CONTENTS

Supplement to No support for historic candidate gene or candidate gene-by-interaction hypotheses for major depression across multiple large samples

Contents

Ι	Suppleme	ental methods	4
	S1 Identi	fication of top genes and polymorphisms	4
		yping and quality control	11
	S2.1 PC	${ m GC}$ sample	11
	S2.2 UI	KBB sample	11
	S3 Measu	ires	12
	S3.1 Ot	utcome measures	12
	S3.1.1	Estimated lifetime MDD Diagnosis	13
	S3.1.2	Conditional lifetime symptom count	13
	S3.1.3	Current MDD severity	14
	S3.1.4	Lifetime episode count	14
	S3.1.5	Touchscreen probable lifetime diagnosis, ordinal classification	14
	S3.1.6	Touchscreen probable lifetime diagnosis	15
	S3.1.7	<u>.</u>	
		PGC lifetime MDD diagnosis	
		$\operatorname{oderators}$	
	S3.2.1	Childhood trauma	17
	S3.2.2	Adult trauma	18
	S3.2.3	Recent trauma	18
	S3.2.4	Stressor-induced depression	19
	S3.2.5	Townsend deprivation index (TDI)	19
	S4 Statist	tical models	19
	S4.1 Po	lymorphism-wise analyses	19
		Design matrix lower rank approximation	
	$S4.2$ $G\epsilon$	ene-wise and gene-set analyses	23
	S4.2.1	Gene-wise analyses	24
		Gene-set analyses	
	S4.3 Po	ower analyses	24
	S4.3.1	Logistic models	24
	S4.3.2	Negative binomial models	24
	S4.3.3	Power under measurement error regimes	25
		eritability and genetic correlation estimation	
		polication of top PGC hits	20

LIST OF TABLES 2

	S4.5.1 Identification of independent loci	29
S5	Amendments to preregistration	31
·-	5.1 Corrections	
II Su	applemental results	33
S6	Main effects of moderator variables	34
S7	Polymorphism level main effects	35
S 8	Polymorphism level $G \times E$ effects	39
S9	Polymorphism level $G \times E$ effects (alternate scale)	47
S10	Polymorphism level $G \times E$ effects (improper control)	5 5
	Gene-level results 11.1 Gene-wise models 11.2 Gene-set models S11.2.1 Competitive tests S11.2.2 Relative tests	67 67
S12	Attempted replication of top 16 independent PGC associations	70
Refe	erences	71
Itele		
	of Tables	
List o	Estimated lower bounds for the number of human association studies of each of the top 18 and 16 identified candidate genes and polymorphisms, respectively	4
List o S1.1 S3.1	Estimated lower bounds for the number of human association studies of each of the top 18 and 16 identified candidate genes and polymorphisms, respectively	4 16
S1.1 S3.1 S3.2	Estimated lower bounds for the number of human association studies of each of the top 18 and 16 identified candidate genes and polymorphisms, respectively	4 16 16
S1.1 S3.1 S3.2 S3.3	Estimated lower bounds for the number of human association studies of each of the top 18 and 16 identified candidate genes and polymorphisms, respectively	4 16 16 20
S1.1 S3.1 S3.2 S3.3 S3.4	Estimated lower bounds for the number of human association studies of each of the top 18 and 16 identified candidate genes and polymorphisms, respectively	4 16 16 20 21
S1.1 S3.1 S3.2 S3.3	Estimated lower bounds for the number of human association studies of each of the top 18 and 16 identified candidate genes and polymorphisms, respectively	4 16 16 20 21 32
S1.1 S3.1 S3.2 S3.3 S3.4 S4.1	Estimated lower bounds for the number of human association studies of each of the top 18 and 16 identified candidate genes and polymorphisms, respectively	4 16 16 20 21 32 34
S1.1 S3.1 S3.2 S3.3 S3.4 S4.1 S6.1	Estimated lower bounds for the number of human association studies of each of the top 18 and 16 identified candidate genes and polymorphisms, respectively	4 16 16 20 21 32 34 35
S1.1 S3.1 S3.2 S3.3 S3.4 S4.1 S6.1 S7.1 S7.2 S7.3	Estimated lower bounds for the number of human association studies of each of the top 18 and 16 identified candidate genes and polymorphisms, respectively. Bivariate correlations between UKBB depression phenotypes Cohen's κ (inter-rater reliability) between UKBB diagnosis phenotypes LDSC genetic correlation estimates among depression phenotypes, height, and type 2 diabetes LDSC heritability estimates on the liability scale Interaction models Main effects of environmental moderators Estimated lifetime MDD diagnosis Current MDD severity Conditional lifetime symptom count	4 16 16 20 21 32 34 35 35 36
S1.1 S3.1 S3.2 S3.3 S3.4 S4.1 S6.1 S7.1 S7.2 S7.3 S7.4	Estimated lower bounds for the number of human association studies of each of the top 18 and 16 identified candidate genes and polymorphisms, respectively. Bivariate correlations between UKBB depression phenotypes Cohen's κ (inter-rater reliability) between UKBB diagnosis phenotypes LDSC genetic correlation estimates among depression phenotypes, height, and type 2 diabetes LDSC heritability estimates on the liability scale Interaction models Main effects of environmental moderators Estimated lifetime MDD diagnosis Current MDD severity Conditional lifetime symptom count Lifetime episode count	4 16 16 20 21 32 34 35 36 36 36
S1.1 S3.1 S3.2 S3.3 S3.4 S4.1 S6.1 S7.1 S7.2 S7.3 S7.4 S7.5	Estimated lower bounds for the number of human association studies of each of the top 18 and 16 identified candidate genes and polymorphisms, respectively. Bivariate correlations between UKBB depression phenotypes Cohen's κ (inter-rater reliability) between UKBB diagnosis phenotypes LDSC genetic correlation estimates among depression phenotypes, height, and type 2 diabetes LDSC heritability estimates on the liability scale Interaction models Main effects of environmental moderators Estimated lifetime MDD diagnosis Current MDD severity Conditional lifetime symptom count Lifetime episode count Touchscreen probable lifetime diagnosis	4 16 16 20 21 32 34 35 36 36 36 37
S1.1 S3.1 S3.2 S3.3 S3.4 S4.1 S6.1 S7.1 S7.2 S7.3 S7.4 S7.5 S7.6	Estimated lower bounds for the number of human association studies of each of the top 18 and 16 identified candidate genes and polymorphisms, respectively. Bivariate correlations between UKBB depression phenotypes Cohen's κ (inter-rater reliability) between UKBB diagnosis phenotypes LDSC genetic correlation estimates among depression phenotypes, height, and type 2 diabetes LDSC heritability estimates on the liability scale Interaction models Main effects of environmental moderators Estimated lifetime MDD diagnosis Current MDD severity Conditional lifetime symptom count Lifetime episode count Touchscreen probable lifetime diagnosis, ordinal classification	4 16 20 21 32 34 35 36 36 37 37
S1.1 S3.1 S3.2 S3.3 S3.4 S4.1 S6.1 S7.1 S7.2 S7.3 S7.4 S7.5 S7.6 S7.7	Estimated lower bounds for the number of human association studies of each of the top 18 and 16 identified candidate genes and polymorphisms, respectively. Bivariate correlations between UKBB depression phenotypes Cohen's κ (inter-rater reliability) between UKBB diagnosis phenotypes LDSC genetic correlation estimates among depression phenotypes, height, and type 2 diabetes LDSC heritability estimates on the liability scale Interaction models Main effects of environmental moderators Estimated lifetime MDD diagnosis Current MDD severity Conditional lifetime symptom count Lifetime episode count Touchscreen probable lifetime diagnosis, ordinal classification Severe recurrent MDD (MHF)	4 16 16 20 21 32 34 35 36 36 37 37 38
S1.1 S3.1 S3.2 S3.3 S3.4 S4.1 S6.1 S7.1 S7.2 S7.3 S7.4 S7.5 S7.6 S7.7 S7.8	Estimated lower bounds for the number of human association studies of each of the top 18 and 16 identified candidate genes and polymorphisms, respectively. Bivariate correlations between UKBB depression phenotypes Cohen's κ (inter-rater reliability) between UKBB diagnosis phenotypes LDSC genetic correlation estimates among depression phenotypes, height, and type 2 diabetes. LDSC heritability estimates on the liability scale Interaction models Main effects of environmental moderators Estimated lifetime MDD diagnosis Current MDD severity Conditional lifetime symptom count Lifetime episode count Touchscreen probable lifetime diagnosis Touchscreen probable lifetime diagnosis, ordinal classification Severe recurrent MDD (MHF) PGC lifetime MDD diagnosis: main effect of variant	4 16 16 20 21 32 34 35 36 36 37 37 38 38
S1.1 S3.1 S3.2 S3.3 S3.4 S4.1 S6.1 S7.1 S7.2 S7.3 S7.4 S7.5 S7.6 S7.7 S7.8 S8.1	Estimated lower bounds for the number of human association studies of each of the top 18 and 16 identified candidate genes and polymorphisms, respectively. Bivariate correlations between UKBB depression phenotypes Cohen's \(\kappa \) (inter-rater reliability) between UKBB diagnosis phenotypes LDSC genetic correlation estimates among depression phenotypes, height, and type 2 diabetes. LDSC heritability estimates on the liability scale Interaction models Main effects of environmental moderators Estimated lifetime MDD diagnosis Current MDD severity Conditional lifetime symptom count Lifetime episode count Touchscreen probable lifetime diagnosis, ordinal classification Severe recurrent MDD (MHF) PGC lifetime MDD diagnosis: main effect of variant Estimated lifetime MDD diagnosis on variant \(\times \) childhood trauma	4 16 20 21 32 34 35 36 36 37 37 38 38 38
S1.1 S3.1 S3.2 S3.3 S3.4 S4.1 S6.1 S7.1 S7.2 S7.3 S7.4 S7.5 S7.6 S7.7 S7.8 S8.1 S8.2	Estimated lower bounds for the number of human association studies of each of the top 18 and 16 identified candidate genes and polymorphisms, respectively. Bivariate correlations between UKBB depression phenotypes Cohen's \(\kappa \) (inter-rater reliability) between UKBB diagnosis phenotypes LDSC genetic correlation estimates among depression phenotypes, height, and type 2 diabetes LDSC heritability estimates on the liability scale Interaction models Main effects of environmental moderators Estimated lifetime MDD diagnosis Current MDD severity Conditional lifetime symptom count Lifetime episode count Touchscreen probable lifetime diagnosis, ordinal classification Severe recurrent MDD (MHF) PGC lifetime MDD diagnosis: main effect of variant Estimated lifetime MDD diagnosis on variant \(\times \) childhood trauma Estimated lifetime MDD diagnosis on variant \(\times \) childhood trauma	4 16 20 21 32 34 35 36 36 37 37 38 38 39 39
S1.1 S3.1 S3.2 S3.3 S3.4 S4.1 S6.1 S7.1 S7.2 S7.3 S7.4 S7.5 S7.6 S7.7 S7.8 S8.1 S8.2 S8.3	Estimated lower bounds for the number of human association studies of each of the top 18 and 16 identified candidate genes and polymorphisms, respectively. Bivariate correlations between UKBB depression phenotypes Cohen's \(\times\) (inter-rater reliability) between UKBB diagnosis phenotypes LDSC genetic correlation estimates among depression phenotypes, height, and type 2 diabetes. LDSC heritability estimates on the liability scale Interaction models Main effects of environmental moderators Estimated lifetime MDD diagnosis Current MDD severity Conditional lifetime symptom count Lifetime episode count Touchscreen probable lifetime diagnosis Touchscreen probable lifetime diagnosis, ordinal classification Severe recurrent MDD (MHF) PGC lifetime MDD diagnosis main effect of variant Estimated lifetime MDD diagnosis on variant \(\times\) childhood trauma Estimated lifetime MDD diagnosis on variant \(\times\) adult trauma Estimated lifetime MDD diagnosis on variant \(\times\) adult trauma Estimated lifetime MDD diagnosis on variant \(\times\) adult trauma	4 16 20 21 32 34 35 36 36 37 37 38 38 39 40
S1.1 S3.1 S3.2 S3.3 S3.4 S4.1 S6.1 S7.1 S7.2 S7.3 S7.4 S7.5 S7.6 S7.7 S7.8 S8.1 S8.2	Estimated lower bounds for the number of human association studies of each of the top 18 and 16 identified candidate genes and polymorphisms, respectively. Bivariate correlations between UKBB depression phenotypes Cohen's \(\kappa \) (inter-rater reliability) between UKBB diagnosis phenotypes LDSC genetic correlation estimates among depression phenotypes, height, and type 2 diabetes LDSC heritability estimates on the liability scale Interaction models Main effects of environmental moderators Estimated lifetime MDD diagnosis Current MDD severity Conditional lifetime symptom count Lifetime episode count Touchscreen probable lifetime diagnosis, ordinal classification Severe recurrent MDD (MHF) PGC lifetime MDD diagnosis: main effect of variant Estimated lifetime MDD diagnosis on variant \(\times \) childhood trauma Estimated lifetime MDD diagnosis on variant \(\times \) childhood trauma	4 16 20 21 32 34 35 36 36 37 37 38 38 39 40 40

LIST OF FIGURES 3

S8.7	Conditional lifetime symptom count on variant \times TDI	42
S8.8	Conditional lifetime symptom count on variant × stressor-induced depression	42
S8.9	Lifetime episode count on variant × childhood trauma	
S8.10	Lifetime episode count on variant × adult trauma	
S8.11	Lifetime episode count on variant × TDI	44
	Touchscreen probable lifetime diagnosis on variant × TDI	
	Touchscreen probable lifetime diagnosis, ordinal classification on variant \times TDI	
	Severe recurrent MDD (MHF) on variant × adult trauma	
	Severe recurrent MDD (MHF) on variant × childhood trauma	
	Severe recurrent MDD (MHF) on variant × TDI	
S9.1	Estimated lifetime MDD diagnosis on variant × childhood trauma, alternate scale	
S9.2	Estimated lifetime MDD diagnosis on variant × adult trauma, alternate scale	
S9.3	Estimated lifetime MDD diagnosis on variant × TDI, alternate scale	
S9.4	Current MDD severity (MHF) on variant × recent trauma, alternate scale	
S9.5	Conditional lifetime symptom count on variant × childhood trauma, alternate scale	
S9.6	Conditional lifetime symptom count on variant × adult trauma, alternate scale	
S9.0 S9.7	Conditional lifetime symptom count on variant × TDI, alternate scale	
S9.1 S9.8	Conditional lifetime symptom count on variant × 1D1, atternate scale	
S9.9	Lifetime episode count on variant × childhood trauma, alternate scale	
	Lifetime episode count on variant × adult trauma, alternate scale	
	Lifetime episode count on variant × TDI, alternate scale	
	Touchscreen probable lifetime diagnosis on variant × TDI, alternate scale	
	Touchscreen probable lifetime diagnosis, ordinal classification on variant × TDI, alternate scale	
	Severe recurrent MDD (MHF) on variant × childhood trauma, alternate scale	
	Severe recurrent MDD (MHF) on variant × childhood trauma, alternate scale	
	Severe recurrent MDD (MHF) on variant × TDI, alternate scale	
	Estimated lifetime MDD diagnosis on variant × childhood trauma, improper control	
	Estimated lifetime MDD diagnosis on variant × adult trauma, improper control	
	Estimated lifetime MDD diagnosis on variant × TDI, improper control	
	Current MDD severity (MHF) on variant \times recent trauma, improper control	
	Conditional lifetime symptom count on variant \times childhood trauma, improper control	
	Conditional lifetime symptom count on variant \times adult trauma, improper control	
	Conditional lifetime symptom count on variant \times TDI, improper control	
	Conditional lifetime symptom count on variant \times stressor-induced depression, improper control	
	$\label{eq:lifetime} \mbox{Lifetime episode count on variant} \times \mbox{childhood trauma, improper control} \ \dots \ $	
) Lifetime episode count on variant \times adult trauma, improper control	
	Lifetime episode count on variant \times TDI, improper control	
	2 Touchscreen probable lifetime diagnosis on variant \times TDI, improper control	
	3 Touch screen probable lifetime diagnosis, ordinal classification on variant \times TDI, improper control	
	Gene-wise p -values (primary analyses)	62
	Gene-wise p -values (secondary analyses)	62
	Competitive gene-set tests (primary analyses)	67
	Competitive gene-set tests (secondary analyses)	
	Relative gene-set tests (primary analyses)	68
	Relative gene-set tests (secondary analyses)	
S12.1	Attempted replication of top 16 independent PGC genome-wide significant loci in UKBB $$	70
List o	f Figures	
S1.1	Polymorphism counts in top 18 genes (1 of 3)	6
S1.1 S1.2	Polymorphism counts in top 18 genes (2 of 3)	
S1.2 S1.3	Polymorphism counts in top 18 genes (2 of 3)	8
S1.3 S1.4	Cumulative sums of estimated lower bounds of studies-per-gene-per-year for top 18 genes (1 of 2)	9
S1.4 S1.5	Cumulative sums of estimated lower bounds of studies-per-gene-per-year for top 18 genes (1 of 2) Cumulative sums of estimated lower bounds of studies-per-gene-per-year for top 18 genes (2 of 2)	
51.0	- Camaranive bams of commanda lower bounds of studies-per-gene-per-year for top to genes (2 of 2)	TO

Distributions of depression phenotypes	12
Distributions of environmental moderator phenotypes	17
LDSC genetic correlation estimate heatmap	22
Singular value threshold for design matrix	23
Power simulations for main effect detection under measurement error regimes	25
Logistic approximation of negative binomial regression power function	26
Power simulations for interaction effect detection under measurement error regimes	28
Current MDD severity: gene-wise tests	63
Lifetime episode count: gene-wise tests	64
Touchscreen probable lifetime diagnosis, ordinal classification: gene-wise tests	65
Severe recurrent depression: gene-wise tests	66
	Distributions of depression phenotypes Distributions of environmental moderator phenotypes LDSC genetic correlation estimate heatmap Singular value threshold for design matrix Power simulations for main effect detection under measurement error regimes Logistic approximation of negative binomial regression power function Power simulations for detection of association at rs12552 under measurement error regimes Power simulations for interaction effect detection under measurement error regimes Distribution of number of replicated associations Estimated lifetime MDD diagnosis: gene-wise tests Current MDD severity: gene-wise tests Conditional lifetime symptom count: gene-wise tests Lifetime episode count: gene-wise tests Touchscreen probable lifetime diagnosis, ordinal classification: gene-wise tests Touchscreen probable lifetime diagnosis: gene-wise tests PGC lifetime diagnosis: gene-wise tests Severe recurrent depression: gene-wise tests

Part I Supplemental methods

S1 Identification of top genes and polymorphisms

Table S1.1: Estimated lower bounds for the number of human association studies of each of the top 18 and 16 identified candidate genes and polymorphisms, respectively.

	Top candi	date g	enes		$Top\ candida$	te polymorp	hisms	
	Gene	\widehat{N}^{\dagger}	$95\%~\mathrm{CI}^\dagger$		Polymorphism	Gene	\widehat{N}^{\dagger}	$95\%~\mathrm{CI^\dagger}$
1.	SLC6A4	455	293 - 503	1.	5-HTTLPR	SLC6A4	404	235 - 487
2.	BDNF	154	103 - 171	2.	rs6265	BDNF	154	103 - 171
3.	COMT	93	58 - 112	3.	rs4680	COMT	93	58 - 112
4.	HTR2A	75	47 - 90	4.	rs6311	HTR2A	56	28 - 79
<i>5</i> .	TPH1	59	44 - 59	<i>5</i> .	rs1800532	TPH1	53	35 - 58
6.	TPH2	55	41 - 55	6.	VNTR	DRD4	42	28 - 26
7.	DRD2	50	33 - 55	7.	rs1800497	DRD2	28	14 - 42
8.	MAOA	50	32 - 60	8.	VNTR	MAOA	25	11 - 45
9.	DRD4	42	28 - 46	9.	ε -2/3/4	APOE	24	16 - 32
10.	MTHFR	32	24 - 32	10.	rs1801133	MTHFR	16	9 - 23
11.	APOE	24	16 - 32	11.	rs1801260	CLOCK	16	11 - 20
12.	CLOCK	23	19 - 26	12.	VNTR	SLC6A3	14	10 - 18
13.	SLC6A3	21	16 - 24	13.	in/del	ACE	11	9 - 14
14.	ACE	14	11 - 17	14.	rs1045642	ABCB1	8	8 - 9
15.	DRD3	11	11 - 11	15.	rs6280	DRD3	6	6 - 7
16.	ABCB1	11	10 - 11	16.	rs1611115	DBH	5	5 - 6
17.	DTNBP1	10	10 - 10					
18.	DBH	10	10 - 10					

[†] Estimates reflect the hypergeometric parameter indicating the number of correctly identified studies among the finite population of studies identified by our algorithm (details provided below).

The open source Biopython library [1] was used to scrape titles, abstracts, and metadata from the PubMed [2] database of published scientific journal articles. We do not claim to have exhaustively examined the entire candidate gene literature; rather, we have identified 18 highly-studied candidate genes in the context of human association studies of MDD and related endophenotypes. Our estimates of the number of studies per candidate gene reflect lower bounds for the true numbers of studies per candidate gene, Our procedure was as follows:

- 1. Titles of all meta-analyses matching the PubMed search (psychology OR (psychiatry OR (neuroscience OR behavior))) AND topic = (allele OR (gene OR (polymorphism OR (genotype)))) were accessed
- 2. Regular expression matching was applied to determine potential gene names
- 3. Potential gene names occurred at least twice were hand-checked against gene names and aliases in the HUGO Gene Nomenclature Committee (HGNC) database of gene names [3, 4]
- 4. True matches were used to compile a dictionary of gene: [aliases] pairs using HGNC listed aliases E.g., SLC6A4: [obsessive-compulsive disorder 1, serotonin transporter, SERT1, 5-HTTLPR, OCD1]
- 5. Extracted titles and abstracts of all original research articles (as opposed to reviews/meta-analyses) published between 1991 and 2016 containing the terms DEPRESSION, MDD, DEPRESSIVE, or DEPRESSANT and the terms PSYCHOLOGY, PSYCHOLOGICAL, PSYCHIATRIC, PSYCHIATRY, PSYCHOPATHOLOGY, PSYCHOPATHOLOGICAL, BEHAVIOR, BEHAVIORAL, COGNITIVE, COGNITION, or NEUROIMAGING
- 6. Extensive ad hoc exclusion terms were applied to filter out irrelevant articles or articles not involving human subjects (e.g., "clock drawing", which refers to a neurocognitive assessment, was excluded as to avoid mismatches with the CLOCK gene)
- 7. Titles/abstracts containing a gene name or alias for each previously identified gene-names were tallied
- 8. A random subset of ten articles were checked by hand for correct identification. Then, to identify polymorphisms likely to have been studied at least ten times,
 - (a) The optimal coverage exact 95% hypergeometric confidence interval [5] for the true of correctly identified articles was calculated. That is, for each gene, we had a finite population of M articles identified via the above procedure. Given a random sample of m=10 identified articles containing k correctly estimated articles, we estimated the number $N: k \leq N \leq M$ of correctly identified articles among those identified via the fact that it is a hypergeometric random variable with mass

$$P(N=n) = \frac{\binom{N}{k} \binom{M-N}{m-k}}{\binom{M}{m}}$$

(b) If the 95% confidence interval $[N_{lower}, N_{upper}]$ excluded 9 or 11, i.e., if

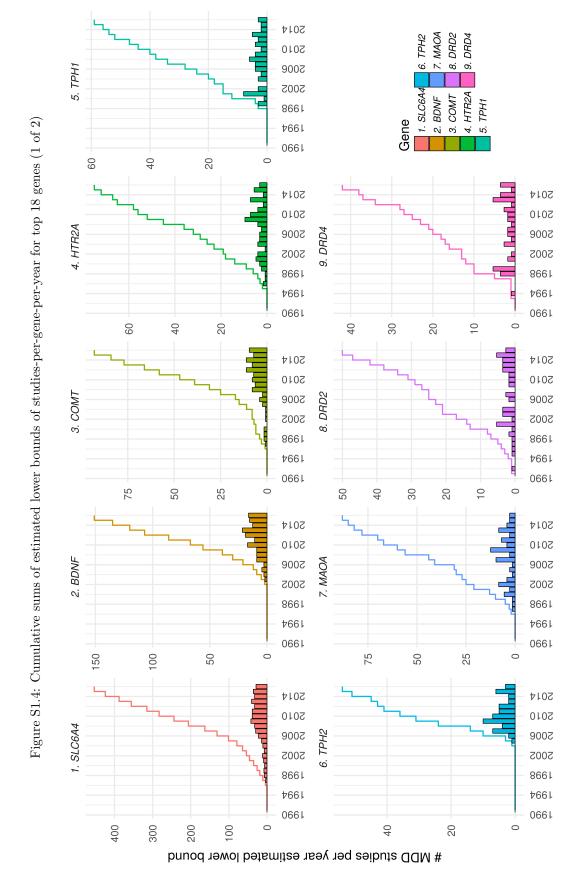
$$[N_{lower}, N_{upper}] \subset \{z \in \mathbb{N} : z \ge 10\} \lor [N_{lower}, N_{upper}] \subset \{z \in \mathbb{N} : z < 10\}$$

no more samples were drawn and the genes likely to have been studied at least 10 times were retained

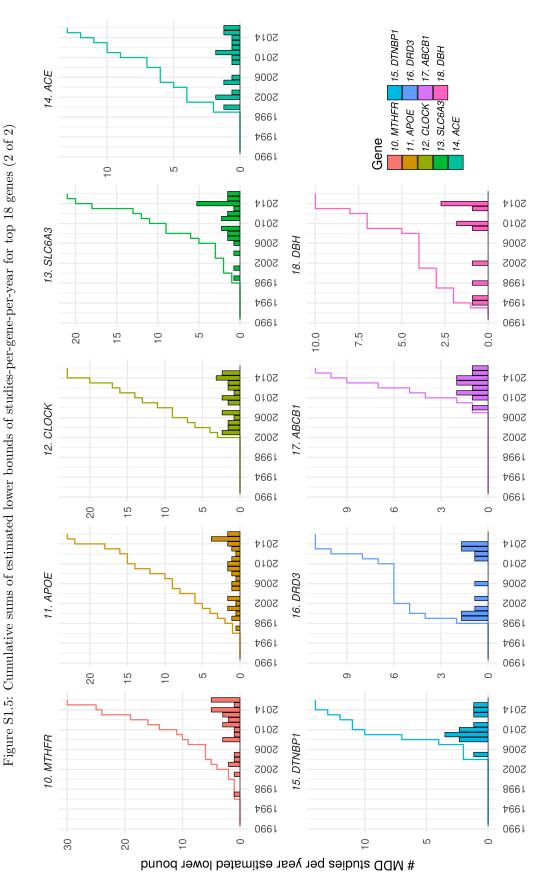
- (c) Else, an additional $k' := \max\{3, M k\}$ samples were taken, k := k + k', and we returned to the previous step
- 9. This algorithm resulted in 19 genes likely to have been studied at least 10 times. The *CACNA1C* gene, which in contrast to the other genes did not become popular until it had been implicated in a early GWAS of bipolar disorder [6], was excluded, leaving the 18 polymorphisms examined in the current investigation.
- 10. For each of the 18 retained genes, the individual polymorphisms studied in each of the previously sampled (correctly identified) studies were tallied (Figures S1.1, S1.2, S1.3).
- 11. Ad-hoc examination of the distributions of polymorphisms studied in each sample identified "top" polymorphisms in 16 of the 18 genes. There were no clear top polymorphisms in *TPH2* or in *DTNBP1*.
- 12. Hypergeometric parameters were estimated for each polymorphism.

We emphasize that we preregistered our analysis plan after identifying the top polymorphisms, but before running any of the association models. The top 18 candidate genes and the top 16 candidate polymorphisms are presented in table S1.1. Estimates of lower bounds for number of studies-of-genes-per-year are presented in figures S1.4 and S1.5.

ABCB1 ACE APOE 1.00 0.75 0.50 0.25 0.00 BDNF 7.5 5.0 2.5 -633 T/A CLOCK COMT


Figure S1.1: Polymorphism counts in top 18 genes (1 of 3)

DBH 2 rs2519152 DRD2 rs11214607 DRD3 DRD4 5.0 2.5 DTNBP1 rs742105 rs4236167 rs742106 rs4712253 HTR2A rs3125 rs6311 -24to3108 rs1033847


Figure S1.2: Polymorphism counts in top 18 genes (2 of 3)

MAOA 7,5 5.0 2,5 0.0 **MTHFR** 10.0 75 5.0 2.5 0.0 rs1801133 SLC6A3 SLC6A4 TPH1 TPH2 rs12229394 rs12231356 rs1843809

Figure S1.3: Polymorphism counts in top 18 genes (3 of 3)

Note. In contrast to the total sum, estimates of studies per individual year are highly sensitive to sampling error.

Note. In contrast to the total sum, estimates of studies per individual year are highly sensitive to sampling error.

