all of the CPI scales, the reliabilities reported in the manual underestimate the reliabilities which would have been obtained from this aample. If this is the
case, heritability eotimates for all of the CPI ecales are artificially inflated, and the two environmental components are underestimeted.

The next 4 columns of Table 13 show the effect of varying the value of $K l$ vith reliability and $K 3$ set at the original value. Reducing the value of $K 1$ to 1.0 for the NMSQT scales and to 1.2 for the CPI ecales increases the heritability by reducing WE and BE . Increasing Kl redures the heritability and increases WE and BE. The scales with the mallest rMZ etatistics are most mensitive to variations in Kl, since the difference between rMZ and 1.0 is adjusted by multiplying it by Kl. In the case of the 6 CPI scales with originally negative $B E$ eatimates, increasing $K 1$ incresses $B E$ by a mall amount, but in no case did adjuatment of Kl Yield non-negative BE estimates.

The final 4 colume of Table 13 show the results of variation of the value of $K 3$, holding conetant $K l$ and reliability at the values to which they vere originally eet. In all cases, reducing the $k 3$ constant reduced heritability and increased BE . Increasing $K 3$ increases heritability at the expence of BE . The estimate of WE is not affected by variations in $k 3$. Those measures vith the largest differences between rMZ and $r \mathrm{DZ}$ are affected mont by variatione in K3. For the 6 CPI ecalen with original negative BE estimete, reduction of $k 3$ had the greatest effect in increasing BE, but in no case did variation in $K 3$ yield positive values
for BE. Note, however, that reducing $K 3$ to . 95 for the personality scales, is in effect making the ascumption that negative asortative mating takes place in the population. This assumption is questionable given the findings of Spuhler (1967) reported in Table 1.

Sowe general conclusions can be made concerning the calculated range of theoretical variance components within the NMSQT and CPI scales. The heritabilities within the NMSQTscales are relatively consistent with the exception of Natural Science Reading. For the other NMSQT scales, the majority of the trait variation can be attributed to heredity. The within family environmental component of the NMSQT scalea ia amaller than the between family envirommental component. This is reasonable, since the effect of different schools and differential SES ie included in the BE entimate.

Within the CPI ecales, the results are not as clear. The heritability estimates vary greatly from measure to measure. This may be a function of erronious reliabilities, but even extreme adjustment of reliability does not account for all of the unreasonable values obtained. The calculations of the proportions of variance due to thase three sources is further complicated by the very low rDZ atatiatice. It $1 s$ clear, hovever, that the majority of the environmental variance in the CPI scales is due to within family influencea
as opposed to between family influences. The variation of heritabilities is so extreme that the only conclusion which can be drawn is that heredity plays some role in determining individual differences in personality as measured by the CPI.

CHAPTER 5

Multivariate Analysia of Twin Data

Description of Method

The previousiy described method for analyzing twin data provides useful information about theoretical sources of population variance for any one measure. But a series of univariate analyses alone cannot be used to draw inferences about hereditary and environmental sources of variation within a net of measures. In the univariate analyses of the NMSQT, for example, each of the subtest scores was found to have a substantial hereditary component. Given only this information, it is impossible to tell if each score was influenced by different hereditary mechanisme, or if the hereditary variance was due to a common factor reflected by each of the five measures. Sets of ability measures have been shovn to reflect a general factor, and a series of specific factors. Univariate techniques cannot identify which of these factors are genetic in origin and which are enviromental. Given just two measures, method is needed which would enable a partition of the covariation between the two traite into hereditary and environmental components.

Multivariate procedures of varying complexity have been suggested by Husén (1959), Vandenberg (1965), Bock and Vandenberg (1968) and Humphreys (1970). Husén (1959)
proposed a method by which the correlation between two traits could be found to reflect common hereditary influences. The method described by Vandenberg (1965) and Bock and Vandenberg (1968) is the most complex, yet it provides only a multivariate analogue for the F test usuaily enployed by Vandenberg. The method of Loehlin and Vandenberg (1968) is most similar to the one presently proposed, and it involves the factoring of asamed genetic and environmental ccvarlance matrices.

The preaent multivariate method is a simple extension of the previously described univariate technique. When vorking with only one trait, twin correlations were computed and manipulated in such a manner to isolate the hereditary and envirommental proportiona of total trait variation. In the multivariate case, analogous matrices of twin correlations are manipulated and used to isolate hereditary and environmental sources of coyariation among traits. These matrices are then factored to provide dimensions of hereditary and environmental covariation. The factors obtained from the original matrix of simple correlations among traits are then compared to the factors from the hereditary and environmental matrices, and an attempt is made to identify each original factor as being hereditary or enviromental In origin. It muat be emphasized that these procedures can only be employed when the set of variables do not contain overlapping items. The method cannot be applied to
analyee murces of covariation among CPI scales, for example, since different ecales contain identical items.

In the univariate case, the value to be partitioned into hereditary and enviromental sources is the population variance, expressed as unity. In the multivariate case, the matrix to be partitioned is the matrix of covariation, expreseed in terme of correlations between traits. This criterion matrix is calculated by treating all twine as single individuals and correlating each score with each other score across all individuals. Husen (1959) has called this matrix matrix of within twin correlations, but the fact that the subjects occur in pairs is not relevant for these calculations.

In the univariate case, the two essential statistice are the intra-clase correlations calculated separately for MZ and DZ tvins. Recall that, with a large enough ample, the value of the intra-clase correlation ia the eame ae the product-moment correlation obtained from comparing twin 1's score with twin 2's score, given random aseignment of twin 1 and twin 2 to the x and y variable. In the multivariate case, a croas-twin correlation is computed separately for MZ and DZ twins. These matrices are obtained by correlating, for esmple, twin l^{\prime} s score on cale 1 with twin 2 *s score on scale 2 . The diagonals of these matrices, the correlation of tuin $1^{\prime \prime}$ acore on sale 1 with twin 2° a score on ecale 1 , are numerically quivalent to the intra-
class correlations used in the univariate calculations. The crose-twin tatrix for $M Z$ twins reflects the same theoretical eources of variation as the rmz in the univariate caee. Each element in the MZ cross-twin correlation matrix (Matrix l) reflects the hereditary sources and the between family environmental sources common to both traits. Given two measures governed by independent herem ditary mechanisma and unrelated environmental infiuences, the MZ croas-twin correletion vould approach zero.

The clemente in the matrix of cross-twin correlations for DZ twina, Matrix 2, reflect the extent to which between family environmental sources and between family hereditary sources are common to both traits. As was the case with the $M Z$ crose-twin correlation matrix, Matrix 2 also has values equivalent to the rDZ intra-class correlations on the diagonal. Assuming that the set of between family environsental influences are the same for $M Z$ and $D Z$ twins, the difference between the $M Z$ cross-twin correlation matrix (Matrix l) and the DZ crosetwin correlation matrix (Matrix 2) will provide Matrix 3, whose elements show the extent to which vithin family hereditary factors me common to the set of traits. This matrix subtraction is analogous to the calculation of $r M Z-r D Z$ in the univariate case. In the univariate cane, it vas assumed that $W G=B G$,
and therefore the difference between the twin correlations, multiplied by 2.0, vould yield an estimate of heritability. A contant could be introduced into this calculation to correct for the effect of assortative mating on the trait. In the multivariate case, the H matrix (Matrix 4) ia obtained by multiplying each element in Matrix 3 by 2.0. While this constnat may be changed, the pattern of correlations will not be altered, and the value of the constant will not affect the factor pattern of the H matrix.

Matrix 5, the between family environment matrix, is obtained by subtracting the H matrix (4) from the MZ coosetwin matrix (1). The matrix representing estimates of vithin family enviromental variance common to the set of measures 18 calculated by subtracting the MZ ceose twin correlation matrix (1) from the criterion matrix of correlationg among traits. The diagonal elemente of this matrix (Matrix 6), representing the set of univariate calculations, are produced by subtracting rMZ from 1.O. In the off diagonal elements, the MZ cross-twin correlations are aubtracted from the corresponding simple correlations between the two meamures.

Fron thene calculations, only three matrices are of interest for further analyais, the H matrix (4), the BR matrix (5), and the WE matrix (6), all of which sum numerically to the criterion correlation matrix. The values in the diagonal of each of these matrices can be directly in-
terpreted as proportions of trait variance due to the three sources, since the values are all proportional to the total variance, 1.0 . The off diagonal elements of these three matrices reflect the proportions of covarintion between the two traits, and are proportional to the simple correlation between the two measures. To interpret the H, WE and BE matrices in terms of percents of covariation, each element must be divided by the corresponding element in the criterion correlation merix.

Of greater interest than the proportions of covariance between two tradte attribatable to cowmon H, WE and $B E$ is the factor structure of the H, WE and $B E$ matrices. By comparing the factor pattern obtained from each of these matrices to that from the original criterion matix, the original factors may be identified as being hereditary or environmental in origin.

An elternative method can be ueed to create an H and a WE matrix which should be factorilly equivalent to the H and WE matrices obtainad from the manipulation of the two cross-twin correlation antrices. These alternative WE and H matrices are obtained fron the simple correlations of twin differences on tet of meatures.

Identical twin differencea on any ono mearurement are due only to different environmental experiences end error of masurement. Any correlation betweon identical twin differences on two measures, then, would indicate common
within family enviromental influences operating on the two traits. While error of measurement will produce twin differences on one score, the errors of measurement are assumed to be uncorrelated, and therefore would not bifect the pattern of correlations in the $M Z$ twin difference correlation matrix (Matrix 7). The factor structure of the WE matrix obtained from correlating $M Z$ twin differences ought to be the same as that derived from the cross-twin correlation method, Matrix 6.

