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 RESEARCH, PATENTING, AND TECHNOLOGICAL CHANGE1

 BY SAMUEL S. KORTUM2

 This paper develops a search-theoretic model of technological change that accounts for
 some puzzling trends in industrial research, patenting, and productivity growth. In the
 model, researchers sample from probability distributions of potential new production
 techniques. Past research generates a technological frontier representing the best tech-
 niques for producing each good in the economy. Technological breakthroughs, resulting in
 patents, become increasingly hard to find as the technological frontier advances. This
 explains why patenting has been roughly constant as research employment has risen
 sharply over the last forty years. Productivity is determined by the position of the
 technological frontier and hence by the stock of past research. If researchers sample from
 Pareto distributions, then productivity growth is proportional to the growth of the
 research stock. The Pareto specification accounts for why productivity growth has neither
 risen as research employment has grown nor fallen as patenting has failed to grow. The
 growth of research employment itself is driven, in equilibrium, by population growth.
 Calibrating the model's four parameters, the implied social return to research is over
 twenty percent.

 KEYwORDS: Innovation, patent productivity, research, technology.

 1. INTRODUCTION

 NUMEROUS EMPIRICAL STUDIES have found a systematic positive relationship
 between total factor productivity and industrial research and between patented
 inventions and R&D across firms and industries.3 These findings are not
 surprising since R&D, patenting, and productivity are all indicators of techno-
 logical change. In contrast to the cross sectional evidence, however, the long-run
 time series behavior of the three indicators of technological change remains
 puzzling. Figure 1 shows the number of private-sector researchers in the United
 States, the number of U.S. patents for which they applied, and the number of
 patents they were granted.4 The number of researchers has grown by nearly five
 percent per year since the early 1950's (see Table I) but the collective inventive

 1An early version of this paper circulated as NBER Working Paper No. 4646, "A Model of
 Research, Patenting, and Productivity Growth," February, 1994.

 2I have benefited from the comments of Deepak Agrawal, Eric Bartelsman, Russell Cooper,
 Maura Doyle, Jonathan Eaton, Zvi Eckstein, Zvi Griliches, Peter Klenow, Glenn Loury, Debraj Ray,
 Michael Riordan, Jim Schmitz, Alwyn Young, and participants at various seminars and conferences.
 Suggestions of the editor and two anonymous referees have greatly clarified the paper. I gratefully
 acknowledge the support of the NSF (Grant No. 9309935-001). I take responsibility for any errors.

 3The literature on productivity and R&D is surveyed by BLS (1989) and Griliches (1979, 1992).
 Griliches (1990) surveys the literature that uses patent statistics. The best evidence that patents are
 indicators of inventive output comes from firm-level regressions of patents on R&D (Pakes and
 Griliches (1984) and Hall, Griliches, and Hausman (1986)).

 4Private-sector researchers are the number of R&D scientists and engineers employed in
 industry, adjusted by the fraction of industry R&D that is company financed. A complete list of
 definitions and sources is in the Appendix.
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 FIGURE 1.-Patents and researchers in the United States.
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 TECHNOLOGICAL CHANGE 1391

 TABLE I

 DATA FOR THE UNITED STATES

 Average Annual Growth Rates

 1953-X63 1963-73 1973-'83 1983-'93 1953-'93

 Total Factor Productivity

 in Manufacturing .016 .018 .004 .013 .012
 Private-Sector R&D

 Scientists and Engineers .036 .046 .052 .054 .047

 Civilian Labor Force

 (16 or over) .013 .022 .022 .014 .018

 Average Levels

 1953-'63 1964-73 1974-'83 1984-'93 1953-'93

 Patents Granted to

 U.S. Residents (thousands) 37.9 49.7 39.8 45.4 43.1
 Industry-Funded R&D Relative

 to Industry Compensation of Labor .017 .021 .023 .031 .023

 Sources: Total Factor Productivity is from BLS (1996). Private-Sector R&D S&E's is the number of R&D S&E's
 employed in industry multiplied by the fraction of R&D performed in industry that is industry funded, NSF (1987, 1995).
 The Civilian Labor Force Data are from CEA (1995). Patents Granted by the United States to U.S. Residents is from
 WIPO (1983), WIPO (various issues) and tabulations by the U.S. Patent Office. Total R&D Funded by Industry is from
 NSF (1995b) and Compensation is from BEA (1992) and BEA (1992b, 1994).

 output of these researchers, as measured by patents, was roughly constant for
 three decades before applications rose sharply beginning in the mid-1980's.
 Table I also reports total factor productivity (TFP) growth by decade in the U.S.
 manufacturing sector. TFP growth has almost recovered from the slowdown
 during the 1970's but it has not increased with the secular rise in research
 employment nor has it responded to the recent jump in patent applications. A
 theory of invention and technological change should explain why research inputs
 have grown so rapidly, why patents per researcher have fallen, and why total
 factor productivity growth has not increased with the level of research.5

 This paper develops a general equilibrium search-theoretic model of techno-
 logical change to account for these puzzles. Researchers sample from probability
 distributions of potential new production techniques. These search distributions

 will shift if researchers obtain knowledge spillovers from past research efforts.
 Research output can be summarized by a technological frontier-an extreme

 value distribution-of the most efficient techniques for producing each good in

 5 The theory is not asked to account for the recent surge in U.S. patent applications since that
 seems to be a consequence of a major institutional change: patents have received stronger

 protection in the United States since the creation in 1982 of the Court of Appeals of the Federal

 Circuit (e.g. McConville (1994)). Nor is the theory asked to explain the rise of foreign patenting in
 the United States and the rise of U.S. patenting abroad. Although the vast majority of patents

 continue to be protected only in their domestic market, there is a long-term trend towards greater

 international protection of inventions. As mentioned in the conclusion, an increasing propensity to

 patent abroad is consistent with an implication of the theory developed here, that the value of

 patentable inventions is trending up.
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 1392 SAMUEL S. KORTUM

 the economy. A patent is treated as a research draw that advances the techno-

 logical frontier. The aggregate rate of patenting depends on both current

 research (determining the rate of sampling from the search distributions) and

 the stock of past research (determining the probability that a given draw will
 advance the technological frontier). The technological frontier advances with
 accumulated research, generating a relationship between productivity-the mean

 of the technological frontier-and the research stock. Research effort itself is

 determined in equilibrium by the value of patents and the probability of

 discovering a patentable invention relative to the wage for producing output

 using existing techniques.
 What restrictions to the model bring its predictions into line with the

 observed trends in research, patenting, and productivity growth? The observa-

 tion that patenting has been constant as research effort has risen exponentially
 implies a restriction on how knowledge spillovers from past research improve

 the search distributions. If spillovers were too potent, the model would not

 account for the decline in patents per researcher. In addition, the fact that
 productivity has continued to grow implies a particular restriction on the form of

 the underlying search distributions, a restriction satisfied by the Pareto distribu-
 tion. With the Pareto distribution, productivity growth is proportional to the

 growth of the research stock and to the level of patenting.6 Lastly, the observa-

 tion that research effort has grown suggests that the return to research has not
 fallen even as technological advances become more difficult. Research effort is

 sustained only if the labor force grows, which causes the value of patents to rise
 faster than the wage.

 This interpretation of the facts synthesizes a number of arguments put
 forward in the literature. As far back as the 1930's writers have blamed the

 decline in patents per researcher on diminishing technological opportunities.7
 Further evidence for the diminishing technological opportunities hypothesis is
 provided by Evenson (1984) who finds that the decline in patents per researcher
 is a world-wide phenomenon.8 The search model of invention, introduced by
 Evenson and Kislev (1976), formalizes the idea that technological improvements
 become increasingly difficult as the threshold for new discoveries rises.9

 6 The model does not consider the effect of research performed abroad on productivity in the
 United States. Eaton and Kortum (1997) extend the model to incorporate technology diffusion

 among a set of countries.

 7Griliches (1990) reviews this early literature. Machlup (1962) compiles evidence on patents per
 researcher from 1870-1960 and shows that this ratio declined consistently after 1920.

 8Domestic patent applications in France, Germany, and the United Kingdom continue to display
 little upward trend (WIPO (annual issues)). In the United States, Kortum (1993) finds that patenting

 relative to real R&D expenditures has fallen in all manufacturing industries, suggesting that the

 decline is not caused by shifts in industry composition. Researchers themselves do not report a

 decline in their propensity to patent inventions (Mansfield (1986)). Case studies of the textiles
 industry and the chemicals industry by Baily and Chakrabarti (1985) and of the pharmaceutical
 industry by Henderson and Cockburn (1996) suggest that inventions are becoming increasingly
 difficult to discover.

 9Bental and Peled (1996) have integrated the search model of invention into a general equilib-
 rium model of endogenous growth.
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 TECHNOLOGICAL CHANGE 1393

 Diminishing opportunities need not imply stagnant productivity, however, as
 they may be offset by rising research effort. Furthermore, as noted by Griliches
 (1990), due to the "multiplicative aspect of their impact," a constant flow of
 patented inventions could, in principle, sustain positive productivity growth.10
 This idea of inventions as percentage improvements is formalized in the quality
 ladders model of Grossman and Helpman (1991). Jones (1995b), however,
 rejects the Grossman and Helpman model (in which inventions and productivity
 growth are proportional to research) since as research employment has grown
 rapidly in the United States, France, Germany, and Japan, TFP growth has not
 risen. The present paper combines Evenson and Kislev's search model (to
 explain patents and research) with Grossman and Helpman's quality ladders
 model (to explain productivity and patents). Given Pareto search distributions,
 the resulting productivity-research equation is identical to the specification used
 in studies that estimate the contribution of research to productivity growth (BLS
 (1989) and Griliches (1979)). When this equation is introduced into a general
 equilibrium model, TFP growth is ultimately tied to the growth of the labor
 force, as in Jones (1995a).11

 Section 2 of the paper lays out the general equilibrium model of search.
 Section 3 restricts the general model based on evidence from the trends in
 aggregate research employment, patenting, and productivity. Section 4 con-
 cludes.

