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The aetiology of individual differences in educational attain-
ment and occupational status includes genetic as well as envi-
ronmental factors1–5 and can change as societies change3,6,7. 
The extent of genetic influence on these social outcomes can 
be viewed as an index of success in achieving meritocratic val-
ues of equality of opportunity by rewarding talent and hard 
work, which are to a large extent influenced by genetic factors, 
rather than rewarding environmentally driven privilege. To 
the extent that the end of the Soviet Union and the indepen-
dence of Estonia led to an increase in meritocratic selection 
of individuals in education and occupation, genetic influence 
should be higher in the post-Soviet era than in the Soviet era. 
Here we confirmed this hypothesis: DNA differences (single-
nucleotide polymorphisms) explained twice as much variance 
in educational attainment and occupational status in the post-
Soviet era compared with the Soviet era in both polygenic 
score analyses and single-nucleotide polymorphism heritabil-
ity analyses of 12,500 Estonians. Our results demonstrate a 
change in the extent of genetic influence in the same popu-
lation following a massive and abrupt social change—in this 
case, the shift from a communist to a capitalist society.

Socioeconomic status (SES), a composite index of educational 
attainment and occupational status, has been shown to be associ-
ated with a range of life outcomes, from life satisfaction and hap-
piness to physical and mental health, and even life expectancy8–12. 
Individual variation in SES in a population has often been assumed 
to be explained entirely by environmental factors. Twin and adop-
tion studies, however, suggest that individual differences in SES are 
substantially genetic in origin1–5, with heritability estimates from 
twin studies of about 50%, meaning that around half of the indi-
vidual differences in SES can be explained by inherited differences 
in an individual’s DNA sequence. It is now possible to estimate heri-
tability directly from DNA using hundreds of thousands of DNA 
differences (single-nucleotide polymorphisms, SNPs) genotyped on 
microarrays (SNP chips) in samples of thousands of unrelated indi-
viduals13. Data of this sort are available for many traits, including 
SES, as a by-product of genome-wide association (GWA) studies. 
Unlike GWA analysis, which aims to identify specific SNPs associ-
ated with a trait, SNP heritability relates overall similarity between 
individuals across all SNPs on a SNP chip to the individuals’ pheno-
typic similarity on a trait, without knowing which SNPs are associ-
ated with the trait.

SNP heritabilities have been estimated as about 20% for educa-
tional attainment, occupational status and combined SES4,14–18. SNP 

heritability (20%) is less than heritability estimates from twin stud-
ies (50%), because SNP heritability, like GWA analysis, is limited to 
the additive effects of common SNPs included on SNP chips. For 
this reason, SNP heritability is the ceiling for GWA studies.

GWA data can also be used to create genome-wide polygenic 
scores (GPSs) that aggregate thousands of SNP associations across 
the genome to predict the trait of interest. Individual SNP associa-
tions typically account for less than 0.1% of the variance, so are not 
individually useful for prediction. GPSs can be created for each 
individual and correlated with a trait in an independent sample, 
which yields an index of what could be called ‘GPS heritability’, the 
extent to which GPS can explain variance in a trait. A GPS from a 
GWA study of educational attainment (EduYears)19 predicts 4% of 
the variance of educational attainment in independent samples19–22. 
No GWA studies of occupational status have been reported, but 
educational attainment and occupational status correlate about 0.50 
phenotypically23–25, and the EduYears GPS for educational attain-
ment predicts 2% of the variance of occupational status21, 2% of the 
variance of SES21,26 and 7% of the variance of family SES using chil-
dren’s DNA27. GPS heritability (2–7%) is lower than SNP heritability 
(20%), in part because GPS heritability is limited to specific SNPs 
shown to be associated with a trait and it includes the trait’s mea-
surement error.

Heritability—including GPS, SNP and twin heritability—refers 
to the proportion of individual differences that can be explained by 
inherited differences in individuals’ DNA in a particular population 
at a particular time. It describes what is, not what could be28. The 
reported heritability of educational attainment and occupational 
status from twin studies differs across birth cohorts and across 
countries2,3,5–7,19,29. Specifically, it has been hypothesized that heri-
tability of educational attainment can change following reform in 
educational policy2,6. Higher heritability estimates in twin studies 
have been noted in countries where the educational curriculum is 
highly standardized, such as the UK, because the standardization 
reduces environmental differences between schools30. However, 
research so far has yielded mixed results, with some studies showing 
change in heritability estimates following a change in curriculum or 
changes in the heritability of achievement across birth cohorts, and 
other studies not showing such an effect3,6,29. The major limitation to 
date is that most research has been greatly underpowered; the twin 
method requires several thousand twin pairs to achieve sufficient 
power to detect such gene–environment interactions31.

Few studies have investigated changes in SNP heritability as a 
function of environmental change4,19; this method requires several  

Genetic influence on social outcomes during and 
after the Soviet era in Estonia
Kaili Rimfeld   1*, Eva Krapohl1, Maciej Trzaskowski2, Jonathan R. I. Coleman   1,3, Saskia Selzam1, 
Philip S. Dale   4, Tonu Esko5, Andres Metspalu5 and Robert Plomin1

Nature Human Behaviour | www.nature.com/nathumbehav

mailto:Kaili.rimfeld@kcl.ac.uk
http://orcid.org/0000-0001-5139-065X
http://orcid.org/0000-0002-6759-0944
http://orcid.org/0000-0002-7697-8510
http://www.nature.com/nathumbehav


© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Letters NATUrE HUmAn BEhAviOUr

thousand unrelated individuals to detect gene–environment inter-
actions. Only one study has explored secular changes in GPS heri-
tability. Using the EduYears GPS, GPS heritability of educational 
attainment was reported to be greater in older as compared to 
younger cohorts in Sweden19. This decline in heritability is opposite 
to the results found in a twin study in Norway2 and also in recent 
meta-analyses of twin data3. However, no evidence has yet been 
reported for significant changes in GPS or SNP heritability esti-
mates following a major and abrupt social change.

