J. EDUCATIONAL COMPUTING RESEARCH, Vol. 7(1) 1-24, 1591

WHO IS LIKELY TO ACQUIRE
PROGRAMMING SKILLS?*

VALERIE J. SHUTE
Air Force Human Resources Laboratory

ABSTRACT

The purpose of this study was to investigate the relationship between
programming skill acquisition and various measures qf'lnd1v1<§lual differences,
including: 1) prior knowledge and general cognitive skills (e.g-, word
knowledge, information processing speed); 2) Rroblcm solving abilities (¢.g.,
ability to decompose a problem into its constituent parts); and 3) learning
style measures (e.g., asking for hints versus solving problems on one’s own).
Subjects (N = 260) received extensive Pascal programming instruction from
an intelligent tutoring system. Following instruction, an online battery of criterion
tests was administercd measuring programming knowledge and skills acquired
from the tutor. Results showed that a large amount (68%) of the outcome variance
could be predicted by a working-memory factor, specific word problem solving
abilities (i.., problem identification and sequencing of elements) and some leam£
ing style measures (i.c., asking for hints and running programs). Imp.hcahon; 0

the findings for the development of a theoretical framework on which to base

programming instruction are discussed.

What are the characteristics of individuals who acquire programr{]ing skill§ effi-
ciently and effectively? Can we successfully predict wh(? is more likely tq pick up
programming skills from a computer programming curriculum? Can we Improve
the design of effective computer programming curricula? Thc. rcsca'rch dxsgu;:}ed
~ in this article investigates the relationship between programming skill acquisition
and various measures of individual differences, including: 1) prior knowledge z?nd
cognitive skills (e.g., word knowledge, information processing speed); 2) s.pfcﬁ.itc
word problem solving abilities (€.8-, ability to decompose a problem into its

e Air Force Human Resources Laboratory,

*The rese in this article was conducted at th
arch reported in 1 is article are those of the author and do not

Brooks Air Force Base, Texas. The opinions expressed in th
necessarily reflect those of the Air Force.

© 1991, Baywood Publishing Co., Inc.

2 / SHUTE

constituent parts); and 3) learning style behaviors (e.g., asking for hints versus
solving problems on one’s own). Determining the correlated knowledge, skills,
abilities, and traits for computer programming may ultimately provide educators
with an explicit framework on which to base instruction.

Paralleling the prevalence of computers in our society (and the concurrent
importance of computer programmers), rescarch exploring underlying abilities of
computer programmers has recently flourished [1-7). While these studies differ on
many dimensions (e.g., cognitive ability being measured, programming language
being instructed/learned), three general problem-solving abilities have emerged as
potentially important to programming skill acquisition: understanding, method-
finding, and coding, Understanding is the identification of basic elements in a
problem. This involves determining properties and relations of problem elements,
establishing the initial and fina] problem states, and hypothesizing the operations
needed for achieving the problem solution. Method-finding involves decomposing
and sequencing problem elements into an outline of the problem solution. That is,
what are the relevant Operators or commands and how should they be arranged in
the solution of a programming problem? Coding is the process of translating the
natural language solution (from the previous stages) into programming code.
Although this model has not been extensively tested, various researchers have
found support for the abilities of understanding [2, 7], method-finding [2, 4, 5, 8,
9], and coding [2, 4] underlying programming skill acquisition.

¢ purpose of this study was to verify the existence and explicate the
nature of the relationship between specific problem-solving abilities and program-
ming skill acquisition from an intelligent tutoring system instructing Pascal
programming. In other words, could success in learning programming skills be
predicted from measures of specific problem-solving abilities (i.e., understanding,
method-finding, and coding) beyond individual differences accounted for by more
basic cognitive abilities?

The approach used to Study these relationships involved estimating prior
knowledge and skills from two sources. The first data source consisted of scores
on the Armed Services Vocational Aptitude Battery [10] covering a broad range
of knowledge and skills such as vocabulary knowledge and mathematical skills.
The second data source consisted of cognitive process measures obtained from
SCOTES on a battery of computerized tests developed in the Learning Abilities
Meas'u.rement Program (LAMP) at the Air Force Resources Laboratory [11]. The
cognitive te§ts used in this study gauged working-memory capacity and informa-
tion processing speed in each of three domains: quantitative, verbal and spatial.