 2. THE MODEL

 The economy consists of a continuum of infinitely lived individuals i E [0,L(t)]
 at date t (the Appendix contains a list of symbols). Time is continuous and L(t)
 is a nondecreasing sequence with f t ,L(s) ds bounded for finite t. Consumption
 goods come in a continuum of varieties j E [0,1].

 2.1. Preferences

 Individual i's objective is to maximize the expectation of

 (1) Ui(t) - feP(s t)exp[f In Cijs djl ds,

 10 Although he made extensive use of patent statistics, Schmookler (1966) discounted any
 relationship between patents and productivity. In his Ph.D. dissertation, Schmookler (1951) reports
 that domestic patent applications rose considerably from 1860 to 1930 but output per unit of input
 did not accelerate as he had hypothesized. Interestingly, the upward trend in patenting came to a
 halt: the five-year average of domestic patent applications centered on 1930 (reported in Schmookler
 (1954)) was not exceeded until 1988. Schmookler may have been less skeptical of the patent-produc-
 tivity relationship had he seen the past sixty years of data.

 11 Nordhaus (1969) realized that population growth might be necessary to sustain technological
 change, a result which continues to be explored, e.g. Segerstrom (1995) and Young (1995). Young's
 model has the appealing feature that endogenous technological change is possible without popula-
 tion growth and yet a rising population does not lead to explosive growth. But, it does not account
 for the observed fall in patents per researcher.
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 1394 SAMUEL S. KORTUM

 where p > 0 is the discount rate and Cij, is the individual's consumption of good
 j at date s. The individual takes prices of consumption goods Pit as given. Utility
 maximization requires that expenditure on each variety be equal, PjsCijs = Xi(s),
 where Xi(s) denotes total expenditure by individual i at date s. The consump-
 tion index of individual i is therefore exp[ fo ln Cijs dj] = Xi(s)/P(s), where
 P(s) = exp[ Jl ln Pjs dj] is the aggregate price index.

 Taking the price index as numeraire, Ui(t)= ftfe-P(s-t)Xi(s) ds. Assuming
 individuals may borrow or lend at an interest rate of r(t), equilibrium will
 require r(t) = p. In equilibrium, individuals are indifferent to the allocation of
 their expenditure over time.

 2.2. Techniques

 Over time researchers get ideas about new and potentially better techniques

 of production. Ideas arrive to an individual researcher as a Poisson process with

 a parameter normalized to unity. Each idea pertains to a technique for produc-

 ing a single variety of good, drawn from the uniform density on [0, 1].12
 Let R(t) < L(t) be the aggregate measure of individuals engaged in research.

 The stock of all past research effort is K(t) It fL R(s) ds. Applying a standard
 result from the theory of search (Butters (1977), Peters (1991)) the number of

 techniques for producing good j discovered between time t and time s > t has a
 Poisson distribution with parameter K(s) - K(t).

 Techniques vary according to how efficiently they transform labor services

 into output. If the efficiency of a technique for producing good j is q then, given
 a wage W, the good can be produced at a unit cost of W/q.13 At the beginning

 of time any good can be produced at an efficiency level of qo > 0.
 When a researcher gets an idea for a new technique, its efficiency is drawn

 from a probability distribution (the search distribution) representing technologi-
 cal opportunities. The efficiency of a new technique is independent of the
 variety of good it is used to produce. The search distribution is formulated as
 follows.

 ASSUMPTION 2.1: Let the random variable Q be the efficiency of a new technique.
 The search distribution from which Q is drawn, given a stock of past research K, is

 Pr(Q < q; K)-- F(q; ) = |- S(K)(1 - F(q)), q > q(K),

 12 Assuming that the variety cannot be chosen by the researcher avoids difficult strategic issues in
 research; see Reinganum (1989). Grossman and Helpman (1991) also model undirected research but
 in their model undirected research is not dominated by other strategies. In the present setup it

 would be dominated; hence undirected research must be taken as a feature of the search technology.

 13 Here, better techniques allow the same goods to be produced more cheaply. In Grossman and
 Helpman (1991) better techniques allow higher quality goods to be produced at the same cost. The

 two approaches are equivalent if output is measured in units of constant quality.
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 TECHNOLOGICAL CHANGE 1395

 where S(K) (the spillover function) is a nonnegative weakly increasing continuous
 function on [0, oo0 satisfying S(1) = 1 and F(q) (the stationary search distribution) is

 a distribution function satisfying F(q)= 0 on (- oo, qo] and F(q) = fqof(x) dx on
 [q0, oo), with a continuous density f(q) on [q0, cc). The lower support of the search
 distribution is 4(K) = min{q ? qo11 - S(K)[1 - F(q)] ? 0}, hence it is weakly in-
 creasing in K (either q-(K) = or it satisfies 1 - S(K)[1 - F(j(K))] = 0). The
 search distribution is continuous except for possibly a jump at qo.

 In the special case of S(K) = 1 for all K the search distribution reduces to
 the stationary search distribution F(q). Nelson (1982) calls this blind search and
 then goes on to consider how knowledge is used to focus search.14 If the
 spillover function is increasing in K, then the efficiency of techniques drawn
 from the search distribution is stochastically increasing in K. As formalized in
 Assumption 2.1, the knowledge accumulated through past research efforts is
 available to everyone.

 2.3. Market Structure

 Suppose that m techniques have been discovered for producing good j.
 Denote their efficiency levels (including the initial technique) by ql, 1 =
 0,1, . . . , m, where the ordering is by date of discovery. The state of the art for

 producing good j is z = max{q0, q1,.. ., qmj, i.e. the efficiency of the best
 technique yet discovered. If qm = z, then the inventive step of the mth tech-
 nique is y = z/max{q0, q1,.. ., qm- 1}. As in Kortum (1991), a technique is
 patentable if its inventive step exceeds unity.15 The patent is infringed if anyone
 produces the jth good using a new technique of efficiency q E (z/y, z]. Patent
 protection expires when a more efficient technique is discovered. When the
 patent expires, the technique is freely available to imitators but prior to that the
 patent holder can, at no cost, prevent others from infringing.16

 The owner of an unexpired patent on a technique for producing good j sets a
 price so as to maximize profits and then hires workers at a wage of W to meet
 demand at that price. Suppose that the patented technique represents an

 inventive step y enabling good j to be produced at efficiency z. Competitors can

 14ccLet me formalize the idea that stronger knowledge means a better choice set actually explored
 by defining 'better' in terms of stochastic dominance" (Nelson (1982, p. 459)). Jovanovic and Rob
 (1990) and Jovanovic and Nyarko (1996) develop alternatives to blind search by casting the search
 problem in a Bayesian framework. Jaffe (1986) provides some empirical support for knowledge
 spillovers of the type incorporated into Assumption 2.1. He finds that a firm gets more patents per
 dollar of R&D if other firms are doing research in a related area of technology (i.e. if they are
 patenting in related patent classes).

 15 Under Section 102, a patent is barred for lack of novelty if there is enough in the prior art to
 enable someone skilled in the area to perform the process or produce the product described in the
 patent application. (Miller and Davis (1990, p. 46)).

 16 Patenting is assumed to be costless so that researchers patent all techniques that are
 patentable. Furthermore, patent examiners are assumed to grant patents only on patentable
 techniques.
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 1396 SAMUEL S. KORTUM

 imitate the previous state of the art technique and therefore can produce at a

 cost of W/(z/y). The competitors take the price as given and produce only if it

 strictly exceeds their cost. Demand for good j is unit elastic, hence the patent
 holder maximizes profits by charging the highest price at which competitors do

 not enter. At time t, with a wage W(t), this price is

 (2) p,= yw(t)/z.

 2.4. The Technological Frontier

 The market structure described above implies that only state of the art
 techniques will be used. The state of the art for producing a particular good is
 random, with a distribution function G1 characterized in the following proposi-
 tion.

 PROPOSITION 2.1: At time t, given the path of research up to that date, the

 distribution function G1 of the state of the art for producing good j depends only on
 the stock of research, K(t). Given K(t) = K,

 (exp - [1 - F(z)] Y(K)I, z 2 q#(K),

 G1(z; K) = exp{-[1-F(z)]E(K(z))-[K-K(z)i}, qo < z < q(K),
 t0, z<qo,

 where L(K) = fOKS(x) dx and for qo < z < q(z), K(z) = min{K E [0, K] 1 -
 S(K)[1 - F(z)] < 01. There is a mass point at the initial level of efficiency,
 G1(q0; K) = exp{-L(K)}.

 The proof is in the Appendix.
 The technological frontier represents the state of the art across the entire

 spectrum of goods. This paper proceeds under the convention that, due to the
 independence of search across different goods, the distribution of the technolog-
 ical frontier is equal to the probability distribution of the state of the art for a
 specific good. Thus, G1(z; K(t)) is the measure of goods produced at date t
 using a technique with efficiency less than or equal to z. This distribution
 summarizes the cumulative results of all past research effort. Aggregate produc-
 tivity can be viewed as the mean of the distribution of the technological frontier.
 Proposition 2.1 implies that productivity, so defined, is completely determined by
 the stock of past research as in earlier work on research and productivity
 (Griliches (1979)).

