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Family trees are mathematical graph structures that can 
capture mating and parenthood among humans. As such, 
the edges of the trees represent potential transmission lines 
for a wide variety of genetic, cultural, socio-demographic, 
and economic factors. Quantitative genetics is built on dis-
secting the interplay of these factors by overlaying data on 
family trees and analyzing the correlation of various classes 
of relatives (1–3). In addition, family trees can serve as a 
multiplier for genetic information through study designs 
that leverage genotype or phenotype data from relatives (4–
7), analyzing parent-of-origin effects (8), refining heritability 
measures (9, 10), or improving individual risk assessment 
(11, 12). Beyond classical genetic applications, large-scale 
family trees have played an important role across disci-
plines, including human evolution (13, 14), anthropology 
(15), and economics (16). 

Despite the range of applications, constructing popula-
tion-scale family trees has been a labor-intensive process. 
Previous approaches mainly relied on local data repositories 
such as churches or vital record offices (14, 17, 18). But these 
approaches have limitations (19, 20): they require non-
trivial resources to digitize the records and organize the da-

ta, the resulting trees are usually limited in geographical 
scope, and the data may be subject to strict usage protec-
tions. These challenges reduce demographic accessibility 
and complicates fusion with information such as genomic or 
health data. 

 
Constructing and validating population scale family 
trees 
Here, we leveraged genealogy-driven social media data to 
construct population-scale family trees. To this end, we fo-
cused on Geni.com, a crowd-sourcing website in the geneal-
ogy domain. Users can create individual profiles and upload 
family trees. The website automatically scans profiles to de-
tect similarities and offers the option to merge the profiles 
when a match is detected. By merging, larger family trees 
are created that can be collaboratively co-managed to im-
prove their accuracy. After obtaining relevant permissions, 
we downloaded over 86 million publicly available profiles 
(21). The input data consists of millions of individual pro-
files, each of which describes a person and any putative 
connections to other individuals in the dataset, along with 
any auxiliary data about the creator of the profile. Similar to 
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Family trees have vast applications in multiple fields from genetics to anthropology and economics. 
However, the collection of extended family trees is tedious and usually relies on resources with limited 
geographical scope and complex data usage restrictions. Here, we collected 86 million profiles from 
publicly-available online data shared by genealogy enthusiasts. After extensive cleaning and validation, we 
obtained population-scale family trees, including a single pedigree of 13 million individuals. We leveraged 
the data to partition the genetic architecture of longevity by inspecting millions of relative pairs and to 
provide insights into the geographical dispersion of families. We also report a simple digital procedure to 
overlay other datasets with our resource in order to empower studies with population-scale genealogical 
data. 
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other crowdsourcing projects (22), a small group of partici-
pants contributed the majority of genealogy profiles (fig. S1). 

We organized the profiles into graph topologies that 
preserve the genealogical relationships between individuals 
(Fig. 1A). Biology dictates that a family tree should form a 
directed acyclic graph (DAG) where each individual has an 
in-degree that is less than or equal to two. However, 0.3% of 
the profiles resided in invalid biological topologies that in-
cluded cycles (e.g., a person that is both the parent and 
child of another person) or an individual with more than 
two parents. We developed an automated pipeline to resolve 
local conflicts and prune invalid topologies (fig. S2) and 
benchmarked the performance of the pipeline against hu-
man genealogists (21). This resulted in >90% concordance 
between the pipeline and human decisions to resolve con-
flicts, generating 5.3 million disjoint family trees. 

The largest family tree in the processed data spanned 13 
million individuals who were connected by shared ancestry 
and marriage (Fig. 1B). On average, the tree spanned 11 gen-
erations between each terminal descendant and their 
founders (fig. S3). The size of this pedigree fits what is ex-
pected as familial genealogies coalesce at a logarithmic rate 
compared to the size of the population (23). 