Here we use GPS heritability and SNP heritability to estimate 
genetic influence on individual differences in educational attain-
ment and occupational status for 12,500 adults participating in the 
Estonian Genome Centre, University of Tartu (EGCUT). EGCUT 
affords the unique opportunity to compare heritabilities in a single 
population before and after the collapse of the Soviet Union. Estonia 
was occupied by the Soviet Union after World War II and regained 
independence in 199132.

The post-Soviet era is generally assumed to be more meritocratic 
in the sense that access to education and occupation is to a greater 
extent based on ability32,33. Given that education- and occupation-
related abilities are substantially due to inherited DNA differences 
between individuals, the greater equality of opportunity implied by 
meritocracy should diminish the impact of environmental inequali-
ties such as privilege or privation. Inherited DNA differences will 
remain and will account for a relatively larger portion of differences 
among individuals. In this sense, heritability can be viewed as an 
index of equality of opportunity and meritocracy. In an entirely 
genetically driven meritocracy, genetic differences in ability would 
account for all individual differences in educational attainment and 
occupational status. Environmental differences that convey privi-
lege or privation would account for none.

We used the EGCUT sample to test the hypothesis that heritabil-
ity of educational attainment and occupational status differs after 
a major environmental change. We compared SNP heritability and 
GPS heritability for educational attainment and occupational status 
before and after the collapse of the Soviet Union in Estonia. If inde-
pendence led to greater meritocracy in terms of increased environ-
mental opportunity, the heritability of educational attainment and 
occupational status should be higher for individuals who lived the 
majority of their studying and working lives in independent Estonia 
as compared to those who lived under the Soviet Union.

Supplementary Table 1 shows means and standard deviations for 
height, educational attainment, occupational status and SES for the 
whole sample, males and females separately and for historical eras 
separately. Analysis of variance (ANOVA) results indicate that his-
torical group and sex explained up to 4% of the variance for the SES 
variables. For subsequent analyses, we controlled for sex effects by 
using sex-regressed standardized residuals.

Figure 1 compares GPS heritability in the Soviet and post-Soviet 
eras for the EduYears GPS (see Methods). For the whole sample, GPS 
heritability was 1.9% for occupational status and 2.3% for educa-
tional attainment (Fig. 1). Using the less stringent cutoff of 15 years 
(Fig. 1a), GPS heritability was significantly greater in the post-Soviet 
era compared to the Soviet era for occupational status and educa-
tional attainment (see Supplementary Table 2 for all comparisons). 
These results are based on a GPS calculated at a 0.1 GWA study 
P value threshold, which provided on average the best prediction 
across phenotypes and across historical eras. (See Supplementary 
Fig. 1 for an explanation of variance across multiple thresholds.)

The more stringent cutoff of 10 years yielded even larger GPS 
heritability differences (Fig. 1b). For occupational status, GPS heri-
tability was significantly greater in the post-Soviet era (5.6%) com-
pared to the Soviet era (1.7%). Similarly for educational attainment, 
GPS heritability was significantly greater in the post-Soviet era 
(6.1%) than in the Soviet era (2.1%). (See Supplementary Table 2 for 
all comparisons, including the composite SES score.)

The GPS heritability estimates for composite SES (Supplementary 
Fig. 1) in the post-Soviet era (~7%) are in line with the GPS heri-
tability estimates obtained in the UK27, presumably a meritocratic 
society, for family SES using offspring GPS. The difference arises 
from a significantly lower GPS heritability in the Soviet era. The 
results were very similar when additional analyses were run using 
variables that were not sex corrected (Supplementary Fig. 2) and 
taking the transition period between the Soviet and post-Soviet era 
into account (Supplementary Fig. 3).

GPS heritability was also calculated for males and females sepa-
rately (Supplementary Fig. 4). The difference between GPS herita-
bility in the Soviet and post-Soviet era was substantially greater for 
females compared to males, especially when a stricter cutoff of 10 
years was used. This finding suggests that increased meritocracy 
after the Soviet era especially favoured women, although the sample 
size and therefore the power of analyses were reduced when the 
sample was divided by gender.

We explored the extent to which the difference in GPS heritabil-
ity between the Soviet and post-Soviet era differs by birth cohort. 
We divided the sample into birth cohorts using 10-year and 5-year 
intervals (Supplementary Fig. 5). The difference in GPS heritabil-
ity was greatest between the oldest and youngest birth cohort, the 
two birth cohorts that most clearly represent the Soviet versus 
post-Soviet eras. During the Soviet era, GPS heritability estimates 
fluctuate across birth cohorts but do not show a general trend of 
increasing GPS heritability, which could suggest that birth order 
itself does not underlie the Soviet versus post-Soviet GPS heritabil-
ity difference. (See Supplementary Fig. 6 for the distribution of sam-
ple size and SES for the Soviet and post-Soviet birth cohort groups 
and Supplementary Fig. 7 for the distribution of EduYears GPS for 
the Soviet and post-Soviet birth cohort groups.)