 The probability that an idea is patentable (given a stock of past research K),
 p(K), is obtained by taking the probability that a new idea exceeds any efficiency
 level and integrating it over the distribution of the state of the art (from
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 TECHNOLOGICAL CHANGE 1397

 Proposition 2.1). For K ?1,17

 (3) p(K) = (1 - F(z; K)) dG,(z; K)

 00

 =Gl(q(K); K) + S(K)[1 - F(Z)] dG,(z; K)
 S(K)

 =Gl(q(K); K) + | x.(K)IS(K)expf -xX(K)1S(K)) dx

 = (K) [1 -e
 -Y,(K)

 where the penultimate line changes the variable of integration from z to

 x = S(K)[ -F(z)]. Notably, the probability that an idea will be patentable
 depends only on the spillover function S(K), without regard to the form of the
 stationary search distribution F(q).18

 Several other functions, related to the distribution of useful techniques, are
 defined below. The probability that a patentable technique of efficiency q
 invented at time t will be used for less than x years is denoted P(q, K(t + x),
 K(t)). Given a stock of past research K, the joint distribution of the inventive
 step of newly patented techniques and the efficiency of the techniques they
 supplant (z' = z/y) is denoted H(z', y; K). Given a stock of past research K, the
 distribution of the inventive step of a technique in use is denoted G2(y; K).
 Expressions for each of these functions are derived in the Appendix.

 2.5. Aggregrate Income

 Workers are paid a wage W(t) while researchers are compensated by profits
 from any patented inventions they may have discovered. Aggregate income X(t)
 is equal to the sum of aggregate wage income W(t)[ L(t) - R(t)] and aggregate

 profit income fJ7?T(y, t) dG2(y; K(t)). The profit from a patented technique with
 efficiency z and inventive step y is Tr(y, t) = X(t)(1 - y -1) and hence aggregate
 income is

 (4) X(t) = W(t)[ L(t) -R(t)] f yI dG2(y; K(t)).

 Using equation (2) and the fact that P(t) = 1, the production wage is

 (5) W(t) = exp{f ln(z) dG,(z; K(O)} exp{ ln(y) dG2(y; K(t

 17 The restriction to K ? 1 implies S(K)[1 - F(q(K))] = 1 and leads to the simple expression in
 equation (3). If K< 1, then p(K) = (s(K)/.,(K))[1 - e-(K)] + [1 - S(K)]e2-(K ). For K= 1 the
 equations are identical since S(1) = 1.

 18 Similarly, results in the theory of record breaking often do not depend on the functional form
 of the sampling distribution (Glick (1978)).
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 1398 SAMUEL S. KORTUM

 reflecting the (geometric) average efficiency level in the economy relative to the
 average markup.

 2.6. The Value of a Patent

 A patent has value because it gives the owner a claim to the future profits

 from using the patented technique. Let V(t) be the expected value of a patent
 discovered at date t, taking account of the uncertainty about the patent's

 efficiency z = z'y, its inventive step y, and its profitable life,

 (6) V(t) =e ff eP(s-)[I - P(z'y, K(s), K(t))]
 t 0 1

 X -rr(y, s) dH(z', y; K(t)ds.

 An individual choosing to engage in research expects a return of p(K(t))V(t).
 This is the product of the rate of arrival of new ideas (unity), the probability that
 an idea arriving at date t is patentable, and the expected value of a patent
 discovered at date t.

 2.7. Equilbrium

 The return to research relative to the wage for production work, E(t)-
 p(K(t))V(t)/W(t), determines how individuals choose between research and
 production. The derivations above show how the return to research and the

 production wage depend on a path of the research stock. A path of the research

 stock, {K(s)}, is an equilibrium if it induces the level of research employment
 necessary to generate it, {R(s) = K(s)}.

 DEFINITION: Given a stock of research K(t) and a known path of the labor

 force {L(s)js ? t}, an equilibrium is a path of research {R(s)js ? t} such that for
 all s ? t: (i) the labor market allocation is optimal for each individual,

 (0, E(s) < 1,

 R(s) = E [0, L(s)], E(s) = 1,

 L(s), E(s) > 1,

 where E(s)- p(K(s))V(s)/W(s), (ii) the wage satisfies equation (5), (iii) the
 expected value of a patent satisfies equation (6), and (iv) the probability that an
 idea is patentable satisfies equation (3).

 Conditions are not provided for existence and uniqueness of the equilibrium
 at this level of generality. In what follows, an equilibrium path of research is
 constructed for a restricted version of the model.
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 TECHNOLOGICAL CHANGE 1399

 3. IMPLICATIONS AND PLAUSIBLE RESTRICTIONS

 This section examines, sequentially, the model's implications for patenting,

 productivity, and research. At each step the model is restricted further in light

 of the data trends noted in the introduction. Patenting is considered first
 because the model's implications for patenting (conditional on research) do not
 depend on the form of the stationary search distribution. Research is considered

 last because the model's implications for research are revealed only when the

 dynamic equilibrium problem is solved.

 3.1. Patenting

 The aggregate rate of patenting, I, is the product of the rate at which ideas

 are discovered and the fraction of those ideas that are patentable,

 S(K(t)) ]
 (7) (t)R(tp(K()) R() ~(K(t)) e

 for K(t) ? 1. An implication is that the rate of patenting depends not only on
 current research but also on the amount of research done in the past.19 The
 influence of past research depends on the spillover function but not on the

 stationary search distribution. Thus trends in patenting and research are infor-

 mative about the spillover function. What form of the spillover function is

 consistent with the observation that patenting has remained roughly constant

 even as research has grown exponentially?

 PROPOSITION 3.1: If the rate of patenting approaches a constant I while research
 grows exponentially at rate g, then the spillover function must satisfy

 limK - oS(K)/K17- 1} = a for some 0 < a < oo.

 The proof is in the Appendix.
 To be consistent with the data trends, the spillover function must asymptote

 to a power function. The paper proceeds under the simplification that the
 spillover function is a power function even when the stock of research is finite.

 ASSUMPTION 3.1: The spillover function is S(K) = K", where 0 < y < oo indexes
 the strength of spillovers.

 Given Assumption 3.1, Y(K) = K1 +Y/(1 + y) and if the research stock grows
 at rate g, the rate of patenting converges to I = (1 + y)g. If y = 0 there are no

 19 Because the search process is sequential, equation (7) does not exhibit any congestion
 externalities from simultaneous research, as in Tandon (1983), Kortum (1993), and Stokey (1995).
 Decreasing returns to current research activity could also arise from heterogeneous research talent

 in the population, as in Eaton and Kortum (1997). Although potentially important empirically,

 decreasing returns are ignored here to maintain simplicity and to highlight the role of the search

 technology.
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 1400 SAMUEL S. KORTUM

 research spillovers, while if y is large spillovers are potent. But, even with

 potent spillovers, patents per researcher will be strictly decreasing in the stock

 of research.

 3.2. Productivity

 Productivity is defined as the average efficiency of workers, i.e. the mean of

 the technological frontier,

 A(t)-AK(t) - fizdG,(z; KWt),

 where the notation AK makes explicit the dependence of productivity on the

 stock of research. This relationship between productivity and research, unlike
 that between patents and research, is sensitive to the functional form of the

 stationary search distribution.
 Three stationary search distributions are illustrative: (i) the Pareto, F(q)=

 1 - (q/qo)-I/A for A > O, (ii) the exponential, F(q) = 1 - e-(qo-q)/A for
 A > 0, and (iii) the uniform, F(q) = (q - qo)/(A - qo) for A > qo and q < A. The
 following results, given a stock of research K(t) = K, are derived in the Ap-
 pendix. If the stationary search distribution is Pareto, then the distribution of

 the technological frontier is Frechet (type 2 extreme value) and average effi-
 ciency is

 (8) AK = clKA(l + Y) + e(K).

 If the stationary search distribution is exponential, then the distribution of the
 technological frontier is Gumbel (type 1 extreme value) and average efficiency is

 (9) AK = CO + clln K+ e(K).

 If the stationary search distribution is uniform, then the distribution of the

 technological frontier is Weibull (type 3 extreme value) and average efficiency is

 (10) AK = CO -c1K-(1 + ) + E(K).

 The Appendix provides expressions for the constants (co > 0, c1 > 0) and proves
 that the approximation terms E(K) are of smaller order than e-K/(l+y+b) for
 b > 0.20

 As the research stock gets large: (i) in the Pareto case the growth of
 productivity becomes proportional to the growth of the research stock, (ii) in the
 exponential case the increment to productivity becomes proportional to the
 growth of the research stock, and (iii) in the uniform case the level of productiv-
 ity approaches an upper bound. None of these cases generate the endogenous
 growth equation, A = e AK, in which productivity growth is proportional to the
 level of research (Romer (1990), Grossman and Helpman (1991), and Aghion

 20 In other words, for any b > 0, 1imK ,OeK/(l+y+b)E(K) = 0.
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 TECHNOLOGICAL CHANGE 1401

 and Howitt (1992)). This is not troubling as Jones (1995b) showed that the

 endogenous growth specification does not come close to fitting the data. Only

 the Pareto case is consistent with the trend of constant productivity growth

 associated with constant growth in research and with the standard econometric

 equation used to quantify the impact of research on productivity growth

 (Griliches (1979)).

 The following proposition shows how these results generalize to other station-

 ary search distributions.

 PROPOSITION 3.2: As the stock of research K approaches infinity, the limiting

 form of the distribution of the technological frontier G1 is either Frechet, Gumbel, or

 Weibull (subject to normalizing sequences). In all three cases productivity satisfies

 limK ? .{((Ak'K/AK) - l)/((Ak'K/AK) - 1) < o0 for any 0 < k" < k' < oo. If and
 only if the limiting form of G1 is Frechet does productivity satisfy

 lim (AkK/AK) = kb
 K--oo

 for some b > 0 and for all k > 0. Stationary search distributions F leading to the

 Frechet have unbounded upper support and satisfy limx= {(1 - F(xa))/(1 -
 F(x))} = a-b, for all a > 0 and for some b > 0.

 The proof is in the Appendix.