We evaluated the structure of the tree by inspecting the 
genetic segregation of unilineal markers. We obtained mito-
chondria (mtDNA) and Y-STR haplotypes to compare multi-
ple pairs of relatives in our graph (21). The mtDNA data was 
available for 211 lineages and spanned a total of 1768 trans-
mission events (i.e., graph edges), whereas the Y-STR data 
was available for 27 lineages that spanned 324 total trans-
mission events. Using a prior of no more than a single non-
paternity event per lineage, we estimated a non-maternity 
rate of 0.3% per meiosis and non-paternity rate of 1.9% per 
meiosis. This rate of non-paternity matched previous rates 
of Y-chromosome studies (24, 25) and the non-maternity 
rate was close to historical rates of adoption of an unrelated 
member in the US (26). Taken together, these results 
demonstrate that millions of genealogists can collaborate in 
order to produce high quality population-scale family trees. 

 
Extracting demographic data 
We found that lifespan in the Geni.com profiles was largely 
concordant with reports generated by traditional demo-
graphic approaches. First, we extracted demographic infor-
mation from the collected profiles with exact birth and 
death dates, which show higher quality compared to profiles 
with only year resolution for these events (fig. S4). The data 
reflected historical events and trends such as elevated death 
rates at military age during the American Civil War, WWI, 
and WWII, and a reduction in child mortality during the 
20th century (Fig. 2A). We compared the average lifespan in 
our collection to a worldwide historical analysis covering 

the years 1840-2000 (27). We found an R2 = 0.95 between 
the expected lifespan from historical data and the Geni da-
taset (Fig. 2B) and a 98% concordance with historical distri-
butions reported by the Human Mortality Database (HMD) 
(Fig. 2C and fig. S5). 

Next, we extracted the geographic locations of life 
events using a combination of an automated geo-parsing 
pipeline and structured text manually curated and approved 
by genealogists (21) (fig. S6A). Overall, we were able to place 
about 16 million profiles into longitude/latitude coordinates, 
typically at fine-scale geographic resolution, without major 
differences in quality between the automated geo-parsing 
and manual curations for subsequent analyses (fig. S6B) 
(21). The profiles were distributed across a wide range of 
locations in the Western World (Fig. 2D and fig. S7) with 
55% from Europe and 30% from North America. We ana-
lyzed profiles in ten cities across the globe and found that 
the first appearance of profiles was only after the known 
first settlement date for nearly all of the cities, suggesting 
good spatiotemporal assignment of profiles (Fig. 2E). Movie 
S1 presents the place of birth of individuals in the Geni da-
taset in 5 year intervals from 1400 to 1900 along with 
known migration events. 

We were concerned that the Geni.com profiles might 
suffer from certain socio-economic ascertainment biases 
and therefore would not reflect the local population. To 
evaluate this concern, we collected ~80,000 publicly availa-
ble death certificates from the Vermont Department of 
Health for every death in this state between 1985 and 2010. 
These records have extensive information for each individu-
al, including education level, place of birth, and a cause of 
death in an ICD-9 code. Approximately one thousand indi-
viduals in Geni overlapped this death certificate collection. 
We compared the education level, birth state, and ICD-9 
code between these ~1000 Geni profiles and the entire Ver-
mont collection. For all three parameters, we found >98% 
concordance between the distribution of these key socio-
demographic attributes in the Geni profiles in Vermont and 
the entire state of Vermont (tables S1 to S3). Overall, this 
high level of consistency argues against severe socioeconom-
ic ascertainment. Table S4 reports key demographic and 
genetic attributes for various familial relationships from 
parent-child via great-great-grandparents to fourth cousins. 

 
Characterizing the genetic architecture of longevity 
We leveraged the Geni dataset to characterize the genetic 
architecture of human longevity, which exhibits complex 
genetics likely to involve a range of physiological and behav-
ioral endophenotypes (28, 29). Narrow-sense heritability (h2) 
of longevity has been estimated to be around 15%-30% (ta-
ble S5) (30–35). Genome-wide association studies have had 
limited success in identifying genetic variants associated 
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with longevity (36–38). This relatively large proportion of 
missing heritability can be explained by the following: (A) 
longevity has non-additive components that create upward 
bias in estimates of heritability (39), (B) estimators of herit-
ability are biased due to unaccounted environmental effects 
(10), (C) the trait is highly polygenic and requires larger co-
horts to identify the underlying variants (40). We thus 
sought to harness our resource and build a model for the 
sources of genetic variance in longevity that jointly evalu-
ates additivity, dominance, epistasis, shared household ef-
fects, spatiotemporal trends, and random noise. 

