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Abstract

Polygenic scores quantify inherited risk by integrating information from

many common sites of DNA variation into a single number. Rapid increases

in the scale of genetic association studies and new statistical algorithms have

enabled development of polygenic scores that meaningfully measure—as

early as birth—risk of coronary artery disease.These newer-generation poly-

genic scores identify up to 8% of the population with triple the normal risk

based on genetic variation alone, and these individuals cannot be identified

on the basis of family history or clinical risk factors alone. For those identi-

fied with increased genetic risk, evidence supports risk reduction with least

two interventions, adherence to a healthy lifestyle and cholesterol-lowering

therapies, that can substantially reduce risk. Alongside considerable enthu-

siasm for the potential of polygenic risk estimation to enable a new era of

preventive clinical medicine is recognition of a need for ongoing research

into how best to ensure equitable performance across diverse ancestries, how

and in whom to assess the scores in clinical practice, as well as randomized

trials to confirm clinical utility.
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INTRODUCTION

Identification of individuals at high risk for coronary artery disease (CAD)—the leading cause of

death globally—to enable targeted prevention therapies remains a major public health need (1).

The inherited component to risk of CAD was recognized as early as 1951, when close relatives of

an afflicted family member were reported to have an approximately two-fold increase in risk (2–5).

Subsequent studies of twins suggested that the inherited component of CAD (“heritability”)

may be up to 60% (6–8). Early investigation into the genetic basis of CAD involved careful

family-based studies, which ultimately identified monogenic forms of the disease related to rare

mutations in specific genes (9–11). Here, the prototypical example relates to mutations causal

for familial hypercholesterolemia, a condition associated with impaired clearance of low-density

lipoprotein (LDL) cholesterol from the circulation. Familial hypercholesterolemia variants are

identified in approximately 2% of individuals with premature CAD at a young age and 0.4% of

the general population (12–14).

Over the past two decades, the focus of study has shifted to the role of common genetic vari-

ants in predisposing to CAD. Genetic association studies conducted in more than one million

individuals over the past decade have identified over 240 independent variants associated with

risk of CAD (15–18). The variants discovered from these large-scale studies are common in the

population and confer smaller differences in risk, typically associated with a <5% change in risk

per inherited allele. Polygenic scores—which integrate information from many sites of common

DNA variation—provide a quantitative metric of inherited risk that integrates information from

many such variants into a single number. The concepts of polygenic prediction were first used in

plant and animal breeding as early as the 1940s and continue to be used to maximize milk produc-

tion in the dairy industry (19, 20). These scores have more recently been applied to human traits

and diseases.

FUNDAMENTALS OF SCORE CONSTRUCTION

Results from genome-wide association studies (GWAS)—which aim to precisely quantify the re-

lationship between each common DNA variant and disease risk—are the primary input data into

the construction of polygenic scores. Common DNA variants are assessed in study participants

across millions of sites in their genome. Investigators then compare frequencies of each variant

occurring in cases versus controls, thereby generating an output of summary statistics that con-

sists of a directional effect size per allele associated with the disease outcome and a measure of

statistical significance (21) (Figure 1a).

Polygenic scores are calculated by summing the effect sizes of risk variants identified in an

individual to get a single score, which generally forms a normal distribution when aggregated in

the population. Starting with the most significant variants, sequentially higher p-value thresholds

for inclusion of variants in the score are tested to identify the best-performing overall score (22).

Initial efforts focused on only the variants with the strongest statistical associations; however, for

polygenic diseases such as CAD, it was recognized that inclusion of variants with less significant

associations was of value in improving polygenic score prediction (Figure 1b,c).