 Proposition 3.2 is an application of the theory of extremal distributions as

 described succinctly in Billingsley (1986, pp. 197-199) and exhaustively in
 Galambos (1987).21 Although this application is not the standard one, as the
 search distributions improve over time and the number of trials is random, the

 basic results from the theory of extremes go through. In particular, if there is a

 limiting form of the distribution of the technological frontier it will be either

 Frechet, Gumbel, or Weibull. In each case, the productivity equation AK = e AK
 can be ruled out (given Assumption 3.1 on the spillover function).

 The central result of Proposition 3.2 is to characterize the family of stationary

 search distributions that can produce the observed trend in productivity given
 the trend in research. This family consists of exactly those stationary search
 distributions that are in the domain of attraction of the Frechet extreme value
 distribution. It includes the Pareto and Cauchy distributions among others. Any
 stationary search distribution in the Frechet's domain of attraction leads

 (asymptotically) to the empirically plausible power function relationship between
 productivity and the stock of research. Since the Pareto is the easiest to work
 with, it is assumed throughout the remainder of the paper.

 ASSUMPTION 3.2: The stationary search distribution is Pareto, F(q) = 1 - q- /A
 with 0 < A < 1. The initial level of efficiency is qo = 1.

 21 This theory was also applied by Muth (1986) in his model of the learning curve.
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 1402 SAMUEL S. KORTUM

 The mean of the Pareto distribution is 1/(1 - A).22
 Given the assumptions above, productivity growth A(t)/A(t) is approximately

 A(1 + y)k(t)/K(t). The elasticity of productivity with respect to the stock of
 research, A(1 + y), is large if the Pareto search distribution is rich (as measured
 by A) or if research spillovers are potent (as measured by y).23 Combining the
 patent equation and the productivity equation, productivity growth is approxi-
 mately AI(t). It can be shown that A is the average size of a patent if size is
 measured as the logarithm of the inventive step.24 Productivity growth is simply
 the average patent size multiplied by the rate at which patentable inventions are
 discovered.25 More potent research spillovers do not affect the average size of
 patents but do increase the rate at which they are discovered. A richer
 stationary search distribution increases the average size of patents but does not
 affect the rate at which they are discovered, given research effort.

 The discussion above equates productivity with average efficiency, yet a more

 typical measure of productivity is output per worker, X(t)/[L(t) - R(t)]. It
 turns out that the two measures move in parallel as the stock of research

 approaches infinity. To show this requires an expression for the limiting distribu-
 tion of the inventive step of inventions in use.

 PROPOSITION 3.3: The limiting distribution of the inventive step of inventions in

 use (as the stock of research K-> co) is G2(y; K) ?* G2(y) = 1 - a(y)y-'/A, for
 y E [1,oo) where a(y) ln(yl/A)/(1 _y-l/A) > 1 for all y > 1 and a(1) = 1. Out-
 put per worker relative to average efficiency,

 X(t)

 L(t) -R(t)/

 converges to a constant, limK- c b(K) = b < m.

 22 Bental and Peled (1996) use the Pareto distribution to obtain results on endogeneous growth in
 their search-theoretic model.

 23 The productivity growth equation can be rearranged to yield the form used by Jones (1995a),
 A(t) A(1 + y)R(WAWA(' + Y) -1]/IA(' + ]. The exponent on the level of productivity is negative if
 the degree of spillovers y is small and if A is not too big.

 24 From the derivation of H(z', y; K) in the Appendix, the distribution of the inventive step for

 new inventions H2(ylz'; K) is Pareto if the stationary search distribution is Pareto. Adapting an
 argument in Billingsley (1986, p. 191) H2(ylz'; K) is Pareto only if the stationary search distribution

 is Pareto. In the Pareto case H2(ylz'; K) =H2(y) =I y- 1/A and hence the logarithm of the
 inventive step is exponentially distributed with mean A. The return on a patent is ir = (1 -y1)X(t)
 and hence the coefficient of variation of the distribution of returns is (1 + 2A) -2 ? 1. Empirical
 evidence suggests greater variation in returns to patents. Estimates of a patent renewal model by
 Schankerman and Pakes (1986) imply a coefficient of variation of about 3 for the returns to patent
 protection in three European countries. Scherer (1996), extending a note in Scherer (1965),
 calculates a coefficient of variation of nearly 5 for the distribution of royalties on Harvard
 University's patents (sometimes royalties on related patents were combined). Using data from
 Grabowski and Vernon (1990) on the value of new pharmaceutical entities, Scherer calculates a
 coefficient of variation somewhat below 2 (I am indebted to Professor Scherer for sharing these
 statistics, which do not appear in his paper).

 25 Kortum and Lach (1995) find evidence for such a relationship between productivity and
 patenting at the industry level.
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 TECHNOLOGICAL CHANGE 1403

 The proof is in the Appendix.

 The limiting distribution G2(y) is of independent interest because it repre-
 sents the distribution of price markups. A corollary of Proposition 3.3 is that the

 limiting distribution of price markups is stochastically increasing in the richness

 of the stationary search distribution, A.26

 3.3. Research

 Given exponential growth of the research stock, the assumptions above

 ensure that patents are discovered at a constant rate and productivity grows at a
 constant rate. To ensure that exponential growth of the research stock is an

 equilibrium requires an assumption about the path of the labor force.

 If the research stock grows exponentially, the number of researchers must

 eventually grow exponentially and so too must the labor force, since K(t) = R(t)
 < L(t). The following assumption is therefore maintained throughout the rest of
 the paper

 ASSUMPTION 3.3: The labor force grows at a constant rate, L(t + s)/L(t) = eCS,
 for some n > 0 and all s 2 0.

 Note that L(t) should be interpreted as effective units of labor in which case
 its growth could in part be due to gains in education or other factors improving

 the efficiency of labor in both production work and research.

 Assumption 3.3 guarantees enough potential researchers to generate expo-
 nential growth of the research stock, but the actual number is determined in

 equilibrium. According to the definition of equilibrium, there will be no re-
 searchers at date t unless the return to doing research is at least as great as the
 wage, E(t) 2 1. The equation for E(t) is greatly simplified by letting both the
 stock of research and the labor force at date t pass to infinity holding fixed the
 ratio k(t) K(t)/L(t). Under such limiting conditions (which will be main-
 tained in what follows), and given an arbitrary future path of research intensity
 I a 0I {R(t +s)/L(t +s)Is ?01, the Appendix shows that E(t) can be ex-
 pressed as E(k(t); I a )}.

 The research stock normalized by the labor force evolves according to the

 differential equation k(t) = ao(t) - nk(t), where ao(t) R(t)/L(t). An initial
 condition k(t) = k* and a level of research intensity ao(t) = a* = nk*, if they
 satisfy E(k*; {Ia*}) = 1, will support an equilibrium in which both research
 intensity and k are constant.27

 26 The distribution of price markups stochastically dominates the distribution of markups on new
 patentable inventions, H2(y), because inventions with larger inventive steps tend to be used for
 longer before becoming obsolete.

 27 Although the following proposition provides sufficient conditions for local stability, it does not
 specify how the equilibrium with constant research intensity is reached from an arbitrary initial
 condition k(t).
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 1404 SAMUEL S. KORTUM

 PROPOSITION 3.4: Given an arbitrarily large research stock and labor force at date

 t and assuming p > An(1 + y) - ny, there exists an initial condition k(t) = k* and

 corresponding ao* = nk* such that {k(t + s) = k*, a (t + s) = ao* Is ? 01 is an equi-
 librium. The level of research intensity is

 1
 a* =a *(r*, A)- = (A)(1+r*-A)

 1-W +(r*, A)

 where 0(A)- J1f dG2(y), W(r*, A) (1 + r* -eA)fowrewF(A - r*,w) F(1 -
 A, w) dw, r* ((p/n) - 1)/(1 + y), and F(a, w) fe-ssa 1 ds is the incomplete
 gamma function. Equilibrium research intensity is decreasing in r* and increasing in
 A. The equilibrium is locally stable (it will be approached from any k(t) in a
 neighborhood of k*) if

 -1 A
 (1 + y)_ > ~*

 ((A)(1 + A) a*(r* , A)

 For other regions of the parameter space a sufficient condition for local stability is
 provided in the Appendix.

 The proof is in the Appendix.

 Since r* ((p/n) - 1)/(1 + y), Proposition 3.4 implies that equilibrium re-
 search intensity decreases in the discount rate and increases in the rate of labor

 force growth and in the degree of spillovers. If r* = A, research intensity is equal
 to the profit share of income, a * = 1 - 6(A).28 In general, the equilibrium level
 of research intensity must be computed numerically; see Table II.