We adjusted longevity to be the difference between the 
age of death from the expected lifespan using a model that 
we trained with 3 million individuals. Our model includes 
spatiotemporal and sex effects and was the best among 10 
different models that adjusted various spatio-temporal at-
tributes (fig. S8). We also validated this model by estimating 
the narrow-sense heritability of longevity (h2) according to 
the mid-parent design (41) with nearly 130,000 parent-child 
trios. This process yielded h2

mid-parent = 12.2% (s.e. = 0.4%) 
(Fig. 3A), which is on the lower end but in the range of pre-
vious heritability estimates (table S5). Consistent with pre-
vious studies, we did not observe any temporal trend in 
mid-parent heritability (Fig. 3B). 

We partitioned the source of genetic variance of longev-
ity using more than three million pairs of relatives from full 
sibling to 4th cousin (21). We measured the variance ex-
plained by an additive component, pairwise epistatic model, 
3-way epistasis, and dominancy (Fig. 3C). To mitigate corre-
lations due to non-genetic factors, these three million pairs 
were all sex-concordant to address residual sex differences 
not accounted for by our longevity adjustments (fig. S9) and 
do not include relatives who are likely to have died due to 
environmental catastrophes or in major wars (fig. S10). We 
also refined the genetic correlation of the relatives by con-
sidering multiple genealogical paths (figs. S11 to S13). 

The analysis of longevity in these 3 million of pairs of 
relatives showed a robust additive genetic component, a 
small impact of dominance, and no detectable epistasis (Fig. 
3D and table S6) (21). Additivity was highly significant (paddi-

tive < 10−318) with an estimated h2
sex-concordant/relatives = 16.1% (s.e. 

= 0.4%), similar to the heritability estimated from sex-
concordant parent-child pairs h2

concordant/parent-child = 15.0% (s.e. 
= 0.4%). The maximum-likelihood estimate for dominance 
was around 4% but the epistatic terms converged to zero 
despite the substantial amount of data. Other model selec-
tion procedures such as Mean Squared Error (MSE) analysis 
and Bayesian Information Criterion (BIC) argued against 
pervasive epistatic contribution to longevity variance in the 
population (21). 

We tested the ability of our model to predict the longev-
ity correlation of an orthogonal dataset of 810 monozygotic 

(MZ) twin pairs collected by the Danish Twin Registry (Fig. 
3D) (42). Our inferred model for longevity accurately pre-
dicted the observed correlation of this twin cohort with 1% 
difference, well within the sampling error for the mean twin 
correlation (s.e. = 3.2%). We also evaluated an extensive ar-
ray of additional analyses that included various adjustments 
for environmental components and other confounders (figs. 
S14 and 15) (21). In all cases, additivity explained 15.8%-
16.9% of the longevity estimates, dominance explained 2%-
4%, and no evidence for epistatic interactions could be de-
tected using our procedure. 

We also estimated the additive and epistatic compo-
nents using a method that allows rapid estimation of vari-
ance components of extremely large relationship matrices, 
called sparse Cholesky factorization linear mixed models 
(Sci-LMM) (43). This method takes into account a kinship 
coefficient matrix of 250 million pairs of related individuals 
in the Geni dataset and includes adjustment for population 
structure, sex, and year of birth. We observed an additivity 
of 17.8% (s.e = 0.84%) and a pairwise epistatic component 
that was not significantly different from zero (21). 

Taken together, our results across multiple study de-
signs (fig. S16) indicated that the limited ability of GWA 
studies so far to associate variants with longevity cannot be 
attributed to statistical epistasis. Importantly, this does not 
rule out the existence of molecular interactions between 
genes contributing to this trait (44–47). Based on a large 
number of data points and study designs, we measured an 
additive component (h2 ≈ 16%) that is considerably smaller 
than the value generally cited in the literature of 25%. These 
results indicate that previous studies are likely to have over-
estimated the heritability of longevity. As such, we should 
lower our expectations about our ability to predict longevity 
from genomic data and presumably to identify causal genet-
ic variants. 