Correlations between $D Z$ twin differences are attributable to both common onvirommental influences causing twin differences and to common hereditary factors which produce twin differences on the two traits. If the within family environmental influences are assumed to be the same for MZ as for $D Z$ twins, then subtracting the $M Z$ twin difference matrix (7) from the $D Z$ twin difference matrix (8) will yield an alternative wG matrix (9), and multiplying thia matrix by 2 will provide an alternative H matrix (10). The atructure of the H matrix (10) obtained fron the twin difference correlation matrices should be identical to that of the H matrix (4) obtained from manipulating cross-tvin correlation matrices.

Multivartate Analyein of Nusor

The multivariate procedures previously described were applied to the five scales of the NMSQT. Since the sex of the twins may influence the pattern of correlations among the NASQT scales, all correletions were transformed by partailing out the influence of sex. The simple correlation matrix obtained by treating each twin as en individual subject is shown in Table 14. The correlations of the scales with sex ahoy that females are at disadvantage on all NMSOT scales but English Uaage, and that the diaadvantage is greatest on the Mathemelcs Uage and Natural Science Reading scales. The criterion correlation matrix vith the effect of sex partailed out is also presented in Table 14. All of the scales correlate highly vith one another, indicating that a strong general factor exista in thie matrix. The homogeneity is not surprising, since all NMSQT items require the application of some verbal ablifty. Table 15 shows the $M Z$ cross-twin correlations before and after removing the sex effect, and Table 16 presents the same information for $D Z$ twins. These two crose-twin matrices vere used to compute the H, $W E$, and $B E$ matrices shown in Table 17. The elemente in these three matrices sum to the elements in the criterion matrix.

The three matrices shown in Table 17 are more easily interpreted as percentages of covariation due to H, WE, and BE . Therefore, each element in theae matrices was

Table 14
Correlations Among NMSQT Scales
(Criterion Correlation Matrix

Bay Correlations						
	E	M	S	N	W	Sex
English Usage	1.00	. 54	. 63	. 57	. 66	.10
Mathematics Usage		1.00	. 60	. 65	. 55	-. 29
Soctal Studies Reading			1.00	. 67	. 77	-. 13
Natural Science Reading				1.00	. 60	-. 23
Word Usage					1.00	-. 01
Sex (1 = male, $2=$ fema						1.00

correlations yith Sex Remoyed

	E	M	S	N	W
English Usage	1.00	.60	.65	.61	.67
Matheratics Usage		1.00	.59	.63	.57
Social Studies Reading			1.00	.66	.77
Natural Science Reading				1.00	.61
Word Osage					1.00

Table 15
MZ Crose-twin Correlations on NMSQT
(Matrix 1)

RaY Corcelations

	E	M	s	N	W	Sex
English Usage	. 76	.49	. 59	. 54	. 60	. 13
Mathematics Usage		. 75	. 57	.61	. 51	-. 28
Social Studies Reading			. 77	. 62	. 71	-. 09
Natural Science Reading				. 69	. 52	-. 21
Word Usage					. 86	. 01
Sex (1 = male, $2=$ female)						1.00

Correlations with Sex Removed

	E	M	S	N	W
English Usage	.76	.55	.61	.59	.60
Mathematics Usage		.73	.57	.59	.53
Social Studies Reading			.77	.62	.71
Natural Science Reading				.68	.53
Word Usage				.86	

Table 16
DZ Cross-twin Correlations on NMSQT
(Matrix 2)

Ray Correlations

	E	M	S	N	W	Sex
English Usage	. 55	.33	. 40	. 39	. 46	. 04
Mathematics Usage		. 48	. 39	. 42	. 38	-. 31
Social Studiea Reading			. 54	. 51	.53	-. 18
Natural Science Reading				. 55	.47	-. 25
Word Usage					. 64	-. 09
Sex (1 m male, $2=1$ emal						1.00

Corcelations with Sex Removed

	E	M	S	N	W
English Usage	.55	.36	.41	.41	.47
Mathematics Usage		.42	.36	.37	.37
Social Studies Reading			.52	.49	.52
Natural Science Reading				.52	.46
Word Usage				1.00	

Table 17

H, WB, and BE Matrices Calculated from Crosestwin Correlations

Hereditary Matrix (Matrix 4)

	E	M	S	N
English Usage	.40	.38	.40	.36
Mathematics Usage		.62	.42	.44
Social Studies Reading			.50	.26
Natural Science Reading			.32	
Word Usage			.32	.14

Within Fomduy Enyicomment Matrix (Matrix 6)

	E	M	S	N	W
English Usage	.24	.05	.04	.02	.07
Mathematics Usage		.27	.02	.04	.04
Social Studies Reading		.23	.04	.06	
Natural Science Reading			.32	.08	
Word Usage				.14	

Betmen Famiay Enyirongent Matrix (Matrix 5)

	E	M	S	M	W
English Usage	. 36	. 17	. 21	. 23	. 34
Matheratics Uage		. 11	. 15	. 15	. 21
Social Studies Reading			. 27	. 36	. 33
Natural Science Reading				. 36	. 39
Word Usage					. 42

divided by the corresponding element in the criterion matrix. The correlations transformed to percents of covariation are ahwon in Table 18.

These three matrices must be interpreted cautiously, since no adjuetment hae been made for violations of the aesumptions inherent in the twin method. In the univariate case, it was hown that the exiatence of positive assortative mating for one trait affects the relative proportion of between to within family hereditary variance. However, there is no information about the effect of this bias on the proportion of covariation between two traits. Likevize, the effect of differential vithin family environments by zygosity on the covariation between two traite is also unknown. Lack of information about these possible sources of bias prevent precise estimates of the percent of covariation between two traits due to common hereditary or environmental factors.

A comparison of the matrices ahow in Table 18 indicates that the primary source of covariation among the NMSOT scales is common hereditary mechanisme. Between family environmental sources common to the aet of NMSQT scales accounte for most of the remaining covariation among the scores, and common within family environmental sources explain the amallest percentage of covariation. One noticable exception to this pattern is the partition of the covariation between Natural Science and Word Uaage, which appeara

Table 18
H, WE, and BE Matrices Traneformed to Percents of Covariance

Within Fandiy Enyiromental Matrix

	E	M	S	N	W
English Usage	.24	.08	.06	.03	.11
Mathematice Uage		.27	.03	.06	.07
Social Studies Reading			.23	.06	.08
Natural Science Reading				.32	.13
Word Usage				.14	

Betreen Fagily Enyironmental Matrix

	E	M	S	N	W
English Usage	.36	.28	.32	.38	.51
Mathematica Usage		.11	.25	.24	.37
Social Studies Reading			.27	.55	.43
Natural Science Reading				.36	.64
Word Ueage				.42	

to be due primarily to comson between family environmental Eources. Thia may be due in part to the low heritability of the Natural Science Reading scale. Also, the DZ crosetwin correlation between these two scales is large compared to the other off diagonal elemants in Table 16, while the $M Z$ crosetwin correlation is one of the highest in Table 15. Since the hereditary matrix is obtained by subtracting the DZ crosetwin correlation merix from the MZ croserevin matrix, the value in the H matrix representing the proportion of covariation between Natural Science Reading and Word Usage is quite small. The atandarderror of these two correlations, howewer, ie about 025 , and the low H value observed may be due to sampling fluctuations of the $M Z$ and $D Z$ crosatwin correlations. Indeed, increasing the MZ correlation by one standard error and decreasing the $D Z$ correlation by the same arount yielda an H eatimate of 39%, which is low but wore comparable to the other values in the trangeormed H rastrix.

While the partition of the correlation between two traits is informative, the comparison of the pattern of correlations in the H, $W E$, and $E E$ matricea to the pattern In the criterion NMSQT matrix provides even more useful information.

A comparison of the factor structures of the criterion correlation matrix to that of the H, WE and BE matrices Will allow for clasaification of the original factors as hereditary or enviromental in origin. The structure of the criterion correlation matrix with sex removed was obtained from a principal components factor analysis with communalities estimated as unity. As was expected, a strong general factor emerged, which accounted for 70.9% of the variance in the original matrix. A second factor, accounting for an additional 10% was also retained. Unfortunately, the smali number of scales and the reak factor structure of the NMSQT makes this variable get a poor one for teeting the power of the multivariate twin method. A larger set of ability mesures with a variety of group factors vould be more appropriate for thit kind of analysis. However. the two factor structure of the NMSQT can be plotted in two dimensional space and allows for a ample graphic comparison of the factore of this matrix to those extracted from the three components matricea.

The H, WE and BE matrices with the sex effect removed were also factored by the principal componente method. Since the diagonal elements in each of theee metrices can be directly interpreted as veriance components, the diagonal elements were uned at the commality estimates. Two factors were retained from the analysis of the hereditary matrix, the first accounting for 80% of the variance, the

Eecond accounting for an additional 14. 3\%. The firte unrotated factor extracted from the within family environmental matrix was not as large as the firet from the hareditary or criterion merix; it accounted for only 36.3% of the variance in the $W E$ matrix. A second and third factor were also retained, accounting respectively for 22.4% and 19.7% of the variance. The first two unrotated factors obtained from the between family environnental matrix eumaed to 101.5% of the variance, but it vas decided to retain both of there factors. The first factor accounted for 90.4% of the variance in the BE matrix; the second accounted for an additional 11.1\%.

The factor structure of each of the component matrices was compared to the factor structure of the criterion NMSQr matrix by plotting the location of each scale in the two dimensional factor space defined by the firat two unrotated fectors. Such a graphic comperison required that each vector be normalized to unit length. The vectore of the criterion metrix as wellas thoe of the H, WE and BE matrices were normalized by the following procedure. For the criterion, H, and BE matrices, the set of squared loadings of each variable on the firet two unrotated factorg were unand to obtain the comounality. For tho $W E$ matrix, the equared loadings on the firet three unrotated factors wero bumand. Each squared loading was then divided by ite communality.

