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Abstract: Personality psychology aims to explain the causes and the consequences of variation in behavioural traits.
Because of the observational nature of the pertinent data, this endeavour has provoked many controversies. In recent
years, the computer scientist Judea Pearl has used a graphical approach to extend the innovations in causal inference
developed by Ronald Fisher and Sewall Wright. Besides shedding much light on the philosophical notion of causality
itself, this graphical framework now contains many powerful concepts of relevance to the controversies just
mentioned. In this article, some of these concepts are applied to areas of personality research where questions of
causation arise, including the analysis of observational data and the genetic sources of individual differences.
Copyright © 2012 John Wiley & Sons, Ltd.
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Consider the statement ‘rain and mud are correlated’. Proba-
bility theory allows us to translate this bit of plain English
into a mathematical language:

P mud rainj Þ > P mudð Þ and P rain mudj Þ > P rainð Þ:ðð

Translated back into words, the probability of mud
increases if you have already observed rain. But what about
the much stronger notion ‘rain causes mud and not vice
versa’? It is surprising but true that until recently there
existed no comprehensive mathematical formalism for
expressing this idea. One could easily invent a new
symbol—say, do—to indicate that the represented relation
is causal and not merely correlational. Then we could write

P mud do rainð Þj Þ > P mudð Þ and P rain do mudð Þj Þ ¼ P rainð Þðð

to indicate the following: (1) rain causes mud and (2) muddying
up your yard will not make it rain. Such a notational innovation
is an empty gesture, however, unless it is embedded in a formal
system with a rich syntax and semantics.

Unable to find such a formal system, many scientists at
the beginning of the last century dismissed causality as an
ill-defined archaism. This attitude occasionally resurfaces in
the literature on personality attributes such as intelligence,
extraversion, political conservatism, and the like. Through-
out the history of personality psychology, its practitioners
have attempted to establish parts of the relational chain
depicted in Figure 1. However, despite the difficulty in inter-
preting the chain in Figure 1 as anything but a causal chain,
personality theorists sometimes deny that causality is within
their purview (Burt, 1940; Lubinski & Dawis, 1995).
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Contrary to these theorists, I take it for granted that causal
knowledge is a desirable goal of the high-level sciences. In
recent years, the computer scientist Judea Pearl and his
colleagues have greatly advanced the systematic pursuit of
this goal with a formalization of causality that draws on
graph theory. Sprites, Glymour, and Scheines (2001) and
their collaborators have also made seminal contributions,
although their focus is much more on the automatic generation
of causal models. The graphical framework accomplishes what
many Edwardian scientists thought was impossible: it captures
human intuitions about causality in the form of consistent
mathematical axioms. Within the structure to which these
axioms give rise, one can always prove what can be demon-
strated about causation from a given combination of data
and assumptions. In this article, I argue that this account of
causality stands to offer a particularly great benefit to the study
of personality, where for various reasons, the difficulties of
pursuing causal claims without a sharp causal vocabulary have
been particularly keen.

Because the key mathematical objects in the graphical
formalism are similar to the path diagrams used in structural
equation modelling (SEM), the formalism may at first seem
familiar to those scientists who already accept SEM as a
technique for discerning causation in observational data.
Regarding the graphical approach as an embellishment of
conventional SEM practice, however, would be a mistake
for at least two reasons. First, the conventional approach
has been inadequately formalized and frequently abused
(Freedman, 1987; McDonald & Ho, 2002), and the graphical
framework supplies a necessary remedy for these shortcomings.
Second, given the discipline-crossing nature of Pearl’s
contribution, viewing it as a refinement of a narrow and
specialized methodology would be quite blinkered. A
number of commentators have emphasized that Pearl’s
framework sheds philosophical light on the very notion of causality
itself (Gillies, 2001; Hitchcock, 2001; Woodward, 2003).
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Figure 1. Causal chain hypothesized by some psychologists. This chain happens to be a directed acyclic graph, although it does not represent any formal model.
The directed acyclic graph depicts only some of the possible nodes and edges.
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In Part 1, I set out a relatively self-contained account of
the graphical framework that will suffice for this article.
Along the way, I consider a problem that illustrates the
graphical framework’s distinctive features and is also impor-
tant in its own right: what variables in a linear system must
be statistically controlled to identify a causal effect using
multiple regression?1 The typical student’s training may
include the advice that one should control all variables that
are correlated with both the putative cause and effect. This
advice was criticized by Meehl (1970), and Pearl’s machinery
pinpoints the fallacy of this approach: there are some
variables that must be statistically controlled and others that
must not be so controlled. In other words, it is untrue that
statistically controlling another variable will either take us
closer to the truth or do no harm; sometimes, such ‘control’
can take us further from the truth.

In Part 2, I take a necessary digression to discuss
common factors—the objects of study in the psychometric
tradition of personality research. A frequent objection to the
scientific status of g, the Big Five/Six traits, and other
factor-analytic ‘constructs’ is that they are arbitrary mathe-
matical fictions (Glymour, 1997; Gould, 1981). This
objection is often part of a longer argument: because factor
analysis is hopeless as a tool of causal discovery, any scheme
that supposes common factors to be meaningful causes or
consequences must be similarly unsound. Part 2 attempts to
counter this nihilism. Although I also deny that a common
factor is a cause of its indicators, I do allow a factor to play
the role of cause or effect in graphs depicting the relations
among high-level emergent entities.

Part 1 will demonstrate that any causal claim resting on
observational data must at least implicitly employ SEM.
Accordingly, in Part 3, I reanalyze a dataset bearing on the rela-
tion between intelligence and social liberalism to demonstrate
1A causal effect within a given system is identified if it can be computed
uniquely from any positive probability of the observed variables. Informally,
a causal effect is identified if it can be estimated ‘validly’ or ‘without bias’
from the available observations.
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how Pearl’s graphical approach can sharpen the explicit use
of SEM.2

In Part 4, I take up the intersection of graphical methods
and an emerging research area of vital importance to the
entire structure depicted in Figure 1: the search for DNA
polymorphisms affecting personality. The cost of sequencing
a genome will eventually be negligible, and at that point
gene–trait association research may succeed brain imaging
as the ‘land grab’ of behavioural science. Such research on
diseases and anthropometric traits has already yielded prom-
ising dividends, including results that have been replicated
across study designs, countries and ethnicities (International
Consortium for Blood Pressure Genome-Wide Association
Studies, 2011; Kooner et al., 2011; Lango Allen et al.,
2010; Lanktree et al., 2011; Speliotes et al., 2010; Teslovich
et al., 2010; Waters et al., 2010).

Because the nature–nurture issue has been a flash point in
the controversies that have dogged personality research, this
article’s commitment to the utility of genetic research may
seem inauspicious. Here, I give two related reasons for
concluding my article in this way. (1) Population genetics
now contains many theoretical results developed without
the benefit of a general framework for causal reasoning.
The new explanations of these results inspire confidence in
the generality of the graphical approach. (2) Many of the
examples preceding Part 4 will show that causal inferences
can depend on assumptions that are untestable given the
data at hand. For instance, the discussion in Part 3 invokes
temporal ordering to rule out alternative models, but this
assumption is admittedly fraught. A developmental process
may predetermine Y well before X, even if X is measured
first. Thus, the soundness of any causal conclusion depends
on both conforming data and the correctness of the requisite
assumptions. Our substantial prior knowledge of genetics justi-
fies many powerful assumptions, which lead to correspondingly
2Trent Kyono has written a beta version of the program Commentator, which
automates many of the analyses demonstrated in this article. Email him at
tmkyono@gmail.com.
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powerful results. Gene–trait association research thus provides
many enlightening applications of graphical reasoning.
PART 1: A THEORY OF CAUSALITY

I will now show that it is possible to state the precise conditions
enabling a causal effect in a linear system to be identified using
multiple regression. The preliminaries needed to formulate this
important result include much of the foundations supporting
Pearl’s graphical framework.
Elementary properties

Figure 2 depicts an example given by Pearl (2009). The
graph represents the causal relations among five variables:
the season of the year (season), whether it rained last night
(rain), whether the sprinkler was on last night (sprinkler),
the wetness of the pavement (wet), and the slipperiness of
the pavement (slippery).

The object in Figure 2 is a directed acyclic graph
(DAG)—a collection of nodes and directed edges (single-
headed arrows), each edge connecting one node to another,
such that one cannot start at a node X and follow a sequence
of edges along the arrows to loop back to X again. Simply
put, the nodes correspond to variables and the directed edges
to causal influences. The graphical framework can accommo-
date cycles representing mutual causation (X! Y!⋯! X
! Y ! ⋯). This paper will not address cyclic models; the
reader is directed to Dickens and Flynn (2001) for an example.

In graphical parlance, a path is a consecutive sequence of
edges with distinct nodes. This terminology contradicts the
occasional SEM practice of reserving the term path for a
single arrow between two nodes. I will conform to the
convention in the broader scientific community and allow
the term path to embrace any chain of arrows regardless of
season

rain

sprinkler

wet slippery

(a)

season

rain

sprinkler

wet slippery

(b)

Figure 2. A directed acyclic graph representing a system (a) before the
manipulation of wet and (b) after this manipulation.
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length or direction. Note that under this convention there
may be more than one path connecting a given pair of nodes.
In Figure 2, both rain! wet and rain season! sprinkler
! wet are paths between rain and wet.

If there is a directed edge from X to Y, then X is a parent
of Y. We extend the analogy to kinship in a straightforward
way to define children, ancestors, and descendants. This
terminology enables a precise delineation of the possible
reasons why two variables X and Ymight be associated (depen-
dent or correlated). Two reasons are well known: (1)X is a cause
of Y or vice versa or (2) a third variable, called a confounder, is a
common cause affecting both X and Y (Fisher, 1970).

If either X or Y is a cause of the other, then their DAG
connects them with a directed path; each arrow along the
path points in the same direction. X being a cause of Y thus
corresponds, graphically, to X being an ancestor of Y. If there
are any intermediate nodes between ancestor and descendant
along a directed path, they are called mediators. In Figure 2
both wet! slippery and season! rain! wet are examples
of directed paths; in the latter path, rain is a mediator.

A path in which the arrows change direction is said to be
non-directed. The DAG representation of a confounder
affecting both X and Y is a non-directed path between them
that first travels against the arrows to the confounder and
then travels with the arrows to terminate at the other node.
In Figure 2, rain season! sprinkler supplies an example
of a confounding path. Season is the confounder; rain and
sprinkler do not affect each other, but they are associated
because season affects both.

