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ABSTRACT In this Review, we focus on the similarity of the concepts underlying prediction of estimated breeding values (EBVs) in
livestock and polygenic risk scores (PRS) in humans. Our research spans both fields and so we recognize factors that are very obvious for
those in one field, but less so for those in the other. Differences in family size between species is the wedge that drives the different
viewpoints and approaches. Large family size achievable in nonhuman species accompanied by selection generates a smaller effective
population size, increased linkage disequilibrium and a higher average genetic relationship between individuals within a population. In
human genetic analyses, we select individuals unrelated in the classical sense (coefficient of relationship ,0.05) to estimate heritability
captured by common SNPs. In livestock data, all animals within a breed are to some extent “related,” and so it is not possible to select
unrelated individuals and retain a data set of sufficient size to analyze. These differences directly or indirectly impact the way data
analyses are undertaken. In livestock, genetic segregation variance exposed through samplings of parental genomes within families is
directly observable and taken for granted. In humans, this genomic variation is under-recognized for its contribution to variation in
polygenic risk of common disease, in both those with and without family history of disease. We explore the equation that predicts the
expected proportion of variance explained using PRS, and quantify how GWAS sample size is the key factor for maximizing accuracy of
prediction in both humans and livestock. Last, we bring together the concepts discussed to address some frequently asked questions.
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IN this Review we contrast polygenic risk score (PRS) used
in human genetics (Wray et al. 2007; Evans et al. 2009;

Purcell et al. 2009; Chatterjee et al. 2016; Torkamani et al.
2018) to the estimated breeding values (EBVs) used in live-
stock genetics (Henderson 1975; Meuwissen et al. 2001;
Brotherstone and Goddard 2005; de los Campos et al.
2010). Our intended target audiences are researchers from
either field, and we try to provide the key information that,
from our experience, bridges the knowledge between experts
from either domain. Our livestock focus is dairy cattle, but the

points raised mostly transfer across species. Understanding
the between-species differences in linkage disequilibrium
(LD, the local correlation structure within the genome) is
the fundamental point of distinction, and this is driven by
differences in effective population size, which, in turn reflect
differences in family size. We provide a brief history of PRS
and EBV methods, and contrast the difference in approaches
for estimating SNP effect sizes. Next, we consider accuracy of
out-of-sample prediction of PRS for which we find the theo-
retical expectations of prediction accuracy under-recognized
by practitioners. Last, we discuss the concept of within-family
variation, which despite being an essential feature of the
conceptualization of polygenic traits since Fisher (1918),
and despite being the key force underlying selection para-
digms in crops and livestock, seems to us to be underappre-
ciated in human genetics as the driving force of polygenic
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variation across generations. Traditionally, genetically infor-
mative data sets have been larger for livestock than human
data sets, but this is starting to change. Taken together our
perspective leads to a discussion of four frequently asked
questions (FAQ).

A Brief History of PRS and genomic EBV

The breeding value (BV) of an individual for a given trait is its
aggregate additive genetic value, of which the individual
passes, on average, half to his or her offspring (“half,” be-
cause the offspring only receive a random exact half of the
parent’s DNA complement; “on average,” because the genetic
value associated with the inherited DNA may deviate from
the average based on the segregation sampling). In theory,
this could be computed from the genotypes of the individual
at all loci affecting the trait using knowledge of the average
effect of each allele at these loci. That is, it is a linear function
of the genotypes (x=0,1,2 trait increasing alleles)multiplied
by average effect of the trait increasing effect of each allele
(b), i.e., BV ¼ P

i
bixi.

In practice, we do not know the loci that affect a trait, nor
their effect sizes, so we must estimate the breeding value of
each individual. In livestock genetics, traditionally this was
done by using the phenotype of the individual together with
phenotypes of its relatives. Now that SNP chip data have
become available, these pedigree EBVs can be supplemented
with information from genomic data, generating genomic
EBVs (GEBVs). The GEBV can be calculated as a linear func-
tion of the SNP genotypes weighted by the apparent effect of
each genotype on the trait. It is not assumed that the poly-
morphisms assayed by the SNP chip cause variation in the
trait, but that they are correlated (in LD)withunknowncausal
variants.

A PRS is the same as aGEBV, that is, it is a linear function of
the SNP genotypes (or other DNAvariants), eachweighted by
the apparent effect of that SNP. In humans, interest mostly
focuses on disease traits, hence the “risk” paradigm. The ap-
parent effect of each DNA variant can be estimated from an
association analysis in a discovery sample of individuals that
have been assayed for the DNA variants and recorded for the
phenotype. Since we want the PRS to reflect as much genetic
variation as possible, SNP effect sizes are estimated in ge-
nome-wide association studies (GWAS).