We also calculated GPS scores using summary statistics from 
a GWA analysis of household income and social deprivation14, 
although this study was conducted using only the UK Biobank sam-
ple (N ~ 112,000). However, these GPS scores are much less power-
ful predictors, explaining less than 1% of variance in independent 
samples. For this reason, these GPS scores explained less than 1% 
of the variance in our SES variables regardless of the historical era 
(Supplementary Figs. 8 and 9).

We also used height as a control variable. EduYears GPS heritabil-
ity was less than 1% regardless of the historical era (Supplementary 
Fig. 10). This slight association is to be expected because height cor-
relates significantly but slightly with SES variables. For example, the 
genetic correlation between household income (a good proxy for 
SES) and height has been shown to be around 0.2 (ref. 14).

Turning to SNP heritability, it should be noted that our sample 
had much less power to detect SNP heritability differences between 
the Soviet and post-Soviet groups. For the whole sample, SNP 
heritabilities were 15% (standard error (s.e.) of 0.03) for occupa-
tional status and 18% (s.e. 0.03) for educational attainment (Fig. 2). 
Despite having less power to detect SNP heritability, SNP heritabili-
ties were almost twice as high in the post-Soviet than the Soviet era 
for educational attainment using age 15 years as a cutoff (Fig. 2). In 
the Soviet era, SNP heritabilities were 17% (s.e. 0.04) for occupa-
tional status and 18% (s.e. 0.04) for educational attainment. In con-
trast, in the post-Soviet era, SNP heritabilities were 23% (s.e. 0.16) 
and 37% (s.e. 0.14), respectively. Although SNP heritabilities were 
larger in the post-Soviet era, these differences were not significantly 
different, as is evident from the standard errors.

Height was also used as a control variable for analyses of SNP 
heritabilities. SNP heritability was 32% for height in the whole 
sample. For the Soviet era, SNP heritability was 33% for height; 
the post-Soviet estimates were not significantly different (40%) 
(Supplementary Fig. 11).

Our main finding is that heritabilities are higher for SES vari-
ables in the post-Soviet era as compared to the Soviet era in the 
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same Estonian population. GPS heritability for the composite SES 
measure (mean of educational attainment and occupational status) 
was 7.5% in the post-Soviet era and 2.3% in the Soviet era using the 
more stringent cutoff of 10 years. The variance in SES explained by 
the EduYears GPS seems small compared to the twin study estimates 
of about 50% and SNP heritability estimates of about 25%. However, 
we are only in the early stages of GPS research and the predictions 
are becoming stronger. SNP heritabilities showed a similar trend 
as GPS heritabilities: SNP heritabilities for educational attainment 

were twice as high in the post-Soviet era (37%) as compared to the 
Soviet era (17%).

A possible explanation for the increased heritability is increased 
meritocracy in Estonia following the restoration of independence 
in 1991. By meritocracy, we refer to equal opportunity for access 
to education and occupation and, when selection occurs, to meri-
tocratic selection based on talent and effort, which are substan-
tially influenced by genetic factors, rather than by environmentally 
driven privilege or discrimination. A meritocratic mechanism for 
the increased heritability of educational attainment and occupa-
tional status in the post-Soviet era would be genotype–environment 
correlation in the sense that individuals with equal opportunities 
are better able to select or to be selected for educational and occu-
pational environments correlated with their genetic propensities. 
When environmental differences in access to education and occu-
pation diminish, genetic differences increasingly account for educa-
tional attainment and occupational status.

There are, of course, other possible explanations for increased 
GPS heritability in the post-Soviet era. The largest increase in GPS 
heritability was observed for participants who were in the young-
est cohort when Estonia regained independence. Much changed in 
society after the collapse of the Soviet Union, including wealth, cul-
ture and values, all of which might contribute to the change in GPS 
heritability for the cohort who lived, studied and worked the major-
ity of their lives in independent Estonia. Migration and changing 
population dynamics could also have affected the study results, 
although it should be noted that there was substantial migration 
during the Soviet era (within the Soviet Union) as well as after the 
Soviet era. However, we see no substantive hypothesis about the 
increased heritability following the collapse of the Soviet Union as 
obvious as increased meritocracy, although this cannot be definitely 
tested. One point in favour of the meritocracy hypothesis is that 
GPS heritability for SES in modern post-Soviet Estonia is similar to 
GPS heritability in the UK, presumably a meritocratic society. The 
difference is that GPS heritability for SES is lower in the Soviet era.