 
Assessment of theories of familial dispersion 
Familial dispersion is a major driving force of various genet-
ic, economical, and demographic processes (48). Previous 
work has primarily relied on vital records from a limited 
geographical scope (49, 50) or used indirect inference from 
genetic datasets that mainly illuminate distant historical 
events (51). 

We harnessed our resource to evaluate patterns of hu-
man migration. First, we analyzed sex-specific migration 
patterns (21) to resolve conflicting results regarding sex bias 
in human migration (52). Our results indicate that females 
migrate more than males in Western societies but over 
shorter distances. The median mother-child distances were 
significantly larger (Wilcox, one-tailed, p < 10−90) by a factor 
of 1.6x than father-child distances (Fig. 4A). This trend ap-
peared throughout the 300 years of our analysis window, 
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including in the most recent birth cohort, and was observed 
both in North American (Wilcox, one-tailed, p < 10−23) and 
European duos (Wilcox, one-tailed, p < 10−87). On the other 
hand, we found that the average mother-child distances (fig. 
S17) were significantly shorter than the father-child distanc-
es (t-test, p < 10−90), suggesting that long-range migration 
events are biased toward males. Consistent with this pat-
tern, fathers displayed a significantly (p < 10−83) higher fre-
quency than mothers to be born in a different country than 
their offspring (Fig. 4B). Again, this pattern was evident 
when restricting the data to North American or European 
duos. Taken together, males and females in Western socie-
ties show different migration distributions in which patrilo-
cality occurs only in relatively local migration events and 
large-scale events that usually involve a change of country 
are more common in males than females. 

Next, we inspected the marital radius (the distance be-
tween mates’ places of birth) and its effect on the genetic 
relatedness of couples (21). The isolation by distance theory 
of Malécot predicts that increases in the marital radius 
should exponentially decrease the genetic relatedness of 
individuals (53). But the magnitude of these forces is also a 
function of factors such as taboos against cousin marriages 
(54). 

We started by analyzing temporal changes in the birth 
locations of couples in our cohort. Prior to the Industrial 
Revolution (<1750), most marriages occurred between peo-
ple born only 10km from each other (Fig. 4A [black line]). 
Similar patterns were found when analyzing European-born 
individuals (fig. S18) or North American-born individuals 
(fig. S19). After the beginning of the second Industrial Revo-
lution (1870), the marital radius rapidly increased and 
reached ~100km for most marriages in the birth cohort in 
1950. Next, we analyzed the genetic relatedness (IBD) of 
couples as measured by tracing their genealogical ties (Fig. 
4C). Between 1650 and 1850, the average IBD of couples was 
relatively stable and on the order of ~4th cousins, whereas 
IBD exhibited a rapid decrease post-1850. Overall, the medi-
an marital radius for each year showed a strong correlation 
(R2 = 72%) with the expected IBD between couples. Every 
70km increase in the marital radius correlated with a de-
crease in the genetic relatedness of couples by one meiosis 
event (Fig. 4D). This correlation matches previous isolation 
by distance forces in continental regions (55). However, this 
trend was not consistent over time and exhibits three phas-
es. For the pre-1800 birth cohorts, the correlation between 
marital distance and IBD was insignificant (p > 0.2) and 
weak (R2 = 0.7%) (fig. S20A). Couples born around 1800-
1850 showed a two-fold increase in their marital distance 
from 8km in 1800 to 19km in 1850. Marriages are usually 
about 20-25 years after birth and around this time (1820-
1875) rapid transportation changes took place, such as the 

advent of railroad travel in most of Europe and the United 
States. However, the increase in marital distance was signif-
icantly (p < 10−13) coupled with an increase in genetic relat-
edness, contrary to the isolation by distance theory (fig. 
S20B). Only for the cohorts born after 1850, did the data 
match (R2 = 80%) the theoretical model of isolation by dis-
tance (fig. S20C). 

