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1 Introduction

Economists generally accept that the skills rewarded in the labor market arise from a combi-
nation of endowed abilities, economic environments, and endogenous human capital invest-
ments. Endowments, environments and investments almost certainly interact in complicated
ways, transforming the distribution of abilities drawn at birth into a distribution of educa-
tion, wages, and labor supply outcomes over the life-cycle.

Understanding this web of interactions and its implications for economic inequality has
been a long-standing project in labor economics (Mincer, |1958; |[Becker and Chiswickl, 1966}
Griliches and Mason|, [1972)). Selecting an appropriate policy response to inequality requires
an accurate diagnosis of its origins. Poor households possess limited resources, which nat-
urally suggests a role for redistributive policies. However, disparities in endowments might
also play a part. If individuals with unfavorable endowments do not acquire more human
capital for reasons unrelated to resources (e.g. lower returns to these investments), then sim-
ply relaxing resource constraints and expanding access to education may not substantially
reduce inequality. However, understanding the mapping between endowments, investments,
and economic outcomes is challenging: ability is notoriously difficult to measure and typical
proxies (such as IQ test scores) are subject to the critique that they reflect earlier invest-
ments.

A common assumption is that genes and other biological factors at least partially deter-
mine heterogeneity in ability across individuals (e.g. [Todd and Wolpin| (2003)). In this study
we exploit recent advances in genetics to explore the relationship between a genetic index,
educational attainment and labor market outcomes in the Health and Retirement Study
(HRS). Specifically, we utilize a polygenic score (a weighted sum of individual genetic mark-
ers) constructed with the results from [Lee et al.| (2018) to predict educational attainment.E]
The markers most heavily weighted in this index are involved in early brain development, as
well as processes affecting neural communication (Lee et al., |2018; Okbay et al., 2016). We
interpret the polygenic score as summarizing a subset of the genetic factors that influence

traits relevant for human capital accumulation ]

'Results reported in |Okbay et al.| (2016) and Lee et al.| (2018) represent the cutting edge in behavioral
genetics relating specific genetic variants to education. We discuss these papers and the research leading up
to them in Section [2] where we provide further details on the genetic data used in this project. Additional
background information is in Appendix

2We explicitly avoid describing the polygenic score as a measure of “ability,” since this term may be
too broad and may oversimplify the complexities of genetic endowments. We also want to avoid conflating
our interpretation of the polygenic score with the broader definition of “ability” as it is viewed in labor
economics. For example, in Human Capital, Becker| (1975) defines ability as the collection of all factors that
determine persistent differences in economic outcomes given the same profile of human capital investments.
More formally Becker| (1975) considers earnings, Y, as a function of “unskilled ability” X, human capital



Pairing this score with rich longitudinal data allows us to test propositions about the role
of individual endowments in shaping education and labor market outcomes. Specifically, we
examine whether childhood environments interact with genetic endowments in determining
educational outcomes, and whether these endowments are associated with economic out-
comes beyond their relationship with completed schooling. In empirical labor economics,
genetic factors and other endowments are typically subsumed into an error term, averaged
out with additive fixed-effects, or relegated to a “black box” of permanent unobserved het-
erogeneity that must be integrated out of econometric models (Lillard and Willis, 197 8)E|
In such approaches the structure of human capital endowments, together with the nature of
their interactions with the economic environment, is assumed rather than observedﬁ This
may be appropriate if the goal is to reduce bias in estimation by controlling for omitted
factors. However, this approach is insufficient to learn about the structure of ability and
resulting implications for policy.

A large literature uses test scores such as IQ or AFQT (Armed Forces Qualification
Test) as proxies for the cognitive abilities relevant for education and labor market outcomes.
However, investments and environmental factors (e.g., childhood poverty) can significantly
influence these proxies, making it difficult to interpret their variation across individuals
(Flynn, |1987; Turkheimer et al., 2003 'Todd and Wolpin, [2007; Mani et al., 2013).E| Among
other things, this means that two individuals with similar cognitive test scores but different
childhood circumstances are unlikely to have started with the same underlying human capital
endowments. Reliance on these proxies may therefore lead the analyst to mis-attribute
observed disparities in economic outcomes to differences in ability endowments rather than
earlier investments. In turn, this could lead to incorrect conclusions on the returns to human
capital investments (e.g., public education, college subsidies, etc.). In contrast, even though
the genetic index we study is undoubtedly correlated with parental characteristics, its use is
not subject to the critique that it is the product of endogenous investments, since it is fixed

at conceptionﬁ

investments, C, and the rate of return on investments, : Y = X + rC (p. 62). In this framework, ability
consists of all factors that influence the pair (X, ). Such factors may include genetic endowments, but are
certainly not limited to genetic or other biological influences.

3This point suggests that the polygenic score should capture some of the information that is contained
in individual fixed effects. In results available in Appendix [B] we show that this is the case, which provides
evidence for the link between previously unobserved heterogeneity and the information contained in the
polygenic score.

4Considering again Becker’s formulation Y = X + rC, it is often assumed that unobserved ability enters
exclusively through “unskilled ability.” (X), so that a linear fixed effects model controls for ability.

5Proxies for endowments measured among children or newborns are also subject to this type of critique
(Almond and Currie, [2011]).

®As we explain throughout the paper, the genetic index is correlated with environments and investments,
since parents pass on their genes in addition to shaping environments and making investments. Nevertheless,



We present two main sets of results. First, we document the association between the
polygenic score and educational attainment, and demonstrate that this association differs
by childhood SES. Using the HRS data, we replicate the strong relationship between the ge-
netic score and educational attainment found in past studies (Lee et al., [2018; Okbay et al.,
2016)). A one-standard-deviation increase in the polygenic score predicts between 0.58 and
0.83 additional years of education and accounts for 4.5% to 9.7% of the variation in years
of schooling, both depending on the control set. After this replication exercise, we turn to
new analyses enabled by the availability of molecular genetic data for HRS respondents. A
surprising descriptive fact emerges in the relationship between the polygenic score and retro-
spective measures of childhood SES. While the polygenic score is positively correlated with
childhood SES, the distribution of the score is strikingly similar across SES groups. This em-
pirical pattern makes it possible to compare economic outcomes for a large set of individuals
with similar genetic scores, but different childhood SES. We find that high childhood SES
seems to reduce the association between genes and the probability of completing high school,
while increasing the genetic gradient in the propensity to earn a college degree. These find-
ings could reflect different patterns of substitutability and complementarity between genes
and family resources in producing early versus later human capital outcomes. More broadly,
these SES interactions underscore the importance of examining gene-environment interac-
tions to understand economic inequality and the distributional consequences of interventions.

Understanding the role of endowments is particularly important in light of the large earn-
ings premium associated with a college degree and its growth over the last several decades.
Given substantial returns to schooling, we expect genetic endowments for education to un-
conditionally predict earnings. However, the factors that allow one to more easily acquire
schooling may also permit greater economic success, even conditional on a particular level
of investment (better cognitive endowments, greater persistence, etc.). This motivates our
second set of new analyses which test whether — and through what mechanisms — the ge-
netic factors associated with education independently predict better labor market outcomes.
This question is particularly relevant given the sizable interactions between childhood SES
and genetic endowments. While it is certainly possible that individuals with favorable en-
dowments realize their full earnings potential even without a college degree, it may also be
the case that individuals with high polygenic scores are unable to fully compensate for the
lack of a college degree in the labor market. If so, disparities in childhood SES, by erecting

barriers to college completion, can lead to the wastage of economic talent.

the fact that environments and investments do not change the genetic score offers an important exclusion
restriction. This point is fleshed out in greater detail in Section [3.6|and is formalized in a simple econometric
model provided in Appendix E}



Using administrative records that cover the lifecycle, we find a strong relationship be-
tween the polygenic score and labor market earnings, even after controlling for completed
education. The returns to these genetic endowments appear to rise over time, coinciding
with the rise in income inequality after 1980. Accounting for degree and years of schooling,
a one standard deviation increase in the score is associated with a 4.5 percent increase in
earnings after 1980. These results are consistent with recent literature on income inequality
showing not only an increase in the college premium, but also a rise in the residual wage
variance within educational groups (Lemieux) 2006). We also find a positive association be-
tween the score and the kinds of non-routine job tasks that benefited from computerization
and the development of more advanced information technologies (Autor, Levy, and Murnane,
2003). This provides suggestive evidence that the endowments linked to more educational
attainment may allow individuals to either better adapt to new technologies, or specialize in
tasks that more strongly complement these new technologies. Nonetheless, despite returns
to these endowments for those with and without a college degree, the average college pre-
mium remains large across all values of the polygenic score. Poor childhood environments
appear to squander the human potential of individuals with favorable genetic endowments
by preventing access to increasingly lucrative educational pathways.

This paper adds to an emerging literature examining molecular genetic associations with
economic outcomesﬂ However, to our knowledge, this is the first study to estimate the
returns to genetic factors associated with education using micro genetic data and disaggre-
gated measures of earnings and job tasks across cohorts. Our results therefore offer two
broad contributions that link the literature on behavioral genetics to the economics liter-
ature on human capital, ability, and economic outcomes. First, our results demonstrate
that several core findings obtained with proxies of cognitive ability continue to hold with a
biological measure of endowments that predicts schooling and is fixed at conception. Even
if genetic data offered no other insights, this would provide some evidence that test scores
capture useful information on endowments, and not just post-birth investments. A second
contribution, however, consists of novel results on the origin and function of heterogeneity
in the earnings distribution. Our results on the rising genetic earnings premium (controlling
for education) implicate genetic heterogeneity in a series of important and well-documented
patterns in labor economics. In particular, the same factors associated with greater human
capital accumulation also appear to be increasingly important for earnings during a period

of technological and structural change in the economy.

"For example, in a recent paper, Schmitz and Conley| (2016) demonstrate that the effect of military
service on educational attainment is moderated by the same polygenic score considered here. In Section
we discuss more papers in this line of research.



Our results also illustrate how genetic measures can be used to generate novel insights
about the importance of interactions between endowments and childhood environments in the
study of economic inequality. We provide some of the first evidence using molecular genetic
measures that people with favorable genetic endowments may face barriers to exploiting
their potential if they are born into poor familiesf| This finding relates to a larger literature
exploring similar interactions using different measures of endowments, or using alternate
methods to measure genetic contributions. Leibowitz (1974) is an early example of research
recognizing heterogeneity in returns to ability measured by IQ. Further contributions have
emphasized the consequences of such interactions for inequality. Consistent with our findings,
Guo and Stearns (2002) use a twins-study design to provide evidence that resource-poor
environments imply lower returns to genetic endowments. Gene-environment interactions
could also explain why genetic influences on IQ are relatively strong for high-SES children,
a phenomenon known as the Scarr-Rowe Hypothesis (Scarr-Salapatek, [1971; Nisbett et al.,
2012; Bates, Lewis, and Weiss, 2013; Kirkpatrick, McGue, and lacono, 2015; Tucker-Drob
and Bates 2016). This would occur if returns to genetic endowments (as measured by
IQ) are stronger in resource-rich households, which is consistent with our findings on gene-
environment interactions and college education

Our results on gene-environment interactions are also linked to work on treatment effect
heterogeneity, which has emerged as an important topic in econometrics and applied work.
Heckman and Vytlacil (2005) develop econometric methods for the case of heterogeneous
treatment effects, either due to choices or responses. Many studies document a range of
heterogeneous responses to interventions related to labor, including welfare reform (Bitler,
Gelbach, and Hoynes| 2006), information about payoffs to education (Wiswall and Zafar,
2015)) and education subsidies (Todd and Wolpin, 2006). Related, Keane, Moffitt, and Runkle
(1988)) study how individual-level heterogeneity affects responses to economic shocks, in their
case labor supply decisions over the business cycle. In our case, responses to technological
shocks may in part be explained by heterogeneity in genetic endowments.

The remainder of the paper is organized as follows. In Section [2| we discuss recent devel-
opments in behavioral genetics (and their limits), focusing on techniques used to establish
links between genes and economic outcomes. In Section [3] we relate the polygenic score to

education and childhood SES. In Section [4] we discuss how the polygenic score relates to

8Using an earlier version of the score we use, Belsky et al.| (2016)), studying a sample of New Zealanders,
suggest that there may be a weaker association between genetic ability and lifetime success for high-SES
households.