 In the equilibrium characterized by Proposition 3.4, research intensity is

 constant, the research stock grows at an exponential rate n, productivity and the

 wage grow at rate n A(1 + y), and aggregate income grows at rate n[ A(1 + y) + 1].
 The expected value of new patentable inventions grows at the same rate as

 aggregate income, providing an incentive for continued research even as the

 opportunity cost of doing research rises (due to wage growth) and the chance of
 discovering a patentable invention falls (due to the growth of the research
 stock). Interestingly, the rise in the expected value of new patents is not
 experienced by any existing cohort of patents. A patent faces a hazard of being

 surpassed that increases over its life at an exponential rate of n(1 + y). In the
 aggregate, this increasing hazard is exactly offset by the inflow of new patents

 28 This simplification occurs because if p = n[ A(I + y) + 1] and the stock of research grows at the
 rate n then discounting and market-growth exactly offset each other in the equation for the return
 to doing research relative to the wage.
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 TABLE II

 SIMULATION RESULTS

 r* =.03 r*=-.1o r*=.30 r*= 1.0
 A f1 y dG 2(y) 1-O A) a* (r*, A) * (r* A) c* (r, A) r*(r*, A)

 .01 1.017 .016 .016 .015 .012 .007
 .02 1.034 .032 .032 .029 .023 .013

 .03 1.052 .047 .047 .043 .034 .020

 .10 1.192 .143 .157 .143 .115 .067

 .30 1.850 .340 .440 .410 .340 .208

 Notes: The numerical calculations are performed using Mathematica. The column labeled JfydG2(y) shows the average
 level of price markups, the column labeled 1 - 0(A) shows the profit share of income, and the remaining columns show the
 equilibrium level of research intensity for different values of r* = ((p/n) - 1)/(1 + y). The rows correspond to different
 values of A.

 with, on average, lower hazard rates so that the aggregate hazard q = (1 + y)n
 is constant.29

 The private rate of return to research in the equilibrium characterized by

 Proposition 3.4 is simply the discount rate, p. The social rate of return to

 research is the implicit discount rate such that a social planner chooses the

 equilibrium level of research intensity. The social planner's problem, solved in
 the Appendix, implies that the equilibrium social rate of return to research is

 equal to productivity growth relative to research intensity, A(1 +
 y)n/a* (r*, A).30 The social rate of return to research is high if the spillover
 parameter y is large. For example, the social rate of return exceeds the private
 rate of return for all of the cases covered in Table II if y > 3/2.3

 3.4. Quantitative Implications

 The restricted model exhibits a steady state in which: (i) research grows at a
 constant rate, (ii) productivity grows at a constant rate, (iii) patenting is con-
 stant, and (iv) research intensity is constant. Predictions (i)-(iii) are roughly
 consistent with the experience of the United States over the past forty years, as

 29 A patented invention with efficiency z at time t, faces a hazard rate of 77(Z, t) =
 R(t)K(t)'z- 1/A = (1 + y)(a(t)/k(t))z*, where z* = (1 + y)-'K(t)'+ YZ 1/A* The Appendix (in de-
 riving an expression for E(k(O; {a(-)})) shows that the random variable associated with z* has a
 distribution Hf*(z*) which is exponential with a mean of one. In the equilibrium described by

 Proposition 3.4, (1(t)/k(t)) = n and hence -7(z, t) = -q(z*) - (1 + y)nz*. The aggregate hazard is
 therefore -q = flo(z* ) dH*(z* ) = (1 + y)n.

 30 A similar result is invoked in empirical studies that infer the social return to research from the
 relation between productivity growth and research intensity (Griliches and Lichtenberg (1984)).
 Jones and Williams (1995) investigate this result in a model with diminishing returns to current
 research.

 31 The transversality condition for the social planner's problem requires r* > A, so that the
 comparison between the social and private rate of return can be made in only fourteen of the cases
 in Table II.
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 1406 SAMUEL S. KORTUM

 can be seen in Table 1.32 Prediction (iv) is clearly rejected, as can be seen from
 the rise in research intensity (in the bottom row of Table 1).33 Rather than trying
 to account for rising research intensity, the goal is to find a vector of parameters
 that generates research intensity close to the level observed recently. The model

 can then be assessed based on its quantitative implications for price markups,

 the rate at which patents lose value, and the social rate of return to research.
 The following parameter vector is explored (the discount rate, labor force

 growth, the parameter of the stationary search distribution, and the spillover

 parameter, respectively):

 p=0.07, n=0.03, A=0.03, y=9.

 The discount rate is chosen to match the real return on the stock market. The

 parameter n is chosen as a compromise between labor force growth of almost

 two percent and research growth (which should equal labor force growth in a

 steady state) of almost five percent (the data are presented in Table I). The
 parameters A and y yield productivity growth, A(1 + y)n, of nearly one percent,
 a bit less than total factor productivity growth from 1953-1993.34 The implied

 elasticity of productivity with respect to the stock of research A(1 + y) is 0.3, the
 same value proposed by Griliches (1992) as being representative of estimates of
 the combined direct and indirect impacts of research on productivity.35 Given

 the elasticity of productivity with respect to the research stock, research inten-

 sity is smaller if research spillovers are greater, i.e. if y is larger and A is

 smaller. The values that were chosen imply research intensity of about four

 percent, somewhat above the observed ratio of industry funded research to the
 compensation of labor over the last decade.

 The small value of A implies modest price markups of only 5 percent (see the
 second column of Table II). Five percent markups are on the low side of most
 estimates, although they are consistent with findings of Basu and Fernald (1997).
 The aggregate hazard rate for patent returns is thirty percent. Evidence from

 patent renewal data suggests that the actual hazard rate is closer to ten

 32 Total factor productivity growth in manufacturing is used because output is relatively well
 measured in the manufacturing sector and because labor productivity growth due to pure capital
 deepening should not be attributed to technological change.

 33 Subtracting line 3 from line 2 in Table I reveals an even more dramatic rise in research
 intensity. But, research intensity should be interpreted as the fraction of human capital devoted to
 research, rather than simply the fraction of researchers in the labor force. To capture this, in line 5,
 industry financed R&D expenditure is divided by the total compensation of employees in private
 industry.

 34 Since total factor productivity treats capital as an input, L(t) in the model might be interpreted
 as an aggregate of labor and capital that, in a steady state, grows faster than labor itself. This
 provides some justification for choosing n to be much larger than labor force growth.

 35 The value of 0.3 is at least three times the typical econometric estimate of the direct effect of
 R&D on productivity.
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 TECHNOLOGICAL CHANGE 1407

 percent.36 Given A(1 + y) = .3, there is a tension between the larger value of

 the spillover parameter y that would match the level of research intensity and

 the smaller value of y that would match a hazard rate consistent with the

 renewal data. The social rate of return to research implied by the parameters is

 22 percent, three times the private rate of return.37 A social planner would raise

 research intensity to 13 percent.

 4. CONCLUSION

 This paper develops a search theory of invention to explain the long-run

 behavior of research employment, patenting, and TFP growth. According to this

 theory, patents per researcher decline over time as technological breakthroughs

 become increasingly hard to come by. In fact the number of researchers must

 rise exponentially to generate a constant flow of new patented inventions. The

 growth in research effort produces constant productivity growth if the size

 distribution of inventions is stationary (where size is measured by percent
 efficiency gain). The size distribution will in fact be stationary if the search
 distribution of potential new techniques is Pareto. The growth in research

 employment itself is fueled by an increase in the value of patented inventions
 relative to wages, which is in turn sustained by growth in the labor force.

 A key implication of the theory is that the value of patented inventions rises
 over time causing researchers to expend ever greater resources to discover them.

 There are two pieces of corroborating evidence in patent statistics. First,

 Schankerman and Pakes (1986) found that in the United Kingdom, France, and
 Germany the age at which patents were allowed to lapse (because the inventor
 failed to pay a renewal fee) tended to rise over time. From 1965-1975 patents
 per researcher fell sharply in these countries, but the decline was offset by a rise
 in the average value of a patent (as estimated from the renewal statistics).
 Second, there is a long-run trend for inventions to be patented more interna-
 tionally. In the 1950's, the ratio of U.S. inventions seeking patent protection in
 the United Kingdom to U.S. inventions seeking patent protection in the United
 States was about ten percent. By the 1970's this ratio had climbed to almost
 twenty percent and by the early 1990's it was 25 percent. The increase has been
 even more dramatic for U.S. inventions seeking patent protection in Germany

 36 In many countries inventors must pay annual patent renewal fees to maintain their patent
 rights. Failing to renew may indicate that a patent has been surpassed by a better patent or that the

 inventive step is so small that the patent is not worth renewing. In the United States, twelve-year

 renewal fees were collected for the first time in 1994. Of patents granted in 1982, thirty-six percent

 paid the fee, indicating an annual hazard of eight percent (Brown (1995)). Lanjouw (1993) finds

 hazard rates of about ten percent in Germany, while Pakes (1986) reports similar hazard rates for
 France and the United Kingdom.

 37 In their case studies of individual innovations, Mansfield et al. (1977) find that the median
 social rate of return is about twice the median private rate of return.
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 1408 SAMUEL S. KORTUM

 and Japan.38 Although costs of patenting are not part of the model, the trend
 towards broader patent protection is indicative of patentable inventions becom-
 ing more valuable.

 Department of Economics, Boston University, 270 Bay State Rd., Boston, MA
 02215, U.S.A., and National Bureau of Economic Research; kortum@bu.edu;
 http: // econ. bu. edu /faculty / kortum. htm

 Manuscript received February, 1995; final revision received March, 1997.

 APPENDIX A: DATA

 The patent data in Figure 1 are patent applications in the United States by U.S. inventors and
 patents issued (granted) by the U.S. Patent Office to U.S. Inventors (from WIPO (1983), WIPO
 (annual issues), and tabulations by the U.S. Patent Office). The research data are R&D scientists
 and engineers employed in U.S. industry adjusted by the fraction of R&D performed in industry
 that is industry funded, NSF (1987, 1995). The productivity data in Table I are from BLS (1996).
 Multifactor productivity in manufacturing is the growth of the net output of the manufacturing
 sector less the contribution of the growth in hours worked, capital input, purchased services, and
 materials purchased from outside the manufacturing sector (Guillickson (1992)). The civilian labor
 force data are from CEA (1995). Total R&D funded by industry is from NSF (1995b) and Industry
 Compensation is from BEA (1992) and BEA (1992b, 1994).

 APPENDIX B: SYMBOLS

 L(t) Labor force.
 R(t) Researchers.
 K(t) Stock of past research effort (K(t) = R(t)).
 k(t) Research stock relative to the labor force.
 P(t) Aggregate price index (numeraire).
 W(t) Wage for production workers.
 X(t) Aggregate income.
 I(t) Rate of patenting.
 A(t) Average efficiency (productivity).
 E(t) Return to research relative to the wage.

 q Index for the efficiency of a technique.

 F(q; K) Search distribution.
 F(q) Stationary search distribution.
 S(K) Spillover function.