S2 Genotyping and quality control

S2.1 PGC sample

Only summary statistics (as opposed to raw genotype data) were used in the analyses of the Psychiatric Genetics Consortium (PGC) data. GWAS summary statistics from the 29 anchor cohorts and the deCODE, GERA, iPSYCH, and 23 and Me expanded cohorts were meta-analyzed using the METAL software [7], using an inverse variance weighting scheme. SNPs were filtered at MAF > 0.01 and INFO > 0.8. Detailed descriptions of the genotyping and quality control procedures are provided in [8]. To prevent sample overlap, the UKBB and Generation Scotland cohorts were excluded, resulting in a total of 443,264 unrelated individuals (120,201 cases and 323,063 controls). Because raw genotype data were unavailable, only biallelic SNPs were included in polymorphism-level analyses (i.e., the triallelic $APOE \ \varepsilon$ -2/3/4 and all variable number tandem repeat [VNTR] polymorphisms were excluded). The ACE insertion/deletion (indel) polymorphism was determined via rs4343.

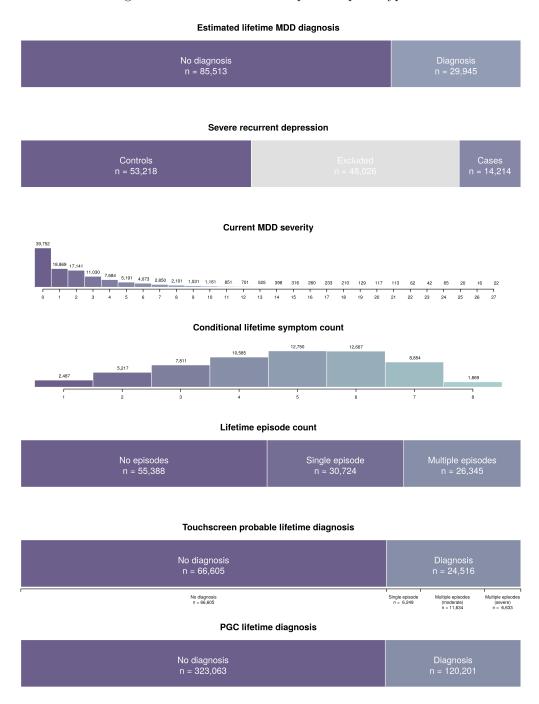
S2.2 UKBB sample

The details of the official UK Biobank genotyping, quality-control, and imputation methods in the released data can be found in Bycroft et al., 2017 [9]. We further excluded individuals with no genetic data and those whose self-reported and genetic sex conflicted (data fields f.31.0.0 and f.22001.0.0), and those identified by the UK Biobank, UKBiLEVE, and Affymetrix with poor quality (f.220010.0.0 and f.22051.0.0), for a total of 486,565 individuals. To reduce the influence of population stratification in our analyses, we only used individuals of primarily European ancestry. The UK Biobank identified individuals of "Caucasian" ancestry who self-identified as "British" (f.22006.0.0). To these individuals we added those whose first four principal component scores (from the UK Biobank-provided sample QC file) were within the range of the UK Biobank-identified "Caucasian" individuals.

In the array data we used plink v1.9 [10, 11] to LD- and MAF-prune markers with $|F_{het}| < 0.2$ in the European-ancestry sample (plink2 command: --geno 0.05 --hwe 0.00000001 --maf 0.01 --indep-pairwise 50 5 0.2), retaining 125,546 SNPs and 436,065 individuals.

Though UK-based cohorts of the PGC sample were excluded, further sample overlap was detected via the use of genetic checksums (software available here), resulting in the exclusion of an additional 338 individuals. We then estimated genomic relatedness matrices (GRMs; using the LD- and MAF-pruned array markers) separately for individuals for whom relevant items were measured in the initial touchscreen interview and those for whom relevant items were measured in the online mental health follow-up questionnaire, pruning the samples such that the maximum relatedness was 0.05 for any two individuals assessed on a given outcome. This resulted in two partially overlapping sub-samples (91,121 for the touchscreen interview outcomes and 115,458 for the online mental health follow-up outcomes) comprised of 177,950 unique individuals.

For gene-wise association analyses, we used the UK Biobank-imputed biallelic SNPs, applying the following thresholds: minor allele count of at least 3, Hardy-Weinberg p-value greater than 10^{-6} , no more than 2% missing calls, and imputation INFO score of at least 0.3, retaining only the HRC-imputed SNPs.


The VNTRs in SLC6A4, DRD4, MAOA, and SLC6A3, as well as a SNP in SLC6A4 were imputed as detailed in [12]. 5-HTTLPR activity level was determined based on the number of repeats and genotype at SLC6A4 rs25531 as described in [13] and the ACE insertion/deletion (in/del) polymorphism was determined via genotype at rs4343.

Hard calls, rather than dosages, were used in all association analyses.

S3 Measures

S3.1 Outcome measures

Figure S3.1: Distributions of depression phenotypes

The corresponding field number is listed next to each UKBB item. With the exception of *Probable MDD*, ordinal (TSI) and Probable MDD diagnosis (TSI), all psychiatric indices were derived by the authors, with details provided below.

S3.1.1 Estimated lifetime MDD Diagnosis

To receive a diagnosis, participants had to meet all of the following criteria:

1. Anhedonia or depressed mood. Respondents needed to have responded affirmatively to either of the following questions. Further criteria were assessed only among individuals endorsing one of the two below criteria.

Anhedonia (20441) "Have you ever had a time in your life lasting two weeks or more when you lost interest in most things like hobbies, work, or activities that usually give you pleasure?"

Mood (20446) "Have you ever had a time in your life when you felt sad, blue, or depressed for two weeks or more in a row?"

- 2. **Symptom count.** Respondents needed to endorse 4 or more of the following symptoms (unfortunately, motor agitation/retardation was not assessed) with respect to their worst period of depression:
 - (a) **Anhedonia** (20441) "Have you ever had a time in your life lasting two weeks or more when you lost interest in most things like hobbies, work, or activities that usually give you pleasure?"
 - (b) Mood (20446) "Have you ever had a time in your life when you felt sad, blue, or depressed for two weeks or more in a row?"
 - (c) Sleep (20533, 20534, 20533) "Trouble falling asleep" or "sleeping too much" or "waking too early"
 - (d) Fatigue (20449) "Did you feel more tired out or low on energy than is usual for you?"
 - (e) **Appetite/weight** (20536) "Did you gain or lose weight without trying, or did you stay about the same weight?"
 - (f) **Feelings of worthlessness** (20450) "People sometimes feel down on themselves, no good, worthless. Did you feel this way?"
 - (g) Concentration (20435) "Did you have a lot more trouble concentrating than usual?"
 - (h) Ideation (20437) "Did you think a lot about death either your own, someone else's, or death in general?"
- 3. **Frequency.** (20439) With respect to their worst period of depression, respondents had to indicate a 2 or 3 on the following scale assessing "how often [they] felt this way": {1: "Less often", 2: "Almost every day", 3: "Every day"}
- 4. Fraction of day affected. (20436) With respect to their worst period of depression, respondents had to indicate a 2 or greater on the following scale assessing "How much of the day did these feelings usually last?": {1: "Less than half of the day", 2: "About half of the day", 3: "Most of the day", 4: "All day long"}
- 5. **Impairment.** (20440) With respect to their worst period of depression, respondents had to indicate a 2 or greater on the following scale assessing "Think about your roles at the time of this episode, including study / employment, childcare and housework, leisure pursuits. How much did these problems interfere with your life or activities?": {0: "Not at all", 1: "A little", 2: "Somewhat", 3: "A lot"}

Individuals endorsing symptoms of mania, hallucinations, or delusions were excluded from analyses.

S3.1.2 Conditional lifetime symptom count

Estimated MDD symptom count among UKBB online mental health follow-up respondents who endorsed anhedonia and/or depressed mood.

As the remaining symptoms described above were assessed conditionally upon endorsement of anhedonia or depressed mood, we only present symptom counts among individuals endorsing either of the two "threshold criteria". Symptom counts thus ranged from 1 to 8.

Individuals endorsing symptoms of mania, hallucinations, or delusions were excluded from analyses.

S3.1.3 Current MDD severity

Severity of depression symptoms over the past two weeks leading up to assessment among UKBB online mental health follow-up respondents.

Measurement of this outcome differs from that of estimated MDD diagnosis in the following respects:

- Respondents ranked the severity of each symptom on a 0-4 scale rather than providing a binary endorsement
- All symptoms were assessed regardless of whether or not anhedonia or depressed mood was diagnosed.

The following items were assessed as "Over the last 2 weeks, how often have you been bothered by any of the following problems?"

- 1. Anhedonia (20510) "Little interest or pleasure in doing things"
- 2. Mood (20514) "Feeling down, depressed, or hopeless"
- 3. Sleep (20517) "Trouble falling or staying asleep, or sleeping too much"
- 4. Fatigue (20519) "Did you feel more tired out or low on energy than is usual for you?"
- 5. Appetite/weight (20511) "Poor appetite or overeating"
- 6. Feelings of worthlessness (20507) "Feeling bad about yourself or that you are a failure or have let yourself or your family down"
- 7. Concentration (20508) "Trouble concentrating on things, such as reading the newspaper or watching television"
- 8. Ideation (20513) "Thoughts that you would be better off dead or of hurting yourself in some way"

Individuals endorsing symptoms of mania, hallucinations, or delusions were excluded from analyses.

S3.1.4 Lifetime episode count

Ordinal measure of lifetime number of depressive episodes among UKBB online mental health follow-up respondents who endorsed anhedonia and/or depressed mood (20442).

Individuals who endorsed a two week period of either anhedonia or depressed mood were asked "How many periods did you have in your life lasting two or more weeks where you felt like this?". Respondents supplied either an integer between 1 and 999 or responded "Too many to count / One episode ran into the next", rendering counts greater than one difficult to compare. We thus assigned scores as follows:

- 0 individuals who endorsed neither anhedonia or depressed mood
- 1 individuals who indicated a single depressive episode
- 2 individuals who indicated ≥ 2 depressive episodes

Individuals endorsing symptoms of mania, hallucinations, or delusions were excluded from analyses.

S3.1.5 Touchscreen probable lifetime diagnosis, ordinal classification

Ordinal measure of lifetime depression diagnostic status assessed as part of the UKBB initial touchscreen interview (20126).

This measure has been extensively studied and is described in great detail in Smith et al., 2013 [14]. Additionally, further details are provided in http://biobank.ctsu.ox.ac.uk/crystal/docs/MentalStatesDerivation.pdf. Briefly, a selection items of items from the Patient Health Questionnaire [15], the Structured Clinical Interview for DSM-IV Axis I Disorders-Research Version [16, 15], and items assessing treatment seeking behavior specific to the UKBB touchscreen interview. Response were classified as follows:

- 0 No bipolar or depression
- 1 Single probable major depression episode
- 2 Probable recurrent major depression (moderate)
- 3 Probable recurrent major depression (severe)

Individuals likely to meet criteria for bipolar disorder were excluded from analyses.

S3.1.6 Touchscreen probable lifetime diagnosis

Binary measure of probable depression diagnostic status assessed as part of the UKBB initial touchscreen interview (20126).

The three non-zero categories of the previous outcome were collapsed to create a dichotomous indicator of probable lifetime diagnosis. Individuals likely to meet criteria for bipolar disorder were excluded from analyses.

S3.1.7 Severe recurrent depression

Binary indicator of severe recurrent MDD versus no lifetime endorsement of depressed mood and anhedonia among individuals assessed in the UKBB online mental health follow-up. This measure was utilized in a follow-up sensitivity analysis to ensure our results would not differ dramatically if a stricter case/control assignment procedure were employed.

Scores were assigned as follows:

- 0 Neither the lifetime anhedonia or depressed mood items described in S3.1.1 were endorsed.
- Lifetime estimated diagnosis criteria (S3.1.1) were met, five or more of the lifetime symptoms (one of which needed to be anhedonia or depressed mood; S3.1.2) were endorsed, and two or more lifetime episodes (S3.1.4) were endorsed

All other participants were excluded, as were individuals endorsing symptoms of mania, hallucinations, or delusions.

S3.1.8 PGC lifetime MDD diagnosis

Binary indicator of MDD diagnostic status (see [8] for further details and exclusion criteria). The current investigation utilized data from the full expanded cohort meta-analysis, excepting UK-based cohorts (UKBB and Generation Scotland).

Table S3.1: Bivariate correlations between UKBB depression phenotypes

Current MDD severity	0.381^{1}					
Lifetime episode count	0.787^2	0.395^{1}				
Conditional lifetime symptom count	0.776^{1}	0.328^{3}	0.371^{2}			
Touchscreen probable lifetime diagnosis, ordinal	0.701^2	0.344^{1}	0.720^2	0.464^{1}		
Touchscreen probable lifetime diagnosis	0.760^2	0.316^{1}	0.695^2	0.451^{1}	†	
Severe recurrent depression	†	0.660^2	‡	‡	0.896^2	0.714^2
	Estimated lifetime MDD diagnosis	Current MDD severity	Lifetime $episode$ $count$	Conditional lifetime symptom count	Touchscreen probable lifetime diagnosis, ordinal	Touchscreen probable lifetime diagnosis

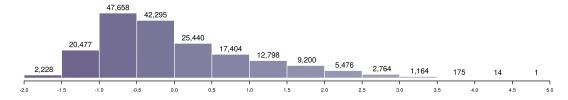
¹Polychoric, ²polyserial, and ³Pearson correlations between depression phenotypes in the UKBB based on pairwise complete observations. Touchscreen items were measured at a different time point than the other items. †Severe recurrent depression is a refinement of estimated lifetime MDD diagnosis, as is the ordinal classification of touchscreen probable lifetime diagnosis with respect to its binary counterpart—the agreement of these variables is necessarily perfect. ‡By definition, controls for severe recurrent depression had zero lifetime symptoms (or episodes) and cases had multiple episodes.

Table S3.2: Cohen's κ (inter-rater reliability) between UKBB diagnosis phenotypes

Touchscreen probable lifetime diagnosis	0.517	
Severe recurrent depression	†	0.903
	Estimated lifetime MDD diagnosis	Touchscreen probable lifetime diagnosis

Cohen's κ statistics for UKBB binary MDD diagnosis phenotypes based on pairwise complete observations. Note that the estimate for touch screen probable lifetime diagnosis is likely biased upwards as the severe recurrent depression phenotype has more restrictive criteria for both cases and controls and only pairwise-complete data contributed were used in generating the estimate. †Severe recurrent depression is a refinement of estimated lifetime MDD diagnosis—agreement is necessarily perfect.

S3.2 Moderators


Figure S3.2: Distributions of environmental moderator phenotypes

Depression induced by stressor

Townsend deprivation index

Note: Graphs above reflect participants for whom any of the depression phenotypes described in S3.1 were available.

S3.2.1 Childhood trauma

Binary indicator of trauma during childhood assessed among UKBB online mental health follow-up respondents. Participants were given a positive indication if they endorsed either of the following items:

Physical abuse (20488) "When I was growing up... People in my family hit me so hard that it left me with bruises

or marks"

Sexual abuse (20490) "When I was growing up... Someone molested me (sexually)"

S3.2.2 Adult trauma

Binary indicator of trauma during adulthood assessed among UKBB online mental health follow-up respondents. Participants were given a positive indication if they endorsed any of the following items:

- Physical assault (20529) "In your life, have you...? Been attacked, mugged, robbed, or been the victim of a physically violent crime"
- Sexual assault (20531) "In your life, have you...? Been a victim of a sexual assault, whether by a stranger or someone you knew"
- Physical assault by partner (20523) "Since I was sixteen... A partner or ex-partner deliberately hit me or used violence in any other way"
- Sexual assault by partner (20524) "Since I was sixteen... A partner or ex-partner sexually interfered with me, or forced me to have sex against my wishes"
- Violence (20530) "In your life, have you...? Witnessed a sudden violent death (eg. murder, suicide, aftermath of an accident)"
- Illness (20528) "In your life, have you...? Been diagnosed with a life-threatening illness"
- Accident (20526) "In your life, have you...? Been in a serious accident that you believed to be life-threatening at the time"
- War (20527) "In your life, have you...? Been involved in combat or exposed to a war-zone (either in the military or as a civilian)"

S3.2.3 Recent trauma

Binary indicator of trauma during the previous twelve months leading up to assessment among UKBB online mental health follow-up respondents.

Participants were given a positive indication if they answered "yes, within the last 12 months" to any of the following items (only the below were assessed for incidence in the past year):

- Physical assault (20529) "In your life, have you...? Been attacked, mugged, robbed, or been the victim of a physically violent crime"
- Sexual assault (20531) "In your life, have you...? Been a victim of a sexual assault, whether by a stranger or someone you knew"
- Violence (20530) "In your life, have you...? Witnessed a sudden violent death (eg. murder, suicide, aftermath of an accident)"
- Illness (20528) "In your life, have you...? Been diagnosed with a life-threatening illness"
- Accident (20526) "In your life, have you...? Been in a serious accident that you believed to be life-threatening at the time"
- War (20527) "In your life, have you...? Been involved in combat or exposed to a war-zone (either in the military or as a civilian)"

S3.2.4 Stressor-induced depression

Binary indicator of whether period of depressed mood or anhedonia was a possible consequence of a traumatic event assessed among UKBB online mental health follow-up respondents who endorsed anhedonia and/or depressed mood (20447).

Participants were given a positive indication if they answered "yes" to "Did this worst period start within two months of the death of someone close to you or after a stressful or traumatic event in your life?".

S3.2.5 Townsend deprivation index (TDI)

Widely-used measure of adverse socioeconomic circumstances assessed during the UKBB initial touchscreen interview (189) [17]. Higher values indicate greater adversity.

S4 Statistical models

S4.1 Polymorphism-wise analyses

For each polymorphism outcome Y we fit a generalized linear model (GLM) of the form

$$\mathbf{Main\ effect\ model}:\qquad Y=g^{-1}\left(\alpha+\beta_G G+\sum_{C\in \mathtt{Covariates}}\left[\beta_C C\right]\right)$$

where g is the link function implied by S4.1. Covariates for all models included age, age², sex, assessment center, genotyping batch, and the first ten European ancestry principle components.

Additionally, for the combinations of outcomes Y and moderators E listed in S4.1, we fit the following interaction GLMs for each polymorphism:

Interaction model:

$$Y = g^{-1} \left(\alpha + \beta_G G + \beta_E E + \beta_{G \times E} G \times E + \sum_{C \in \text{Covariates}} \left[\beta_C C + \beta_{C \times E} C \times E + \beta_{C \times G} C \times G \right] \right)$$

Interaction model:

(alternate scale)

$$Y = h^{-1} \left(\alpha + \beta_G G + \beta_E E + \beta_{G \times E} G \times E + \sum_{C \in \text{Covariates}} \left[\beta_C C + \beta_{C \times E} C \times E + \beta_{C \times G} C \times G \right] \right)$$

Interaction model:

(improper control)

$$Y = g^{-1} \left(\alpha + \beta_G G + \beta_E E + \beta_{G \times E} G \times E + \sum_{C \in \text{Covariates}} [\beta_C C] \right)$$

The alternate scale model assesses for interaction effects on the multiplicative scale for outcomes primarily assessed on the additive scale and vice-versa. E.g., MDD diagnosis, which is analyzed via logistic regression in our primary analyses, is reanalyzed using ordinary least squares.

The first two models control for all covariate- and variant-by-polymorphism interactions as is necessary to avoid potential confounding [18, 19], but as is rarely employed in candidate gene-by-interaction research [20]. For the latter reason, we also present the results from the *improper control* interaction models.

Table S3.3: LDSC genetic correlation estimates among depression phenotypes, height, and type 2 diabetes

Trait 1	Trait 2	r_g	se	p
Touchscreen probable lifetime diagnosis	Severe recurrent MDD [‡]	0.929	0.0670	1.08e-43
Estimated lifetime MDD diagnosis	Touchscreen probable lifetime diagnosis	0.939	0.0821	2.83e-30
Estimated lifetime MDD diagnosis	Severe recurrent MDD [‡]	0.940	0.0274	3.08e-258
PGC lifetime MDD diagnosis	Estimated lifetime MDD diagnosis	0.855	0.0535	2.08e-57
PGC lifetime MDD diagnosis	Touchscreen probable lifetime diagnosis	0.822	0.0490	2.81e-63
PGC lifetime MDD diagnosis	Severe recurrent MDD [‡]	0.885	0.0492	2.21e-72
Type 2 diabetes (DIAGRAM consortium)	PGC lifetime MDD diagnosis	0.036	0.0374	0.339
Type 2 diabetes (DIAGRAM consortium)	Estimated lifetime MDD diagnosis	0.077	0.0762	0.314
Type 2 diabetes (DIAGRAM consortium)	Touchscreen probable lifetime diagnosis	0.074	0.0784	0.344
Type 2 diabetes (DIAGRAM consortium)	Severe recurrent MDD [‡]	-0.052	0.0727	0.476
Height (GIANT consortium)	Type 2 diabetes (DIAGRAM consortium)	-0.010	0.0392	0.809
Height (GIANT consortium)	PGC lifetime MDD diagnosis	-0.026	0.0186	0.167
Height (GIANT consortium)	Estimated lifetime MDD diagnosis	-0.023	0.0332	0.485
Height (GIANT consortium)	Touchscreen probable lifetime diagnosis	-0.088	0.0344	0.011
Height (GIANT consortium)	Severe recurrent MDD [‡]	-0.028	0.0334	0.410
Touchscreen probable lifetime diagnosis (ordinal) [†]	Height (GIANT consortium)	-0.081	0.0326	0.013
Touchscreen probable lifetime diagnosis (ordinal) [†]	Type 2 diabetes (DIAGRAM consortium)	0.096	0.0738	0.194
Touchscreen probable lifetime diagnosis (ordinal) [†]	PGC lifetime MDD diagnosis	0.801	0.0455	1.94e-69
Touchscreen probable lifetime diagnosis (ordinal) [†]	Estimated lifetime MDD diagnosis	0.922	0.0787	1.16e-31
Touchscreen probable lifetime diagnosis (ordinal) [†]	Touchscreen probable lifetime diagnosis	1.003	0.0066	0.000
Touchscreen probable lifetime diagnosis (ordinal) [†]	Severe recurrent MDD [‡]	0.926	0.0637	5.90e-48
Lifetime episode count [†]	Touchscreen probable lifetime diagnosis (ordinal) [†]	0.867	0.0560	4.75e-54
Lifetime episode count [†]	Height (GIANT consortium)	-0.036	0.0311	0.252
Lifetime episode count [†]	Type 2 diabetes (DIAGRAM consortium)	-0.124	0.0703	0.077
Lifetime episode count [†]	PGC lifetime MDD diagnosis	0.815	0.0401	1.02e-91
Lifetime episode count [†]	Estimated lifetime MDD diagnosis	0.948	0.0350	4.74e-161
Lifetime episode count [†]	Touchscreen probable lifetime diagnosis	0.845	0.0592	3.60e-46
Lifetime episode count [†]	Severe recurrent MDD [‡]	1.017	0.0190	0.000
Current MDD severity [†]	Lifetime episode count [†]	0.681	0.0457	2.52e-50
Current MDD severity [†]	Touchscreen probable lifetime diagnosis (ordinal) [†]	0.621	0.0529	7.32e-32
Current MDD severity [†]	Height (GIANT consortium)	0.001	0.0357	0.974
Current MDD severity [†]	Type 2 diabetes (DIAGRAM consortium)	0.207	0.0677	2.24e-3
Current MDD severity [†]	PGC lifetime MDD diagnosis	0.675	0.0381	2.29e-70
Current MDD severity [†]	Estimated lifetime MDD diagnosis	0.641	0.0652	7.89e-23
Current MDD severity [†]	Touchscreen probable lifetime diagnosis	0.618	0.0572	3.53e-27
Current MDD severity [†]	Severe recurrent MDD [‡]	0.704	0.0514	1.21e-42
Conditional lifetime symptom count [†]	Current MDD severity [†]	0.689	0.0753	5.85e-20
Conditional lifetime symptom count [†]	Lifetime episode count [†]	0.646	0.0763	2.77e-17
Conditional lifetime symptom count [†]	Touchscreen probable lifetime diagnosis (ordinal) [†]	0.676	0.0830	3.85e-16
Conditional lifetime symptom count [†]	Height (GIANT consortium)	-0.010	0.0431	0.812
Conditional lifetime symptom count [†]	Type 2 diabetes (DIAGRAM consortium)	0.256	0.0861	2.93e-3
Conditional lifetime symptom count [†]	PGC lifetime MDD diagnosis	0.636	0.0594	9.36e-27
Conditional lifetime symptom count [†]	Estimated lifetime MDD diagnosis	0.695	0.0675	6.95e-25
Conditional lifetime symptom count [†]	Touchscreen probable lifetime diagnosis	0.683	0.0877	6.80e-15
Conditional lifetime symptom count [†]	Severe recurrent MDD [‡]	0.695	0.0652	1.41e-26

LD score regression genetic correlation estimates on the liability scale. Details of the estimation procedure are given in S4.4. [†]It is uncertain how to properly account for sample ascertainment for these non-binary phenotypes. These estimates should be interpreted with caution. [‡]As the severe recurrent MDD phenotype was constructed by excluding cases and controls with mild or moderate MDD symptoms, we were unable to translate these estimates to the liability scale.

Trait	$h_{\text{liability}}^2$	se
Estimated lifetime MDD diagnosis	0.057	0.007
Current MDD severity [†]	0.059	0.005
Conditional lifetime symptom count [†]	0.052	0.008
Lifetime episode count [†]	0.059	0.005
Touchscreen probable lifetime diagnosis	0.090	0.008
Touchscreen probable lifetime diagnosis (ordinal) [†]	0.065	0.006
Severe recurrent MDD [‡]	0.075	0.008
PGC lifetime MDD diagnosis	0.085	0.004
Type 2 diabetes (DIAGRAM consortium)	0.342	0.018
Height (GIANT consortium)	0.120	0.013

Table S3.4: LDSC heritability estimates on the liability scale

LD score regression heritability estimates on the liability scale. Details of the estimation procedure are given in S4.4. †It is uncertain how to properly account for sample ascertainment for these non-binary phenotypes. These estimates should be interpreted with caution. ‡As the severe recurrent MDD phenotype was constructed by excluding cases and controls with mild or moderate MDD symptoms, we were unable to translate these estimates to the liability scale.

S4.1.1 Design matrix lower rank approximation

Because many variables were only available for a subset of UKBB participants, including fixed effects of both genotyping batch and assessment center (which were crossed with one another) resulted in high multicollinearity such that the design matrix was no longer of full column rank. This caused difficulty in model fitting, which we avoided by using the following lower rank approximate design matrix:

In the case of the main effect models, if the complete design matrix was of the form

$$D = \begin{pmatrix} x_{11} & \dots & x_{1p} & g_1 \\ \vdots & & \vdots & \vdots \\ x_{n1} & \dots & x_{np} & g_n \end{pmatrix} \equiv \begin{pmatrix} X & g \end{pmatrix}$$

with g the genotype vector for n participants and X the matrix of p covariates with rank r < p, we computed the "skinny" SVD:

$$X = \underset{n \times rr \times rr \times p}{\sum} V^*$$

and constructed a lower rank approximation to X via

$$X' \equiv U\Sigma \in \mathbb{R}^{n \times p}$$

such that

$$\operatorname{span} \operatorname{col} X' = \operatorname{span} \operatorname{col} X$$

In model fitting, the previous design matrix was then replaced by

$$D' \equiv \begin{pmatrix} X' & g \end{pmatrix}$$

or, in the case of the interaction models, by

where e is the environmental moderator.

Figure S3.3: LDSC genetic correlation estimate heatmap

LD score regression genetic correlation estimates on the liability scale. Details of the estimation procedure are given in S4.4. Estimates for lifetime episode count, current MDD severity, conditional lifetime symptom count, and the ordinal classification of touchscreen probable lifetime diagnosis should be interpreted with caution as it's uncertain how to properly account for sample ascertainment for these non-binary phenotypes. As the severe recurrent MDD phenotype was constructed by excluding cases and controls with mild or moderate MDD symptoms, we were unable to translate these estimates to the liability scale. *Significant at $\alpha = .01$

In practice, of course, the trailing singular values $\sigma_{r+1}, \ldots, \sigma_p$ are not exactly zero but are very small, in which case, by the Eckart-Young-Mirsky theorem, X' is the optimal rank r approximation of X with respect to both the spectral and Frobenius norms [21]. In practice, we chose ϵ such that

$$\sigma_k > \epsilon$$
 only for $k = 1, \dots, r$

as pictured in S4.1.

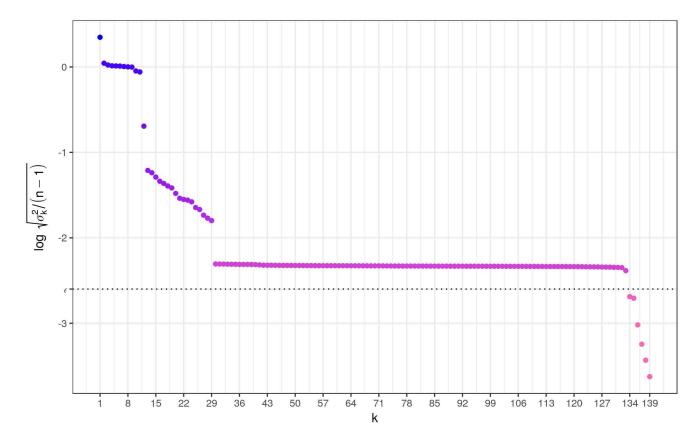


Figure S4.1: Singular value threshold for design matrix

S4.2 Gene-wise and gene-set analyses

The MAGMA software [22] was used to perform gene-wise and gene-set analyses for the top eighteen candidate genes, separately in the PGC and UKBB datasets. Summary statistics from the PGC MDD GWAS [8] were used as input for the PGC analyses, whereas raw genotypes were available for the UKBB.