9Relatedly, children with high polygenic scores are more likely to grow up in resource-rich environments,
meaning they enjoy higher returns to their genetic endowments compared to similarly endowed children in
poorer households. Coupled with assortative mating on 1Q, inequality in IQ should rise over time, which is
a pattern that has been documented in Dickens and Flynn| (2001)).



labor market outcomes. Section Bl concludes.

2 Genetic Data and Their Limits

In this section, we provide some basic information about the molecular genetic data we use

in this study. We also discuss some problems, points of clarification and interpretational

difficulties. Appendix [A] provides additional detail ['¥]

2.1 Genetic Data and Genome-Wide Association Studies

The human genome consists of approximately 3 billion nucleotide pairs spread out over 23
chromosomes pairs. An individual possesses two copies of each chromosome, inheriting one
copy from each of its parents.E The base pairs are the “rungs on the ladder” of classic
double-helix structure. Genes are subsequences of these base pairs that often contain the
instructions for synthesizing proteins. There are about 50,000 genes in the human genome.
At the vast majority of base pair locations in the genome (about 99 percent), there is
no variation across individuals in the nucleotide. At the remaining locations (less than
1 percent), the base pair may differ across individuals. Such locations are referred to as
single-nucleotide polymorphisms (SNPs, pronounced “snips”).

A major task of behavioral genetics involves determining which, if any, of these SNPs are
associated with behavioral outcomes. Genome-wide association studies (GWAS) provide one
tool for estimating these associations. Under the GWAS methodology, researchers scan the
entire genome for SNPs that are associated with a particular phenotype (trait or outcome).
Variation at a particular SNP is measured by a count variable indicating how many copies of a
particular base pair molecule an individual possesses at that genetic location. These variables
can take the values 0, 1, or 2 because an individual has two copies of each chromosome. The
outcome of interest is typically regressed on each observed SNP count (one at a time),
while also controlling for principal components of the full matrix of SNP data. As indicated
by [Price et al. (2006) (and discussed at length in Benjamin et al. (2012)) in the context
of economic outcomes) the principal components can correct for population stratification
and account for genetic differences across ethnic groups. The presence of these controls
limits the concern that gene-behavior associations reflect associations with specific ethnic

ancestry groups as opposed to specific biological pathways. In our subsequent analysis we

10We are grateful to Aysu Okbay for clarifying a number of questions on the description we provide in this
section. However, any erroneous statements are the sole responsibility of the authors.

HMost of the background information presented here on the human genome follows [Beauchamp et al.
(2011) and Benjamin et al.| (2012).



always control for population stratification using the first 10 principal components of the full
matrix of genetic datal?]

While GWAS studies have produced a number of credible and replicable gene-outcome
associations, GWAS results for educational attainment have only emerged recently. After
documenting the first genome-wide significant associations for education (Rietveld et al.
2013), the Social Science and Genetics Association Consortium extended their analysis to
perform an educational attainment GWAS with larger sample sizes, starting with Okbay
et al| (2016) (N = 293,723) which discovered 74 SNPs with associations strong enough to
be considered genome-wide Signiﬁcantﬂ The score we study in this paper is based on
results from the most recent education GWAS from this group, |Lee et al| (2018), featuring
a discovery sample of over 1.1 million people. Many of these SNPs were linked to biological
processes known to be involved in fetal brain development. Evidence presented in (Okbay
et al.| (2016) and Lee et al.|(2018) heavily implicates cognitive mechanisms in the biological
pathways that link the score to educational attainment. Lee et al.| (2018)) find that some
of the significant SNPs tend to be expressed prenatally in brain tissues, while others are
expressed throughout the lifecycle. This second group of SNPs tend to be found in genes
that “encode proteins that carry out neurophysiological functions such as neurotransmitter
secretion, the activation of ion channels and metabotropic pathways, and synaptic plasticity,”
(Lee et al. (2018)), p. 1114).

GWAS results are often aggregated into polygenic scores for the purposes of prediction
and statistical analysis. These scores are linear combinations of individual SNP count vari-
ables, weighted by their GWAS coefficients. Importantly, although HRS data are used in the
published results for Lee et al.| (2018), the score used here has been calculated on the basis
of GWAS results without HRS data, ensuring that the score does not mechanically predict
educational outcomes. We refer to the score we use as the FA score, where EA stands for
“educational attainment.” Since this is the only polygenic score we examine in this paper,

7 W

we use the terms “EA score,” “polygenic score,” and “genetic score” interchangeably@

12The use of 10 principal components is standard practice in the literature (Okbay et al., 2016). Omitting
the principal components, though not at all advisable as a general approach given concerns about population
stratification, does not affect our results in this paper, suggesting that other controls adequately capture the
type of stratification that might be more substantial or problematic in other data sets.

13Many single-SNP associations from earlier genetic studies have failed to replicate. As discussed in
Hewitt| (2012), this problem often emerged because earlier genetic studies were underpowered to detect
reasonable association sizes, and because of failures to correct for multiple hypothesis testing. Given these
concerns, modern GWAS studies adopt strict conventions before considering a single-SNP association to be
“genome-wide significant.” A convention benchmark for genome-wide significance is a p-value that is less
than 5 x 1078,

14The polygenic score that we use is constructed using all of the SNPs that we observe, and not just those
that attain genome-wide significance. This follows the practice in |[Okbay et al.| (2016|) and |Lee et al.| (2018)).
Polygenic scores based on all SNPs have performed better at predicting educational attainment in holdout

7



Existing work suggests that polygenic scores usefully summarize genetic information con-
tained by some of the SNPs associated with education. Most existing studies work with ear-
lier, less predictive polygenic scores based on the results of Rietveld et al.| (2013) and (Okbay
et al|(2016). |Conley and Domingue (2016)) find evidence of changing patterns of assortative
mating across cohorts on the basis of a polygenic score for education, while [Schmitz and
Conley| (2016) show that genetic heterogeneity can moderate the impact of military service
during the Vietnam War on subsequent educational attainment. Closer to our work, |[Belsky
et al. (2016) use the polygenic score to predict childhood and adolescents developmental
milestones and cognitive abilities. They examine a sample of 918 New Zealanders and show
that a similar polygenic score not only predicts education, but also an index of adult success
conditional on education. In relating genes predicting education to an aggregated measure
of success in the labor market, their study provides important cross-validation to our own
work, though with a different sample and a substantially different set of outcomes and re-
search questions. Finally, Barth, Papageorge, and Thom| (2018) show evidence that the EA

score predicts wealth in part through financial decision-making and probabilistic thinking.

2.2 Limitations and Interpretational Challenges

We discuss five important caveats and points of clarification regarding our use of the poly-
genic score for education. First, the genetic variants used in the construction of this genetic
score are not located on sex chromosomes. For this reason, the distribution of these variants
should be identical across men and women. In our labor market analysis, we focus on males
to bypass considerable issues associated with selection into employment. However, we exam-
ine both men and women when studying educational investments, the goal being to restrict
the sample only when there is a compelling reason to do so. In Appendix [B] we explore pos-
sible gender differences in how the EA score relates to years of education. There are some
specifications showing larger coefficients on the EA score for men compared to women["”] An

obvious direction for future research would be to study gender differences in returns and,

samples. The score is constructed with the LDpred method (using parameters outlined in |Okbay, Benjamin,
and Visscher| (2018))), which is one way to deal with the possibility of “double-counting” given correlations
between individual SNPs (Ware et al. 2017 [Vilhjdlmsson et al., [2015). While the weights assigned to each
SNP typically vary across methods, these weights are usually based on the strength of a SNP’s association
with the outcome of interest and the joint covariance matrix of the SNPs. In a series of robustness checks
presented in Appendix [B] we show that main results are qualitatively similar if we use alternative scores,
e.g., earlier versions discovered on smaller samples, or by using different methods to combine them. This is
important as it suggests that our key results will not change qualitatively as the field advances and more
genes are discovered to be genome-wide significant.

15Given the argument that many gender differences could be socially constructed, Molina| (2016) suggest
that gender can be seen as an environmental factor and that gender differences in coefficients reflect gene-
by-environment interactions.



more generally, how the genetic score interacts with female labor supply decisions and labor
outcomes.

A second point is that the polygenic score we use was discovered on a sample of in-
dividuals of European descent. It has been shown in earlier work that a polygenic score
discovered on one ethnic group is relatively less predictive if applied to other ethnic groups.
A striking example is a polygenic score for height discovered on a sample of Europeans which
erroneously predicts that individuals of African descent are on average substantially shorter
than genetic Europeans (Martin et al., [2017)). It would therefore be misleading and irre-
sponsible to use the EA score we use in this paper to analyze individuals of non-European
descent. Thus, we limit our sample to individuals of European descent as categorized by the
HRS. It should be noted that with this restriction, the principal components of the genetic
data help to account for intra-European ethnic differences.

Third, we do not claim to estimate causal effects of particular genetic variants. Any gene-
outcome association that we observe in general reflects a combination of a direct effect and
an indirect effect operating through the environments that parents make for their children.m
Parents with advantageous genetic endowments (some of which they pass on to their children)
are more likely to have the resources or capacity to create better environments. Indeed, Kong,
Thorleifsson et al.| (2018) find that parental genotypes that are not passed on to their children
still predict children’s education, suggesting the operation of this indirect Channelm Even so,
an individual’s genetic make-up is not changed by human capital investments. In contrast,
IQ and other cognitive test scores are subject to the critique that they reflect environmental
factors, such as earlier human capital investments. Indeed, Bharadwaj, Lgken, and Neilson
(2013) find that variation in health care received by newborns has an impact on academic
achievement years laterE Genetic indices are not subject to this critique since they are fixed
at conception. As we elaborate below (see Appendix [C|and the discussion in Section ,
this feature of genetic endowments generates an important exclusion restriction which can
be used to correctly sign gene-environment interactions. Moreover, there is strong evidence
from a variety of studies showing that much of the relationship between an earlier EA score

and educational attainment remains, even after controlling for family fixed effects with data

16 A related identification problem is that parents can react to the genetic endowment of the child and
reinforce or compensate their investments. In the literature this is called a gene-environment correlation
(Plomin, DeFries, and Loehlin, [1977)).

HSee [Koellinger and Harden.| (2018)) for a further discussion of the implications of this finding.

18Even birth weight, another proxy of innate endowments that has been used in prior literature, is not
immune to this critique as it reflects in utero investments, e.g., mother’s smoking behavior (Lien and Evans),
2005), exposure to pollutants (Currie, Neidell, and Schmieder}, 2009)), stress during pregnancy (Camachol
2008; (Currie and Rossin-Slater, [2013) or mothers’ own health (Costal [1998). See also|Aizer and Currie| (2014)
for a recent discussion.



on siblings (Domingue et al., [2015; Rietveld et al., 2014). If the relationship between the
score and education merely reflected family environments, we would expect between-family
variation to be much more strongly predictive of outcomes. Finally, controlling for principal
components helps to alleviate the concern that we are merely capturing ethnic differences in
social norms surrounding education.

A fourth limitation concerns the variation in observed outcomes that is explained by
the polygenic score. Twin studies have established that roughly 40 percent of the variation
in educational attainment can be attributed to genetic endowments, suggesting that genes
represent an important component of endowed ability (Branigan, McCallum, and Freese,
2013)]1__9] In our sample of HRS respondents, we show that the polygenic score can explain
up to about 10% of the variation in educational attainment, i.e., roughly 25% of the total
variation that other methods suggest is attributable to genes. This discrepancy is often
referred to as the “missing heritability problem” (Zuk et al 2012) and may be corrected as
future polygenic scores using larger discovery samples lead to scores with greater predictive
power. In practice, the missing heritability problem means that it is difficult to use the poly-
genic score to draw conclusions about the relative importance of genetic endowments versus
environments in generating economic outcomes. It would also be misleading to conduct
variance decompositions, which is a drawback of analyses using polygenic scores relative to
twin study methodsY] On the other hand, observed genetic variants allow us to estimate
the direction of interactions (e.g., differences in gene-education gradients by childhood SES),
which would be difficult to do using twin study methods. Indeed, a well-established limita-
tion of twin or adoption studies is the difficulty of estimating gene-environment interactions
using these methods.