 Y(K) Accumulated spillover function foKs(x) dx.
 z Index for the state of the art.

 y Index for the inventive step.

 V(t) Expected value of a patentable invention.
 7T(y, t) Profits on a technique with inventive step y.

 G1(z; K) Distribution of the state of the art.
 G2(y; K) Distribution of the inventive step (for inventions in use).

 p(K) Probability that an idea is patentable.
 (P(q, K(t + x), K(t)) Distribution of patent lives.

 H(z'; y; K) Joint distribution of the efficiency surpassed and the inventive step of new
 patentable inventions.

 38 These figures are from WIPO (various issues) and Federico (1964).
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 TECHNOLOGICAL CHANGE 1409

 p Discount rate.

 n Population growth.

 y Spillover parameter.

 -j Hazard rate for patents.
 A Parameter of the stationary search distribution.

 0(A) Mean inverse inventive step.

 r* = (( p/n) - 1)/(1 + y).
 a() Path of research intensity, R(t)/L(t).

 a* (r*, A) Equilibrium research intensity.

 APPENDIX C: PROOFS

 Proof of Proposition 2.1

 Due to Poisson arrivals, e -[K(s+ds)-K(s)] is the probability that no new technique for producing
 good j is discovered between time s and s + ds. For ds arbitrarily small, e-R(s)[l -F(z; K(s))] ds is the
 probability that no technique more efficient than z is discovered. Thus,

 G1(z; K(s + ds)) = G1(z; K(s))eR(s)[l -F(z; K(s))] ds

 where G1(z; K(t)) is the probability that the state of the art for producing good j at date t has an
 efficiency no greater than z. Letting J(s) =ln G1(z; K(s)) it follows that J(s) = -R(s)[1 -
 F(z; K(s))]. The initial level of efficiency is q0, hence lim5 - _J(s) = 0. Integrating this differential
 equation yields J(t) = - fL _,R(s)[1 - F(z; K(s))] ds = - fOK(t)[1 - F(z; x)] dx. To simplify the expres-
 sion for J(t) = ln G1(z; K(t)), two cases must be considered: (i) if z ? #(K(t)) then, from Assump-
 tion 2.1,

 In G1(z; K(t)) =-[1- F(z)]f K(t)S() dx,
 0

 and (ii) if z E [q0, #(K(t))] then, from Assumption 2.1,

 ln G1(z; K(t)) =-[1- F(z)]fK(Z)S(x) dx fK(t)dx
 O K(z)

 where, in the latter case, K(z) = min{K E [0, K(t)] I 1 - S(K)[1 - F(z)] < 0}. The result follows by
 exponentiating these equations and letting X(K) = foKS(x) dx. The derivation above uses the fact
 that if z e [q0, (K(t))] then either K(z) = 0 or else if 0 <K<R(z) then 1 - S(K)[1 -F(z)]>0.

 The two expressions for ln G1(z; K(t)) are equal at z = q(K(t)) because either K(q(K(t))) = K(t) or
 else if K(q(K(t))) < K < K(t) then 1 - S(K)[1 - F(q(K(t)))] = 0. Q.E.D.

 An Expression for 0P(q, K(t + x), K(t))

 A patent having efficiency q faces a hazard rate of 7(q, s) R(s)[1 - F(q; K(s))] of being
 surpassed at time s. It follows that a patent being used at time t has a probability

 expft - f'+?x-(q, s) ds} = expf -K(t+x)[1 - F(q; K)] dK} of surviving through time t + x. Thus,

 0P(q, K(t +x), K(t)) = 1 - exp K - |( [1 - F(q; K)] dK}.

 Given K(t), the probability of a patent surviving from date t to date t + x is a decreasing function of
 K(t + x).
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 1410 SAMUEL S. KORTUM

 An Expression for H(z', y; K)

 Let the random variable Y be the inventive step and let Z' be the efficiency of the technique it

 supplants. Their joint density, h(z', y; K) can be factored as hl(z'; K)h2(ylz'; K). The distribution
 functions associated with these densities can be derived, beginning with the second. The conditional
 distribution of the inventive step is

 H2(yIz'; K) Pr(Yyz; I,K) [1 -F(z';K)] -[1 -F(z'y;K)] H2(ylz'; ) Pr(Y?yz'; K) =1 - F(z'; K)

 F(z'y) -F(z')

 1-F(z')

 for z' >- q(K). For z' < q(K), any idea will surpass the state of the art, thus H2(ylz'; K) = F(z'y; K)
 in that case. The distribution of the efficiency surpassed is

 Hi(z'; K) Pr(Z' < z'; K) = p(K) { f[i - F(x; K)] dG,(x; K)).

 Note that this distribution will have a mass point at the initial level of efficiency: H1(qO; K)=
 p(K) Gl(q0; K).

 An Expression for G2(y; K)

 Let G(z, y; K(t)) be the measure of goods which are produced at date t with efficiency less than
 or equal to z using a technique whose inventive step is less than or equal to y. An expression for
 this joint distribution can be obtained by integrating over all past cohorts (s <t) of patentable
 inventions, taking account of their qualities, their inventive steps, and the likelihood that they will
 still be in use by date t:

 G(z, y; K(t)) 00 p(K(s))R(s)

 x { ff/[1 - (z'y'K(t),K(s))]dH(z',y';K(s)) ds.
 flqo

 Changing the variable of integration to x = K(s), setting K = K(t), and letting z go to infinity,

 G2(y; K) = JKp(X) YJYJR - O(zIY, K, x)] dH(z', y'; x)} dx.

 Proof of Proposition 3.1

 For K(t) ? 1, the rate of patenting is given by

 S(K(t)) - I (K(t))l S(K(t))
 -Y(K(t))

 If the rate of patenting approaches a constant I even as research increases, then

 lim t *S(K(t))/S.(K(t)) = 0. If research grows exponentially at rate g, then lim t , . R(t)/(gK(t)) =
 1. Therefore, if research grows exponentially at rate g, the rate of patenting approaches a constant I
 if and only if

 (11) MK<O gKS(K)
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 TECHNOLOGICAL CHANGE 1411

 If (11) held identically for all K2 1, then the spillover function would be S(K) = K(I/h) -. But,
 since (11) is only an asymptotic condition, more analysis is required.

 Suppose that there exists a number b such that limK, K-bS(K)=a for some O<a<oo.
 It follows that for any E > 0 there exists a number x < oo such that for all x 2x, (a - E)xb < S(x) <

 (a + E)xb. Define S minX, [o x,{S(x)} ? 0 and S maxXE [o, S{S(x)} < o. For any K >,

 SYK) )-I S(x) dx <?xS + -(Kb? + b+ 1)
 o b+ 1

 and 5;(K) 2xS - ((a - E)/(b + 1))(K b+ 1 _Xb+ 1). Since E can be arbitrarily small, given that K can
 be arbitrarily large, it follows that limK ,K-(b +1).X(K)/(b + 1) =a. Plugging these results into
 equation (11),

 gKS(K) g(b + 1)K-bS(K)
 I =liMK ,. = lim ( ( ) IY(K) K -,oO K-(b?l)(K)/(b + 1)

 The equation above holds if and only if b = (I/g) - 1. Q.E.D.

 Derivation of Equations (8), (9), and (10)

 Substituting in for F(q) either a Pareto distribution, an exponential distribution, or a uniform

 distribution, Gl(z; K) becomes a Frechet (type 2 extreme value) distribution, a Gumbel (type 1
 extreme value) distribution, or a Weibull (type 3 extreme value) distribution respectively, for
 z 2 #(K). The approximation terms in equations (8), (9), and (10) arise because G1(z; K) does not
 equal any of these extreme value distributions for a <z <q(K), where a = 0 for the Frechet
 distribution and a = - oo for the other two. Leaving aside this issue, the properties of the three
 extreme value distributions (in particular their means) are provided in Castillo (1988, Ch. 5).

 Applying the results there: (i) in equation (8) c1 = qo A(l - A)/(1 + y)X, where F(1 - A)
 f Ox-Ae-x dx; (ii) in equation (9) co =qo + A(q/- ln(1 + y)) and cl = A(1 + y), where qfr .57772 is
 Euler's constant; and (iii) in equation (10) co = A and c1 = A(1 - qo/y)(1 + y).

 To derive the terms of small order, e(K), define G1(z;K)e (1F(z))(K Y/(1?Y)) for z>a,

 zero otherwise. Let A* = f[azdG*(z; K) and AK fc fzdG1(z; K) (it is expressions for A* that
 Castillo provides). The difference in means (Billingsley (1986, problem 21.9)) is

 a 0

 The first term on the right equals zero for the Frechet distribution (since a = 0), it equals

 e-qo/A(1 + y)K-(1 + Y)e-(eqO/AK? +)/(1 + ) for the Gumbel distribution, and for the Weibull distribu-
 tion it equals (A - qo)(1 + y)K-(1 + Y)e- AKl?7/((A-qo)(1 + Y)). The second and third terms are each
 bounded above by q(K)G* (q(K); K) = q(K)e K/(l?Y) for K> 1. Given K> 1, q(K) = q KAY if
 F(z) is Pareto, q(K) = qo + Ay ln K if F(z) is exponential, and q(K) = A - (A - qo)K-7 if F(z) is
 uniform. Thus, the difference between AK and A* is of smaller order than e-K/(1 + b) for b > 0.

