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Resemblances of Parents and Twins in Sports 

Participation and Heart Rate 
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a n d  P . C . M .  M o l e n a a r  2 

A model to analyze resemblances of twins and parents using LISREL is 

outlined and applied to sports participation and heart-rate data. Sports 

participation and heart rate were measured in 44 monozygotic and 46 

dizygotic adolescent twin pairs and in their parents. Genetic factors in- 

fluence variation in both sports behavior and heart rate, while there is 

no evidence for transmission from parental environment to offspring en- 
vironment. For sports participation the data support a model in which 

there is a high positive correlation between environments of  spouses and 

between environments of  female twins. This correlation is absent for male 

twins and negative for opposite sex twins. For heart rate, a positive cor- 

relation between environmental influences was observed for all twins; 

there is no evidence for assortative mating. The proposed model can also 

handle data sets where parents and twins have been measured on more 

than one variable. This is illustrated by an application to the observed 

association of sports participation and heart rate. 

KEY WORDS: twins; parents; sports participation; heart rate; LISREL/PRELIS; discrete 
variables. 

I N T R O D U C T I O N  

Severa l  s tudies  show ev idence  for familial  in f luences  on  sports  part ici-  

pa t i on  (e.g.,  L e w k o  and Greendor fe r ,  1978; S n y d e r  and  Sprei tzer ,  1973, 
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1976). Lewko and Greendoffer (1978) conclude in a review that the family 

rather than schools and peers influences sports involvement in children 

and that within families parents are more influential than siblings in so- 

cializing their children into sports participation. Snyder and Spreitzer 

(1973) note a similarity between spouses in sports behavior. It is unknown, 

however, whether this resemblance lies in mate selection processes or in 

transmission of an interest in sports of one partner to the other. It is also 

unknown whether the observed familial influences are mainly environ- 

mental or mainly genetic. The influence of genetic and environmental 

factors on variation in sports participation has not been studied. Most 

research, including research with twins, has been directed to sports per- 

formance or correlates of performance (e.g., Malina and Bouchard, 1986). 

Sports participation is known to influence heart rate: resting heart 

rate generally is lower in people who frequently engage in sports activities. 

Twin studies indicate that variation in heart-rate level is explained by 

genetic as well as shared environmental factors (e.g., Boomsma and Ga- 

brielli, 1985). In this paper an extended twin design is used to partition 

variation in sports participation and heart rate into genetic and environ- 

mental components and to study the association of sports participation 

and heart rate. 

One approach to model data from twins and parents is outlined by 

Eaves et  al. (1989) in this issue. They adopt the social homogamy model 

of Rao et  al. (1974) in which an observed correlation between spouses is 

due to their assortment for the cultural environment. Resemblances of 

parents and children are modeled by a path from parental genotype to 

offspring genotype and by a path from cultural environment of parents 

to cultural environment of children. Eaves et al. formulate a LISREL 

model in which data from parents are represented as independent X vari- 

ables and offspring data as dependent Y variables. We use a different 

model (shown in Fig. 1) and LISREL formulation. In this model the impact 

of total parental environment on offspring environment is considered 

(Vogler and Fulker, 1983) and assortment of spouses is for the total en- 

vironment. The total offspring environmental correlation, i.e., the whole 

effect of shared environment in twins (Fulker, 1982), is partly accounted 

for by parental influences: 2s + tb(s)], where +(s) is the correlation 

between the total environments of spouses and z is the environmental 

transmission parameter. Separate paternal and maternal influences are 

possible, but as Eaves et  al. (1989) have shown that these are very difficult 

to separate, we consider only one environmental transmission parameter 

for both parents. The other part of the environmental correlation between 

twins [+(t)] is independent of their resemblance with their parents. 
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Fig. 1. Parent-offspring model for LISREL analysis. P are observed phenotypes of father 
(F), mother (M), Twin 1, and Twin 2. G and E denote latent genotype and total environment. 
Nongenetic transmission (z) is from total parental environment to offspring environment 
and is modeled here to be equal for fathers and mothers. The correlation between total 
environments of spouses is represented by +(s) and the correlation between residual en- 
vironments of twins by 0(t). 