The normalized londinge were restored by taking the equare root of each resulting quotient. The factor etructure of the criterion matrix could then be compared to that of each component matrix by plotting the location of each scale in the two dimengional factor epace.

The original axes were rotated 50 clockvize to obtain a makimum separation of the two factors within the criterion matrix. The first factor is identified by the high loadings of Word Usage and Social Studies Reading, though the other three scales loaded positively on this factor. The eecond factor is characterized by the high loadings of Mathematics Usage and Natural Science Reading, though main all scales had positive loadings on the eecond rotated factor. The English Usage scale vas split between the two factors, and had an equally large loading on both rotated factors. While the separation of scales is not great, it appears that the f irst rotated factor is primarily a verbal one; the second is math-science factor. The correlations of each scale from the three criterion matrices with the rotated factors were read with reference to the rotated axes. Tables 19, 20, 21, and 22 list the loadings of each variable on the unrotated and rotated factora for the criterion, H, WE and $B E$ matrices.

Figure 2 provides a graphic comparison of the factor structures of the criterion and hereditary matrix. Ae was the case for the criterion matrix, the first factor of

Table 19
 Loadings of the 5 NMSQT Scales from the Criterion Matrix on Unrotated and Rotated Factora

	λ		B		C	
	1	II	1	II	I	1 I
English Usage	. 84	-. 07	. 99	-. 10	. 71	. 72
Mathematics Usage	. 80	. 50	. 85	. 53	. 12	. 99
Social Studies	. 88	-. 26	. 95	-. 30	. 85	. 57
Natural Science	. 83	. 24	. 96	. 28	. 42	.92
Hord Usage	. 86	-. 35	. 93	-. 37	. 90	. 52

A Loadings on unrotated factors
B Normalized loadings on unrotated factors
C Loadings on rotated factors

Table 20

Loadings of the 5 NMSQT Scales from the Hereditary Matrix on Unrotated and Rotated Factors

	A		B		C	
	I	II	1*	İ*	1.	IT
English Usage	. 60	-. 07	.98	.17	. 50	. 88
Mathematics Usage	. 73	-. 19	. 96	. 26	. 50	. 85
Social Studies	. 65	. 20	. 95	-. 30	. 85	. 57
Natural Science	. 51	-. 29	. 87	. 49	.18	.98
Word Ueage	. 51	. 40	. 79	-. 62	. 99	. 22

A Loadings on unrotated factors
B Normalized loadinge on unrotated factors
C Loadings on rotated factors

- Factor reflected

Table 21

```
Loadings of the 5 NMSQT Scales from the
    Within Family Environmental Matrix on
    Unrotated and Rotated Factors
```

	$\begin{array}{ll} \text { A } & \\ \text { III } & \\ \hline \end{array}$			$\begin{array}{ll} \mathrm{B} & \\ \text { II II } \\ \hline \end{array}$			c	
Engliah Uaage	-. 27	. 26	-. 14	. 66	. 66	-. 35	. 71	. 30
Mathmatics Usage	-. 28	. 22	. 36	. 56	. 44	.71	-. 20	. 89
Social Studies	-. 25	. 06	-. 28	. 66	. 00	-. 75	1.00	. 05
Natural Science	-. 39	-. 38	. 07	. 71	-. 69	.17	. 35	. 78
Word Usage	-. 26	. 00	-. 07	. 94	. 00	-. 35	. 88	. 52

A Loadings on unrotated factors
B Normalized loadings on unrotated factore
C Loadinge on rotated factors

* Factor reflected

Table 22
Londinge of the 5 NMSOT Scales from the Between Family Environmental Matrix on Unrotated and Rotated Factors

	A		B		c	
	$\underline{1}$	1 L	1	11	I	11
Englioh Usage	. 50	-. 30	.74	-. 26	. 70	. 44
Mathematica Usage	. 31	-. 10	. 91	-. 09	. 65	. 68
Sociel Studies	. 52	. 16	. 90	. 10	. 50	. 88
Natural Science	. 59	. 21	. 90	. 10	. 50	. 88
Word Uaage	. 65	-. 04	1.00	. 00	. 63	. 80

A Loadings on unrotated factors
B Normalised Loadinge on unrotated factore
C Loadings on rotated factors

$$
-85-
$$

Figure 2
A Comparison of the Factor Pattern of
the Criterion NMSOT Matrix and the Hereditary Matrix Calculated from Cross-twin Correlations

Simple letters represent criterion matrix Circled letters represent hereditary matrix
$E=$ English Usage
$M=$ Mathematics Usage
$S=$ Social Studies Reading
$\mathrm{N}=$ Natural Science Reading
W = Word Usage
the H matrix has high loadinge on Word Usage and Social Studies Reading. A rank-order correlation between the two sets of loadinge is .83. The eecond rotated factor from the H matrix had high loadinge on Mathematics Usage, Natural Science Reading and English Uage, and correlated .70 with the second factor of the criterion matrix. The similarity in structure of these two matrices indicater that both factors in the criterion matrix have hereditary components. A comparison of the criterion and within family environmental matrix is shown in Figure 3. Three original factors vere retained from the WE matrix, and the first and third are compared to the two criterion factore. The location of the varlables from the $W E$ matrix are closer to the origin since three factors were used to compute the normalized loadings. Again, a fairly close correspondence is apparent, though the English Usage scale loads higher on the verbal factor in the $W E$ matrix. The correlation between the loadings on Factor I of the criterion matrix with Factor I on the WE matrix is . 90 , indicating very close agreement. A correlation of . 70 was obtained between the second criterion factor and the third WE factor. This similarity indicates that the verbal and math-science factors in the original matrix also exist in the we matrix The criterion and $B E$ matrices are compared graphically in Figure 4. The variables in the $B E$ matrix are cluatered
-87-
Figure 3
A Comparison of the Factor Pattern of the Criterion NMSQT Matrix and the within family Environmental Matrix Calculated from Cross-twin Correlations

Simple letters represent criterion matrix Letters in a diamond represent the within family environmental matrix

```
E = English Ueage
M = Mathematics Usage
S = Social Studies Reading
N = Natural Science Reading
W= Word Usage
```

-88-
Figure 4

A Comparison of the Factor Pattern of

the Criterion NMSQT Matrix and the Between family
Environmental Matrix Calculated from
Cross-twin Correlations

Simple letters represent criterion matrix
Letters in a square represent between family environment matrix
$E=$ English Usage
M $=$ Mathematics Usage
S = Social Science Reading
$\mathrm{N}=$ Natural Science Reading
N = Word Usage
quite close together in the two factor space, indicating that only one general factor exists in this matrix. A comparison of the loadings of the criterion and $B E$ variables on the two rotated factors therefore showed little agreement, yielding correlations of -.17 and . 03. This indicates that verbal and math-science factors do not exist in the BE matrix.

Alternative hereditary and within family environmental matrices can be calculated from correlations among twin differences. Existence of a similar factor structure in these alternative matrices would cross validate the results of the previous analyses. The alternative within family environmental matrix is obtained from correlating tvin set differences on the NMSQT. Correlations of $M Z$ twin differences with sex were all less than . OB, so that partailing out the sex effect did not alter the correlations calculated to two decimal olaces. Matrix 7, the alternative WE matrix, is presented in table 23.

Table 23 also shows the correlations among $D Z$ twin differences, Matrix 8. Again, the correlation of the difference scores with sex were very small, and partailing out the sex effect yielded no change in the correlations calculated to two decimal places. An alternative hereditary matrix was obtained from taking twice the difference between Matrix 7 and Matrix 8 , and this matrix is also shown in Table 23.

Table 23

Alternative Matrices Calculated from Twin Difference Correlations

The alternative H and WE matrices were then factored by the principal components method. The values in the diagonal of the WE matrix were all unity, but these were judged to be inappropriate for commanility estimates. Communalitiea were therefore estimated as the highest correlation of the variable with any other variable. Likevize, the diagonal elements in the alternative H matrix could not be used as commanality estimates, and the highest correlation of each variable with any other variable was abetituted.

The first unrotated factor extracted from the alternative WE matrix accounted for 80.5% of the common variance in the matrix. A second factor was also retained which accounted for an additional 14.1% of the variance. From the alternative H matrix, two factors were retained, the first accounting for 85.1% of the variance, the second explaining an additional 12.1\%. So that graphic comparison could be made, the loadinga of each variable on the firet two factors of the alternative H and alternative WE matrix vere normalized. The location of each variable was then plotted in the two dimensional space defined by the first two unrotated factors. The location of the variables with regard to the previously described rotated axes was also read. Table 24 lista the loadings on the unrotated and rotated factors from the alternative H matrix, and table 25 ifats the loadings of the variables on the factors from the alternative WE matrix.