Fifth, there are interpretational challenges in using the polygenic score in economic anal-
ysis. The polygenic score is a linear index of the genetic variants that predict educational
attainment. As discussed in the Introduction, we interpret the polygenic score as measuring
a subset of genetically endowed abilities relevant for educational attainment, such as a facility
with learning or acquiring new skills. We purposefully refrain from describing the polygenic
score as ability or as a measure of cognitive ability, which is likely to be misleading and too
simplistic. One reason is that the polygenic score is a single aggregate measure, which is
at odds with widespread evidence that ability is best thought of as multi-dimensional with

different returns depending on the economic outcome in question. In particular, there are

9Taubman| (1976) is an early contribution using data on twins, who have similar or identical genotypes,
to assess the amount of variation in earnings attributable to genes.

20Related, given that the polygenic score is a noisy measure of the full set of genetic endowments related
to education, it would be misleading to draw conclusions about necessary or sufficient scores for economic
outcomes, e.g., whether above a certain threshold individuals are guaranteed to attain a college degree.

10



distinct cognitive abilities associated with human capital accumulation and labor market
success (e.g., attention, language, visuospatial skills, motor skills, executive function and
memory) each possessing different associations with economic outcomes (Willis and Rosen,
1979; Heckman|, [1995; |Cawley et al., 1997).E| In addition, socio-emotional skills (sometimes
known as non-cognitive or “soft” skills) play crucial roles in education and labor outcomes
(Heckman and Rubinstein, ZOOI)H Thus, it would make little sense to categorize an indi-
vidual with a high polygenic score as “high ability” or to equate the polygenic score with
cognitive ability.@ Second, it is not clear how genes generate economic outcomes, either on
their own or through interactions with the environment. As discussed, pathway analyses
suggest that the genes most heavily weighted in the EA score are implicated in the develop-
ment of brain tissue and in processes related to neural communication. While this strongly
suggests that cognitive processes are involved, we lack a comprehensive understanding of the
biological pathways at play. The EA score almost surely includes factors related to skills that
are directly related to cognition and facilitate schooling, but may (or may not) be productive
in other contexts, such as the labor market@ That said, one of the benefits of examining
the EA score in a rich data set such as the HRS is that it allows us to examine relationships
between the EA score and several critical economic variables. Doing so provides valuable
insights into how these genetic variants function over the lifecycle, which offers clues on

mechanisms underlying their relationship to human capital accumulation.

210n multidimensionality, Willis and Rosen| (1979)) emphasize manual skill, which they distinguish from
academic skill.

22Later contributions to this literature include Kautz et al.| (2014) and [Humphries and Kosse| (2017).

23In Appendix E we show that a measure of cognition that is available for HRS respondents is positively
associated with the EA score, but only weakly so (with a correlation coefficient of roughly 0.23). Moreover,
the EA score predicts education and earnings even after we control for the cognitive test score, suggesting
that the EA score captures additional factors relevant to educational attainment. However, the comparison
of the EA score with the cognitive test score in the HRS is difficult to interpret since the latter is meant to
capture cognitive decline. A more useful exercise would be to compare the EA score with scores from tests
designed to measure cognition, such as the AFQT, which is not available in the HRS.

24Indeed, [Papageorge, Ronda, and Zheng| (2017) provide evidence that a socio-emotional skill known as
externalizing behavior and linked to aggression predicts higher wages despite being associated with lower
educational attainment. If it has a genetic basis, it would enter negatively into the polygenic score despite
its value on the labor market, further underscoring the need to interpret the polygenic score as a measure of
genetic factors that influence some skills associated with educational attainment, but not as a broad measure
of “ability.”
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3 Genes, Education, and Childhood SES

3.1 The HRS Sample and the Genetic Score

The HRS is a longitudinal panel study that follows over 20,000 Americans at least 50 years
of age, as well as their spouses. Surveys began in 1992 and occur every two years. The HRS
collected genetic samples from 18,994 individuals over the course of four waves (2006, 2008,
2010, 2012). Our analytic sample only includes individuals genotyped in 2006 and 2008.@
Individuals in the genotyped sample tend to be born in younger birth cohorts, since survival
until at least 2006 is required for inclusion. Moreover, women and individuals with more
education were more likely to agree to the collection of genetic data.

Our main analysis sample includes all genetically European individuals born before 1965
with non-missing genetic and education data. For reasons outlined in Section 2], we restrict
the sample to respondents of European ancestry since the polygenic score we use here was
discovered in a sample of consisting solely of genetic Europeans?] The resulting sample
includes 8,537 individuals. Table (1| provides some basic descriptives on demographic and
educational variables. The mean level of educational attainment is about 13 years, with 13
percent of the sample failing to graduate from high school or obtain a GED and about 25
percent of the sample earning at least a four year college degree. Roughly 42 percent of the
sample is male.

Table [1} also provides descriptive statistics on parental education, as well as a series of
categorical variables describing health and various aspects of the SES of the respondent
during childhood. These measures include a self-reported five-point scale for health during
childhood, a variable indicating the SES of the respondent’s family (Well off, Average, or
Poor), as well variables indicating whether the respondent’s family suffered various negative
economic shocks (moving due to hardship, asking other families for help, or experiencing
an extended period of paternal unemployment or economic inactivity). We also construct
a father’s income variable. To do this, we first obtain HRS survey responses on the usual
occupation of the respondent’s father (when the respondent was age 16). This father occu-

pation variable is then matched with average labor income data from the 1960 census for

25The molecular genetic data for the 2012 wave are not yet available. While genetic data for the 2010
wave are available, the polygenic score based on the results of |Lee et al.|(2018) has only been constructed
for the respondents genotyped in 2006 and 2008. In Appendix [B] we provide further detail and show that
our main results continue to hold if we use an earlier, less predictive score based on the results of |Okbay
et al.| (2016]) which has been constructed for individuals from all three available waves.

“%As part of the genetic data release, the HRS also released a file flagging certain individuals as being of
European descent based on their genes. Polygenic scores have been publicly released for 12,090 individuals
from the 2006, 2008, and 2010 waves who have been identified as having genetic European ancestry.
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prime-age male workers to construct an occupation-specific income Variablem

We measure earned income using records from the Master Earnings File (MEF) of the
Social Security Administration (SSA) that have been linked to the HRS.@ The MEF data
span the period 1951-2013 and combine reports from employers with Internal Revenue Service
(IRS) documents such as W-2 forms to provide a sum of “regular wages and salaries, tips, self-
employment income, and deferred compensation” (Olsen and Hudson, 2009). The earnings
records are top-coded at the maximum income subject to Social Security taxes in each year.
When possible, we adjust for this by replacing top-coded amounts with the average level
of earnings that exceed the top-code for each year based on the Current Population Survey
(CPS)@ As indicated in Table , the median real income for a person-year in our sample is
$55,295, while the 25th and 75th percentiles are $34,173 and $75,005, respectively. Figure
plots average earnings for each age in our sample separately for individuals with and without
a college degree. The data follow a familiar hump-shaped pattern, with earnings starting at
low levels early in life, reaching a peak around age 50 for less educated individuals and closer
to age 60 for more educated individuals. For less educated individuals, earnings decline as
individuals age and reduce their labor supply later in lifem

Turning to genetic data, Figure [2| presents a plot of the (kernel-smoothed) density of the
EA score variable in our sample. Values of the score have been demeaned and re-scaled to
measure standard deviations relative to the mean. Figure |2 suggests that the distribution
of the EA score appears to be approximately normally distributed and Symmetricﬂ

Unless otherwise noted, all regressions include a full set of dummy variables for birth
year, a male dummy, and interactions between the birth year and male dummies. Our basic
control set also includes the first 10 principal components of the full matrix of genetic data.
As noted in Section [2] these variables help to control for possible stratification of the score

by ethnic ancestry group differences that exist among the broad category of individuals

2TThese retrospective childhood SES measures are discussed in greater detail in Section We use the
IPUMS release of the 1960 U.S. Census data (Ruggles et al.| 2018]) to estimate the average income for each
father’s occupation group.

28These data are found in the Respondent Cross-Year Summary Earnings file of the HRS.

29We use the IPUMS release of the CPS data for the years 1962-2013 (Ruggles et al., 2018). While the SSA
data offer rich administrative records over the life-cycle, they are top-coded based on the taxable maximum
for Social Security taxes in each year. This top-coded amount has changed over time, as described in [Olsen!
and Hudson| (2009)). Appendix provides additional details on top-coding and our correction for top-coding.

UIn Appendix B, we replicate a subset of our analyses using HRS income data. Because the HRS data
contain only contemporaneous self-reported income, we cannot use them to estimate specifications related
to lifetime income, which we are able to do with the SSA data. However, the HRS income data are less
aggressively top-coded than the SSA data, which provides one possible advantage. The consistency of results
across data sets suggests that top-coding patterns are not a significant driver of our main results.

31Tn a formal x? test of normality based on skewness and kurtosis, we fail to reject the null hypothesis
that the EA score is normally distributed in our sample with p-value=0.2647.
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of European descent. To account for non-random selection into the genetic sample, all
regressions are weighted using sampling weights that have been adjusted by the inverse
probability of inclusion into the genetic sample given observables. Details on the construction
of these weights are found in Appendix E

3.2 The Polygenic Score and Education

We start by replicating the basic relationship between the EA score and educational attain-
ment found in earlier studies (Rietveld et all 2014; |Okbay et all 2016; [Lee et al., 2018)).
Table 2] presents estimates from regressions of years of schooling on the EA score and dif-
ferent control sets. The specification in Column (1) only includes the score and our basic
controls. A one standard deviation increase in the EA score is associated with 0.827 more
years of schooling. Note that the incremental R? associated with the genetic score in this
regression is 0.097, indicating that variation in the score accounts for a large fraction of the
variance in educational attainment.

As discussed in Section [, the EA score could measure biological factors that enhance an
individual’s ability to acquire new skills or reduce the effort costs of learning. However, the
score-education relationship could also reflect correlations between genetic factors and envi-
ronments that promote education. For example, the genetic factors driving the score might
affect parenting skills that encourage more schooling for one’s children, even if these factors
do not affect a child’s ability to learn or acquire skill. Since the genotypes of individuals are
necessarily correlated with the genotypes of their birth parents, such a scenario could gen-
erate a relationship between an individual’s EA score and their educational attainment that
works purely through environmental factors. To account for such factors, we would ideally
like to control for parental genotypes, since the genotype of a child is randomly assigned
conditional on parental genes. While we do not observe parental genes for respondents in
the HRS, we can observe parental education, the phenotype most closely associated with
these parental endowments.

In Column (2) of Table , we again regress years of schooling on the EA score but now
add separate measures for father’s education and mother’s education to our control set ]
The inclusion of parental education helps to adjust for the portion of the gene-education

gradient that is driven by higher investments from more educated parents who also pass

32When appropriate, we also include a cubic polynomial of the polygenic score. This is motivated by the
model we develop in Appendix[C] which is used to examine consequences of endogenous parental investments
and measurement error and which guides our interpretation of estimates.

33 As seen in Table |1} parental education is missing for a non-trivial number of individuals. We partially
address this issue by adding separate dummy variables indicating missing values of father’s and mother’s
education.
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their genetic material onto their childrenﬂ As expected, both parental education measures
are positively and significantly related to a respondent’s years of schooling. However, even
after controlling for parental education, the EA score still exhibits a strong association
with educational attainment, with an estimated coefficient of 0.614. The incremental R?
associated with the EA score falls, but remains substantial at about 0.051. Within-family
analyses in [Lee et al.| (2018) estimate that the associations between individual SNPs and
educational attainment are, on average, approximately 40 percent smaller after accounting
for family effects.ﬁ In our sample, controlling for parental education reduces the estimated
coefficient on the polygenic score by more than 25 percent, which accounts for a substantial
fraction of the gene-environment correlation suggested by past within-family estimates. In
all subsequent analyses, we control for parental education unless otherwise noted.