Another possible explanation is methodological. GPS scores 
were calculated for EduYears on the basis of a meta-analytic GWA 
of heterogeneous cohorts. If the GWA discovery sample weights 

5.38e-64

4.44e-49
1.2e-47

4.54e-38

1.88e-17

6.1e-14

0.00

0.02

0.04

0.06

0.08
a b

V
ar

ia
nc

e 
ex

pl
ai

ne
d 

by
 E

du
Y

ea
rs

 G
P

S

Post-Soviet era

Whole sample

Soviet era

Post-Soviet era

Whole sample

Soviet era

5.38e-64

4.44e-49
6.21e-56

1.83e-42

1.26e-10

1.61e-09

EA OS
EA_S

OS_S

EA_P
S

OS_P
S

0.00

0.02

0.04

0.06

0.08

EA OS
EA_S

OS_S

EA_P
S

OS_P
S

V
ar

ia
nc

e 
ex

pl
ai

ne
d 

by
 E

du
Y

ea
rs

 G
P

S

Fig. 1 | Variance explained by EduYears GPS in the post-Soviet and Soviet groups. a,b, The GPS was calculated using a 0.1 GWA study P value threshold 
for educational attainment (EA) and occupational status (OS) for the whole EGCUT sample (N(EA) =​ 12,483; N(OS) =​ 11,419) and when divided into 
historical eras using two cutoffs: the post-Soviet (PS) group included participants 15 years or younger when independence was regained, and the 
Soviet (S) group included the rest of the participants (N(EA_S) =​ 10,381; N(OS_S) =​ 9,417; N(EA_PS) =​ 2,102; N(OS_PS) =​ 2,002) (a); the post-Soviet 
(PS) group included participants 10 years or younger when independence was regained and the Soviet (S) group included the rest of the participants 
(N(EA_S) =​ 11,808; N(OS_S) =​ 10,767; N(EA_PS) =​ 675; N(OS_PS) =​ 652) (b).
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Fig. 2 | SNP heritabilities showing the proportion of variance explained by 
additive effects of common SNPs for the whole EGCUT sample and for the 
Soviet and post-Soviet groups using a cutoff of 15 years. SNP heritabilities 
were adjusted for population stratification. N(EA) =​ 12,483; N(OS) =​ 11,419; 
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were closer to the post-Soviet sample in the present study, then 
more variance would be explained in the post-Soviet compared to 
Soviet sample.

Equal educational opportunities
The meritocracy hypothesis assumes that educational and occupa-
tional success was less meritocratic in the Soviet era. In the Soviet 
era, access to primary education was universal and universal sec-
ondary education was introduced in the 1960s. However, the quality 
of teaching and even the curricula varied widely across schools34,35. 
Within schools, students were divided into one of the three different 
tracks (with limited movement between tracks): vocational train-
ing, secondary education and (special) secondary education36. This 
tracking was partly done based on merit (school achievement), but 
social-political ranking played a significant part as well. The num-
ber of students admitted to each track depended on the economic 
and social goals of central planning at the time; individual aspira-
tions and ability were not considered to be as important35. Access 
to tertiary education from lower ‘ranks’ in the social-political sys-
tem was limited; for example, students who were religious were not 
admitted34,36. In this way, the Soviet education system created envi-
ronmental inequalities both directly and indirectly35. Importantly, 
university education was not as highly valued in society as it is 
now and this was accompanied by limited competition for uni-
versity places, with an average of only two applicants per position. 
Admissions to university remained low throughout the Soviet era, 
which restricted any selection, meritocratic or not.

Since regaining independence, education in Estonia has become 
more meritocratic in terms of educational opportunity. Many edu-
cational reforms were introduced after the collapse of the Soviet 
Union with the aim of building a more egalitarian and effective edu-
cational system. Currently, almost all students complete elementary 
education, and the rate of completing secondary education is among 
the highest in OECD countries. Estonian equality in education is 
now above the OECD average, with limited variation in teaching 
standards between schools. The quality of teaching is considered 
to be excellent according to international standards, and Estonia is 
ranked among the highest performing educational systems accord-
ing to the Programme for International Student Assessment surveys 
in 2012 and 201537,38. This overall educational excellence, and the 
limited number of selective or private schools, suggests that there is 
equal opportunity and access to good education for all at primary 
and secondary levels of education. We hypothesized that equality of 
opportunity should increase the heritability of educational achieve-
ment by making it possible for children to select, modify and choose 
educational experiences correlated with their education-related 
genetically influenced propensities, which include appetites as well 
as abilities. Educational achievement in turn contributes impor-
tantly to eventual educational attainment and occupational status.

For tertiary education, in addition to self-selection, students 
are now selected for university largely on the basis of ability and 
prior achievement, rather than environmentally driven privilege. 
Selection is not based on socio-political or religious considerations 
as in the Soviet era. Nor is selection based on the ability to pay for 
tuition, because almost all university education is free. There is 
also greater opportunity for selection for university admission in 
the post-Soviet era because university applications and admissions 
increased exponentially in the 1990s; for example, applications to 
the University of Tartu have increased threefold compared to the 
Soviet era34.

Equal access to occupation
During the Soviet era, the economy and labour market was 
mainly characterized by centralized control, with the majority 
of the workforce assigned to jobs in manufacturing and agricul-
ture. Occupational status was determined more by loyalty to the 

Communist party than by ability, achievement or qualifications. 
Recommendations for job positions and promotion always came 
from Party leaders, although educational qualifications were also 
needed for certain positions39. The economy and labour market had 
very limited workforce mobility36.

Inequality in occupations during the Soviet era was even more 
dramatic for females than males. During the Soviet era there was 
an increase in participation of women in the workforce, meaning 
that both men and women were largely employed. However, this did 
not lead to occupational equality; women often did jobs requiring 
a lower level of skill40. Although Soviet ideology argued for gender 
equality, this was not carried out in practice41.

The transition from the Soviet Union to a prosperous indepen-
dent Estonia was more difficult than anticipated. After restoration 
of independence in Estonia, living standards were low, the economy 
was struggling, and the situation worsened with a major recession 
until 1994 when Estonia joined the European Union32,33. Equality 
of opportunity increased as Estonia became more integrated with 
the West42.