Based on this model, equations for expected correlations become the 

following: spouses, ~(s)eZ; parent-offspring, .5h 2 + (ze2)[1 + +(s)]; 

dizygotic (DZ)twins, .5h 2 + 2(z2e2)[1 + ~(s)] + +(t)e2; monozygotic 
(MZ) twins, h 2 + 2(z2e2)[1 + +(s)] + +(t)e 2. 

This model can be represented in LISREL (J6reskog and S6rbom, 

1986b) using Y and ~ variables only. This representation makes gener- 

alizations to extended data sets possible, such as, for example, to data 

from more than two generations. A small simulation study using the above 

model in LISREL is presented below and next the model is applied to 

measures of sports participation and heart rate. 

The sports participation variable measured in this study is dichoto- 

mous, the answer to the question "Have  you been involved in sports 

activities during the last three months?" being either "yes"  or "no . "  

Such dichotomous traits may be regarded as expressions of an underlying 

continuous normal distribution (Falconer, 1981). The trait is expressed 

only if an individual's value on this distribution exceeds some threshold. 

Maximum-likelihood estimates of sample thresholds and polychoric cor- 

relations among values on the underlying distribution can be obtained 

from LISREL VI (mainframe) or from PRELIS (PC) (J6reskog and S6r- 

bom, 1986a), as well as polyserial correlations among dichotomous and 

continuous variables such as sports participation and heart rate. 
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SUBJECTS 

Subjects were 90 twin pairs between 14 and 20 years of age and their 

parents, who participated in a larger ongoing project on genetic aspects 

of cardiovascular risk factors. Addresses of twin pairs living in Amster- 

dam (71) were obtained from the population registry of the City Council. 

In addition, 19 twin pairs and their parents from outside Amsterdam also 

participated in the study. Zygosity of the twins was determined by blood 

typing and, in four cases, also by DNA fingerprinting (Jeffreys et al., 

1985). There were 16 monozygotic (MZ) male and 28 MZ female pairs 

and 15 dizygotic (DZ) male, 17 DZ female, and 14 DZ opposite-sex (OS) 

twin pairs. 

Sports participation and heart-rate data were obtained when subjects 

visited the laboratory. Heart-rate data were obtained from an electro- 

cardiogram (ECG) that was recorded for an 8.5-min period of rest. Sub- 

jects were seated in a comfortable chair in a sound-attenuated cabin and 

were asked to relax as much as possible. The ECG signal was digitized 

at 250 Hz and these data were used to determine interbeat intervals (IBis). 

These represent the time in milliseconds between successive R waves in 

the ECG (as IBI increases, heart rate goes down). 

ANALYSIS 

Data were analyzed by LISREL-PC and PRELIS and by LISREL 

VI, mainframe. PRELIS is a preprocessor for LISREL-PC and available 

for personal computers. In LISREL VI it takes two options to specify 

that one of the variables is discontinuous: MA = KM, the type of matrix 

to be used for data analysis, is a correlation matrix and MV = 2, the 

maximum number of distinct values in the discrete variable is t w o -  

variables with higher values are analyzed as being continuous. In PRELIS 

these specifications are MC = 2 and MA = PM to obtain a matrix of 

polychoric, polyserial, and product-moment correlations. When MA = 

KM is used in PRELIS, ordinal variables are transformed to normal scores 

before product-moment correlations among all variables are computed. 

When MA = KM is used without declaring ordinal variables as ordinal, 

product-moment correlations on the raw scores are computed. 

PRELIS requires a group size of at least 20 to compute polychoric 

and polyserial correlations. This requirement can be relaxed by specifying 

on the OU line MS = N (where N is minimum sample size), but for smaller 

groups the correlations may become unreliable. Therefore, we also com- 

puted phi coefficients among the dichotomous variables and compared 

these to the tetrachoric correlations (Lord and Novick, 1968, p. 347). Phi 

is a measure of association for " t rue"  dichotomous variables that are not 
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based on an underlying continuum. Since it is equivalent to the product- 

moment correlation applied to a 2 x 2 table, phi is easily computed by 

PRELIS by just leaving out the MC = 2 specification. 

Under assumptions of bivariate normality, tetrachoric correlations 

are independent of estimated thresholds, whereas phi depends on the point 

of dichotomization. For this reason phi coefficients are not recommended 

for use in factor analysis (Lord and Novick, 1968) and model fitting in 

this paper is carried out on tetrachoric correlation matrices. 