There is a fundamental difference in purpose between
prediction in humans and in livestock: in humans the purpose
is to predict the future phenotype of an individual, whereas in
livestock the purpose is (usually) to predict the average value
of an animal’s genetic material to its offspring. Inherently
therefore, understanding of EBV or GEBV focuses on the av-
erage of a group, i.e., the average of the offspring of the in-
dividual. The units of EBV/GEBVs are the units of the trait,
e.g., deviation of liters of milk expected in the offspring
compared to the offspring from the base or reference pop-
ulation. PRS could be presented in trait units, but are mostly
presented in SD units of an unselected or control sample. In

human genetics, although the goal for PRS is prediction of
the phenotype, the accuracy of prediction for an individual
is low (see below); hence, the value of PRS is, like in live-
stock genetics, best interpreted at the group level. The area
under the receiver operator characteristic curve (AUC) is
one statistic used to evaluate the accuracy of PRS for dis-
ease. AUC ranges from 0.5 (random prediction) to 1 (perfect
prediction) and can be interpreted as the probability that a
randomly selected disease-affected individual ranks higher
than a randomly selected nonaffected individual. For exam-
ple, the AUC for coronary artery disease (CAD) based on
PRS was estimated as 0.81 [95% confidence interval (CI)
0.80–0.81], with the top 10% based on PRS having 2.89-
fold the risk of the average risk of the rest of the population
(Khera et al. 2018). It is noteworthy that these results also
include age, sex, genotyping array, and four ancestry in-
formed principal components (PCs) in the predictive model.
Another study also generated PRS for CAD based on similar
GWAS summary statistics data, and, like the study of Khera
et al. (2018), used the UK Biobank cohort (but subsetted
slightly differently) to evaluate efficacy (Inouye et al.
2018). They quantified AUC as 0.79, which was a 2.8% gain
over a baseline model that included sex, baseline age, gen-
otyping array, and 10 PCs.

The concepts that underpin what we now call PRS and
GEBV were published in two landmark GENETICS papers.
Russell Lande and Robin Thompson (Lande and Thompson
1990) recognized that genome-wide LD between measured
DNA variants (markers) and loci causally influencing varia-
tion between individuals (quantitative trait loci or QTL)
could be exploited for selection. They introduced the concept
of a “molecular score,” as the sum of the additive effects on
the character associated with the markers (i.e., GEBV or
PRS). At that time, the measurable DNA variants were re-
striction fragment length polymorphisms (RFLPs), yet the
authors introduced the concepts of GWAS followed by selec-
tion of the most associated markers. They discussed the need
for unbiased estimates of effect sizes (since effect size esti-
mates fromGWAS of themost significantly associated loci are
always overestimated owing towhat is referred to as winner’s
curse in human genetics or the Beavis effect in livestock ge-
netics). Lande and Thompson estimated how many markers
would be needed to represent the variation in the genome
when LD is created by drift (as a result of finite effective
population size), which provides theoretical justification for
the very different numbers of SNPs included on human
(500,000–1,000,000) compared to cattle (50,000) SNP chip
arrays. In cattle, denser SNP arrays are needed for crossbreed
prediction.

The second landmark paper, a decade later from
Meuwissen et al. (2001), provided additional theory and pre-
dicted the arrival, and implications for use, of dense SNP
arrays. They considered methods to estimate SNP effects,
acknowledging issues of winner’s curse, and the problem of
estimability, because the number of markers is usually greater
than the number of individuals. They considered least
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squares (without P-value thresholding), best linear unbiased
prediction (BLUP), and Bayesianmethods to estimate marker
effects and considered different genetic architectures in sim-
ulation scenarios.

The IlluminaBovine SNP50 chip becameavailable in 2008.
The rate of uptake of so-called genomic selection in the dairy
industry has been astounding, and, by 2015, over 1 million
Holstein cattle (black andwhite) had been genotyped, and by
2018 this exceeded 2.2 million (https://queries.uscdcb.
com/Genotype/counts.html). Evaluation of the 7-year imple-
mentation of genomic breeding values in the US found that
annual genetic improvement had increased by �100% for
milk production traits and 300–400% for low heritability fer-
tility traits (García-Ruiz et al. 2016). These changes reflect
reduced generation interval (e.g., from 7 to ,2.5 years for
sires of bulls) achieved through the ability to use DNA vari-
ants to select between 1-year old bulls based onGEBVs before
they have daughters whose milk yield can be assessed. That
is, the GEBV accurately predict which of the sons have re-
ceived the best combination of DNA variants in the genetic
segregation sampling from their parents.

In human genetics, the GWAS era is benchmarked by the
Wellcome Trust Case Control Consortium study (Wellcome
Trust Case Control Consortium 2007) published in 2007. In
the months before its publication, there was great excitement
and expectation about what this study would deliver; the
sample sizes of 2000 cases per disease with 3000 controls
were unprecedented. At this time, we (based on our under-
standing of polygenic traits from nonhuman species) were
less confident about what GWAS would deliver in terms of
individual variant discovery, but hypothesized about the
value of PRS for community health disease prevention pro-
grams (Wray et al. 2007, 2008). We conducted a simulation
study (Wray et al. 2007) to investigate the use of PRS pre-
diction for common disease, concluding “Our study shows
that prediction of genetic risk is possible, even if there are
hundreds of risk variants each of small effect.” and “The value
of these predictive SNPs could be reaped long before the
causal mechanism of each contributing variant can be deter-
mined.” Others (Collins et al. 2003; Bell 2004; Khoury et al.
2006; Kathiresan et al. 2008; Pharoah et al. 2008) had in-
troduced the concept of multi-SNP genetic profiling, but the
only previous study that considered genome-wide profiling
(Janssens et al. 2006) assumed in simulations that all risk loci
are known, and hence the key determinant of the efficacy of
risk prediction was missing (i.e., the need to estimate effect
sizes). Given the number of DNA variants in the genome, the
accuracy of PRS depends on the accuracy with which effect
sizes are estimated, and the extent to which true and false
positives are separated.