Finally, an algebra word problem test battery was created [12] to estimate the
Specific problem-solving abilities, discussed above.! The statistical approach
Involved partialling out cognitive abilities from a learning outcome measure and

1
The second ability of method-findj Cy .
problem parts; and 2) sequ Inding was divided into two subcomponents: 1) decomposition of

encing parts into an outlined solution.

WHO IS LIKELY TO ACQUIRE PROGRAMMING SKILLS? / 3

testing if there was any remaining influence on outcome attributable to problem-
solving abilities. In other words, is there anything unique to the problem-solving
abilities (estimated from performance on an algebra word problems test) that can
predict who will succeed in learning to program a computer?

Another goal of this rescarch was to ascertain additional variables that may relate to
efficient and effective programming skill acquisition. Included in this category are
various learning style behaviors such as asking for hints from the system and actually
running programs which was possible during phases 2 and 3 of the tutor.

METHOD

Subjects

The subjects in this study consisted of 260 males and females participating ina
seven-day study on the acquisition of Pascal programming skills from an intel-
ligent tutoring system. The gender distribution in the sample was approximately
80 percent males and 20 percent females. All subjects were high school graduates
(or equivalent) with a mean age of 22.4. Subjects were recruited and selected frqm
San Antonio colleges and technical schools. None of the subjects had any pr_lor
Pascal programming experience. All subjects were paid for their participation

consisting of forty hours of testing and learning.

Materials
gent tutoring system (Pascal ITS) used in this

study was originally developed at the Learning Rescarch and Dcvclopmc.ant Cen-
ter, University of Pittsburgh [13] and extensively modified at the Air Force

Human Resources Laboratory. This system runs on a Xerox 1186 computer and
was designed to help non-programmers jearn how to program in Pascal.

The curriculum consisted of twenty-five programming problcr‘ns of increasing
difficulty. Initial problems involved simple write and read functions (€.g- Prob-
lem 2—Write a program that prints out your name and phone number). Inter-
mediate problems involved simple “for” or “while” !f)ops c.g P.roblem 13—
Write a program that asks the user if he or she would like to see a line of stars. If
so, print a line of stars. Continue the above until the user dges r‘z‘ot want to .?ficz stars
anymore). Later problems involved more complex “whlllc or “repeat until” 1oops
(e.g., Problem 25—Write a program that asks the user zf: he or she wants to square
an integer. If so, read in an integer, square it, and pnmf out the result. Ke.epha
running total of all the squares that are computed. Conu{:ue the above tfrztxl t el
user doesn’t want to square an integer any longer. Then print out the running fota

of all the squares). .
oblems in the tutor’s curriculum, there were three

For each of the twenty-five pr s . . .
learning phases. Each phase was designed to teach different skills associated with

The Pascal programming intelli

4 [SHUTE

aqe Advice trom Gworky (tm)

1n order to repestedly print a
line of stars the out put phrase
must be placed within the loop.

LELP Menu

{Hints

Done WithProgram
1l nstructions

‘IStart Over

o oo
3. 6 T A fl Problem . -
Write s program that asks the -
user if he o1 she would like to
seca line of stars. I s0. print a
] line ol stars, Continue the

- above until the user does not
] want to see stars.

8 Erielis!: step-by-step Solution {2 rpnseiiy

Continue steps . . .
Ask . . if he wanis 10 see a line of st}
Print . . .a line of slars

Unii the user's response is "'no’

: Continue steps . . .
E | j}ieep doing sieps . . .