Table 24
Loadinge of the 5 NMSQT Scales from the Alternative Hereditary Matrix on

Unrotated and Rotated Factors

	A		B		C	
	1	IJ	I*	11*	1	11
English Usage	-. 75	.33	. 92	. 40	. 30	. 98
Mathematics Usage	-. 69	. 10	. 99	. 14	. 52	. 87
Social Studies	-. 71	-. 23	. 95	-. 30	. 85	. 57
Natural Science	-. 82	. 15	. 98	. 17	.49	. 88
Word Usage	-. 66	-. 42	. 84	-. 54	.97	. 32

A Loadings on unrotated factors
B Normalized loadings on unrotated factors
C Loadings on rotated factors

- Factor reflected

Table 25
Loadinge of the 5 NMSOT Scales from the Alternative Within Farily Environmental Matrix on Unrotated and Rotated Factors

	A		B		C	
		11	$\underline{ }$	1.	1	11
English Usage	-. 49	. 27	. 87	-. 50	. 95	. 37
Mathematica Usage	-. 38	-. 14	. 94	. 35	. 35	. 96
Social Studies	-. 49	-. 04	1.00	.00	.63	. 80
Natural Science	-. 30	-. 30	. 71	. 71	-. 11	1.00
Word Usage	-. 58	.05	1.00	.00	. 63	. 80

A Loadinge on unrotated factors
B Normalized loadings on unrotated factors
C Loadinge on rotated factors

* Factor reflected

A graphic comparison of the structure of the H matrix calculated from cross-tvin correlations and the alternative H matrix calculated from twin difference correlations is presented in Figure 5. The locations of the varlables obtained from the two methods are quite similar. A rankorder correlation of the loadings on the first rotated factor from each method wa: .73. The correlation between the two sets of loadings on the second rotated factor was .90. Clearly the two alternative methods of calculating a matrix representing common hereditary components yield matrices with very similar structures.

The correspondence between the two methods of calculating the $W E$ matrix ie not so striking, ae can be seen in Figure 6. Again, the locations of the variablee obtained from the WE matrix calculated from cross-twin correlations are all closer to the origin because three factors were used in the normalization calculations. The correlation between the two sets of loadings on the first rotated factor was only.63. The correlation of the two sets of loadings on the second factor was .73. The slightly lover degree of correspondence between the two sets of loadings may be due in part to the ampling fluctuation of the mZ difference correlations, which ranges from . 03 to . 04 .

From this series of factor structure comparisons, it can be concluded that the verbal and math-science factors found in the criterion correlation matrix have both heredi-

Figure 5
A Comparison of the Factor Pattern of the Hereditary
Matrix Calculated from Cross-twin Correlations
and the Hereditary Matrix Calculated from
Trin Difference Correlations

Letters in a circle represent the hereditary matrix calculated from cross trin correlations
Letters in a triangle represent the hereditary matrix calculated from twin difference correlations

E $=$ English Usage
M = Mathematics Usage
$S=$ Social Studies Reading
$\mathrm{N}=$ Natural Science Reading
W = Word Usage

Figure 6
A Comparison of the Factor Pattern of the Within
Family Environmental Matrix Calculated from Cross-twin Correlations and the Within Family

Environmental Matrix Calculated
from Twin Difference Correlations

Letters in a diamond represent the within family environmental matrix calculated from cross-twin correlations
Letters in a hexagon represent the within family environmental matrix calculated from twin difference correlations.
$E=E n g l i s h$ Usage
M = Mathematics Uage
S a Social Studies Reading
$\mathrm{N}=$ Natural Science Reading
$W=$ Word Usage
tary and vithin family environmental origins, but the two factor structure is not related to any opposing dimensions in between family environment, which reflect only one genreal factor. In no case were the verbal and math-science factors clearly separated in two-factor space. However, these results indicate that the verbal and math-science factors may be under somewhat different genetic controls. Likewize, it appenra that vithin family environmental effectes also fall into two fairly distinct categories. The factor structures of the H and $w E$ matrices obtained from the corres lations among twin differences are very similar to those obtained from matrices derived from croservin correlations. While the matrices obtained from twin difference correlations may be somewhat less accurate, the similarity of factor structure further validates the results of the initial analyses.

CHAPTER 6
Conclusions and Implications for Education

Within the last 100 years, many investigators have studied twin populations for the purpose of resolving naturenurture issues. Several of these investigators have proposed ways of manipulating twin data to make meaningful statements about the relative proportions of hereditary and environmental influences on trait variance. This paper has presented a new method, based on the insights of these previous investigators, for manipulating twin correlations and drawing conclusions about sources of individual differences in measures of achievement and personality. Some of the assumptions upon which the twin method is based have been tested, and the results used to increase the precision of estimates of hereditary and environmental variance components. Given this information alone, however, point estimates of these components cannot yet be justified. Further narrowing of the estimated ranges for these variance components will require several pieces of additional information. More research needs to be done to establish the precise degree of assortative mating in the population for each characteristic under investigation. Likewize, careful direct observation of subtle differences in the environments of identical and Eraternal twins is needed. Knowledge about test reliadility for the speciric inin sample would also
reduce the uncertainty about the values of heritability and the within and between family environmental components. The multivariate technique proposed in this paper provides a method by which patterns of correlations among measures can be further explored. While ranking of traits within the same general domain according to their heritability is of mome interest, definition of the specific dimensions of heredity and environment common to the set of measures contributes much to our understanding of individual differences. A larger set of reliable tests acministered to a substantial twin sample would provide more adequate data for analysis by this method. Only the ability domain has been explored by multivariate twin methods, and other domains of Individual differences need to be investigated by this technique.

Implications for Education

The implications of heritability studies for education and social policy have been widely misunderstood, and this indeed may explain why Jensen's paper "How Much Can we Boost IQ and Scholastic Achievement?" has caused so much continuing consternation.

Specifically, heritability estimate can be interpreted as the proportion of trait variance in the population which cannot be reduced given present environmental conditions. The value of $1-h^{2}$ indicates the amount population variance could be reduced if environment were held constant.

This value also indicates the proportion of population varlance which is presently influenced by educationad,socialpsychological or other environmental manipulations including prenatal and nutritional factors.

A heritability estimate only reflects the present balance between hereditary and environmental influences, and it will change if this balance changes. The relatively high heritability of the NMSQT scales, for instance, indicates that biological inheritance plays a major role in determining individual differences on these measures. Jensen noted, "This is not to say, however, that as yet undiscovered biological, chemical, or psychological forms of intervention in the genetic or developmental process could not diminish the relative importance of heredity as a determinant of intellectual differences." (Jensen, 1967, p.153). It should also be noted that if some method could be derived by which all individuals could be given the same "good" (or bad) environment, heritability vould approach 1.00 , since all observed Individual differences could only be due to heredity.

Cooley and Lohnes (1968) feel that educators ought to be aware of regults of heritability studies "to temper our enthusiasm for programs that try to shape human personality. It is easy for us to overestimate the potency of our educational arrangements." (Cooley and Lohnes, 1968, p.345). Educators should realize that the task of education cannot be to reduce individual differences on highly heritable
traits. Successful educational interventions may aim at increasing the average intellectual performance of school children, but the existance of genetic variation will result in substantial variation about the population mean. Jensen aptly sums up the positive implications of heritability studies for educational and social policy. "We (should) take individual differences more seriously than regarding them as superficial, easily changed manifestations of environmental differences... We (should) look more critically and carefully at environmental variables that contribute most to differences in mental development, as I suggested that prenatal and nutritional factors had not been given due consideration. Also, we (should) expend more research effort on exploring and mapping a wider range of abilities than those measured by IQ tests, on discovering the particular learning strengths of each child, and on devising methods that will more fully utilize these strengths to help all children to benefit more from their schooling." (Jensen, 1969b, p.479).

REPERENCES

Bock, R.D. and Vandenberg, S.G. Components of heritable variation in mental test ecores in Vandenberg, S.G. (ed)
 Prese, Baltimore, 1968. P. 233-260

Breland, N.S. and Nichols, R. C. Genetic and enviromental conponents of trait variation as determined by trin etudien. Momot, 2/72 draft.
burgese, E.W. and Wallin, J. Howogamy in personality charncteristics. Le Abhematsoce Prychol. 39, 1944, 475-481.

Burke, B.S. The relative influence of nature and nurthre upon mental development. Nate Soce stude_Rduc., 1927, 27(1), 219-321.

Carter, D.H. Family resemblances in verbal and numerical abilities. Gentepercholakiono... 1932, 12, 1-104.

Clark, P.J. The heritability of certain characters as ascertainod from measuremente of twins Ame. J. Hume Genet. V.8. 1956, 49-54.

Cooley, W.W. and Lohnes, P.R. Pradicting Deyolopmant of Young Adultin, Project TALENT, American Institutes for Roetarch, Palo Alto, Cal. 1968.

Dicken, C.F. Good impression, mocial desirability and acquiescence as supreseor variables. Educ, and peychol. Monㄹ 1963, 23, 699-720.

Falconer, D.S. Intredumtion to oprantatiye genetics Ronald Preas, Nev York, 1960.

Fisher, R.A. Statintical mathods for reagach vorkerseli3th Altion rexirnd, Hafner Publishing Co. Inc. New York, 1958.

Freman, F.N., Holzinger, J. and Mitchedl, B.C. The influence of the environment on the intelligence, school achievement and conduct of foster children. Xearb. Nate Soge Stile Fduc., 1928, 27(1), 103-217.

Galton, Sir F. The history of twing, as a criterion of thereletive powers of nature and nurture. Erazeris Magazine. 1875, 12, 566-576

Goodetein, L.D. and Schrader, W.J. An empirically derived Key for the California Psycyological Inventory. Ie_Appl. Prychol. . 1963, 47, 42-45.

Goring, C. H. Studinn innational deterionatione Draper's Company Research Memoir, 5. Dulau, London, 1909.

Gough, H.G. Mnnul for the Galifornin Payabologion Inontory Contulting Perchologiet Prens, Palo Alto, 1957.
Helperin, S.L. Human heredity and mental deficiency. Amere Je Yntin Dat., 1946, 51. 153-163.

Hoffedite, E.L. Family resemblance in personality traits. Je Soce Pryabol. 1934, 5, 214-227.

Humphreya, L.G. Analytical approach to the correlation between related pairs of eubjects on psychological teste Prrabole Bulletin, 1970, 74, 149-152.

Jensen, A.R. Eetimation of the limits of heritability of traits by comparison of monozygotic and dizygotic twins. Proonding of the National Academy of Sciences 1967. 58. 1, 149-156.