Methods of Estimating the Apparent Effect of DNA
Variants

AGEBV is like amultiple regression equationwith a very large
number of predictors (i.e., SNPs or other DNA variants),

which is currently often larger than the number of individuals
in the discovery dataset. These effects can be estimated by
fitting them all jointly but treating the effects as random
variables drawn from some specified distribution. If all the
effect sizes are assumed to be drawn from the same normal
distribution, then the method is BLUP. Other commonly used
distributions are a mixture of normal distributions including
a proportion with zero effect. These mixture models are usu-
ally included in Bayesian models implemented by Markov
chain Monte Carlo methods (Habier et al. 2011).

By contrast, the effect sizes for a PRS are commonly
estimated by fitting one SNP at a time, ignoring all other
SNPs. When we conducted our 2007 simulation study (Wray
et al. 2007), we made decisions that we knew were not op-
timal, but our approach was very different from the thinking
of the time. One decision was to use a fairly stringent associ-
ation P-value threshold for selection of SNPs for use in calcu-
lation of PRS. However, when the first opportunity arose to
apply the method to real GWAS data (Purcell et al. 2009), we
investigated much more relaxed P-value thresholds for gen-
erating PRS. We (led by Shaun Purcell) (Purcell et al. 2009)
showed by simulation that the optimum P-value threshold to
impose on the discovery sample, depends on its sample size
and the genetic architecture of the trait (see figure S8 of
Purcell et al. 2009). The now “standard” PRS method follows
that initial application, and is based on selecting SNPs from a
GWAS analysis based on LD pruning/clumping and P-value
thresholding. However, both the clumping and thresholding
steps are somewhat arbitrary, and reporting the results from
the P-value threshold that maximizes out-of-sample predic-
tion in a single cohort is a form ofWinner’s curse. Ideally, out-
of-sample prediction results should report average results
across many cohorts, e.g., (Schizophrenia Working Group
of the Psychiatric Genomics Consortium 2014; Wray et al.
2018). In 2007, we knew [based on results from Meuwissen
et al. (2001)] that standard human GWAS one-SNP-at-a-time
regression was not the optimal way to estimate SNP effects for
use in prediction. The reason one-SNP-at-a-time regression is
used in human genetics is because the primary goal of GWAS is
the identification of trait-SNP associations to better under-
stand the underlying biology of the trait; SNPs that are highly
correlated to each other all have similar effect sizes. In BLUP,
individual SNP effect estimates may be small if there are many
SNPs in high LD with each other and the causal variant, as the
effect of the causal variant is “shared” across the correlated
variants. Other methodologies for estimating PRS, such as
those commonly used for GEBVs, have been investigated (de
los Campos et al. 2013; Abraham et al. 2014; Golan and Rosset
2014; Moser et al. 2015; Vilhjálmsson et al. 2015). In real and
simulated human and livestock data, the methods that fit all
SNPs simultaneously usually generate more accurate out-of-
sample prediction than those fitting one SNP at a time, and the
Bayesian mixture models are usually better than BLUP. How-
ever, the increases in accuracy are sometimes small, except
when the trait has some variants of larger effect. Accuracy
can also be increased by methods that increase discovery
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sample size by “borrowing” sample size from correlated GWAS
of larger sample size (Li et al. 2014; Maier et al. 2015, 2018;
Turley et al. 2018). Multivariate approaches have been used
for decades in livestock, particularly in the context of selection
based on an index of many traits predicting a trait of economic
importance (Hazel 1943).

Accuracy of Out-of-Sample Prediction

The ultimate aim of the PRS is to predict a phenotype in
individuals who do not have a recorded phenotype, or who
havenot yethad theopportunity to experience thephenotype.
The efficacy of PRS is evaluated using a group of individuals
that were not included in the discovery dataset but have the
phenotype recorded. The efficacy of a PRS is well understood
from theory (Daetwyler et al. 2008; Visscher et al. 2010;Wray
et al. 2013; Dudbridge 2013; Pasaniuc and Price 2017), yet
understanding the expected increase in the proportion of
variance explained ðR2Þ in out-of-sample prediction seems
less well recognized in human genetics applications com-
pared to livestock genetics. R2 is defined here as the squared
correlation between a phenotype ðyÞ and a predictor of the
phenotype ðŷÞ, i.e., the PRS,

R2 ¼ covðy; ŷÞ2
varðyÞvarðŷÞ

It has been shown (Daetwyler et al. 2008; Visscher et al. 2010;
Wray et al. 2013; Pasaniuc and Price 2017) that expected
R2; EðR2Þ, depends on sample size (N), the number of in-
dependent SNPs whose effect sizes are estimated (M), and
the proportion of phenotypic variance associated with those
SNPs, h2M .