Linkage disequilibrium—the nonrandom association of variants at different locations in the

genome—plays a key role in the application of GWAS data in polygenic score construction and

needs to be accounted for to minimize noise. Briefly, the process of crossing over of chromosomes

occurs during meiosis at recombination sites across the genome. This results in large blocks of

genetic sequence patterns that segregate and are inherited together—haplotype blocks. Knowl-

edge of these patterns is used to impute the sequences of DNA at certain sites within the vicinity

of directly genotyped sites. Linkage disequilibrium patterns and haplotype blocks vary between
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Figure 1

Polygenic score construction. (a) Genome-wide association studies generate summary statistics to be used in
polygenic score development. (b) Linkage disequilibrium patterns and significance of variant association are
taken into account when selecting variants for score calculation. (c) Summing of effect sizes of each variant
across the genome for each individual results in a normal distribution of scores in a population. (d) Polygenic
scores stratify risk for coronary artery disease, with prevalence of disease in 100 groups binned according to
percentile of polygenic score. Figure adapted with permission from Reference 12.

ancestries. When constructing scores, it is important to prune out the variants within the same

haplotype block as the strongest association to avoid double-counting risk conferred by a set of

DNA variants that tend to be inherited together (Figure 1b).

The past decade has seen numerous advancements in the methods used to calculate polygenic

scores from the traditional scoring approach and from pruning and thresholding (23). These

methods use different statistical techniques to adjust the effect sizes measured from GWAS to

reduce polygenic score error and improve performance (24–28). With a growing number of

individuals included in GWAS for CAD over the past decade, the predictive power of the scores
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generated has continued to grow (12, 29–40). From 2010 to 2018, the odds ratio per standard

deviation has changed from 1.23 to 1.72 due to a 3.5-fold increase in discovery cases and controls

(Figure 1d). Recently developed methods that focus on refining the polygenic score weights

based on fine mapping or the functional repercussions of certain variants have also been employed

(41–47). Because functional annotations do not differ across ancestral backgrounds, polygenic

scores based on this approach may have improved generalizability across ancestries. Other newly

developed methods also incorporate GWAS data from multiple ancestries or multiple related

traits to improve prediction (48–53).

The validation and testing of polygenic scores must occur in a data set independent from the

data sets used in the discovery GWAS from which polygenic score weights are estimated. A subset

of the target data is allocated for training, where polygenic score weights are optimized, calcu-

lated for a given trait, and benchmarked against other scores (54, 55). The best-performing score

is chosen usingmeasures of discrimination to then apply to the testing cohort for targeted risk pre-

diction (Figure 1c,d). The Polygenic Score Catalog has been developed as a database of published

scores which allows for cross-application and evaluation of different scores (56).

RISK PREDICTION

Polygenic scores hold considerable promise for enabling a tailored approach to clinical medicine.

The advent of large biobanks that link genetic data with clinical outcomes has proven critical in

the development and assessment of polygenic scores (57–62). An important example of such a

resource is the UK Biobank, which is a prospective cohort study with extensive genetic, lifestyle,

and linked clinical data in >500,000 individuals (63, 64).

Within the UK Biobank, several studies have demonstrated striking gradients in risk of CAD

according to polygenic scores. A score constructed using 6.6 million genetic variants and well-

powered GWAS summary statistics was able to predict CAD prevalence with an odds ratio of

1.72 per standard deviation in participants of European ancestry (12). This approach identi-

fied 8% of the population at threefold increased risk for CAD (Figure 2a). This prevalence is

20-fold higher than the carrier frequency of rare familial hypercholesterolemia variants confer-

ring comparable risk. Other studies have stratified individuals by their lifetime risk for incident

disease based on their decile of the score distribution (31) (Figure 2b). The individuals with high

genetic risk identified by thesemethods are “flying under the radar” in current clinical practice, de-

spite evidence that targeted screening or prevention efforts can markedly attenuate polygenic risk.

Across three US healthcare systems, individuals in the top quintile of the polygenic score, when

compared with the rest of the population, did not meet criteria for increased statin therapy per

the American College of Cardiology/American Heart Association recommendations (46.2% ver-

sus 46.8%, respectively) or have higher statin prescription rates (25.0% versus 23.8%, respectively)

(65).