To better understand what directed paths mean, suppose
that we wrest control of the mechanisms determining wet
away from nature and fix the level of this variable each
morning ourselves. If we use a coin flip to determine how
to fix wet each morning, we will find that slippery continues
to depend on wet but that wet no longer depends on rain or
sprinkler. That is, if we protect the pavement with tarp when-
ever we are not spraying it with a garden hose, we will find
that hosing the pavement is correlated with neither the rain
nor the sprinkler. The graphical representation of ‘overriding
nature’ in this way is the deletion of all directed edges
converging on wet (Figure 2b). The intuition should be that
wet is ‘set free’ or ‘disconnected’ from its parents (and other
ancestors) once we intervene to determine its value. We must
then attribute any persisting associations with other nodes in
the graph to these nodes being descendants of wet. In other
words, a directed path encodes a persisting sensitivity of
the tail node to manipulations of the head node.

Note that whether a variable is a parent (direct cause) or
more remote ancestor (indirect cause) of another always
depends on how deeply we understand the mechanisms at
work. In Figure 2, the omission of either train or sprinkler
would force us to draw a directed edge from season to wet.
That is, if we were unaware of any mediating mechanism,
we would regard the time of year as directly affecting the
wetness of the pavement.

Because the variables in Figure 2 are categorical, the
causal relations cannot be linear. It happens that Pearl’s
framework is not limited to the linear models employed in
many SEM applications. I will mostly restrict the discussion
Eur. J. Pers. 26: 372–390 (2012)
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to linear systems for simplicity, but in the general case, a
node and its parents represent a variable determined by an
arbitrary function of its direct causes.
Experimental and statistical control

We have just seen that experimental control amounts to
physically manipulating a variable to the desired level. Can
statistical control be regarded in the same way?

Recall that statistically controlling for a variable Z, in an
attempt to determine whether X affects Y, amounts to
observing the association between X and Y in a subpopulation
where all members share the same value of Z. In the language
of probability theory, we are ‘conditioning on’ this particular
value of Z. The conditional association between X and Y will
generally depend on the value assumed by Z, and ideally, we
would look at the relation between X and Y in each distinct
subpopulation defined by a possible value of Z. However,
as we condition on additional variables, the combinatorial
explosion of bins defined by variable values ensures that in a
small sample any particular bin contains few or no observa-
tions. For this reason, we often use some kind of interpolation
to predict Y from X and the covariates (statistically controlled
variables). The simplest interpolation is the linear regression
model, in which the conditional association between X and Y
remains the same regardless of the covariate values. Thus, so
long as a linear model is a reasonable approximation, we can
speak of the association remaining between X and Y after
conditioning on the covariates. In a linear model, ‘conditioning
on’ or ‘statistically controlling’ a given variable is often
referred to as partialing out that variable. For this reason the
correlation between X and Y that remains after partialing out Z
is called the partial correlation betweenX and Y given Z (rXY � Z).

Having sorted out the terminology, let us refer back to
Figure 2 to explore the consequences of statistical control.
Suppose that the sprinkler has been automated such that it
turns on more frequently in drier seasons. During a short time
span, rainfall will no longer be correlated with sprinkler
activation. In this situation, conditioning on season is indeed
an acceptable means of determining whether there is any
causal relation between rain and sprinkler. Thus, if the only
non-directed paths between X and Y are confounding paths,
we must statistically control a set of variables that contains
at least one variable on each such path. If any association
remains between X and Y, there must be at least one directed
path from X to Y representing a causal effect.

Perhaps surprisingly, there are also variables that we
should not statistically control. Earlier, we named causation
and confounding as two reasons for an association between
variables. But there is a third reason that seems hardly known
at all: X and Ymay be associated because both are causes of a
third variable, Z, which has been statistically controlled.
Figure 2 shows how this might occur. Although rain and
sprinkler are uncorrelated if we statistically control season,
they become correlated once again if we also statistically
control wet. That is, if we only observe the pavement on
mornings when it is wet, the two causes become negatively
correlated; knowing that it did not rain and that the pavement
is wet implies that the sprinkler was indeed activated.
Copyright © 2012 John Wiley & Sons, Ltd.
In this situation, the variable Z is a collider. We can think
of statistically controlling a collider as unblocking a path
between X and Y that was previously closed to causal flow.
Thus, to identify the X! Y causal effect, the set of covariates
must include a node on each open non-directed path between
the two variables, including any such paths opened by condi-
tioning on a collider or its descendants. Only then will the
remaining open paths between X and Y consist solely of
causal effects. If we have not conditioned on any colliders,
however, we can ignore the paths including them in our
attempt to estimate the X! Y causal effect.

These concepts are so crucial as to deserve their own
terminology. A path between X and Y that is ‘closed’ or
‘blocked’ is said to be d-separated. A path that is not d-separated
is said to d-connect the extreme nodes X and Y. d-separation
(d-connection) is also defined for pairs of variables. Thus, a
set of nodes d-separates X and Y if and only if the set blocks
every path between X and Y. Except in unusual circumstances,
two variables that are d-connected must be correlated.
Conversely, any two d-separated variables must be uncorrelated.

Colliders demonstrate that statistical control is not equiva-
lent to experimental control. Suppose that we experimentally
control wet—again, by covering the pavement with a tarp
whenever we are not spraying it with a hose. By breaking the
connection betweenwet and its natural determinants (including
rain and sprinkler), we are deleting the edges converging on
this node (Figure 2b). This mutilation is unproblematic
because the removal of edges can never add a d-connecting
path. Statistically controlling the variable, in contrast, means
merely examining a subpopulation where all members
happen to share the same value. Different members of this
subpopulation will have that value for different reasons, which
alters the covariation among the variable’s causes.

The conceptual distinction between experimental and
statistical control motivates Pearl’s notational distinction
between them. Pearl points out that when statisticians write
P(Y|X= x) to signify the (conditional) probability distribution
of Y given that the variable X assumes the value x, they really
mean the probability distribution of Y given that we see X
equalling x. But what scientists want to know is the probability
distribution of Y given that we do the action of setting X equal
to x. We therefore have

P Y x; zj Þ ¼ P Y see xð Þ; see zð Þj Þ 6¼ P Y do xð Þ; see zð Þj Þððð

except in the special cases that have been described.
To show that heedless statistical control might in fact

produce misleading results, I consider the model of status attain-
ment, possibly somewhat realistic, in Figure 3. Note the use of a
bidirectional arc to represent a dependence between two
variables attributable to unmeasured common causes. In other
words, X↔ Y is a shorthand for X C! Y, where C denotes
the unmeasured confounders. There is some confusion in the
SEM literature over the meaning of bidirectional arcs. To
be clear, in the DAG approach, a bidirectional arc can only
mean that the two variables are both affected by one or more
unmeasured confounders.
Eur. J. Pers. 26: 372–390 (2012)
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For simplicity, I assume that each variable in Figure 3 is
well defined and measured without error. In Part 2, I will
briefly comment on what these assumptions entail.

The current consensus is that we must include the directed
edge offspring IQ ! offspring SES (Murray, 2002; Nisbett,
2009). What remains under debate is the impact of IQ relative
to other determinants of SES, including non-cognitive traits
such as conscientiousness and agreeableness (Roberts et al.,
2007). If the SES of the parents is a confounder, the zero-order
IQ–SES relation in their offspring may overestimate the
causal effect of IQ. Simply including parental SES as a covariate
in a regression model, however, will probably overcorrect
the estimate. Let Ci, j denote the unmeasured confounders
represented by the bidirectional arc between nodes i and j. Statis-
tically controlling parent SES d-separates the confounding paths

Y4  Y3 ! Y6; (1a)

Y4  Y3 ! Y5 ! Y6; (1b)

Y4  Y3  Y2 ! Y5 ! Y6; (1c)

Y4  Y3  Y2  C2;5 ! Y5 ! Y6; (1d)

Y4  C1;4 ! Y1 ! Y3 ! Y6; (1e)

Y4  C1;4 ! Y1 ! Y3 ! Y5 ! Y6: (1f)

Unfortunately, by unblocking the colliding paths containing
Y1! Y3 Y2, it creates the new d-connecting paths

Y4  Y1 � Y2 ! Y5 ! Y6; (2a)

Y4  C1;4 ! Y1 � Y2 ! Y5 ! Y6; (2b)

Y4  Y1 � Y2  C2;5 ! Y5 ! Y6; (2c)

Y4  C1;4 ! Y1 � Y2  C2;5 ! Y5 ! Y6: (2d)

The paths in (2) use an undirected edge between two variables
to indicate that they are d-connected only after conditioning on
their common descendant.
Copyright © 2012 John Wiley & Sons, Ltd.
Path (2a) presents a simple case unblocking a collider by
statistically controlling it. Parent IQ is a graphical parent of
offspring IQ, and parent personality trait is a graphical
ancestor of offspring SES. Once our ‘control’ of parent SES
induces a correlation between parent IQ and parent
personality trait, the flow from their nodes creates an additional
d-connecting path between offspring IQ and offspring SES.

Path (2d) is instructive. Contrary to Wright’s (1968)
rules, this path induces a correlation despite having to go
backward after already going forward. Why? After we condi-
tion on the common descendant of two causal lineages, each
ancestor in one lineage will find itself d-connected with every
ancestor in the other lineage. This must be true because the
number of nodes in a directed path is a feature of human
knowledge rather than external reality; therefore, it must be
possible to go from C1, 4 to C2, 5 regardless of whether any
mediators along the way to the unblocked collision at
parent SES are known. The trace goes backward from
offspring IQ to the unobserved confounder C1, 4; this
confounder is connected to C2, 5, from which the trace goes
forward through offspring personality trait to arrive at
offspring SES.

To summarize, the collision at parent SES normally
impedes any causal flow through the paths in (2). Condition-
ing on parent SES unblocks the collision and allows the
paths to d-connect offspring IQ and offspring SES. That is,
among households observed to have the same SES, the
covariation among the causes of SES is altered, probably
becoming more negative. Whenever we have two such
causes of SES, each also affecting a different member of
the pair {offspring IQ, offspring SES}, they suppress the
estimated magnitude of any offspring IQ ! offspring SES
effect. Statistically controlling any member of {parent
IQ, parent personality trait, offspring personality trait}, in
addition to parent SES, will restore these colliding paths
to their original d-separated status. If we have not
measured any of these variables, at best, we can hope
that the statistical control of parent SES removes more
bias than it introduces.

