Family Networks versus Genetics in Social Outcomes, England 1750-2019 Gregory Clark, UC Davis and LSE

Family Networks and Social Outcomes

- Substantial literature in anthropology and sociology on how family other than parents affect child social outcomes (*alloparents*).
- These relatives are grandparents, uncles/aunts, and cousins.
- Controlling for characteristics of parents, the status of these other relatives is predictive of child status.

Example - Recent Papers

- Chan, T. W., and Boliver, V. 2013. The grandparents effect in social mobility: Evidence from British birth cohort studies. *American Sociological Review, 78,* 662–678.
- Knigge, Antonie, 2016. "Beyond the Parental Generation: The Influence of Grandfathers and Great-grandfathers on Status Attainment." *Demography*, 53.
- Song, Xi, Robert D. Mare. 2019. "Shared Lifetimes, Multigenerational Exposure, and Educational Mobility." *Demography*, 56(3): 891-916.

Predictive Effect of Collateral Relatives Significant

			Outcome:
	Ln Wealth	Occupational Rank	Education
	(1)	(2)	(3)
Father	.264***	.366***	.185***
	(.004)	(.004)	(.002)
Grandfather	.136***	.153***	.081***
	(.004)	(.004)	(.003)
Uncle	.078***	.162***	$.105^{***}$
	(.004)	(.004)	(.003)
Observations	46,940	63,472	106,565
\mathbb{R}^2	.323	.469	.166

Predictive Effect of Collateral Relatives Significant

			Outcome:
	Ln Wealth	Occupational Rank	Education
	(1)	(2)	(3)
Father	.272***	.399***	.231***
	(.006)	(.005)	(.003)
Grandfather	.164***	.168***	.089***
	(.005)	(.005)	(.003)
Cousin	.096***	.162***	$.133^{***}$
	(.006)	(.004)	(.004)
Observations	27,182	44,094	66,682
\mathbb{R}^2	.362	.483	.190

Reasons for collateral relatives being predictive

• **CAUSAL** - Social transmission of status – relatives contribute resources, connections, models

• NON CAUSAL - Genetic transmission – relatives give information on the underlying genotype of parents. Parents alone determine child outcomes.

Additive Genetic Transmission

$$y_{it} = x_t + u_{it}$$
$$x_t = bx_{t-1} + e_t$$

• *yi* status phenotypes

• *x* status genotype

 Phenotype values of relatives give information on relative values of x_{t-1} and u_{it-1} for father in determining y_t for child

• That information is stronger the more closely genetically related the relative is.

Predicted Correlation of Relatives

Relative to	Matching on:			
Child	Genotype	Phenotype		
Parent-Parent	h^2m	r		
Mid-parent	h^2	h^2		
Single parent	$h^{2}\frac{1+m}{2}$	$h^{2}\frac{1+r}{2}$		
Siblings	$h^2 \frac{1+m}{2}$	$h^2 \frac{1+m}{2}$		
Avuncular	$h^2(\frac{1+m}{2})^2$	$h^2(\frac{1+m^2}{2})\frac{1+r}{2}$		
Grandparent	$h^2(\frac{1+m}{2})^2$	$h^2(\frac{1+m}{2})\frac{1+r}{2}$		
Cousins	$h^2(\frac{1+m}{2})^3$	$h^2(\frac{1+m}{2})^2\frac{1+r}{2}$		
Gt Grandparent	$h^2(\frac{1+m}{2})^3$	$h^2(\frac{1+m}{2})^2\frac{1+r}{2}$		
Second Cousins	$h^{2}(\frac{1+m}{2})^{5}$	$h^2(\frac{1+m}{2})^4\frac{1+r}{2}$		

Predicted Correlation of Relatives

Relative to	Matching on:			
Child	Genotype	Phenotype		
Parent-Parent	h^2m	r		
Mid-parent	h^2	h^2		
Single parent	$h^{2}\frac{1+m}{2}$	$h^{2}\frac{1+r}{2}$		
Siblings	$h^2 \frac{1+m}{2}$	$h^2 \frac{1+m}{2}$		
Avuncular	$h^2(\frac{1+m}{2})^2$	$h^2(\frac{1+m^2}{2})\frac{1+r}{2}$		
Grandparent	$h^2(\frac{1+m}{2})^2$	$h^2(\frac{1+m}{2})\frac{1+r}{2}$		
Cousins	$h^2(\frac{1+m}{2})^3$	$h^2(\frac{1+m}{2})^2\frac{1+r}{2}$		
Gt Grandparent	$h^{2}(\frac{1+m}{2})^{3}$	$h^2(\frac{1+m}{2})^2\frac{1+r}{2}$		
Second Cousins	$h^{2}(\frac{1+m}{2})^{5}$	$h^2(\frac{1+m}{2})^4\frac{1+r}{2}$		