Polygenic scores capture risk information that is largely independent of traditional risk factors

(66). For example, the Pearson correlation coefficients between risk estimated by the Pooled

Cohort Equations and polygenic score for CAD ranged from 0.01 to 0.03 across prior studies

(66, 67) (Figure 2c). Of the genome-wide significant variants identified through large-scale

CAD GWAS, only approximately 10% relate to known traditional risk factors such as lipid

levels and blood pressure (68, 69). Although the remaining variants may not have understood

mechanisms, they nonetheless offer additional predictive power when incorporated into genetic

scoring. Polygenic scores have a higher discriminative capacity for incident CAD in baseline

models including age and sex (change in C-statistic 0.045) when compared to 11 traditional

risk factors (0.007 to 0.032) (66). Although there is a modest improvement in discrimination
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Figure 2

Utility of polygenic scores. (a) Distribution of a polygenic score with shading reflecting the proportion of the population with threefold
increased risk for prevalent coronary artery disease (CAD) versus the remainder of the population. (b) Cumulative lifetime risk of CAD
by age 75 stratified by quintiles of the polygenic score distribution. (c) Cumulative risk of CAD by age 90 stratified by Pooled Cohort
Equations risk category. (d) Predicted probability of CAD by age 75 in each percentile of the polygenic score distribution stratified by
carrier status for a familial hypercholesterolemia variant. Horizontal dashed lines show the probability of disease for people with
average polygenic score. Panel (a) from Reference 12, (b) from Reference 31, (c) from Reference 66, (d) from Reference 81. All adapted
with permission.

when polygenic scores are combined with risk estimates from the Pooled Cohort Equations, the

combination of age, sex, and polygenic score alone demonstrates equivalent predictive power

to this clinical risk estimator (70). Polygenic scores stratify CAD risk even among individuals

with similar predicted risk according to current risk algorithms. Among individuals at borderline

risk (5–7.5% 10-year risk estimate by Pooled Cohort Equations), polygenic scores stratified risk

further, with lifetime risk ranging from 11.3% in the bottom quintile to 34.1% in the top quintile.

Most, but not all, studies have shown improvement in risk prediction resulting from models that

incorporate clinical variables and polygenic scores, as compared with clinical variables alone (31,

70–75). A key advantage of a polygenic score is that it can be assessed very early in life, before

the onset of traditional risk factors. CAD polygenic scores perform better in younger individuals

than in older individuals because at younger ages genetic determinants likely play a larger role
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in explaining variance with respect to other risk factors (71). An analysis of the polygenic basis

of obesity and body weight across the lifespan illustrated the ability to stratify individuals into

very different trajectories of cardiometabolic health. Analysis of a prospective cohort study that

followed participants from birth to early adulthood noted minimal differences in birth weight

across polygenic score deciles; however, this gradient widened through childhood so that by

18 years of age, a 26-pound average difference in weight was noted between the top and bottom

deciles (76). Similarly, polygenic scores assessed in young adulthood stratify individuals along a

substantial gradient in risk of future coronary artery calcification and CAD events (77).

Polygenic scores offer an opportunity to refine genetic risk prediction even for those who

inherit a familial hypercholesterolemia variant, who have long been recognized in clinical

practice to have highly variable expression of disease. A portion of this variation is mediated by

a polygenic background (78–80). For carriers of pathogenic variants for hypercholesterolemia,

who on average exhibit triple the risk of CAD borne by noncarriers, substantial gradients in CAD

risk exist, with the probability of disease by age 75 ranging from 17% to 78% (81). Therefore,

familial hypercholesterolemia variant carriers with polygenic scores in the lowest quintile are at

a near-population-average CAD risk. Moving forward, state-of-the-art genome interpretation

would involve integration of monogenic and polygenic risk into a single report for a complete

and accurate picture of common disease risk (82, 83) (Figure 2d).