E
�
R2

� � h2M
1þM

.�
Nh2M

� (1)

Let us explore this relationship in detail. First, as N increases
M=ðNh2MÞ tends to zero, so R2 tends to h2M, providing an upper
bound for R2; hence, PRS are not fully accurate diagnostic
predictors for individuals (as they only predict the compo-
nent of phenotype captured by the SNPs). If the predictor is
built from all genome-wide SNPs then M is the number of
independent SNPs (or the effective number of SNPs).M can be
estimated as the total number of SNPs divided by the mean
LD score of the SNPs (Yang et al. 2011b), where LD score for a
SNP is defined as the sum of LD r2 with other SNPs, including
itself (usually calculated within a defined genomic distance
window). Assuming SNPs have frequency .1%, then
M�50,000 in humans (compared to only �5000 in dairy
cattle), and h2M is the SNP-based heritability. The SNP-based
heritability is the proportion of phenotypic variance captured
by SNPs in LD with the causal mutations affecting the phe-
notype (as discussed below, this is a more difficult concept in
livestock than in human genetics because of the high LD
across the genome). Hence, while heritability is the theoretical

upper bound for the R2 of a genetic predictor, SNP-based
heritability is the upper limit of R2 for PRS based on common
SNPs. Even when SNP-based heritability is high, out-of-
sample prediction R2 is expected to be low, unless discovery
sample sizes are massive. As shown in the derivations for the
estimate of SNP-based heritability using LD Score method
(Bulik-Sullivan et al. 2015), SNP-based heritability can be
approximately estimated as a regression between associa-
tion test statistics and LD scores of each SNP. This regression
coefficient can be estimated with a high degree of accuracy
because so many SNPs contribute to the estimate of a single
statistic. However, for out-of-sample prediction, individual
SNP effects need to be estimated with accuracy. We need to
estimate effect sizes of all SNPs, both those truly associated
(i.e., causal variants and SNPs correlated with causal vari-
ants) and those that are not. For example, when h2M = 0.3
and discovery sample size is N = 50,000 then the expected
R2 in out-of-sample prediction is only �7%. Doubling the
discovery sample size to 100,000 increases the R2 to 11%
(Figure 1). Very large sample sizes are needed to achieve R2

that approach h2M , because the massive number of SNPs in
the genome whose effects sizes must be estimated, i.e., M.
P-value thresholding, or statistical methods that attempt to
exploit genetic architecture to reduce the number of SNPs
used to generate the PRS, e.g., LDpred (Vilhjálmsson et al.
2015), can be interpreted as ways to reduce M. However, in
such approaches, some of the true signal tagged by the SNPs
will be lost so that the h2M is also reduced. Hence, these
methods can be interpreted as trying to find a M vs. h2M
combination that maximizes R2. A common pitfall is to sub-
stitute into Equation 1 the estimate of the causal number of
SNPs, but this overlooks the key difficulty in real data anal-
ysis, which is the accurate estimation of SNP effect sizes for
both truly associated and truly not associated variants.

Whole genome sequence (WGS) datawill become cheaper
to generate. As a result, we expect that estimates of h2M will
increase as the minor allele frequency threshold for SNP in-
clusion decreases, but accompanied by an even greater in-
crease in the M contributing to it. We can make an informed
guess (based on unpublished analyses) that WGS data in
human populations may imply M as high as 500,000, i.e., a
10-fold increase compared to common SNP array data. This
increased representation of genomic variation likely in-
creases the associated genetic variation captured, such that
h2M might approach heritability estimated from family pheno-
typic records. So in our example above for SNP-array data, we
used h2M = 0.3, which, with WGS data, might be h2M = 0.6.
Then, for the sample size of 100,000 people, using Equation
1, we expect R2 to decrease from 11% to 6% from use of SNP-
array to WGS data! These calculations are made under the
infinitesimal model. Hence, to take advantage of the in-
creased h2M captured by WGS, we will need methods that
reduce the number of variants whose effect sizes are
estimated, i.e., reduce M, while maintaining high h2M, for ex-
ample, using genomic annotation, e.g., LD-pred-funct
(Marquez-Luna et al. 2018).
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For case-control studies, Equation 1 is a good approxima-
tion for liability R2 using the effective sample size equivalent
to having equal numbers of cases and controls, i.e., N = 4*P
(12P)NTOT (where NTOT is the sum of numbers of cases and
controls and P is the proportion of cases) (Yang et al. 2010b),
but more accurate equations have been derived (Lee and
Wray 2013). Predictions from Equation 1 agree well with
the observed results. For example, for height: N = 700,00,
h2M = 0.246, M = 50,000, R2 expected is 0.19, and the ob-
served out-of-sample R2 = 0.19, (reported as R = 0.44)
(Yengo et al. 2018). Similarly, for schizophrenia: 36,989
cases and 113,075 controls, NTOT = 111,487, h2M = 0.23
(Cross-Disorder Group of the Psychiatric Genomics Consor-
tium et al. 2013),M= 50,000, R2 expected is 0.08, observed
out-of-sample liability R2 = 0.07 (Schizophrenia Working
Group of the Psychiatric Genomics Consortium 2014).