Jensen, A.R. How much can we boost $I Q$ and achievement? Heryind Eductional Reyinc, 1969, 39, 1-123.

Jenaen, A.R. Reducing the heredity-environment uncertainty: a repiy. Heryud Educathomil Reviex 1969b; 39, 449-483.

Jones, H.E. A first study of parent-child resemblance in Intelligence. Yenrbe Nita Socin Stude Fivice 1928, 27 (1), 61-72.

Husen, Toreten. Reyaholoaical_tyingtudien Almqvist and Wikeell: Stockholin, 1959.

Kramer, E., and Lauterbach, C. Recemblance in the handvriting of twine and siblinge. JeEduceReq. 1928, 18, 149-52.

Lauterbach, C. Studies in twin resemblance, Gentice, 1925 , 10, 525-68.

Loehlin, John C. Paychological genetics from the study of human behavior in cattell, R.B. findrook of modern porforility thory Aldine Publighing Co. New York, in preter, 6/6\% draft.

Loehlin, J.C. and Vandenberg, S.G. Genotic and environmental componente in the covariation of cognitive abilitiesi an additive model in Vandenberg S.G. (ed) propreng in
 1938, p.261-285.

Maynerd-Smith s, and Penrose, L.S. Monozygotic and dizygotic twin diagnoeis. Ann. Hurlegnete 1955, 19, 273-289.

Merriman, C. The intellectual resenblance of twins. pecynol. Monori. 1924, vol. 33 no. 5, whole no. 152.

Neman, H. H. Studies of human twinsi methode of diagnoeing monozgotic and dizygotic trine. Blo. Buld. 1928, 55. 283-315.

Newman, H. H., Freeman, F.N., and Holzinger, K.J. Twingi antudr of haredity and mnyiroment Univeraity of Chlcago Prese, Chicago, 1937.

Nichols, R.C. The Nations Merit twin etudy in Vandenberg, S.G. Mathode and agale in humn mohyior genetich Academic Prese, Nev York, 1965, p. 231-242.

Nichols, R.C. and Bilbro, W.C. The diagnosis of twin zygosity Artinganat. 1966, 16, 265-275.

Nichols, R.C. and Schnell, R.R. Factor scales for the California Paycholgical Inventory. Je confulte Paychole 1963. 27. 228-235.

Penrose, L.S. A etudy in the inheritacne of intelilignece: the analyais of 100 families containing subcultural montal deficiencies. Brite Je Prycholec Gene Sfec. 1933. 24. 1-19.

Price, B. Primary biases in twin atudies. Ampr J. Hure Gonet. 1950, 2. 293-352.

Rehfisch, J.M. A scale for personality rigidity. J. Conmut. Prachole 1958, 22, 11-15.

Scarr, S. Environsental blas in twin studies in Manosevitz, M., Lindsay, G., and Thiseen, D. Bebryior Genetica : Thhof and reperch, Appletion Century Crofts, New York, 1969, p.597-605.

Scarr-salapatek, S. Race, social class and IQ, Science, 1971, 174, 1285-1295.

Saith, M, Similarities of marriage partners in intelifigence Ame_Sociole ROX. . 1941, 6. 697-701.

Smith, R.T. A comparimon of socioenvirommental factore in monozygotic and dizygotic trins, testing an assumption in Vandenberg. S.G. (ed) Mathode and goale in human benvior aenetiat, Academic prese, Now York, 1965, 45-61.

Spuhler, J.N. Behavior and mating patterns in human popuLations in Spuhler, J.N. (ed) Ganticedrexalty and hurn moryor aldine Publishing Ce. Chicago, 1967. 241-268.

Terman, L.M. and Buttenweiser, P. Personality factors in marital compatability. J. Sogn_Pryabole 1935, 6, 143-171.

Thorndike, E.L. Messurements of twins. Acchiyen of philogophy, Perchology nod Schentikicmethode, 1905, 1. 1-64.

Vandenberg, s.G. Multivariate aralyeie of twin differences in Vandenberg, S.G. (ed) Yithode and coale in hump peplyior gentich Academic Preme, New York, 1965, 29-40.

Vandenberg, s.G. Hereditary factore in normal personility traite (as manured by inventories) in gament adranan

Wilder, H. H. Duplicate twina and double monstors. JeAnc. Anat. 1904, 3. 387-473.

Willoughby, R.R. Family similarities in mental test ablifies Yearbente_soge Stinderinc. 1928, 27(1), 55-59.

Wilson, P.T. A study of twins with epecial reference to heredity as a factor in deternining differences in environment. prmesiol.1934. 6. 324-354.
 trators: National Merit Scholarship Qualifying Test, Spring, 1965. Science Research Asaociates, Inc., Chicage. 1965.

APPENDIX I

Zygoaity Ouestionnaire

Dear S:usent:

similar you ard your tair e:a fo fojiz*- E:? - - ine.

 please correct.

 \qquad
 tuin? 1 a: pound= (lyt:er, s....:
clrele 0)
 ther ber:.

Yee, frec: $=$ ":
Occesioral!
--
Rarely or reve:

Yes. freq-an:
——Oこeasiors!lı
__ Rarely or ne:z:

 (circie $5 . e$)

Ye3, :req.en:
Oceasio-s:11\%
Rerely or :e:er

Yes, frequt tly
0ecesic:.11!y Rarely or :.t:\%

\qquad

__.................-......................
_-.. - -.................................

\qquad
\qquad

 your thent．（GI\％e j＊：3ils）
\qquad
\qquad
\qquad
 t－1：？
 fraterral t．ir．

19．If you

\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad

23．Win：

1．$:(9,-102)$
2．A－or $3+(8 \ni-91)$
3．$E(5+-83)$
4．B－or C＋（72－23）
5．C（73－77）
6．C－ $2=\mathrm{D},(6:-72)$
7．D or lower（ 67 o： $0 \times 1 \because$ ）

3．Nimatere lix ere A！－lir
4．Disl：r．a l：しこle
5．Dislike ：rej zuer．
24．Eーモ1！：゙に
25．Piy：：：ip
25． $2=00 \ldots: ?$
2T．Arti
23．ミ10．・ッ：この
29．In：
30．55：ミンジ
31．F2：5：－
32．Bコェーン：
33．R：こッパ：j：：：i•

36．日iz School Tenote：
37．Writer o：Jこッツ・ミ1！＝
33．Socigi watory

APPENDIX I I

Twin Questionnaire

8. Which hand d ru faver? (circte ne.)

 I : mmbidector
9. What is your academic rank in your high an:, ! as:
(0001 is the highest rank, 000 e the next tient t. etr.)

I ranked number | | | | |
| :--- | :--- | :--- | :--- |

in a rint

How nccurate is y ur report if high sctum 1 rak: (rircli in.)
It is currout ats reported t. me ty the ...h
 other measure of perfurmance
It is a ruer: hard a my peneril impre: \because i.
I have no idea of my high sch rank ar and

10. Which of the folluwing best deacribe the cumanity which y u think if at your tume town durine high sction dey? (Circle one.)

Farm or pen cumatry
Suburt in a metraplitar area of -
mre than : millin frputation. . . .
,00,000 to :millin.
200,000 to 499,999
lees. than 100,000
Centryl aity in = mut puitan aren r it $\because \quad \because$
mre than millimpupation.
「00,000 tr, millior.

:0,00n t: 34, 299. ',
10,100 t 4,499 0
.f thar lis,ono.
0

I have new..r mand.
I way i m k. ! :

I om ke frum a t. ©igaretre , dat.

I smoke 40 r macrigurette. a in:.
I moke frm : $\because \quad$ sigar.. a iz
I m ke from t t ic ogare a dag
I ane 7 ior mir cirars a jay
I mkefron ?