ACTIONABILITY OF POLYGENIC SCORES

Once a high-risk individual is identified based on their polygenic score, several studies have shown

they may stand to benefit from preventive interventions. In observational studies, adherence to

a healthy lifestyle—specified as no current smoking, no obesity, regular physical activity, and

a healthy diet—was associated with an approximately 50% lower relative risk of CAD across

the spectrum of polygenic scores compared to those with unfavorable lifestyle characteristics.

Individuals with the highest polygenic risk showed the greatest absolute risk reduction (5.6%)

from adherence to a healthy lifestyle so as to match the average population-level risk (84, 85)

(Figure 3a). Similar to healthy lifestyle, post hoc analysis of trials of cholesterol-lowering ther-

apies also noted increased absolute risk reduction among individuals with high polygenic scores
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Figure 3

Benefit of lifestyle and therapeutic interventions on genetic risk. Abbreviation: HR, hazard ratio. (a) Standardized 10-year cumulative
incidence rates for coronary artery disease (CAD) events in individuals with the highest quintile of the polygenic score, stratified
according to lifestyle. Panel adapted with permission from Reference 84. (b) Incident CAD event rates in clinical trial participants with
the highest quintile of the polygenic score, stratified by statin therapy (89).
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(86–89). In a meta-analysis of primary CAD prevention trials, statin therapy was associated with

a relative risk reduction of 46% and absolute risk reduction of 3.6% in the highest genetic risk

group, compared to relative risk reduction of 26% and absolute risk reduction of 1.3% across all

other groups (89) (Figure 3b).

Early efforts to study the impact of polygenic score disclosure have generally noted mixed re-

sults of clinical utility, providing an opportunity for additional investigation. In a prospective study

of individuals randomized to receive CAD risk estimates with or without polygenic scores, indi-

viduals informed of their polygenic scores had higher rates of statin prescription and lower LDL

cholesterol at 6 months of follow-up (90). Another small study did not find change in lipids or

behavior after disclosure of a polygenic score result (91). Further study of polygenic score imple-

mentation in large randomized controlled trials is needed to guide treatment recommendations

based on polygenic scores.

The ability to identify very high-risk individuals using a polygenic score suggests value for

clinical trial development. Estimating a polygenic score for potential participants prior to enroll-

ment and selection of individuals within the highest risk categories would enrich for CAD event

incidence, reducing the needed sample size and maintaining the same statistical power. This could

contribute to substantial savings in clinical trial costs and ultimately in drug costs (92).

Polygenic scores can be used to identify causal pathways using the principles ofMendelian ran-

domization. As genetic variants are randomly assorted during meiosis and are independent of con-

founders, their association with both a risk factor and a disease is consistent with a causal pathway

between the risk factor and the disease.Multiple studies have shown that polygenic scores allow for

cross-trait prediction and causal inference (93). For example, a polygenic score optimized for pre-

dicting body mass index is also able to detect significant risk for a range of other cardiometabolic

diseases including CAD (76). Genetic scores constructed using variants in genes associated with

plasma high-density lipoprotein (HDL) cholesterol levels demonstrate no causal association be-

tween certainHDL-raisingmechanisms andCAD (94). By contrast, similar analyses using variants

influencing triglyceride concentrations did suggest a causal relationship with CAD (95).

Polygenic scores for a variety of key conditions can be assessed using a single test with a geno-

typing array or low-coverage whole-genome sequencing at a technical cost of less than $50. A

blood or saliva sample collected early in life would allow for a polygenic susceptibility “report card”

including numerous polygenic scores for many diseases. As with CAD, polygenic score method-

ologies have proven highly generalizable across traits, identifying up to 6.1%, 3.5%, and 1.5% of

European individuals at greater than threefold risk for atrial fibrillation, type 2 diabetes, and breast

cancer, respectively (12). Polygenic scores may be cost-effective when applied to other diseases,

although more work needs to be done to assess this for CAD (96).