In Column (3), we again regress years of education on the EA score, but now add a
set of categorical variables reflecting self-reported health during childhood. An extensive
existing literature links childhood health to SES and labor market outcomes later in life
(see Currie| (2009) for a review). Indeed, we find that lower self-reported health levels
(relative to the Excellent reference category) exhibit a significant negative association with
educational attainment. It is worth noting that these health variables have a combined
incremental R? of about 0.018 in this specification without the EA score (0.006 when parental
education is included), which is substantially smaller than the incremental R? associated with
the EA score itselfﬂ In Column (4), we add a battery of controls measuring SES during
childhood. These include dummies for whether or not the individual’s family moved due to
financial stress, whether the family ever asked another family for financial help, whether or

not the individual’s father was ever unemployed for a significant time, and a measure for

34 Again, this is consistent with the results from Kong, Thorleifsson et al.| (2018)), who find that parental
SNPs that are not passed on to children still predict their educational outcomes.

35Using smaller samples, [Domingue et al.| (2015) and Rietveld et al. (2014) find evidence that coefficients
on polygenic scores for educational attainment are very similar with and without controlling for family
effects.

36Tn results available from the authors, we experiment with specifications adding a series of more specific
controls related to health during childhood. These recall questions may be less prone to measurement error
than questions about self-rated health. Additional variables include indicators for measles, mumps, chicken
pox, school absences, sight problems, parental smoking, asthma, diabetes, respiratory problems, speech
problems, allergies, heart conditions, ear problems, epilepsy, migraines, stomach problems, blood conditions,
depression, drug use, psychological conditions, concussions, disabilities, childhood smoking, learning disabil-
ities and other problems. When these are added to a basic regression explaining years of education (i.e.,
Column (1) in Table 2| but excluding the EA score), they and the self-reported health scale variables have a
combined incremental R? of 0.105 (0.053 when parental education controls are added). Even when we control
for these variables, we find that results on the relationship between EA score and educational attainment
are consistent with the results in Table 2] For example, adding all of these childhood health dummies to
the specification in the last column of Table [2] yields a point estimate of 0.515 for the coefficient on the EA
score, which is within the 99 percent confidence interval of the estimate without these added controls (just
outside of the 95 percent confidence interval).
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the average income of the father’s occupation in the 1960 census. Adding these controls
does not significantly reduce the coefficient estimate on the EA score. In Column (5), we
show that our estimates are robust to the addition of dummies for the region of birth and
an individual’s religious affiliation. Comparing Columns (1) and (5), the entire battery of
childhood socioeconomic and health controls boosts R? by about 0.138. The incremental R?
of 0.045 associated with the EA score is substantial by comparisonm

Table [3| considers the relationship between the EA score and dummy variables indicating
different types of highest earned degree (No Degree, Two-Year College, College, or Graduate
(MA or Professional Degree)). The EA score is significantly negatively associated with hav-
ing no degree and having a two-year degree, but positively associated with having a college
degree or a graduate degree. Additionally, the genetic score not only predicts educational at-
tainment, but also educational performance. Column (5) presents coefficient estimates from
a specification in which the dependent variable is an indicator for whether the individual
reported having to repeat a grade of schooling. The results suggest that the EA score is
significantly negatively associated with the probability of repeating a grade. A one standard
deviation increase in the genetic score is associated with a 4.1 percentage point reduction in
the risk of ever failing a grade. Panel B of Table [3| shows that these relationships hold even
when we control for parental education

Taken together, the results in Tables [2| and [3| provide support for two propositions. First,
the genetic variation captured in the EA score is strongly associated with educational at-
tainment along nearly every margin. Compared to other observables, the EA score accounts
for a large fraction of the variation in educational attainment. Second, this relationship does
not appear to be driven mostly by childhood environmental factors, at least those that are
measurable in the HRS. After controlling for parental education, the inclusion of several
controls for different aspects of childhood SES does little to attenuate the relationship be-

tween the EA score and completed education. We now take a closer look at the relationship

37Tt should be noted that many of these SES measures may be highly correlated with parental education.
Thus the change in R? across specifications is not necessarily a good measure of the relative importance of
each new set of controls, since their relationship with education may already be reflected in the relationship
between parental education and own education (Gelbach, [2016). However, the aim here is not to demonstrate
the relative importance of each set of controls. Rather, we are concerned with the range of explanatory power
of the polygenic score as we control for additional measures of childhood circumstances. If we include the
maximal set of SES controls but exclude parental education (a modified version of Column (5) in Table [2),
this yields an R? of 0.285. Compared to the result in Column (1), this suggests a incremental R? of 0.079
for all SES controls when ignoring parental education. In this specification the EA score has a incremental
R? of 0.067. Much of the explanatory power of our SES variables is being picked up by parental education.
Nevertheless, the incremental predictive power of the EA score is substantial in any of these comparisons.

38Belsky et al.| (2016) demonstrate that genetic endowments linked to completed education are associated
with learning outcomes during early childhood. Using a polygenic score from an earlier GWAS, they find
evidence that children with higher scores began talking earlier and, by age 7, were stronger readers.
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between childhood SES and the EA score.

3.3 The Polygenic Score and Childhood SES

One aim of our subsequent analysis is to better understand how genes and the environment
interact. To that end, we examine the educational outcomes of individuals with similar
scores, but different childhood circumstances. While the HRS surveys individuals at older
ages, it contains a set of retrospective questions in the Demographics file which can be used to
construct variables related to the SES of an individual’s household during childhood. Here,
we introduce four childhood SES measures in the HRS constructed from these retrospective
questions. All of the measures we construct are binary variables that take the value 1 for

high childhood SES and 0 otherwise. The four variables we construct are:

1. Father’s income: Based on respondent-provided information about father’s usual
occupation, we use income data from the 1960 census to impute an annual salary /
work income for each father. We calculate the median for this father’s income variable
and classify individuals whose fathers earned above median incomes as experiencing
high SES during childhood. The father’s occupation measures come from the Industry
and Occupation Data, which contain more detailed occupation codes than the items

that are publicly available from HRS.

2. Family well off: High SES indicates respondents who reported that their family was
“pretty well off financially” or “average” from birth to age 16. Low SES indicates

respondents who reported that their family was “poor”.

3. Move or help: The HRS asks separate questions about whether a respondent’s family
ever had to move residences or ask relatives for help due to financial reasons. Since
these events are similar (capturing an extraordinary household response), we combine
them into a single variable. This combination increases variation in this measure
since moving or asking for help are each less frequent events”] High SES indicates
respondents whose family never had to move or ask relatives for help for financial
reasons. Low SES indicates respondents whose families did either move or ask relatives

for help.

4. Father’s employment: High SES indicates respondents whose father never experi-

enced a significant unemployment spell (“several months or more”). Low SES indicates

39 About 18 percent of respondent families reported having to move, and about 14 percent reported asking
for help. When combined, about 25 percent had to take at least one of these actions.
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respondents whose father did experience a significant unemployment spell, or those
whose fathers were dead or never lived with them. Notice that this variable incorpo-
rates information on family structure since it takes the value 0 if the child is raised
without a father ]

These SES variables have several shortcomings. For one, they are retrospective, which
may lead to non-random measurement or reporting error. For example, an individual’s SES
during adulthood could affect how they recall or report childhood circumstances. Alterna-
tively, perceptive individuals may be more aware of their parents’ financial difficulties during
childhood. If so, then any of these variables may capture unobserved skills that also lead to
better economic outcomes. Moreover, the variables we use to proxy childhood SES are not
exhaustive, as they do not reflect other factors affecting the level of resources available to
the respondent (e.g., number of children in the household). Potential measurement problems
motivate the use of several SES variables, which allows us to assess whether empirical pat-
terns are robust across measures. Moreover, though the variable “Father’s income” is based
on average income data, it is unlikely to be subject to the same types of reporting error as
the other variables, since the occupation question does not require an individual to make a
normative judgement about their family’s economic situation in childhood.

Despite possible measurement and reporting issues, we show that the SES variables ex-
hibit consistent relationships with both educational attainment and the polygenic score. The
first row of Panel A of Table 4| reports the proportion of individuals classified as high SES
using each of the four measures of childhood environments. For the three variables available
directly in the HRS, between 73 and 75 percent of respondents report a high-SES environ-
ment, while the corresponding number for the imputed father’s income variable is 51 percent.
We explore the relationship between the polygenic score and childhood environments in two
ways. First, for each SES variable, Panel A reports the average fraction of respondents grow-
ing up in a high-SES environment by quartiles of the EA score distribution. For example,
about 70% of individuals in the first EA quartile report that their family was either “pretty
well off financially” or “average” until age 16. This fraction rises to 78% for individuals in the
fourth quartile — a difference of 8 percentage points that is highly statistically significant.
For all four SES variables, we find that the fraction of high-SES respondents generally rises
with higher EA quartiles, and that we can reject the null hypothesis of zero difference in
this fraction between the fourth and first quartiles of the EA score. The largest interquartile
difference in high-SES incidence appears for the father’s income variable (13.5 percentage

points). Table 4| also presents the difference in average EA score for individuals classified as

40 A1l results using this variable are robust to treating cases where the father is dead or never lived nearby
as missing.
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high versus low SES. Again, the largest difference appears for the father’s income: individ-
uals with a father who earned above-median occupational income have genetic scores that
are on average higher by a little under two-tenths of a standard deviation.

Despite these strong gradients, much of the relationship between our SES measures and
the EA score disappears after controlling for parental education. Table[d]reports interquartile
differences in high SES indicators that have been residualized on our basic control set and
measures of parental education. We find substantially less difference in SES environments
across EA quartile groups. For the “Family well off” measure and the “Father’s employment”
measure, the interquartile difference becomes insignificant or only marginally significant. For
the the “Father’s income” and “Move or help” variables, controlling for parental education
attenuates the interquartile differences by at least 45 percent. If the polygenic score exhibits
similarly modest correlations with unobserved environments or investments conditional on
parental education, these results provide some reason to believe that associations between
the EA score and human capital outcomes are not primarily driven by gene-environment
correlations. This is similar to the point made by |Altonji, Elder, and Taber| (2005), who study
labor market returns to Catholic schoolingﬂ Following this logic, adjusting for parental
education bolsters the argument that differences in childhood circumstances for individuals
with similar EA scores can be treated as conditionally exogenous.

While there are systematic relationships between the EA score and our SES measures,
these mean differences appear to be modest compared to differences based on parental ed-
ucation or the respondent’s own educational attainment. Not only are the mean EA scores
similar across SES groups, but the distribution of the EA score is nearly identical across
SES groups. As a point of reference, Panel A of Figure [3| plots the distribution of the EA
score separately for individuals who did and did not complete a college degree, while Panel
B does the same based on mother’s education (less than twelve years versus twelve or more).
Unsurprisingly, there is a substantial rightward shift in the distribution based on completing
college (mean difference of 0.67), and a smaller but substantial rightward shift based on high
mother’s education (mean difference of 0.29). By contrast, Figure [4] plots the distribution
of the EA score separately for high-SES and low-SES groups based on each of our four mea-
sures. In each case, we can reject the null hypothesis that the distributions are identical,
but the differences in the distributions appear smaller than those based on own or parental

education[?] Indeed, the distributions across SES groups are largely overlapping. This over-

41The concern is that higher wages among individuals with Catholic schooling might be selected on unob-
servables so that estimated returns are spurious. They argue that if the two groups are similar on observables,
they are unlikely to be so selected on unobservables as to undermine estimated returns.

42For each measure of childhood SES, the results of a Kolmogorov-Smirnov test suggest that we can reject
the null hypothesis that the distributions of the EA score are equal for high and low SES groups with
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lap is important for subsequent analyses that test for interactions between the EA score and
childhood SES and thus compare educational outcomes for individuals with similar scores,
but different childhood environments. Performing such an analysis would be problematic if
these distributions displayed little overlap since interactions would be identified from com-
parisons of individuals in the tails of each distribution (e.g., comparing high-SES individuals
with unusually low EA scores against low-SES individuals with unusually high EA scores).
As we can see from Figure [4] the comparison of similarly scored individuals from different
SES backgrounds can be made across the distribution of the EA score. Lack of this degree
of overlap is why we do not treat parental income as an additional SES measure, but instead
use it as a control variable.

Panel B of Table 4] demonstrates that each of the SES measures are relevant predictors
of educational attainment. Controlling for the EA score, our basic controls, and parental
education, we find that individuals born into high-SES households are expected to complete
between 0.15 and 0.73 additional years of schooling, depending on the SES measure. While
controlling for parental education accounts for nearly all of the gene-SES gradient, these
SES measures still contain explanatory power for education even after we condition on both
parental education and the polygenic score.