The point of this exercise is not to argue for any particular
model or claimed empirical finding. It is rather to demon-
strate that a model-free conditioning technique, such as the
uncritical inclusion of covariates in a multiple regression,
cannot be a reliable method for causal inference. The lesson
is clear: when making inferences from observational data, we
should always present a DAG (structural equation model)
representing our causal theory so that its critical assump-
tions can be criticized and defended. In fact, one might hope
that disagreements over the interpretation of observational
data will often reduce to disagreements over how to connect
each pair of nodes. Both sides should then find it easier to
decide whether the existing data rule out any contending
hypothesis and also whether any additional data can be
collected to narrow the divide between them.

That said, in cases where the linearity approximation is
reasonable, there is still an important role for regression in
causal analysis. For instance, we may continue to encounter
the naive use of multiple regression in the literature, and
criteria for whether a partial regression coefficient identifies
Eur. J. Pers. 26: 372–390 (2012)
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the desired causal effect are useful in judging such analyses.
The following theorem sets out these criteria:

To identify any partial effect in a linear model, as defined
by a selected set of direct or indirect paths from X to Y, we
must find a set S of measured variables that contains no
descendant of Y and d-separates all non-selected paths
between X and Y. The partial effect will then equal the
partial regression coefficient of X in the multiple regres-
sion of Y on Xf g∪ S. (Spirtes et al., 1998)

Whenever a report presents a partial regression coefficient as
an estimate of a causal effect, one may construct plausible
DAGs and determine which of these satisfy the conditions
of the theorem just stated.

The value of randomization

Imagining the experiments implied by a DAG can sharpen
our justifications for its qualitative features. Of course, the
best way to ensure the feasibility of some experiment is to
actually perform it.

In controlled experiments, the value of the putative causal
variable is assigned randomly to the participants whenever this
is feasible. Why? Textbooks often invoke the fact that random-
ization tends to make the treatment groups well matched on all
other variables. This is a valid argument, but it may be difficult
to grasp after one takes colliders into account.

The graphical framework supplies a justification of
randomization that may be more intuitive. Although Fisher’s
(1966) argument from ‘the lady tasting tea’ is characteristi-
cally difficult, I believe that we can rephrase it as follows.
By assigning subjects to different values of a putative cause
X according to a random mechanism, we are d-separating
the variable from all of its ancestors. That is, because a coin
flip is untouched by any arrows emanating from macroscopic
variables, it follows that wiping out all arrows into X—except
for the one coming from the coin flip—protects X from any
confounders also affecting Y that may be lurking among the
natural ancestors of X or the experimenter’s whims. Any
remaining association between X and Y then validates the
causal hypothesis X! Y.

Practical constraints on manipulating human circum-
stances may seem to render randomization a peripheral
concept to personality research. In the spirit of Pearl’s call to
‘causation without manipulation’, however, we should recog-
nize that randomization, fixing the values of confounders,
and statistically controlling colliders are not the prerogatives
of scientists. Nature herself engages in these activities; Part 4
will have more to say about this.
PART 2: THE NATURE OF PSYCHOMETRIC
FACTORS

Part 1 fleshed out the semantics of the verb in statements
such as ‘intelligence causes liberalism’, but what about the
nouns in such statements?

Factor-analytic models treat measured variables, such as
the different items in a personality scale, as indicators of
Copyright © 2012 John Wiley & Sons, Ltd.
unmeasured quantitative variables called common factors
(McDonald, 1985; Mulaik, 2010; Thomson, 1951). In the
psychometric tradition, a common factor is the generalizable
quantity that any particular scale is supposed to measure
imperfectly. With perhaps a tolerable loss of nuance, we can
reduce questions regarding the meaningfulness of personality
measurements to questions regarding the ontological status of
common factors.

If the observed responses could be regressed on the unob-
served factor scores, each regression coefficient would represent
the quality of the scale as a measure of the corresponding factor.
The regression coefficients in this model are called factor
loadings. It follows from the regression conception that in a
subpopulation where all members share the same values of a
battery’s common factors, the indicators making up the battery
are uncorrelated. Psychometricians call this property the
principle of local independence (Lord & Novick, 1968),
and indeed, some accounts begin with this principle to provide
the mathematical definition of a common factor.

Any sound mathematical model must be analogous to
some external reality, however, and thus, the following ques-
tion arises: what exactly in the real world does a common
factor represent? This issue has provoked recurrent debate
among psychometricians. Mulaik (2005) reviewed certain
aspects of the controversies; noteworthy recent contributions
include Borsboom, Mellenbergh, and van Heerden (2003),
Molenaar (2004), Bartholomew (2004), Ashton and Lee
(2005), and Bartholomew, Deary, and Lawn (2009). No
writer seems to have convincingly settled the issue in a single
article (or book), and I will not try to be the first. But the
statement of some position, however brief and debatable, is
necessary to move on with my attempts to employ common
factors in causal explanations. In what follows, I rely heavily
on McDonald (1996, 2003).

Factor models are often depicted in diagrams that superfi-
cially resemble causal DAGs. Circles rather than boxes are
used to represent common factors, and each common factor
sends directed edges to the indicators measuring it. Despite
the similarities, however, I maintain that the coefficients
(loadings) attached to the edges in a factor model should not
be interpreted as the magnitudes of causal effects. A factor
model is not necessarily a causal model.

Didactic accounts of factor analysis often use the dimen-
sions and weights of various body parts as indicators of a factor
called body size. Now consider the proposal that body size is
the unobserved cause of height, weight, and so forth. To most
of us, hopefully, the notion that size causes height will seem
nonsensical. An emergent object or property belongs to a class
of phenomena that can be almost completely explained
in terms of each other without reference to their low-level
constituents—brain activity, cells, atoms, or whatever these
constituents may be (Deutsch, 1997). Body size is not a cause
of those indicators that measure it, but rather is an emergent
property to which the indicators are sensitive. Furthermore, a
given size loading does not imply that there is some unob-
served variable (but observable in principle), which, when
severed from its ancestors and adjusted upward by one unit,
will yield an increase in the value of the indicator equal to
the loading. A large loading simply means that there is a high
Eur. J. Pers. 26: 372–390 (2012)
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degree of conceptual overlap between the (unobservable in
principle) emergent property and the (observable) indicator.
Height is not the same as body size, but it is a good proxy.
We might say that height makes for a passable size quotient.

This argument carries over to behavioural common
factors. Consider the relation between extraversion and
whether the respondent likes to meet new people. We can
interpret the statement ‘he likes to meet new people because
he is extraverted’ to mean that the respondent’s behaviour
has an intensity that is typical of his behaviour in a class of
semantically related instances: whether he likes to attend
parties, whether he goes out of his way to greet people,
whether he enjoys public speaking, and so on. But if we
construe the relation between extraversion and meeting new
people as a causal one, we are saying that the respondent’s
behaviour across a class of instances causes his behaviour
in a particular instance: being extraverted causes a behaviour
typical of an extravert. Unlike the relation between rainfall and
the wetness of a pavement, the relation between extraversion
and meeting new people fails to offer a means of defining the
putative cause and effect independently of one another.

Someone determined to rescue the notion of a common
factor as a common cause of its indicators might claim that
general intelligence (g), extraversion, and other psychometric
traits do not in fact correspond to the folk-psychological traits
bearing these names. According to this argument, just as the
physical construct of gravity bears only a metaphorical resem-
blance to the natural-language concept (weight or seriousness),
the Big Five/Six trait of extraversion bears a resemblance of a
similar kind to the natural-language concept while in fact
meaning something rather different. Perhaps the simplest ob-
jection to this argument is as follows. When psychometricians
want to increase the reliability of a scale, they add more indica-
tors of the ‘same kind’—more items eliciting either right or
wrong answers to measure intelligence, for instance, or more
items inquiring about religious proclivities. This is rather
telling evidence that users of factor analysis do not treat
common factors as common causes. It would be a rather curi-
ous restriction on the effects of the same cause that they must
all share some nameable psychological-semantic property.

What about a common factor’s relations to external
variables? Can these said to be causal? For example, can
body size really be said to cause anything? The answer to
this question seems to be yes—if transforming someone’s
body so that he must be assigned a different size factor score
is a conceptually permissible manipulation. The causal claim
‘X won the fight because he is bigger than Y’ then amounts to
the following: if we could have fixed X’s factor score to a
sufficiently low value—perhaps by transplanting X’s mind
to a much smaller body—then X would not have prevailed
over Y. Models in which other variables appear as causes
of a common factor may also prove to be very useful approx-
imations; McDonald (1996) provided the example of alcohol
temporarily increasing extraversion.

In fact, if one accepts that factor analysis by itself is not a
tool of causal discovery, causality only enters the picture
when we consider relations with external variables. If we
could complete a causal chain like the one in Figure 1, what
traits would we most want to insert in the place of the node
Copyright © 2012 John Wiley & Sons, Ltd.
labelled trait variation? An evolutionary psychologist might
choose those traits figuring in important theoretical accounts
of human evolution. Ashton and Lee (2001) took this line in
advancing their HEXACO model of personality. They have
chosen a basis where three of the six axes are defined
by behaviours figuring in evolutionary theories of human
cooperation: Emotionality (responding to feelings of kinship
and solidarity), agreeableness (initiating exchanges, forgiv-
ing defectors), and honesty (never defecting first, reciprocat-
ing favours). Psychologists studying other domains of
individual differences might adopt this approach. Instead of
attempting to find a periodic table of traits, we should try to
ensure that our instruments measure traits whose causes
and consequences are worth understanding. Such rationales
assume the links in Figure 1 that need to be established,
but surely this circularity is not a vicious one.

To summarize, common factors are personality traits that
are hypothesized to exist in advance of any data analysis and
can potentially be measured by an indefinite number of
semantically related indicators. Such a trait is not necessarily
a common cause of the indicators used to measure it, but this
does not mean that the trait is a pure fiction. The adoption of
psychometric methodology implies a commitment to the
view that the insertion of traits, moods, and other intervening
variables of folk psychology between brain and behaviour
has proven fruitful and will continue to be necessary
(MacCorquodale & Meehl, 1948).

We now have a perhaps complete taxonomy of reasons
for a correlation between variables X and Y:

(1) X is a cause of Y (or vice versa).
(2) X and Y are both effects of a common cause.
(3) X and Y are both causes of a collider that has been

statistically controlled.
(4) X and Y are both measures of an emergent property.

These reasons may not be mutually exclusive for a given
X and Y. The last reason can never hold in the absence of at
least one other.