There is no guarantee that a matrix of sample polychoric and poly- 

serial correlations will be nonsingular, even when the population matrix 

is Gramian. When a nonpositive definite matrix is obtained, maximum- 

likelihood (ML) estimation cannot be used and unweighted least squares 

(ULS) must be used instead. An alternative possibility is to transform the 

singular matrix by a simple procedure into a positive-definite one. We 

propose a straightforward procedure in order to approximate an original 

singular matrix R(n x n) by one which is positive definite. Let R = PQP' 

be the eigenvalue decomposition of R, where P(n x n) is the column 

matrix of eigenvectors and Q = diag(ql . . . . .  qn), the matrix of eigen- 

values. Let ql be the concerning zero eigenvalue. Then a plausible pos- 

itive-definite approximation R* to R is obtained by fixing ql at a small 

positive value p. Accordingly, R* = PQ*P', where Q* = diag(p, q2, 

�9 . . , qn). Although one would like to take p > 0 as small as possible, 

efficient values of p are bounded from below due to LISREL's finite 

computational precision. By some trial and error it was found that p = 

.02 is close to this lower bound while still yielding an R* which is ac- 

ceptable to LISREL. 

There are several advantages to using ML estimation instead of ULS. 

First, ML is better conditioned and therefore much faster than ULS, and 

second, ML is scale invariant, whereas ULS is not (Timm, 1975, pp. 557- 

560). Even if ML estimation is used, however, normal theory standard 

errors and • goodness-of-fit measures should not be used for input ma- 

trices of tetrachloric and polyserial correlations (J6reskog and S6rbom, 

1986b, p. IV6) or for matrices that are nearly singular (Boomsma et al., 

1989). Alternatives to a formal test of the model are to look at matrices 

of fitted moments, fitted residuals, and normalized residuals, to get an 

idea of the discrepancy between the observed and the estimated input 

matrices. Normalized residuals that are larger than 2 (absolute value) are 

indicative of specification errors in the model�9 Relatively large values of 

first-order derivatives also indicate which part of the model does not fit 

very well. The adjusted goodness-of-fit index (AGFI) may be used as an 

overall goodness-of-fit measure for each separate group in a multisample 

analysis (J6reskog and S6rbom, 1986b, p. I40, V4). AGFI is independent 
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of sample size and relatively robust against departures from normality. 

It should be between zero and one, and relatively larger values indicate 

a better fit. 

RESULTS 

Means 

Mean ages of twins and parents are given in Table I. There was a 

small, but statistically significant difference in age (F4,175 = 2.87, p = 

.03) among the five twin groups, identical twins of both sexes being some- 

what younger than fraternal twins. There also is a difference between the 

ages of parents of MZ and those of DZ twins (F4 ,175  = 3.76, p = .005), 

parents of identical twins being almost 4 years younger than parents of 

fraternal twins. This may partly reflect the increase in DZ twinning rate 

Table I. Univariate Statistics for Age, Sports Participations, and Heart Rate, for Father, 
Mother, Twin 1, and Twin 2 of MZ and DZ Male and Female Twin Families 

Heart rate 
(interbeat 

Age Sport Sport intervals) 

[mean (SD)] yes threshold [mean (SD)] 

MZF (28) 
Fa 47.2 (5.7) 13 .09 974 (113) 
Mo 43.9 (5.4) 12 .18 891 (113) 
T1 16.3 (2.3) 20 - . 57  891 (124) 
T2 17 - . 27  899 (140) 

MZM (16) 
Fa 46.9 (6.9) 7 .16 1001 (180) 
Mo 44.5 (6.3) 8 .00 904 (129) 
T1 17.3 (2.0) 13 - . 8 9  927 (167) 
T2 13 - . 8 9  906 (154) 

DZF (17) 
Fa 51.3 (7.4) 6 .38 957 (119) 
Mo 48.8 (7.3) 5 .54 865 (130) 
Yl 17.7 (2.4) 13 - . 7 2  906 (141) 
T2 11 - . 38  871 (130) 

DZM (15) 
Fa 50.2 (5.9) 4 .62 851 (113) 
Mo 47.7 (4.7) 6 .25 934 (132) 
T1 17.4 (1.7) 12 - . 8 4  931 (149) 
T2 11 - .62 882 (172) 