As only summary statistics were available for the PGC sample, the primary analyses used the $-\sum \log p$ method, which is MAGMA's default gene-level association statistic for summary statistics. In the UKBB, where individual-level genotype data were available, primary analyses used the principal components regression method (regressing phenotype on the principal components corresponding to nontrivial singular values of the matrix of SNP genotypes within a given gene), which is MAGMA's default gene-level association statistic for genotype data. Secondary analyses for all samples utilized the min p-value method.

Paraphrasing the MAGMA manual, the min p-value model is most sensitive when only a small proportion of SNPs in a gene show association, whereas both the mean SNP association and principal components regression models are more attuned to the mean SNP association. The mean SNP association model tends to skew towards associations in areas of higher linkage disequilibrium (LD) within a gene, whereas the principal components regression model has greater power to detect associations in low LD areas, but is less sensitive when only a small proportion of SNPs within a gene are associated.

The "competitive" tests (see below) are reported with one-sided p-values and "relative" tests are reported with two-sided p-values as per MAGMA guidelines. We included sex, age, age², genotyping batch, assessment center, and the first 10 European ancestry principal components as covariates for UKBB phenotypes. When annotating SNPs to genes, we used the NCBI Build 37 gene locations and allowed SNPs within a 25kb window of the gene start and end points to be mapped to that gene. Comparison gene sets were downloaded from the GWAS Catalog [23] and from the CTG lab's list of curated pre- and post-synapse gene sets [24, 25].

S4.2.1 Gene-wise analyses

UKBB sample (individual-level genotype data). Briefly, the default gene analysis in MAGMA for raw genotype data is based on multiple linear principal components regression, using an F-test to compute the gene p-value (although some assumptions of the F-test are violated when the outcome is a polychotomous phenotype, as in some of our analyses, comparisons of MAGMA's F-test p-values with p-values based on permutation procedures showed that the F-test remains accurate [22]). This default model first projects the SNP matrix for a gene onto its principal components (PCs), prunes away the PCs with near-zero eigenvalues, and retains the remaining PCs as predictors for the phenotype in a linear regression model, controlling for relevant covariates (e.g., gene size, density of SNPs within the gene). In secondary analyses, we used the smallest SNP p-value within each gene as the gene-level test statistic.

PGC sample (summary statistic data). Primary analyses measured gene-wise association strength by the sum of the $-\log(p)$ values for all SNPs within the gene boundary. This model tests the mean association within a gene, and is similar to models implemented in VEGAS [26] and plink v1.9 [10]. The European subset of 1000 Genomes Phase 3 [27] was used as a reference sample to account for LD between genes. Gene-level *p*-values are derived from this scaled χ^2 distribution and standardized via the inverse standard normal distribution function. Secondary analyses instead used the minimum SNP *p*-value per gene.

S4.2.2 Gene-set analyses

After calculating the strength of association for all genes across the genome, the 18 identified candidate genes were considered as a gene set in two series of analyses:

- 1. MAGMA's "competitive" test assesses whether genes in the candidate gene set are more associated with MDD than all other genes not in the gene set, controlling for potentially confounding gene characteristics in the model (inverse gene minor allele count (MAC), gene density, gene length, and the log of those values).
- 2. MAGMA's "relative" test assesses whether genes in the candidate gene set show stronger or weaker associations with MDD than control sets of genes (genes involved in type 2 diabetes, height, or synaptic processes, chosen as negative controls).

S4.3 Power analyses

S4.3.1 Logistic models

Logistic power analyses were performed using Purcell's Genetic Power Calculator [28]. Average counted allele frequency across the sixteen polymorphisms was used for the analysis presented in Figure 2, whereas the specific allele frequency of rs12552 was used in calculating its estimated minimum sample size for 80% power.

S4.3.2 Negative binomial models

To our knowledge, no closed form power function for incident rate ratios associated with polychotomous predictors (i.e., genetic polymorphisms) in the context of negative binomial GLMs is known. We therefore proceeded using a combination of simulation and numerical techniques.

1. Using the mean empirical dispersion parameter $\bar{\theta}$ across negative binomial models of current MDD severity (MHF) and the average counted allele frequency of the sixteen candidate polymorphisms \bar{p} , we executed 1000 Monte Carlo iterations regressing N_k observations Y on G with

$$G \sim Binom(2, \overline{p})$$

 $Y \sim NegBinom (rate = 1 \cdot \lambda_k^G, dispersion = \overline{\theta})$

for varying incident rate ratios λ_k and sample sizes N_k to obtain empirical power estimates γ_k .

2. A logistic function of the form

$$\hat{\gamma_k} = (1 + \exp(-\kappa * (x - \delta)))^{-1},$$

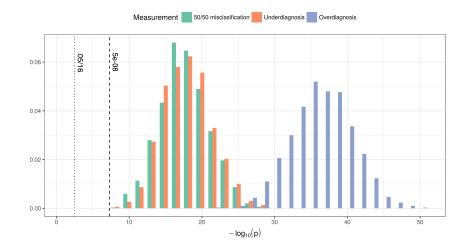
with parameters κ , δ as linear functions of the sample size and rate

$$(\kappa, \delta) = (\mathbf{1}, N, \lambda) \begin{pmatrix} a_0 & b_0 \\ a_1 & b_1 \end{pmatrix},$$

was fit to the data by minimizing the loss function

$$g(a_0, a_1, b_0, b_1) = \|\gamma - \hat{\gamma}\|_2$$
.

3. This resulted in a logistic approximation to the power function with a mean absolute deviation of 3.764e-03 (sd = 6.629e-03) and maximal deviation of 4.596e-02, which was used to interpolate approximate power for new values of N and λ . Results are presented graphically in S4.2.


S4.3.3 Power under measurement error regimes

Main effects We employed simulation to demonstrate that even severe measurement error with respect to MDD phenotypes would not impact our ability to detect the large candidate polymorphism main effects. For simplicity, we consider the only the binary estimated lifetime MDD diagnosis phenotype, for which we observed 29,945 cases and 85,513 controls. As a lower bound on a plausibly detectable candidate polymorphism effect, we considered the minimum detectable relative risk at 50% power in a perfectly balanced study of 500 cases and 500 controls, assuming a disease prevalence of 14.6% [29] and a risk allele frequency of 0.5 (RR = 1.161; OR = 1.189; note that choosing a lower risk allele frequency would increase the corresponding RR/OR). We then simulated case/control phenotypes Y and genotypes Y for 29,945 cases and 85,513 controls and subsequently corrupted phenotype observations under three severe systematic measurement error regimes:

- 1. **50/50 misclassification**: for each observation, there was 50% chance that we observed the true diagnosis and a 50% chance that we based the diagnosis on the outcome of a fair coin toss;
- 2. Overdiagnosis: cases were correctly identified, but controls had a 50% chance of being misclassified as cases;
- 3. Underdiagnosis: controls were correctly identified, but cases had a 50% chance of being misclassified as controls

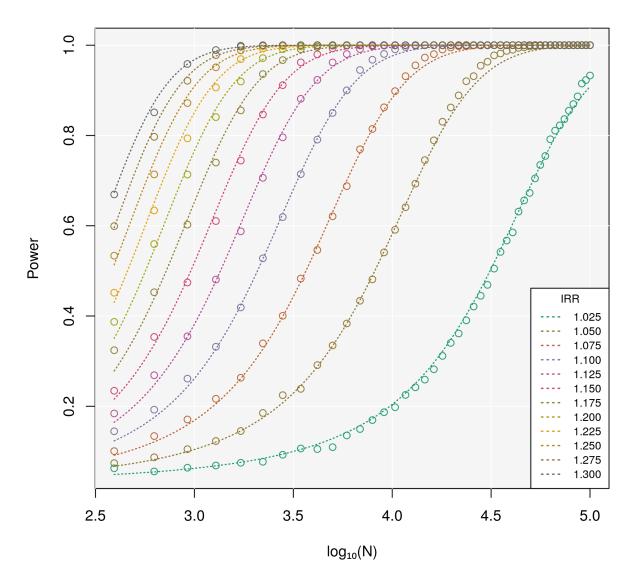

Monte Carlo simulation results indicated power $\approx 100\%$ at $\alpha_{\rm gwas} = 5\text{e-}08$ for detecting the effect (which is small relative to effects reported in the candidate polymorphism literature and large relative to those reported in the GWAS literature) under all three regimes (Figure S4.3).

Figure S4.3: Power simulations for main effect detection under measurement error regimes

S4 STATISTICAL MODELS 26

Figure S4.2: Logistic approximation of negative binomial regression power function

Dashed lines represent fitted predictions of logistic approximation whereas points represent empirical power estimates from Monte Carlo simulations.

This is not to say measurement error is a non-issue in genetic association studies. Indeed, the extreme scenarios considers above would have a catastrophic impact on our ability to detect an effect on the order of the strongest association observed in the PGC (rs12552, uncorrected OR = 1.044, p=6.093e-15), which we demonstrate via an analogous set of simulations in Figure S4.4.

Measurement No measurement error 50/50 misclasification Underdiagnosis Overdiagnosis

Figure S4.4: Power simulations for detection of association at rs12552 under measurement error regimes

Left dotted line: $\alpha_{\text{poly}} = .05/16$; right dashed line: $\alpha_{\text{gwas}} = 5\text{e-}08$.

Interactions effects We also used simulation to demonstrate that severe measurement error with respect to both MDD phenotypes and environmental exposures would have a limited impact on our ability to detect the large candidate polymorphism \times environment effects. We constructed a genotype G with a risk allele frequency of .5 and a binary exposure phenotype T with an exposure rate of .222, which matched that of our childhood traumatic event measurement in the UKBB. Additionally, we again constructed a binary diagnosis phenotype Y with 29,945 cases and 85,513 controls, via the following logistic model:

$$Pr(\text{Diagnosis}) = \text{logistic} \left\{ \begin{pmatrix} \vdots & \vdots & \vdots & \vdots \\ \vec{1} & G & T & (G \circ T) \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix} \begin{pmatrix} \text{logit}(0.259) \\ \text{log}(0.9738) \\ \text{log}(1.677) \\ \text{log}(1.1442) \end{pmatrix} \right\}$$

where \circ is the element-wise product. We assume that G and T have been mean centered.

The above parameters, which were derived numerically and are readily verified via simulation, are such that there is near zero main effect of genotype (detectable with $\approx 0.4\%$ power at $\alpha_{\rm poly} = .05/16$ in the context of a model excluding the interaction term in our sample of 115,458) and that the interaction would again be detectable with $\approx 50\%$ power in a sample of 500 cases and 500 controls.

We then again used a Monte Carlo procedure to determine power to detect the interaction in a sample analogous in size and prevalence of trauma exposure and MDD diagnosis prevalence to the subsample of the UKBB for which those measures were observed, corrupted under all pairwise combinations of the following severe measurement error regimes:

MDD diagnosis error regimes:

- No measurement error: the correct case/control status is observed for all individuals;
- 50/50 misclassification: for each observation, there was 50% chance that we observed the true diagnosis and a 50% chance that we based the diagnosis on the outcome of a fair coin toss;
- Overdiagnosis: cases were correctly identified, but controls had a 50% chance of being misclassified as cases;
- Underdiagnosis: controls were correctly identified, but cases had a 50% chance of being misclassified as controls.

Trauma exposure error regimes:

- No measurement error: the correct exposure status is observed for all individuals;
- 2. **50/50 misclassification**: for each observation, there was 50% chance that we observed their true exposure status and a 50% chance that we based exp on the outcome of a fair coin toss:
- Over classification: exposed individuals were correctly identified, but non-exposed individuals had a 50% chance of being misclassified as exposed;
- Under classification: non-exposed individuals were correctly identified, but exposed individuals had a 50% chance of being misclassified as non-exposed.

The choice of these parameters reflects a small interaction effect by candidate gene study standards (one that would only be detected half the time in a balanced case/control sample of 1000) obscured by horrendous measurement error. Nevertheless, Monte Carlo simulation results indicated power $\approx 100\%$ at $\alpha_{\text{poly}} = .05/16$ for detecting the interaction effect under every combination of measurement error regimes in a sample analogous to our own (Figure S4.5).

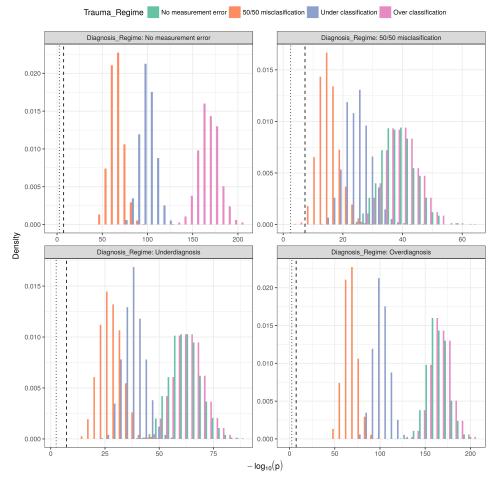


Figure S4.5: Power simulations for interaction effect detection under measurement error regimes

Left dotted line: $\alpha_{\text{poly}} = .05/16$; right dashed line: $\alpha_{\text{gwas}} = 5\text{e-}08$.

S4.4 Heritability and genetic correlation estimation

LD score regression (LDSC v1.0.0; [30, 31]) was used to estimate heritability and genetic correlation among depression phenotypes, as well as height and type 2 diabetes (genes associated with the latter phenotypes were used as negative controls in the relative gene-set analyses; see S4.2.2 for further details).

Whereas genome-wide summary statistics were available for PGC lifetime MDD diagnosis, linear mixed-model association tests for the ~1.4 million SNPs utilized by LDSC were performed for each of the UKBB depression phenotypes using BOLT-LMM v2.3.2 [32], controlling for fixed effects of age, age², sex, assessment center, genotyping batch, and the first ten European ancestry principle components. Publicly available summary statistics for height and type 2 diabetes were downloaded from the GIANT [33] and DIAGRAM [34] consortia, respectively. Heritability estimates for binary phenotypes were translated to the liability scale via LDSC, assuming lifetime prevalences of 14.6% [29] and 5.7% [35] for MDD and type-2 diabetes, respectively. Results are presented in Tables S3.3-S3.4 and Figure S3.3.

S4.5 Replication of top PGC hits

In order to better contextualize the lack of replication of the of 16 candidate genetic polymorphisms, we sought to replicate the top 16 independent loci (among genome-wide significant loci) identified by the independent PGC meta-analysis (described in S2.1) in the UKBB, with respect to estimated lifetime MDD diagnosis. Estimated lifetime MDD diagnosis (described in S3.1.1) was chosen as we believe it most closely resembles the clinical diagnosis phenotype examined in the PGC. The choice of sixteen polymorphisms was made in the interest of parallelism with our investigation of candidate gene polymorphisms. Results are presented in S12.

S4.5.1 Identification of independent loci

Mirroring the approach taken by [8], independent genome-wide significant loci were identified via clumping within sliding 3 megabase/ R^2 < .1 windows via the plink v1.9 command --clump-r2 .1 --clump-kb 3000 --clump-p1 1e-04 --clump-p2 1e-04. The 1000 Genomes Phase 3 (1KG; [27]) and UK10K ([36]) panels were combined to map linkage disequilibrium. The top 16 significant loci were selected for replication in the UKBB (S12).

S4.5.2 Association analyses

The main effects of the top sixteen genome-wide significant loci identified in the independent PGC meta-analysis on estimated lifetime MDD diagnosis in the UKBB were tested using the main effect model described in S4.1. Results are presented in S12.

S4.5.3 Replication power analysis and correction for the winner's curse

As noted in the primary manuscript, the present study had > 99.99% power at $\alpha_{\rm gwas} = 5\text{e-}08$ to detect an effect that could only be detected with 20% power at $\alpha = .05$ in a sample of 1,000 individuals, a sample size larger than those examined in most candidate gene studies. In contrast, the top sixteen genome-wide significant hits in the PGC were small to begin with (the largest hit, rs12552, had an estimated odds ratio of 1.044). Thus, we conducted power analyses with respect to our ability to detect the effects of the top PGC loci in the UKBB given their estimated effects. Further, because GWAS hits are only considered "hits" given significance at $\alpha_{\rm gwas} = 5\text{e-}08$, estimated effects are subject to the winner's curse [37]; that is, they are biased towards extreme values. As a result, power estimates based significant GWAS effect size estimates will be commensurately biased upward.

To account for this, we implemented the weighted corrected estimator $\hat{\beta}_{\text{MSE}}$ proposed in [38], where they demonstrated unbiasedness via simulation (details provided below) For highly significant associations relative to the significance criterion (e.g., rs12552, which was significant at p=6.093e-15), the winner's curse correction has little impact on the effect size distribution. In contrast, for associations only barely significant relative to the significance criterion (e.g., rs10514304, which was significant at p=3.627e-08), failure to adjust for the winner's curse correction dramatically biased the estimated effect upwards (S12). We then estimated power to detect an association with estimated lifetime MDD diagnosis using allele frequencies from the UK10K reference panel and assuming a prevalence of 14.6% as reported in [29].

Finally, we calculated the expected number of replicated effects in UKBB, where "replication" was defined as attaining significance at $\alpha_{\text{poly}} = .05/16$, again for comparability with our attempts to detect associations for sixteen candidate polymorphisms in the UKBB. To do this, we modeled replication for each j^{th} locus as an independent Bernoulli trial with parameters $p_j = \widehat{\text{power}}_j$ and used a Monte Carlo procedure to obtain the distribution of the number of replications given the corrected power estimates $\widehat{\text{power}}_j$, $j = 1, \dots, 16$ (Figure S4.6).

S4 STATISTICAL MODELS

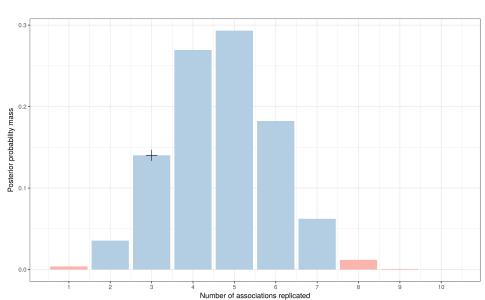


Figure S4.6: Distribution of number of replicated associations

30

Distribution of the number of the top 16 PGC associations we'd expect to replicate at $\alpha_{\text{poly}} = .05/16$ in the UKBB data given winner's curse corrected power estimates. Light blue bars indicate the 95% credible interval (exact interval: 2 - 7; smoothed interval using estimator of [39]: 2.064 - 7.321. The cross at 3 indicates the actual number of replicated associations.

Details of the estimator $\hat{\beta}_{MSE}$

We describe the corrected estimator $\hat{\beta}_{\text{MSE}}$ proposed in [38].

Let $\hat{\beta}, \hat{s}$ denote the uncorrected estimates of the log odds ratio and it's standard error, and let $\mathcal{S} = \left\{ (\hat{\beta}, \hat{s}) : |\hat{\beta}/\hat{s}| > c \right\}$ denote the set of such estimates satisfying genome-wide significance, where $c = \Phi^{-1} \left(1 - \frac{\alpha_{gwas}}{2} \right)$. Then the conditional density of the uncorrected estimator $\hat{\beta}$ given the true effect β and selection is

$$f_{\hat{\beta}|(\hat{\beta},\hat{s})\in\mathcal{S}}(x;\beta) = \frac{\frac{1}{\hat{s}}\phi\left(\frac{x-\beta}{\hat{s}}\right)}{\Phi\left(\frac{x-\beta}{\hat{s}}-c\right) + \Phi\left(-\frac{\beta}{\hat{s}}-c\right)} \left[\left[(\hat{\beta},\hat{s}) \in \mathcal{S} \right] \right].$$

The corrected quantile estimator $\hat{\beta}_{\text{Med}}$ is the solution to

$$\hat{\beta}_{\mathrm{Med}} = \gamma \text{ s.t. } \int_{-\infty}^{\hat{\beta}} f_{\hat{\beta}|(\hat{\beta},\hat{s}) \in \mathcal{S};\gamma}(x;\gamma) dx = \frac{1}{2},$$

We used the bias-reduced estimator $\hat{\beta}_{MSE}(p)$, evaluated at p = .5, which is given by the linear combination

$$\begin{split} \hat{\beta}_{\mathrm{MSE}}(p) &= \hat{K}(p) \hat{\beta}_{\mathrm{uncr}}(p) + (1 - \hat{K}(p)) \hat{\beta}_{\mathrm{Q}}(p), \\ \hat{K}(p) &= \frac{\hat{s}^2}{\hat{s}^2 + \left(\hat{\beta}_{\mathrm{uncr}}(p) - \hat{\beta}_{\mathrm{Q}}(p)\right)^2}, \\ \hat{\beta}_{\mathrm{uncr}}(p) &= F_{\mathcal{N}(\hat{\beta}, \hat{s})}^{-1}(p). \end{split}$$

 $\hat{\beta}_{\text{MSE}}$ does not admit a closed form representation and thus was computed via standard root finding methods.

S5 Amendments to preregistration

Our analysis plan was preregistered through the Open Science Framework after identification of top candidate genes/polymorphisms and prior to running any analyses. The preregistration is available at https://osf.io/xrkm6/. Below we discuss changes to the preregistration reflecting 1. corrections to and 2. departures from the preregistered protocol.

S5.1 Corrections

- 1. Genotyping batch and assessment center are missing from the list of covariates.
- 2. The PubMed searches listed in the section "Documented in geneID/geneIdentification.md" are inaccurate. The correct searches are detailed in section S1 on page 4.
- 3. The estimated lower bounds of number of studies per gene are incorrect as they were based on data that included the first few months of 2017. Corrected results based on the 25 year period from 1991 to 2016 are given in Table 1 of the primary manuscript.
- 4. The name of the top polymorphism in ABCB1 contains a typo.
- 5. In the polymorphism-based analysis plan, the GLM families for the variable ukb_tdi was mistakenly labeled as linear and ukb_sx_lif_cond as logit when the reverse was intended.
- 6. Testing center and genotyping batch were mistakenly omitted from the list of covariates to be used in the UKBB analysis protocols.

S5.2 Departures

- 1. The age×sex and age²×sex covariates were omitted as high multicollinearity with the other covariates caused convergence difficulties in fitting many of the GLMs. Further, additional multicollinearity problems were addressed as described in S4.1. Both procedures were implemented for purely computational reasons did not substantively change any results.
- 2. Analyses using the severe recurrent depression phenotype described in S3.1.7 on page 15 were post hoc and intended as a sensitivity analysis to ensure results didn't change substantially when using a stricter ascertainment protocol.
- 3. The analyses examining the main effects of environmental exposure variables presented in S6 were not present in the preregistered analysis protocol.
- 4. The heritability/genetic correlation analyses detailed in S4.4 were not present in the preregistered analysis protocol.
- 5. The attempted replication of the top 16 loci described in \$4.5 were suggested by a reviewer.
- 6. The simulations examining the potential impact of measurement error described in \$4.3.3 were motivated by the concerns of a reviewer.

Table S4.1: Interaction models

Moderator	Outcomes	Presentation	Family
Childhood trauma	Estimated lifetime MDD Diagnosis	primary	Bernoulli
	Conditional lifetime symptom count	secondary	Gaussian
	Lifetime episode count	secondary	Binomial
	Severe recurrent depression [†]	secondary	Binomial
Adult trauma	Estimated lifetime MDD Diagnosis	primary	Gaussian
	Conditional lifetime symptom count	secondary	Bernoulli
	Lifetime episode count	secondary	Binomial
	Severe recurrent depression [†]	secondary	Binomial
Townsend deprivation index (TDI)	Estimated lifetime MDD Diagnosis	secondary	Bernoulli
	Conditional lifetime symptom count	secondary	Gaussian
	Lifetime episode count	secondary	Binomial
	Severe recurrent depression [†]	secondary	Binomial
	Touchscreen probable lifetime diagnosis, binary classification	secondary	Bernoulli
	Touchscreen probable lifetime diagnosis, ordinal classification	secondary	Binomial
Stressor-induced depression	Conditional lifetime symptom count	secondary	Gaussian
Recent trauma	Current MDD severity	primary	primary Negative binomial

interactions with adequate sample sizes were tested (e.g., moderation of estimated lifetime diagnosis associations by past year trauma was not of Interaction models included in preregistered analysis plan. Primary analyses are presented graphically in the main body of manuscript. All plausible interest).

 † Severe recurrent depression was added after preregistration as a post-hoc analysis.

Part II
Supplemental results

S6 Main effects of moderator variables

moderators
nmental
enviro
$_{\rm of}$
effects
Main
\$6.1:
Table

Ta	Table 50.1: Main effects of environmental moderators	mental mod	lerators				
Outcome	Predictor	Estimate	se	72	d	$-\log_{10} p$	u
Estimated lifetime MDD diagnosis	Childhood trauma	1.655^\dagger	0.016	32.048	2.33e-225	224.633	115,405
Estimated lifetime MDD diagnosis	Adult trauma	1.670^{\dagger}	0.014	35.968	2.61e-283	282.583	115,450
Estimated lifetime MDD diagnosis	Townsend deprivation index	1.140^{\dagger}	0.008	16.318	7.31e-60	59.136	115,339
Conditional lifetime symptom count	Childhood trauma	0.408^{\ddagger}	0.016	26.190	2.28e-150	149.643	62,210
Conditional lifetime symptom count	Adult trauma	0.381^{\ddagger}	0.014	27.338	1.40e-163	162.854	62,237
Conditional lifetime symptom count	Townsend deprivation index	0.086^{\ddagger}	0.008	10.798	3.73e-27	26.429	62,171
Lifetime episode count	Childhood trauma	1.566^\dagger	0.014	32.930	8.12e-238	237.090	112,412
Lifetime episode count	Adult trauma	1.523^{\dagger}	0.012	39.707	0.00e+00	8	112,451
Lifetime episode count	Townsend deprivation index	1.142^\dagger	0.007	19.386	1.01e-83	82.994	112,340
Touchscreen probable lifetime diagnosis	Childhood trauma	1.759^{\dagger}	0.031	18.493	2.33e-76	75.632	28,716
Touchscreen probable lifetime diagnosis	Adult trauma	1.796^{\dagger}	0.028	20.802	4.13e-96	95.385	28,727
Touchscreen probable lifetime diagnosis	Townsend deprivation index	1.180^{\dagger}	0.009	18.871	1.97e-79	78.706	80,083
Touchscreen probable lifetime diagnosis, ordinal	Childhood trauma	1.545^{\dagger}	0.031	14.145	2.00e-45	44.699	28,716
Touchscreen probable lifetime diagnosis, ordinal	Adult trauma	1.476^{\dagger}	0.027	14.583	3.60e-48	47.444	28,727
Touchscreen probable lifetime diagnosis, ordinal	Townsend deprivation index	1.161^\dagger	0.009	17.293	5.35e-67	66.272	80,083
Current MDD severity	Recent trauma	1.431^{*}	0.013	27.004	1.32e-160	159.880	115,447
Main effects of environmental moderators on primary and secondary MDD outcomes in the UKBB. Only TDI is standardized.	ary and secondary MDD outcor	nes in the U	KBB. C	nlv TDI	is standard	ized.	

Main effects of environmental moderators on primary and secondary MDD outcomes in the UKBB. Only TDI is standardized. †Odds ratios; ‡Linear regression slopes; *Incident rate ratios

S7 Polymorphism level main effects

Table S7.1: Estimated lifetime MDD diagnosis: main effect of variant

	Gene	Polymorphism	Risk/counted allele	$\exp(\beta)$	se_{β}	Corrected CI	z	p	\overline{n}
1	SLC6A4	5- $HTTLPR$	Low activity	1.000	0.010	0.972 - 1.029	0.007	0.994	115,257
2	BDNF	rs6265	A	0.998	0.012	0.962 - 1.036	0.132	0.895	$115,\!257$
3	COMT	rs4680	G	0.988	0.010	0.960 - 1.017	1.249	0.212	$115,\!257$
4	HTR2A	rs6311	A	0.980	0.010	0.952 - 1.009	2.007	0.045	$115,\!257$
5	TPH1	rs1800532	A	1.000	0.010	0.971 - 1.029	0.041	0.968	$115,\!257$
6	DRD4	VNTR	7+ repeats	1.012	0.012	0.978 - 1.048	1.050	0.294	$115,\!257$
7	DRD2	rs1800497	${ m T}$	0.972	0.012	0.938 - 1.007	2.352	0.019	$115,\!257$
8	MAOA	VNTR	2, 3, or 5 repeats	0.998	0.009	0.973 - 1.025	0.200	0.841	$115,\!257$
9	APOE	rs429358/rs7412	ε -4	0.996	0.014	0.957 - 1.037	0.302	0.762	$115,\!257$
10	MTHFR	rs1801133	${ m T}$	1.005	0.010	0.975 - 1.036	0.456	0.648	$115,\!257$
11	CLOCK	rs1801260	\mathbf{C}	1.010	0.011	0.978 - 1.044	0.941	0.347	$115,\!257$
12	SLC6A3	VNTR	10+ repeats	1.008	0.011	0.975 - 1.042	0.721	0.471	$115,\!257$
13	ACE	in/del	deletion	1.002	0.010	0.974 - 1.031	0.229	0.819	$115,\!257$
14	ABCB1	rs1045642	\mathbf{C}	1.005	0.010	0.976 - 1.034	0.482	0.630	$115,\!257$
15	DRD3	rs6280	C	0.988	0.010	0.958 - 1.018	1.202	0.229	$115,\!257$
16	DBH	rs1611115	${ m T}$	0.986	0.012	0.951 - 1.022	1.186	0.236	$113,\!474$

Note: Logistic regression weights for estimated lifetime MDD diagnosis on variant, controlling for sex, age, age², 10 European ancestry principle components, testing center, and batch.