In summary, Figures along with Table [ provide support for three propositions.
First, both genetic endowments and childhood socioeconomic status appear to play impor-
tant roles in driving educational attainment. Second, while our SES measures are certainly
correlated with an individual’s polygenic score, it appears that controlling for parental ed-
ucation accounts for much of the gene-environment correlation that is relevant for human
capital outcomes. Third, the distribution of the polygenic score is largely similar across
SES groups, which suggests we can make meaningful comparisons of individuals with similar

scores, but different childhood SES.

3.4 Childhood SES and the Gene-Education Gradient

A large literature explores the extent to which conditions during childhood affect completed
education and later-life outcomes (Black, Devereux, and Salvanes, |2005 |Cunha and Heck-
man, 2007)). Of particular importance for policymakers is understanding whether changes in
these conditions (e.g., increased investments in school quality) exert different influences on
human capital accumulation for children with different ability endowments or accumulated
skills. For example, as argued by |(Cunha and Heckman! (2007, investments in the skills

of older children from disadvantaged backgrounds might be economically inefficient if com-

p-value<0.01 in all cases.
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plementarities between investments and accumulated skills are sufficiently strong. Here we
explore a related question — whether the effects of childhood SES on human capital accu-
mulation differ based on levels of the endowments measured by the EA score. Our results
highlight an important sign change in the interaction between childhood SES and the poly-
genic score in equations predicting educational attainment. We find that the relationship
between the polygenic score and high school completion is weaker among individuals from
high-SES backgrounds, while the relationship between the score and college completion is
stronger for these individuals. Environments that promote human capital thus appear to be
substitutes for genetic endowments in preventing extremely low education levels, but may
complement these endowments in producing more advanced outcomes.

Figure |5| offers some motivating evidence of interactions between family SES and genetic
endowments. We focus on our most predictive SES measure (Father’s income) and assign
each individual to a quartile of the EA score distribution and a quartile of the father’s income
distribution, generating 16 possible combinations of SES and EA quartile groupings. Panel
A plots average rates of high school completion for each quartile combination, while Panel
B reports the same exercise for rates of college completion.@ For each quartile of father’s
income, higher EA quartiles are associated with a higher probability of attaining a high
school degree. Moreover, within each EA score quartile, higher levels of father’s income
predict uniformly higher probabilities of completing high school, with sharper gradients
for the first two EA score quartiles. In the lowest EA quartile, graduation probability
ranges from approximately 60-90%, while in the highest it ranges from approximately 85-
98%. Genetic endowments predict educational attainment, but childhood environments (as
measured by father’s income) also matter, especially so for individuals with lower EA scores.

Panel B of Figure [5| repeats this exercise for rates of obtaining a college degree. As with
high school completion, higher EA scores are associated with higher probabilities of college
graduation for each quartile of father’s income. Moreover, within each EA score quartile,
father’s income predicts college graduation, especially strongly so for the top quartile. Both
genetic endowments and father’s income predict higher rates of college completion. However,
the differences in completion rates between above and below median income groups are much
higher for individuals with high EA scores. One particularly striking fact that emerges from
Figure5]is that childhood SES may overwhelm genetic endowments in predicting educational
attainment. In particular, Panel B of Figure [5| shows that the college completion rate in the
group formed by the lowest EA score quartile and the highest father’s income quartile exceeds

the corresponding fraction for individuals from the highest EA score quartile, but the lowest

43This analysis is similar to the one in[Belley and Lochner| (2007)), who study how parental income predicts
educational attainment for individuals with similar cognitive test scores.
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father’s income quartile.
To more formally examine whether SES moderates the relationship between the genetic
score and educational attainment, we broaden our analysis to include all four SES measures

and estimate regressions of the form

DegreeAtLeastg = X080+ BspsHighSES; + Bscore EAScore;
+  Bseorez EAScore? + Bgeores EAScore? (1)
+ BriHighSES x EAScore; + ¢;

where DegreeAtLeastf indicates whether individual ¢ completed at least degree 7, with
j € {GED, High School, TwoYr.College, College, Grad}. Here X; contains our standard
controls (a full set of birth year dummies, a male dummy, interactions between the birth year
and male dummies, and the principle components from the full matrix of genetic data) along
with the parental education controls. Note that we include a cubic in the EA score, since
otherwise the HighSES x EAScore; interaction could reflect non-linearities in the relation-
ship between education and the EA score. To further control for population stratification,
we also interact the principle components with HighSFES; and include them as additional
controls.@ Figure |§| plots point estimates of §;,,; for different measures of SES and for differ-
ent degree measures j. FEach panel presents estimates for a different SES measure. Within
each panel, the successive estimates plot the point estimate and the 95 percent confidence
interval for the different dependent variables.ﬁ The striking pattern that emerges is that
there tends to be a significant negative interaction between SES and the score for completing
at least low levels of education (high school equivalent or high school), but there tends to
be a significant positive interaction for more advanced degrees (at least college or graduate
school). To our knowledge, this pattern has not been shown in previous literature@
Moreover, the linear interactions presented in Figure [6] do not appear to be driven by
outliers or by very specific ranges of the EA score. The continuous nature of the interaction
is apparent from non-parametric (Lowess) regressions describing the relationship between

educational outcomes and the EA score for different SES groups, which are presented in

44Throughout the paper, in specifications where we interact the EA score with some other moderating
variable, we also include interactions between the principle components and the moderating variable.

45Regression results for this exercise, for the full sample and then separately for men and women, are
found in Appendix @

461 we use education controls as an additional measure of SES that we interact with the polygenic score in
regressions explaining educational attainment, we obtain the same patterns as we do with the SES measures
considered here. Higher parental education is associated with a steeper genetic gradient for college completion
and above and with a less steep gradient for lower educational outcomes. As explained earlier, we do not
present this as a main result given evidence that the distributions of the polygenic score differ substantially
by mother’s education, which suggests comparisons are more difficult to defend.
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Figures [7}[8l To construct each panel of Figure [7] we regress an indicator for having at least
a high school degree on a basic set of regressors: the genetic principal components, birth year
dummies, a male dummy, and interactions between birth year and male dummies. We then
plot Lowess regression parameters relating the residuals to the EA score separately for high-
and low-SES groups. In the panels of Figure 8] we do the same, but the education outcome
indicator is college degree or more. According to Figure [7] a higher polygenic score predicts
higher education for both SES groups. However, the relationship is stronger for individuals
who grew up in low-SES households. In contrast, Figure |8/ shows that for higher educational
attainment (college degree or more), the positive relationship is stronger for children who

grew up in households with more resources.

3.5 Interpretation and Discussion of Mechanisms

The patterns in Figures are consistent with human capital production functions that
allow the roles of family resources and the EA score to be distinct for different outcomes
at different stages of child development. Specifically, early investments in human capital
(proxied by childhood family SES) may substitute for genetic endowments in preventing very
low levels of educational attainment. However, these same investments could complement
genetic endowments in generating higher levels of educational attainment such as college
completion. It is worth mentioning that our findings on higher degrees are in line with a large
literature showing that ability and investments are complements (Becker and Tomes, |1986;
Cunha and Heckman| 2007; |Aizer and Cunhal, 2012)), as well as the literature emphasizing the
importance of gene-environment interactions in producing economic outcomes. However, the
idea that genetic endowments and investments might be substitutes along some dimensions
merits further exploration.

Our results suggest that some features of high-SES environments are particularly helpful
in preventing low-score children from dropping out of high school, and in promoting college
completion among high-score children. In order for these results to have clear policy implica-
tions, it is important to understand which specific features of these environments matter for
these interactions, and whether they can be manipulated by policy. For example, if father’s
income matters because it allows families to afford better schooling (or reside in areas with
better schools), then our results might suggest that cash transfers to poor families, or invest-
ments in better quality public schooling might be particularly useful in enabling the success
of high-endowment children trapped in poor environments. However, father’s income could
be serving as a proxy for other casaul features of the environment (e.g. parenting style)

that operate independently from school quality. Without exogenous or isolated variation in
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these features of the environment, it becomes difficult to draw firm conclusions about the
policy-relevant mechanisms that drive these interactions.

An existing literature offers some evidence on the importance of different features of high-
SES environments. For example, Belley and Lochner; (2007)) report stronger interactions over
time between AFQT scores and family income in explaining educational attainment, which
suggests that borrowing constraints play an increasingly important role as tuition costs rise.
As they point out, stronger interactions between family income and AFQT scores are difficult
to reconcile with a “consumption value” of education, which has also been suggested as a way
to explain a positive relationship between family SES and college degrees. However, credit
constraints are only one possible way that family SES could alter the returns to genetic
factors /| Interactions may also reflect physical shocks in-utero or during childhood, e.g.,
due to parental smoking. Environmental factors such as early-life stress could also induce
changes in how genes are expressed (how they function in producing proteins), which is one
example of an epigenetic phenomenon [7

The HRS contains only limited information on intermediate outcomes and specific human
capital investments made by parents, so it is difficult to draw sharper conclusions about
the role of household environments in our sample. However, the Life History file contains
retrospective items that on the number of books in the respondent’s household as a child,
as well as whether or not the respondent went to preschool. Existing research suggests
both of these investments are linked to human capital accumulation and skill formation ["]
Additionally, the Life History file also contains a question on the number of people who lived
in a respondent’s household at age 10. The number of people in the household is relevant
because it contains information on the number of children and other dependents in the
household with claims on household resources. As noted in the literature on the quantity-
quality tradeoff in fertility, poorer households may find it optimal to have more children and
choose to invest less intensely in their human capital (Becker, |1960; Hotz, Klerman, and
Willis, 1997). In results in Appendix [B] we show that books, preschool attendance, and a
lower number of individuals in the household are all associated with increased educational
attainment. These measures are positively correlated with our SES measures, even after

controlling for parental education. For example, regression evidence suggests that after

47Cohort differences are also discussed in |Galindo-Rueda and Vignoles| (2005)), who show that the impor-
tance of ability in explaining college degree attainment declines over time, presumably because lower-ability
people are more likely to be able to pay for college in comparison to earlier cohorts. See also [Lovenheim and
Reynolds| (2011]) on changes by ability and income in post-secondary choices.

“®For example, Nestler| (2012)) discusses research showing that early-life conditions faced by mice can induce
epigenetic effects that impact their behaviors and vulnerability to stress later in life.

49The number of books in a household has been used in earlier literature examining the production of
cognition to proxy for parental investments in their children (see, e.g., |Cunha and Heckman| (2008])).
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controlling for parental education, individuals with above-median father’s income are more
likely to have three or more books in the household (difference of 0.054), and more likely to
have attended preschool (difference of 0.054), and are less likely to have more than five people
living in the household (difference of 0.07). This provides suggestive evidence that higher
SES households complement higher polygenic scores through the kinds of early childhood
investments that have been highlighted in existing research. However, this evidence is merely
suggestive; without exogenous variation and more complete data on rearing environments
and early childhood outcomes (e.g., performance at school), we cannot rule out the possibility
that these measures are simply acting as proxies for different causal mechanisms (e.g., low

income and binding credit constraints at college enrollment age).

3.6 Robustness and Sensitivity

Our estimates of interactions between the polygenic score and family SES are consistent
with different roles for family resources depending on the level of education, which would
suggest restrictions on the production function for human capitalm However, we cannot
rule out other accounts related to measurement error or correlations between environmental
factors and advantageous parental genetic endowments. For example, it could be the case
that actual investment levels (which we proxy with SES) are a positive function of both
observed SES and the child’s genetic endowment !] If this is true, then SES will increasingly
underestimate investment as the child’s genetic endowment grows.

To help guide our interpretation of estimates, in Appendix [C] we develop a simple econo-
metric model that incorporates several features of our setting, including: (i) using family
SES to measure human capital investments introduces measurement error; (ii) investments
in children are potentially affected by children’s genetic endowments; (iii) these investments
can also be affected by parents’ genetic endowments, for example, if parents’ genes lead to
higher parental education, wealth or income; and (iv) children’s genetic endowments are a
function of their parents’ genetic endowmentsﬂ Using the model, we show that, under a
reasonable set of assumptions, such a scenario will result in bias in the magnitude but not

the sign of gene-investment interaction effects that we estimate. Therefore, the sign change

50In related work, Todd and Wolpin| (2003)) suggest that typical approaches to estimating the production of
cognition may be overly restrictive. Our findings are related since they suggest that ability and investments
interact in complex ways (that possibly vary by schooling level) to generate educational outcomes.