DZOS (14) 
Fa 50.6 (7.5) 4 .57 897 (131) 
Mo 45.8 (6.1) 3 .79 895 (121) 
Females 16.9 (1.8) 11 - .79 942 (189) 
Males i1 - .79 1000 (172) 
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with maternal  age (Bulmer, 1970). This difference does not reach statis- 

tical significance, however,  for fathers (F4,85 = 1.81, p = . 13) or mothers 

(F4.85 = 2.34, p = .06) separately. The number  of " y e s "  responses to 

the sports question is shown next  in Table I. There were no sex differences 

in sports participation for twins (Xl 2 = 1.6, p = .2) or for parents (X 2 = 

0), nor  were there any differences in sport participation among five groups 

for twins (X4 z = 3.2, p = .52) or for parents (){4 2 -~- 4 . 8 ,  p = .37). Sports 

involvement  was less, however,  for parents than for their children (X~ 2 

= 45.2, p = .00). This is also reflected in the thresholds for the underlying 

continuous distribution, as estimated by L I S R E L  and shown in Table I. 

In L I S R E L  it is not possible to constrain these thresholds to be equal for 

Twin 1 and Twin 2 or for MZ and DZ groups. The estimated thresholds 

indicate a lower value for children than for parents, reflecting that children 

are more involved in sports activities than their parents. 

Finally, Table I shows the mean interbeat intervals for all groups. 

For  the children there were no significant differences among groups (F4,175 

= 1.5, p = .21), although we note that both male and female opposite- 

sex twins have larger interbeat intervals (and thus lower heart  rates) than 

any of  the other  twin groups. There also was no mean difference in IBI 

among parents of these five groups (F4,t75 = 1.1, p = .37). Analysis of 

variance with sex and generation as factors showed a significant main 

effect  of sex (F1.358 = 6.7, p < .01). Post hoc analyses revealed this 

difference in heart  rate to be significant between fathers and mothers 

(F1.~78 = 5.7, p -- .018), but in the children's generation the difference 

be tween males and females did not reach statistical significance (F1,179 

= 1.8, p = . 18). The main effect of generation (F  < 1) and the interaction 

of  sex and generation (F  < 1) were also not significant. Using data that 

are not independent  may create a bias in significance testing. Therefore ,  

four subsamples were created by randomly selecting one father, mother,  

son, and daughter from different families, This procedure,  of course,  cre- 

ate a loss of power  and only two of  the four ANOVAs now gave a main 

effect  of sex on heart  rate, while no effects of generation or of  generation 

x sex were observed.  

Correlations 

Table II shows phi coefficients, tetrachoric correlations, and con- 

cordance  data for sports participation and p roduc t -moment  correlations 

for heart  rate for twins, for spouses, and for parents and their offspring 

regardless of the zygosity of the offspring. Phi coefficients for the asso- 

ciation of  sports involvement among family members are somewhat  lower 

than tetrachoric correlations (see Lord  and Novick,  1968, p. 347), but the 
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Table II. MZ and DZ, Spouse-Spouse, and Parent-Offspring Correlations for Sports Par- 

ticipation and Heart Rate (HR) 

Sport 

Sport and HR 

Phi phenotypic 
coeffi- Tetra- Concor- (polyserial) 

cient choric dance HR correlation a 

MZF (28) .79* .90* 25/28 .73* .08 .43* 

MZM (16) 1.00' .89* 16/16 .79* .53* .34 
DZF (17) .46 .70* 13/17 .71" - .19  .01 

DZM (15) .08 .14 10/15 .55* .01 .46* 
DZOS (14) - .28  - .02  8/14 .14 .69* .66* 

Fa-Mo (90) .24' .38* 58/90 .08 .06 .20 
Fa-Son  1 b (31) .08 .14 14/31 .22 .24 

Fa-Son 2 c (45) .24 .48* 22/45 .27 .51" 

Fa-Daug 1 d (59) .21 .34* 33/59 .08 .17 

Fa-Daug 2 e (45) .31" .54* 27/45 .21 .27 

Mo-Son I b (31) .18 .32 17/31 .40* 
Mo-Son 2 C (45) .16 .31" 22/45 .15 

Mo-Daug ld (59) .29* .49* 34/59 .22 

Mo-Daug 2 e (45) .26 .47* 25/45 .17 

a Phenotypic correlations are given for Twin 1 and 

and oldest sons and daughters. 
b All youngest sons. 

c All oldest sons plus all OS sons. 
d All youngest daughters plus all OS daughters. 

e All oldest daughters. 