In human genetics applications, in evaluation of the effi-
cacy of PRS it is important to check that the test sample is
independent of the sample that is used for GWASdiscovery, as
sample overlap (direct or through relatives) will inflate the
variance explained in out-of-sample prediction. However,
when applying PRS in out-of-sample prediction when the
phenotype is unknown, having relatives in the discovery
sample is desirable as this will improve the prediction for
an individual (Lee et al. 2017). Indeed, for disease traits,
family history of disease can be used as an additional pre-
dictor, as this may incorporate genetic and nongenetic factors
not captured by the PRS (Do et al. 2012; Inouye et al. 2018).
In livestock data sets, it is not usually possible for the target

sample to be independent of the discovery sample because of
the small effective population size. In livestock GEBV evalu-
ations, individuals without phenotypes are included in the
mixed model equations, connected to those with phenotypes
through the genomic relationship matrix that describes the
variance–covariance structure between breeding/genetic
values. In human genetics applications this approach is un-
likely to be adapted, since the largest discovery samples for
diseases will only be available as GWAS summary statistics.

The Consequences of Recent Effective Population
Size

The fundamental difference between livestock and human
genomes is the difference in effective population size (Ne). In
most livestock populations in developed countries most indi-
viduals make no long-term genetic contribution to the pop-
ulation. Instead, nearly all the genes in the future population
come from a small nucleus leading to small Ne. This breeding
structure is easy to implement if family sizes are large. In
dairy cattle, for example, as a consequence of artificial in-
semination, bulls can have 100,000s of offspring [Toystory
(https://en.wikipedia.org/wiki/Toystory_(bull)] sired.500,000
daughters], having been selected for their genetic merit for
milk production traits (which, of course, are traits they do not
even express themselves). Traditionally, EBVs were calcu-
lated based on records of daughters and other female rela-
tives. Given the large number of daughters with milk
production records, EBVs can be a very accurate representa-
tion of the bull’s genetic value. EBVs have been used for de-
cades to identify which individuals should be chosen as the
parents of the next generation. Even high-producing elite
cows can have large numbers of offspring through egg har-
vesting and in vitro fertilization technology. Hence, the num-
ber of parents needed is small relative to the population
census, leading to high selection intensities. For example,
the international black and white Holstein dairy cattle pop-
ulation is �25 million but the current effective population
size (Ne) is estimated to be only �50 (Kim and Kirkpatrick
2009) to �100 (Bovine HapMap Consortium et al. 2009).

The large family size and smallNe in livestock species has a
number of knock-on effects relevant to comparisons with
humans. First, haplotype blocks are large. For dairy cattle,
they are about double the length of human LD (26 kb vs.
8–14 kb) (Kim and Kirkpatrick 2009) [within breed LD in
dairy cattle stretches to 0.5 Mb (Bovine HapMap Consortium
et al. 2009), and generates LD across chromosomes], and this
impacts on all aspects of analyses of genomic data. Second, the
concept of SNP-based heritability is different in livestock
(Jensen et al. 2012). In human genetic analyses where interest
is understanding genetic architecture of a trait and the additive
genetic contribution to variation, we select individuals unre-
lated in the classical sense (coefficient of relationship from the
genomic relationship matrix (GRM) estimates from SNP
data ,0.05) and use these individuals to determine the pro-
portion of variance associated with common genome-wide

Figure 1 Variance explained in out of sample prediction. Using Equation 1,
we assume h2M = 0.3 associated with common variants of frequency .0.1.
In humans, the effective number of markers whose effect sizes are estimated
is M�50,000. Discovery sample GWAS of .1 million people are needed to
achieve out-of-sample that achieves R2 approaching the upper limit of h2M.
The red line bench marks out of sample prediction for M�10,000, repre-
sentative of a species with a smaller effective population size, or if, in
humans, we achieve statistical methodologies that allow identification of
a smaller number of DNA variants associated with the same h2M.
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SNPs (i.e., SNP-based heritability) (reflecting LD between
common SNPs and causal variants). SNP-based heritability is
conceptually different from (and smaller than) heritability es-
timated from family/pedigree data, as the latter includes con-
tributions to variation from genetic variants that are less
common in the population (not tagged by common SNPs),
but are shared between relatives. SNP-based heritability esti-
mated from summary statistics using LD Score regression
(Bulik-Sullivan et al. 2015) also only captures the genetic sig-
nal associated with common variants. In analyses of livestock
data, all animals within a breed are to some extent “related”
and so it is not usual (or possible) to try to select unrelated
individuals for an analysis. An alternative is to fit two genetic
effects in the statistical model, one described by the GRM and
one described by pedigree relationships (Haile-Mariam et al.
2013; Zaitlen et al. 2013; Kemper et al. 2015). When this is
done, 80–90%of the genetic variance inmilk yield is explained
by the SNPs (Haile-Mariam et al. 2013; Kemper et al. 2015).
The higher proportion of genetic variance explained by SNPs
in livestock than in humans is due to the greater LD in
livestock.