51Tnvestments could rise with the child’s genetic endowment because parents target resources, or because
children with high endowments also have parents with high endowments who provide more resources.

52 As mentioned earlier when we discuss our standard control set, the model motivates why we allow for
heteroskedastic error terms and include a polynomial in the polygenic score for all specifications, which helps
to control for measurement error.
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in the estimated interaction between genes and investments in low versus high educational
outcomes is key. It is not a necessary condition for differences in the interaction effect, but
it is a sufficient condition for the existence of such differences. We also show in Appendix
[C] that we cannot guarantee the identification of the interaction sign if we use a more tradi-
tional measure of ability such as Q) or cognitive test scores, which may be directly affected
by investments. In other words, a key benefit of using genetic data to infer how genetic
endowments interact with human capital investments is that genetic endowments are fixed
and therefore not simultaneously affected by investments, even if they are correlated with
them. It is also noteworthy that our pattern of interactions is robust across a number of
distinct measures of SES with different patterns of correlation with the EA score. This
suggests that the interactions we find do not primarily reflect correlation between parental
genetic endowments and environments*|

Other factors might threaten identification of the interaction term. An omitted third
factor could affect education, but exhibit a different relationship with EA score for each
SES group. One possibility is that our binary childhood SES measures mask differences in
how household resources rise with genetic endowments. Another possibility is that there are
additional genetic factors driving education that relate to the polygenic score in different
ways across SES groups. In both cases, we have not identified true complementarities, but
instead have captured omitted factors. Finally, there may also be classification error that
differs by group if, for example, individuals with lower polygenic scores are more likely to
mis-classify their childhood SES. The ideal experiment to test for these effects would involve
a random assignment of resources that can be manipulated by policy (e.g. household income)
to individuals with different genetic scores.

While we cannot rule out the threats to identification rooted in selection on unobservables,
the distributions of the polygenic score by SES group plotted in Figure [ in particular
the substantial overlap, help to allay some concerns The reasoning is similar to that in
Altonji, Elder, and Taber| (2005). The plots demonstrate that when we divide the sample
by childhood SES, the resulting groups are quite similar with regard to an important and
relevant observed source of heterogeneity. Similar polygenic scores across groups provide

some support for the assumption that individuals are similar on unobserved factors as well,

53 Another possibility is that the interactions that we estimate arise from non-linearities in the human
capital production function. Suppose that the genetic score is related to education in a non-linear fashion,
and that SES is correlated with the genetic score. Then we could estimate significant score-SES interactions
that have nothing to do with differences in the production function across SES groups. That is, an interaction
between the score and observed SES may simply reflect an underlying non-linear relationship between the
score and education. As discussed earlier, we control for non-linearities through a cubic in the EA score for
all specifications examining the interaction between the EA score and childhood SES to explain educational
attainment. We thank Jonathan Beauchamp for pointing out this possibility.
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i.e., that estimated differences in returns to genetic endowments by childhood SES are not
the result of selection on unobservablesP]

We also acknowledge that our conclusions here are based on a fairly large number of
specifications that span four different SES measures and five different educational outcomes.
This raises the possibility that our results could be false positives that emerge from mul-
tiple hypothesis testing. In Appendix [E] we adjust the p-values associated with our main
hypothesis tests to account for multiple comparisons. We continue to have strong statistical

evidence for multiple SES-EA score interactions even after applying these corrections.

4 Genes and Labor Outcomes

Results from the previous section suggest that low-SES environments reduce the returns to
genetic endowments by lowering the probability of college attendance. This is particularly
important in light of the substantial rise in the earnings premium for a college degree over
the last several decades. However, earnings depend not only on completed education, but
also on the returns to endowments conditional on education. High-score individuals who are
shut out of college due to childhood poverty might still receive an earnings premium if the
genetic endowments measured by the EA score are also associated with skills valued in the
labor market. This motivates an analysis of the relationship between the score and earnings
conditional on education.

The questions we ask here are related to a longstanding literature on the returns to ability.
At least since Becker and Chiswick| (1966)), labor economists have been concerned with ability
bias in estimating the relationship between schooling and various economic outcomes. If the
unobserved factors that promote education also independently predict labor market success,
then estimates of the return to schooling will be biased upwards. This concern not only
raises an econometric point; it also poses fundamental questions about the structure of
heterogeneity in labor market decisions and outcomes. How and to what extent do the
characteristics or traits that promote education also affect earnings over the the life-cycle?
Observing the EA score thus also allows us to make some progress on this larger question,
demonstrating how previously unobserved factors might not only drive education, but also

several other outcomes conditional on education.

54Tn results available from the authors, we assess robustness if we restrict attention to individuals who
are not in the tails, i.e., if we rerun regressions dropping individuals with EA scores in the top or bottom
5 percent. We continue to find positive and significant interactions between SES and the EA score in
predicting college completion. However, we note that with this restriction many of the interaction terms
become insignificant in the specifications predicting high school completion.
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4.1 The EA Score and Earnings

We begin by describing the relationship between the EA score and earnings over the life-
cycle. Panel A of Figure[J| plots the unconditional average earnings of men in our sample over
the ages 35 to 60 separately by terciles of the EA score. Each tercile group exhibits a classic
concave age-earnings profile, with earnings rising until approximately age 55, then falling
afterwards. At every age, earnings are higher for individuals in higher EA terciles. To explore
whether this pattern also holds conditional on education, we next regress earnings on controls
for own and parental education and plot the residuals separately by EA tercileﬂ Residual
earnings diverge considerably as respondents age. Together both panels suggest that the EA
score predicts higher earnings, this gradient is not fully explained by educational attainment
and it becomes larger as individuals age. We note that this pattern of divergence would not
be fully captured by a standard fixed effects model, since fixed effects do not change over time
by construction. This illustrates how observable measures, such as the EA score, can help us
to better understand the structure of heterogeneity in labor outcomes. These patterns are
also consistent with findings of |Altonji and Pierret (2001), who demonstrate that measures
of labor market ability that are presumably difficult to observe, like the AFQT, become
better predictors of wages as individuals age and accumulate more experienceﬂ

Table [5] presents more formal estimates of the relationship between the EA score and log
earnings. Here we restrict the sample to all person-year observations for men aged 50-64
with at least $10,000 of annual earningsﬂ Standard errors are clustered at the person level.
Panel A contains our baseline specification, which regresses log earnings on the EA score
and a controls set that consists of the principal components, as well as dummy variables for
age, year, and birth year. As seen in Column (1) of Panel A, without any controls for own
education a one standard deviation increase in the EA score is associated with an increase in
log earnings of 0.079. In Column (2) we add controls for own education (years of schooling
and a full set of degree dummy variables) and parental education. Controlling for education

and parental background, we estimate a coefficient on the EA score of 0.031, which remains

55Specifically, we include our standard controls, years of father’s and mother’s education separately, dum-
mies for missing values of father’s and mother’s education, years of own education, and separate dummies
for each possible completed degree.

56Altonji and Pierret| (2001) attribute this empirical pattern to the dynamics of employer learning. Early
in an individual’s work history, firms make wage offers conditional on easily observable characteristics such
as educational attainment that are useful but are not sufficient to describe a worker’s true productivity.
Measures like the AFQT might better capture the worker characteristics that are relevant for productivity,
but firms typically have a hard time observing these proxies. However, as workers age and accumulate
experience, employers learn more about worker characteristics. Consequently, as workers age, the correlation
between wages and these proxies for hard-to-observe ability should increase.

5TThe threshold of $10,000 is arbitrary, but this is chosen to restrict the sample as much as possible to
full time workers and exclude those who are marginally attached the labor force.
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highly significant. Thus far, we have assumed that the returns to the EA score would be the
same regardless of an individual’s level of education. However, returns to the EA score might
plausibly differ based on an individual’s level of completed schooling. For example, we might
expect there to be larger returns to genetic endowments if formal education is a productive
complement with ability in generating productive skills. Consequently, we explore whether
there is any interaction between the genetic score and having at least a college degree. The
results in Column (3) do not allow us to reject the null hypothesis that there is no additional
return for those with a college degree@ However, we do note in robustness exercises that
there appears to be a larger return for college graduates when the sample is restricted to
later years and ages.@ Importantly, we find no evidence that high-EA score individuals
without a college degree experience sufficient returns on their endowments to compensate
for the lack of a degree. Finally, in Column (4) we restrict the sample to individuals aged
40-64 and re-estimate our basic specification from Column (2). We find a larger association
between the EA score and earnings conditional on education for this older sample (0.042
versus 0.031), consistent with the pattern suggested by Panel B of Figure @

In Panel B, we examine whether the association between the score and earnings has
evolved over time or across cohort groups. This is motivated by the large literature in labor
economics demonstrating a rise in the return to skill and an increase in residual income
inequality over the last several decades (Lemieux) 2006; Autor, Katz, and Kearney, 2008}
Acemoglu and Autor|, 2011 Lochner and Shin|, [2014). In Column (1), we interact the score
with an indicator for years after 1980, when massive technological changes emerged in the
work place, such as the advent of computers. We find that the coefficient on the EA score
goes to zero while the interaction between the EA score and post-1980 is large and significant
(0.073)@ However, it could be that the higher returns to the EA score after 1980 simply
reflect the post-1980 increases in the college wage premium. In Column (2), we include a
college degree dummy interacted with the post-1980 dummy to account for this. Indeed,
we find an increase of 0.272 in the log-earnings premium associated with a college degree
after 1980. Adding this interaction causes a reduction in the coefficient on the EA score

post-1980 interaction to 0.035, but it remains highly statistically significant. Results using

58To control for possible population stratification, we also include interaction terms between the principal
components and the indicator for a college degree.

59Tn Appendix [B| we also show that there appear to be substantially larger returns to the EA score for
individuals with a college degree. This difference is statistically significant when estimating an earnings
equation using self-reported earnings data from the HRS. When we restrict the SSA data to match the years
and ages of the HRS sample, we find similar estimates, although the difference in returns between those with
and without a college degree is not statistically significant in that sample.

60To control for population stratification, we always include interactions between the principle components
and the “Year > 1980”7 and “Birth Year > 1942” indicators whenever these binary variables are interacted
with the EA score in Panel B of Table [5]
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the post-1980 dummy could reflect either a time or cohort interaction, since the correlation
coefficient between year of birth and calendar year in our earnings sample is over 0.60. In
Column (3), we instead interact the genetic score with an indicator for being born after
1942 (median birth year in the wage sample). The coefficient on the interaction is 0.030 and
is not statistically significant. In Column (4), we add an interaction between college and
education being born after 1942 to the specification in Column (3) and find a substantial
interaction between post-1942 birth cohorts and having a college degree (0.152), but a small
and insignificant interaction between the EA score and post-1942 birth cohorts. In Column
(5), we include all interaction terms from the specifications in Columns (2) and (4). We
only find statistically significant interactions between the EA score and post-1980 years, and
between having a college degree and post-1980 years. This suggests that something about
the labor market changed after 1980 to alter the returns that individuals experienced to the
characteristics summarized by the EA score, regardless of their birth Cohort.ﬂ

One limitation of the SSA data is that they do not contain information on hours worked,
preventing an analysis of wages. This raises the possibility that our results on earnings
could be driven by differences in labor supply instead of changes in productivity. Indeed,
in Appendix we find that men with higher values of the EA score are more likely to
work, and are less likely to retire in a given year. Here the self-reported earnings data in
the HRS are useful, even though they are limited to observations on older men after 1990.
In Appendix [B], we find that the EA score exhibits similar associations with both the log
of self-reported earnings and the log of self-reported wages in the HRS, suggesting that our
earnings results are unlikely to be driven by labor supply differences.