Figure 1. Screen of the Pascal tutor with a Phase 1 solution.

programmin

(4] mming, In nhage 1
r-~o

cnthinnta had 4.+ ~
4 praion 4y JUUGACL 11dU 1O B 1

Ing. ¢ natural language solutions 0
programming problems. In phase 2, subjects expressed their phase 1 solutions in
the form of “programming plans” [14). These plans were then arranged into
flowcharts (connecting like jigsaw puzzle pieces) for each problem. In phase 3,
subjects translated their phase 2 visual solutions into Pascal code. Figures 1, 2, and
3 show t.he screen for the three phases in the solution of an intermediate problem
type. This problem (#13) involved printing or not printing stars, depending on the
qscr’s response. For any given problem, subjects were required to proceed sequen-
tially through the three phases. They could not go on to the next phase until they
had succeeded in the current phase, Subjects could take as long as they needed to

go throu gh_the entire curriculum. Up to thirty hours were allowed for interaction,
and no subject required additional time.2

2 .
The mean time spent on the tutor was 12.2 hours, with a 5.2 hour standard deviation. The

minimum time to complete the entire ITS was 2.8 h i i =
260). The data were normally distributed. ours and the maximum time was 29.2 houts (¥

WHO 1S LIKELY TO ACQUIRE PROGRAMMING SKILLS? /5

Break

New \;alur Controlled
Loop Plnnm

Ask User Plan
Atk FErInt

Plan to bet

Kegd o

un Program
{Start Phase 2 Oer

What should the operator

of the looptest be?

e e

Loop Test

. —
Cl EstwhenFaise Do trsioe o1LOOR

Output
Flan
Print

Continue sleps°
Ask ..l he wanis 10 see a ine of st
Print.... .a Ene of sters

Unfl the user’s response is 'no’

"l‘{lllleﬂi

o

Stotement

Figure 2. Screen of the Pascal tutor with a Phase 2 solution.

Subjects could ask for unlimited hints from the tutor and there were three levels
10 each hint, from more thought-provoking to mor¢ straightforward. Subjects were
also free to run their solutions in phases 2 and 3. In phase 2, running a “program”
would result in a dynamic flow of control as various plans (jigsaw puzzle pieces)
lit up as they became active oOf relevant. The same flow of control could be

witnessed in phase 3 where each line of code was highlighted as it became active.

A criterion posttest battery was created and administered online that tested the

breadth and depth of knowledge and skills acquired from the Pascal ITS. This
battery consisted of three tests, cach on¢ requiring progressively more complex

programming skills. The first test involved the detection of errors in simple Pascal

programs. Subjects were given a problem statement, presented with some Pascal
present, If an error was thought to be

code, and asked to determine if an error was)
present, they had to indicatc what type of error it was (¢.g., unnecessary 1inc,
misplaced line, missing line). Subjects then had to identify the part of the program
(the linc) which manifested the error. The second test involved decomposing and

6 / SHUTE

agee Advite fram Gworky

Congratulations?
Your program is
; Py corredt for Phase
New Vaiue Controlled 10
LoopPlan :)
Ask User Plan) : Click on
ALk JPr ANt N - . "
Plan 1o Got ‘mnf.}_ Done With Program
wew vatne — D00 vy 10 exit Bridge.
Read
1
Louop Test e]
New Value - Fascal Salotion
i [
|Ext whenFeize Do mrice ot Loon :
— 32 2 :

¥ Prompt . window

Figure 3. Screen of the Pascal tutor with a Phase 3 solution.

ordering Pascal commands into a problem solution. Here, subjects received a
problem statement, then a menu of possible commands (e.g., Readln, Write,
If..Then...). They selected and arranged the commands to solve the programming
problem in an adjacent window. For the third test, subjects generated and wrote
Pascal code from scratch in response {o programming problem statements. There
wer.e twelve problems per test, comparable to the problem types encountered
during the tutor. Subjects could take as long as they needed to complete the tests.
For each test, accuracies per problem as well as response latencies were automat-
ically tallied and recorded by the system.3

| thglflgualgc?bra word problems test battery [12] consisted of four tests measuring
| ’ owing specific .p’robl.em-solvmg abilities: 1) Problem type identification;
|) Problem decomposition into relevant arithmetic operators; 3) Sequencing of

3
Scoring of the thi i s]
reliability ws higfl (l:.n y t;g; (k. writing Pascal code) was done offine by two scorers, and interscorer