Big Data in Humans and Livestock

For human research, we are entering a disruptive data era, for
example, the 500,000 UK Biobank (Sudlow et al. 2015) is an
unprecedented resource for genetics and epidemiology re-
search. The All of Us study (https://allofus.nih.gov/) aims
to collect data on 1 million people. In livestock, even larger
datasets have been common for several decades, but until
recently they did not include DNA data. The desire to obtain
EBVs for dairy bulls for female-linked milk production traits
was a catalyst for complex worldwide data collection systems
for milk production records. This was painstakingly paper-
based when first introduced [in 1908 in the US (https://
www.aipl.arsusda.gov/aipl/history/hist_eval.htm)], but is
now very high tech, with each cow tagged with a transponder
that directly records milk production and activity, and con-
trols access to food on some farms. Farm managers can re-
view herd and individual records from their smart phones.
The US Council of Dairy Cattle Breeding has �60 years of
records on 31 million cows for use in evaluation (https://
queries.uscdcb.com/Genotype/counts.html), and a number
of other countries have databases of similar magnitude. The
long-term, longitudinal, and high-tech data collection sys-
tems to which we aspire for improved population health have
already underpinned advanced statistical analyses. The
masses of data available in livestock evaluations, and with
close relatives found across different environmental settings,
means that genetic and nongenetic factors can be well-sepa-
rated in linear mixed models, and a complex array of cova-
riates can be fitted. Maternal and cytoplasmic/mitochondrial
effects models (Southwood et al. 1989), and random regres-
sion models (Kirkpatrick et al. 1990) for repeated-measure
longitudinal data have been used for many years (Meyer
1998) (including complexities of annual milk production

distributions based on daily recordings). Recognizing that
so-called environmental covariates are themselves complex
traits, reaction norm models have been used to model jointly
genotype-environment interaction and genotype-environment
correlation (Meyer 1998). Such analyses can now be attemp-
ted with data sets like the UK biobank (Robinson et al. 2017;
Beaumont et al. 2018; Ni et al. 2018), but it will be a long time
before we have human complex disease data sets that
can really benefit from these statistical methods. Human
researchers sometimes assume that livestock are measured
in environmentally controlled conditions, and can be surprised
that livestock data sets can encompass complex environmental
measures. In contrast, researchers not familiar with human
data can be taken aback that often the only covariates in such
data sets are age and sex. On the other hand, human disease
data sets bring challenges not arising in livestock analyses,
resulting from binary case/control data with oversampling
of cases. In the fields of both human and livestock genetics,
there are discussions about whether deep phenotyping of
smaller samples is preferential to shallower phenotyping in
large samples, but, in general, technologies allow both large
samples and adequate phenotyping. The UK Biobank (UKB)
study has demonstrated the value of having a single large
cohort collected in a consistent way. For example, published
meta-analyses of 257,000 people for height (Wood et al.
2014) and 339,000 people for body mass index (BMI)
(Locke et al. 2015) identified 594 and 82 independent ge-
nome-wide significant loci, respectively. In contrast, GWAS
of the UKB cohort using 250,000 people identified 850 and
160 GWS loci, for height and BMI, respectively (Yengo et al.
2018).

While, traditionally, livestock data sets have been bigger
and phenotypically richer than human data sets, SNP array
data sets are ofmore comparable sizes. As biobank and crowd-
sourcedstudies accumulate recruitedparticipants, andexploit
smart phone data collection, human data sets will overtake
livestock data sets in size, phenotypic depth and longitudinal
breadth. The user-friendly tools developed in human genetics
[e.g., Principal Component analysis software (Price et al.
2006), PLINK (Purcell et al. 2007), GCTA (Yang et al.
2011a)] are already being actively used by the livestock ge-
netics community. Methodology for exploiting association
summary statistics (Pasaniuc and Price 2017) has been a
fertile field of research in human genetics recently, and allows
prediction gain from large discovery samples without the
need to share primary level data. The key feature is that
the association results can be interpreted by superimposing
a genomic LD correlation structure derived from an external
reference sample. These methods are computationally effi-
cient and avoid problems associated with sharing of primary
level data (which depends on privacy and consent in human
populations, and commercial sensitivity in livestock popula-
tions). There has been little interest, to date, in livestock
genetics with regard to use of summary statistics, but this
may be a fruitful area for future research, at least in some
species.
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Understanding and Appreciating Within Family
Segregation Variance

The genetic variance among offspring achieved through the
random samplings of their parents’ genomes is the key source
of variation exploited in agricultural selection programs.
Since family sizes can be large in livestock (and crop) breed-
ing programs, variation among offspring within a family is
observed and tangible. However, in human genetics, it seems
to us, that this key source of variation is not fully recognized,
despite being an essential part of the biometric model used
since Fisher (1918), perhaps because human family sizes are
relatively small. It goes without saying that each child re-
ceives exactly half of its genetic material from each parent,
and that each child receives a different sample of each par-
ent’s genome. Hence, we can attribute the genetic value
of a child ðAchildÞ as the mean genetic value of its parents
ððAdad þ AmumÞ=2Þ, plus a deviation from the mean that is
specific to that child ðAsegÞ

Achild ¼ ðAdad þ AmumÞ=2þ Aseg

We can then consider the variance of genetic values of the
generation of children as,

VðAchildÞ ¼ VðAdadÞ=4þ VðAmumÞ=4þ VðAsegÞ (2)

There are no covariance terms, because for simplicity we
assume random mating so Adad and Amum are independent,
and the segregation term (as a deviation from the parental
average) is also independent. Next, we can assume that the
genetic variance among the individuals of the children’s gen-
eration is the same as among their parents, and genetic var-
iance among the mothers is the same as among the fathers.
Moreover, all variances are simply the additive genetic vari-
ance of the population, VðAÞ, i.e., VðAchildÞ ¼ VðAdadÞ ¼
VðAmumÞ ¼ VðAÞ.