Table S7.2: Current MDD severity: main effect of variant

	~	5.1	5.1/	(0)					
	Gene	Polymorphism	Risk/counted allele	$\exp(\beta)$	se_{β}	Corrected CI	z	p	n
1	SLC6A4	5- $HTTLPR$	Low activity	1.008	0.005	0.992 - 1.025	1.483	0.138	$115,\!257$
2	BDNF	rs6265	A	1.004	0.007	0.983 - 1.025	0.583	0.560	$115,\!257$
3	COMT	rs4680	G	0.983	0.005	0.967 - 0.999	3.089	0.002	$115,\!257$
4	HTR2A	rs6311	A	0.998	0.006	0.981 - 1.014	0.438	0.662	$115,\!257$
5	TPH1	rs1800532	A	1.012	0.006	0.995 - 1.029	2.092	0.036	$115,\!257$
6	DRD4	VNTR	7+ repeats	1.004	0.007	0.985 - 1.024	0.626	0.531	$115,\!257$
7	DRD2	rs1800497	\mathbf{T}	0.995	0.007	0.975 - 1.015	0.792	0.428	$115,\!257$
8	MAOA	VNTR	2, 3, or 5 repeats	0.998	0.005	0.984 - 1.012	0.454	0.650	$115,\!257$
9	APOE	rs429358/rs7412	ε -4	0.990	0.008	0.968 - 1.013	1.313	0.189	$115,\!257$
10	MTHFR	rs1801133	\mathbf{T}	1.012	0.006	0.995 - 1.030	2.116	0.034	$115,\!257$
11	CLOCK	rs1801260	\mathbf{C}	0.999	0.006	0.981 - 1.017	0.217	0.828	$115,\!257$
12	SLC6A3	VNTR	10+ repeats	1.003	0.006	0.985 - 1.022	0.504	0.614	$115,\!257$
13	ACE	in/del	deletion	1.000	0.006	0.984 - 1.016	0.052	0.958	$115,\!257$
14	ABCB1	rs1045642	\mathbf{C}	1.000	0.006	0.984 - 1.016	0.036	0.971	$115,\!257$
15	DRD3	rs6280	C	0.990	0.006	0.973 - 1.007	1.764	0.078	$115,\!257$
16	DBH	rs1611115	T	1.005	0.007	0.985 - 1.025	0.677	0.498	113,474

Note: Negative binomial regression weights for current MDD severity on variant, controling for sex, age, age^2 , 10 European ancestry principle components, testing center, and batch.

	Gene	Polymorphism	Risk/counted allele	β	se_{β}	Corrected CI	z	p	\overline{n}
1	SLC6A4	5-HTTLPR	Low activity	-0.004	0.010	-0.033 - 0.024	0.458	0.647	62,138
2	BDNF	rs6265	A	0.008	0.012	-0.028 - 0.045	0.665	0.506	62,138
3	COMT	rs4680	G	-0.002	0.010	-0.030 - 0.027	0.191	0.848	62,138
4	HTR2A	rs6311	A	-0.003	0.010	-0.032 - 0.026	0.257	0.797	62,138
5	TPH1	rs1800532	A	0.007	0.010	-0.022 - 0.037	0.740	0.459	62,138
6	DRD4	VNTR	7+ repeats	-0.002	0.012	-0.036 - 0.032	0.176	0.860	62,138
7	DRD2	rs1800497	T	-0.011	0.012	-0.047 - 0.024	0.934	0.350	62,138
8	MAOA	VNTR	2, 3, or 5 repeats	0.010	0.009	-0.016 - 0.035	1.093	0.274	62,138
9	APOE	rs429358/rs7412	ε -4	-0.019	0.014	-0.059 - 0.021	1.430	0.153	62,138
10	MTHFR	rs1801133	T	-0.001	0.010	-0.031 - 0.030	0.059	0.953	62,138
11	CLOCK	rs1801260	\mathbf{C}	0.002	0.011	-0.030 - 0.034	0.206	0.837	62,138
12	SLC6A3	VNTR	10+ repeats	-0.007	0.011	-0.039 - 0.026	0.599	0.549	62,138
13	ACE	in/del	deletion	0.004	0.010	-0.025 - 0.032	0.394	0.694	62,138
14	ABCB1	rs1045642	\mathbf{C}	0.003	0.010	-0.026 - 0.031	0.283	0.778	62,138
15	DRD3	rs6280	\mathbf{C}	-0.005	0.010	-0.035 - 0.025	0.507	0.612	62,138
16	DBH	rs1611115	T	-0.008	0.012	-0.044 - 0.027	0.672	0.502	61,208

Table S7.3: Conditional lifetime symptom count: main effect of variant

Note: Linear regression weights for conditional lifetime symptom count on variant, controlling for sex, age, age², 10 European ancestry principle components, testing center, and batch.

Table S7.4: Lifetime episode count: main effect of variant

	~			(0)		~			
	Gene	Polymorphism	Risk/counted allele	$\exp(\beta)$	se_{β}	Corrected CI	z	p	n
1	SLC6A4	5- $HTTLPR$	Low activity	0.998	0.008	0.975 - 1.022	0.218	0.828	112,261
2	BDNF	rs6265	A	0.999	0.010	0.969 - 1.030	0.064	0.949	$112,\!261$
3	COMT	rs4680	G	0.994	0.008	0.971 - 1.018	0.729	0.466	$112,\!261$
4	HTR2A	rs6311	A	0.999	0.008	0.975 - 1.023	0.139	0.889	$112,\!261$
5	TPH1	rs1800532	A	1.001	0.008	0.977 - 1.026	0.108	0.914	$112,\!261$
6	DRD4	VNTR	7+ repeats	1.015	0.010	0.986 - 1.044	1.488	0.137	112,261
7	DRD2	rs1800497	\mathbf{T}	0.983	0.010	0.954 - 1.013	1.694	0.090	112,261
8	MAOA	VNTR	2, 3, or 5 repeats	1.006	0.007	0.985 - 1.027	0.813	0.416	112,261
9	APOE	rs429358/rs7412	ε -4	1.019	0.011	0.986 - 1.054	1.692	0.091	112,261
10	MTHFR	rs1801133	\mathbf{T}	1.008	0.009	0.983 - 1.034	0.912	0.362	112,261
11	CLOCK	rs1801260	C	0.996	0.009	0.970 - 1.023	0.428	0.669	$112,\!261$
12	SLC6A3	VNTR	10+ repeats	1.009	0.009	0.981 - 1.036	0.926	0.354	112,261
13	ACE	in/del	deletion	1.005	0.008	0.981 - 1.029	0.618	0.537	112,261
14	ABCB1	rs1045642	C	1.000	0.008	0.977 - 1.024	0.025	0.980	112,261
15	DRD3	rs6280	\mathbf{C}	1.000	0.009	0.975 - 1.026	0.010	0.992	112,261
16	DBH	rs1611115	T	0.994	0.010	0.965 - 1.024	0.553	0.580	110,513

Note: Ordinal logistic regression weights for lifetime episode count on variant, controlling for sex, age, age², 10 European ancestry principle components, testing center, and batch.

	Gene	Polymorphism	Risk/counted allele	$\exp(\beta)$	se_{β}	Corrected CI	z	p	\overline{n}
1	SLC6A4	5- $HTTLPR$	Low activity	1.008	0.011	0.976 - 1.040	0.751	0.453	90,944
2	BDNF	rs6265	A	1.010	0.014	0.970 - 1.051	0.743	0.457	90,944
3	COMT	rs4680	G	1.003	0.011	0.971 - 1.034	0.238	0.812	90,944
4	HTR2A	rs6311	A	1.004	0.011	0.972 - 1.037	0.396	0.692	90,944
5	TPH1	rs1800532	A	1.000	0.011	0.968 - 1.033	0.025	0.980	90,944
6	DRD4	VNTR	7+ repeats	1.023	0.013	0.985 - 1.061	1.751	0.080	90,944
7	DRD2	rs1800497	${ m T}$	1.023	0.013	0.983 - 1.062	1.663	0.096	90,944
8	MAOA	VNTR	2, 3, or 5 repeats	1.001	0.010	0.973 - 1.030	0.130	0.896	90,944
9	APOE	rs429358/rs7412	ε -4	1.009	0.015	0.965 - 1.053	0.633	0.527	90,944
10	MTHFR	rs1801133	${ m T}$	1.008	0.011	0.974 - 1.042	0.699	0.485	90,944
11	CLOCK	rs1801260	\mathbf{C}	1.031	0.012	0.995 - 1.067	2.482	0.013	90,944
12	SLC6A3	VNTR	10+ repeats	1.020	0.012	0.983 - 1.056	1.578	0.114	90,944
13	ACE	in/del	deletion	1.016	0.011	0.984 - 1.048	1.463	0.143	90,944
14	ABCB1	rs1045642	\mathbf{C}	1.005	0.011	0.973 - 1.037	0.431	0.667	90,944
15	DRD3	rs6280	\mathbf{C}	1.013	0.011	0.980 - 1.047	1.174	0.241	90,944
16	DBH	rs1611115	${ m T}$	1.002	0.013	0.963 - 1.042	0.157	0.876	89,524

Table S7.5: Touchscreen probable lifetime diagnosis: main effect of variant

Note: Logistic regression weights for touchscreen probable lifetime diagnosis on variant, controlling for sex, age, age 2 , 10 European ancestry principle components, testing center, and batch.

Table S7.6: Touchscreen probable lifetime diagnosis, ordinal classification: main effect of variant

			5.1/	(0)		~			
	Gene	Polymorphism	Risk/counted allele	$\exp(\beta)$	se_{β}	Corrected CI	z	p	n
1	SLC6A4	5- $HTTLPR$	Low activity	1.009	0.010	0.978 - 1.040	0.817	0.414	48,190
2	BDNF	rs6265	A	1.011	0.013	0.972 - 1.051	0.848	0.396	48,190
3	COMT	rs4680	G	1.003	0.011	0.972 - 1.034	0.280	0.779	48,190
4	HTR2A	rs6311	A	1.006	0.011	0.974 - 1.037	0.522	0.602	48,190
5	TPH1	rs1800532	A	1.001	0.011	0.969 - 1.033	0.093	0.926	48,190
6	DRD4	VNTR	7+ repeats	1.023	0.013	0.985 - 1.060	1.756	0.079	48,190
7	DRD2	rs1800497	T	1.023	0.013	0.984 - 1.062	1.694	0.090	48,190
8	MAOA	VNTR	2, 3, or 5 repeats	1.000	0.009	0.972 - 1.028	0.016	0.987	48,190
9	APOE	rs429358/rs7412	ε -4	1.009	0.015	0.966 - 1.052	0.605	0.545	48,190
10	MTHFR	rs1801133	T	1.013	0.011	0.980 - 1.046	1.138	0.255	48,190
11	CLOCK	rs1801260	\mathbf{C}	1.029	0.012	0.994 - 1.065	2.426	0.015	48,190
12	SLC6A3	VNTR	10+ repeats	1.017	0.012	0.982 - 1.053	1.435	0.151	48,190
13	ACE	in/del	deletion	1.011	0.011	0.980 - 1.042	1.022	0.307	48,190
14	ABCB1	rs1045642	\mathbf{C}	1.003	0.011	0.971 - 1.034	0.256	0.798	48,190
15	DRD3	rs6280	\mathbf{C}	1.012	0.011	0.979 - 1.045	1.078	0.281	48,190
16	DBH	rs1611115	T	1.000	0.013	0.962 - 1.039	0.016	0.987	48,190

Note: Ordinal logistic regression weights for touchscreen probable lifetime diagnosis, ordinal classification on variant, controlling for sex, age, age², 10 European ancestry principle components, testing center, and batch.

Gene Polymorphism Risk/counted allele Corrected CI $\exp(\beta)$ se_{β} |z|pnSLC6A4 5-HTTLPR Low activity 1.000 0.014 0.960 - 1.0410.0250.98067,304 1 $\mathbf{2}$ BDNFrs62650.018 0.965 - 1.0700.9850.32567,304 Α 1.018 G $\mathbf{3}$ COMTrs46801.030 0.014 0.988 - 1.0712.0950.03667,304 4 HTR2Ars6311Α 1.012 0.014 0.970 - 1.0540.8520.39467,304 $\mathbf{5}$ TPH1rs1800532Α 1.004 0.962 - 1.0460.78467,304 0.0140.2740.970 - 1.0696 DRD4VNTR7+ repeats 1.020 0.0171.1750.24067,304 7 DRD2rs1800497 Τ 0.958 - 1.06067,304 1.009 0.0170.5050.614MAOA67,304 8 VNTR2, 3, or 5 repeats 1.0230.0130.985 - 1.0611.7920.0739 APOErs429358/rs7412 0.019 0.64867,304 ε -4 1.013 0.955 - 1.0700.517 \mathbf{T} **10** MTHFRrs18011331.017 0.015 0.973 - 1.0601.117 0.26467,304 \mathbf{C} 11 CLOCKrs18012601.007 0.0160.960 - 1.0530.4270.66967,304 SLC6A312VNTR10+ repeats 1.010 0.016 0.963 - 1.0570.6100.54267,304 0.80267,304 13ACEin/deldeletion 1.0040.0140.962 - 1.0450.25114 ABCB1rs1045642 \mathbf{C} 1.000 0.014 0.959 - 1.0420.0330.97467,304 \mathbf{C} **15** DRD3rs62801.001 0.0150.958 - 1.0450.0910.92867,304 \mathbf{T} DBH0.967 - 1.0701.0580.29066,231 **16** rs16111151.019 0.017

Table S7.7: Severe recurrent MDD (MHF): main effect of variant

Note: Logistic regression weights for Severe recurrent MDD (MHF) on variant, controling for sex, age, age², 10 European ancestry principle components, testing center, and batch.

Table S7.8: PGC lifetime MDD diagnosis: main effect of variant

	Gene	Polymorphism	Risk/counted allele	$\exp \beta$	se_{β}	Corrected CI	z	p	\overline{n}
1	ABCB1	rs1045642	С	0.992	0.006	0.976-1.009	1.393	0.164	349,649
2	DBH	rs1611115	T	1.005	0.008	0.981 - 1.029	0.561	0.575	287,678
3	DRD2	rs1800497	T	0.981	0.007	0.961 - 1.001	2.743	0.006	$349,\!491$
4	TPH1	rs1800532	A	1.008	0.006	0.992 - 1.025	1.464	0.148	247,142
5	MTHFR	rs1801133	T	0.993	0.006	0.976 - 1.011	1.153	0.250	349,311
6	CLOCK	rs1801260	\mathbf{C}	1.014	0.006	0.995 - 1.032	2.177	0.029	$349,\!530$
7	ACE	in/del	deletion	0.995	0.005	0.979 - 1.011	0.891	0.380	349,632
8	COMT	rs4680	G	1.002	0.006	0.985 - 1.019	0.333	0.742	$349,\!318$
9	BDNF	rs6265	A	0.995	0.007	0.974 - 1.016	0.743	0.462	349,649
10	DRD3	rs6280	C	1.004	0.006	0.987 - 1.022	0.678	0.499	349,649
11	HTR2A	rs6311	A	0.998	0.006	0.982 - 1.015	0.321	0.743	$349,\!157$

Note: Differing sample sizes reflect that fact that not all polymorphisms were available in across all subsamples. Only polymorphisms that didn't require raw genotype to identify data were available.

S8 Polymorphism level $G \times E$ effects

Table S8.1: Estimated lifetime MDD diagnosis on variant \times childhood trauma

	Gene	Polymorphism	Risk/counted allele	$\exp(\beta)$	se_{β}	Corrected CI	z	p	\overline{n}
1	SLC6A4	5-HTTLPR	Low activity	0.998	0.022	0.934 - 1.066	0.101	0.919	115,204
2	BDNF	rs6265	A	1.007	0.029	0.925 - 1.097	0.250	0.803	$115,\!204$
3	COMT	rs4680	G	0.988	0.022	0.924 - 1.056	0.537	0.591	$115,\!204$
4	HTR2A	rs6311	A	0.966	0.023	0.902 - 1.033	1.526	0.127	$115,\!204$
5	TPH1	rs1800532	A	1.027	0.023	0.959 - 1.100	1.156	0.248	$115,\!204$
6	DRD4	VNTR	7+ repeats	0.993	0.027	0.916 - 1.076	0.265	0.791	$115,\!204$
7	DRD2	rs1800497	T	0.977	0.028	0.900 - 1.061	0.823	0.410	$115,\!204$
8	MAOA	VNTR	2, 3, or 5 repeats	0.983	0.020	0.926 - 1.044	0.857	0.392	$115,\!204$
9	APOE	rs429358/rs7412	ε -4	1.039	0.032	0.946 - 1.141	1.209	0.227	$115,\!204$
10	MTHFR	rs1801133	T	0.989	0.024	0.922 - 1.061	0.451	0.652	$115,\!204$
11	CLOCK	rs1801260	C	0.994	0.025	0.922 - 1.071	0.253	0.800	$115,\!204$
12	SLC6A3	VNTR	10+ repeats	0.959	0.026	0.888 - 1.034	1.644	0.100	$115,\!204$
13	ACE	in/del	deletion	1.006	0.023	0.941 - 1.075	0.254	0.800	$115,\!204$
14	ABCB1	rs1045642	C	0.970	0.023	0.907 - 1.037	1.356	0.175	$115,\!204$
15	DRD3	rs6280	C	0.962	0.024	0.896 - 1.032	1.648	0.099	$115,\!204$
16	DBH	rs1611115	Τ	0.966	0.028	0.889 - 1.050	1.221	0.222	113,422

Note: Logistic regression weights for estimated lifetime MDD diagnosis on variant \times childhood trauma controlling for sex, age, age², 10 European ancestry principle components, testing center, batch and variant/moderator main effects.

Table S8.2: Estimated lifetime MDD diagnosis on variant \times adult trauma

	Gene	Polymorphism	Risk/counted allele	$\exp(\beta)$	se_{β}	Corrected CI		p	\overline{n}
1	SLC6A4	5-HTTLPR	Low activity	1.016	0.020	0.958 - 1.079	0.803	0.422	115,249
2	BDNF	rs6265	A	0.995	0.026	0.921 - 1.074	0.210	0.833	115,249
3	COMT	rs4680	G	0.997	0.020	0.939 - 1.058	0.168	0.867	$115,\!249$
4	HTR2A	rs6311	A	1.012	0.021	0.952 - 1.076	0.593	0.553	$115,\!249$
5	TPH1	rs1800532	A	1.026	0.021	0.965 - 1.091	1.222	0.222	$115,\!249$
6	DRD4	VNTR	7+ repeats	0.973	0.024	0.905 - 1.045	1.141	0.254	$115,\!249$
7	DRD2	rs1800497	${ m T}$	1.016	0.025	0.943 - 1.095	0.644	0.520	115,249
8	MAOA	VNTR	2, 3, or 5 repeats	0.985	0.019	0.932 - 1.040	0.828	0.408	115,249
9	APOE	rs429358/rs7412	ε -4	0.987	0.028	0.907 - 1.073	0.463	0.644	$115,\!249$
10	MTHFR	rs1801133	${ m T}$	1.040	0.022	0.976 - 1.109	1.837	0.066	115,249
11	CLOCK	rs1801260	\mathbf{C}	0.999	0.023	0.934 - 1.069	0.036	0.971	115,249
12	SLC6A3	VNTR	10+ repeats	0.983	0.023	0.918 - 1.053	0.724	0.469	115,249
13	ACE	in/del	deletion	0.999	0.020	0.941 - 1.061	0.037	0.971	$115,\!249$
14	ABCB1	rs1045642	C	0.983	0.020	0.926 - 1.044	0.835	0.404	$115,\!249$
15	DRD3	rs6280	C	0.986	0.021	0.925 - 1.050	0.677	0.498	$115,\!249$
_16	DBH	rs1611115	T	0.967	0.025	0.897 - 1.042	1.334	0.182	113,466

Note: Logistic regression weights for estimated lifetime MDD diagnosis on variant \times adult trauma controlling for sex, age, age², 10 European ancestry principle components, testing center, batch and variant/moderator main effects.

Gene Corrected CI Polymorphism Risk/counted allele $\exp(\beta)$ se_{β} pnSLC6A4 5-HTTLPR Low activity 1.0140.011 0.982 - 1.0461.304 0.192115,138 1 $\mathbf{2}$ BDNFrs62651.035 0.014 0.995 - 1.0762.5390.011 115,138 Α G $\mathbf{3}$ COMTrs46801.008 0.011 0.977 - 1.0400.7910.429115,138 4 HTR2Ars6311Α 1.009 0.011 0.977 - 1.0410.800 0.424115,138 TPH1 $\mathbf{5}$ rs1800532Α 1.008 0.976 - 1.0410.459115,138 0.0110.7416 DRD4VNTR7+ repeats 1.009 0.0130.971 - 1.0480.715 0.474115,138 7 DRD2rs1800497 Τ 0.967 - 1.0460.639115,138 1.006 0.0130.469MAOA115,138 8 VNTR2, 3, or 5 repeats 1.010 0.0100.981 - 1.0391.024 0.3069 APOErs429358/rs7412 1.001 0.015 0.956 - 1.0450.970115,138 ε -4 0.038 \mathbf{T} **10** MTHFRrs18011331.005 0.011 0.971 - 1.0390.4390.660115,138 \mathbf{C} 11 CLOCKrs18012601.021 0.0120.985 - 1.0571.687 0.092115,138 SLC6A312VNTR10+ repeats 1.002 0.012 0.966 - 1.0390.1930.847115,138 115,138 13ACEin/deldeletion 1.0040.0110.973 - 1.0360.4060.68514 ABCB1rs1045642 \mathbf{C} 1.000 0.011 0.968 - 1.0320.0290.977115,138 \mathbf{C} **15** DRD3rs62801.007 0.011 0.973 - 1.0400.5730.567115,138 \mathbf{T} 0.831DBHrs 16111151.003 0.0130.964 - 1.0420.214113,356 **16**

Table S8.3: Estimated lifetime MDD diagnosis on variant \times TDI

Note: Logistic regression weights for estimated lifetime MDD diagnosis on variant \times TDI controling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant \times covariate and moderator \times covariate effects, on the multiplicative scale.

Table S8.4: Current MDD severity on variant \times recent trauma

	~			(0)		~			
	Gene	Polymorphism	Risk/counted allele	$\exp(\beta)$	se_{β}	Corrected CI	z	p	n
1	SLC6A4	5- $HTTLPR$	Low activity	0.991	0.019	0.938 - 1.048	0.464	0.643	$115,\!246$
2	BDNF	rs6265	A	1.017	0.024	0.946 - 1.092	0.683	0.495	$115,\!246$
3	COMT	rs4680	G	0.982	0.019	0.929 - 1.038	0.963	0.336	$115,\!246$
4	HTR2A	rs6311	A	1.005	0.019	0.950 - 1.064	0.275	0.783	$115,\!246$
5	TPH1	rs1800532	A	1.007	0.019	0.951 - 1.067	0.369	0.712	115,246
6	DRD4	VNTR	7+ repeats	0.994	0.023	0.930 - 1.063	0.264	0.792	115,246
7	DRD2	rs1800497	${ m T}$	0.974	0.023	0.909 - 1.043	1.147	0.252	115,246
8	MAOA	VNTR	2, 3, or 5 repeats	1.013	0.016	0.965 - 1.064	0.806	0.420	115,246
9	APOE	rs429358/rs7412	ε -4	0.953	0.027	0.880 - 1.032	1.800	0.072	115,246
10	MTHFR	rs1801133	${ m T}$	1.005	0.020	0.948 - 1.066	0.255	0.799	115,246
11	CLOCK	rs1801260	C	1.007	0.021	0.946 - 1.072	0.342	0.732	$115,\!246$
12	SLC6A3	VNTR	10+ repeats	0.999	0.022	0.938 - 1.065	0.031	0.975	115,246
13	ACE	in/del	deletion	1.001	0.019	0.946 - 1.058	0.029	0.977	115,246
14	ABCB1	rs1045642	C	1.039	0.019	0.982 - 1.099	2.018	0.044	115,246
15	DRD3	rs6280	\mathbf{C}	0.974	0.020	0.919 - 1.033	1.315	0.189	115,246
16	DBH	rs1611115	T	0.985	0.024	0.919 - 1.057	0.627	0.531	113,463

Note: Negative binomial regression weights for current MDD severity on variant \times recent trauma controling for sex, age, age², 10 European ancestry principle components, testing center, batch and variant/moderator main effects.

	Gene	Polymorphism	Risk/counted allele	β	se_{β}	Corrected CI		p	\overline{n}
1	SLC6A4	5-HTTLPR	Low activity	-0.012	0.022	-0.077 - 0.054	0.524	0.601	62,108
2	BDNF	rs6265	A	0.006	0.028	-0.079 - 0.090	0.198	0.843	62,108
3	COMT	rs4680	G	0.005	0.022	-0.061 - 0.071	0.225	0.822	62,108
4	HTR2A	rs6311	A	0.009	0.023	-0.058 - 0.076	0.401	0.688	$62,\!108$
5	TPH1	rs1800532	A	0.045	0.023	-0.022 - 0.113	1.973	0.049	62,108
6	DRD4	VNTR	7+ repeats	0.015	0.027	-0.065 - 0.094	0.542	0.588	62,108
7	DRD2	rs1800497	T	0.005	0.028	-0.076 - 0.087	0.190	0.849	62,108
8	MAOA	VNTR	2, 3, or 5 repeats	-0.019	0.020	-0.078 - 0.041	0.927	0.354	62,108
9	APOE	rs429358/rs7412	ε -4	0.004	0.031	-0.088 - 0.096	0.119	0.906	62,108
10	MTHFR	rs1801133	T	-0.023	0.024	-0.092 - 0.047	0.972	0.331	62,108
11	CLOCK	rs1801260	C	-0.005	0.025	-0.079 - 0.069	0.199	0.842	62,108
12	SLC6A3	VNTR	10+ repeats	-0.023	0.025	-0.097 - 0.052	0.889	0.374	$62,\!108$
13	ACE	in/del	deletion	-0.007	0.022	-0.072 - 0.059	0.299	0.765	$62,\!108$
14	ABCB1	rs1045642	C	0.031	0.022	-0.035 - 0.097	1.403	0.161	$62,\!108$
15	DRD3	rs6280	C	-0.049	0.024	-0.118 - 0.021	2.071	0.038	$62,\!108$
16	DBH	rs1611115	T	0.001	0.028	-0.081 - 0.083	0.036	0.972	$61,\!178$

Table S8.5: Conditional lifetime symptom count on variant \times childhood trauma

Note: Linear regression weights for conditional lifetime symptom count on variant \times childhood trauma controling for sex, age, age², 10 European ancestry principle components, testing center, batch and variant/moderator main effects.

Table S8.6: Conditional lifetime symptom count on variant \times adult trauma

	~	D 1	D. 1 / 1 11 1			G 1 GT	1.1		
	Gene	Polymorphism	Risk/counted allele	β	se_{β}	Corrected CI	z	p	n
1	SLC6A4	5- $HTTLPR$	Low activity	0.001	0.020	-0.057 - 0.059	0.056	0.956	62,135
2	BDNF	rs6265	A	0.026	0.025	-0.049 - 0.101	1.041	0.298	62,135
3	COMT	rs4680	G	-0.020	0.020	-0.079 - 0.038	1.036	0.300	62,135
4	HTR2A	rs6311	A	-0.001	0.020	-0.061 - 0.059	0.044	0.965	62,135
5	TPH1	rs1800532	A	0.011	0.020	-0.049 - 0.071	0.552	0.581	62,135
6	DRD4	VNTR	7+ repeats	-0.023	0.024	-0.093 - 0.047	0.964	0.335	62,135
7	DRD2	rs1800497	\mathbf{T}	0.008	0.025	-0.065 - 0.081	0.342	0.732	62,135
8	MAOA	VNTR	2, 3, or 5 repeats	-0.022	0.018	-0.075 - 0.032	1.202	0.229	62,135
9	APOE	rs429358/rs7412	ε -4	-0.013	0.028	-0.096 - 0.069	0.481	0.630	62,135
10	MTHFR	rs1801133	\mathbf{T}	0.011	0.021	-0.051 - 0.073	0.521	0.603	62,135
11	CLOCK	rs1801260	\mathbf{C}	0.040	0.022	-0.027 - 0.106	1.768	0.077	62,135
12	SLC6A3	VNTR	10+ repeats	-0.023	0.023	-0.090 - 0.044	1.012	0.311	62,135
13	ACE	in/del	deletion	0.023	0.020	-0.036 - 0.082	1.168	0.243	62,135
14	ABCB1	rs1045642	\mathbf{C}	-0.004	0.020	-0.062 - 0.055	0.196	0.845	62,135
15	DRD3	rs6280	\mathbf{C}	-0.020	0.021	-0.082 - 0.042	0.941	0.347	62,135
16	DBH	rs1611115	${ m T}$	-0.033	0.025	-0.106 - 0.041	1.310	0.190	61,205

Note: Linear regression weights for conditional lifetime symptom count on variant \times adult trauma controling for sex, age, age², 10 European ancestry principle components, testing center, batch and variant/moderator main effects.