In Part 3, I resume applications of the graphical approach,
demonstrating how one can test the adequacy of the idealiza-
tion entailed by employing common factors in causal
explanations.
PART 3: DIRECTED ACYCLIC GRAPHS AND
STRUCTURAL EQUATION MODELING

Part 1 examined the following question: with the system of
causal relations depicted in a DAG taken more or less for
granted, what variables must be statistically controlled to
identify a linear causal effect? Here, I pursue the natural
follow-up: what assurance do we have that the DAG, as drawn,
reflects reality to an acceptable degree of approximation?

The response to this vital question by orthodox SEM
practitioners emphasizes the simultaneous analysis of all
measured variables and global goodness of fit. But this
approach by itself does not foreclose certain logical absurdities.
For example, the measured variables may include some that are
irrelevant to the important causal claims, and the contribution of
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such variables to the global goodness of fit can only obscure
judgments of model adequacy. Therefore, any global fitting
should be supplemented by the graphical approach advocated
in this article.

Taken at face value, the orthodox view accepts the plausibility
of the model
Ω ¼ fBAROMETER READINGS CAUSE RAINg ∪

fFRANCIS GALTON AND CHARLES DARWIN WERE COUSINSg:
When confronted with actual measurements,Ωwill fit the data
extremely well. The problem is that a strong correlation
between certain barometer readings and rain, combined with
an accurate genealogy connecting two historical figures, tells
us nothing about whether barometers cause rain. We must
therefore insist that the tested component of Ω (GALTON
AND DARWIN WERE COUSINS) bear a logical relation
to what Ω claims (THE CORRELATION BETWEEN
CERTAINBAROMETERREADINGSANDRAINMEANS
THAT BAROMETERS CAUSE RAIN).

Combining the factor and causal models in one graph is a
prime example of conjoining causal claims to essentially
irrelevant side issues. A common procedure among personality
researchers is to fit a hybrid factor–causal model and apply a rule
of thumb to a scalar measure such as the goodness-of-fit index or
the root mean square error of approximation. But if the factor
model fits extremely well (and it typically will in well-motivated
applications), the causal model can fit poorly without the misfit
being reflected in the scalar measure. One can effect a clean di-
vorce between measurement and causation through Anderson
and Gerbing’s (1988) two-step procedure: (1) test the adequacy
of only the factor model, freely estimating the covariances among
the factors and any non-factor variables, and then, if this step suc-
ceeds, (2) fit the causal model to the resulting covariances. Even
this procedure, however, suffers from potential blurring of misfit.
If there is an isolated but substantial discrepancy between the
causal model and the data from step (2), adjustments in fitting
other parts of that model may still produce a scatter of small
and innocent-seeming elements in the residual correlation matrix.

What is needed are local tests of whatever predictions are
entailed by a causal model. Here is where Pearl’s principle of
d-separation becomes applicable. Recall that two variables
will show a zero partial correlation once we statistically
control the covariates in their d-separating set. A given
DAG may imply certain constraints other than vanishing
partial correlations; these constraints predict that a product
of zero-order or partial covariances equals another such prod-
uct. Whatever their form, these point predictions must hold
regardless of the values assumed by the model parameters.
Thus, to test a given DAG, we simply list the point predic-
tions implied by a causal model and examine each one for
its numerical closeness to the actual data (Shipley, 2000).

A DAG may entail many point predictions, and a prob-
lem with testing all of them is that they are not independent.
For example, once the values of certain partial correlations
are known, they constrain the values that other partial
Copyright © 2012 John Wiley & Sons, Ltd.
correlations can assume. Therefore, examining every single
point prediction may exaggerate the strength of the evidence
for or against the hypothesized DAG. This motivates picking
out a subset of the point predictions, called a basis set, with
the following properties: (1) if all point predictions in just
the basis set are fulfilled, then every point prediction implied
by the DAG will also be fulfilled, and (2) no proper subset of
the basis set is itself a basis set.

Breaking up a complex composite hypothesis of global fit
into a basis set—a list of independently testable parts—has
obvious virtues. But is it possible for this list to leave out
some empirical constraints that are incorporated in the
composite hypothesis? To put it differently, can a basis set
miss some implications of the causal model that are in
fact tested by the global fitting procedures employed in
conventional SEM? The answer is no, as the following
considerations demonstrate.

Readers familiar with the SEM notion of covariance
equivalence will know that there may exist several distinct
models that produce exactly the same fit to the covariance
matrix. A trivial example is the chain X ! Y ! Z, which
is a covariance equivalent to the reversed chain Z ! Y ! X
and the common-cause model X  Y ! Z. Considered as
DAGs, these models have the same basis set, which contains
a single partial correlation: rXZ � Y. That is, the three models
all predict that X and Z are uncorrelated after partialing out
Y. The relationship between the traditional SEM notion of co-
variance equivalence and the graphical notion of a basis set is
not an accident of this example; it is generally true that two
DAGs are covariance equivalent if and only if they entail
the same basis set. This graphical perspective is valuable be-
cause it provides an intuitive means of ascertaining whether
two substantively contradictory models may in fact be covari-
ance equivalent. For instance, if some alteration of a model ei-
ther abolishes or introduces d-separability with respect to a
pair of nodes, then the new model is not covariance equivalent
to the original one. Because models entailing the same basis
set are not empirically distinguishable unless further vari-
ables are measured, a basis set exhausts all testable con-
straints that a given model imposes on a collection of
measured variables.

Note that d-separation tests of vanishing partial correla-
tions are not the same as the standard SEM significance tests
of estimated coefficients for at least the following three reasons.
First, whereas the alternative hypothesis in d-separation is
that the two nodes at issue are connected by some arc, the
alternative hypothesis in the standard SEM approach is that
the two nodes are connected by a specific kind of arc with
a nonzero coefficient. The latter approach will produce some
innocuous output even if the model has been misspecified
(say by orienting the edge in the wrong direction). Second,
whereas a test of vanishing partial correlation has good
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properties even in small samples, a standard SEM test may
be valid only as the sample size becomes large.

The third distinction between d-separation and standard
SEM testing depends on generalizing the notion of partial
correlation to nonlinearly related variables. The standard
definition of the partial correlation posits a linear system, but
this restriction can be loosened so that a partial correlation is
also defined for other functional forms or even nonparametric
regression techniques. As a result, the qualitative correctness
of a given DAG can be tested (albeit perhaps with weak power)
without making any assumptions about the forms of the causal
relations or the distributions of the disturbances. The standard
SEM test lacks this flexibility because of its dependence on
the linearity assumption.

To illustrate the graphical approach, I reanalyse a dataset
presented by Deary, Batty, and Gale (2008). I follow these
authors in performing separate analyses of the two sexes.
From a sample of 3412 men and 3658 women, the authors
concluded that a higher level of general intelligence (mea-
sured at age 11) was both a direct and indirect cause of more
liberal social attitudes (measured at age 30). Figure 4 depicts
their preferred model. To simplify the discussion, I retained
only one of the subscales used by Deary et al.. Arbitrarily,
I chose the subscale called antiracism. In the factor model,
I fixed the standardized loading of the subscale on its
common factor to the square root of Cronbach’s a. I do not
dwell on details of the factor model, which fit extremely well
in both sexes.

Figure 4 belongs to a class of models whose basis sets
can be characterized in the following way. For each {Ti,
Tj} not connected by a directed edge, consider the parents
of Ti and the parents of Tj. The partial correlation between
Ti and Tj given the union of their parent sets, rij � parents of i ∪

parents of j, must equal zero if the causal model is correct. This
result should be rather intuitive; each set of parents shields its
child from all d-connecting paths to the other child. Put less
succinctly, if Ti and Tj do not affect each other and are not
confounded by unmeasured variables, controlling their direct
causes leaves only their probabilistically independent ‘error
terms’ to enter their partial correlation.3
3A basis set consisting of the partial correlations between nonadjacent nodes
given their parents always exists if the DAG is Markovian—that is, if the
only variables connected by bidirectional arcs are exogenous, meaning that
thier causes are unspecified. The model in Figure 4 is Markovian; the only
bidirectionally connected nodes have no depicted ancestors. An endogenous
variable has at least one cause specified in the model; in the other words at
least one directed edge points into its node. A semi-Markovian model con-
tains at least one bidirectional are pointing into an endogenous variable,
and it may be that basis set for such a model must contain point predictions
that do not take the form of vanishing partial correlations. Critically, it is un-
known whether there is a general characterization of a basis set implying all
of the point predictions entailed by a semi-Markovian model. Furthermore,
when alternative models can be semi-Markovian, entailing the same vanish-
ing partial correlations is only a necessary condition for covariance equiva-
lence to the original model.

Although McDonald (2002) and Shipley (2003) provided methods
for semi-Markovian models, these are either tedious to apply or not fully
general. This is an area requiring further work. In the meantime, the program
Commentator does supply all point predictions entailed by a semi-
Markovian model. For most semi-Markovian DAGs arising in personality
research, containing relatively few nodes, a simple and feasible approach
to handling the Commentator output is to determine numerically whether
a given subset of all point predictions is in fact a basis set.

Copyright © 2012 John Wiley & Sons, Ltd.
I now proceed by finding each pair {Ti, Tj} in Figure 4
that is not connected by an arc of any kind. There are three
such pairs: {g, verbal residual}, {parent SES, antiracism},
and {SES at age 30, antiracism}. Because the first pair
consists of definitionally orthogonal common factors, there
are only two point predictions in the basis set: after
statistically controlling the parents, the partial correlations
of {parent SES, antiracism} and {SES at age 30, antiracism}
are equal to zero. That is, neither parental SES nor attained
SES at age 30 has a direct effect on racial tolerance. At first
sight, this is a remarkable claim. One might have thought that
changes in social circumstances might affect exposure to
individuals of different backgrounds, leading in turn to
changes in racial tolerance.

Table 1 presents the results of the d-separation tests. The
confidence intervals were rather wide, which shows that
4000 participants do not approach the point of diminishing
returns. Despite the ambiguities, I will try to interpret the
results that we have.

Because the overall model was rejected in both sexes,
we are forced to a judgment of whether the numerical discre-
pancies were still small enough to consider the model a close
approximation of reality. The partial correlation between SES
at age 30 and antiracism in men was the most discrepant.
The sign of this partial correlation in women had the opposite
sign, however, suggesting that the source of the discrepancy
was small or unsystematic. Furthermore, the partial correla-
tion between parent SES and antiracism did indeed appear
to vanish.