Then, substituting these into Equation 2 and rearranging,
gives

VðAsegÞ ¼ VðAÞ=2:

This well-known result is fundamental to understanding ge-
netic variation in populations. Half the genetic variance in
populations is derived from segregation of genomes within
families, this seems underappreciated, but is jaw-dropping for
its implications. Let us consider the properties of segregation
variance. First, it is not reduced by selection of the parents
[which reduces VðAdadÞ and VðAmumÞ in Equation 2]. In other
words, however strong the selection is on parents, a pair of
parents still generate a lot of genetic variation among their
offspring. Segregation variance is reduced a little by inbreed-
ing (in a population it reduces proportionally by a factor of
(12F), where F is the mean inbreeding coefficient in the
parent generation in the population), but this is counter-
balanced, in part, by new mutations. It is noteworthy that
some model species have been inbred to the extent that no
within family segregation variance remains, except where

this has been generated by newmutations. The lack of between-
individual variation is a key reason why the relevance of
mouse models for human disease is being increasingly ques-
tioned (Cavanaugh et al. 2014). From an experimental de-
sign perspective, inbred lines remove uncontrolled variation,
and hence reduce sample sizes needed for powered studies.
However, in humans, the essence of polygenic disease is that
many variants contribute to risk, and that there are many
combinations of DNA variants that lead to the same disease
diagnosis. Research paradigms are needed that embrace the
nature of polygenic disease. In the past, such paradigms were
difficult to achieve, but technological advances mean that new
avenues are opening.

Selection Experiments Demonstrate the Power of
Segregation Variance

For almost a century, the nature of genetic variation was
described statistically, but could not be directly measured.
Selection experiments became the tool to verify the validity of
the statisticalmodels. Observed responses could be compared
to those expected by inference from the statistical theory.
Documented selection experiments began in 1896 for maize
and the early 20th century for chickens (Hill 2011) and be-
came a standard tool in genetics research midcentury. In
1980, Bill Hill laid down (Hill 1980) the many motivations
for selection experiments, and then, 30 years later (Hill
2011), asked “Can more be learned from selection experi-
ments of value in animal breeding programmes? Or is it time
for an obituary?.” He concluded, that while “There can be
little argument that selection experiments have greatly
added to our understanding of quantitative genetic and se-
lection principles,” that the lessons had been learned and that
it was indeed time for an obituary. We agree with the conclu-
sion, but highlight this work to increase exposure to those
lessons.

Selection programs shed light on many aspects of theory
and genetic architecture (Hill 1980, 2011; Hill and Caballero
1992; Brotherstone and Goddard 2005). A key lesson of se-
lection programs and selection experiments is the clear dem-
onstration of the importance of segregation variance. While
segregation variance has been studied in humans to estimate
genetic variance based by relating phenotypic differences be-
tween full-sibs with their coefficients of relationship esti-
mated from genome-wide SNP data (which range from
�0.4 to �0.6) (Visscher et al. 2006; Kong et al. 2018), the
studies are few because of the large sample sizes needed to
achieve acceptable SE of estimates. The results of selection
programs provide powerful demonstrations of the contribu-
tions of segregation variance to variation in the population. In
humans, segregation variance is harder to appreciate because
family sizes are small. Understanding segregation variance is
key to understanding why absolute risks of disease are small
in first degree relatives of diseases individuals even in dis-
eases of high heritability, and to understand PRS variation
between family members. To demonstrate the lessons from
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selection programs, Figure 2 shows the response to selection
in dairy cattle for milk yield (red line), which has also been
accompanied by increases attributable to nongenetic factors
(e.g., improved management and feed, green line). In
1957 the SD in milk yield was �600 kg (�600 liters). The
genetic value for milk production of an average dairy cow
today is .6.5 genetic SD above the mean milk production
in 1957 (achieved despite the relatively long generation
intervals). In 1957, only 0.1% of cows would have
produced .9600 kg of milk, now .50% of cows achieve
this! Selection programs/experiments have demonstrated
that very little of this change can be attributed to new muta-
tions [see reviews cited in Hill and Caballero (1992)], but
rather reflects the selection of combinations of variants. Un-
der a polygenic architecture few variants become fixed, and
selection experiments have shown that reverse selection can
return population mean levels to their preselection levels
(Dunnington and Siegel 1996). In broiler chickens, short
generation intervals and high selection intensities led to mas-
sive changes in body weight, with 56 day weight increasing
�3.4 kg or �.20 phenotypic SD, with.80% of the change
attributed to genetic selection (Zuidhof et al. 2014); figure
1 in Zuidhof et al. (2014) reproduced as figure 1.1 in Walsh
and Lynch (2018) is worth checking out for a visualization of
this spectacular increase (Walsh and Lynch 2018). These
data were also published in the Economist (Anon 2019).

The GWAS era in human genetics has demonstrated the
polygenic genetic architecture of common disease. Hence, we
can interpret results from selection in the light of complex
disease. For example, the ongoing incidence of schizophrenia
in populations is considered a conundrum in the context of the
reduced fecundity in those with schizophrenia (Keller and

Miller 2006; Power et al. 2013). The impact of reduced fe-
cundity in schizophrenia induces extremely weak selection
pressure (reduced fecundity in 1% of the population) com-
pared to intense selection in livestock (only 1% of males have
offspring in cattle), in which we still observe masses of ge-
netic variation in the offspring generation. We urge readers
to read the summaries of selection experiments to better ap-
preciate the power of the variation hidden in genomes and
exposed through segregation variation.