CURRENT LIMITATIONS OF POLYGENIC SCORE GENERALIZABILITY

Alongside considerable enthusiasm for polygenic scores, limitations exist with regard to their

generalizability to different populations. A key equity issue has arisen in that although current

scores are associated with increased risk across different ancestries, they have diminished pre-

dictive power in non-European ancestries (13, 97–99). Approximately 80% of currently available

GWAS data are from individuals of European ancestry, and these discovery data sets are not fully

informative for generating polygenic scores in individuals of other ancestries due to differences in

linkage disequilibrium patterns, allele frequencies, heritability, and genetic architecture (100). To

address these challenges, important ongoing efforts aim to gather GWAS data in individuals of

non-European ancestry as well as to develop polygenic scoring methods that incorporate multi-

ancestry data or adjust variant weights to leverage shared genetic variation between ancestries

(50, 51, 101–107).
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Timeline of advances in the development of polygenic scores.

FUTURE DIRECTIONS OF POLYGENIC SCORES

As polygenic scores continue to improve in portability and accuracy, several key steps remain

before they can be incorporated into clinical practice (Figure 4). First, integration of genetic

risk with clinical factors into a unified risk prediction model would harness the influence of both

primordial and acquired risk factors. Initial efforts have combined information from established

clinical risk calculators with polygenic scores to determine an absolute 10-year CAD event rate;

however, further work is needed in calibrating integrated risk models to target populations (74,

108, 109). Although polygenic risk is orthogonal and additive to conventional risk factors, char-

acterizing gene-by-risk-factor interaction across subgroups of age and sex remains a challenge, as

does grounding prediction in absolute risk estimates. Similarly, unifying reference distributions

for ancestry-based comparisons will be key to accurately calculating risk in different populations.

Additionally, as more genomic discovery data are acquired, polygenic scores for a given disease

will change and need to be updated over time.

Second, moving forward, large-scale randomized controlled trials testing preventative thera-

pies among individuals with elevated genetic risk may help prospectively quantify benefit of use

and inform future prevention guidelines. Although most studies of polygenic scores to date have

been observational, the evidence collected supporting a high polygenic score as a bona fide risk

enhancer is comparable to that supporting other established risk-enhancing factors (Figure 5).

Third, proper interpretation and communication of polygenic scores to clinicians and patients

are important additional steps in incorporating polygenic scores into clinical practice. Standards

for studies reporting polygenic score results have been established to help facilitate translation

into clinical care (54). Several groups have focused on improving the communication and in-

terpretability of polygenic score reports for patients (82, 110). The EMERGE Network study

recently launched several efforts to improve the optimal return, understanding, and clinical use of

polygenic scores (111).Within the United Kingdom, similar efforts are under way in Our Future
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Associations of polygenic scores and risk-enhancing factors with coronary artery disease (CAD). Hazard ratios with corresponding 95%
confidence intervals for incident CAD associated with risk-enhancing factors in the UK Biobank, calculated using Cox proportional-
hazard models with covariates of enrollment age and sex in base model (red), or enrollment age, sex, and Pooled Cohort Equations
10-year risk estimate (blue).

Health, which is a nationwide health research program with plans to recruit up to five million

participants and with a focus on calculating and communicating polygenic and other risk scores.

Direct-to-consumer testing companies have begun offering polygenic score reports for CAD and

other diseases to subscribers. With the increase in availability of these data in healthcare sys-

tem biobanks and patient-ordered testing, future efforts will need to focus on re-education of the

clinician workforce (112).

Significant progress has been made from the first observations of inherited mechanisms of

CAD to the calculation of polygenic scores to predict disease risk. Their predictive ability has

steadily improved with the increase in availability of discovery data sets andmore refined statistical

genetics methods. Much work remains to be done to improve equity, portability, and integration

with available models. Nevertheless, in the era of personalized medicine, polygenic scores are

poised to have an important impact on the prediction and prevention of CAD.
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