I have already mentioned locality as another powerful
advantage of the d-separation approach. Suppose that in our
judgment the partial correlation between SES at age 30 and
antiracism in men was too large to support their d-separability.
We must then ensure that these two nodes are d-connected
even after partialing out {g, verbal residual, education}. Note
that insertion of the directed edge SES at age 30! antiracism
will also d-connect parent SES and antiracism. If we are satis-
fied that these latter two nodes are d-separated by {parent SES,
g, verbal residual, education}, we might prefer to insert the
reversed edge antiracism ! SES at age 30. Upon reflection,
this revised hypothesis is perhaps a natural one; nowadays,
disparaging other races may harm one’s career prospects. This
depth of insight into the failure of a model is typically unavail-
able from the modification indices provided by some software
packages after an unsuccessful global fit. The statistical issues
involved in ‘debugging’ a failed model, however, require
investigation.

Although the absence of directed edges from social
status to racial tolerance is an interesting finding, the pri-
mary issue in this study was the presence of a directed edge
from g to racial tolerance. ML estimation of a linear model
resulted in g showing the largest standardized direct effect
on antiracism (~.20). But now we face a key question:
what has our graphical analysis revealed so far about the
trustworthiness of this estimate? If the model survives the
risk posed by its basis set of point predictions (r16 � 234 = 0
and r56 � 1234 = 0), how much should our ensuing confidence
extend to parts of the model other than the d-separable
nodes?
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Table 1. d-separation tests of the causal model in Figure 4

d-Separable nodes r̂ij�parents of i∪parents of j (95% CI) p-value

(partial correlation) Male Female Male Female

parent SES, antiracism (r16 � 234) �.00 (�.036, .030) �.03 (�.062, .001) .87 .07
SES at age 30, antiracism (r56 � 1234) .06 (.026, .092) �.03 (�.057, .007) .0006 .13

Note. rij � parents of i ∪ parents of j stands for the partial correlation between Ti and Tj given their parents. The p-values in each column can be combined by Fisher’s
method to provide an overall test of the model for men (w24 ¼ 14:9, p < .005) and women (w24 ¼ 10:1, p < .05).
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Figure 4. A directed acyclic graph representing a causal model of the variables studied by Deary et al. (2008).
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The notion of covariance equivalence provides a ready
answer: the estimate of the g ! antiracism effect is valid if
and only if there is no possible covariance-equivalent model
in which this directed edge is absent, turned around, or iden-
tified in a different way. This criterion immediately reveals
that many conceivable attempts to nullify the estimated g
! antiracism effect can be ruled out. For example, a model
that interchanges g and antiracism is invalid because antira-
cism can then no longer be d-separated from either parent
SES or SES at age 30. Because temporal considerations
weigh against most of the conceivable edge reversals, the
most critical assumption is thus the absence of a bidirectional
arc between g and antiracism. If changing g ! antiracism
to g ↔ antiracism (or simply adding g ↔ antiracism)
preserves all vanishing partial correlations, one can place
no confidence in the estimated g ! antiracism effect. The
relation between g and antiracism may be attributable in its
entirety to confounding.

The d-separability of {parent SES, antiracism} and {SES
at age 30, antiracism}, however, forbids the presence of g↔
antiracism. Suppose that there were such a bidirectional
arc—reflecting, perhaps, a pleiotropic influence of the same
genes on these two traits. Then partialing out g to d-separate
{parent SES, antiracism} and {SES at age 30, antiracism}
would open the colliding path parent SES C1, 2 – C2, 6!
antiracism, which could not be reblocked by any measured
Copyright © 2012 John Wiley & Sons, Ltd.
variable. In fact, a simple simulation shows that if there were
a confounder of g and antiracism inducing a correlation of .20
between these two variables, partialing out g would induce a
correlation of roughly �.07 between parent SES and antira-
cism that could not be removed by partialing out other vari-
ables. In summary, g ! antiracism and g ↔ antiracism do
not predict the same vanishing partial correlations, and thus,
the near-zero values of the partial correlations predicted to van-
ish specifically under g! antiracism provide evidence against
g ↔ antiracism.

A similar argument shows that the g ! antiracism
estimate is robust to bidirectional arcs strongly justified by
prior knowledge but which were omitted. For example, in ad-
dition to directly affecting education and SES at age 30, parent
SES is almost certainly confounded with these two offspring
characteristics. At the very least, there must be personality
traits, independent of abilities, that influence attainment and
are themselves genetically influenced (Figure 3). Therefore,
these data by themselves do not allow us to say how swapping
households might have affected the attainments of this cohort.
However, because the insertion of parent SES ↔ education
and parent SES ↔ SES at age 30 does not create any new
d-connecting paths between g and antiracism, these local
breakdowns of identification do not affect our estimate
of the g ! antiracism coefficient. After carrying out the
d-separation tests, we can use multiple regression to estimate
Eur. J. Pers. 26: 372–390 (2012)

DOI: 10.1002/per



382 J. J. Lee
the coefficient of g ! antiracism without bothering with the
portions of the model that become unidentified when embed-
ded in a more realistic supergraph.

Our conclusion is as follows. If we can somehow imple-
ment a manipulation to increase a child’s level of g by age
11, it appears likely that the child will grow up to become
a more racially tolerant adult. This extensive example has
illustrated the distinctive features of the graphical approach
to SEM, in particular highlighting how the testable implica-
tions of a causal model bear on specific substantive
conclusions.

Because my reanalysis did not reach any conclusions
differing from those of the original authors, the contrast
between the graphical and conventional SEM approaches
was not as stark as it could be. I will now recapitulate a
graphical reanalysis by McDonald (2010) of an earlier
SEM study to demonstrate how the conventional approach
can go badly astray. The study examined five common
factors: physical health, daily hassles,world assumptions, con-
structive thinking, and subjective well-being. Collectively,
these common factors were measured by 14 indicators. The
original model posited that physical health and daily hassles
affect world assumptions and constructive thinking, which in
turn affect subjective well-being. Simplifying the history, I
give credit to the original authors for recognizing that this
‘bottom-up’model was covariance equivalent to the ‘top-down’
model in which subjective well-being is the ancestor of physical
health and daily hassles.

The goodness-of-fit index for the global model exceeded
.99. By many standards, this model would be deemed accept-
able. Upon fitting the factor and causal models separately,
however, McDonald showed that the good global fit was
attributable wholly to the good fit of the factor model.
Regardless of causal direction, ancestor and descendant
must be d-separated by their mediators. The causal model
therefore predicted that the partial correlations of subjective
well-being with both physical health and daily hassles, after
statistically controlling the intermediate variables, would
equal zero. As a matter of fact, these partial correlations
equalled .59 and �.12. A remarkable feature of this example
is that the residual correlation matrix from the global model
(of which all fit indices are a function) did not reveal any
hint of where or how badly the data missed the model pre-
dictions. Subjective well-being must be connected to at least
physical health with either a directed edge or a bidirectional
arc, and our inability to tell these two possibilities apart
means that any estimate of effects between physical health
and subjective well-being may be utterly corrupted by
confounding.

In this example concerning subjective well-being, the
true DAG contains no d-separable nodes. Some commenta-
tors have argued that this DAG is representative of most
interesting high-level systems (Freedman, 2004; Greenland,
2010; Meehl & Waller, 2002). Either everything affects
everything, the arguments goes, or there are confounders that
will never be identified. It is indeed true that for such a
system ‘the calculation of correlation coefficients, total or
partial, will not advance us a step towards evaluating the
importance of the causes at work’ (Fisher, 1970, p. 192). The
Copyright © 2012 John Wiley & Sons, Ltd.
antiracism example does suggest that the claim of ubiquitous
connectedness may in fact be overly pessimistic. It is probably
unwise, however, to generalize from a handful of examples.
We will only know whether the causal relations within a given
field are epistemologically tractable after a research effort
employing the tools that have been sketched here.

Furthermore, in Part 4, I argue that there is at least one
kind of causal system—the polygenic determination of a
phenotype—where our prior knowledge is sufficient to dispel
the intractability envisioned by sceptics of the graphical
approach. Quantitative genetics is the branch of population
genetics concerned with the genetics of continuously varying
traits (Bürger, 2000; Lynch & Walsh, 1998). Quantitative
genetics has long been an integral part of personality
research. It turns out that population genetics as a whole may
be the basal theory needed to initiate the virtuous circle of
‘causal knowledge in, causal knowledge out’. I now turn to
the relevant aspects of this theory.
PART 4: CONCEPTS OF GENETICS

Stripped of technicalities related to sample processing and
delicate statistical matters, gene–trait association studies
usually rely on rather simple designs: in the most straightforward
case, a regression of the effect on the putative cause and a number
of identically treated covariates. As I will argue, however, a
replicable gene–trait association is nevertheless a reasonably
strong evidence for gene–trait causation. As even this modest
degree of certainty is difficult to obtain in observational studies
of comparable simplicity, gene hunting will be an attractive
enterprise to some personality researchers seeking a foothold
for the traversal of the explanatory chain in Figure 1.

I first elucidate the meaning of heritability from first
principles, relying heavily on concepts that reappear in the
discussion of practical issues arising in gene–trait association
studies. Note that the word gene (or locus) has no single
meaning. Whenever I use the term in the sense of a gene
affecting a trait, I am referring to a location in a genome where
discrete differences (base-pair differences, small insertions or
deletions, changes in copy number, and so on) are stably
inherited across generations.
Foundations of heritability

Can one isolate, either conceptually or experimentally, the
causal effects of genetic differences at a single locus? In
The Genetical Theory of Natural Selection, Fisher introduced
the concepts of the average excess and average effect to
answer precisely this question. In his own words,

Let us now consider the manner in which any quantitative
individual measurement, such as human stature, may depend
upon the individual genetic constitution. We may imagine, in
respect of any pair of alternative [alleles], the population
divided into two portions, each comprising one homozygous
type together with half of the heterozygotes, which must be
divided equally between the two portions. The difference in
average stature between these two groups may then be termed
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the average excess (in stature) associated with the gene substi-
tution in question. (Fisher, 1999, p. 30)

The average excess can be directly measured by genotyping
individuals at a given locus and scoring their phenotypes.