Predicted Correlation of Relatives

Relative to	Mate	ching on:
Child	Genotype	Phenotype
Parent-Parent	h^2m	r
Mid-parent	h^2	h^2
Single parent	$h^{2}\frac{1+m}{2}$	$h^{2}\frac{1+r}{2}$
Siblings	$h^2 \frac{1+m}{2}$	$h^2 \frac{1+m}{2}$
Avuncular	$h^{2}(\frac{1+m}{2})^{2}$	$h^2(\frac{1+m^2}{2})\frac{1+r}{2}$
Grandparent	$h^2(\frac{1+m}{2})^2$	$h^2(\frac{1+m}{2})\frac{1+r}{2}$
Cousins	$h^2(\frac{1+m}{2})^3$	$h^2(\frac{1+m}{2})^2\frac{1+r}{2}$
Gt Grandparent	$h^2(\frac{1+m}{2})^3$	$h^2(\frac{1+m}{2})^2\frac{1+r}{2}$
Second Cousins	$h^2(\frac{1+m}{2})^5$	$h^2(\frac{1+m}{2})^4\frac{1+r}{2}$

Dataset under construction to test this

- Lineage of 366,450 people with rare surnames England 1700-2019.
- Using variety of public data sources we link parents-children across 4-8 generations

Sample Pedigrees from the Database

			10		
		12 13 6 00 239	0000		
www.	and always				<u>т</u>
	<u></u>		31400072	क्रिक्रम	
					ц.

Crowd Sourcing – Family Trees

Guild of One-Name Studies

About the Guild

An Introduction In Studies

Part 1 - genealogy in and general direction

We invite you to explore the context of One-

Social Outcomes

- Wealth at Death everyone, 1858-2016. Richer families 1799-1857.
- Adult Occupation 1841-1911, 1939
- Schooling 11-20 1851-1911, 1939
- Education Professional Qualifications 1750-1940
- Adult Life Span born 1750-1920
- Attaining age 21 born 1750-1920

Data so Far

Outcome	Number
People	366,453
Wealth at Death	48,912
Higher Education (males)	49,926
Occupational Status (males)	44,554
School 14-20	27,386
Age at Death	144,166
Reaching age 21	294,027

Three tests of social influence

• Dead versus living relatives – grandparents, uncles, cousins

• Magnitude of effects from grandfathers versus uncles, great grandfathers versus cousins

• Geographically close versus distant relatives

Dead versus living grandfathers

	Dependent variable:						
	Wealth	Occupation	School, 14-20	Age, Death			
	(1)	(2)	(3)	(4)	(5)		
Alive at Birth?	135^{***}	011^{**}	007	.011	.034		
Grandfather Status	(.038) .100***	(.005) $.164^{***}$	(.005) .064***	(.018) .180***	(.025) .066***		
Status*Alive	(.009) $.021^{**}$ (.009)	(.011) .013 (.012)	(.009) .011 (.012)	$(.044) \\032 \\ (.047)$	$(.015) \\025 \\ (.021)$		
$\begin{array}{c} \text{Observations} \\ \text{R}^2 \end{array}$	$12,669 \\ .374$	$9,609 \\ .552$	$13,828 \\ .236$	7,897 .087	25,177 .209		

Dead versus living uncles

	Ln	Occupational	Higher	School	Normed
	Wealth	Rank	Education	14-20	age at
					death (21+)
Alive at Birth	0.041	-0.007	-0.011	0.000	-0.107
	(.092)	(.007)	(.007)	(.025)	(.062)
Uncle Status	0.015	0.164***	0.085***	0.274***	0.056
	(.022)	(.022)	(.029)	(.079)	(.034)
Status*alive at birth	0.098***	0.013	0.011	0.001	-0.016
	(.022)	(.022)	(0.030)	(.025)	(.035)
Ν	25.932	27.204	31.983	10.205	29.204
\mathbb{R}^2	0.33	0.56	0.30	0.26	0.001