These historical events may explain why the EduYears GPS did 
not explain more variance in SES in the transition time when com-
pared to the Soviet era. Our results suggested that EduYears GPS 
heritability is greatest for the youngest participants who had lived, 
studied and worked in independent Estonia for the longest period.

Gender equality in Estonia started to improve, albeit gradually, 
after the collapse of the Soviet Union43. This was mirrored by an 
interesting facet of the results in the present study showing that GPS 
heritability increased more dramatically for females than for males 
following the collapse. These results further support the merito-
cratic hypothesis, specifically in relation to gender.

Future research directions
The present analyses excluded participants who were younger than 
25 years at the time of data collection because they may not yet have 
achieved their highest educational qualifications or reached their 
highest occupational status. Linking the EGCUT database with data 
from the Estonian Department of Education will make it possible in 
the future to include those individuals who were excluded as they 
complete their education and reach their ultimate occupational sta-
tus. This will increase the size of our post-Soviet sample and thus 
the power of our SNP and GPS heritability comparisons. Because 
these individuals grew up completely in the post-Soviet era, we pre-
dict that they will show even greater heritability of SES. Increased 
sample size would also provide greater power to investigate further 
gender differences in GPS heritability.

Another interesting direction for research concerns the rela-
tionship between education and fecundity. Decreased fecundity in 
Iceland among highly educated citizens has been reported to result 
in lower GPS scores for EduYears, although the effect is very small20. 
According to Statistics Estonia, the population in Estonia has been 
decreasing for decades (http://www.stat.ee/news-release-2017-008), 
although it increased for the first time in 2016. We plan to inves-
tigate the extent to which decreasing fecundity comes dispropor-
tionately from highly educated individuals, in which case we might 
expect lower average GPS in the most recent birth cohorts. Our pre-
liminary analyses did not support this hypothesis in that the average 
EduYears GPS did not differ across birth cohorts (Supplementary 
Fig. 12), although we did not study fecundity here.

Studying parent–offspring resemblance to understand intergen-
erational social mobility is also part of our future research plans 
in EGCUT. Intergenerational social mobility is often assumed to 
be solely due to environmental factors. For example, the OECD 
uses parent–offspring resemblance in SES outcomes to assess 
intergenerational social mobility, assuming that this resemblance 
is environmentally mediated. Our current results and results from 
other studies show that educational and occupational outcomes are 
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partly explained by genetic factors. Because parents and offspring 
are on average 50% similar genetically, parent–offspring resem-
blance is also likely to show a genetic influence for SES. From this 
perspective, parent–offspring resemblance could be viewed as an 
index of equality rather than inequality. In other words, if environ-
mental inequalities were eliminated, genetic resemblance between 
parents and offspring would completely account for parent– 
offspring resemblance.

Although our analyses provided evidence for changes in GPS and 
SNP heritabilities following the major social change from a commu-
nist to a capitalist society, no definite conclusions can be drawn. It 
will be necessary to replicate the results of the present analyses using 
data from a different country that has gone through similar abrupt 
social change. A country that used to be part of the Soviet Union 
and has regained independence would be ideal; however, we are not 
aware of such a replication sample available at this time. We hope 
that our results lead to future molecular genetic studies research-
ing gene–environment interactions of this sort that are now possible 
using GPS scores.

Another direction for future research is to consider intermedi-
ate phenotypes such as cognitive abilities that might mediate these 
changes in the distal outcomes of educational attainment and occupa-
tional status. In addition, the precision and power of all of these SNP 
and GPS analyses will increase as the power of GWA studies increases.

Meritocracy or social justice?
In closing, we wish to emphasize that we are not advocating meri-
tocracy; these issues are more a matter of values than science. At 
first glance meritocracy seems unquestionably good, but it could 
have unintended consequences such as creating social inequalities if 
societal rewards such as wealth are doled out on the basis of geneti-
cally driven abilities. The word meritocracy was coined by Michael 
Young, whose book, The Rise of the Meritocracy44, was meant as a 
cautionary tale about the dangers of meritocracy. The value system 
underlying meritocracy is that the point of education is to get better 
test scores in order to get better jobs, and that the point of occupa-
tions is to achieve high status and make lots of money. A different 
way to look at education is as a time to learn basic skills but also 
to learn how to learn and to enjoy learning. It is a decade when 
children can find out what they like to do and what they are good 
at doing, finding their genetic selves. If education were universally 
good, there would be no need for selection, especially at the level of 
primary and second education, and thus there would be no need to 
apply meritocratic criteria.

Similarly, with occupations, where selection cannot be avoided, 
we will end up with a lot of frustrated people if we only value high-
status occupations that are highly remunerated. Society needs peo-
ple who are good careworkers, nurses, plumbers, public servants 
and people in the service industry. To the extent that selection is 
necessary it should be meritocratic, but it is possible to imagine an 
occupational system that is not driven so much by monetary reward. 
For example, society could choose to reduce income inequality with 
a tax system that redistributes wealth.

In his book, The Myth of Meritocracy, James Bloodworth45 argues 
that meritocracy leads to an inherent inequality of opportunity and 
reward based on genetic differences. He suggests that we need to 
replace meritocracy with what he calls a just society in which every-
one could live well.