 Proof of Proposition 3.2

 It is convenient to work with the following approximation to the distribution of the technological

 frontier, G* (z; K) = e-( F(Z))K1+7/(1 + ) for z 2 qo (zero otherwise). From Proposition 2.1 and
 applying Assumption 3.1, G1(z; K) = G (z; K) for z 2 q(K). Expressing productivity as AK(t) =
 fqzdG1(z; K(t)) and defining A* = fqzdG* (z; K), it follows that AK -A*K f(K)[G (z; K) -
 G1(z; K)] dz and A* > fJ(K)q(K) dG1(z; K). Using these results and given K> 1,

 AK-A* I q(K)Gj(q(K); K) G1(q(K); K) e- K/(1 + y)
 A* A* 1 - G,((K); K) 1 - e-KI(l + y)-
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 1412 SAMUEL S. KORTUM

 Thus, limK, ((AK -A*)/A*) = O and hence results on the behavior of productivity as K gets large
 can be derived from G*.

 Note that G*(z;K)=F*(Z)N, where N=K1+Y/(1 + y) and F*(z)=e-(l-F(z)) for z>qo
 (F*(z)=O otherwise). Thus G* can be interpreted as the distribution of the maximum of N
 independent trials from the distribution F*. The theory of extremal distributions derives asymptotic

 properties of distributions arising in this way (Galambos (1987), Billingsley (1986, pp. 197-199)).
 Given regularity conditions on F* there exist sequences aN> 0 and bN such that [F*(aNx +

 ]Nd bN)]N G*(x). The extremal distribution takes one of only three forms (Billingsley (1986, Theorem
 14.3)):

 G* (x) = e-xd? x ? 0 (zero otherwise), or

 G* (x)=ee , or

 G* (x) = e-(x)do, x < 0 (one otherwise),

 where do > 0 is a constant. These are just the standard forms of the Frechet, Gumbel, and Weibull
 distributions, respectively. This proves the first statement in Proposition 3.2.

 Proving the next two statements requires results about the mean A* of G*. It is related to the

 mean d1 of the appropriate distribution G* by

 m K -bN(K) lim = dl,
 K--> co aN(K)

 where N(K) - K1 + Y/(1 + y). To derive the asymptotic behavior of the normalizing sequences, note

 that for m > 0, [F*(aNx = BN)]mN > [G*(x)]m and [F*(amNx + bmN)]mN G*(x). Thus by Theo-
 rem 14.2 in Billingsley (1986), [G*(x)]m = G*(a*x + bm) where a* =limN. ,(aN/amN)andb,=
 limN.(bN -bmN)/amN. Solving the equation m ln G*(x) = ln G*(a*x + b,): (i) if G*(x) is
 Frechet then a* = m-1/do and b* = 0, (ii) if G*(x) is Gumbel, then a* = 1 and b* = -ln m, and

 (iii) if G*(x) is Weibull then a* = ml/do and bm = 0. Choose c' > 0 and c" > 0 and define
 m' N(c'K)/N(K) = c'1 + y and m" - N(c"K)/N(K) = c"1 + 7'. Then

 AC'K ACK - bN(K) A* - bN(K)
 AK aN(K) aN(K)

 Ai c" -1= lim C"K K --- AC"K bN(K) AK A N(K)

 AK aN(K) aN(K)

 (a*m,) l[d - b,] - d,

 (a*m,t) [d, -bm* I - d, 00.

 This proves the second statement in the proposition.

 Solving for

 AC'K AK- 1
 AK

 K X AC"K

 AK

 in each case, the Frechet yields ((c')(1 + y)/do - 1)/((c"i)(1 + y)/do - 1), the Gumbel yields ln(c')/ln(c"),
 and the Weibull yields (1 - (c')-(1 + y)/d0)/(1 - (c"')-(1 + y)/do). Note that the Frechet case is
 necessary for productivity to satisfy limK (ACK/AK) = Cb. To prove that it is also sufficient, set
 bN = 0 in the Frechet, following Galambos (1987, Theorem 2.1.1). Thus,

 aN(cK) ACK/aN(CK)

 AK aN(K) lN('K
 lim K = lim N(K) (Cll + Wdo
 K -oo AK K -c A*/aN(K)

 which is the property that was sought.

This content downloaded from 
�������������195.43.22.136 on Sat, 20 Jun 2020 11:18:57 UTC������������� 

All use subject to https://about.jstor.org/terms



 TECHNOLOGICAL CHANGE 1413

 Finally, turn to the domain of attraction of the Frechet distribution. The extremal distribution

 takes this form (Galambos (1987, Theorem 2.4.3)) if and only if F* (x) has unbounded upper support

 and, for all a > 0, there exists a b > 0 such that lim. U(1 - F* (xa))/(l - F* (x)) = a -b. By
 l'Hopital's rule, the stationary search distribution F(x) can be used in place of F*(x) = e-(1 -F(x))
 to check this condition. Q.E.D.

 Proof of Proposition 3.3

 An expression for the distribution of the markup, G2(y; K) for y ? 1, was established in the

 Appendix above. Since it could be represented as an integral, it has a density of the continuous type,

 g2(y; K) = f(f p(x)[l - 0i(z'y,K,x)]dH(z',y;x)} dx.

 A good starting point is to establish an inequality relating g2(y; K) and the limiting density g2(y).
 Ignoring the values of z' in the interval [q0, #(K)) (and applying Assumptions 3.1 and 3.2) leads to
 simple expressions for the objects in the integrand:

 p(x) dH(z',y; x) = (1 + y) A-2x1?+2yz -(2+A)/Ay-(1+A)/Ae-(1+Y)-lz/Ax xl+Ydz,

 and 1 - P(z'y, K, x) = e-(1 + y) 1(z y)f1/A(Kl+Y-xl+y)
 Replacing qo with i(K) = KAY in the second integral, substituting in the expressions for the

 integrand, defining a(x, y, K) (1 + y)1[(1 -yl/)xlY+yl/AKl + y], and changing the vari-
 able of integration from z' to w = z' 1' a(x, y, K),

 K K X1+ 2y -(1 + A)/ A

 0 A(1 + y)a(x, yK)2 x,y,K) 1)e-Ka(xYK)]dx

 Since K-Ya(x, y, K) ? (1 + y y- 1 /AK for x E [0, K],

 KX1 + 2y -(1 + A)/ A

 g2(y; K) ? [1 -c(y, K)]f 2 dx

 y)-~~~ ly1 1/A)(,yK
 where c(y, K)-[(1 + y)-ly- /AK+ l]e-(1? + 1)-'y /AK

 Changing the variable of integration from x to w = x + Y and applying the result that fw(bow +

 b,)-2 dw = b&-2[1nlbow + b1l + b1/(bow + b1)] + b2 (for constants bo, b1, and b2), g2(y; K) ? [1 -
 c(y,K)]g2(y), where g2(y) - A-ly-(l+A)/A(l y-1/A)-2[y-l/A - lny1/- 1]. Note that g2(y) is
 a density function on y ? 1, with a cumulative distribution function G2(y) = 1 - A-1(yl/A - 1)1 ln y.

 It is thus established that g2(y; K) ? g2(y) - c(y, K)g2(y), where g2 is a probability density
 function of the continuous type for y ? 1. Note that c(y, K) is bounded above by 1, increasing in y,

 decreasing in K, that limy _,c(y, K) = 1 for K < oo, and that limK ,Oc(y, K) = 0 for y < oo. For any
 number 1 <y* < oo,

 f1c(y', K)g2(y') dy' < c(y*, K)Jf g2(y') dy' + [lim c(y, K)j f g2(y') dy'

 For any e> 0 choose y* so that 1 - G2(y*) < e/4 and choose KE so that c(y*, K) < e/4 for
 K ? KE. It follows that for all K ? KE,

 fYc(y',K)g2(y')dy <' ? c(y',K)g2(y')dy' < e/2.
 1 1~~~~~i
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 1414 SAMUEL S. KORTUM

 For any e> 0, K?KE, and y> 1,

 G(Y; K) - G2(y)I ? ||g2(y; K) dy' - [f g2(y')dy' f|c(y', K)g2(y') dy' + e/2

 9 fg2(Y'; K) dy. - f g2(y')dy + f c(y', K)g2(y') dy' + e/2

 ? I- 1 + e/21 + E/2 = E.

 Thus, letting K tend to infinity, G2(y; K) G2(y).
 From equations (4) and (5), the ratio of output per worker to average efficiency is,

 (1) X(t)A(t) exp( f n(z) dG,(z; K(t)) 00 zdG,(z; K(t))
 (12)- (t)b(K(t)).

 exp ln(y) dG2(y; K(t))}f y dG2(y; K(t))

 The second part of Proposition 3.3 is that limK Ob(K) = b for 0 < b < oo.

 The numerator of equation (12) is the ratio of the geometric mean to the arithmetic mean
 efficiency of techniques in use, where the underlying distribution of efficiencies is Frechet. Letting

 K(t) = K, the arithmetic mean of the Frechet is given by equation (8) as ((1 - A)/(1 +
 y)A)KA(l + ) + e(K). It is known that if a random variable Z is distributed Frechet than in Z is
 distributed Gumbel. Therefore the geometric mean of the Frechet is simply the exponential of the

 arithmetic mean of the Gumbel which, from substitution of equation (9), is

 eA
 exp{A-A ln(1 + y) + A(1 + y)ln K+ e(K)} = KA(l+ y)ee(K)

 (1+ A)

 The numerator of equation (12) therefore converges to e A /T(1 - A). By Proposition 3.3 the
 denominator of (12) converges to exp{fjlln(y) dG2(y)}f1jy1 dG2(y)> 0. Thus, the ratio of output
 per worker to average efficiency converges in the manner proposed. Q.E.D.

 An Expression for E(k(t); {a(-)})

 The expected return to research relative to the wage is a formidable object,

 f00)0000 ( + ( + ) - K + Y)) K(t + s)
 (13) f e-Ps K

 (13 o |fyldG2(y;K(t+s)) (t)

 L(t + s) R(t + s) W(t + s)
 X K(t + s) K(t + s) W(t) (1-y1)

 x [1- -(z'y, K(t + s), K(t))] dH(z', y; K(t)) ds.