Our earnings results suggest two key points. First, the EA score measures individual
traits or characteristics that earn a premium in the labor market, above and beyond com-
pleted schooling. Second, this additional return to the EA score appears to have grown over
time, and after 1980 in particular. This timing is significant because a large literature docu-
ments not only a rise in the returns to schooling beyond this point, but a rise in the returns
to observable measures typically associated with labor market ability. |[Murnane, Willett,
and Levy| (1995)) find that the returns to cognitive skills (measured by math test scores)
were larger in the 1980s compared to the 1970s for young workers. Similarly, Gould (2002)

provides evidence of a rise in the returns to intelligence based on evidence from cognitive

610ne potential confounding factor is the sharp drop in the extent of top-coding patterns in the SSA data
that occurred in the late 1970s and early 1980s. As described in Appendix [B] the divergence in earnings
between EA terciles appears to happen continuously after 1980 at a time when the top-coding scheme was
relatively stable. This suggests that the post-1980 rise in the association between the EA score and earnings
is unlikely to be solely due to changes in top-coding.
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tests scores.@

4.2 Genes, Job Tasks and Skill-Biased Technological Change

The empirical patterns demonstrated in the previous section are consistent with the ongoing
rise in the returns to skill. This phenomenon is often explained by the complementarity
between certain skills or abilities and the introduction of new technologies during this time
period (Acemoglul, 1998). Some individuals may have a greater capacity for learning how
to use new technologies, either because of genetic endowments or because of past human
capital investments. Such individuals may find it easier to adapt to technological shocks and
use them to enhance their productivity in the workplace. If the EA score captures such an
ability to learn new skills, then the rising return to genetic endowments may be a conse-
quence of skill-biased technological change (SBTC). This suggests an interesting extension
to the idea of gene-environment interactions, which are often thought of as pertaining to
household environments or other investments made in human capital. Our results suggest
that another environmental factor is the state of technology, which can unexpectedly shift
over time, making some genetic endowments more or less productive in ways that are difficult
to anticipate and plan for.

To examine whether SBTC can help to explain wage returns to ability across birth co-
horts, we next consider how the EA score relates to job tasks. The literature on SBTC has
implicated computerization as an important driver of rising returns to cognitive skills. In a
review of the literature Katz and Autor| (1999) discuss many reasons why increased access to
computers shifts the demand for skilled labor. For example, it could be the case that skilled
workers are “more flexible and facilitate the adoption of new technologies so that all techno-
logical change increases the relative demand for more-skilled labor,” (p. 1535). Alternately,
more skilled workers might be able to work more creatively with available information.

In an influential study, |Autor, Levy, and Murnane, (2003)) link computerization and SBTC
to the tasks that workers perform on the job. Specifically, |Autor, Levy, and Murnane| (2003)
argue that computerization should substitute for the labor of workers with jobs that involve
repetitive tasks that follow explicit rules or patterns (routine tasks). Conversely, computeri-
zation should complement the labor of workers who carry out non routine tasks that involve
“problem-solving and complex communication activities.” |Autor, Levy, and Murnane (2003])
use the Department of Labor’s Dictionary of Occupational Titles to measure the intensity

of five relevant tasks types: (i) non-routine analytic (use of math); (ii) non-routine inter-

62Further contributions to this literature include Juhn, Murphy, and Pierce| (1993), |Taber (2001) and
Tobias| (2003).
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active (direction, control and planning); (iii) routine cognitive (set limits, standards and
tolerances); (iv) routine manual tasks (finger dexterity); and (v) non-routine manual (eye,
hand and foot coordination). Examining patterns within education, occupation, and indus-
try groups, Autor, Levy, and Murnane| (2003) indeed find that computerization has been
associated with a rise in non-routine cognitive tasks, and a reduction in routine cognitive
and routine manual tasks.

Data from |Autor, Levy, and Murnane (2003|) provide measures of how intensely every
Census occupation uses the five job tasks listed above[®| Although the public release of the
HRS contains masked aggregated occupation codes, we use the detailed occupation codes
available in the restricted Industry and Occupation Data file. Since a given task intensity
has no natural interpretation, we standardize each intensity to have a mean of zero and
a standard deviation of one. Table [0] presents estimates of the relationship between the
genetic score and the task intensity for the occupation. The specification here includes all
person-year observations for men between the ages of 50-64 with non-missing occupation
data. Panel A regresses the job task intensities on the principal components, and a full set
of age, year, and birth year dummies. Importantly, we do not include controls for parental
or own education in these specifications.

The results in Panel A suggest that the EA score is positively associated with both non-
routine analytic and interactive tasks, and negatively associated with routine tasks. We find
no evidence of an association with non-routine manual tasks. These results are consistent
with the proposition that the EA score is associated with job tasks that were complemented
by computerization. However, the associations in Panel A may reflect the associations be-
tween completed schooling and occupation. In Panel B, we repeat the specifications in Panel
A but now control for parental and own education. After controlling for education, we still
find a positive association between the EA score and the non-routine analytic tasks. A one-
standard-deviation increase in the EA score is associated with a 0.055 standard deviation
increase in non-routine analytic task intensity. We find no statistically significant associa-
tions between the EA score and other task intensities after controlling for education. One
caveat in interpreting these results is that while we find a statistically significant association
between the EA score and non-routine analytic tasks conditional on education, this associ-
ation becomes insignificant after correcting for multiply hypothesis testing in Appendix [E]
We thus treat our results here as speculative and awaiting further confirmation.

Given the results present in Table [ we explore whether we observe a similar relationship

63Data on the task intensities associated with each occupation can be found on David Autor’s web-
site: http://economics.mit.edu/faculty/dautor/data/autlevmurn03. The |Autor, Levy, and Murnane
(2003) task intensity measurements that we use are based on the 1991 Dictionary of Occupational Titles
associated with male workers.
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between the EA score and non-routine analytic tasks across education groups. In particular,
Figure plots the EA score against the standardized non-routine analytic task intensity for
respondents with and without a college degree. For either education group, individuals with
higher scores are more likely to be in occupations where they perform more sophisticated
tasks. This may help explain patterns shown in Figure [, which shows that higher scores
predict higher earnings after adjusting for education. However, these figures also highlight
one source of the college premium. Across the entire EA score distribution, individuals
without a college degree are predicted to have a lower average intensity of this task than
individuals with a college degree. In fact, the average intensity for individuals with EA
scores 3 standard deviations above the mean EA score is lower relative to that of college
educated individuals with EA scores below the mean.

The results presented in this section add some nuance to our conclusions regarding ge-
netic endowments and earnings. The gene-earnings gradient only appears after 1980 in the
SSA data. This pattern appears quite consistent with complementarities between techno-
logical change and genetic proclivity for learning. This account is bolstered by the positive
association between the score and non-routine cognitive job tasks. Yet, while individuals
with high polygenic scores and across education groups profit from new technologies, the
college premium remains massive. Importantly, the genetic gradients in both earnings and
job tasks are roughly similar for individuals with and without a college degree. This suggests
that high-EA individuals without a college degree do not find ways to easily sort into jobs
with tasks that heavily complement new technologies. Genetic endowments do not compen-
sate for a lack of a college degree in the labor market. Coupled with our earlier finding that
college completion for individuals with similar scores depends in large part on childhood SES
(e.g., father’s income), results in this section suggest that there may be unrealized human

potential in the economy.

5 Discussion

Recent breakthroughs in behavioral genetics — most notably the research presented in |Ri-
etveld et al.| (2013)), Okbay et al. (2016) and Lee et al. (2018) — allow researchers to observe
genetic endowments that robustly explain educational attainment. Using HRS data, we
show that up to 9.7 percent of the variation in educational attainment is explained by the
genetic index presented in |Lee et al. (2018)) (the EA score). Childhood SES appears to
moderate the relationship between this index and various levels of educational attainment
— particularly obtaining a college degree. The endowments measured by this index also

predict earnings, job tasks, and labor supply later in life. Finally, we provide novel evidence
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that the wage premium associated with the genetic index has risen over time. We argue that
structural changes in the economy, and skill biased technological change in particular, may
have contributed to a rise in the genetic gradient.

An important caveat to our results is that the genetic endowments measured by the EA
score are not exogenously assigned. Individuals with higher values of the EA score neces-
sarily have birth parents with high values of the EA score, making it difficult to determine
how much of the associations we estimate arise from the biological traits linked to these
genetic markers, or to the positive environments provided by their parents. Nevertheless,
results from previous studies using within-family designs suggest that the majority of the
associations used to construct the score remain even after controlling for family fixed effects.
Controlling for parental education seems to account for much of this gene-environment cor-
relation. Nevertheless, the associations we report conditional on education might still reflect
unmeasured investments or other features of the environment that are not observed in the
HRS data.

Our findings based on observing genetic heterogeneity could be incorporated into struc-
tural models that are often devised for use in ex ante policy evaluation. The structure of
heterogeneity assumed in these models is often tremendously important in driving predic-
tions about labor market dynamics. For example, in a seminal contribution to the field,
Keane and Wolpin| (1997) suggest that 70 percent of the variability in the career paths of
young men is driven by heterogeneity in unobserved factors (at age 16). When building
these kinds of models, researchers face a large number of choices about how to model het-
erogeneity — from picking which parameters to make random, to determining the structure
of correlation between unobservables. The results presented here may offer some restrictions
on the structure of heterogeneity in these models. For example, our estimates suggest some
restrictions on how the unobservable factors that drive education relate to wages and wealth,
conditional on education. Our findings also point to possible differences in the education
production function for high school versus college completion.

Our results also suggest several interesting avenues for future research. A natural exten-
sion would seek to combine the polygenic score studied here with more exogenous measures of
childhood SES. We believe that plausible assumptions allow us to at least sign the interaction
between genetic endowments and childhood SES, even though these may be simultaneously
determined by parental genes. Nevertheless, more robust inferences could be made with
access to randomly assigned childhood circumstances or investments. Indeed, in any ex post
evaluation of an existing policy, the genetic score can be used to detect the presence of
heterogeneous effects by genetic endowments.

Another important task is to better understand the mechanisms that link the polygenic

34



score studied here and economic outcomes. In ongoing work, we try to understand the
relationship between the score, beliefs formation and the ways in which people make health
and financial decisions. If the genetic underpinnings of education function through their
impact on how people process new information, then this might offer clues as to how policies
could be designed to better maximize the potential of individuals with disparate ability
endowments. Such insights might ultimately guide the design of school curricula or the
content of interventions such as job-training programs.

More broadly, a recurring theme in our empirical results is that individuals with simi-
lar abilities, but born into different socioeconomic circumstances, face diverging economic
outcomes. These findings suggest an important role for policies that invest in poor children
and, more generally, provide some support that such investments could mitigate inefficiently
low investments in human capital (Heckman and Masterov, 2007). Our findings on wasted
potential complement mounting evidence from a variety of fields suggesting the misallocation
or squandering of human resources. Researchers have reached this conclusion in different
ways. For example, Hsieh et al. (2013) show evidence that innate talent, especially among
blacks and women, is likely misallocated across occupations, and highlight the implications
of misallocation for economic growth in the United States. In another study, Chetty, Hen-
den, and Katz| (2016) demonstrate that randomly assigned vouchers that move children from
high-poverty to less-poor neighborhoods can improve labor market performance in the long
run. This suggests that policy-relevant factors affect how well a child with a given set of

endowments will eventually perform.
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6 Tables and Figures

Table 1: Summary Statistics - HRS Sample

Variable Mean Std. N Variable Mean  Std. N

Male 0.417 0.493 8537 Father’s Income 28.588 10.348 6773

Birth Year: Family SES (Childhood)
< 1930 0.227  0.419 8537 Well Off 0.067  0.25 8537
1930-1934 0.152  0.359 8537 Average 0.645  0.478 8537
1935-1939 0.183  0.387 8537 Poor 0.273  0.446 8537
1940-1944 0.161  0.367 8537 Varied 0.013  0.114 8537
1945-1949 0.126  0.332 8537 Missing 0.001  0.034 8537
1950-1954 0.151  0.358 8537 Refused 0.000  0.019 8537

Degree: Family Moved (Childhood)

Education (Years) 13.161 2.538 8537 No 0.816  0.387 8537
None 0.129 0.335 8512 Yes 0.18 0.384 8537
GED 0.045 0.207 8512 Missing 0.004  0.062 8537
High School 0.529 0.499 8512 Refused 0.000  0.015 8537
College (2 year) 0.05 0.219 8512 Fam. Asked for Help (Childhood)
College (4 year) 0.147  0.354 8512 Yes 0.134  0.341 8537
Masters 0.077 0.267 8512 No 0.851  0.356 8537
Advanced 0.023 0.148 8512 Missing 0.015 0.12 8537

Redo Grade 0.14  0.347 8166 Refused 0.000  0.015 8537

Parents’ Educ. (Years) Father Lost Job (Childhood)

Father 10.229 3.593 6711 Yes 0.204  0.403 8537

Mother 10.672  3.017 6993 No 0.728  0.445 8537

SSA Earnings (96,721 person-year obs.) Never Worked 0.006  0.075 8537

Mean 59,180 Never There 0.056  0.229 8537

Std. Dev. 32,851 Missing 0.007  0.084 8537

25" percentile 34,173 Refused 0.000  0.015 8537
50" percentile 55,295 Health as Child

75" percentile 75,005 Excellent 0.545  0.498 8537

Num. Respondents 3,140 Very Good 0.256  0.436 8537

Good 0.143 0.35 8537

Fair 0.044  0.206 8537

Poor 0.012  0.108 8537

Missing 0 0.015 8537

Summary statistics for the primary analytic sample, which consists of 8,537 individuals from the HRS.

