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The SNP-Based Heritability — A Commentary on Yang et al. (2010)
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Abstract

I write this commentary as a part of a special issue published in this journal to celebrate Nick Martin’s contribution to the field of human
genetics. In this commentary, I briefly describe the background of the Yang et al. (2010) study and show some of the unpublished details of this
study, its contribution to tackling the missing heritability problem and Nick’s contribution to the work.
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Before I moved to the field of human genetics, I was working on
quantitative trait locus mapping in experimental populations of
plants and animals. That is why I did not know the name Nick
Martin until the second last year of my PhD candidature.
Toward the end of my PhD candidature, it was clear to me that
I should find a postdoc position somewhere, but Australia was
not quite on my radar until the year 2006 when I had a three
months’ visit in Western Australia. Then, I started thinking
about the possibility of moving to Australia. A few Google searches
brought my attention to the research groups led by Professors
Nicholas Martin, Grant Montgomery and Peter Visscher. I joined
Peter’s lab in September 2008 to start my academic career in human
genetics.

I might have seen Nick at my job interview seminar at
Queensland Institute of Medical Research (renamed QIMR
Berghofer Medical Research Institute in 2013), but from
memory, we met for the first time when Peter introduced me
to him in his office. The conversation was short but impressive,
not least because of the old-fashioned computer on his desk. I
was also impressed later on when I often saw him working in
the office on Sunday afternoons, which, believe me, is not common
in Australia.

In the year 2009, I was working with Peter (and Mike Goddard
from Melbourne) on a project aiming to estimate the proportion
of variance in human height explained by all single-nucleotide
polymorphisms (SNPs) that are common in European popula-
tions (Yang et al., 2010). At that time, there was confusion about
the genetic architecture of common traits and diseases like height
and obesity largely because of the observation that genetic loci
identified from published genome-wide association studies
(GWASs) only accounted for a small fraction of heritability
for almost all the traits studied, leading to the ‘missing heritability’
puzzle and criticisms of the failure of GWAS as an experimental
design (Manolio et al., 2009; McClellan & King, 2010).

In GWAS, each SNP is tested for association with a trait of
interest one by one across the genome to search for genomic loci
responsible for the trait variation in a population. Because of the
large number of tests performed (typically from 100,000 tomillions
depending on the coverage of the SNP array and whether the SNP
data have been imputed to a reference panel with whole-genome
sequence data), a correction for multiple testing is needed to avoid
false-positive discoveries, for example, a p value threshold of 5 ×

10-8 is often used to claim significant findings from GWASs.
This means that if the effect size of an SNP is small and the
GWAS sample size is not sufficiently large, we would not have
enough power to detect it at a genome-wide significance level.
Hence, one critical question was how much proportion of the trait
variance is accounted for by the SNPs that did not reach genome-
wide significance level. This might be achieved by fitting the effects
of all SNPs jointly as random effects in a mixed linear model.

The model was appealing, but how about the data? It was not
like these days when we can easily get access to GWAS datasets of
10,000s or even 100,000s individuals from public resources such as
the dbGaP and the UK Biobank (Bycroft et al., 2018). GWASs with
only a few thousand or even a hundred individuals were not
uncommon at that time. Ourmodel attempts to estimate the aggre-
gated effect of many SNPs, which is equivalent to a classical addi-
tive genetic model y ¼ g þ e with g being the total additive genetic
value of an individual captured by all SNPs and e being the residual
(Yang et al., 2010). Estimating the variance of g and thereby the
heritability captured by all SNPs, that is, the SNP-based heritability

h2SNP ¼ var gð Þ=var yð Þ, requires a correlation matrix of g (also

known as the genetic relationship matrix or GRM). We did not
want to include any related individuals in the model because oth-
erwise we could not distinguish whether the estimated var(g) was
captured by the SNPs or by the pedigree relatedness reconstructed
from SNP data. The latter is more complex and can contain vari-
ance components due to common environmental effects that are
shared among close relatives and rare genetic variations not tagged
by array SNPs. The precision of the estimate of var gð Þ (often mea-
sured by the standard error or SE), however, is inversely propor-
tional to the variability of the off-diagonal elements of the GRM
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(Visscher et al., 2014). Because the model uses only unrelated indi-

viduals, the variance of the off-diagonal elements of the GRM is
small so that a relatively large sample size (at least much larger than
those used in pedigree-based heritability analyses) is required to
obtain an estimate of h2SNP with useful precision.

We started with an analysis in a dataset with ~2500 unrelated
people and the estimate of h2SNP for height was somewhere between
0.4 and 0.5. We were all very excited about it, but the SE and thus
the confidence interval of the estimate was too wide to make any
convincing conclusion. Fortunately, we heard from Nick that
there was an additional batch of data that would be available
soon, which pushed the sample size up to ~4000. We finally
obtained an estimate of 0.45 (SE = 0.08), which was significantly
larger than the proportion of variance accounted for by SNPs
passing genome-wide significance level (~10%) reported by a
GWAS meta-analysis of ~180,000 individuals in 2010 (Lango
Allen et al., 2010).

The implication of this study is profound. It suggests that a large
proportion of the heritability for height can be explained by all
common SNPs so that the heritability is not missing. GWASs at
that time were not very successful mainly because of many genetic
variants, each with an effect too small to reach the stringent
genome-wide significance threshold. This suggests that the genetic
architecture for height (and possibly formany other common traits
and diseases) is likely to be polygenic and that more associations
would be discovered in GWASs with larger sample sizes. These
findings and implications have been corroborated by many studies
in recent years. The paper on this work, entitled ‘Common SNPs
explain a large proportion of the heritability for human height’, was
eventually published in Nature Genetics in 2010 and has received
>3000 citations in the past 10 years. The method has now been
implemented in a widely software tool GCTA (Yang et al., 2011).

This study would have not been possible without the critical
contribution from Nick. The amazing human genetic resources
established by the team led by Nick and the critical mass of
researchers in human genetics in Brisbane directly and indirectly
because of him had laid the foundation for scientific ideas like this
to evolve and to be implemented. His generosity in data sharing
and vision in human genetics have always inspired me.
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