I smake r mrepipetul: forn byy.


```A!a!!% infal.```		





B
(7-63)
Studied with another persun T ak dancing less ns. . . . . . . . 4506 Took No-Duz ur other stay-awake pllls 456 Repaired or worked on a car . . . . . 456 Changed clothes during the riay
(exclude gym .r mthletics).... . 456

B aght $A$ classical ur semi-clasbical record

Chewed gum . . . . . . . . . . . . . . . . . \& f,
Ait yume fingerrialls. . . . . . . . . . . $\rightarrow$ f. f,
Rude in a sports car . . . . . . . . . . . 456

Went sightseelng . . . . . . . . . . . . 4 , f
Practiced on a musicat instrument. . . . . it $y ~ G$
Took a nap or rest during the day. . . . . 4 , fy
Talked in a language uher than English. . is $y$ t
Conducted a chir, band or orchestra. . . 456
Touk volce less. ns . . . . . . . . . . . . 456
Crocheted. . . . . . . . . . . . . . . . . i+ ', t,
Picked-up ; hitch-hiker. . . . . . . . . 4 ; $f$
Tutored s.mene freman . . . . . . . . . 4.56
Tutiored sume.ne if freq. . . . . . . . . . . , f
Wrote articles $f$ a sciool paper, year-
bock or similar pibijuttio. . . . . . . . 4 i $f$
Went ia a night cawtwith n floor shw. . 4 s 6
T.נ. ph tograjhs . . . . . . . . . . . 456

Bailt or flew a modri atrplane. . . . 4 5 6


Participated $1 n$ a st, d*nt d*monstration
(strike, ater-íipht. .e.). . . . . . . . it,$~ f$



buydru: any
W. rked for a clut or rganization. . . . 45




Rode : $n$ a riller cuister. ferri: wheei, merry $\mathbb{R}^{\circ}$ round, or similar ride. . . . .

As a check on ancurary : t rearriam make no responce at init thi: it.rm.

Studied with the radis, rewsed fiaytr s TV TV.



Cut iv ur whatait.
Staptel ifile rer.








F:1:1:1


16. People have many different goals in life, some of the more chmon of which are listed beiow
 and goals. (Circle one in each row.)
$\qquad$

Essential	Importat.t		
(something	1 achieve	Somewhat	Of is:
I must	(uut nut	Impurtant	$r$ н
achieve)	*SSential)	to achlev	ixip rixil.

Becoming happy and $c$.ntent.
Inventing or developing a useful pr duct or device.

- . . .

Becoming accomplished in one of the parim: arts (acting, dancing, etc.).

Developing a meaningful philisophy of iffe.

1	$\cdots$	1
1	$\cdots$	
1	$<$	$j$
1	$\vdots$	1
1		3

and an authority on a special subject it my field
Dolng somethitg whicn will make my parents proud of me




Never being bligutai : fryir. .f. . . .
Keeping in good physical c ndiqi..n $\square$
Producing good artistic whrk (palnting, sculpture, deriseting, et..)
Becoming un accomplished musiciar (perf rmer or composer)
Becrming an expert in finance and commerce.
Keeping up ti; date with pulitical affuirs.. .

Being well-liked:
Being a good husband or wife
Being a guod parent
Finding a real purpise in liff

3	4
3	4
3	4
3	4
3	4

Being active in relifirus affeirs
Having executive responsiteility fr the $\quad r$ rk
of others
Avuiding hard wirk.
Engaging in exciting rind stimulatinu factivities Being successful in a buslness, my , wn.

3	4		
3	4		
3	4		
3	4		
3	4	$\times 1$.	


I belleve in a persunal God, a sidpreme belre, witi kri in: my thaghtis and hears my prayers.
I belfeve in a supreme being who created und c.tit in fite aniverse, bit
I am not sure that individuas people can cumaniacate wita Him
I am nut sure whether ar not nerr is f God, bat I terid to think that there is.
I am not sure whetrar rat ther" is a Goi, tat I coma, chank that there is nut
I belleve that there is bu Gui. . . . . . . . . . . . . . . . . . . . . . 5
I inntikn what i peleve . . . . . . . . . . . . . . . . . . . . . . of
 $\qquad$


 opinicn? (Ciroie n+, )

$$
\begin{aligned}
& \text { Qreat : riflintitidichs. . . . . . . . . . . . . . . . . . . i }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Otiar (Ciroir an: je.i!j.) }
\end{aligned}
$$

$\qquad$
17.

20. What is your current marital or dating s.atar? (circie ine.)

```
Murried (otilirem; r experimg)
(4t)
Marrieg (a, lacirea)
Engmged
Pimited r k.itaz .terity L
!amily late : ce ame per.an. ?
Uoablly date aitferent persons.
O r. t !'tt i: i... M
```

 that you have per month. Round $t$ the rearest whi it romber. [if leri than me tivery twit
 out together $t$ thes ". "vent.i.)

 If you have done a thing me $r$ more times, duritif the year, ir ife the number under yr: if not, circle the number under " $N$." (cir.i. me. freart : thm.) 16 $\qquad$ ( $1-6$ )
 Lust mure than tern pruns in wedptit
Flunked

Went : 1 ifet.
Berame rimed r mequed.
Froke-uf with a dirltriens
$\mathrm{Br} k \mathrm{e}-\mathrm{ul}$ witt. : B veieti
Derated mey a a charity.
worket $t r$ the rleotion : $: 1$
Frarty $r$ randiatie


$$
\because \text {. }
$$


Rereivel : martian promal.

Who urefted $r$ At iticket : $r$ inmetime

Wert $n$ the wagen (ow of istokitap). 1
Sirtifi : petitiot
Cus: mize: 'A mint $\because$ t

werr put required rabitio.
Painume \& rem
$\Gamma_{5}, \mathrm{~L}:$ tate,
Had a ctect bumone
 various activitie:
Went $t$ a carrivil, amucement park $r$ circus
Had psychotherapy
Made jour swn Chrictasia mara
Grew : beard.




 une of the $n$ mbers near the center. Matio of ihe trait: inperit se the situatian, af


$\times(54)$




$\times(54)$
 worlu. What, f: you ac $1 t$, sare the major pr i..: :choml todny? (Clrate whe for eand lem.)

## 4 B

$\qquad$ (..)


Choosing a career.


Financin: $\qquad$

	Power : . . . . . . . . . . . . . . . . Fan atipme:. . . . . . . . . . . . .

27．Which of the following adjectives do you consider to be descriptive f yourself？ Circle the number beside any adjective that you might use in drscribirig yourself to somene else．Your behavior will vary with the situatiun，of c．urse，s．circle the numbers beside adjectives which might apply to you frequently，even though they are not appropriate all the time．Work rapidly，putting down y ur first thoughts．

（7）Fr．nk．
Frieiidly
Gener：Cle 6
．．．． 3
Gcrd－looking ．．．．．． 4
Guod－natured ．．．．．． 5
Helpful．．．．．．．．． 6
High－strurg．．．．．． 7
Hunest ．．．．．．．．． 8
Hostile．．．．．．．．．Y
（B）H morous
．
Idealistic
Inaginative
Immature ．．．．．．．． 4
Impatient．．．．．．．． 5
Impulsive．．．．．．．． 6
Independent．．．．．．． 7
Industricus．．．．．．． 8
Ingenious．．．．．．．． 9
（9）Inhibited．
Insightul ．．．．．．．2
Intelifgent．．．．．．． 3
Irresponsiblゃ．．．．．． 4
Irritatile．．．．．． 5
July．．．．．．．．．． 5
Kind ．．．．．．．．．． 7
Lazy ．．．．．．．．．． 2
Loisurely．
（1）Legical
Loyal
Mairdj：isted
Mannerly
Masculine
Miture
Mrak
5
－．．．．．． 7
Mrssy．
9
Moth dircil

## （11）Mild

Mischievous．．．．．．． 2
Mudret ．．．．．．．．． 3
Mody．．．．．．．．．． 4
Naive．．．．．．．．．． 5
Nervuis
Onlifing ．．．．．．． 7
Opini na：••1．．．．．．．
Orlginal
（ $\because$ ）Out．g．ine，
Onitspiken
Pitifers：
Pr．risistets：
Plemandi．
P $1:, 1, \cdot 1$
Pッ・•1～！


1 （13）Quarrelsame．
（15）Seri：uis．．．．．．． 1
Quiet．．．．．．．．．2
Realistic．．．．．．． 3
Reasonable ．．．．．． 4
Rebel11ous ．．．．． 5
Reckless ．．．．．． 5
Relnued．．．．．．．． 7
Reliable ．．．．．．． 4
Risentful ．．．．，$\%$
（： 4 ）Reserved ．．．．．．． 1
Resourceful．．．．．．？
Respunsible．．．．．． 3
Restlegs ．．．．．．． 4
Rude ．．．．．．．．． 5
Sarcastic．
S．lf－centered．．．．． 7
Self－confident ．．．S
Sensitive．．．．．．． 9

Shre－d
Shy．．．．．．．．．． 3
Sincere．．．．．．．． 4
Slow ．．．．．．．．． 5
Snutitish ．．．．．．F
Sociable ．．．．．．． 7
Soplistirstod．
Statie
（16）5tint irn
Summissi\％
Stegestiblr．．．．．． 3
Sispicirus ．．．．．． 4
Tretidl．
（17）
$\left(1^{5}, w^{\prime} \cdot 1 \pi m\right.$
4
r．．．．．ttiva．．．．．．． 1 ，
Temperrimfortis．．．．． 7
,

Tunse．
Ttion luti

$$
1
$$

Thonertir．
Timi」．
Unembitiuls．．．．． 3
Unissumine
Unc nventional ．．．． 5
Undependible ．．．．E
1！：am I nal．．．．． 7
Uritinibitad．．．．． 0
w．1 ：－＋1．j．．．．．．2．．．．．：
iv．．t tit rro t．．．？
Whis：y
Wh．Irs．me．．．．．．．y
W：＇．！：：－i．．．．．．．f，
W．＇3．．．．．．．．$\dagger$
N reylut．．．．．．．A

Varsitile．

Varsitile．．．．．．． 3


If this was me.tly f r ame rutint treatmert, such as miteray a. . . explair. here: $\qquad$





(circle 'ne in each r*w.)

4. .. wir wh mpror 1
Giri: yur umi ave - :

Y futher.
w teacher
Orer aduite


36. Below are a number of honors which high actmo students might, metif if. Cirtie the wat. rbeside those accomplishments which you have achieved durinf hift anit.
Wrote an independent paper on a scientific topic which received the highest pos- sible mark in my school. . . . . . . .1 (7)
Did an independent, scientific experiment (not a course assignement) ..... 2
Was a menber of a student honorary scien- tific society. ..... 3
Invented a patentable device. ..... 4
Had a paper putlished in a scientific journal. ..... 5
Built a piece of equipment or laboratory apparatus on my om (not course work). ..... 6
Participated in a scientific contest or talent search. ..... 7
Participated in a Naticnal Science Foun-dition summer program for high schoolctudents at:1 (8)
Placed first, second or third in a: National science contest ..... $?$
Regional or state science contest ..... 3
City ur crunty science coritert ..... 4
Srfori Seience contert ..... 5
Wen a prize for any ather scientific wrk retud; ..... 6
Placed first, second or third in a: National speech ar debate contest ..... 7
Regional or state speech or debate contest(9)
City or cunty speech or debate contest Gchocl speech ur debate contest. ..... 3
Had a leading role in one or more plays. ..... 4
Had minor roles in ne or mure plays.
Wrote a play.5
Directed a play ..... 7
Appeared on radio or TV as a performer. ..... 1 (10)
rrwarth whay.
cmpaign4
Organized my own buifiness or service. ..... 5
Received $y$ Junior Achievement award ..... 6
Compesed music which has been given atleast one public performance7
Performed with a profeselcnal orchertr; i(1:)
Played in a scron! musical organization e
Played a musical instrument.
Played in a dance or inzz band for wages ..... 4
Organized your uwn dance or jazz band. 5
Received a rating of "Good" or
"Excellent" in a:
National music contest ..... 6
Regional or state music contest ..... 7
City or county music contest(12)
School music contest. ..... 2
Organized a singing group ..... 3
Directed (publicly) a band or orchestra 4
Exhibited a work of art (painting,sculpture, etc.) at:A natlonal art showA regiunal ro state art show.${ }_{5}^{5}$
A city or county art show. ..... 7
A schocl art stiow ..... $(1 j)$
Won a prize or award for an artisticcreation (painting, sculpture, etc.)
at:
A national art srow
A regional or state art show. . . . 33

    A city or county art show
    A city or county art show
5
A schocil art show
Wiri a prize ur award for awork fublished in a public newspaperor magazine6
Edited fi schors paper or literary magazine. ..... 7
Won a literary award for creative
Writing ..... 1(14)
Had poeas, sturies, essays orarticler putilished in a schoolpublichtion
of rerestive writinu un my own (ruthe part if a rourse).
Published the ror more 1 ssues nit myown neweraper4
Hed poems, strries ar articlespublished ir a public newspaperor mapazine (not schorl)5