The sample is limited to individuals of European ancestry genotyped in the 2006 and 2008 waves. The
earnings data consist of 96,721 person-year observations for 3,140 men from our sample with non-missing
earnings data from the Social Security Administration Master Earnings File (MEF). These summary

statistics are calculated without sampling weights.
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Table 2: Polygenic Score and Educational Attainment

(1) (2) (3) (4) (5)
EA Score 0.827***  0.614%**  0.609***  0.586***  (.583***
(0.034)  (0.033)  (0.033)  (0.033)  (0.033)
Father Educ 0.153%F**  (0.148%** 0. 111%**  (0.111%***
(0.013)  (0.013)  (0.014)  (0.014)
Mother Educ 0.176%**  0.172%**  0.156***  (0.153***
(0.016)  (0.016)  (0.016)  (0.016)
Child Health: Very Good -0.154** -0.110 -0.114
0.073)  (0.072)  (0.073)
Child Health: Good -0.473%*% - -0.406%FF  -0.415%**
(0.092)  (0.091)  (0.092)
Child Health: Fair -0.385%**  _(0.354%F  -0.371**
(0.149)  (0.149)  (0.149)
Child Health: Poor -0.995* -0.911 -0.893
(0.592)  (0.581)  (0.589)
Child Health: Missing 1.006*** 2.029 2.034
(0.3%6)  (1.240)  (1.244)
Obs. 8537 8537 8537 8537 8537
R? 0.206 0.316 0.322 0.339 0.344
Child SES Measures N N N Y Y
Child Region N N N N Y
Religion N N N N Y
Incr. R?, EA score 0.097 0.051 0.050 0.045 0.045

Regressions relating educational attainment (years) to the EA score. All regressions include a full set of
dummy variables for birth year, a male dummy, and a full set of interactions between the birth year and
gender dummies. All specifications include the first 10 principal components of the full matrix of genetic
data as controls. Some specifications include controls for parental education, childhood health, childhood
SES measures, region during childhood and religion, as indicated. The last row reports the incremental
R? of the EA Score.
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Table 3: Polygenic Score and Categorical Education Outcomes

(1) (2) (3) (4) (5)
Dep Var. No Degree Two-Year Coll. College Graduate Redo Grade
Panel A:
EA Score -0.066*** -0.010** 0.069***  0.063*** -0.041%**
(0.005) (0.004) (0.005) (0.004) (0.005)
Obs. 8512 8512 8512 8512 8166
R? 0.175 0.055 0.081 0.101 0.093
Panel B:
EA Score -0.048%** -0.013%** 0.052*%**  (0.051*** -0.030%**
(0.005) (0.005) (0.005) (0.004) (0.005)
Father Educ  -0.009*** -0.001 0.014%**  0.011%** -0.007***
(0.002) (0.002) (0.002) (0.002) (0.002)
Mother Educ  -0.016*** 0.005%* 0.014***  0.008%** -0.008%**
(0.002) (0.002) (0.002) (0.002) (0.003)
Obs. 8512 8512 8512 8512 8166
R? 0.217 0.060 0.120 0.128 0.109

Regressions relating educational attainment categories or the probability of repeating a grade to the EA
score. Specifications in Panel A do not include parental education. Specifications in Panel B include
parental education. All regressions include a full set of dummy variables for birth year, a male dummy
and a full set of interactions between the birth year and gender dummies. Additionally, every specification

includes the first 10 principle components of the full matrix of genetic data.
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Table 4: Childhood SES Measures and Education

(1) (2) (3) (4)
SES Measure: Father Inc. Fam. Well Off Never Move or Ask. Father Emp.

Panel A: EA Score and Four Measures of High Family SES

Full Sample Average 0.511 0.733 0.752 0.739
EA Score Quartile 1: 0.426 0.697 0.714 0.702
EA Score Quartile 2: 0.494 0.724 0.740 0.750
EA Score Quartile 3: 0.557 0.733 0.762 0.726
EA Score Quartile 4: 0.561 0.778 0.792 0.777
Q4—-Q1 0.135 0.081 0.079 0.075
p-value <0.0001 <0.0001 <0.0001 <0.0001
Q4—Q1 (Residuals) 0.056 0.012 0.041 0.040
p-value 0.007 0.96 0.013 0.055

A EA Score for
High vs Low SES 0.197 0.123 0.144 0.108
p-value <0.0001 <0.0001 <0.0001 <0.0001

Panel B: Dep. Var - Education

HighSES 0.765%** 0.374%** 0.201** 0.151*
(0.074) (0.077) (0.085) (0.080)
EA Score 0.598*** 0.613*** 0.611*** 0.612***
(0.037) (0.033) (0.033) (0.033)
Obs. 6773 8412 8385 8475
R? 0.340 0.321 0.317 0.316

Specifications relating four measures of childhood SES to education and EA score. Panel A shows how the
EA score relates to family SES. The first row shows the proportion in the sample indicating high SES for
each measure among those who report the measure. The following rows show the proportion indicating
high SES for each measure within each EA score quartile. We also report p-values for differences between
the first and fourth quartiles. We also repeat this exercise after residualizing the SES measures on our
basic controls and parental education measures. For the residualized measrues, we only report differences
between the first and fourth quartiles of the EA score distribution, along with the associated p-values
for these differences. Panel B contains coefficients on measures of high SES and EA score in regressions
explaining educational attainment (years). Regressions also include a full set of dummy variables for
birth year, a male dummy and a full set of interactions between the birth year and gender dummies.
Additionally, every specification includes the first 10 principle components of the full matrix of genetic
data, and controls for parental education.
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Table 5: Polygenic Score and Earnings

Panel A: Log Earnings

Basic Specifications (1) (2) (3) (4)
EA Score 0.079%**  0.031%F**  (0.027*F**  (0.042%**

(0.010) (0.009) (0.010) (0.011)
EA score x College 0.016

(0.021)

Obs. 96721 96721 96510 57469
R? 0.146 0.190 0.195 0.150
Age Group 25-64 25-64 25-64 40-64
Period All Years All Years All Years All Years
Educ. Controls N Y Y Y
Parent Controls N Y Y Y

Panel B: Log Earnings

By Time and Cohorts (1) (2) (3) (4) (5)
EA Score -0.008 0.010 0.018*%*  (0.026*** 0.011
(0.007) (0.007) (0.008) (0.008) (0.008)
EA Score x Post 1980 0.073*%**  (0.035%** 0.041%**
(0.013) (0.013) (0.010)
EA Score x BY > 1942 0.030 0.006 -0.011
(0.019) (0.020) (0.019)
College x Post 1980 0.272%** 0.253%**
(0.032) (0.024)
College x BY > 1942 0.152%** 0.041
(0.047) (0.044)
Obs. 96721 96510 96721 96510 96510
R? 0.196 0.206 0.193 0.197 0.208
Ed. Groups All All All All All
Period All Years All Years All Years All Years All Years
Educ. Controls Y Y Y Y Y
Parent Controls Y Y Y Y Y

Regressions relating the EA score to log earnings. In the first three columns of Panel A, we restrict the
sample to earnings records for men between the ages of 25 and 64 over the years 1951-2013. We further
restrict the sample to person-years in which the respondent earned more than $10,000 in real 2010 dollars.
In Column (4), the sample is narrowed to cover person-years in which respondents are aged between 40
and 64. The specifications in Panel B cover ages 25-64 and years 1951-2013. The dependent variable is
the log of real earnings. All regressions include the first 10 principle components of the full matrix of
genetic data along with a full set of dummy variables for birth year, calendar year and age. As noted
in the table, some specifications include controls for parental education (years of paternal and maternal
education and dummies indicating missing values for each) and own education (years of schooling and a
full set of completed degree dummies). Standard errors in all specifications are clustered at the person
level.
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Table 6: Polygenic Score and Standardized Job Tasks

Panel A: (1) (2) (3) (4) (5)

Dep Var. Non-Routine Non-Routine  Routine Routine  Non-Routine
Analytic Interactive = Cognitive = Manual Manual

EA Score 0.2471*** 0.165%** -0.073**%  -0.139%** -0.020
(0.024) (0.022) (0.023) (0.022) (0.025)

Obs. 9938 9938 9938 9938 9938

R? 0.101 0.065 0.035 0.065 0.040

Educ. Controls N N N N N

Panel B: (1) (2) (3) (4) (5)

Dep Var. Non-Routine Non-Routine  Routine Routine  Non-Routine
Analytic Interactive =~ Cognitive =~ Manual Manual

EA Score 0.055%* 0.026 0.027 0.004 0.028
(0.022) (0.022) (0.024) (0.023) (0.027)

Obs. 9938 9938 9938 9938 9938

R? 0.296 0.179 0.099 0.175 0.056

Educ. Controls Y Y Y Y Y

Regressions relating EA score to job tasks. In both panels, the dependent variable is job task intensity,
as constructed by |Autor, Levy, and Murnane| (2003). We standardize each task measure by subtracting
its mean and dividing by its standard deviation within our sample. All regressions include the first 10
principle components of the full matrix of genetic data, as well as a full set of dummies for birth year,
calendar year and age. Specifications in Panel B include controls for parental education (years of paternal
and maternal education and dummies indicating missing values for each) and own education (years of
schooling and a full set of completed degree dummies). In all columns the sample is restricted to men
between the ages of 50 and 64 who worked at least 20 hours for pay. Standard errors are clustered at the
person level.
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Figure 1: Age-Earnings Profiles by Education Group.
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Figure 2: Distribution of the EA Score.
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Panel (A) EA Score Distribution by College Completion
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Panel (B) EA Score Distribution by Mother’s Education

Figure 3: EA Score Distribution by Own and Maternal Education.
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Figure 4: EA Score Distribution by Family SES.
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Panel (A) High School Graduation by EA Score and Father’s Income
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Panel (B) College Graduation by EA Score and Father’s Income

Figure 5: Educational Attainment by Father’s Income and EA Score.
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Figure 6: Coefficient on the interaction between EA score and high SES for different schooling categories.
Across SES measures, the interaction is negative at low education levels and positive at high education
levels.
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Figure 7: Non-parametric (Lowess) estimation relating the probability of high school degree or more to
EA score for high versus low SES for different measures of childhood SES. In each panel, the outcome
variable is the residual from OLS regression of an indicator for completing a high school degree or more
onto a set of controls and the regressor is EA score. Across SES measures, EA score predicts higher
education. However, the gradient is weaker among individuals who report high childhood SES.
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Figure 8: Non-parametric (Lowess) estimation relating the probability of completing a college degree
or more to EA score for high versus low SES for different measures of childhood SES. In each panel, the
outcome variable is the residual from OLS regression of an indicator for completing a college degree or
higher onto a set of controls and the regressor is EA score. Across SES measures, EA score predicts higher
education. However, the gene-college gradient is stronger among individuals who report high childhood

SES.
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Panel (A) Earnings Over the Life-Cycle by EA Score Terciles.
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Figure 9: The EA Score and Life-Cycle Income.
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Figure 10: The EA Score and Math Task (Non-Routine Analytic).
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