* p < .05. 

Twin 2, fathers, mothers, and youngest 

agreement between tetrachofic correlations and phi coefficients is quite 

reasonable. Although the estimates of tetrachoric correlations obtained 

in LISREL appear to be reliable [as also indicated by their similarity to 

tetrachoric correlations obtained with other programs such as BMDP4F 

(1985)], this does not apply to estimates for the most extreme value of r 

= 1. For MZ males the tetrachoric correlation is 1 and LISREL gives 

an estimate that is too low, which clearly constitutes a program error. 3 

For sports involvement, the pattern of tetrachoric correlations for 

female twins suggests an important contribution of shared environmental 

factors. In males, in contrast, common environmental influences seem to 

be entirely absent, as the DZ correlation is much lower than the MZ 

correlation and even lower than correlations between parents and off- 

spring. Based on the observed correlations of twins only, the contribution 

of genetic and nongenetic factors would seem different in males and fe- 

This has been put right in PRELIS 1.8 (J6reskog, personal communication). 
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males. The correlation of OS twins is zero, which suggests that different 

factors may contribute to variance in sports participation in boys and girls. 

There is, however, no indication of a sex difference in heritability when 

we look at parent-offspring correlations. There is a relatively high cor- 

relation between spouses. 

In contrast, the correlation for heart rate between spouses is low. In 

both male and female twins there is some influence of shared environment 

onheart  rate,as DZ correlations are higher than half the MZ correlation. 

Correlations of opposite-sex (OS) twins are lower than the DZ same-sex cor- 

relations, however, and the average correlation between parents and 

children is also lower than the DZ correlation. The association between 

sports and heart rate, finally, is about .3 in twins, is .2 in mothers, and is 

almost absent in fathers. 

Model Fitting 

Observed variables in twins and their parents were represented by 

Y variables in LISREL; latent genotypes (G) and environments (E) were 

represented by -q variables. Causal effects of ~q variables on other -q vari- 

ables are specified in the beta matrix. 

Genetic resemblance between parents and twins is accounted for by 

a path in B from GF and G M  to G1 and G2, which is fixed at .5. G1 and 

G2 are correlated .5 in DZ and 1.0 in MZ twins. These correlations are 

specified in * ,  the correlation matrix of the residual part of the latent ~q 

factors, i.e., that part of ~ that is not explained by other latent factors in 

the model. The variance of the residuals of G1 and G2 equals .5 (i.e., 1 

- .5 z var GF - .52 var GM). The covariance of these residuals is zero 

for DZ twins, as their genetic resemblance is fully explained by their 

genetic resemblance to their parents. MZ twins are genetically identical, 

so the covariance between their genetic residuals equals the variance of 

these residuals. The correlation matrix of -q factors can be requested on 

the output card, so that these specifications can be verified. The same 

reasoning applies to the variances of the E factors in the children, with 

the exception that here the path from E in the parents to E of the children 

is unknown. This path is estimated in B and the variance of the E residual, 

which is equal to 1 - 2z2[1 + , (s ) ] ,  also has to be a free parameter. 

Environmental resemblance of twins that is not accounted for by their 

environmental resemblance to their parents to estimated by ~(t) in the q' 

matrix and the correlation between E M  and E F  is also estimated in W. A 

simulation study was carried out in which the following values for pa- 

rameters were used: h 2 = .3 (h = .5477), e z = .7 (e = .8366), the cor- 

relation between total environments of spouses was .8, the residual twin 
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correlat ion was .3, and the path from parental environment to child's 

environment  was .4. The L ISREL model and the matrices generated by 

these parameter  values are given in the Appendix (Fig. A1). Good starting 

values for  L I S R E L  are starting values that are consistent with the model. 

This is easily accomplished by having starting values of zero for most 

parameters ,  with the exception of  h, e, and the residual variances in 'I r. 

L I S R E L  estimates were exactly the same as true parameter  values, and 

the input matrices were exactly replicated so that all fitted residuals were 

zero.  