Fisher provided two contradictory definitions of the
average effect. I first consider the definition that is more
suggestive of the average effect’s causal meaning:

[I]t is also necessary to give a statistical definition of a
second quantity, which may be easily confused with that
just defined, and may often have a nearly equal value,
yet which must be distinguished from it in an accurate
argument; namely the average effect produced in the
population as genetically constituted, by the substitution of
the one [allele] for the other. By whatever rules . . . the
frequency of different gene combinations, may be governed,
the substitution of a small proportion of the [alleles] of one
kind by the [alleles] of another will produce a definite
proportional effect upon the average stature. The amount of
the difference produced, on the average, in the total stature
of the population, for each such gene substitution, may
be termed the average effect of such substitution, in contra-
distinction to the average excess as defined above. (Fisher,
1999, p. 31)

The basic notion is that a gamete is chosen at random from
all those that have inherited a particular allele (say A1). Im-
mediately after fertilization and before any developmental
events, A1 is then changed to A2 , as if by mutation. The
expected change in the organism’s phenotype Y at the time
of measurement is then equal to the average effect. Thus,
whereas all d-connecting paths between a genetic locus and
the phenotype contribute to the average excess, a directed
edge from the focal locus to the phenotype is necessary
for a nonzero average effect. In Pearl’s notation, then, the
average excess is E Y see A2ð Þj Þ � Y see A1ð Þj Þð �ð½ whereas
the average effect is E Y do A2ð Þ; see A1ð Þj Þ � Y see A1ð Þj Þð �ð½ .

The second definition of the average effect considers a
multiple regression of the trait on all loci in the genome.
Now, the average effect at the focal locus is equal to the
partial regression coefficient of how many alleles, of the type
to be counted (say A2), are carried by the individual (Fisher,
1941). The two definitions of the average effect agree only in
special circumstances (Falconer, 1985). Because Fisher does
not even mention the statistical definition based on regres-
sion in the first edition of The Genetical Theory, it seems that
he thought the causal definition to be more fundamental, and
this is how I treat it as well. There is more to be said about
this; much of the next section is an argument for the
pragmatic reasonableness of treating the statistical average
effect as a proxy for the causal average effect.

Ignoring the distinction between the two average effects
for the moment, suppose that we have a large number of loci
in the genome affecting the trait Y. Let pi be the frequency of
the allele to be counted at the ith such locus. Fisher expressed
the additive genetic variance of the trait as

Var Að Þ ¼
X

i

2pi 1� pið Þaiai; (3)
Copyright © 2012 John Wiley & Sons, Ltd.
where ai and ai represent average excess and average effect,
respectively, at the ith locus. The ratio of additive genetic
variance to the total trait variance,

h2 ¼ Var Að Þ
Var Yð Þ ; (4)

is now known as the heritability of Y.
Fisher’s treatment of heritability, particularly his intro-

duction of his two averages, has struck both Price (1972)
and Falconer (1985) as peculiar. It is my belief, however, that
Fisher’s decision in The Genetical Theory to base his discus-
sion of heritability in terms of these concepts was partially
motivated by his recognition of the potential for gene–trait
confounding. That is, the fact that different genotypes are
associated with different trait values does not by itself show
that the genotypic differences cause the trait differences. It
seems that this nicety was of great importance to Fisher.
Therefore, in my recapitulation of the heritability concept, I
emphasize how the distinction between confounding and
causation enters into Fisher’s two averages.

Geneticists refer to the confounding of genes and traits as
population structure or stratification. A less formal term is
the ‘chopstick gene syndrome’: a gene showing an associa-
tion with chopstick skill in a racially mixed sample is almost
certainly not a gene ‘for’ chopstick skill but rather a gene for
black hair or yellow skin—or perhaps a gene where one al-
lele has drifted by chance to high frequency in East Asians.
The apocryphal story of the geneticist misled by the chop-
stick gene illustrates how geographical subdivision can lead
to gene–trait confounding. In our evolutionary past, some
humans split off from the rest of the African diaspora and
became the ancestors of East Asians. Subsequently, natural
selection and random genetic drift resulted in the divergence
of allele frequencies among the branches of the diaspora.
More recently, chopsticks were invented in China and
diffused throughout what later became the Confucian belt.
Thus, the ancestors of East Asians passed on both their genes
and culture to their descendants, resulting in the confounding
of genotypes and chopstick skill in mixed samples of East
Asians and other peoples. Any chopstick gene will show a
nonzero average excess in the combined mixture of subpopu-
lations, but its average effect is in fact zero.

Two genetic loci are in linkage disequilibrium (LD) if
they are correlated—that is, if a person’s genotype at one
locus gives some information regarding the genotype at the
other. This population-genetic terminology is unfortunate in
that it applies even to loci not physically linked on the same
chromosome, but here, I abide by convention. It is important
to keep in mind that a consequence of geographical subdivi-
sion is substantial LD in the global human population; that is,
if a study participant carries one allele that is associated with
being East Asian or some other ethnicity, we are more likely
to observe particular alleles associated with that ethnicity at
other loci as well.

Population geneticists have shown that there are other
ancestral events, including assortative mating and natural
selection, that lead to LD (Bulmer, 1971; Bürger, 2000; Fisher,
1918). The mathematical soundness of these results is not in
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doubt, but intuitive understanding may be elusive without
graphical interpretations of the kind that I now provide.

Assortative mating refers to the tendency of mated indivi-
duals to resemble each other in some phenotypic trait.
Remarkably, it seems that many of us have absorbed this
conspicuous fact of social life without realizing that the
intuitive explanation for it (people preferring mates with
certain qualities) does not correspond to anything in the
canonical taxonomy of reasons for why any two variables
are correlated. One mate’s trait value does not affect the other
mate’s value, and the two trait values are not confounded in
the usual sense.

The following thought experiment follows a simulation
study by Eaves (1979). Although the experiment does not
accurately reflect how humans mate, it does reveal how a
marital correlation arising from assortative mating falls under
the critical addition that Pearl has made to the correlational
taxonomy. Suppose that upon reaching a given age, all
members of a cohort form random opposite-sex pairings. If
the man and the woman within a random couple ‘hit it off’,
they marry. The unmarried individuals may go through several
more rounds of random pairing. Now suppose that after the
first round we form a data matrix where each row corresponds
to a randomly paired man and woman. The columns of this
matrix record the trait values of each individual and also a
binary variable indicating whether the two married at the end
of the round. By stipulation, when considering all rows of this
matrix, there is no correlation in trait value between men and
women. However, if we only consider those rows where the
marriage indicator assumes the value one, any traits affecting
the probability of marriage become correlated. That is,
marriage is a collider.

This insight into the nature of assortative mating allows
us to deduce that the trait-affecting genotypes of mother
and father are d-connected because of conditioning on their
common effect (a successful mating). That is, those gametes
carrying trait-enhancing alleles are more likely to be paired
with gametes containing these same alleles. Because the
paternal and maternal contributions to a recombinant gamete
will both tend to contain alleles with effects of the same sign,
the coupling of same-sign alleles holds within gametes as
well as between them (Crow & Kimura, 1970). All else being
equal, under assortative mating the average excess will
exceed the average effect; carriers of the two different
alleles will tend to carry the alleles of like effect at other loci
affecting the trait.

I now turn to the confounding property of past natural
selection. Fitness is a node with a multitude of directed edges
converging on it from various phenotypes (Figure 5). Natural
selection conditions on this node when deciding the ancestry
(in the literal sense) of the offspring generation, and therefore
all nodes ancestral (in the graphical sense) to fitness become
d-connected. This implies that all functional sites in the
genome are potentially in very weak LD. In particular, if
two loci affect a trait of which higher values are favoured
by selection, the ‘plus’ allele at one locus is likely to be
associated with the ‘minus’ allele at the other. Natural
selection will tend to reduce the average excess below the
average effect.
Copyright © 2012 John Wiley & Sons, Ltd.
I have gone through several reasons to doubt that the
average excess and average effect are ever exactly equal.
But under what theoretical circumstances, however unrealis-
tic, do the two averages coincide? The answer to this
question is insightful and also of historical interest. It can
be shown that after many generations of random mating, in
a broad sense that excludes not only assortative mating but
natural selection and geographical subdivision, all LD and
deviations from Hardy–Weinberg equilibrium will vanish
(Crow & Kimura, 1970). Let us assume that there are no
confounders affecting the trait through environmental media-
tors. Then the focal locus is d-separated from all other
causes of the trait, leaving a directed edge from the locus to
the phenotype as the only means by which these two nodes
are connected. That is, because the two population ‘portions,
each comprising one homozygous type together with half of
the heterozygotes’, do not differ in allele frequencies at any
other loci, the difference in Y between them is attributable
wholly to the average effect. The equivalence of the average
excess and average effect under random mating is analogous
to the equivalence of an observed difference and a causal
effect under the randomization of treatment assignment,
and indeed Fisher’s (1952) thoughts on quantitative genetics
stimulated his work on experimental design.

Equation 3 reveals that Fisher conceived of heritability
as an inherently causal concept. Even if a locus shows a
spurious average excess, its average effect must be of the
same sign for the locus to contribute to the heritability.
Whenever geneticists offer a heritability estimate, then, we
should interpret it as a conjecture regarding how much
of the variability in the population is caused by genetic
differences. The conjecture may be mistaken, of course, but
we should separate matters of empirical adequacy from
matters of definition.
Causal inference in gene–trait mapping

The correlations between the trait values of relatives are
functions of the heritability and other variance components,
enabling the estimation of these parameters given certain
assumptions. Although some of the assumptions within a
given study are approximations at best, the substantial
heritabilities estimated for personality traits across different
study designs nevertheless seem to justify attempts to map
the DNA variants affecting these traits (Plomin et al.,
2008). The identification of these variants should lead to
fundamental advances in our understanding of proximate
mechanisms and the ultimate evolutionary forces shaping
personality (Figure 1). But recall the litany of potential
confounding mechanisms that may result in a divergence of
the average excess (which we can directly measure) from
the average effect (which we want to know).

Given the number and complexity of potential confounding
mechanisms, ruling out confounding at the level of individual
genetic loci may seem to pose insurmountable difficulties. The
litany of confounding mechanisms, however, is actually
encouraging for the following reason. Because our knowledge
of the mechanisms behind confounding is typically conjectural
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Figure 5. A directed acyclic graph representing the causal chains from
genes to fitness. When considering selection bias, we can simply relabel
the bottom node as appearance in the study.
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at best, we often cannot say much about them. In contrast, the
detail in which we can describe the population-genetic mechan-
isms behind confounding in gene–trait association studies
reveals the depth of our knowledge in this domain. Exploiting
our prior knowledge to characterize the relevant DAG, I argue
that most sources of confounding are controllable.