```
37. In the items listed below please compare y urself wit!: y :ar twin and indirate whittift each
 statement is more true fi you or more trie or y wr twim. (cirile ae fur mach item.)
 (14m
Which twin:
Has more friends
Makes better grades in sctrol. % ? *
Does more talking when the twn, i vatment i
 new persiff.
```



```
 (temmis, buwlifi&, ct(.)
Reads faster
```

Has mure dates.






Is the hetter wrifer (t ries, eassy, et.)
Kriowr mure atm at suier"e.
Is better it putii spenkinp

i: whist. t th bes: nf.
I: $\mathbb{m}^{2}$ rerfilaj $\because$. . . . . . . . . . . . . . . . . . . 1



fige each iter.)



Bt:ar.
G. $t$ the $m$ :

Gr ist it dat
Work :n f.r!i*.
Read bitat


```
Wra 4re 1. ta,y:1,
```


40. Do you and your twin dress allke? (C1rcle one.)

We always dress alike. . . . . . . . .
We usually dress alike. . . . . . . .
We sometimes dress alike . . . . . . .
We rarely or never dress alike . . . . .


1. Do you and your twin have the same or different friends? (circle one.)

2. Which twin was born first? (Circle one.)
I was. . . . . . . . . . . . i
My twin was. . . . . . . . . .
I don't know . . . . . . . .
3. What was the longest period of time that you have been separated from your twin? (Ciral n..)
One day ur less. . . . . . . . . (51)
Two or three days. . . . . .
Four to six days. . . . ...
One or two weeks . . . . . .
Two weeks to one month. . . .
More than one month. . . . . .
4. How often are you and your twin together? (circle one.)

5. If you could start life over, whald you like to be a twin again? (Circle one.)

6. Do you and your twi share many trings or do you each have your iwn prosensions? (Circle int.)


## APPENDIX III

## Parent Questionnaire

$\qquad$

1. What is your relationship to the twins fur whom you are completing this questionnaire? (circle one.)

> Mother.

Father. . . . . . . . . . . . . . . . . . . . . . . . 2
Stepmother. . . . . . . . . . . . . . . . . . . . . . . 3
Stepfather. . . . . . . . . . . . . . . . . 4
Guardian (Cirale ant rxplain.) 5
Other (Circle and sperify.)
2. How well did you know the twins as children? (Circle one.)

If you knew the twins only castally Very well. . . . . . . . 7 or not at all, do not cumplete the Fairlywoll. . . . . . . . 8 questionnaire. If there is no one $\quad \& \quad$ Casually......... . . . . . 9 avaflable who knew them well, check

Not at al: 9 here and return the questimanire blank.
.
3. What is the cirrent status of the famlly? (Circle all that apply.)

True mother deceased . . . . . . . . . 1
$\left[\begin{array}{l}\text { If the twins are nut living } \\ \text { with the true parents, answer } \\ \text { the following five questiuns } \\ \text { in regard t thuse niw arting } \\ \text { as the parents. }\end{array}\right]$

True father deceased . . . . . . . . . . 2
Parents tugether . . . . . . . . . . 3
Parents separated, but not divirred. . . 4
Parents divorced . . . . . . . . . . . . 5
Mother remarried . . . . . . . . . . . 6
Father remarried . . . . . . . . . . . 7
4. What is the father's occupation? (If duties are not clear from the job itle,
ploise give details.)
(10-11)
5. What is the mother's ocupation? (If duties are not clear from the $j$ b title, please give details.)
6. What are th. parents' ages? (Write in age at the last birihday.) If deceased, write in the age which wiuld nive heen at:ained if still living.

7. What is each parent's highest educational attainment?
(circle one in each column.)

	Mother	Father
Sth grade or less.	1	1
Par: high urt.esl	2	2
High schoul gridunte . . . .	3	3
Part college or juniur college	4	4
College graduate	5	5
Graduate or professional degree beyond the bachelor's degree	6	6

8
What is the family's income? Indicate to al family income befure taxes.
(Cifcle one.)
Less than $\$ 5,000$ per year.


 the age clearly in mind, indicate whether ar i. t cach of the atstement wist tride $f$, ine $r$





 couldn't thifk rf any better ilternis in.



Heni ... io. frequent:
 montr-)

Learned $\because$ widk If: (atitur
mrnta:)
 $!\quad$ - tat?
$\because$ rirl it ! t

(Circle 4 -1g $\because$ )
 B : itr.

$\cdots$ tifr $\because \quad$ :.e •r,rreradit.






Oftra riert wirr. !et , lit :trat

- ! ! A siom..: , b'i

 the trume

Was unumlly left * vy at st whore


 f.r reis..i it r.jfte. . . . . . . .

Was etten allewet t rus, ar it th. house witrout cirthe:


re:tiar.s. . . . . . . . .
Couis muse nimse:f icr several ricurs playing aline . . . . . . . i




Would cry when his parents went out and left him with a baby sitter

Woald titell iget with ther a.ildres. with ut provert.....

Pajamias covering the hamds, bitter sutztance:s, or other devires werf used , rie $r$ more times $t$ prevart thant -ourking

Did n. iffr e be dirty.

## CHILDHOOD ( $\mathrm{O} \therefore \mathrm{t}$ Ther $\because \mathrm{Y}$ Yir)

Attended Sunday an ol ir churet fairly reiuiarly. . . . . . . . . : . $\because$ r

War very hetive ant alwaye running,








Stutteret r itimmere:. . . . . . .
Wat finilry otwit 1 :t. : wat yra







 ti:n*s.

Had friende ver : r iunca or dinner

Prefit a gre:t deai : r.: time :
$\therefore$ me refilifir

 frtrer.

C.: ut:-. . . . . . . . . . . . .

H: : 1 fainh tuEper



Had remolime, $\ell=$ ir wad the trued

fit. swis freth the se r more time.
Fi. :i. : if.,








## ADOLESCENCE (Thitlve



Freque: :

$$
1:
$$

Oftes: ध $\because$ tre:
frileme wite later


sioter, piri r ryiend)
Bit !.i. "inerern:i!


Wa: river. micy : turs amert.
rtwirit : ry, arade in ars
Parent. rave triad t iristue:r.


## Figuteen $Y$ tir: )





1ロッ: ! •• . . . . . . . . . . .

H: : : wit. $\quad$ + i:.-..... : . !ike
Ht..., : rer. $\ddagger$ : . . . . . .

, : $1 . y^{\prime} \cdot$.


Was of ten the first one in the
house to get up in the morning
Went out on the average of three or more nights a week. . . . . . 900 o
Was punished or criticized at a
rate of one or more times a
month for staying out to late. 9 O $x \quad y$
Parents objected to hire arsoniqui : with ne or more of his boyfriends.
Parent: objected $t, h i$ assuciati $t$ with one st me ar ia eirefriends.

Was not permitted tr read certai. books.

Was :rrquertat in ll wed + take
 witt, tri':nd

Made : i. init tyg.
 which were his respongitiaity. .

Wore braces $t$, itrifrrteri his teri
Parents requires ant the spend
a specificid um ur. it i me
EArn week :amirs


Hat a per.monitit $\because$ allot ur uther mon-academic difficulty which required $i$ vi, it t seta nl ty the parent..
wis: art permitter t t, at. a
 ir rommitiner $\therefore$.
'wis: 1 Lithe inejry

Hid :s r m : lei. wit


t joiner or * le a fie .t 1 l
tree tome


t. いatitinue

11. At what ages were the following things true of the twins. Circle the ir. it wit !. at, ithen occurred. "O" indicates from birth to one year, "l" indicate.; the year in whi hi the inins wert one year old, etc. (Circle as many ages as apply for each item. T: the event it: a furtioular item did not occur at all, circle the letter " $x$ " at the end "tie r.s.)

FOR EXAMPLE: If the father was away from home for three year: wher the twint were art: oix through eight and again for a year when the twinc were ten, you wall indioate it thus: CL__(1-1, (i-4.)
Father was absent from home.


The twin were cared fur by a rurte or baby sitter durine the :ay.

Muther war aboent from home for :is months $r$ mure durine the yemr.








A forme lied.






The twine wete geparated fore mar. rix month furine the yetr.
12. Parents use many different forms of discipline t irain their ohidren. Some the more common ones are listed below. Indicate to what extent each war used in the training of the twins, both as young children (before six) and as older crilldren (after six). Try tc indicate how the twins were actually treated rather than what now seems correct. (Circle ne number in each row as young children and one number in earh row na ider children or adniescent. $\mathrm{a}_{\text {. }}$ )

3. How otrirt war the diontplite fo the twine?

> Very stric
> Strict.
> Firm 8
> Plo. . . . . . . . . . . . . . 9
> Somewhat easy-e lus r permissive. . O
> Vary easy-g,ing .ar permisgive. . . . x




 Threats of puristument always f.al wed incoph. . . ? Threats of puashment usualiy f illwed through . . . 8 Threats of punishment. sometimes foll wed through . . 9 Threats if pundshment raraly filad thr ugh. . . . 0
16. Parents usually follow fairly definite patterns in raising their children. Below are listed some of the ways in which these patterns can differ. Please indicate the general patterns that were actually followed in raising the twins. If the twins were treated more like the statement on one side of the page than the other, circle one of the numbers on that side. If neither statement is particularly descriptive or if buth apply equally, circle one of the number:i in the middle. The headings "Very," "Fairly," cto. refor t." the degree to which a :itatement is descriptive (circle one in each row.)

Mcther takes responsibility for raising the twins.
Panishment for misbehavior is Praise for good behavior is the the main method of control.

1234567 main method of control.
Parents give the twins as many Parents restrict the twins' things as they can afford.

1234567 possessions.
There is a lot of contact between parents and child. Do many things together.