Taken together, the data shows a 50-year lag between 
the advent of increased familial dispersion and the decline 
of genetic relatedness between couples. During this time, 
individuals continued to marry relatives despite the in-
creased distance. From these results, we hypothesize that 
changes in 19th century transportation were not the primary 
cause for decreased consanguinity. Rather, our results sug-
gest that shifting cultural factors played a more important 
role in the recent reduction of genetic relatedness of couples 
in Western societies. 

 
Discussion 
In this work, we leveraged genealogy-driven media to build 
a dataset of human pedigrees of massive scale that covers 
nearly every country in the Western world. Multiple valida-
tion procedures indicated that it is possible to obtain a da-
taset that has similar quality to traditionally collected 
studies, but at much greater scale and lower cost. 

We envision that this and similar large datasets can ad-
dress quantitative aspects of human families, including ge-
netics, anthropology, public health, and economics. Our tree 
and demographic data are available in a de-identified for-
mat, enabling static analysis of the Geni dataset. We also 
offer a dynamic method that enables fusing other datasets 
with our databased on digital consent of participants using 
the Geni API (fig. S21) (21). We have been using this one-
click mechanism to overlay thousands of genomes with fam-
ily trees on DNA.Land (56). Other projects can use a similar 
strategy to add large pedigrees to their existing data collec-
tion. 

More generally, similar to previous studies (57, 58), our 
work demonstrates the synergistic power of a collaboration 
between basic research and consumer genetic genealogy 
datasets. With ever-growing digitization of humanity and 
the rise of consumer genetics (59), we believe that such col-
laborative efforts can be a valuable path to reach the dra-
matic scale of information needed to address fundamental 
questions in biomedical research. 
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Fig. 1. Overview of the collected data. (A) The basic algorithmic steps to form valid pedigree structures from the 
input data available via the Geni API. Gray: profiles; Red: marriages (See fig. S2 for a comprehensive overview). The 
last step shows an example of a real pedigree from the website with ~6,000 individuals spanning about 7 
generations. (B) The size distribution of the largest 1,000 family trees after data cleaning sorted by size. 
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Fig. 2. Analysis and validation of demographic data. (A) Distribution of life expectancy per year. The colors 
correspond to the frequency of profiles of individuals who died at a certain age for each year. Stars indicate 
deaths during military ages in the civil war, WWI, and WWII. (B) The expected lifespan in Geni (black) and the 
Oeppen and Vaupel study [red (30)] as a function of year of death. (C) Comparing the lifespan distributions 
versus Geni (black) and HMD (red) (Also see fig. S5A). (D) The geographic distribution of the annotated place of 
birth information. Every pixel corresponds to a profile in the dataset. (E) Validation of geographical assignment by 
historical trends. Top: the cumulative distribution of profiles since 1500 for each city on a logarithmic scale as a 
function of time. Bottom: year of first settlement in the city. 
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Fig. 3. The genetic architecture of longevity. (A) The regression (red) of child longevity on its mid-parent 
longevity (defined as difference of age of death from the expected lifespan). Black: the average longevity of 
children binned by the mid-parent value. Gray: estimated 95% confidence intervals. (B) The estimated 
narrow-sense heritability (red squares) with 95% confidence intervals (black bars) obtained by the mid-
parent design stratified by the average decade of birth of the parents. (C) The correlation of a trait as a 
function of IBD under strict additive (h2, orange), squared (VAA, purple), and cubic (VAAA, green) epistasis 
architectures after dormancy adjustments. (D) The average longevity correlation as a function of IBD (black 
circles) grouped in 5% increments (gray: 95% CI) after adjusting for dominancy. Dotted line: the 
extrapolation of the models toward MZ twins from the Danish Twin Registry (red circle). 
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Fig. 4. Analysis of familial dispersion. (A) The median distance [log10 x+1] of father-offspring places of birth 
(cyan), mother-offspring (red), and marital radius (black) as a function of time (average year of birth). (B) The 
rate of change in the country of birth for father-offspring (cyan) or mother-offspring (red) stratified by major 
geographic areas. (C) The average IBD [log2] between couples as a function of average year of birth. Individual 
dots represent the measured average per year. Black line denotes the smooth trend using locally weighted 
regression. (D) The IBD of couples as a function of marital radius. Blue line denotes best linear regression line in 
log-log space. 
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