Confounding cannot be a source of a gene–trait association
in a family design subject to proper statistical analysis (Laird &
Lange, 2011). Such designs are familiar to personality
psychologists, who often study pairs of siblings reared
together. There exists a positive within-family correlation
between variables X and Y if, across sibling pairs reared
together, the sibling with the higher value of X also tends to
have a higher value of Y. It has been recognized that a
within-family correlation presents stronger evidence for some
causal relation than a correlation persisting after the statistical
control of background variables (Beauchamp et al., 2011;
Jensen & Sinha, 1993; Turkheimer & Waldron, 2000). Pearl’s
distinction between seeing and doing provides a rationale for
this methodological principle. Suppose that my children grow
up with the family Bible always on the bookshelf. Of course,
two unrelated individuals may also have grown up in house-
holds with Bibles. But whereas the chain of events depositing
the Bible in the childhood home may have been quite different
for each of these unrelated individuals, there is only one such
chain responsible for the presence of the Bible in the home
where my children will grow up. That is, within a family, all
background variables subsumed under ‘common’ or ‘shared’
environment have been fixed to some values, not merely
observed to take on those values. It follows that any within-
family correlation cannot be the result of confounders that act
across families but not within them.
Copyright © 2012 John Wiley & Sons, Ltd.
In gene–trait association studies, an even stronger claim
is justified. Mendel’s law of segregation states that every
parent possesses a pair of alleles at a given locus and passes
one randomly selected allele to a particular offspring. The
molecular basis of this law is that the reduction in
meiosis of a diploid precursor cell (with two copies of each
chromosome) to a haploid gamete (with one copy of each
chromosome) leaves it to microlevel chance events whether
a particular gamete carries any particular parental allele.
Thus, when the putative cause is whether an offspring
inherits A1 or A2 from a parent, treatment assignment is
literally at random. Because it is nature that performs this
randomized experiment, we do not face the typical problem
of deciding whether a human attempt to implement do(x)
is really do(x, y, z).

Genetics is indeed in a peculiarly favoured condition in
that providence has shielded the geneticist from many of
the difficulties of a reliably controlled comparison. The
different genotypes possible from the same mating have
been beautifully randomized by the meiotic process. A
more perfect control of conditions is scarcely possible than
that of different genotypes appearing in the same litter.
(Fisher, 1952, p. 7)

Given a correlation between the within-family inheri-
tance of a DNA marker and the phenotype, linkage between
the marker and a causal variant is the only viable explana-
tion. The recruitment of informative pedigrees can be diffi-
cult, however, and it is therefore desirable to seek other
methods.

The fixing of genotype at fertilization restricts the class of
alternative explanations for a gene–trait association. We can
usually rule out reverse causation; a manipulation of a
person’s phenotype will typically not induce mutation. And
because mutation is such a rare event, we can also discount
confounding by any variable that follows fertilization in
time; a confounder affecting both the DNA sequence and
the trait, once development has begun, is conceivable but
extremely unlikely. Given the complexity of the situation,
however, this temporal restriction may initially fail to
impress us. In Part 3 it was the absence of certain edges that
enabled effect identification, and here we have millions of
DNA sequence variants inherited from ancestors who
migrated, mated, and survived natural selection in an inde-
scribably complex way. Oddly enough, however, it turns
out that this case is also conducive to effect identification.
Recall that Fisher’s second definition of the average effect
is the partial regression coefficient of allele count in the
multiple regression of the trait on all loci in the genome.
The causal and statistical definitions of the average effect
can coincide if gene action is purely additive, and both
population-genetic theory and the available data suggest that
for many traits pure additivity should be an acceptable
approximation (Crow, 2010; Hill et al., 2008). But even if
additive gene action is granted, why should the partial regres-
sion coefficient identify the causal effect? The answer comes
from the graphical theorem stated in Part 1. Implicit in
Fisher’s second definition, then, is a claim regarding the
graphical properties of gene–trait confounders.
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If the ancestral confounding consists of assortative
mating or natural selection in previous generations, the aver-
age excess is contaminated by confounding because of LD
between the focal locus and other loci. By including all other
loci in the regression, we are intercepting each and every
nondirected path to the phenotype through these nonfocal
loci, thereby bringing the statistical and causal average
effects into agreement. However, if the ancestral confound-
ing arises from geographical subdivision or some other form
of population structure, there may be nondirected paths
mediated by environmental variables that have not been
measured. A rather special feature of population structure
allows us to overcome this difficulty in some cases: the entire
genome is subject to the divergence of allele frequencies
among subpopulations after the splintering of their ancestral
population. Thus, as the number of loci entering the regres-
sion becomes very large, they become a perfect proxy for
the subpopulation to which a study participant belongs. By
partialing out all loci in the genome, then, we are in effect
partialing out the ancestral events confounding the gene
and the trait (Kang et al., 2010; Patterson et al., 2006).

Examples could be contrived to defeat the generalization
that every confounder of gene and trait has the property of
being mediated by another genetic locus or sending directed
paths to an effectively infinite number of genetic loci. For
example, it would not be possible for genomic background
to control parental trait value directly affecting offspring trait
value as in Figure 3. Nevertheless, the examples of gene–trait
confounding that we have examined suggest that the princi-
ple is quite robust. When combined judiciously with family
designs, studies of nominally unrelated individuals control-
ling for genome-wide background should be a reliable tool
for pinpointing the causal effects of genetic differences. For
example, the GIANT Consortium used two cohorts of
families to replicate the effect sign for 150 of the 180
height-associated loci that it initially identified in studies of
unrelated individuals (Lango Allen et al., 2010).

It is remarkable that observational research employing so
simple a design—regression of the effect on the putative
cause and a number of undifferentiated covariates—can
produce such trustworthy causal inferences in principle.
The qualifier ‘in principle’ is necessary because of the
problems introduced by selection bias, which occurs whenever
a trait being studied is itself a cause of participation in
the study. Selection bias is such an important issue, with impli-
cations extending far beyond genetics, that I will dwell on this
matter in some detail.

Because an individual genetic variant is likely to have a
very small effect, extremely large samples are required to
detect it (Park et al., 2010). Gene hunters may have to sacri-
fice methodological perfectionism to attain the necessary
scale. ‘Personal genomics’ studies, drawing upon large and
haphazardly ascertained all-volunteer samples, have reported
associations of genetic variants with hair morphology,
freckling, asparagus anosmia, photic sneeze reflex, and
Parkinson’s disease (Do et al., 2011; Eriksson et al., 2010).
This approach will soon be extended to encompass whole-
genome sequencing of similar samples exceeding 100 000
in size (Lunshof et al., 2010), and the not-too-distant future
Copyright © 2012 John Wiley & Sons, Ltd.
may bring even greater orders of magnitude. Now, it is
plausible that asparagus anosmia, say, has no effect on
whether someone decides to volunteer for such a study. That
is, if a person’s olfactory receptors are altered in such a way
that he can no longer smell the foul urine produced by an
asparagus eater, the chances that the person will volunteer
for a research study may well remain exactly the same. Such
invariance, however, is not plausible for personality traits.
For example, if a person’s religiosity could somehow be
increased, that person may become less inclined to participate
in genetic and evolutionary research undermining his beliefs.

We can see from Figure 5 that the effect of selection bias
on the divergence between the average excess and effect is
qualitatively the same as that of natural selection. The
quantitative effect of selection bias will typically be much
stronger than that of natural selection for several reasons: (i)
personality traits such as intelligence, openness, and religiosity
will have much stronger effects on study participation than on
fitness itself; (ii) recombination has no opportunity to reduce
this source of LD; and (iii) any environmental effect on the trait
will be negatively correlated with the number of enhancing
alleles at a trait-affecting locus. The third point is not obvious
but can be understood with the aid of Figure 5. This diagram
incorporates the SEM custom of using a bidirectional arc
that begins and ends at the same node to represent the
corresponding variable’s residual disturbing causes. Explicit
representation of the disturbances can greatly assist our under-
standing of a model, reminding us that each variable has other
causes not depicted as nodes. In this case, we can interpret the
disturbing causes of the traits in Figure 5 as environmental in
nature. Let us call the disturbance of trait 1, say, E1, which is
mnemonic for both ‘error’ and ‘environment’.

Even if the traits affecting study appearance are uncorre-
lated in the base population, these traits and all of their
causes in turn become correlated in the selected sample as
a result of the conditioning on their common effect. Thus,
even if trait 2 were not at all affected by genetic variation,
it would become associated with the genetic variants affect-
ing trait 1 through the paths gene ! trait 1 – trait 2. An
additional problem is that the environmental causes of any
particular trait are also d-connected to the causes of all other
traits. For instance, suppose that a person with many ‘plus’
alleles for religiosity volunteers for a genetic study. Then, it
is rather likely that the person’s religiosity has been lowered
by a large and negative environmental deviation, leading to
no more than a moderate level of this phenotype. Once we
recognize that the disturbing causes of the traits in Figure 5
are colliding with the genetic variants, the negative correla-
tion between genetic and environmental causes follows
straightforwardly from the fact that conditioning on study
participation is conditioning on a descendant of the collider
(the trait). We then have the unblocked path gene A – E1 !
trait 1 suppressing the estimate of the gene A! trait 1 effect.
The consequence of all this entanglement is reduced power to
detect loci with true effects, underestimation of the average
effect at any detected locus, and a surfeit of false-positive loci
affecting nonfocal traits that are also causes of study
participation. Selection bias can even distort estimates in some
family designs.
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Because of the d-connecting paths through environmental
causes, genomic background is not an adequate d-separating
set in the presence of selection bias. It might seem from
Figure 5 that we can control selection bias by including all
relevant traits as covariates. Unfortunately, this conclusion
is suggested by some misleading features of this schematic
DAG. First, although I have depicted the traits as causally
unordered, in reality, this might not be so. Those traits
suspected to be causes of study participation may include
colliders and mediators, and partialing out such traits invites
the problems detailed at length in Part 1. Second, although
for both genes and traits I have used an ellipsis to indicate
that there are more nodes than depicted, a key difference is
that we can sequence a whole genome but not a whole
‘phenome’. There may well be important causes of volun-
teering that we will not have measured. In contrast, the lack
of a causal order among different loci in the genome and
the completeness with which they can be measured is what
makes genomic background such an effective shield against
confounding, and we might fairly say that it is these graphi-
cal properties that gives gene–trait association studies of
unrelated individuals their special character with respect to
the warrant of causal inferences.