WHO IS LIKELY TO ACQUIRE PROGRAMMING SKILLS? / 7

the operators; and 4) Translation of verbal problem statements into algebraic
equations. The first test (problem identification or understanding), consisted of
twelve possible problem types: triangle, distance/rate/time, average, scale conver-
sion, ratio, interest, area, mixture, probability, number, work, and progressions.
Subjects initially read definitions of each problem type,,4 then for ensuing
problems, had to select the most appropriate classification. For the second and
third tests, algebra word problems were presented and the subject was
required to specify the arithmetic operators involved, and the proper order-
ing of those operators, respectively. The last test required translation of word
problems into mathematically correct equations. An example item from the trans-
lation test is: “Lester Lanning, a band leader, pays his drummer $500 for each
4-hour job. One month, the drummer worked 68 hours. How much did thg
drummer make?” (a) (68 +4) x 500; (b) (68 x 500); (c) (500/4) x 68;
(d) (4/68) + 500. , '
As stated eatlier, this test battery was created to map onto the proposed abilities
believed to be related to learning to program: understanding parallels problem
identification in that the goal of the understanding phase is to identify what type
of problem needs to be solved. Method-finding maps onto decomposing and
sequencing steps in a problem because it results in a program outline wherc': each
problem step is explicitly identified and placed in & particular order. Fmal.ly,
coding involves the translation of natural language solutions into programming
codes, comparable to the translation of arithmetic operators into an algct?ralc
equation. This paper and pencil test took approximately thirty minutes for subjects
to complete and consisted of ten problems pet section. .
The Armed Services Vocational Aptitude Battery (ASVAB) was included in
this study to see how incoming knowledge and skills related to the acquisition of
a new skill—Pascal programming. The 'ASVAB consists of ten separatc tests:

CGeanaral Qriansas Arithmetic Reasoniflg; word KnOWICdge’ Paragraph COITI-

Wiwllvial WwviviibAryy SRR ST = - o~ o
prehension, Numerical Operations, Coding Speed, Auto Shop, Mechanical Lom-
paper and pencil

prehension, Math Knowledge, and Electronics Information. This .

battery took 3.5 hours to complete and is used by the various armet'i services for
selection and classification of enlisted pcrsonncl. All subjects in this stud.y wcr.e
administered the ASVAB prior to the Pascal ITS. An cxan{ple test llem 1S
presented from the Word Knowledge test. This requires the examinee to chqosc an
alternative word whose meaning is most fike the meaning of a word underlined in

a phrase: “It was a small table.” () sturdy; (b) round; (¢) little; (d) cheap-

1 lem
4 Definitions of problem types were kept simple. For example, “A sca;;zk cof:rtv;:s;onafgolt; a6

consists of converting a quantity from one unit of measurement 10 another, like from 1¥

inches.”

. . ur alternatives
3 There are, of course, other representalions of this correct responsé. But of the fo i

just one is right. For this item, a correct alternative representation is: (68/4) x 500.

8 / SHUTE

The Learning Abilities Measurement Program (LAMP) at the Air Force
Human Resources Laboratory conducts basic research on individual differences in
cognitive abilities and skill acquisition. As part of this program, different com-
puterized tests, administered on Zenith 248 microcomputers, have been developed
during the past five years that measure the cognitive attributes of working-
memory capacity (WM) and information processing speed (PS) in each of three
different domains: quantitative, verbal, and spatial [15]. Working memory tests
require an individual to maintain some information in temporary storage while
simultancously processing new information. The degree to which individuals can
handle this dual tasking without becoming overloaded reflects their working-
memory capacity. Processing speed tests require an individual to answer various
items as quickly as possible without sacrificing accuracy. A test battery was
created [11] that consisted of three tests for each of the six categorics—WM and

PS in the verbal, quantitative and spatial domains (18 tests in all). Also included in

nroladan Y-S H 1 o
the battery were several measures of general knowledge (see Appendix 1 for

descriptions of all tests in this battery).

Learning behaviors (or indicators) were extracted from each student’s history
list. This extensive list represents all actions taken during tutor involvement.
Sixty-six learning behaviors were tallied by the computer for each of the twenty-
five problems, for each phase. Indicators were summed at the end of the tutor for
total count measures, and slopes were derived across the twenty-five problems
showing changes in behaviors over time. There are two parts to interpreting slope
measures: 1) the size of the slope, and 2) the direction of the sign. Larger slopes
imply more change from beginning to end of the tutor while smaller (or flat)
slopes imply less (or no) change. Negative slopes imply a reduction in some
behavior while positive slopes imply an increase in a behavior over time.