Methods
Sample. The sample for the present study was drawn from the EGCUT sample. 
Ethical approval was granted by the Research Ethics Committee of the University 
of Tartu (approval 245/T-16).

EGCUT is a population-based study with a sample size of over 52,000 
individuals (all participants ≥​18 years of age), which comprises 5% of the adult 
population in Estonia. Genome-wide genetic data are available for approximately 
20,000 of these individuals. EGCUT has been shown to be representative of the 

Estonian population in terms of age and geographical location, whereas females 
are overrepresented, 66% female as compared to 55% in the adult population 
in Estonia46. EGCUT is also reasonably representative in terms of educational 
attainment when compared to national figures from the Department of Statistics 
Estonia (http://www.stat.ee/phc2011) (Supplementary Table 4). The initial sample 
for the present study included all participants with available genotypic and 
phenotypic data. All individuals who were 25 years or younger were excluded from 
the analyses, as it is possible that these young individuals had not yet reached their 
highest educational level and highest occupation. The sample size before exclusions 
included 17,990 participants (7,409 males and 10,581 females). After exclusions 
(removing participants who were under 25 at the time of data collection and 
following quality control) the sample size was reduced to 12,490. Sample sizes for 
each measure separately are presented in Supplementary Table 1.

The sample was divided into two historical eras: the Soviet era and the post-
Soviet era. Estonia regained independence in 1991; consequently, all participants 
who were born on or after 1976 went into secondary or further education in the 
post-Soviet era (that is, they were aged 15 years or younger when Estonia regained 
independence) and the rest of the sample was aged 16 years or older when Estonia 
regained independence. This is an arbitrary cutoff that does not take into account 
the transition time between the communist and capitalist society because societal 
changes take time to have an effect on people’s lives. We assumed that young 
individuals were in the middle of their educational career, still making decisions 
about their universities and postgraduate degrees. We therefore repeated the 
analyses allowing for a transition period before and after the collapse of the Soviet 
Union assigning participants who were 16–25 years old in 1991 to a ‘transition’ 
group. In addition, we used another cutoff to define the Soviet and post-Soviet 
groups, assigning all participants who were aged 10 years or younger at the 
time of the restoration of independence in Estonia to the post-Soviet group and 
participants who were older than 10 years to the Soviet group.

Measures. Educational attainment. Educational attainment was assessed using a 
10-point self-reported scale from no elementary education to postgraduate degree. 
The measure and scoring followed closely the International Standard Classification 
of Education (ISCED: http://www.uis.unesco.org/Education/Pages/international-
standard-classification-of-education.aspx). However, some participants were 
studying towards an undergraduate or postgraduate degree at the time of data 
collection, so additional points were added to the scale. Our measure included the 
following ten categories (rather than the eight categories that were in the original 
scale) for educational attainment: (1) no educational qualifications, (2) elementary 
school education, (3) basic education/junior grade of high school, (4) secondary 
school/high school education, (5) vocational qualification/community college, (6) 
professional higher education, (7) studying towards university degree, (8) university 
degree, (9) studying towards postgraduate degree and (10) postgraduate degree.

Occupational status. Occupational status was assessed with two questions: ‘What 
is your professional status right now?’ and ‘What has been your main professional 
status (the occupation you kept the longest)?’ These occupational status responses 
were scored according to the International Standard Classifications of Occupations 
(ISCO, http://www.ilo.org/public/english/bureau/stat/isco/). ISCO is a widely 
used and reliable measure47–50. ISCO classification assigns occupational status to 
broad groups (as well as more specific subgroups), taking into account the skills 
and education level required for occupation as well as the potential earnings. 
The present study used nine occupational status groups, classified in ISCO as the 
following categories, scored from 1 to 9 respectively: (1) elementary occupations 
(cleaners, helpers, labourers), (2) plant and machine operators, assemblers, (3) 
craft and related trades workers, (4) skilled agricultural, forestry and fishery 
workers, (5) service and sales workers, (6) clerical support workers, (7) technicians 
and associate professionals, (8) professionals and (9) legislators, senior officials 
and managers. The current occupational status and the main occupational status 
correlated 0.46. Both the current and the main occupational status had missing 
data; therefore, to increase power and sample size, a composite measure of 
occupational status was created by taking the mean of the current and longest held 
occupations; if only one measure were available then that measure was used. The 
same measure was used for both the Soviet and post-Soviet eras. Although, the 
classification of occupational status and the potential pay could have been different 
during the Soviet era, we assume that occupational positions (and the prestige of 
them) still fit into the broad ISCO categories.

SES. Because educational attainment and occupational status correlated 0.62, 
we calculated a mean as an index of general SES. SES is usually operationalized 
as a composite measure that includes income as well as occupational status and 
educational attainment. Although the measure of SES used in the present study 
does not include family income, occupational classification takes into account 
the potential earnings and prestige of the occupation. Therefore, we consider our 
composite measure of occupational status and educational attainment to be a 
reasonable index of SES.

Height. Height was used as control variable in the analyses; we had no hypothesis 
about changes in the SNP or GPS heritabilities following the shift from a 
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communist to a capitalist society. Height was assessed in person by the researchers 
and was measured in centimetres.