A second analysis with the same model was carried out, but now 

with input matrices from the Eaves et al. (1989) simulation study (allowing 

transmission paths from EF and E M  to ET to be different). Here,  also, 

zero residuals and an exact replication of the input matrices were ob- 

tained; indicating an exact fit to matrices that were generated according 

to a different model. Estimates obtained were h = .548, e = .837, f = 

�9 147, m = .311, and var res(ET) = .819. The correlation between envi- 

ronments  of spouses was .686, which gives an observed correlation of  .7 

* .686 = .48. The correlation of residual environments in children was 

.676, and the resemblance between their environments that is caused by 

resemblance to their parent 's  environment,  f2 + m 2 + 2fm+(s)  = .181, 

so that the estimate of  shared environment in children is (.676 + . 181) * 

.7 = .6, which is identical to the c 2 of .6 that was used to simulate the 

data. These results suggest that the two models are equivalent. 

Several  more analyses were carried out with extreme parameter  val- 

ues (e.g., negative transmission paths) and no differences between input 

matrices and fitted moments were observed�9 

. U n i v a r i a t e  A n a l y s e s  

Sports 

The full model as described above was first fitted to data of  female 

twin families. Table IIIA shows the squared estimates of h and e, the 

environmental  transmission path, and the correlations between environ- 

ments  of spouses and environments of twins�9 Table IIIA also shows the 

adjusted goodness-of-fit index for each sex/zygosity group�9 For  female 

twins and their parents the largest part of the variance in sports partici- 

pation is explained by environmental factors�9 These are shared between 

the parents,  as is reflected in a quite high correlation between total pa- 

rental environments�9 The total correlation between environments of  the 
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twins was .85 (this correlation is given in the matrix of "q factors) so that 

c 2 for female twins equals .85 * .65 = .55. The largest part of this cor- 

relation (.69) does not depend on the resemblance of offspring environ- 

ment to parental environment but represents shared environmental influ- 

ences unique to twins. 

As there is no evidence for shared environment for male twins, a 

model with only additive genetic, random environmental factors and a 

correlation between environments of spouses was specified. This resulted 

in an estimate of the spouse correlation that was slightly larger than 1. 

This correlation was therefore fixed at 1 and this model gave a good 

approximation to the input matrices, as judged by the fitted residuals and 

AGFI. 

Next, data of male and female twins were combined into one analysis. 

By constraining the factor loadings of observed variables on latent genetic 

and environmental factors to be equal across all groups, genetic and total 

environmental influences are forced to be the same for males and females. 

Based on the different heritability estimates for male and female twins, 

this might not seem very realistic, but the pattern of correlations between 

parents and offspring is the same in both sexes. Moreover, the adjusted 

goodness-of-fit indices for females in the first analysis are not very high 

and the fitted residuals indicate that the largest discrepancy between ob- 

served and estimated correlations is for parent-offspring correlations, 

suggesting that heritabilities are too low to account adequately for the 

observed parent-offspring correlations. Hence, a model where the genetic 

structure is the same in both sexes seems plausible. Table IIIA shows 

that AGFI for all groups improves when male and female data are thus 

combined into one analysis. To model shared environment for female 

twins, environmental transmission paths and the residual environmental 

correlation were free to be estimated, while these were zero for male 

twins. The estimate for environmental transmission from parents to girl 

twins now is lower than in the first analysis, as their resemblance is ad- 

equately explained by genetic resemblances, while the estimate of shared 

environment between female twins stays high. The last row in Table IliA 

shows the result of adding data of OS twins to this model. As the OS twin 

correlation for sports participation is zero, the estimate for the correlation 

between environmental influences in this group becomes negative, 

thereby counteracting the positive genetic correlation. This suggests that, 

under the assumption that genetic factors are the same in both sexes and 

their effects of equal magnitude in males and females, environmental in- 

fluences relevant to variation in sports participation are different in males 

and females. For female twins these environmental influences are, to a 
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large extent, shared between them, and for OS twins some sort of negative 

sibling interaction might be present. 

Heart Rate 

Univariate analyses of heart rate were carried out on covariance ma- 

trices. For these analyses it is therefore permissible to use standard errors 

and • tests. A model with h, e, and t~(t) to account for shared environment 

of twins was first fitted to male and female data separately and next to 

combined male and female data and to data from all five groups. The 

results are shown in Table IIIB. Estimates of heritabilities in males and 

females are not significantly different as judged by the fit of the third 

model, where male and female data were combined into one analysis. 