Gene Corrected CI Polymorphism Risk/counted allele β se_{β} zpnSLC6A4 5-HTTLPR Low activity 0.0080.011 -0.024 - 0.039 0.7400.45962,069 1 $\mathbf{2}$ BDNFrs6265Α 0.012 0.014 -0.028 - 0.0520.8900.37462,069 G $\mathbf{3}$ COMTrs46800.0020.011 -0.029 - 0.034 0.2170.82862,069 4 HTR2Ars6311Α 0.0050.011-0.027 - 0.037 0.4320.66662,069 $\mathbf{5}$ TPH1rs1800532Α -0.0070.011-0.039 - 0.025 0.64662,069 0.5186 DRD4VNTR7+ repeats 0.0020.013 -0.035 - 0.040 0.1940.84662,069 7 DRD2rs1800497 Τ 62,069 -0.0190.013-0.058 - 0.020 1.416 0.157MAOAVNTR-0.0240.010 2.45262,069 8 2, 3, or 5 repeats -0.052 - 0.0050.0149 APOErs429358/rs7412 0.002 0.015 -0.043 - 0.046 0.912 62,069 ε -4 0.111 \mathbf{T} **10** MTHFRrs18011330.0040.011-0.030 - 0.037 0.3280.74362,069 \mathbf{C} 11 CLOCKrs18012600.0140.012-0.021 - 0.050 1.186 0.23562,069 SLC6A312VNTR10+ repeats 0.0080.012 -0.028 - 0.044 0.6270.53162,069 62,069 13 ACEin/deldeletion -0.0100.011-0.042 - 0.021 0.9740.33014 ABCB1rs1045642 \mathbf{C} 0.0020.011-0.030 - 0.033 0.1690.86662,069 \mathbf{C} **15** DRD3rs6280-0.0040.011-0.037 - 0.029 0.3510.72662,069 \mathbf{T} DBHrs 16111150.0050.013 -0.034 - 0.044 0.36261,139 **16** 0.717

Table S8.7: Conditional lifetime symptom count on variant \times TDI

Note: Linear regression weights for conditional lifetime symptom count on variant \times TDI controling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant \times covariate and moderator \times covariate effects, on the additive scale.

Table S8.8: Conditional lifetime symptom count on variant × stressor-induced depression

	Gene	Polymorphism	Risk/counted allele	β	se_{β}	Corrected CI	z	\overline{p}	\overline{n}
1	SLC6A4	5-HTTLPR	Low activity	-0.030	0.022	-0.096 - 0.036	1.357	0.175	61,888
2	BDNF	rs6265	A	0.007	0.029	-0.078 - 0.092	0.234	0.815	61,888
3	COMT	rs4680	G	0.045	0.022	-0.021 - 0.111	2.017	0.044	61,888
4	HTR2A	rs6311	A	0.026	0.023	-0.041 - 0.093	1.138	0.255	61,888
5	TPH1	rs1800532	A	0.015	0.023	-0.053 - 0.083	0.644	0.519	61,888
6	DRD4	VNTR	7+ repeats	0.037	0.027	-0.043 - 0.116	1.353	0.176	61,888
7	DRD2	rs1800497	${ m T}$	0.038	0.028	-0.045 - 0.121	1.365	0.172	61,888
8	MAOA	VNTR	2, 3, or 5 repeats	-0.010	0.020	-0.069 - 0.049	0.507	0.612	61,888
9	APOE	rs429358/rs7412	ε -4	0.023	0.031	-0.070 - 0.116	0.735	0.462	61,888
10	MTHFR	rs1801133	${ m T}$	-0.025	0.024	-0.096 - 0.045	1.072	0.284	61,888
11	CLOCK	rs1801260	\mathbf{C}	0.023	0.025	-0.052 - 0.098	0.907	0.364	61,888
12	SLC6A3	VNTR	10+ repeats	-0.001	0.026	-0.077 - 0.075	0.027	0.979	61,888
13	ACE	in/del	deletion	0.014	0.022	-0.052 - 0.080	0.627	0.531	61,888
14	ABCB1	rs1045642	\mathbf{C}	0.020	0.022	-0.046 - 0.086	0.884	0.377	61,888
15	DRD3	rs6280	\mathbf{C}	-0.045	0.024	-0.115 - 0.025	1.898	0.058	$61,\!888$
_16	DBH	rs1611115	T	0.028	0.028	-0.055 - 0.110	0.998	0.318	60,960

Note: Linear regression weights for conditional lifetime symptom count on variant \times stressor-induced depression controlling for sex, age, age², 10 European ancestry principle components, testing center, batch and variant/moderator main effects.

Gene Corrected CI Polymorphism Risk/counted allele $\exp(\beta)$ se_{β} |z|pnSLC6A4 5-HTTLPR Low activity 1.000 0.0190.945 - 1.0590.019 0.985112,216 1 $\mathbf{2}$ BDNFrs6265Α 0.0250.946 - 1.0960.7180.473112,216 1.018 G $\mathbf{3}$ COMTrs46800.9830.019 0.929 - 1.0410.8630.388112,216 4 HTR2Ars6311Α 0.9740.020 0.919 - 1.0331.321 0.186112,216 $\mathbf{5}$ TPH1rs1800532Α 0.9960.020 0.939 - 1.0560.2040.839112,216 6 DRD4VNTR7+ repeats 1.002 0.023 0.935 - 1.0740.0850.932112,216 7 DRD2rs1800497 Τ 0.934 - 1.0770.903112,216 1.003 0.0240.1220.935 - 1.035MAOA0.974112,216 8 VNTR2, 3, or 5 repeats 0.9830.0170.3309 APOErs429358/rs7412 1.025 0.027 0.946 - 1.1110.9130.361 112,216 ε -4 \mathbf{T} **10** MTHFRrs18011330.9700.021 0.913 - 1.0311.486 0.137112,216 \mathbf{C} 11 CLOCKrs18012601.001 0.0220.938 - 1.0680.0500.960112,216 SLC6A312VNTR10+ repeats 0.9730.022 0.911 - 1.0391.228 0.219112,216 0.68713ACEin/deldeletion 0.9920.0190.937 - 1.0510.403112,216 14 ABCB1rs1045642 \mathbf{C} 0.9760.019 0.921 - 1.0341.2540.210112,216 \mathbf{C} **15** DRD3rs62800.9930.0210.935 - 1.0550.3390.735112,216 \mathbf{T} DBHrs 16111150.9680.0240.901 - 1.0401.3240.186110,469 **16**

Table S8.9: Lifetime episode count on variant \times childhood trauma

Note: Ordinal logistic regression weights for lifetime episode count on variant \times childhood trauma controling for sex, age, age², 10 European ancestry principle components, testing center, batch and variant/moderator main effects.

Table S8.10: Lifetime episode count on variant \times adult trauma

		D 1 11	D. 1 / 1 11 1	(0)		0 1 01	1.1		
	Gene	Polymorphism	Risk/counted allele	$\exp(\beta)$	se_{eta}	Corrected CI	z	p	n
1	SLC6A4	5- $HTTLPR$	Low activity	1.007	0.016	0.960 - 1.058	0.453	0.650	$112,\!255$
2	BDNF	rs6265	A	0.985	0.021	0.925 - 1.048	0.720	0.471	$112,\!255$
3	COMT	rs4680	G	0.997	0.016	0.949 - 1.047	0.192	0.848	$112,\!255$
4	HTR2A	rs6311	A	0.998	0.017	0.950 - 1.049	0.102	0.919	$112,\!255$
5	TPH1	rs1800532	A	1.011	0.017	0.961 - 1.063	0.634	0.526	$112,\!255$
6	DRD4	VNTR	7+ repeats	1.004	0.020	0.947 - 1.065	0.226	0.821	$112,\!255$
7	DRD2	rs1800497	${ m T}$	1.011	0.021	0.951 - 1.074	0.518	0.605	$112,\!255$
8	MAOA	VNTR	2, 3, or 5 repeats	1.007	0.015	0.964 - 1.052	0.442	0.658	$112,\!255$
9	APOE	rs429358/rs7412	ε -4	1.001	0.023	0.935 - 1.072	0.059	0.953	$112,\!255$
10	MTHFR	rs1801133	${ m T}$	1.034	0.018	0.982 - 1.089	1.896	0.058	$112,\!255$
11	CLOCK	rs1801260	C	0.997	0.019	0.944 - 1.054	0.149	0.882	$112,\!255$
12	SLC6A3	VNTR	10+ repeats	1.002	0.019	0.947 - 1.060	0.102	0.919	$112,\!255$
13	ACE	in/del	deletion	0.999	0.017	0.951 - 1.049	0.083	0.934	$112,\!255$
14	ABCB1	rs1045642	C	0.999	0.017	0.952 - 1.050	0.037	0.971	$112,\!255$
15	DRD3	rs6280	\mathbf{C}	0.978	0.017	0.929 - 1.029	1.293	0.196	$112,\!255$
16	DBH	rs1611115	T	0.987	0.021	0.928 - 1.049	0.644	0.519	110,507

Note: Ordinal logistic regression weights for lifetime episode count on variant \times adult trauma controlling for sex, age, age², 10 European ancestry principle components, testing center, batch and variant/moderator main effects.

Gene Polymorphism Risk/counted allele Corrected CI $\exp(\beta)$ se_{β} |z|pnSLC6A4 5-HTTLPR Low activity 1.019 0.009 0.992 - 1.0462.0420.041112,144 1 $\mathbf{2}$ BDNFrs6265Α 1.021 0.012 0.987 - 1.0561.790 0.073112,144 G $\mathbf{3}$ COMTrs46801.012 0.009 0.985 - 1.0391.272 0.204112,144 4 HTR2Ars6311Α 1.006 0.009 0.978 - 1.0330.602 0.547112,144 5 TPH1rs1800532Α 1.004 0.009 0.977 - 1.0320.641112,144 0.4676 DRD4VNTR7+ repeats 1.005 0.0110.972 - 1.0370.4390.661 112,144 7 DRD2rs1800497 Τ 0.975 - 1.042112,144 1.009 0.0110.7520.452MAOA0.977 - 1.025112,144 8 VNTR2, 3, or 5 repeats 1.001 0.0080.1730.8629 APOErs429358/rs7412 ε -4 0.967 - 1.0430.684112,144 1.005 0.0130.408 \mathbf{T} **10** MTHFRrs18011331.002 0.010 0.974 - 1.0310.2510.802112,144 \mathbf{C} 11 CLOCKrs18012601.026 0.0100.995 - 1.0562.4550.014112,144 12SLC6A3VNTR10+ repeats 1.005 0.010 0.974 - 1.0350.4360.663112,144 13 ACEin/deldeletion 1.0150.0090.988 - 1.0421.6120.107112,144 1.017 14 ABCB1rs1045642 \mathbf{C} 0.009 0.990 - 1.0441.868 0.062112,144 \mathbf{C} **15** DRD3rs62801.001 0.010 0.973 - 1.0300.1250.901 112,144 \mathbf{T} DBHrs 16111150.981 - 1.0481.2550.210110,397 **16** 1.014 0.011

Table S8.11: Lifetime episode count on variant \times TDI

Note: Ordinal logistic regression weights for lifetime episode count on variant × TDI controling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant × covariate and moderator × covariate effects, on the multiplicative scale.

Table S8.12: Touchscreen probable lifetime diagnosis on variant \times TDI

	Gene	Polymorphism	Risk/counted allele	$\exp(\beta)$	se_{β}	Corrected CI		p	\overline{n}
		5-HTTLPR	<u> </u>		Ρ	0.972 - 1.042		$\frac{P}{0.554}$	90,812
1	SLC6A4		Low activity	1.007	0.012		0.592		
2	BDNF	rs6265	A	1.013	0.015	0.969 - 1.058	0.873	0.383	90,812
3	COMT	rs4680	G	1.012	0.012	0.977 - 1.047	1.028	0.304	90,812
$oldsymbol{4}$	HTR2A	rs6311	A	1.001	0.012	0.966 - 1.037	0.120	0.904	90,812
5	TPH1	rs1800532	A	1.016	0.012	0.980 - 1.051	1.308	0.191	90,812
6	DRD4	VNTR	7+ repeats	1.002	0.014	0.960 - 1.044	0.156	0.876	90,812
7	DRD2	rs1800497	T	1.017	0.015	0.973 - 1.060	1.121	0.262	90,812
8	MAOA	VNTR	2, 3, or 5 repeats	1.003	0.010	0.972 - 1.034	0.297	0.766	90,812
9	APOE	rs429358/rs7412	ε -4	1.022	0.016	0.974 - 1.070	1.339	0.180	90,812
10	MTHFR	rs1801133	T	1.011	0.012	0.974 - 1.047	0.846	0.398	90,812
11	CLOCK	rs1801260	C	1.009	0.013	0.969 - 1.048	0.661	0.509	90,812
12	SLC6A3	VNTR	10+ repeats	1.020	0.013	0.980 - 1.060	1.484	0.138	90,812
13	ACE	in/del	deletion	1.003	0.012	0.968 - 1.038	0.236	0.814	90,812
14	ABCB1	rs1045642	C	1.015	0.012	0.980 - 1.050	1.244	0.213	90,812
15	DRD3	rs6280	C	1.017	0.012	0.980 - 1.053	1.320	0.187	90,812
16	DBH	rs1611115	${ m T}$	1.011	0.015	0.967 - 1.054	0.719	0.472	89,397

Note: Logistic regression weights for touch screen probable lifetime diagnosis on variant \times TDI controling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant \times covariate and moderator \times covariate effects, on the multiplicative scale.

	Gene	Polymorphism	Risk/counted allele	$\exp(\beta)$	se_{β}	Corrected CI	z	p	\overline{n}
1	SLC6A4	5- $HTTLPR$	Low activity	1.009	0.012	0.975 - 1.043	0.743	0.457	90,812
2	BDNF	rs6265	A	1.018	0.015	0.975 - 1.062	1.234	0.217	90,812
3	COMT	rs4680	G	1.007	0.012	0.973 - 1.041	0.600	0.548	90,812
4	HTR2A	rs6311	A	1.005	0.012	0.970 - 1.040	0.410	0.682	90,812
5	TPH1	rs1800532	A	1.016	0.012	0.981 - 1.051	1.343	0.179	90,812
6	DRD4	VNTR	7+ repeats	1.001	0.014	0.960 - 1.042	0.101	0.920	90,812
7	DRD2	rs1800497	${ m T}$	1.006	0.014	0.963 - 1.049	0.406	0.685	90,812
8	MAOA	VNTR	2, 3, or 5 repeats	1.005	0.010	0.975 - 1.035	0.474	0.636	90,812
9	APOE	rs429358/rs7412	ε -4	1.026	0.016	0.978 - 1.073	1.585	0.113	90,812
10	MTHFR	rs1801133	${ m T}$	1.009	0.012	0.973 - 1.045	0.740	0.459	90,812
11	CLOCK	rs1801260	\mathbf{C}	1.002	0.013	0.963 - 1.040	0.122	0.903	90,812
12	SLC6A3	VNTR	10+ repeats	1.018	0.013	0.979 - 1.057	1.346	0.178	90,812
13	ACE	in/del	deletion	1.002	0.012	0.967 - 1.036	0.147	0.883	90,812
14	ABCB1	rs1045642	\mathbf{C}	1.013	0.012	0.979 - 1.047	1.095	0.273	90,812
15	DRD3	rs6280	\mathbf{C}	1.014	0.012	0.978 - 1.050	1.171	0.242	90,812
16	DBH	rs1611115	${ m T}$	1.011	0.014	0.969 - 1.053	0.755	0.450	89,397

Table S8.13: Touchscreen probable lifetime diagnosis, ordinal classification on variant \times TDI

Note: Ordinal logistic regression weights for touch screen probable lifetime diagnosis, ordinal classification on variant \times TDI controlling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant \times covariate and moderator \times covariate effects, on the multiplicative scale.

Table S8.14: Severe recurrent MDD (MHF) on variant \times adult trauma

	Gene	Polymorphism	Risk/counted allele	$\exp(\beta)$	se_{β}	Corrected CI	z	p	\overline{n}
1	SLC6A4	5-HTTLPR	Low activity	0.016	0.014	-0.027 - 0.058	1.089	0.276	67,304
2	BDNF	rs6265	A	-0.009	0.019	-0.064 - 0.047	0.461	0.645	$67,\!304$
3	COMT	rs4680	G	0.004	0.015	-0.039 - 0.047	0.254	0.800	67,304
4	HTR2A	rs6311	A	-0.006	0.015	-0.050 - 0.037	0.437	0.662	67,304
5	TPH1	rs1800532	A	-0.021	0.015	-0.065 - 0.022	1.441	0.150	67,304
6	DRD4	VNTR	7+ repeats	-0.012	0.018	-0.064 - 0.040	0.682	0.495	67,304
7	DRD2	rs1800497	${ m T}$	-0.013	0.018	-0.065 - 0.040	0.724	0.469	67,304
8	MAOA	VNTR	2, 3, or 5 repeats	0.001	0.013	-0.038 - 0.040	0.063	0.950	67,304
9	APOE	rs429358/rs7412	ε -4	0.000	0.021	-0.060 - 0.061	0.022	0.982	67,304
10	MTHFR	rs1801133	\mathbf{T}	-0.001	0.015	-0.046 - 0.044	0.070	0.944	67,304
11	CLOCK	rs1801260	\mathbf{C}	-0.002	0.016	-0.050 - 0.046	0.099	0.921	67,304
12	SLC6A3	VNTR	10+ repeats	0.001	0.017	-0.048 - 0.050	0.070	0.944	67,304
13	ACE	in/del	deletion	0.002	0.014	-0.040 - 0.045	0.162	0.871	67,304
14	ABCB1	rs1045642	\mathbf{C}	-0.002	0.015	-0.045 - 0.041	0.115	0.908	67,304
15	DRD3	rs6280	\mathbf{C}	-0.025	0.015	-0.070 - 0.020	1.655	0.098	67,304
16	DBH	rs1611115	Τ	-0.002	0.018	-0.055 - 0.051	0.092	0.927	66,231

Note: Linear regression weights for Severe recurrent MDD (MHF) on variant \times adult trauma controling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant \times covariate and moderator \times covariate effects, on the multiplicative scale.

	Gene	Polymorphism	Risk/counted allele	$\exp(\beta)$	se_{β}	Corrected CI	z	p	\overline{n}
1	SLC6A4	5-HTTLPR	Low activity	0.008	0.014	-0.032 - 0.048	0.586	0.558	67,304
2	BDNF	rs6265	A	0.021	0.018	-0.032 - 0.073	1.162	0.245	$67,\!304$
3	COMT	rs4680	G	0.012	0.014	-0.028 - 0.052	0.885	0.376	$67,\!304$
4	HTR2A	rs6311	A	0.018	0.014	-0.024 - 0.059	1.262	0.207	$67,\!304$
5	TPH1	rs1800532	A	-0.008	0.014	-0.050 - 0.033	0.597	0.551	$67,\!304$
6	DRD4	VNTR	7+ repeats	-0.004	0.016	-0.052 - 0.044	0.241	0.810	$67,\!304$
7	DRD2	rs1800497	${ m T}$	-0.006	0.017	-0.056 - 0.044	0.364	0.716	$67,\!304$
8	MAOA	VNTR	2, 3, or 5 repeats	-0.009	0.013	-0.046 - 0.028	0.699	0.485	$67,\!304$
9	APOE	rs429358/rs7412	ε -4	0.006	0.019	-0.052 - 0.063	0.291	0.771	$67,\!304$
10	MTHFR	rs1801133	${ m T}$	0.027	0.014	-0.016 - 0.070	1.870	0.061	$67,\!304$
11	CLOCK	rs1801260	C	-0.003	0.015	-0.049 - 0.042	0.229	0.819	$67,\!304$
12	SLC6A3	VNTR	10+ repeats	-0.024	0.016	-0.070 - 0.022	1.522	0.128	$67,\!304$
13	ACE	in/del	deletion	0.011	0.014	-0.030 - 0.051	0.773	0.440	$67,\!304$
14	ABCB1	rs1045642	\mathbf{C}	0.006	0.014	-0.034 - 0.046	0.438	0.661	$67,\!304$
15	DRD3	rs6280	\mathbf{C}	-0.008	0.014	-0.050 - 0.035	0.528	0.597	$67,\!304$
16	DBH	rs1611115	T	-0.024	0.017	-0.075 - 0.026	1.430	0.153	66,231

Table S8.15: Severe recurrent MDD (MHF) on variant \times childhood trauma

Note: Logistic regression weights for Severe recurrent MDD (MHF) on variant \times childhood trauma controling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant \times covariate and moderator \times covariate effects, on the multiplicative scale.

Table S8.16: Severe recurrent MDD (MHF) on variant \times TDI

	Gene	Polymorphism	Risk/counted allele	$\exp(\beta)$	se_{eta}	Corrected CI	z	p	n
1	SLC6A4	5- $HTTLPR$	Low activity	1.009	0.005	0.994 - 1.024	1.768	0.077	67,237
2	BDNF	rs6265	A	1.012	0.007	0.992 - 1.031	1.755	0.079	67,237
3	COMT	rs4680	G	1.005	0.005	0.990 - 1.020	1.044	0.296	67,237
4	HTR2A	rs6311	A	1.001	0.005	0.985 - 1.016	0.147	0.883	67,237
5	TPH1	rs1800532	A	1.001	0.005	0.985 - 1.016	0.135	0.893	67,237
6	DRD4	VNTR	7+ repeats	1.009	0.006	0.991 - 1.027	1.418	0.156	67,237
7	DRD2	rs1800497	T	1.002	0.006	0.983 - 1.021	0.368	0.713	67,237
8	MAOA	VNTR	2, 3, or 5 repeats	1.004	0.005	0.990 - 1.017	0.757	0.449	67,237
9	APOE	rs429358/rs7412	ε -4	1.005	0.007	0.983 - 1.026	0.628	0.530	67,237
10	MTHFR	rs1801133	T	1.001	0.005	0.985 - 1.017	0.179	0.858	67,237
11	CLOCK	rs1801260	C	1.015	0.006	0.997 - 1.032	2.496	0.013	67,237
12	SLC6A3	VNTR	10+ repeats	1.007	0.006	0.989 - 1.024	1.127	0.260	67,237
13	ACE	in/del	deletion	1.007	0.005	0.992 - 1.022	1.316	0.188	67,237
14	ABCB1	rs1045642	C	1.002	0.005	0.987 - 1.017	0.351	0.726	67,237
15	DRD3	rs6280	C	1.003	0.005	0.987 - 1.019	0.602	0.547	67,237
16	DBH	rs1611115	${ m T}$	1.008	0.006	0.989 - 1.027	1.222	0.222	66,165

Note: Logistic regression weights for Severe recurrent MDD (MHF) on variant \times TDI controling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant \times covariate and moderator \times covariate effects, on the multiplicative scale.

S9 Polymorphism level $G \times E$ effects (alternate scale)

Table S9.1: Estimated lifetime MDD diagnosis on variant \times childhood trauma, alternate scale

	Gene	Polymorphism	Risk/counted allele	β	se_{eta}	Corrected CI		p	\overline{n}
		· ·	/	1-	Ρ				
1	SLC6A4	5- $HTTLPR$	Low activity	-0.000	0.004	-0.013 - 0.012	0.104	0.917	$115,\!204$
2	BDNF	rs6265	A	0.002	0.006	-0.015 - 0.018	0.298	0.766	$115,\!204$
3	COMT	rs4680	G	-0.003	0.004	-0.016 - 0.010	0.701	0.483	$115,\!204$
4	HTR2A	rs6311	A	-0.008	0.004	-0.021 - 0.005	1.798	0.072	$115,\!204$
5	TPH1	rs1800532	A	0.005	0.004	-0.008 - 0.018	1.176	0.240	115,204
6	DRD4	VNTR	7+ repeats	-0.001	0.005	-0.016 - 0.014	0.174	0.862	115,204
7	DRD2	rs1800497	T	-0.006	0.005	-0.021 - 0.010	1.030	0.303	115,204
8	MAOA	VNTR	2, 3, or 5 repeats	-0.003	0.004	-0.014 - 0.008	0.851	0.395	115,204
9	APOE	rs429358/rs7412	ε -4	0.007	0.006	-0.011 - 0.025	1.129	0.259	115,204
10	MTHFR	rs1801133	T	-0.002	0.005	-0.015 - 0.012	0.345	0.730	115,204
11	CLOCK	rs1801260	C	-0.001	0.005	-0.015 - 0.014	0.157	0.875	115,204
12	SLC6A3	VNTR	10+ repeats	-0.008	0.005	-0.023 - 0.006	1.650	0.099	115,204
13	ACE	in/del	deletion	0.001	0.004	-0.012 - 0.014	0.269	0.788	115,204
14	ABCB1	rs1045642	C	-0.006	0.004	-0.019 - 0.007	1.403	0.160	115,204
15	DRD3	rs6280	C	-0.009	0.005	-0.022 - 0.005	1.894	0.058	115,204
16	DBH	rs1611115	T	-0.008	0.005	-0.024 - 0.008	1.440	0.150	113,422

Note: Linear regression weights for estimated lifetime MDD diagnosis on variant \times childhood trauma controling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant \times covariate and moderator \times covariate effects, on the additive scale.

Table S9.2: Estimated lifetime MDD diagnosis on variant × adult trauma, alternate scale

	$_{ m Gene}$	Polymorphism	Risk/counted allele	$\exp(\beta)$	se_{eta}	Corrected CI	z	p	n
1	SLC6A4	5- $HTTLPR$	Low activity	1.003	0.004	0.992 - 1.014	0.780	0.435	115,249
2	BDNF	rs6265	A	0.999	0.005	0.986 - 1.013	0.152	0.880	$115,\!249$
3	COMT	rs4680	G	0.999	0.004	0.988 - 1.010	0.325	0.745	$115,\!249$
4	HTR2A	rs6311	A	1.001	0.004	0.990 - 1.012	0.274	0.784	$115,\!249$
5	TPH1	rs1800532	A	1.004	0.004	0.993 - 1.016	1.180	0.238	115,249
6	DRD4	VNTR	7+ repeats	0.996	0.004	0.983 - 1.009	0.871	0.384	115,249
7	DRD2	rs1800497	T	1.002	0.005	0.989 - 1.015	0.432	0.666	115,249
8	MAOA	VNTR	2, 3, or 5 repeats	0.998	0.003	0.988 - 1.007	0.754	0.451	115,249
9	APOE	rs429358/rs7412	ε -4	0.997	0.005	0.982 - 1.012	0.567	0.571	115,249
10	MTHFR	rs1801133	${ m T}$	1.007	0.004	0.996 - 1.019	1.930	0.054	115,249
11	CLOCK	rs1801260	\mathbf{C}	1.001	0.004	0.989 - 1.013	0.147	0.883	115,249
12	SLC6A3	VNTR	10+ repeats	0.998	0.004	0.986 - 1.010	0.512	0.609	115,249
13	ACE	in/del	deletion	1.000	0.004	0.989 - 1.011	0.004	0.997	115,249
14	ABCB1	rs1045642	C	0.997	0.004	0.986 - 1.008	0.790	0.430	115,249
15	DRD3	rs6280	\mathbf{C}	0.997	0.004	0.985 - 1.008	0.877	0.380	115,249
16	DBH	rs1611115	T	0.993	0.005	0.980 - 1.007	1.449	0.147	113,466

Note: Linear regression weights for estimated lifetime MDD diagnosis on variant \times adult trauma controling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant \times covariate and moderator \times covariate effects, on the additive scale.