Genotyping. Venous blood was collected from all 52,000 participants of EGCUT. 
DNA and plasma were immediately extracted from the blood and stored in the 
EGCUT Core Laboratory in Tartu, Estonia. Genome-wide genotyping was assayed 
for 20,000 participants using three Illumina arrays: Illumina HumanCoreExome, 
Illumina Human370 CNV and Illumina OmniExpress in the Core Laboratory of 
EGCUT. Data were harmonized across the three arrays, and harmonized data were 
used for all analyses (see section ‘Quality control’).

Quality control. Genotype quality control was performed using Illumina 
GenomeStudio 3.1 and PLINK 1.0751. Standard quality control analyses were 
conducted at both the individual level and the SNP level, excluding individuals 
with a genotype call rate <​95%, sex discrepancies (using the heterozygosity rate 
of the X chromosome) and excess heterozygosity (mean ±​ 3 s.d.). Additionally, 
duplicates and multidimensional-scaling (MDS) outliers were excluded. At the 
SNP level, we excluded SNPs with a minor allele frequency (MAF) of <​1%, call rate 
<​95%, failure of the Hardy–Weinberg equilibrium (HWE) exact test (threshold 
of 1 ×​ 10−6), A/T or C/G, and sex chromosome SNPs were removed. Phasing and 
imputation of the cleaned data were performed using ShapeIT v.252 and IMPUTE 
v.2.3.153 with 1000 Genomes Phase 3 Oct 2014 imputation reference panel based 
on 5,008 haplotypes4 (www.1000genomes.org). IMPUTE2 builds custom-reference 
panels for each individual to be imputed and so is the best-suited software 
for imputing genotype data from Estonians, for whom no population-specific 
reference panel exists.

After imputation, further quality control was carried out. SNPs with 
MAF <​ 1%, and SNPs with poor imputation quality (info score <​ 0.30) or failure 
of the HWE exact test (threshold 1 ×​ 10−6) were removed. We harmonized the 
genotyped data sets across the three arrays, removing duplicate individuals and 
duplicate markers. Other standard quality control methods were applied, removing 
SNPs and samples with call rate <​ 0.97. Quality control post imputation was 
performed on each array separately, and was repeated after harmonization. After 
harmonization and quality control the final sample included 4,052,281 variants and 
16,397 individuals (see Supplementary Table 5 for the number of SNPs dropped 
after each step of quality control).

To control for ancestral stratification, principal component analyses were 
performed after pruning to remove markers in linkage disequilibrium (200 kb 
window using R2 >​ 0.05). The first 10 principal components were used as covariates 
in the genetic analyses.

Statistical analyses. Means and variances for measures were calculated, comparing 
the Soviet era and post-Soviet era, as well as sex differences. Mean differences were 
tested using ANOVA (Supplementary Table 1). Because significant, though small, 
sex differences emerged for both occupational status and educational attainment, 
explaining 2–4% of the variance in SES measures, we corrected the measures for 
mean sex differences using the regression method. In addition, we repeated the 
analyses without sex correction and calculated the variance explained by GPSs 
created separately for males and females. No correction for multiple testing was 
done, as all analyses tested just one hypothesis and we were interested in the effect 
size rather than the significance level.

GPSs. GPSs aggregate the effects of individual SNPs shown to be associated with 
the trait in a GWA study54. GPSs were calculated for 16,398 participants using  
P values and β weights obtained from summary statistics from the GWA analysis  
in ref. 19 of years of education (EduYears) with the PRSice program55, using 
multiple P value thresholds (0.001, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5). Of the 293,723 
participants in the EduYears GWAS, the present study excluded 23andMe 
participants, for legal reasons, and excluded all participants from EGCUT, 
resulting in a sample of 208,596 individuals (see Supplementary Table 6 for cohort 
description). SNPs were clumped in PRSice for linkage disequilibrium, using a 
cutoff of R2 =​ 0.1 within a 250 kb window. GWA summary statistics were obtained 
from the sample of 208,596 individuals, and P values and β weights were used 
to calculate the EduYears GPS. Delta R2 are reported as the estimates of variance 
explained by adding the GPS to the regression model that included 10 principal 
components to control for population stratification.

We also calculated GPSs using P values and β weights obtained from summary 
statistics from the GWA analysis of ref. 14 of household income and social 
deprivation with the PRSice program55, using the same procedure.

The difference in GPS heritabilities was evaluated using Fisher’s exact test with 
Z to r transformation that assesses the significance in the difference in correlation 
coefficients in independent samples using both the effect sizes and sample sizes in 
the two samples56.

SNP heritability. SNP heritability estimates genetic and residual (environmental) 
components of variance directly from DNA using unrelated individuals and 
hundreds of thousands of SNPs from thousands of individuals57. Using GCTA 
software, a genetic relatedness matrix was calculated weighting the pairwise genetic 
similarities with allele frequencies across all genotyped SNPs57,58. Individuals 

found to be even remotely related (relatedness >​ 0.05) were removed from the 
analyses. We repeated the analyses when using the more stringent cutoff of 0.025, 
but this did not make any difference to SNP heritability estimates. This matrix of 
pair-by-pair genetic similarities was then compared to the matrix of pair-by-pair 
phenotypic similarity using residual maximum likelihood estimation57,58. This 
method only assesses additive effects captured by the common SNPs genotyped on 
the DNA array, and does not take into account gene–gene or gene–environment 
interactions or rare DNA variants, but these are unlikely to have a strong influence 
on the phenotype57,59. Before the SNP heritability analyses we adjusted educational 
attainment and occupational status for sex using regression; standardized residuals 
were used in all analyses. Ten principal components were used in the model to 
control for population stratification. To correct for the slight skew in the data, all 
measures were transformed to a normal distribution using the van der Waerden 
rank-based transformation60,61.