 The goal is to express E(t), given a path of future research intensity, as a function of k(t)=
 K(t)/L(t), with both K(t) and L(t) passing to infinity.

 Equation (13) is particularly difficult to work with because P and dH depend on the stock of
 research. This difficulty is overcome by working with a transformation of the state of the art z that

 depends on the level of the research stock. A convenient transformation, given a stock of research
 K(t) = K, is z* (1 + y)-Kl+ Yz- /A. Denoting random variables by capital letters, noting that
 Z = Z'Y, and letting H* be the joint distribution of Z* and Y,

 H*(z* y;K)=Pr(Z*?<z*,Y<y;K)= fY f-1(1 + y)-dH(z', x; K).
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 TECHNOLOGICAL CHANGE 1415

 From the derivation of an expression for H(z', y; K), given Assumptions 3.1 and 3.2,

 K2(1 + y)Zi-(2+ A)/AX-(1 + A)/Ae-(l + Y)-Izl ,/A K'+Y

 dH(z', x; K) = (1-eK/(l + y))(1 + y)2 A2 dz'dx,

 for z' (K) = KAY. Thus taking z* ?y 1/A(1 + y) -1K (so that z' ? q(K)), changing the variable
 of integration from z' to (1 + y)1K1 + Yz' 1/A, and solving,

 (1 -e K/(l+ ))[1 - e-xl /Az* (x1/Az* + 1)]Alx-(l+A)/A dX.

 This integral simplifies to

 1e-z* -y- 1/A e-z*yl/A

 1eK/(l + y)

 Taking the limit as K -> oo,

 H*(z*, y; K) H* ( z*, y)-1ez*yl/Ae-Z*YI/A
 for any 0 z* < oo and 1 <y < oo. The marginal distribution of the transformed state of the art

 Hj*(z*) is exponential, the marginal distribution of the inventive step H2*(y) is.Pareto, and the joint

 density is A-lyA - lz*e-z*y/A -h*(z* y)
 Three other expressions in equation (13) simplify if both K(t) and K(t + s) tend to infinity with

 their ratio fixed, i.e., fixing c(s) -= K(t + s)/K(t) as K(t) = K - oo. First,

 1 - P(z, c(s)K, K) = e (1 + y)1z1/l [(c(s)K)l+Y-K1+Yl =e-z*1c(s) +Y_1 ,

 for z ? q(c(s)K) = (c(s)K)AY. The latter condition holds with a probability approaching one since,
 as K approaches infinity, Pr(Z ? (c(s)K)Ay) = Pr(Z* < (1 + y)-1Kc(s)-Y) -* H*((l +
 Y)Y-Kc(s)-Y) = 1 - e(___)Kc(s) - 1. Second, applying Proposition 3.3 implies
 limK-<fj'Oy1 dG2(y;K)]=fj'y-dG2(y)W =(A). Third, from equation (4), equation (8), and
 Proposition 3.3 (again holding K(t + s)/K(t) c(s) fixed) limK MtW( + s)/W(t)] = c(s)A(l +

 Changing the variable of integration in equation (13) from z to z* (as defined above), using the
 simplifications above, and taking the limit as K(t) = K -o cc,

 (14) E(k(t); { a(-)}) = f f f ePs ) en[l + A(1 + y)](s+ In k(t+s)- In k(t))

 x - a(t +s) (1 y- 1)e-z*[e0(l +yXs+Ink(t+s)- Ink(t))_ llh* (z*, y) dz* dyds.
 k(t +s)

 Proof of Proposition 3.4

 The proposed equilibrium (k(t + s) = k*, a(t + s) = a* Is ? 0 must satisfy ar* = nk* and
 E(k*; { a}) = 1. Combining these conditions with equation (14),

 1=f f fe-Psc en[l + A(l + y)]s 1a* Y- 1)

 X e-z*[e (l +Y) lh* (z*, y) dz* dyds,

 where a* a a(k*). Changing the variable of integration from s to x = en(1 + y)c

 a f 0 00 y z r A r( -r* z*)h*(z* y)d d
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 1416 SAMUEL S. KORTUM

 where r* = ((p/n) - 1)/(1 + y) and T(a, w) f fwe-xxa-1 dx is the incomplete gamma function.
 Integrating over y,

 (15) 1= 1a* a ez* (z*)r*- F(A - r*, z*)[e-z* - (z* )A(l - A, z*)] dz*.

 Applying the identity, fowa- r(b, w) dw = r(a + b)/a,

 (1-- a*)(1 - OW, A))
 1=a*6(A)(1 + r*-A)

 where OWr*, A) (1 + r* - A)f wr *ew(A - r*, w)( - A, w) dw. Solving for a* = a*(r*, A) yields
 the expression given in Proposition 3.4.

 Holding a* fixed, the right side of equation (15) is decreasing in r* since (Z* )r* -AR(A - r*, z*)
 = fee-xx-1(x/z*)A-r dx is decreasing r* for any z* > 0. Similarly, (Z*)r* AR(A-r*,z*) is
 increasing in A as is -(z* )AT(1 - A, z*). Furthermore, since the distribution of the markup is
 stochastically increasing in A, it must be that 1/0(A) is increasing in A. Thus, a* is decreasing in r*
 and increasing in A.

 To check the local stability of the equilibrium, suppose that for any s 2 0: a(t + s) = a > a* if

 k(t + s) < k*, a(t + s) = a* if k(t + s) = k*, and a(t + s) = a2 < a* if k(t + s) > k. Given k(t)

 and this path of research intensity, k(t + s) = [k(t) - al/n]e-ns + a,/n for s < s* and k(t + s) = k*
 for s >s*, where s* = ln{(al/n - k(t))/(al/n - k* )}/n and i = 1 if k(t) <k*, i = 2 if k(t) > k*.
 The proposed path of research intensity {a(-)} is an equilibrium (given k(t) in a neighborhood of
 k*) if 8E(k(t);{ a( )})/dk(t)Ik(t)=k* < 0. If the inequality is strict, then a, = 1 and a2 = 0-

 Plugging the proposed paths for research intensity and the research stock relative to the labor

 force into equation 14, it can be shown that

 8E(k(t);{()}) [-| n(1 + y)A ]
 = - n I a*

 dk(t) k(t)=k* O(A)(1 + A) a* M a

 The derivative is weakly negative if p (n(1 + y)A)/(6(A)(1 + A)cx*), which is equivalent to the
 sufficient condition for local stability given in Proposition 3.4.

 Otherwise, either the equilibrium is not locally stable or else k(t) approaches k* only asymptoti-
 cally. Taking up the latter possibility, suppose a (t + s) = a* - b[k(t + s) - k*] for b > -n and all
 s ? 0. The solution to the resulting differential equation is k(s + t) = k* + e- (b + n)s[k(t) - k* ], given
 k(t). The proposed path of research intensity {a()} is an equilibrium locally (and hence the
 equilibrium in Proposition 3.4 is locally stable) if, starting from k(t) in a neighborhood of k*,

 dE(k(t);{a(-)})/9k(t)Ik(t)=k* = 0.
 Plugging the proposed paths for research intensity and the research stock relative to the labor

 force into equation 14, it can be shown that the derivative dE(k(t);{a()})/dk(t)Ik(t)=k* is a
 continuous function of b. If b= -n the derivative is negative and as b approaches infinity the
 derivative converges to a term with the same sign as

 B(A,r*, y)- [ -(1 + y r -r* + 1,x)T(1 + A,x)dx
 B(A,r ) 1 +r* -A + f exA

 1 + A(1 + y) 00

 - 1 +r* A +(1 +A(1+y))f xr ex(A-r*,x)T(1-A,x)dx.
 If B > O, then there must exist some intermediate value of b E (-n, oo) such that
 dE(k(t); {a()})/dk(t)Ik(t) k* = 0. Thus another sufficient condition for local stability is that the
 parameters satisfy B(A, r*, y) > 0 (a condition which can be checked numerically). Q.E.D.
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 TECHNOLOGICAL CHANGE 1417

 The Social Planner's Problem

 Consider a social planner with an objective function

 U(t) = fo e -s~X(t + s) ds,
 0

 which represents the aggregate of individuals' instantaneous utilities but discounted at rate p which

 may differ from p. The social planner determines only the fraction of labor services allocated to

 research, leaving other production and allocation decisions to the market. The social planner's

 objective function is simplified by representing it in terms of k = K/L and a = R/L while letting

 K(t) and L(t) tend to infinity. Applying equations (4) and (5) and Proposition 3.3 (while dropping an
 irrelevant constant),

 U(t) = f e-[ P-(1 + A(l + Y))nIsk(t + ) A(1+ )[l- (t + s)] ds.

 The social planner controls a (t + s), which determines the evolution of the state variable, k(t + s) =
 a (t + s) - nk(t + s). The current value Hamiltonian is

 H(t + s) = k(t + S)A(1+ y)[1 - a(t + s)] + A(t + s)[ a(t + s) - nk(t + s)],

 where A is the shadow price of k.

 For all s 2 0, the solution must satisfy

 8H(t + s)
 ke)= [ P -(1 + A(1 + y))n] A(t + s) -A(t + s),

 lid~ 1j( ( )flAt+sk(t + s) =0

 lH(t + s) kH(t + s)
 a(t+s)=O if <0, and a(t+s)=1 if >0.

 da(t + s) da(t + s)

 The transversality condition requires the parameter restriction, p > (1 + A(1 + y))n. The solution is
 a (t + s) = 1 for k(t + s) < k, a (t + s) = & for k(t + s) = k, and a (t + s) = 0 for k(t + s) > k for all
 s 2 0, where k = A(1 + y)/p and & = nA(1 + y)/p. After a period of transition (if k(t) 0 k) the
 solution displays constant research intensity of &. The social return to research in the market

 equilibrium is the value of p such that & = a*(r*, A). Q.E.D.
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