Although there is an increase in X 2 when data from both sexes are analyzed 

jointly, and also when the DZOS group is added to the analysis; this 

increase is accompanied by a relatively large increase in df so that a 

nonsignificant chi-square is obtained. The same analyses as summarized 

in Table IIIB were also carried out on correlations instead of covariances, 

as these are required for the bivariate analyses of sports participation and 

heart rate, and almost identical results were obtained. 

Bivariate Analysis 

The model used for the univariate analyses can be extended to the 

bivariate case in several ways. One approach is the factor model of Martin 

and Eaves (1977), where correlations between variables arise because the 

variables have loadings on the same genetic and/or environmental factors. 

Using this approach, correlations between spouses can be modeled by a 

correlation between general factors of father and mother. Assuming that 

a correlation between two observed variables X and Y is caused by their 

loadings on the same latent environmental factor, i.e., X = E + ex and 

Y = E + ey, where E represents an environmental factor that is common 

to both X and Y and ~ is a unique factor, then a correlation +(s) between 

environments of father (EF) and mother (EM) creates the following phen- 

otypic correlations between spouses: for X (and Y), t~(s)e•215 The cor- 

relation between X in father and Y in mother (or Y in mother and X in 

father) becomes t~(S)exey (where ex and ey are factor loadings on E). If 

this last correlation is not symmetric (i.e., X in father with Y in mother 

is not equal to X in mother with Y in father), an alternative representation 

using the beta matrix is possible, using the path from EF to EM that differs 

from the path EM to EF. This way spouse correlations are restricted to 

arise from the communal part of the model. A similar restriction could 

be applied to environmental transmission paths or correlations between 
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environmental influences in twins. Table IV illustrates some of these 

ideas. Two bivariate models are considered: in the first model sports 

participation and heart rate load on a general genetic factor, and in the 

second model both variables load on the same environmental factor. In 

addition, the first model specifies unique environmental factors for sports 

and heart rate and a unique genetic factor for sports only. Based on the 

results of univariate analyses, there is a correlation between environ- 

mental influences relevant to variation in sports participation for spouses, 

female twins, and OS twins. For heart rate, no spouse correlation and an 

equal correlation between environments were specified for all twins. The 

second model explains the association between sports participation and 

heart rate by their loadings on a general environmental factor that is cor- 

related in spouses and female and OS twins. Inspection of Table IV shows 

that the two models yield almost identical AGFIs. It turns out that the 

general genetic factor in the first model is in fact a heart-rate factor (as 

indicated by a low loading of sports and a relatively high loading of heart 

rate). In the second model, the general environmental factor is in fact a 

sports factor. Hence, we seem to have four factors that are relatively 

independent. This probably is a fair picture, as the correlations of heart 

rate and sports participation are not very high. 

DISCUSSION 

Our data indicate that variation in sports participation is influenced 

to a large extent by genetic factors. In view of the fact that variation in 

sports performance is determined almost exclusively by genetic factors 

(e.g., Malina and Bouchard, 1986), it does not seem unlikely that the 

choice to participate in sports activities would also have a genetic com- 

ponent. For female twins a large part of the environmental variance is 

shared between them but is not shared with their parents. For boys there 

is no evidence for common environmental factors. The model employed 

assumes that assortment for sports participation is entirely environmental, 

and a high correlation between latent environmental factors of spouses 

was found. The most important limitation of analyzing any parent-off- 

spring model in LISREL, however, is that assortment based on parental 

phenotypes cannot be considered, since it involves the use of nonlinear 

constraints (Fulker, 1982; Boomsma and Molenaar, 1987). 

Results for resting heart rate are in good agreement with previous 

studies that used twins only. Roughly half of the variance is explained 

by genetic factors, and for the twins the other half is equally divided 

between common and random environmental factors. These estimates do 

not change much when parents of twins are included in the research de- 
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sign. Resemblances of parents and offspring can be accounted for solely 

on the basis of their genetic resemblance to each other and there is no 

evidence for assortative mating. 

Both for sports participation and heart rate, no significant sex dif- 

ference in heritability was found. This is due partly to the small sample 

size and we may conclude only that in this sample such effects could not 

be detected. 
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