Statistical power. The power for estimating SNP and GPS heritability was estimated 
using the online GCTA-GREML power calculator62 and AVENGEME R code54,63. 
Our sample provided more than 80% power to detect GPS associations that 
explained 4% variance under the following circumstances: GWAS discovery sample 
size of 208,596, our target sample of 12,500 participants (the power did not change 
when we calculated power with a target sample of 2,100 or a target sample of 680 
for post-Soviet subgroups); number of independent SNPs in the GPS =​ 20,000; 
proportion of variance explained in discovery sample =​ 4%, covariance between 
genetic effect sizes in the discovery and target sample =​ 4%; and proportion of 
SNPs with no effects on the discovery trait =​ 99%; range of P values from GWA 
summary statistics =​ 0.00–0.5). These assumptions are somewhat arbitrary, but 
the power calculations did not change when parameters for the power calculations 
were changed (for example, changing the proportion of SNPs with no effects on the 
trait in the discovery sample to 50%). In addition, the power of our sample sizes to 
detect the expected GPS effect is supported by a much simpler approach: EduYears 
GPS predicts around 4% of variance in independent samples, a correlation of 0.20, 
which requires a sample size of only 150 for 80% power (P =​ 0.05, one-tailed) 
(http://www.sample-size.net/correlation-sample-size/).

The power for estimating SNP heritability is 99% to detect a SNP heritability 
of 20% for the whole sample. For the Soviet-era subsample, we had 99% power to 
detect a SNP heritability of 20%, but power was only 24% in the post-Soviet era 
(the power to detect heritability of 35% was 64% in the post-Soviet era). Therefore, 
little confidence is warranted for assessing differences in SNP heritability in the 
Soviet and the post-Soviet groups.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability. For information on data availability, see the Estonian Genome 
Centre, University of Tartu (EGCUT) data access policy (http://www.geenivaramu.
ee/en/biobank.ee/data-access).
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science papers and provides structure for consistency and transparency in reporting. Every life science submission will use this form; some list 
items might not apply to an individual manuscript, but all fields must be completed for clarity. 
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    Experimental design
1.   Sample size

Describe how sample size was determined. The sample for the present study was drawn from the Estonian Genome Centre, 
University of Tartu (EGCUT) sample. EGCUT is a population-based study with a 
sample size of over 52 000 individuals (all participants ≥18 years of age), which 
comprises 5% of the adult population in Estonia. Genome-wide genetic data are 
available for approximately 20 000 of these individuals.  The initial sample for the 
present study included all participants with available genotypic and phenotypic 
data. All individuals who were 25 or younger were excluded from the analyses, as it 
is possible that these young individuals had not yet reached their highest 
educational level and highest occupation. The sample size before exclusions 
included 17 990 participants (7 409 males and 10 581 females). After exclusions 
(removing participants who were under 25 at the time of data collection and 
following quality control) the sample size was reduced to 12 490.  Sample size for 
each measure separately is presented in Supplementary Table 1.  

2.   Data exclusions

Describe any data exclusions. All exclusions are described in the manuscript. Participants who were under 25 at 
the time of data collection were removed from the analyses.  

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

It is necessary to replicate the results of the present analyses using data from a 
different country that has gone though similar abrupt social change as described in 
the present manuscript. A country that used to be part of the Soviet Union and has 
regained independence would be ideal, however, we are not aware of an available 
replication sample at this time. We hope that our results lead to future molecular 
genetic studies researching gene-environment interactions of this sort that are 
now possible using GPS scores. 

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

n/a

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

n/a

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

Descriptive statistics were calculated using SPSS and R. Quality control was done 
using Plink.  
GPSs were calculated for 16 398 participants using p-values and β- weights 
obtained from summary statistics from Okbay et al 2016 Years of Education 
(EduYears) GWA analysis17 with the PRSice program.  
GCTA software was used to calculate SNP heritability. 

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

n/a

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

n/a

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. Provide information on cell line source(s) OR state that no eukaryotic cell lines were 

used.

b.  Describe the method of cell line authentication used. Describe the authentication procedures for each cell line used OR declare that none 
of the cell lines used have been authenticated OR state that no eukaryotic cell lines 
were used.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

Confirm that all cell lines tested negative for mycoplasma contamination OR 
describe the results of the testing for mycoplasma contamination OR declare that 
the cell lines were not tested for mycoplasma contamination OR state that no 
eukaryotic cell lines were used.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

Provide a rationale for the use of commonly misidentified cell lines OR state that no 
commonly misidentified cell lines were used.
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    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

n/a

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

Venous blood was collected from all 52 000 participants of EGCUT. DNA and 
plasma were immediately extracted from the blood and stored in EGCUT Core 
Laboratory of EGCUT in Tartu, Estonia. Genome-wide genotyping was assayed for 
20 000 participants using three Illumina arrays: Illumina HumanCoreExome, 
Illumina Human370 CNV and Illumina OmniExpress in the Core Laboratory of 
EGCUT in Tartu, Estonia.  
 
To control for ancestral stratification, principal component analyses were 
performed after pruning to remove markers in linkage disequilibrium (200kb 
window using R2> 0.05). The first 10 principal components were used as covariates 
in the genetic analyses. 
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