Nevertheless, the measurement of those traits likely to
affect appearance in a gene–trait association study appears
to be an imperfect yet desirable safeguard. Because selection
bias may distort the factorial structure of personality
measurements (Meredith, 1993), extra care must be
taken to ensure their reliability. If a DNA marker shows an
association with these traits, investigators will at least be
alerted to the possibility that an additional association with
some focal trait may be the result of an unblocked collision
at study participation. If the association with the focal trait
is the only one remaining after conditioning on the traits
likely to affect study appearance, the investigators may
tentatively hypothesize that the association reflects a genuine
effect on the focal trait. Any firmer conclusion must await
replication in a family design or a study of unrelated indivi-
duals where personal characteristics have a negligible impact
on participation.

It should be clear that selection bias is a potential
problem not only in genetic applications but in any obser-
vational study of socially important personality traits. The
device of treating appearance in a study as a node with
edges connecting it to the variables being studied can be
greatly generalized to address all problems of selection
bias, missing data, and unrepresentative sampling (Little
& Rubin, 2002; Schafer & Graham, 2002). Some readers
may be aware of the potential-outcome framework, which
applies a taxonomy of missing-data types to these same
problems. Those readers who find this framework unnatu-
ral because of its demands to consider conditional proba-
bilities of counterfactual events may prefer the approach
that I have sketched here, which requires the more intui-
tive judgment of whether one variable causes another. In
any case, Pearl (2009) has shown that the two approaches
are mathematically equivalent. See Daniel, Kenward,
Cousens, and De Stavola (2012) and Barenboim and Pearl
(in press) for discussion.
Copyright © 2012 John Wiley & Sons, Ltd.
CONCLUSION

This article is in part an effort to unify the contributions of
three innovators in causal reasoning: Ronald Fisher, Sewall
Wright, and Judea Pearl.

Fisher began his career at a time when the distinction
between correlation and causation was poorly understood
and indeed scorned by leading intellectuals. Nevertheless,
he persisted in valuing this distinction. This led to his insight
that randomization of the putative cause—whether by the
deliberate introduction of ‘error’, as his biologist colleagues
thought of it, or ‘beautifully . . . by the meiotic process’—in
fact reveals more than it obscures. His subsequent introduc-
tion of the average excess and average effect is perhaps the
first explicit use of the distinction between correlation and
causation in any formal scientific theory.

Structural equation modelers will knowWright—Fisher’s
great rival in population genetics—as the ingenious inventor
of path analysis. Wright’s diagrammatic approach to cause and
effect serves as a conceptual bridge toward Pearl’s graphical
formalization, which has greatly extended the innovations de-
veloped by both of the population-genetic pioneers.

The fruitfulness of Pearl’s graphical framework when
applied to the problems discussed in this article bear out its
utility to personality psychology. Perhaps the most surprising
instance of the theory’s fruitfulness concerns the role of
colliders. Although obscure before Pearl’s seminal work, this
role turns out to be obvious in retrospect and a great aid to
the understanding of covariate choice, assortative mating, se-
lection bias, and a myriad of other seemingly unrelated
problems. This article has surely only scratched the surface of
the ramifications following from our recognition of colliders.

Conspicuous from these accolades by his absence is
Charles Spearman—the inventor of factor analysis and
thereby a founder of personality psychology. Spearman
(1927) did conceive of his g factor as a hidden causal force.
However, new and brilliant ideas are often only partially
understood, even by their authors. After a century of theoret-
ical scrutiny and empirical applications, common factors
appear to be more plausibly defended as mild formalizations
of folk-psychological terms than as causal forces uncovered
by matrix algebra. I have thus advocated a sharp distinction
between the measurement of personality traits (factor analy-
sis) and the study of their causal relations (graphical SEM).
This distinction clarifies the role of factor analysis in the
service that multivariate data analysis as a whole performs
for personality psychology. To paraphrase McDonald
(1986), a large swath of multivariate methods can be seen
as elucidating ‘causal relations, nonlinear in the general case,
among emergent dimensions defined by indicators drawn
from a priori behavior domains’.

But this characterization brings us to a puzzle. Scientists
have long used informal versions of boxes and arrows to
represent hypothesized cause–effect relations. This may be
because boxes and arrows effectively depict the promise of
deep mechanistic understanding. Because the granularity of
our boxes and arrows determines whether a given variable
is a direct or indirect cause of another, it will often be possi-
ble to expand a directed edge in one graph into an entirely
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new subgraph. The head and tail nodes in the old graph serve
as the root and sink of the new subgraph, but the two nodes
are no longer in a parent–child relation. There are now inter-
vening nodes that represent mechanisms that have been
uncovered by scientific research. We can recursively
continue this decomposition, substituting increasingly de-
tailed new subgraphs for each directed edge in the graph of
coarser grain. We end this recursion when each directed edge
is as transparently causal as the collision of billiard balls or
the intermeshing of gears. The wonderfully detailed illustra-
tions of cellular processes in biology texts exemplify this
level of explanation.

The puzzle is that by using common factors in our causal
explanations, we seem to be retreating from this reductionistic
approach. A single node called g sending an arrow to a single
node called liberalism is surely an approximation to the true
and extraordinarily more complicated graph entangling the
various physical mechanisms that underlie mental character-
istics. Why this compromise? Is it sensible to test models of
ethereal emergent properties shoving and being shoved by
corporeal bits of matter—or, perhaps even worse, by other
emergent properties? If we are committing to a calculus of
causation, should we not also discard the convenient fictions
of folk psychology?

The answer to this puzzle may be that reductionistic
decomposition is not always the royal road to scientific
understanding.

[T]he structure of scientific explanation does not reflect the
reductionistic hierarchy. Many of them are autonomous,
referring only to concepts at that particular level (for
instance, ‘the bear ate the honey because it was hungry’).
Many involve deductions in the opposite direction to that
of reductive explanation. That is, they explain things not
by analysing them into smaller, simpler things but by
regarding them as components of larger, more complex
things—about which we nevertheless have explanatory
theories. For example, consider one particular copper atom
at the tip of the nose of the statue of Sir Winston Churchill
that stands in Parliament Square in London. Let me try to
explain why that copper atom is there. It is because
Churchill served as prime minister in the House of
Commons nearby, because his ideas and leadership contrib-
uted to the Allied victory in the SecondWorld War, because
it is customary to honour such people by putting up statues
of them, because bronze, a traditional material for such
statues, contains copper, and so on. Thus, we explain a
low-level physical observation—the presence of a copper
atom at a particular location—through extremely high-level
theories about emergent phenomena such as ideas, leader-
ship, war, and tradition.There is no reason why there should
exist, even in principle, any lower-level explanation of the
presence of that copper atom than the one I have just given.
Presumably, a reductive ‘theory of everything’ would in
principle make a low-level prediction of the probability that
such a statue will exist, given the condition of (say) the solar
system at some earlier date. It would also in principle
describe how the statue probably got there. But such descrip-
tions and predictions (wildly infeasible, of course) would
Copyright © 2012 John Wiley & Sons, Ltd.
explain nothing. They would merely describe the trajectory
that each copper atom followed from the copper mine,
through the smelter and the sculptor’s studio, and so on. In
fact, such a prediction would have to refer to atoms all over
the planet, engaged in the complex motion we call the
Second World War, among other things. But even if you
had the superhuman capacity to follow such lengthy predic-
tions of the copper atom’s being there, you would still not be
able to say, ‘Ah yes, now I understand why it is there. . .’
You would have to inquire into what it was about that
configuration of atoms, and those trajectories, that gave
them the propensity to deposit a copper atom at this location.
Pursuing this inquiry would be a creative task, as discovering
new explanations always is. Youwould have to discover that
certain atomic configurations support emergent phenomena
such as leadership and war, which are related to one another
by high-level explanatory theories. Only when you knew
those theories could you understand fully why that copper
atom is where it is. (Deutsch, 1997, pp. 21–23)

I find this passage persuasive. When we seek to explain
high-level phenomena, we must avoid the error, criticized
by Deutsch, of vulgar reductionism. This is the attitude
that all legitimate scientific explanations must break up high-
level phenomena into lower-level constituents. We must also
avoid the converse error of vulgar holism, which posits that
all legitimate scientific explanations ignore fundamental
constituents and focus exclusively on emergent properties. In
fact, we already have at least one good example of a science
with a blend of reductionistic and holistic explanations. It is
surely not a coincidence that Fisher and Wright were both
among the founders of population genetics in addition to
being innovators in causal reasoning. Evolutionary biology
is already rich and autonomous without reducing the ideas
of genotype, phenotype, fitness, selection, and adaptation
to microlevel bits and pieces. It is natural for the notion for
causality to have been developed by evolutionists because
the (high-level) distinction between correlation and causation,
while being tangential to much of the older physical sciences, lies
at the core of the evolutionary ideas just mentioned.

What kind of rich and autonomous theoretical structure,
blending reductionistic and holistic elements, will emerge
from the interdisciplinary field of personality psychology?
Given the interests of many personality psychologists in
genetics and evolution (Ashton & Lee, 2001; Johnson et al.,
2011; Penke et al., 2007), a mature science of personality
might inherit some of its explanatory structure from neo-
Darwinism. But Figure 1 shows that there is much else about
personality to be explained. Even after a century, it is still
difficult to offer any global perspective that can claim to be
more than an opinion. The challenges of the field are daunting,
and progress is gradual. But because common factors (folk-
psychological traits) are the product of a cognitive and historical
process that seems quite efficient at extracting powerful
compressions of reality (Ashton & Lee, 2005; Baum, 2004), I
suspect that they will continue to play some role within the
personality psychology of the future.

Whatever the fate of common factors in causal theories, a
perhaps more fundamental question is whether we can reason
Eur. J. Pers. 26: 372–390 (2012)
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precisely about causality itself. An affirmative answer is the
central message of this article:

It is true that testing for cause and effect is difficult.
Discovering causes of effects is even more difficult. But
causality is not mystical or metaphysical. . . [I]t can be
expressed in a friendly mathematical language, ready for
computer analysis.

What I have presented to you. . . is a sort of pocket calcu-
lator, an abacus, to help us investigate certain problems of
cause and effect with mathematical precision. This does
not solve all the problems of causality, but the power of
symbols and mathematics should not be underestimated. . .
The really challenging problems lie ahead: We still do not
have a causal understanding of poverty and cancer and
intolerance, and only the accumulation of data and the
insight of great minds will lead to such understanding.
The data is all over the place, the insight is yours, and
now an abacus is at your disposal, too (Pearl, 2009,
pp. 427–428).
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