Dead versus living grandmother

	Dependent variable:					
	Wealth	Occupation	Education	School, 14-20	Age, Death	
	(1)	(2)	(3)	(4)	(5)	
Alive at Birth?	014	016***	.005	.005	.019	
Grandfather Status	(.041) .089***	(.005) $.132^{***}$	(.005) $.046^{***}$	(.020) $.140^{***}$	(.027) $.063^{***}$	
Status*Alive	(.010) 030^{***}	(.013) 064^{***}	(.011) 0.039^{***}	(.051) 0.035	(.019) 003	
	(.010)	(.013)	(.013)	(.050)	(.022)	
Observations	$11,\!548$	8,752	$12,\!661$	7,247	22,523	
\mathbb{R}^2	.372	.546	.236	.086	.205	

Grandfathers versus Uncles

Son Outcome	Predictor	Grandfather	Uncle	Difference
Ln(Wealth) at Death	Ln(Wealth) at Death	0.111*** (.008)	0.104*** (.004)	0.007 (.009)
Higher Education	Higher Education	0.068*** (.007)	0.058*** (.004)	0.010 (.008)
Occupational Status	Occupational Status	0.172*** (.009)	0.178*** (.005)	-0.006 (.010)
Normed adult age at death	Normed adult age at death	0.060** (.012)	0.032*** (.003)	0.028 (.012)
At School 14-20	Occupational Status	0.164*** (.038)	0.159*** (.021)	0.005 (.043)

Grandfathers versus Uncles

Great grandfathers versus cousins

Son Outcome	Predictor	Great Grandfather	Cousin	Difference
Ln(Wealth) at Death	Ln(Wealth) at Death	0.064*** (.014)	0.109*** (.007)	-0.045*** (.016)
Higher Education	Higher Education	0.055*** (.016)	0.063*** (.009)	-0.008 (.018)
Occupational Status	Occupational Status	0.145*** (.017)	0.170*** (.011)	-0.025 (.020)
Normed adult age at death	Normed adult age at death	0.029** (.013)	0.011*** (.004)	0.018 (.014)
At School 14-20	Occupational Status	0.235*** (.070)	0.234*** (.032)	0.001 (.077)
Survival to age 21	Occupational Status	0.037*** (.020)	0.065*** (.015)	-0.028 (.025)

Close versus distant uncles

	Dependent variable:						
	Wealth	Occupation	Education	School, 14-20	Age, Death		
	(1)	(2)	(3)	(4)	(5)		
Close	010	003	005	021	022^{**}		
	(.039)	(.005)	(.004)	(.021)	(.009)		
Uncle Status	.091***	$.162^{***}$.059***	.114**	.030***		
	(.008)	(.011)	(.008)	(.045)	(.008)		
Status*Close	.040***	007	.005	.021	006		
	(.011)	(.016)	(.016)	(.066)	(.010)		
Observations	$16,\!015$	$8,\!627$	15,735	6,838	35,736		
\mathbb{R}^2	.361	.518	.211	.083	.198		

Close versus distant cousins

	Dependent variable:							
	Wealth	Occupation	Education	School, 14-20	Age, Death			
	(1)	(2)	(3)	(4)	(5)			
Close	106^{*}	$.011^{*}$	014^{**}	.006 $(.031)$	071^{***}			
Cousin Status	$.090^{***}$ (.012)	$.122^{***}$ (.013)	$.056^{***}$ (.012)	$.106^{*}$.020** (.010)			
Status*Close	.004 $(.020)$	(.010) 056^{**} (.023)	(.022) 033 (.028)	(.000) 022 (.110)	$.027^{*}$ (.014)			
$\begin{array}{c} \text{Observations} \\ \text{R}^2 \end{array}$	8,077 .398	4,701 .617	7,550 .259	4,132 .093	18,484 .219			

Close versus distant grandmothers

	Dependent variable:						
	Wealth	Occupation	Education	School, 14-20	Age, Death		
	(1)	(2)	(3)	(4)	(5)		
Close	122^{*}	007	.004	057	.010		
	(.068)	(.008)	(.009)	(.036)	(.045)		
Grandfather Status	.102***	$.156^{***}$	$.064^{***}$.117	.051		
	(.016)	(.020)	(.015)	(.087)	(.034)		
Status*Close	.009	.006	.058***	.108	045		
	(.017)	(.022)	(.022)	(.090)	(.040)		
Observations	$4,\!297$	2,986	$4,\!486$	2,406	$7,\!595$		
$\frac{\mathbf{R}^2}{\mathbf{R}^2}$.363	.517	.196	.082	.177		

Conclusions

- Collateral relatives give significant additional information on child outcomes.
- Relatives provide as much information when they had no interaction with a child as when they interact.
- The amount of additional information collateral relatives supply is proportionate to their genetic connection to a child.