Frequently Asked Questions

This Review brings together some important points, a few of
which we previously explored in detail (Kemper and Goddard
2012). The selected topics provide the background needed to
respond to four common frequently asked questions.

Q1: Why is SNP-based heritability lower when estimated
from human compared to from livestock data?

A1: The difference is explained by understanding the differ-
ences in recent effective population size. The small effec-
tive population size in livestock means that the average
coefficient of relationship between pairs of individuals is
high and common SNPs tag causal variants at much
greater physical distance, compared to in humans, and
including across chromosomes.

Q2: Why is the proportion of variance explained in out of
sample prediction so low compared to SNP-based herita-
bility, and what increase is expected as we increase
GWAS discovery sample size?

A2: Equation 1 provides this explanation. Although well
known in PRS theory, it seems underappreciated in PRS
practice, particularly the definition of M, the effective
number of SNPs (use M�50,000 in humans for common
variants). GWAS were originally designed to detect
specific associated variants to better understand the
functional biology of a disease or trait. Now that the
number of identified variants is of the order of hundreds
to thousands for many traits, the need to increase GWAS
sample size has been questioned. However, a key out-
come of the GWAS era will be the application of PRS in
prevention medicine, and larger GWAS are still needed to
maximize the accuracy of PRS.

Q3: What is the difference between PRS in humans and
GEBV in livestock?

Both PRS and GEBV are estimates of the additive genetic
value of a trait of an individual. In principle, the same meth-
odology canbeused toestimateboth. Inpractice, the structure
of the data (measured covariates, ascertainment, LD) lead to
different approaches [e.g., single SNP regression in humans
(Purcell et al. 2007; Chang et al. 2015; Loh et al. 2015) vs.
GBLUP (Meuwissen et al. 2001) or BayesC (Habier et al.
2011) in cattle]. In livestock, the purpose of the GEBV is to
select the parents of the next generation, and the efficacy is
measured as the change in mean GEBV over time. Small
changes are cumulative each generation, and, hence, use of

Figure 2 Increase in milk yield in black and white Holstein cattle since
1957. The mean EBV has increased by 3916 kg or 66 kg per cow per
year. The phenotypic and genetic SD of milk yield in 1957 were �1200
and �600 kg. Hence, the genetic contribution to milk yield has increased
by �6.5 genetic SD since 1957. Source: Council on Dairy Cattle Breeding
(https://queries.uscdcb.com/eval/summary/trend.cfm)
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GEBV has been highly successful, with the key gain compared
to EBV calculated without DNA variant data coming from
reduced generation interval (García-Ruiz et al. 2016). In hu-
mans, the PRS is used to predict future phenotype of the
individual. The efficacy of a genetic predictor (measured by
R2) has a theoretical upper limit dependent on the heritabil-
ity of the trait, and has a practical upper limit dependent on
the variance tagged by the measured SNPs, h2M . While PRS
can be calculated at birth to predict a phenotype in adult-
hood, the predictor can become more accurate over time by
adding in prediction contributions from measurable risk fac-
tors reported as the individual ages.

Q4: What is the relationship between PRS and family history
for risk of common disease?

PRS is an estimate of the aggregate genetic value of an
individual, tracking only the genetic contribution to the trait
tagged by common DNA polymorphisms. Family history re-
flects the phenotypes of relatives of the individual. Those
phenotypes depend partly on genetic factors (tracking poly-
morphisms of all frequencies in the population), and, hence,
the importance of family history to an individual depends on
the heritability of the trait. We have shown previously that
common disease is more-often-than-not expected to occur in
the absence of family history (Yang et al. 2010a). For exam-
ple, for a disease with lifetime risk 1% (typical of a common
human disease) and high heritability of 80%, even with full
knowledge of three generations of family history, �70% of
those affected are expected to have no family history of dis-
ease. For full understanding of this result, we refer readers to
that paper, but a key to its understanding is to recognize the
masses of genetic variation between full-siblings within fam-
ilies. Hence, although there is an increased risk in those with
known family history, random samplings of genomes of par-
ents generate the genetic lottery. Hence, children of both
affected and unaffected parents can receive a polygenic bur-
den of risk loci that leads to increased risk of disease in that
individual. In practice, prevention strategies such as earlier or
more frequent disease screening that are available to those
with known family history, should also be made available to
those with high PRS. High PRS will identify a different (par-
tially overlapping) set of individuals that are similarly deserv-
ing of prevention interventions available to those with family
history (Khera et al. 2018). The expected R2 from family
history is h4=2, whereas the limit on R2 from Equation 1 is
h2M ; achieved when GWAS discovery sample is very large.
Hence, R2 in a sample estimated from PRS will be more ac-
curate than that estimated from family history alone when
h2M
h2 .

h2
2 , and whether this is achievable depends on genetic

architecture; i.e., if h2 is 0.6, PRS can be more accurate than
family history when h2M . 0.18.
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