	Gene	Polymorphism	Risk/counted allele	β	se_{β}	Corrected CI	z	p	\overline{n}
1	SLC6A4	5-HTTLPR	Low activity	0.003	0.002	-0.003 - 0.009	1.358	0.174	115,138
2	BDNF	rs6265	A	0.007	0.003	-0.001 - 0.015	2.635	0.008	115,138
3	COMT	rs4680	G	-0.002	0.002	-0.008 - 0.004	0.931	0.352	115,138
4	HTR2A	rs6311	A	0.002	0.002	-0.004 - 0.008	0.905	0.366	$115,\!138$
5	TPH1	rs1800532	A	-0.001	0.002	-0.008 - 0.005	0.703	0.482	$115,\!138$
6	DRD4	VNTR	7+ repeats	-0.001	0.002	-0.009 - 0.006	0.593	0.553	115,138
7	DRD2	rs1800497	\mathbf{T}	-0.001	0.003	-0.008 - 0.007	0.393	0.694	115,138
8	MAOA	VNTR	2, 3, or 5 repeats	-0.002	0.002	-0.007 - 0.004	0.936	0.349	115,138
9	APOE	rs429358/rs7412	ε -4	-0.000	0.003	-0.009 - 0.008	0.103	0.918	115,138
10	MTHFR	rs1801133	${ m T}$	-0.001	0.002	-0.007 - 0.005	0.432	0.666	$115,\!138$
11	CLOCK	rs1801260	\mathbf{C}	0.004	0.002	-0.003 - 0.011	1.698	0.090	$115,\!138$
12	SLC6A3	VNTR	10+ repeats	-0.000	0.002	-0.007 - 0.007	0.160	0.873	$115,\!138$
13	ACE	in/del	deletion	-0.001	0.002	-0.007 - 0.005	0.459	0.646	$115,\!138$
14	ABCB1	rs1045642	\mathbf{C}	-0.000	0.002	-0.006 - 0.006	0.099	0.922	$115,\!138$
15	DRD3	rs6280	C	0.001	0.002	-0.005 - 0.007	0.394	0.694	$115,\!138$
16	DBH	rs1611115	T	0.001	0.003	-0.007 - 0.008	0.250	0.802	$113,\!356$

Table S9.3: Estimated lifetime MDD diagnosis on variant \times TDI, alternate scale

Note: Linear regression weights for estimated lifetime MDD diagnosis on variant \times TDI controlling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant \times covariate and moderator \times covariate effects, on the additive scale.

Table S9.4: Current MDD severity (MHF) on variant × recent trauma, alternate scale

	Gene	Polymorphism	Risk/counted allele	β	se_{β}	Corrected CI	z	p	\overline{n}
1	SLC6A4	5-HTTLPR	Low activity	-0.035	0.049	-0.178 - 0.108	0.721	0.471	115,246
2	BDNF	rs6265	A	0.057	0.063	-0.129 - 0.243	0.910	0.363	115,246
3	COMT	rs4680	G	-0.087	0.049	-0.232 - 0.058	1.774	0.076	115,246
4	HTR2A	rs6311	A	0.003	0.050	-0.143 - 0.150	0.066	0.947	$115,\!246$
5	TPH1	rs1800532	A	0.011	0.050	-0.138 - 0.160	0.225	0.822	$115,\!246$
6	DRD4	VNTR	7+ repeats	-0.000	0.059	-0.173 - 0.173	0.006	0.996	$115,\!246$
7	DRD2	rs1800497	${ m T}$	-0.079	0.061	-0.258 - 0.101	1.295	0.195	$115,\!246$
8	MAOA	VNTR	2, 3, or 5 repeats	0.026	0.042	-0.099 - 0.152	0.612	0.540	$115,\!246$
9	APOE	rs429358/rs7412	ε -4	-0.182	0.069	-0.388 - 0.023	2.628	0.009	115,246
10	MTHFR	rs1801133	${ m T}$	0.031	0.052	-0.122 - 0.183	0.597	0.551	115,246
11	CLOCK	rs1801260	\mathbf{C}	0.012	0.055	-0.150 - 0.175	0.224	0.822	115,246
12	SLC6A3	VNTR	10+ repeats	-0.009	0.056	-0.175 - 0.156	0.165	0.869	$115,\!246$
13	ACE	in/del	deletion	-0.007	0.049	-0.153 - 0.138	0.150	0.881	115,246
14	ABCB1	rs1045642	\mathbf{C}	0.108	0.049	-0.037 - 0.254	2.209	0.027	$115,\!246$
15	DRD3	rs6280	\mathbf{C}	-0.111	0.051	-0.262 - 0.041	2.162	0.031	$115,\!246$
16	DBH	rs1611115	T	-0.038	0.061	-0.219 - 0.143	0.617	0.537	113,463

Note: Linear regression weights for current MDD severity (MHF) on variant \times recent trauma controling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant \times covariate and moderator \times covariate effects, on the additive scale.

Gene Polymorphism Risk/counted allele Corrected CI $\exp(\beta)$ se_{β} npSLC6A4 5-HTTLPR Low activity 0.9990.023 0.933 - 1.0700.026 0.97962,108 1 $\mathbf{2}$ BDNFrs62650.030 0.932 - 1.1120.5980.55062,108 Α 1.018 G $\mathbf{3}$ COMTrs46801.001 0.023 0.934 - 1.0720.0300.97662,108 4 HTR2Ars6311Α 1.0160.024 0.947 - 1.0890.6520.51462,108 $\mathbf{5}$ TPH1rs1800532Α 0.0240.976 - 1.1240.05262,108 1.048 1.947 6 DRD4VNTR7+ repeats 1.023 0.0280.941 - 1.1110.7990.42462,108 7 DRD2rs1800497 Τ 0.923 - 1.09662,108 1.006 0.0290.2120.832MAOA62,108 8 VNTR2, 3, or 5 repeats 0.9830.0210.924 - 1.0470.7920.4289 APOErs429358/rs7412 ε -4 0.903 - 1.09462,108 0.9940.0330.1860.853 \mathbf{T} **10** MTHFRrs18011330.9750.0250.906 - 1.0491.028 0.30462,108 \mathbf{C} 11 CLOCKrs18012600.9960.0260.922 - 1.0760.1420.88762,108 12SLC6A3VNTR10+ repeats 0.9700.027 0.897 - 1.0501.134 0.25762,108 62,108 13 ACEin/deldeletion 0.9980.0230.932 - 1.0690.0670.9470.965 - 1.108**14** ABCB1rs1045642 \mathbf{C} 0.023 62,108 1.0341.4290.153 \mathbf{C} **15** DRD3rs62800.9570.0250.890 - 1.0301.768 0.07762,108 \mathbf{T} 0.029DBH0.927 - 1.1020.3730.709**16** rs16111151.011 61,178

Table S9.5: Conditional lifetime symptom count on variant × childhood trauma, alternate scale

Note: Ordinal logistic regression weights for conditional lifetime symptom count on variant \times childhood trauma controlling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant \times covariate and moderator \times covariate effects, on the multiplicative scale.

Table S9.6: Conditional lifetime symptom count on variant \times adult trauma, alternate scale

	Gene	Polymorphism	Risk/counted allele	$\exp(\beta)$	se_{β}	Corrected CI		\overline{p}	\overline{n}
1	SLC6A4	5-HTTLPR	Low activity	1.009	0.021	0.949 - 1.072	0.413	0.679	62,135
2	BDNF	rs6265	A	1.036	0.026	0.958 - 1.120	1.333	0.182	62,135
3	COMT	rs4680	G	0.971	0.021	0.914 - 1.032	1.410	0.159	62,135
4	HTR2A	rs6311	A	0.998	0.021	0.938 - 1.062	0.081	0.935	62,135
5	TPH1	rs1800532	A	1.013	0.021	0.952 - 1.079	0.627	0.531	62,135
6	DRD4	VNTR	7+ repeats	0.980	0.025	0.910 - 1.055	0.818	0.413	62,135
7	DRD2	rs1800497	${ m T}$	1.008	0.026	0.934 - 1.088	0.308	0.758	62,135
8	MAOA	VNTR	2, 3, or 5 repeats	0.981	0.019	0.928 - 1.037	1.010	0.313	62,135
9	APOE	rs429358/rs7412	ε -4	0.981	0.029	0.900 - 1.069	0.658	0.511	62,135
10	MTHFR	rs1801133	${ m T}$	1.011	0.022	0.947 - 1.078	0.482	0.630	62,135
11	CLOCK	rs1801260	\mathbf{C}	1.038	0.023	0.969 - 1.112	1.591	0.112	62,135
12	SLC6A3	VNTR	10+ repeats	0.968	0.024	0.903 - 1.039	1.350	0.177	62,135
13	ACE	in/del	deletion	1.030	0.021	0.969 - 1.095	1.419	0.156	62,135
14	ABCB1	rs1045642	C	0.998	0.021	0.939 - 1.061	0.082	0.935	62,135
15	DRD3	rs6280	C	0.982	0.022	0.921 - 1.048	0.813	0.416	62,135
16	DBH	rs1611115	T	0.967	0.026	0.895 - 1.044	1.305	0.192	61,205

Note: Ordinal logistic regression weights for conditional lifetime symptom count on variant \times adult trauma controlling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant \times covariate and moderator \times covariate effects, on the multiplicative scale.

Gene Polymorphism Risk/counted allele $\exp(\beta)$ Corrected CI se_{β} pnSLC6A4 5-HTTLPR Low activity 1.013 0.011 0.980 - 1.0461.182 0.23762,069 1 $\mathbf{2}$ BDNFrs62651.011 0.014 0.969 - 1.0530.7890.43062,069 Α COMTG $\mathbf{3}$ rs46801.004 0.011 0.971 - 1.0360.3340.73862,069 4 HTR2Ars6311Α 1.000 0.011 0.967 - 1.0340.039 0.96962,069 TPH1 $\mathbf{5}$ rs1800532Α 1.008 0.0110.974 - 1.0420.6910.48962,069 6 DRD4VNTR7+ repeats 1.001 0.013 0.961 - 1.0400.059 0.95362,069 7 DRD2rs1800497 Τ 0.980 - 1.0610.13962,069 1.021 0.0141.479 MAOAVNTR62,069 8 2, 3, or 5 repeats 1.021 0.0100.991 - 1.0502.060 0.0399 APOErs429358/rs7412 0.016 0.956 - 1.0470.92262,069 ε -4 1.002 0.098 \mathbf{T} **10** MTHFRrs18011331.004 0.012 0.969 - 1.0390.3490.72762,069 \mathbf{C} 11 CLOCKrs18012601.018 0.0130.981 - 1.0551.453 0.14662,069 SLC6A312VNTR10+ repeats 1.005 0.013 0.967 - 1.0430.3910.69662,069 ACE0.30362,069 13 in/deldeletion 1.011 0.0110.979 - 1.0441.029rs104564214 ABCB1 \mathbf{C} 1.003 0.011 0.970 - 1.0360.2470.80562,069 \mathbf{C} 62,069 **15** DRD3rs62801.007 0.0120.973 - 1.0420.6150.539 \mathbf{T} DBHrs16111151.0060.0140.966 - 1.0470.4620.64461,139 **16**

Table S9.7: Conditional lifetime symptom count on variant × TDI, alternate scale

Note: Ordinal logistic regression weights for conditional lifetime symptom count on variant \times TDI controling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant \times covariate and moderator \times covariate effects, on the multiplicative scale.

Table S9.8: Conditional lifetime symptom count on variant × stressor-induced depression, alternate scale

	Gene	Polymorphism	Risk/counted allele	$\exp(\beta)$	se_{β}	Corrected CI	z	p	n
1	SLC6A4	5-HTTLPR	Low activity	0.971	0.023	0.906 - 1.040	1.267	0.205	61,888
2	BDNF	rs6265	A	1.011	0.030	0.925 - 1.105	0.360	0.719	61,888
3	COMT	rs4680	G	1.049	0.023	0.979 - 1.124	2.052	0.040	$61,\!888$
4	HTR2A	rs6311	A	1.028	0.024	0.959 - 1.103	1.176	0.240	61,888
5	TPH1	rs1800532	A	1.009	0.024	0.940 - 1.083	0.387	0.699	$61,\!888$
6	DRD4	VNTR	7+ repeats	1.031	0.028	0.949 - 1.121	1.093	0.274	$61,\!888$
7	DRD2	rs1800497	${ m T}$	1.045	0.029	0.958 - 1.140	1.497	0.134	61,888
8	MAOA	VNTR	2, 3, or 5 repeats	0.990	0.021	0.931 - 1.052	0.509	0.611	61,888
9	APOE	rs429358/rs7412	ε -4	1.019	0.033	0.925 - 1.122	0.564	0.573	61,888
10	MTHFR	rs1801133	${ m T}$	0.972	0.025	0.904 - 1.046	1.132	0.258	61,888
11	CLOCK	rs1801260	C	1.031	0.026	0.953 - 1.114	1.146	0.252	61,888
12	SLC6A3	VNTR	10+ repeats	1.008	0.027	0.931 - 1.092	0.307	0.759	61,888
13	ACE	in/del	deletion	1.011	0.023	0.944 - 1.084	0.487	0.626	61,888
14	ABCB1	rs1045642	C	1.019	0.023	0.951 - 1.092	0.792	0.428	61,888
15	DRD3	rs6280	C	0.955	0.025	0.888 - 1.027	1.871	0.061	61,888
16	DBH	rs1611115	T	1.028	0.029	0.943 - 1.121	0.943	0.345	60,960

Note: Ordinal logistic regression weights for conditional lifetime symptom count on variant \times stressor-induced depression controling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant \times covariate and moderator \times covariate effects, on the multiplicative scale.

Gene Polymorphism Risk/counted allele Corrected CI $\exp(\beta)$ se_{β} pnSLC6A4 5-HTTLPR Low activity 1.001 0.008 0.977 - 1.0250.0710.943112,216 1 $\mathbf{2}$ BDNFrs62650.010 0.976 - 1.0380.6210.534112,216 Α 1.006G $\mathbf{3}$ COMTrs46800.9950.008 0.971 - 1.0190.6730.501112,216 4 HTR2Ars6311Α 0.9900.008 0.966 - 1.0141.240 0.215112,216 $\mathbf{5}$ TPH1rs1800532Α 0.9990.008 0.974 - 1.0230.872112,216 0.1616 DRD4VNTR7+ repeats 1.001 0.0100.973 - 1.0300.096 0.924112,216 7 DRD2rs1800497 Τ 0.972 - 1.0310.912112,216 1.001 0.0100.111MAOA8 VNTR2, 3, or 5 repeats 0.9950.0070.974 - 1.0160.7620.446112,216 9 APOErs429358/rs7412 1.008 0.975 - 1.0430.473112,216 ε -4 0.0110.717 \mathbf{T} **10** MTHFRrs18011330.9870.009 0.962 - 1.0121.5510.121112,216 \mathbf{C} 11 CLOCKrs18012601.000 0.0090.974 - 1.0270.0280.977112,216 12SLC6A3VNTR10+ repeats 0.9900.009 0.963 - 1.0171.114 0.265112,216 13 ACEin/deldeletion 0.9970.0080.973 - 1.0210.4200.675112,216 14 ABCB1rs1045642 \mathbf{C} 0.9900.008 0.967 - 1.0140.235112,216 1.187 \mathbf{C} **15** DRD3rs62800.9970.009 0.972 - 1.0220.3730.709112,216 \mathbf{T} DBH0.9860.0100.957 - 1.0160.152110,469 **16** rs16111151.433

Table S9.9: Lifetime episode count on variant × childhood trauma, alternate scale

Note: Linear regression weights for lifetime episode count on variant \times childhood trauma controling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant \times covariate and moderator \times covariate effects, on the additive scale.

Table S9.10: Lifetime episode count on variant	× 8	adult	trauma,	alternate scale
--	-----	-------	---------	-----------------

	Gene	Polymorphism	Risk/counted allele	$\exp(\beta)$	se_{eta}	Corrected CI	z	p	n
1	SLC6A4	5- $HTTLPR$	Low activity	1.003	0.007	0.983 - 1.023	0.469	0.639	112,255
2	BDNF	rs6265	A	0.994	0.009	0.969 - 1.020	0.683	0.495	$112,\!255$
3	COMT	rs4680	G	1.000	0.007	0.980 - 1.020	0.011	0.992	$112,\!255$
4	HTR2A	rs6311	A	1.000	0.007	0.980 - 1.021	0.003	0.997	$112,\!255$
5	TPH1	rs1800532	A	1.005	0.007	0.985 - 1.026	0.724	0.469	$112,\!255$
6	DRD4	VNTR	7+ repeats	1.002	0.008	0.978 - 1.026	0.192	0.847	$112,\!255$
7	DRD2	rs1800497	T	1.005	0.008	0.980 - 1.030	0.603	0.547	$112,\!255$
8	MAOA	VNTR	2, 3, or 5 repeats	1.003	0.006	0.985 - 1.020	0.433	0.665	112,255
9	APOE	rs429358/rs7412	ε -4	0.999	0.009	0.972 - 1.028	0.080	0.936	$112,\!255$
10	MTHFR	rs1801133	T	1.014	0.007	0.992 - 1.035	1.888	0.059	$112,\!255$
11	CLOCK	rs1801260	\mathbf{C}	1.000	0.008	0.977 - 1.022	0.050	0.960	$112,\!255$
12	SLC6A3	VNTR	10+ repeats	1.001	0.008	0.978 - 1.024	0.117	0.907	$112,\!255$
13	ACE	in/del	deletion	1.001	0.007	0.981 - 1.021	0.164	0.870	112,255
14	ABCB1	rs1045642	C	1.000	0.007	0.981 - 1.021	0.067	0.947	$112,\!255$
15	DRD3	rs6280	\mathbf{C}	0.989	0.007	0.969 - 1.011	1.488	0.137	$112,\!255$
16	DBH	rs1611115	T	0.995	0.008	0.971 - 1.020	0.580	0.562	110,507

Note: Linear regression weights for lifetime episode count on variant \times adult trauma controling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant \times covariate and moderator \times covariate effects, on the additive scale.

	Gene	Polymorphism	Risk/counted allele	β	se_{β}	Corrected CI	z	p	n
1	SLC6A4	5- $HTTLPR$	Low activity	0.007	0.004	-0.004 - 0.019	1.934	0.053	112,144
2	BDNF	rs6265	A	0.009	0.005	-0.005 - 0.023	1.857	0.063	$112,\!144$
3	COMT	rs4680	G	0.005	0.004	-0.006 - 0.016	1.357	0.175	112,144
4	HTR2A	rs6311	A	0.003	0.004	-0.009 - 0.014	0.724	0.469	112,144
5	TPH1	rs1800532	A	0.001	0.004	-0.010 - 0.013	0.315	0.753	112,144
6	DRD4	VNTR	7+ repeats	-0.002	0.005	-0.016 - 0.011	0.542	0.588	112,144
7	DRD2	rs1800497	T	-0.004	0.005	-0.018 - 0.010	0.817	0.414	112,144
8	MAOA	VNTR	2, 3, or 5 repeats	-0.001	0.003	-0.011 - 0.009	0.285	0.776	112,144
9	APOE	rs429358/rs7412	ε -4	-0.003	0.005	-0.018 - 0.013	0.479	0.632	112,144
10	MTHFR	rs1801133	T	-0.001	0.004	-0.013 - 0.011	0.189	0.850	112,144
11	CLOCK	rs1801260	C	0.010	0.004	-0.003 - 0.023	2.297	0.022	112,144
12	SLC6A3	VNTR	10+ repeats	0.002	0.004	-0.010 - 0.015	0.576	0.565	112,144
13	ACE	in/del	deletion	0.006	0.004	-0.005 - 0.017	1.612	0.107	112,144
14	ABCB1	rs1045642	\mathbf{C}	-0.007	0.004	-0.018 - 0.004	1.808	0.071	112,144
15	DRD3	rs6280	\mathbf{C}	0.001	0.004	-0.011 - 0.012	0.140	0.889	112,144
16	DBH	rs1611115	T	0.007	0.005	-0.007 - 0.021	1.418	0.156	110,397

Table S9.11: Lifetime episode count on variant \times TDI, alternate scale

Note: Linear regression weights for lifetime episode count on variant \times TDI controlling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant \times covariate and moderator \times covariate effects, on the additive scale.

Table S9.12: Touchscreen probable lifetime diagnosis on variant \times TDI, alternate scale

	Gene	Polymorphism	Risk/counted allele	β	se_{β}	Corrected CI	z	\overline{p}	\overline{n}
1	SLC6A4	5-HTTLPR	Low activity	0.001	$\frac{0.002}{0.002}$	-0.005 - 0.008	0.556	$\frac{P}{0.578}$	90,812
2	BDNF	rs6265	A	-0.003	0.003	-0.011 - 0.006	0.967	0.334	90,812
3	COMT	rs4680	G	-0.002	0.002	-0.009 - 0.005	0.975	0.329	90,812
4	HTR2A	rs6311	A	0.000	0.002	-0.007 - 0.007	0.128	0.898	90,812
5	TPH1	rs1800532	A	-0.003	0.002	-0.010 - 0.004	1.357	0.175	90,812
6	DRD4	VNTR	7+ repeats	0.001	0.003	-0.007 - 0.009	0.286	0.775	90,812
7	DRD2	rs1800497	T	-0.003	0.003	-0.011 - 0.005	1.064	0.287	90,812
8	MAOA	VNTR	2, 3, or 5 repeats	-0.001	0.002	-0.006 - 0.005	0.318	0.750	90,812
9	APOE	rs429358/rs7412	ε -4	0.004	0.003	-0.005 - 0.013	1.292	0.196	90,812
10	MTHFR	rs1801133	T	-0.002	0.002	-0.009 - 0.005	0.826	0.409	90,812
11	CLOCK	rs1801260	C	-0.002	0.003	-0.010 - 0.005	0.853	0.394	90,812
12	SLC6A3	VNTR	10+ repeats	0.004	0.003	-0.004 - 0.012	1.462	0.144	90,812
13	ACE	in/del	deletion	-0.000	0.002	-0.007 - 0.007	0.094	0.925	90,812
14	ABCB1	rs1045642	\mathbf{C}	0.003	0.002	-0.004 - 0.010	1.236	0.216	90,812
15	DRD3	rs6280	\mathbf{C}	0.003	0.002	-0.004 - 0.010	1.276	0.202	90,812
16	DBH	rs1611115	T	0.002	0.003	-0.006 - 0.010	0.740	0.460	89,397

Note: Linear regression weights for touch screen probable lifetime diagnosis on variant \times TDI controling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant \times covariate and moderator \times covariate effects, on the additive scale.

	Gene	Polymorphism	Risk/counted allele	β	se_{β}	Corrected CI	z	p	n
1	SLC6A4	5-HTTLPR	Low activity	0.004	0.005	-0.011 - 0.018	0.705	0.481	90,812
2	BDNF	rs6265	A	-0.009	0.006	-0.028 - 0.010	1.449	0.147	90,812
3	COMT	rs4680	G	-0.001	0.005	-0.016 - 0.014	0.226	0.821	90,812
4	HTR2A	rs6311	A	0.001	0.005	-0.014 - 0.016	0.259	0.796	90,812
5	TPH1	rs1800532	A	-0.007	0.005	-0.022 - 0.008	1.402	0.161	90,812
6	DRD4	VNTR	7+ repeats	-0.001	0.006	-0.018 - 0.017	0.087	0.931	90,812
7	DRD2	rs1800497	T	0.001	0.006	-0.018 - 0.019	0.140	0.889	90,812
8	MAOA	VNTR	2, 3, or 5 repeats	-0.003	0.004	-0.016 - 0.010	0.717	0.473	90,812
9	APOE	rs429358/rs7412	ε -4	0.012	0.007	-0.009 - 0.032	1.695	0.090	90,812
10	MTHFR	rs1801133	T	-0.002	0.005	-0.018 - 0.013	0.472	0.637	90,812
11	CLOCK	rs1801260	C	0.001	0.006	-0.016 - 0.018	0.152	0.879	90,812
12	SLC6A3	VNTR	10+ repeats	0.007	0.006	-0.010 - 0.023	1.151	0.250	90,812
13	ACE	in/del	deletion	0.002	0.005	-0.013 - 0.016	0.328	0.743	90,812
14	ABCB1	rs1045642	C	0.005	0.005	-0.010 - 0.020	0.986	0.324	90,812
15	DRD3	rs6280	C	0.004	0.005	-0.011 - 0.020	0.809	0.418	90,812
16	DBH	rs1611115	${ m T}$	0.005	0.006	-0.013 - 0.024	0.867	0.386	89,397

Table S9.13: Touchscreen probable lifetime diagnosis, ordinal classification on variant \times TDI, alternate scale

Note: Linear regression weights for touch screen probable lifetime diagnosis, ordinal classification on variant \times TDI controlling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant \times covariate and moderator \times covariate effects, on the additive scale.

Table S9.14: Severe recurrent MDD (MHF) on variant × childhood trauma, alternate scale

	Gene	Polymorphism	Risk/counted allele	β	00-	Corrected CI	~	20	
		v i	<u> </u>	1~	se_{β}		z	p	n
1	SLC6A4	5- $HTTLPR$	Low activity	0.001	0.002	-0.005 - 0.008	0.626	0.532	$67,\!304$
2	BDNF	rs6265	A	0.003	0.003	-0.006 - 0.012	1.002	0.316	$67,\!304$
3	COMT	rs4680	G	0.002	0.002	-0.005 - 0.008	0.695	0.487	$67,\!304$
4	HTR2A	rs6311	A	0.004	0.002	-0.003 - 0.011	1.610	0.107	67,304
5	TPH1	rs1800532	A	-0.001	0.002	-0.008 - 0.005	0.596	0.551	$67,\!304$
6	DRD4	VNTR	7+ repeats	-0.000	0.003	-0.008 - 0.008	0.001	0.999	$67,\!304$
7	DRD2	rs1800497	T	-0.001	0.003	-0.010 - 0.007	0.466	0.642	$67,\!304$
8	MAOA	VNTR	2, 3, or 5 repeats	-0.001	0.002	-0.007 - 0.005	0.351	0.726	$67,\!304$
9	APOE	rs429358/rs7412	ε -4	0.001	0.003	-0.009 - 0.010	0.172	0.863	$67,\!304$
10	MTHFR	rs1801133	T	0.005	0.002	-0.003 - 0.012	1.880	0.060	$67,\!304$
11	CLOCK	rs1801260	C	-0.001	0.003	-0.008 - 0.007	0.269	0.788	$67,\!304$
12	SLC6A3	VNTR	10+ repeats	-0.004	0.003	-0.012 - 0.004	1.529	0.126	$67,\!304$
13	ACE	in/del	deletion	0.002	0.002	-0.005 - 0.009	0.882	0.378	$67,\!304$
14	ABCB1	rs1045642	C	0.001	0.002	-0.006 - 0.008	0.522	0.602	$67,\!304$
15	DRD3	rs6280	C	-0.002	0.002	-0.009 - 0.006	0.631	0.528	$67,\!304$
16	DBH	rs1611115	T	-0.005	0.003	-0.013 - 0.004	1.712	0.087	66,231

Note: Logistic regression weights for Severe recurrent MDD (MHF) on variant \times childhood trauma controling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant \times covariate and moderator \times covariate effects, on the additive scale.

	Gene	Polymorphism	Risk/counted allele	β	se_{β}	Corrected CI	z	p	n
1	SLC6A4	5- $HTTLPR$	Low activity	0.001	0.002	-0.005 - 0.008	0.626	0.532	$67,\!304$
2	BDNF	rs6265	A	0.003	0.003	-0.006 - 0.012	1.002	0.316	$67,\!304$
3	COMT	rs4680	G	0.002	0.002	-0.005 - 0.008	0.695	0.487	$67,\!304$
4	HTR2A	rs6311	A	0.004	0.002	-0.003 - 0.011	1.610	0.107	$67,\!304$
5	TPH1	rs1800532	A	-0.001	0.002	-0.008 - 0.005	0.596	0.551	$67,\!304$
6	DRD4	VNTR	7+ repeats	-0.000	0.003	-0.008 - 0.008	0.001	0.999	$67,\!304$
7	DRD2	rs1800497	T	-0.001	0.003	-0.010 - 0.007	0.466	0.642	$67,\!304$
8	MAOA	VNTR	2, 3, or 5 repeats	-0.001	0.002	-0.007 - 0.005	0.351	0.726	$67,\!304$
9	APOE	rs429358/rs7412	ε -4	0.001	0.003	-0.009 - 0.010	0.172	0.863	$67,\!304$
10	MTHFR	rs1801133	T	0.005	0.002	-0.003 - 0.012	1.880	0.060	$67,\!304$
11	CLOCK	rs1801260	C	-0.001	0.003	-0.008 - 0.007	0.269	0.788	$67,\!304$
12	SLC6A3	VNTR	10+ repeats	-0.004	0.003	-0.012 - 0.004	1.529	0.126	$67,\!304$
13	ACE	in/del	deletion	0.002	0.002	-0.005 - 0.009	0.882	0.378	$67,\!304$
14	ABCB1	rs1045642	C	0.001	0.002	-0.006 - 0.008	0.522	0.602	$67,\!304$
15	DRD3	rs6280	C	-0.002	0.002	-0.009 - 0.006	0.631	0.528	$67,\!304$
_16	DBH	rs1611115	Τ	-0.005	0.003	-0.013 - 0.004	1.712	0.087	66,231

Table S9.15: Severe recurrent MDD (MHF) on variant \times childhood trauma, alternate scale

Note: Logistic regression weights for Severe recurrent MDD (MHF) on variant \times childhood trauma controling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant \times covariate and moderator \times covariate effects, on the additive scale.