1 1nterests independently with
Parents attempt to train the
twins to give up baby ways as
soon as possible (early toilet Parents let the twins develop
training, early weaning, pre- in their iwn way, at their own
vention of thumb sucking, etc.) $\quad \begin{array}{llllllll}2 & 2 & 3 & 4 & 5 & 6 & 7 & \text { speed. }\end{array}$

Home is calm, quiet and peaceful. 1 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Mother is overtly demonstrative
if luve for the twans with mich hugeing, kissing and expression

M ther is not uvertiy demonstrative of affection.
of luve fur the twins.
Father is overtly demonstrative of love for the twirs with much hugging, kissing and expression

Father is nct overtly demonstrative of affection. of luve for the twins.

Parents let the twins do what- Prents astively direct the behavior ever they want to.
and interests of the twins.

Parents attempt to, make the twins as independent and selfsufficient as possible, and let them work their own way out of difficulties.								Parents try t. sheltrer the twine from unnecessary stress and sm oth the way as much as pissible.
Parents want the twin t d well in whatever the $f$ undertike and puch them t, work mind try burd in ordrer to , m! ieve to.   the miximum if the ir tilility.		:						Parent: lave it up to the twin $t$ detrimine huw murh they widrertike atid how hird they wirk.
Pirents set many rules and regulations for the twin: to live by.	1	2	4	5				Parents let the twinc set thelr own limits.
M ther is stricter with the twins than the father.	1	2	4	5				Father is stricter with the twins than the mother.
Mother has much luve and affection for the twins.	1	2	4	5				Mother has little love and affection for the twins.
Father has much love and affection for the twins.								ather has ittue luve and affection Fr the twin:.


18. Were the twins dressed alike? (Circle one.)
Almest ilwny . . . . .
Purt of the tiok. . . .
Rarely or never . . . .

	As children (ages 6 to 12 ) did the twins tend to play together or separately? (Circle one.)   They were almost always together.   They were usually together but sometimes played apart   They unually played apart but sometimes were together . . 3,   They almost never played together.
	As adolescents (ages 12 to 18 ) did the twins tend to spend their time together? (Cir"le me.)   They were almast always together. . . . . . . . . . . . . 1 ( 18 )   They were usually together but sometimes apart.   They usually were apart but sometimes tugether.   They were almost never together.
	Did the twins have the same teacher in schosl? (Circle one.)   Uually had the same teacher.   Sometimes the same, srmetimes different.   Usually had different teachers.
	Did the twins :ncep in the ame ir mporate roms? (Circle whe.)   Sepurate rooms most of their iffe . . . . . . . . . . . 1 ( 0 o)   Usually slept in separate rooms   Usually slept in the same room.   Slept in the same room most if their life. . . . . . . $h^{3}$
	Many parents of tuins try to treat both children exactiy alike. Others make an effrort t. trait them differently. In raising the twins which of these metrod: fave you followed? (cirrle onf.)   We have tried $t$ treat them exactly the sume. . . . . . . . . 1 ( 1 ) We tended $t$, tre:t them alike . . . . . . . . . . . . . . . .   We have tried tc treat them differently . . . . . . . . . . .   he tended to treat ther differenti: . . . . . . . . . . . . . 4   At times we treated ther alike, at ther times, differentiy. S
	As you know there are twi kinds foinc: ilentical twins whict. brive the same heredity, and fraternil twins which have different heredity. Whict kind are your twins? (cirrle , fie.)      I think they ers identicsi twine, but an itt certiff.   I d'n't know wh: $\boldsymbol{l}$. kind the 'ife.   I thirk they are fraternit twine, bis an $n$ t rertaim. . . . . . . . 4   I we certain they are fraternat twint
	what, in your opinion, are the most strikine dirferences be:ween the twins?

## APPENDIX IV

Itang Included in Different Treatment Score

If the parent responded "twin 1 only" or "twin 2 oniy", the folloving items were scored 1 . If the parant rasponded "both twins" or "neither twin" the item was scored 0. Infancy (Birth to Tro Xeare)
wes usually rocked and held when he cried
Was usually left to cry alone vhen just crying for attention Was cared for by his father at least half of the time when he cried at night

Was often allowed to run about the house without clothes
Was breast fed for two months or longer
Was played with frequently by his mother or some other adult
Wat fed on a regular scedule rather than when he seemed hungry
Wae allowed to play freely around the house most of the time rather than being kept in a play pen or crib

Uaed a pacifier to suck on for one pear or longer
Took a bottle to bed most nights

## Prefchool (Tuo to gix Yeare)

Was read a bedtime story almost every night
Attended Sunday School or church fitirly regularly
Was taught such things as numbers, the alphabet, telifing time etc. at home before entering kindergarten or firat grade

Attended kindergarten before entering first grade
Was make to clean up the messes he made in playing around the house

Usually slept in a roon by hinself

Uaually elept in bed by himself
Attended nursery school
Did not have any serious illnese
Had a birthday party which several children his own age attended
Was taught to epeak a language other then English
Pafamas covering the hands, bitter subetances, or other devices vare uncd one or more times to prevent thumb-sucking

Was frequentiy cared for by the father while the mother went out

Was left one or more times with relatives, friends, or at home vith asiter whlle the parents took a vacation of one week or longer

Had a definite bed tima and wan made to go to bed whether he wanted to or not Childhood (Six to Troly Yenci)

Attended Sunday school or church fairly regularly
Was taken by his parents to visit a 200
Was often avay from home all day playing, without his parents knowing where he was or what he was doing

Had definite bed time and was made to go to bed whether he vanted to or not

Helped care for a younger brother or sister
Wae taken on a camping trip or other outing one or more times by his father

Was a member of the Cub or Browne Scouts
Helped care for a younger brother or aister
Had regular jobe around the house that were his reeponsibility
Was given a regular allowance which he could epend as he wished
Was taken on family vacations of a meek or more (not including vieite to see relatives)

Miseed an extensive amount of school work in one or more years due to travel, illnese or other reasons

Had rule: which governed the time epent watching TV and/or the program eeen

## Adolaramat (12-18 Yence)

Attended church or Sunday chool regulariy
Wae given money or other tangible reward for good grades in echool

Parente have tried to influence his occupational choice
Had definite curfev or time when he vas to come home on weekend nights

Had rules which governed the time pent watching $T V$ and/or the programe seen

Belonged to the Boy Scouts or Girl Scoute
Was never allowed to drink alchoholic beverages
Parente objected to his association vith one or more of his boyfriends

Parents objected to his association with one or more of his girifriends

Was not permitted to read certain books
Wae frequently allowed to take the family car for a drive with frienda

Made his own bed
Had definite chores or duties at home which were his responsibility

Wore braces to atraighten his teeth
Parente required that te epend a epecific amount of time each reek studying

Wae not permitted to go out on school nights under ordinary circumatances

Was not allowed to emoke
Had a room of his own

The following item were scored 1 if the parent responded "trin $1^{\prime \prime}$ or "twin $2^{*}$. If the parent responded "neither tuin" or "I don't know" the item was scored 0 . Recieved more attention from the mother Recieved more attention from the father Had stricter dimelpline as a child Had atricter discipline as an adolescent

Was spanked more often as a child
Was rocked and held more often as child
The folloving items were scored according to specific

## keys:

Were the trint dresaed alike? (rarely or never m 1)
As children (ages 6 to 12 ) did the twins tend to play together or separately? (Usually or never = 1)

As adolescents (ages 12-18) did the twins tend to spend their time together? (usually apart or never together=1)

Did the twins have the ame teacher in echool? (usualiy different teachers = 1)

Did the twins sleep in the sam or separate roome? (usually different roone ecored l)

Many parente of twing try to treat both children exactly alike. Others mak an effort to treat them differently. In raising your twins, which of these methode have you followad? (tried or tended to treat them differently (1)


[^0]:    * The twin correlations should first be corrected for attenuation and probable errors of zygosity diagnosis.

[^1]:    * These items were selected from the Parent Questionnaire by John Loehlin in consultation with Robert Nichols in 1968.

[^2]:    ** Significant at the . Ol level

    * Significant at the . 05 level

[^3]:    Significant at the . 05 level

[^4]:    Cignificant at the . 05 level