Table S9.16: Severe recurrent MDD (MHF) on variant \times TDI, alternate scale

	Gene	Polymorphism	Risk/counted allele	β	se_{β}	Corrected CI		p	\overline{n}
1	SLC6A4	5-HTTLPR	Low activity	1.002	0.001	0.999 - 1.004	1.880	0.060	67,237
2	BDNF	rs6265	A	1.002	0.001	0.999 - 1.005	1.621	0.105	67,237
3	COMT	rs4680	G	1.001	0.001	0.998 - 1.003	0.799	0.424	67,237
4	HTR2A	rs6311	A	1.000	0.001	0.998 - 1.003	0.300	0.764	67,237
5	TPH1	rs1800532	A	1.000	0.001	0.998 - 1.003	0.113	0.910	67,237
6	DRD4	VNTR	7+ repeats	1.001	0.001	0.998 - 1.004	1.240	0.215	67,237
7	DRD2	rs1800497	${ m T}$	1.000	0.001	0.997 - 1.003	0.340	0.734	67,237
8	MAOA	VNTR	2, 3, or 5 repeats	1.000	0.001	0.998 - 1.002	0.427	0.669	67,237
9	APOE	rs429358/rs7412	ε -4	1.001	0.001	0.997 - 1.004	0.597	0.551	67,237
10	MTHFR	rs1801133	${ m T}$	1.000	0.001	0.997 - 1.003	0.042	0.967	67,237
11	CLOCK	rs1801260	C	1.002	0.001	1.000 - 1.005	2.461	0.014	67,237
12	SLC6A3	VNTR	10+ repeats	1.001	0.001	0.998 - 1.004	1.266	0.205	67,237
13	ACE	in/del	deletion	1.001	0.001	0.999 - 1.004	1.369	0.171	67,237
14	ABCB1	rs1045642	\mathbf{C}	1.000	0.001	0.998 - 1.003	0.390	0.697	67,237
15	DRD3	rs6280	\mathbf{C}	1.000	0.001	0.998 - 1.003	0.428	0.668	67,237
16	DBH	rs1611115	T	1.001	0.001	0.998 - 1.004	1.384	0.166	66,165

Note: Linear regression weights for Severe recurrent MDD (MHF) on variant \times TDI controling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant \times covariate and moderator \times covariate effects, on the additive scale.

S10 Polymorphism level $G \times E$ effects (improper control)

Table S10.1: Estimated lifetime MDD diagnosis on variant \times childhood trauma, improper control

-	Gene	Polymorphism	Risk/counted allele	β	se_{β}	Corrected CI	z	p	\overline{n}
1	SLC6A4	5-HTTLPR	Low activity	-0.001	0.022	-0.066 - 0.064	0.052	0.959	115,204
2	BDNF	rs6265	A	0.006	0.029	-0.079 - 0.090	0.201	0.841	115,204
3	COMT	rs4680	G	-0.012	0.022	-0.078 - 0.053	0.549	0.583	115,204
4	HTR2A	rs6311	A	-0.031	0.023	-0.098 - 0.036	1.385	0.166	115,204
5	TPH1	rs1800532	A	0.022	0.023	-0.045 - 0.089	0.968	0.333	115,204
6	DRD4	VNTR	7+ repeats	-0.006	0.027	-0.084 - 0.073	0.206	0.837	115,204
7	DRD2	rs1800497	T	-0.024	0.028	-0.106 - 0.057	0.889	0.374	115,204
8	MAOA	VNTR	2, 3, or 5 repeats	-0.016	0.020	-0.075 - 0.043	0.803	0.422	115,204
9	APOE	rs429358/rs7412	ε -4	0.038	0.031	-0.054 - 0.130	1.217	0.224	$115,\!204$
10	MTHFR	rs1801133	${ m T}$	-0.010	0.023	-0.079 - 0.060	0.408	0.684	$115,\!204$
11	CLOCK	rs1801260	\mathbf{C}	-0.007	0.025	-0.081 - 0.067	0.287	0.774	$115,\!204$
12	SLC6A3	VNTR	10+ repeats	-0.047	0.025	-0.122 - 0.028	1.842	0.065	$115,\!204$
13	ACE	in/del	deletion	0.005	0.022	-0.061 - 0.070	0.211	0.833	$115,\!204$
14	ABCB1	rs1045642	\mathbf{C}	-0.025	0.022	-0.091 - 0.041	1.130	0.258	$115,\!204$
15	DRD3	rs6280	\mathbf{C}	-0.038	0.023	-0.107 - 0.032	1.599	0.110	$115,\!204$
16	DBH	rs1611115	T	-0.034	0.028	-0.116 - 0.049	1.206	0.228	113,422

Note: Logistic regression weights for estimated lifetime MDD diagnosis on variant \times childhood trauma controling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant \times covariate and moderator \times covariate effects, on the multiplicative scale.

Table S10.2: Estimated lifetime MDD diagnosis on variant \times adult trauma, improper control

	Gene	Polymorphism	Risk/counted allele	$\exp(\beta)$	se_{β}	Corrected CI	z	p	\overline{n}
1	SLC6A4	5- $HTTLPR$	Low activity	1.019	0.020	0.961 - 1.081	0.938	0.348	115,249
2	BDNF	rs6265	A	0.995	0.026	0.923 - 1.074	0.183	0.854	115,249
3	COMT	rs4680	G	0.993	0.020	0.936 - 1.054	0.357	0.721	115,249
4	HTR2A	rs6311	A	1.011	0.020	0.951 - 1.074	0.518	0.604	$115,\!249$
5	TPH1	rs1800532	A	1.024	0.021	0.963 - 1.088	1.145	0.252	$115,\!249$
6	DRD4	VNTR	7+ repeats	0.977	0.024	0.909 - 1.049	0.967	0.333	$115,\!249$
7	DRD2	rs1800497	T	1.017	0.025	0.945 - 1.095	0.679	0.497	$115,\!249$
8	MAOA	VNTR	2, 3, or 5 repeats	0.988	0.018	0.936 - 1.043	0.664	0.506	115,249
9	APOE	rs429358/rs7412	ε -4	0.993	0.028	0.913 - 1.079	0.266	0.790	115,249
10	MTHFR	rs1801133	T	1.040	0.021	0.977 - 1.108	1.854	0.064	$115,\!249$
11	CLOCK	rs1801260	C	1.000	0.023	0.935 - 1.070	0.012	0.991	115,249
12	SLC6A3	VNTR	10+ repeats	0.979	0.023	0.914 - 1.048	0.923	0.356	$115,\!249$
13	ACE	in/del	deletion	1.000	0.020	0.942 - 1.061	0.008	0.994	115,249
14	ABCB1	rs1045642	C	0.989	0.020	0.932 - 1.050	0.540	0.589	$115,\!249$
15	DRD3	rs6280	C	0.985	0.021	0.925 - 1.049	0.704	0.482	$115,\!249$
16	DBH	rs1611115	T	0.969	0.025	0.900 - 1.044	1.236	0.216	113,466

Note: Logistic regression weights for estimated lifetime MDD diagnosis on variant \times adult trauma controling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant \times covariate and moderator \times covariate effects, on the multiplicative scale.

	Gene	Polymorphism	Risk/counted allele	$\exp(\beta)$	se_{β}	Corrected CI	z	p	\overline{n}
1	SLC6A4	5-HTTLPR	Low activity	1.011	0.010	0.981 - 1.042	1.088	0.277	115,138
2	BDNF	rs6265	A	1.040	0.013	1.001 - 1.079	2.955	0.003	$115,\!138$
3	COMT	rs4680	G	1.012	0.010	0.981 - 1.042	1.117	0.264	115,138
4	HTR2A	rs6311	A	1.008	0.010	0.977 - 1.039	0.754	0.451	115,138
5	TPH1	rs1800532	A	1.009	0.011	0.977 - 1.040	0.810	0.418	115,138
6	DRD4	VNTR	7+ repeats	1.004	0.012	0.967 - 1.040	0.297	0.766	115,138
7	DRD2	rs1800497	T	1.006	0.013	0.968 - 1.044	0.458	0.647	115,138
8	MAOA	VNTR	2, 3, or 5 repeats	1.009	0.009	0.982 - 1.036	0.969	0.332	115,138
9	APOE	rs429358/rs7412	ε -4	1.001	0.014	0.958 - 1.043	0.059	0.953	115,138
10	MTHFR	rs1801133	T	1.003	0.011	0.971 - 1.036	0.304	0.761	115,138
11	CLOCK	rs1801260	C	1.022	0.012	0.988 - 1.057	1.905	0.057	115,138
12	SLC6A3	VNTR	10+ repeats	1.006	0.012	0.971 - 1.041	0.482	0.630	115,138
13	ACE	in/del	deletion	1.006	0.010	0.975 - 1.036	0.557	0.577	115,138
14	ABCB1	rs1045642	\mathbf{C}	1.002	0.010	0.971 - 1.032	0.158	0.875	$115,\!138$
15	DRD3	rs6280	C	1.004	0.011	0.972 - 1.036	0.346	0.730	115,138
16	DBH	rs1611115	T	1.007	0.013	0.970 - 1.045	0.564	0.572	113,356

Table S10.3: Estimated lifetime MDD diagnosis on variant \times TDI, improper control

Note: Logistic regression weights for estimated lifetime MDD diagnosis on variant \times TDI controlling for sex, age, age², 10 European ancestry principle components, testing center, batch and variant/moderator main effects.

Table S10.4: Current MDD severity (MHF) on variant × recent trauma, improper control

	Gene	Polymorphism	Risk/counted allele	β	se_{β}	Corrected CI	z	p	\overline{n}
1	SLC6A4	5-HTTLPR	Low activity	-0.014	0.019	-0.069 - 0.041	0.741	0.458	115,246
2	BDNF	rs6265	A	0.011	0.024	-0.061 - 0.082	0.440	0.660	$115,\!246$
3	COMT	rs4680	G	-0.018	0.019	-0.074 - 0.037	0.963	0.336	$115,\!246$
4	HTR2A	rs6311	A	0.003	0.019	-0.053 - 0.059	0.168	0.867	$115,\!246$
5	TPH1	rs1800532	A	0.007	0.019	-0.050 - 0.064	0.355	0.722	$115,\!246$
6	DRD4	VNTR	7+ repeats	-0.002	0.022	-0.068 - 0.064	0.096	0.924	$115,\!246$
7	DRD2	rs1800497	T	-0.021	0.023	-0.089 - 0.048	0.895	0.371	$115,\!246$
8	MAOA	VNTR	2, 3, or 5 repeats	0.011	0.016	-0.037 - 0.060	0.699	0.484	$115,\!246$
9	APOE	rs429358/rs7412	ε -4	-0.051	0.027	-0.129 - 0.028	1.906	0.057	$115,\!246$
10	MTHFR	rs1801133	T	0.003	0.020	-0.055 - 0.062	0.175	0.861	$115,\!246$
11	CLOCK	rs1801260	C	0.008	0.021	-0.054 - 0.070	0.383	0.702	$115,\!246$
12	SLC6A3	VNTR	10+ repeats	-0.005	0.021	-0.068 - 0.058	0.233	0.816	$115,\!246$
13	ACE	in/del	deletion	0.001	0.019	-0.055 - 0.056	0.049	0.961	$115,\!246$
14	ABCB1	rs1045642	C	0.035	0.019	-0.021 - 0.090	1.863	0.062	$115,\!246$
15	DRD3	rs6280	C	-0.032	0.020	-0.090 - 0.026	1.646	0.100	$115,\!246$
16	DBH	rs1611115	${ m T}$	-0.015	0.023	-0.084 - 0.054	0.651	0.515	$113,\!463$

Note: Negative binomial regression weights for current MDD severity (MHF) on variant \times recent trauma controling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant \times covariate and moderator \times covariate effects, on the multiplicative scale.

	Gene	Polymorphism	Risk/counted allele	$\exp(\beta)$	se_{β}	Corrected CI	z	p	\overline{n}
1	SLC6A4	5-HTTLPR	Low activity	0.990	0.022	0.928 - 1.056	0.449	0.653	62,108
2	BDNF	rs6265	A	1.002	0.028	0.921 - 1.088	0.054	0.957	62,108
3	COMT	rs4680	G	1.008	0.022	0.945 - 1.076	0.374	0.708	62,108
4	HTR2A	rs6311	A	1.007	0.022	0.943 - 1.076	0.325	0.745	62,108
5	TPH1	rs1800532	A	1.045	0.023	0.977 - 1.117	1.949	0.051	62,108
6	DRD4	VNTR	7+ repeats	1.011	0.027	0.935 - 1.094	0.417	0.677	62,108
7	DRD2	rs1800497	T	1.002	0.027	0.924 - 1.086	0.068	0.946	62,108
8	MAOA	VNTR	2, 3, or 5 repeats	0.982	0.020	0.925 - 1.041	0.934	0.350	62,108
9	APOE	rs429358/rs7412	ε -4	1.004	0.031	0.916 - 1.099	0.121	0.904	62,108
10	MTHFR	rs1801133	T	0.983	0.023	0.917 - 1.053	0.747	0.455	62,108
11	CLOCK	rs1801260	C	0.992	0.025	0.922 - 1.067	0.323	0.746	62,108
12	SLC6A3	VNTR	10+ repeats	0.970	0.025	0.901 - 1.045	1.210	0.226	62,108
13	ACE	in/del	deletion	0.993	0.022	0.930 - 1.059	0.330	0.742	62,108
14	ABCB1	rs1045642	C	1.030	0.022	0.965 - 1.099	1.347	0.178	62,108
15	DRD3	rs6280	C	0.953	0.023	0.890 - 1.021	2.052	0.040	62,108
16	DBH	rs1611115	${ m T}$	1.001	0.028	0.923 - 1.086	0.041	0.967	61,178

Table S10.5: Conditional lifetime symptom count on variant × childhood trauma, improper control

Note: Linear regression weights for conditional lifetime symptom count on variant \times childhood trauma controling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant \times covariate and moderator \times covariate effects, on the additive scale.

Table S10.6: Conditional lifetime symptom count on variant × adult trauma, improper control

	Gene	Polymorphism	Risk/counted allele	$\exp(\beta)$	se_{β}	Corrected CI		p	\overline{n}
	SLC6A4	5-HTTLPR	Low activity	$\frac{-0.006}{1.006}$	$\frac{0.020}{0.020}$	0.949 - 1.065	0.282	$\frac{P}{0.778}$	$\frac{76}{62,135}$
	•								*
2	BDNF	rs6265	A	1.028	0.025	0.954 - 1.107	1.099	0.272	62,135
3	COMT	rs4680	G	0.980	0.020	0.925 - 1.038	1.048	0.294	62,135
4	HTR2A	rs6311	A	0.996	0.020	0.939 - 1.057	0.187	0.852	62,135
5	TPH1	rs1800532	A	1.010	0.020	0.951 - 1.072	0.473	0.636	62,135
6	DRD4	VNTR	7+ repeats	0.978	0.024	0.912 - 1.049	0.940	0.347	62,135
7	DRD2	rs1800497	T	1.008	0.024	0.937 - 1.083	0.306	0.760	62,135
8	MAOA	VNTR	2, 3, or 5 repeats	0.978	0.018	0.928 - 1.031	1.235	0.217	62,135
9	APOE	rs429358/rs7412	ε -4	0.988	0.028	0.911 - 1.072	0.426	0.670	62,135
10	MTHFR	rs1801133	T	1.009	0.021	0.949 - 1.073	0.443	0.658	62,135
11	CLOCK	rs1801260	C	1.039	0.022	0.973 - 1.109	1.708	0.088	62,135
12	SLC6A3	VNTR	10+ repeats	0.974	0.023	0.911 - 1.041	1.190	0.234	62,135
13	ACE	in/del	deletion	1.025	0.020	0.967 - 1.087	1.256	0.209	62,135
14	ABCB1	rs1045642	C	0.997	0.020	0.941 - 1.056	0.165	0.869	62,135
15	DRD3	rs6280	C	0.977	0.021	0.919 - 1.039	1.112	0.266	62,135
16	DBH	rs1611115	${ m T}$	0.969	0.025	0.901 - 1.042	1.275	0.202	$61,\!205$

Note: Linear regression weights for conditional lifetime symptom count on variant \times adult trauma controling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant \times covariate and moderator \times covariate effects, on the additive scale.

	Gene	Polymorphism	Risk/counted allele	β	se_{eta}	Corrected CI	z	p	n
1	SLC6A4	5- $HTTLPR$	Low activity	0.003	0.010	-0.028 - 0.033	0.250	0.802	62,069
2	BDNF	rs6265	A	0.013	0.013	-0.026 - 0.051	0.995	0.320	62,069
3	COMT	rs4680	G	0.000	0.010	-0.030 - 0.030	0.039	0.969	62,069
4	HTR2A	rs6311	A	0.005	0.010	-0.026 - 0.035	0.463	0.643	62,069
5	TPH1	rs1800532	A	-0.006	0.010	-0.037 - 0.025	0.602	0.547	62,069
6	DRD4	VNTR	7+ repeats	0.007	0.012	-0.029 - 0.043	0.563	0.573	62,069
7	DRD2	rs1800497	T	-0.014	0.013	-0.051 - 0.024	1.087	0.277	62,069
8	MAOA	VNTR	2, 3, or 5 repeats	-0.025	0.009	-0.052 - 0.003	2.665	0.008	62,069
9	APOE	rs429358/rs7412	ε -4	-0.001	0.014	-0.043 - 0.041	0.071	0.944	62,069
10	MTHFR	rs1801133	T	0.006	0.011	-0.026 - 0.037	0.510	0.610	62,069
11	CLOCK	rs1801260	C	0.008	0.011	-0.026 - 0.042	0.703	0.482	62,069
12	SLC6A3	VNTR	10+ repeats	0.003	0.012	-0.031 - 0.037	0.259	0.796	62,069
13	ACE	in/del	deletion	-0.011	0.010	-0.041 - 0.019	1.112	0.266	62,069
14	ABCB1	rs1045642	C	0.001	0.010	-0.029 - 0.031	0.093	0.926	62,069
15	DRD3	rs6280	C	-0.007	0.011	-0.039 - 0.025	0.638	0.523	62,069
16	DBH	rs1611115	T	-0.000	0.013	-0.037 - 0.037	0.024	0.981	61,139

Table S10.7: Conditional lifetime symptom count on variant \times TDI, improper control

Note: Linear regression weights for conditional lifetime symptom count on variant \times TDI controling for sex, age, age², 10 European ancestry principle components, testing center, batch and variant/moderator main effects.

Table S10.8: Conditional lifetime symptom count on variant × stressor-induced depression, improper control

-	Gene	Polymorphism	Risk/counted allele	$\exp(\beta)$	se_{β}	Corrected CI		p	\overline{n}
1	SLC6A4	5- $HTTLPR$	Low activity	0.966	0.022	0.906 - 1.031	1.575	0.115	61,888
2	BDNF	rs6265	A	1.002	0.028	0.922 - 1.089	0.077	0.939	61,888
3	COMT	rs4680	G	1.047	0.022	0.981 - 1.117	2.091	0.036	61,888
4	HTR2A	rs6311	A	1.026	0.022	0.961 - 1.096	1.173	0.241	61,888
5	TPH1	rs1800532	A	1.013	0.023	0.948 - 1.083	0.584	0.559	61,888
6	DRD4	VNTR	7+ repeats	1.039	0.026	0.961 - 1.124	1.450	0.147	61,888
7	DRD2	rs1800497	${ m T}$	1.051	0.027	0.970 - 1.140	1.823	0.068	61,888
8	MAOA	VNTR	2, 3, or 5 repeats	0.988	0.019	0.933 - 1.046	0.640	0.522	61,888
9	APOE	rs429358/rs7412	ε -4	1.011	0.031	0.923 - 1.107	0.356	0.722	61,888
10	MTHFR	rs1801133	${ m T}$	0.979	0.023	0.914 - 1.048	0.920	0.358	61,888
11	CLOCK	rs1801260	\mathbf{C}	1.019	0.025	0.948 - 1.097	0.777	0.437	61,888
12	SLC6A3	VNTR	10+ repeats	1.011	0.025	0.939 - 1.089	0.447	0.655	61,888
13	ACE	in/del	deletion	1.014	0.022	0.951 - 1.082	0.648	0.517	61,888
14	ABCB1	rs1045642	C	1.018	0.022	0.954 - 1.086	0.813	0.416	61,888
15	DRD3	rs6280	\mathbf{C}	0.958	0.023	0.895 - 1.026	1.853	0.064	61,888
16	DBH	rs1611115	T	1.027	0.027	0.947 - 1.113	0.969	0.332	60,960

Note: Linear regression weights for conditional lifetime symptom count on variant \times stressor-induced depression controlling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant \times covariate and moderator \times covariate effects, on the additive scale.

	Gene	Polymorphism	Risk/counted allele	$\exp(\beta)$	se_{β}	Corrected CI	z	p	\overline{n}
1	SLC6A4	5-HTTLPR	Low activity	1.002	0.019	0.947 - 1.060	0.108	0.914	112,216
2	BDNF	rs6265	A	1.018	0.025	0.946 - 1.095	0.705	0.481	$112,\!216$
3	COMT	rs4680	G	0.986	0.019	0.932 - 1.044	0.723	0.470	112,216
4	HTR2A	rs6311	A	0.977	0.020	0.922 - 1.035	1.202	0.229	112,216
5	TPH1	rs1800532	A	0.994	0.020	0.938 - 1.054	0.294	0.769	112,216
6	DRD4	VNTR	7+ repeats	1.003	0.023	0.937 - 1.074	0.129	0.897	112,216
7	DRD2	rs1800497	${ m T}$	1.003	0.024	0.934 - 1.076	0.106	0.916	112,216
8	MAOA	VNTR	2, 3, or 5 repeats	0.983	0.017	0.935 - 1.033	1.024	0.306	112,216
9	APOE	rs429358/rs7412	ε -4	1.025	0.027	0.947 - 1.110	0.928	0.354	112,216
10	MTHFR	rs1801133	\mathbf{T}	0.969	0.020	0.913 - 1.029	1.545	0.122	112,216
11	CLOCK	rs1801260	\mathbf{C}	1.004	0.022	0.942 - 1.071	0.208	0.836	112,216
12	SLC6A3	VNTR	10+ repeats	0.976	0.022	0.914 - 1.041	1.121	0.262	112,216
13	ACE	in/del	deletion	0.990	0.019	0.936 - 1.048	0.499	0.618	112,216
14	ABCB1	rs1045642	\mathbf{C}	0.976	0.019	0.922 - 1.033	1.275	0.202	112,216
15	DRD3	rs6280	\mathbf{C}	0.995	0.020	0.937 - 1.057	0.232	0.817	112,216
16	DBH	rs1611115	\mathbf{T}	0.969	0.024	0.903 - 1.040	1.313	0.189	110,469

Table S10.9: Lifetime episode count on variant \times childhood trauma, improper control

Note: Ordinal logistic regression weights for lifetime episode count on variant \times childhood trauma controling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant \times covariate and moderator \times covariate effects, on the multiplicative scale.

Table S10.10:	Lifetime ep	pisode count	on	variant	×	adult	trauma,	${\rm improper}$	control

				(0)					
	Gene	Polymorphism	Risk/counted allele	$\exp(\beta)$	se_{β}	Corrected CI	z	p	n
1	SLC6A4	5- $HTTLPR$	Low activity	1.011	0.016	0.964 - 1.061	0.687	0.492	112,255
2	BDNF	rs6265	A	0.986	0.021	0.927 - 1.049	0.676	0.499	$112,\!255$
3	COMT	rs4680	G	0.999	0.016	0.951 - 1.048	0.084	0.933	$112,\!255$
4	HTR2A	rs6311	A	0.998	0.017	0.950 - 1.049	0.117	0.907	$112,\!255$
5	TPH1	rs1800532	A	1.010	0.017	0.961 - 1.062	0.598	0.550	$112,\!255$
6	DRD4	VNTR	7+ repeats	1.006	0.020	0.949 - 1.066	0.294	0.769	$112,\!255$
7	DRD2	rs1800497	${ m T}$	1.009	0.020	0.950 - 1.072	0.458	0.647	$112,\!255$
8	MAOA	VNTR	2, 3, or 5 repeats	1.008	0.015	0.965 - 1.053	0.549	0.583	112,255
9	APOE	rs429358/rs7412	ε -4	1.005	0.023	0.939 - 1.075	0.212	0.832	112,255
10	MTHFR	rs1801133	T	1.031	0.017	0.980 - 1.086	1.768	0.077	$112,\!255$
11	CLOCK	rs1801260	\mathbf{C}	0.999	0.019	0.946 - 1.055	0.047	0.962	$112,\!255$
12	SLC6A3	VNTR	10+ repeats	1.000	0.019	0.946 - 1.057	0.009	0.993	$112,\!255$
13	ACE	in/del	deletion	0.997	0.016	0.950 - 1.047	0.155	0.877	112,255
14	ABCB1	rs1045642	\mathbf{C}	1.003	0.016	0.956 - 1.053	0.190	0.849	$112,\!255$
15	DRD3	rs6280	\mathbf{C}	0.979	0.017	0.930 - 1.030	1.247	0.213	112,255
16	DBH	rs1611115	T	0.986	0.020	0.929 - 1.048	0.666	0.506	110,507

Note: Ordinal logistic regression weights for lifetime episode count on variant \times adult trauma controling for sex, age, age², 10 European ancestry principle components, testing center, batch, variant/moderator main effects, and all variant \times covariate and moderator \times covariate effects, on the multiplicative scale.

	Gene	Polymorphism	Risk/counted allele	$\exp(\beta)$	se_{β}	Corrected CI		p	\overline{n}
1	SLC6A4	5-HTTLPR	Low activity	1.019	0.009	0.993 - 1.045	2.168	0.030	112,144
2	BDNF	rs6265	A	1.022	0.011	0.989 - 1.055	1.946	0.052	112,144
3	COMT	rs4680	G	1.009	0.009	0.984 - 1.035	1.074	0.283	112,144
4	HTR2A	rs6311	A	1.005	0.009	0.978 - 1.031	0.522	0.601	112,144
5	TPH1	rs1800532	A	1.003	0.009	0.976 - 1.029	0.315	0.752	112,144
6	DRD4	VNTR	7+ repeats	1.006	0.011	0.975 - 1.038	0.602	0.547	112,144
7	DRD2	rs1800497	T	1.010	0.011	0.977 - 1.042	0.896	0.370	112,144
8	MAOA	VNTR	2, 3, or 5 repeats	1.001	0.008	0.978 - 1.024	0.177	0.859	112,144
9	APOE	rs429358/rs7412	ε -4	1.007	0.012	0.971 - 1.043	0.556	0.578	112,144
10	MTHFR	rs1801133	T	1.004	0.009	0.977 - 1.032	0.445	0.656	112,144
11	CLOCK	rs1801260	\mathbf{C}	1.019	0.010	0.990 - 1.048	1.906	0.057	112,144
12	SLC6A3	VNTR	10+ repeats	1.004	0.010	0.974 - 1.033	0.355	0.723	112,144
13	ACE	in/del	deletion	1.017	0.009	0.991 - 1.043	1.929	0.054	112,144
14	ABCB1	rs1045642	C	1.016	0.009	0.990 - 1.042	1.754	0.080	112,144
15	DRD3	rs6280	C	1.001	0.009	0.973 - 1.028	0.075	0.940	112,144
16	DBH	rs1611115	T	1.016	0.011	0.984 - 1.048	1.474	0.140	$110,\!397$

Table S10.11: Lifetime episode count on variant \times TDI, improper control

Note: Ordinal logistic regression weights for lifetime episode count on variant \times TDI controlling for sex, age, age², 10 European ancestry principle components, testing center, batch and variant/moderator main effects.

Table S10.12: Touchscreen probable lifetime diagnosis on variant \times TDI, improper control

	Gene	Polymorphism	Risk/counted allele	$\exp(\beta)$	se_{β}	Corrected CI	z	p	\overline{n}
1	SLC6A4	5-HTTLPR	Low activity	1.005	0.011	0.972 - 1.038	0.461	0.644	90,812
2	BDNF	rs6265	A	1.015	0.014	0.973 - 1.058	1.064	0.287	90,812
3	COMT	rs4680	G	1.008	0.011	0.974 - 1.041	0.686	0.493	90,812
4	HTR2A	rs6311	A	1.000	0.012	0.966 - 1.034	0.021	0.983	90,812
5	TPH1	rs1800532	A	1.022	0.012	0.988 - 1.056	1.904	0.057	90,812
6	DRD4	VNTR	7+ repeats	1.003	0.014	0.963 - 1.043	0.218	0.828	90,812
7	DRD2	rs1800497	${ m T}$	1.014	0.014	0.972 - 1.056	0.978	0.328	90,812
8	MAOA	VNTR	2, 3, or 5 repeats	1.002	0.010	0.972 - 1.031	0.162	0.872	90,812
9	APOE	rs429358/rs7412	ε -4	1.023	0.016	0.977 - 1.069	1.469	0.142	90,812
10	MTHFR	rs1801133	${ m T}$	1.007	0.012	0.972 - 1.043	0.611	0.541	90,812
11	CLOCK	rs1801260	\mathbf{C}	1.013	0.013	0.975 - 1.050	0.973	0.330	90,812
12	SLC6A3	VNTR	10+ repeats	1.024	0.013	0.985 - 1.062	1.808	0.071	90,812
13	ACE	in/del	deletion	1.010	0.011	0.976 - 1.043	0.834	0.404	90,812
14	ABCB1	rs1045642	C	1.011	0.011	0.977 - 1.044	0.922	0.356	90,812
15	DRD3	rs6280	\mathbf{C}	1.017	0.012	0.982 - 1.052	1.430	0.153	90,812
16	DBH	rs1611115	${ m T}$	1.015	0.014	0.974 - 1.057	1.094	0.274	$89,\!397$

Note: Logistic regression weights for touch screen probable lifetime diagnosis on variant \times TDI controling for sex, age, age², 10 European ancestry principle components, testing center, batch and variant/moderator main effects.

Table S10.13: Touchscreen probable lifetime diagnosis, ordinal classification on variant \times TDI, improper control

	Gene	Polymorphism	Risk/counted allele	$\exp(\beta)$	se_{β}	Corrected CI	z	p	\overline{n}
1	SLC6A4	5- $HTTLPR$	Low activity	1.007	0.011	0.974 - 1.039	0.594	0.553	90,812
2	BDNF	rs6265	A	1.020	0.014	0.979 - 1.062	1.426	0.154	90,812
3	COMT	rs4680	G	1.004	0.011	0.971 - 1.037	0.338	0.736	90,812
4	HTR2A	rs6311	A	1.003	0.011	0.970 - 1.036	0.262	0.794	90,812
5	TPH1	rs1800532	A	1.022	0.011	0.988 - 1.055	1.888	0.059	90,812
6	DRD4	VNTR	7+ repeats	1.004	0.013	0.964 - 1.043	0.263	0.793	90,812
7	DRD2	rs1800497	${ m T}$	1.004	0.014	0.963 - 1.045	0.300	0.764	90,812
8	MAOA	VNTR	2, 3, or 5 repeats	1.002	0.010	0.973 - 1.031	0.223	0.823	90,812
9	APOE	rs429358/rs7412	ε -4	1.027	0.015	0.981 - 1.072	1.717	0.086	90,812
10	MTHFR	rs1801133	${ m T}$	1.005	0.012	0.970 - 1.039	0.403	0.687	90,812
11	CLOCK	rs1801260	C	1.007	0.013	0.970 - 1.045	0.587	0.557	90,812
12	SLC6A3	VNTR	10+ repeats	1.022	0.013	0.985 - 1.059	1.726	0.084	90,812
13	ACE	in/del	deletion	1.008	0.011	0.975 - 1.041	0.704	0.482	90,812
14	ABCB1	rs1045642	\mathbf{C}	1.008	0.011	0.975 - 1.041	0.679	0.497	90,812
15	DRD3	rs6280	\mathbf{C}	1.015	0.012	0.980 - 1.049	1.266	0.206	90,812
16	DBH	rs1611115	T	1.016	0.014	0.975 - 1.056	1.132	0.258	89,397

Note: Ordinal logistic regression weights for touch screen probable lifetime diagnosis, ordinal classification on variant \times TDI controlling for sex, age, age², 10 European ancestry principle components, testing center, batch and variant/moderator main effects.

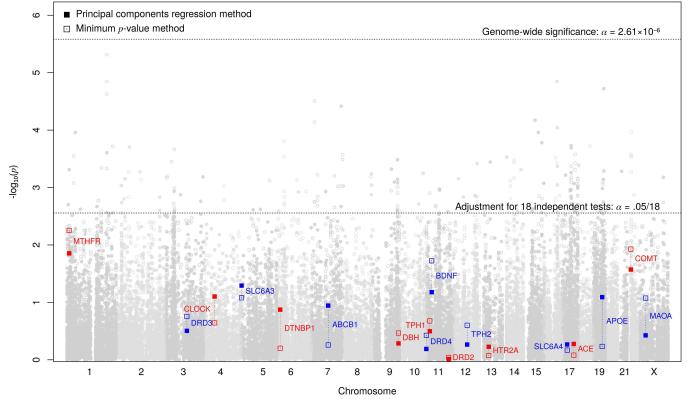
S11 Gene-level results

S11.1 Gene-wise models

Table S11.1: Gene-wise p-values (primary analyses)

	SLC6A4	BDNF	COMT	HTR2A	TPH1	TPH2
Estimated lifetime MDD diagnosis	.316	.132	.442	.311	.509	.868
Current MDD severity	.539	.066	.027	.593	.318	.541
Severe recurrent depression	.282	.360	.459	.362	.394	.969
Conditional lifetime symptom count	.365	.692	.288	.594	.867	.952
Lifetime episode count	.323	.593	.987	.839	.826	.775
Touchscreen probable diagnosis	.164	.614	.300	.678	.904	.107
Touchscreen probable diagnosis, ordinal classification	.253	.498	.203	.478	.995	.037
PGC lifetime MDD diagnosis	.100	.600	.700	.800	.100	.700
	MAOA	DRD2	DRD4	MTHFR	APOE	CLOCK
Estimated lifetime MDD diagnosis	.297	.180	.509	.351	.509	.531
Current MDD severity	.374	.969	.647	.014	.081	.079
Severe recurrent depression	.160	.460	.558	.249	.328	.911
Conditional lifetime symptom count	.134	.154	.284	.805	.231	.569
Lifetime episode count	.573	.428	.204	.713	.254	.918
Touchscreen probable diagnosis	.293	.112	.133	.727	.500	.143
Touchscreen probable diagnosis, ordinal classification	.223	.252	.161	.624	.682	.077
PGC lifetime MDD diagnosis	.268	$5.142e-07^*$.791	.524	.781	.015
	SLC6A3	ACE	DTNBP1	DRD3	ABCB1	DBH
Estimated lifetime MDD diagnosis	.264	.295	.114	.360	.239	.093
Current MDD severity	.051	.529	.134	.314	.114	.519
Severe recurrent depression	.152	.710	.133	.892	.633	.165
Conditional lifetime symptom count	.323	.789	.865	.373	.246	.367
Lifetime episode count	.201	.934	.151	.885	.425	.200
Touchscreen probable diagnosis	.078	.014	.956	.245	.181	.114
Touchscreen probable diagnosis, ordinal classification	.068	.057	.973	.058	.316	.045
PGC lifetime MDD diagnosis	.758	.221	.690	.637	.888	.765

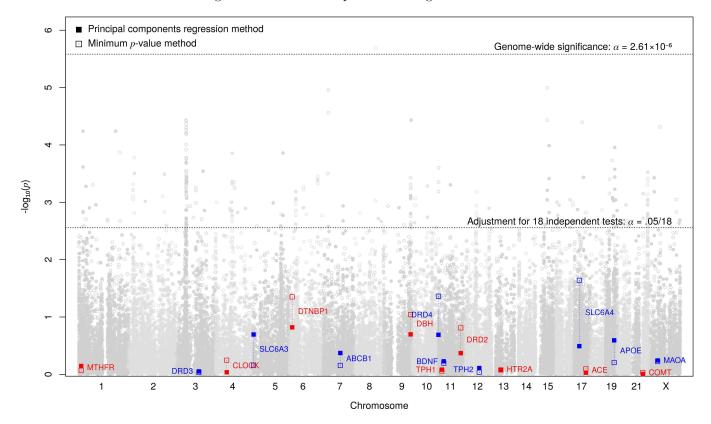
Table S11.2: Gene-wise p-values (secondary analyses)


	SLC6A4	BDNF	COMT	HTR2A	TPH1	TPH2
Estimated lifetime MDD diagnosis	.535	.722	.233	.215	.584	.091
Current MDD severity	.379	.548	.144	.475	.801	.179
Severe recurrent depression	.174	.392	.488	.462	.505	.845
Conditional lifetime symptom count	.573	.824	.392	.493	.788	.995
Lifetime episode count	.023	.638	.927	.837	.874	.921
Touchscreen probable diagnosis	.678	.019	.012	.842	.210	.250
Touchscreen probable diagnosis, ordinal classification	.262	.857	.277	.852	.844	.639
PGC lifetime MDD diagnosis	.275	.886	.708	.837	.281	.358
	MAOA	DRD2	DRD4	MTHFR	APOE	CLOCK
Estimated lifetime MDD diagnosis	.463	.006	.654	.563	.306	.100
Current MDD severity	.252	.043	.405	.624	.536	.336
Severe recurrent depression	.529	.380	.287	.388	.572	.658
Conditional lifetime symptom count	.599	.226	.098	.425	.370	.684
Lifetime episode count	.598	.155	.043	.851	.623	.567
Touchscreen probable diagnosis	.084	.908	.375	.006	.585	.227
Touchscreen probable diagnosis, ordinal classification	.089	.028	.023	.879	.465	.629
PGC lifetime MDD diagnosis	.714	.003	.504	.587	.267	.131
	SLC6A3	ACE	DTNBP1	DRD3	ABCB1	DBH
Estimated lifetime MDD diagnosis	.435	.082	.955	.072	.099	.043
Current MDD severity	.379	.013	.835	.201	.077	.133
Severe recurrent depression	.047	.529	.115	.852	.735	.004
Conditional lifetime symptom count	.297	.877	.699	.648	.111	.092
Lifetime episode count	.690	.804	.045	.927	.700	.091
Touchscreen probable diagnosis	.083	.830	.628	.176	.552	.341
Touchscreen probable diagnosis, ordinal classification	.455	.384	.607	.713	.436	.188
PGC lifetime MDD diagnosis	.925	.092	.580	.307	.427	.880

^{*}Genome-wide significant at $\alpha_{\rm gw}=2.61 \text{e-}06.$

■ Principal components regression method Genome-wide significance: $\alpha = 2.61 \times 10^{-6}$ 2 $-\log_{10}(p)$ က Adjustment for 18 independent tests: $\alpha = .05/18$ DRD2 DRD3 BDN₽ DRD4 2 3 5 6 8 9 10 11 12 13 14 15 17 19 21 Χ Chromosome


Figure S11.1: Estimated lifetime MDD diagnosis: gene-wise tests



■ Principal components regression method Genome-wide significance: $\alpha = 2.61 \times 10^{-6}$ 4 $-\log_{10}(p)$ က SLC6A3 ☐ DTNBP1 2 5 8 9 10 13 19 Chromosome

Figure S11.3: Conditional lifetime symptom count: gene-wise tests

-log₁₀(p)

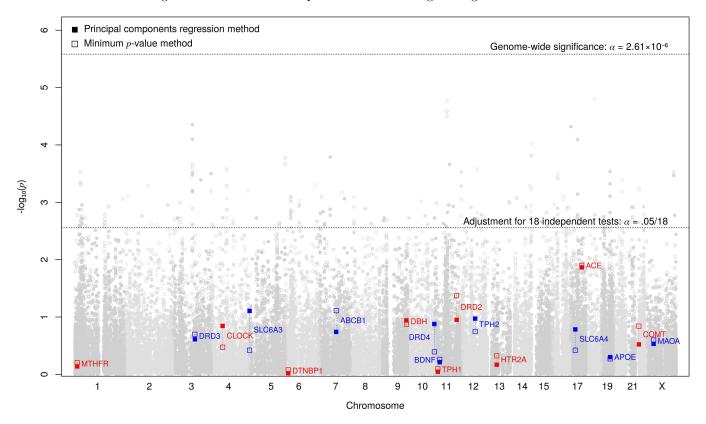
Principal components regression method

Genome-wide significance: $\alpha = 2.61 \times 10^{-6}$ Adjustment for 18 independent tests: $\alpha = .05/18$

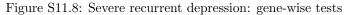
DBH

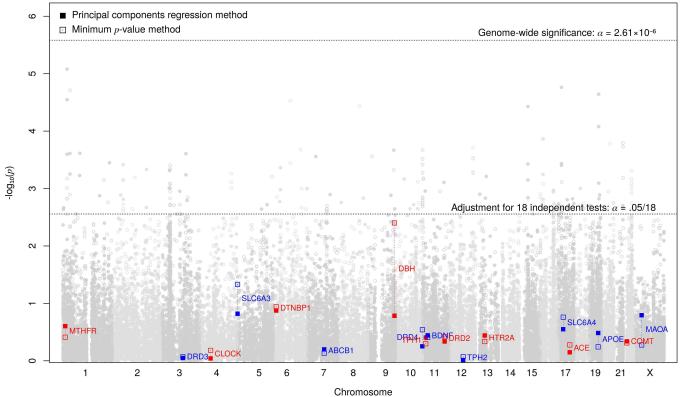
13

19


Figure S11.5: Touchscreen probable lifetime diagnosis, ordinal classification: gene-wise tests

8


Chromosome


9 10

-∑ log p method 9 Genome-wide significance: $\alpha = 2.61 \times 10^{-6}$ 2 $-\log_{10}(p)$ က Adjustment for 18 independent tests: $\alpha = .05/18$ Ø CLOCK TPH1 DRD3 MTHFR ò 0 1 2 6 8 9 10 12 13 19 50 Chromosome

Figure S11.7: PGC lifetime diagnosis: gene-wise tests

S11.2 Gene-set models

S11.2.1 Competitive tests

Table S11.3: Competitive gene-set tests (primary analyses)

Phenotype	β	SE	p	\overline{n}
Estimated lifetime MDD diagnosis	0.106	0.163	0.26	115,257
Conditional lifetime symptom count	-0.014	0.162	0.53	62,138
Lifetime episode count	-0.163	0.162	0.84	112,261
Touchscreen probable diagnosis	-0.046	0.165	0.61	90,944
Touchscreen probable diagnosis, ordinal classification	0.018	0.166	0.46	90,944
Current MDD severity	0.129	0.162	0.21	$115,\!257$
PGC lifetime MDD diagnosis	0.213	0.216	0.16	329,462
Severe recurrent depression	-0.018	0.163	0.55	67,304

Table S11.4: Competitive gene-set tests (secondary analyses)

Phenotype	β	SE	p	n
Estimated lifetime MDD diagnosis	0.205	0.170	0.23	115,258
Conditional lifetime symptom count	-0.050	0.170	0.77	$62,\!138$
Lifetime episode count	-0.117	0.170	0.49	$112,\!262$
Touchscreen probable diagnosis	-0.014	0.173	0.93	90,945
Touchscreen probable diagnosis, ordinal classification	0.091	0.174	0.60	90,945
Current MDD severity	0.125	0.170	0.46	115,258
PGC lifetime MDD diagnosis	0.117	0.225	0.60	329,463
Severe recurrent depression	0.053	0.170	0.76	67,304

S11.2.2 Relative tests

Table S11.5: Relative gene-set tests (primary analyses)

Phenotype	Comparison	β	SE	p	\overline{n}
Estimated lifetime MDD diagnosis	Height	0.20	0.170	0.226	115,258
Conditional lifetime symptom count	Height	-0.05	0.170	0.767	$62,\!138$
Lifetime episode count	Height	-0.12	0.170	0.492	112,262
Touchscreen probable diagnosis	Height	-0.01	0.173	0.934	90,945
Touchscreen probable diagnosis, ordinal classification	Height	0.09	0.174	0.599	90,945
Current MDD severity	Height	0.12	0.170	0.463	115,258
PGC lifetime MDD diagnosis	Height	0.12	0.225	0.604	$329,\!463$
Severe recurrent depression	Height	0.05	0.170	0.755	67,304
Estimated lifetime MDD diagnosis	Synaptic Processes	0.10	0.165	0.537	115,260
Conditional lifetime symptom count	Synaptic Processes	0.01	0.166	0.961	$62,\!138$
Lifetime episode count	Synaptic Processes	-0.19	0.166	0.246	$112,\!264$
Touchscreen probable diagnosis	Synaptic Processes	-0.10	0.168	0.536	90,947
Touchscreen probable diagnosis, ordinal classification	Synaptic Processes	-0.03	0.169	0.842	90,947
Current MDD severity	Synaptic Processes	0.15	0.166	0.356	$115,\!260$
PGC lifetime MDD diagnosis	Synaptic Processes	0.15	0.220	0.490	$329,\!465$
Severe recurrent depression	Synaptic Processes	-0.04	0.166	0.814	$67,\!304$
Estimated lifetime MDD diagnosis	Type 2 Diabetes	0.13	0.176	0.473	$115,\!259$
Conditional lifetime symptom count	Type 2 Diabetes	-0.11	0.177	0.518	$62,\!138$
Lifetime episode count	Type 2 Diabetes	-0.06	0.176	0.748	$112,\!263$
Touchscreen probable diagnosis	Type 2 Diabetes	0.01	0.179	0.958	90,946
Touchscreen probable diagnosis, ordinal classification	Type 2 Diabetes	0.09	0.181	0.628	90,946
Current MDD severity	Type 2 Diabetes	0.18	0.177	0.315	$115,\!259$
PGC lifetime MDD diagnosis	Type 2 Diabetes	0.18	0.231	0.428	$329,\!464$
Severe recurrent depression	Type 2 Diabetes	0.14	0.177	0.432	67,304

Table S11.6: Relative gene-set tests (secondary analyses)

Phenotype	Comparison	β	SE	p	\overline{n}
Estimated lifetime MDD diagnosis	Height	0.341	0.201	0.089	115,262
Conditional lifetime symptom count	Height	-0.449	0.199	0.024	62,138
Lifetime episode count	Height	-0.316	0.204	0.122	112,266
Touchscreen probable diagnosis	Height	0.251	0.219	0.252	90,949
Touchscreen probable diagnosis, ordinal classification	Height	0.223	0.221	0.313	90,949
Current MDD severity	Height	0.357	0.203	0.079	$115,\!262$
PGC lifetime MDD diagnosis	Height	0.048	0.206	0.814	$329,\!467$
Severe recurrent depression	Height	0.115	0.205	0.574	$67,\!304$
Estimated lifetime MDD diagnosis	Synaptic Processes	0.408	0.196	0.038	$115,\!264$
Conditional lifetime symptom count	Synaptic Processes	-0.479	0.194	0.013	$62,\!138$
Lifetime episode count	Synaptic Processes	-0.350	0.200	0.080	112,268
Touchscreen probable diagnosis	Synaptic Processes	0.212	0.215	0.326	90,951
Touchscreen probable diagnosis, ordinal classification	Synaptic Processes	0.237	0.217	0.276	90,951
Current MDD severity	Synaptic Processes	0.285	0.198	0.151	$115,\!264$
PGC lifetime MDD diagnosis	Synaptic Processes	0.006	0.203	0.975	$329,\!469$
Severe recurrent depression	Synaptic Processes	0.158	0.201	0.430	$67,\!304$
Estimated lifetime MDD diagnosis	Type 2 Diabetes	0.292	0.209	0.162	$115,\!263$
Conditional lifetime symptom count	Type 2 Diabetes	-0.477	0.207	0.021	$62,\!138$
Lifetime episode count	Type 2 Diabetes	-0.223	0.213	0.295	$112,\!267$
Touchscreen probable diagnosis	Type 2 Diabetes	0.343	0.227	0.131	90,950
Touchscreen probable diagnosis, ordinal classification	Type 2 Diabetes	0.291	0.229	0.203	90,950
Current MDD severity	Type 2 Diabetes	0.381	0.211	0.071	$115,\!263$
PGC lifetime MDD diagnosis	Type 2 Diabetes	0.111	0.212	0.601	$329,\!468$
Severe recurrent depression	Type 2 Diabetes	0.254	0.214	0.236	67,304

Attempted replication of top 16 independent PGC associations S12

Table S12.1: Attempted replication of top 16 independent PGC genome-wide significant loci in UKBB

		1821	Table Dist. Treesing of		Canto	t of don to	a representation of the principal of the	Scriouro	wide argumen	711 1001 111	7777		
	Variant	Chr.	BP	Risk allele	Freq.	p_{PGC}	$OR_{\mathrm{PGC}}^{\mathrm{Uncorrected}}$	$OR_{ m PGC}^{ m Corrected \dagger}$	$\mathrm{Power}^{\sharp}_{\mathrm{UKBB}}$	$OR_{ m UKBB}$	seukbb	$p_{ m UKBB}$	$n_{ m UKBB}$
1.	rs12552	13	53625781	A	0.421	6.093e-15	1.044	1.044	0.941	1.037	0.010	$1.868e-04^*$	114,324
ø.	rs1432639	1	72813218	C	0.601	1.065e-11	1.040	1.040	0.861	0.982	0.010	6.383e-02	114,852
es	rs10044618	2	87781168	L	0.550	2.416e-10	1.036	1.036	0.767	1.007	0.010	5.037e-01	112,796
4.	rs12129573	1	73768366	A	0.322	4.556e-09	1.034	1.029	0.445	1.018	0.010	7.401e-02	115,192
5.	rs834629	15	37678862	Ö	0.581	5.059e-09	0.967	0.972	0.506	1.010	0.010	3.348e-01	114,830
9.	${\rm chr}15_37664874_{\rm D}$	15	37664874	del	0.371	5.775e-09	1.034	1.028	0.433	1.007	0.010	4.884e-01	114,148
7.	rs12886138	14	64871010	L	0.356	8.721e-09	0.968	0.975	0.339	0.997	0.010	7.533e-01	111,943
8.	rs7198928	16	7666402	Ö	809.0	1.035e-08	1.033	1.023	0.253	0.985	0.010	1.238e-01	111,672
9.	rs61867293	10	106563924	L	0.150	1.646e-08	0.961	0.985	0.033	0.977	0.012	5.483e-02	113,996
10.	rs10214154	2	87545319	ŭ	0.281	1.689e-08	1.037	1.010	0.023	0.997	0.011	7.852e-01	113,303
11.	rs1806153	11	31850105	L	0.312	1.707e-08	1.039	1.011	0.029	1.014	0.011	2.208e-01	114,910
12.	rs12658032	22	103904226	A	0.334	2.346e-08	1.033	1.011	0.032	1.033	0.010	1.232e-03*	114,912
13.	rs11135349	22	164523472	A	0.418	2.480e-08	0.969	0.998	0.004	0.967	0.010	$4.805\mathrm{e}\text{-}04^*$	115,120
14.	rs3095337	9	30737591	C	0.204	3.256e-08	096.0	0.998	0.004	0.953	0.018	6.535e-03	115,122
15.	rs12958048	18	53101598	A	0.385	3.376e-08	1.033	1.001	0.003	1.027	0.010	1.109e-02	114,873
16.	rs10514301	ъ	87939654	Т	0.165	3.627e-08	1.047	1.002	0.003	1.024	0.015	1.124e-01	114,704
Ē					٠.		:				J. L		

The top 16 independent genome-wide significant loci for PGC lifetime MDD diagnosis tested for association with estimated lifetime diagnosis in the independent UKBB sample. Estimated effect in the PGC were corrected for bias due to the winner's curse and used to estimate power to detect associations in the UKBB. Three loci were significant in the UKBB at p < .05/16. The 95% CI for the number of replications to be expected given power in the UKBB was 2 - 7 (S4.6). See S4.5 for further details.

 † Unbiased estimator correcting for winner's curse ([38]); ‡ Power to detect corrected locus effects in UKBB at $\alpha_{CG} = .05/16$; *Significant at p < .05/16.

REFERENCES 71

References

[1] Cock, P. J. A. et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009). URL https://academic.oup.com/bioinformatics/article/25/11/1422/330687.

- [2] National Center for Biotechnology Information, US National Library of Medicine & National Institutes of Health. PubMed. URL https://www.ncbi.nlm.nih.gov/pubmed/.
- [3] HUGO Gene Nomenclature Committee (HGNC) & European Molecular Biology Laboratory. HGNC Database. URL www.genenames.org.
- [4] Yates, B. et al. Genenames.org: the HGNC and VGNC resources in 2017. Nucleic Acids Research 45, D619–D625 (2017).
- [5] Wang, W. Exact Optimal Confidence Intervals for Hypergeometric Parameters. *Journal of the American Statistical Association* **110**, 1491–1499 (2015). URL https://doi.org/10.1080/01621459.2014.966191.
- [6] Ferreira, M. A. R. et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1c in bipolar disorder. Nature genetics 40, 1056-1058 (2008). URL https://www.ncbi.nlm.nih. gov/pmc/articles/PMC2703780/.
- [7] Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. *Bioinformatics (Oxford, England)* **26**, 2190–2191 (2010).
- [8] Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nature Genetics 50, 668–681 (2018). URL https://www.nature.com/articles/s41588-018-0090-3.
- [9] Bycroft, C. et al. Genome-wide genetic data on ~500,000 UK Biobank participants. bioRxiv 166298 (2017).
 URL https://www.biorxiv.org/content/early/2017/07/20/166298.
- [10] Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4, 7 (2015).
- [11] Purcell, S. M. & Chang, C. PLINK 1.9. URL www.cog-genomics.org/plink/1.9/.
- [12] Border, R. et al. Imputation of Behavioral Candidate Gene Repeat Polymorphisms in 486,551 Publicly-Available UK Biobank Individuals. bioRxiv 358267 (2018). URL https://www.biorxiv.org/content/early/2018/06/29/358267.
- [13] Heils, A. et al. Allelic variation of human serotonin transporter gene expression. Journal of Neurochemistry 66, 2621–2624 (1996).
- [14] Smith, D. J. et al. Prevalence and Characteristics of Probable Major Depression and Bipolar Disorder within UK Biobank: Cross-Sectional Study of 172,751 Participants. PLOS ONE 8, e75362 (2013). URL http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0075362.
- [15] Spitzer, R. L., Kroenke, K., Williams, J. B. & Group, P. H. Q. P. C. S. Validation and utility of a self-report version of PRIME-MD: the PHQ primary care study. *Jama* **282**, 1737–1744 (1999).
- [16] First, M. B., Gibbon, M., Spitzer, R. L. & Williams, J. B. W. User's guide for the structured clinical interview for DSM-IV axis I Disorders—Research version. *New York: Biometrics Research Department, New York State Psychiatric Institute* (1996).
- [17] Townsend, P. Deprivation. *Journal of social policy* **16**, 125–146 (1987). Citation Key: townsend1987deprivation bibtex[publisher=Cambridge University Press].
- [18] Yzerbyt, V. Y., Muller, D. & Judd, C. M. Adjusting researchers' approach to adjustment: On the use of covariates when testing interactions. *Journal of Experimental Social Psychology* **40**, 424-431 (2004). URL http://www.sciencedirect.com/science/article/pii/S0022103103001598.

REFERENCES 72

[19] Hull, J. G., Tedlie, J. C. & Lehn, D. A. Moderator Variables in Personality Research: The Problem of Controlling for Plausible Alternatives, Moderator Variables in Personality Research: The Problem of Controlling for Plausible Alternatives. Personality and Social Psychology Bulletin 18, 115–117 (1992). URL https://doi.org/10.1177/0146167292182001.

- [20] Keller, M. C. Gene Environment Interaction Studies Have Not Properly Controlled for Potential Confounders: The Problem and the (Simple) Solution. *Biological Psychiatry* **75**, 18-24 (2014). URL https://www.biologicalpsychiatryjournal.com/article/S0006-3223(13)00825-1/abstract.
- [21] Björck, Å. Numerical methods in matrix computations, vol. 59 (Springer, 2015).
- [22] Leeuw, C. A. d., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: Generalized Gene-Set Analysis of GWAS Data. *PLOS Computational Biology* 11, e1004219 (2015). URL http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004219.
- [23] MacArthur, J. et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Research 45, D896-D901 (2017). URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5210590/.
- [24] Lips, E. S. et al. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia. Molecular Psychiatry 17, 996–1006 (2012).
- [25] Ruano, D. et al. Functional gene group analysis reveals a role of synaptic heterotrimeric G proteins in cognitive ability. American Journal of Human Genetics 86, 113–125 (2010).
- [26] Liu, J. Z. et al. A versatile gene-based test for genome-wide association studies. American Journal of Human Genetics 87, 139–145 (2010).
- [27] Consortium, T. . G. P. A global reference for human genetic variation. *Nature* **526**, 68–74 (2015). URL https://www.nature.com/articles/nature15393.
- [28] Purcell, S., Cherny, S. S. & Sham, P. C. Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. *Bioinformatics* 19, 149–150 (2003). URL https://academic.oup.com/bioinformatics/article/19/1/149/316873.
- [29] Kessler, R. C. & Bromet, E. J. The epidemiology of depression across cultures. *Annual review of public health* 34, 119–138 (2013). URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4100461/.
- [30] Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nature Genetics 47, 1236–1241 (2015). URL https://www.nature.com/articles/ng.3406.
- [31] Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nature Genetics 47, 291–295 (2015). URL https://www.nature.com/articles/ng.3211.
- [32] Loh, P.-R., Kichaev, G., Gazal, S., Schoech, A. P. & Price, A. L. Mixed-model association for biobank-scale datasets. *Nature genetics* 1 (2018).
- [33] Wood, A. R. et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nature Genetics 46, 1173–1186 (2014).
- [34] Morris, A. P. et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. *Nature Genetics* 44, 981–990 (2012).
- [35] Holman, N., Young, B. & Gadsby, R. What is the current prevalence of diagnosed and yet to be diagnosed diabetes in the UK. *Diabetic Medicine* 31, 510-511. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/dme.12397.
- [36] Huang, J. et al. Improved imputation of low-frequency and rare variants using the UK10k haplotype reference panel. Nature Communications 6, 8111 (2015). URL https://www.nature.com/articles/ncomms9111.

REFERENCES 73

[37] Xiao, R. & Boehnke, M. Quantifying and correcting for the winner's curse in genetic association studies. *Genetic epidemiology* 33, 453–462 (2009). URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706290/.

- [38] Zhong, H. & Prentice, R. L. Bias-reduced estimators and confidence intervals for odds ratios in genome-wide association studies. *Biostatistics* 9, 621–634 (2008). URL https://academic.oup.com/biostatistics/article/9/4/621/258822.
- [39] Cross-validated mixed-datatype bandwidth selection for nonparametric cumulative distribution/survivor functions: Econometric Reviews: Vol 36, No 6-9. URL https://www.tandfonline.com/doi/full/10.1080/07474938.2017.1307900?src=recsys.