The learning behaviors investigated in this article included: Total number of
hints requested (Hints), the slope of hints requested (Slope-Hints), number of
times a program was run (Runs), and the slope of runs (Slope-Runs). These
measures were selected as being representative of volitional types of behaviors
(i.e., those actions under the learner’s control). Preliminary findings have sug-

gested that the hint-asking indicator is a potent predictor of Pascal programming
skill acquisition [16].

Procedure

Subjects were tested in groups of approximately fourteen persons, and there
were twenty groups tested all together. Each group spent seven days (nearly six
hours: per day) in this study. Subjects began the study being tested on the basic
cognitive process measures. Over successive days, they were administered the

ASVAB, followed by the algebra word problems test battery, the ITS (up to 30
hours), and the criterion test battery.

WHO IS LIKELY TO ACQUIRE PROGRAMMING SKILLS? / 9

RESULTS

The data were analyzed in two ways. First, t0 reduce the number of incoming
knowledge and skill measures, I computed a factor analysis combining ASVAB
and LAMP test data. Second, to test incremental predictive validities of the
various sets of measures, hierarchical regression analyses were computed. The
three sets of measures that were tested included: 1) incoming knowledge and skills
factors derived from the factor analysis; 2) specific problem-solving ability
measures from scores on the algebra word problems tests; and 3) particular learn-
ing behaviors, obtained from the student history lists.

Results from the factor analysis (principal axis factoring with varimax rotation)
yielded five factors accounting for 57 percent of the variance. Following are the
interpretations of each factor: Factor 1 (Working Memory); Factor 2 (General
Knowledge); Factor 3 (Information Processing Speed); Factor 4 (Technical
Knowledge); and Factor 5 (Perceptual Speed). Descriptive statistics for each one
of the ASVAB and LAMP tests are presented in Table 1. Factor loadings for each
test can be seen in Table 2.

Hierarchical regression analyses were computed testing incremental validities
predicting overall learning outcome from the Pascal ITS. The learning critcrion
measure was the average score from the three criterion tests.

The first set of measures to be entered into the equation predicting programming
skill acquisition were the five factor scores measuring incoming knowledge and skills:
Working memory, general knowledge, information processing speed, technical
knowledge, and perceptual speed. These were entered first as they represent more
fundamental cognitive abilities [17-20]. The theoretical framework supporting this
position was derived from the organization of aptitudes outlined by Cattell [21].

All five factors were entered into the equation. After backwards elimination,
only Factor 5 (perceptual speed) dropped out. The four remaining knowledge and
skills factors (i.c., working memory, general knowledge, information processing
speed, and technical knowledge) accounted for 50 percent of the learning outcome
variance (Multiple R = .71). Keeping those four variables in the equation, the
measures of problem-solving ability were added next. Backwards qllimination of
this set of variables resulted in decomposition being removed first’ followed by
translation. So, by step two, the equation contained the four cognitive factors plus
two problem-solving abilities—understanding (or problem identification) and
sequencing (Multiple R = .75). The two problem-solving abilities contribu_tcd an
additional 7 percent (o the prediction of learning outcome, a sigm_ﬁcant
increase (p < .001) beyond the first set of factors. Finally, the third set of variables

r each of the three tests. Results showed no major

6 .
Separate regression analyses were computed fo
parison with the overall measure, so the overall

differences in predictors for individual tests in com
outcome measure is reported.

7 The removal of the decomposition skills variable was due to its very high (r =
sequencing, thus not contributing any new variance to the equation.

90) correlation to

- - sets was significant (p < .001),

10 / SHUTE

Table 1. Descriptive Statistics for ASVAB and LAMP Tests (N = 260)

Variable M SD Minimum Maximum
Arithmetic reasoning (ASVAB) 5214 919 30.00 66.00
Math knowledge (ASVAB) 5253 898 33.00 68.00
Word knowledge (ASVAB) 53.00 698 26.00 61.00
Paragraph comprehension (ASVAB) 52.46 7.53 29.00 62.00
Mechanical comprehension (ASVAB) 52.95 9.86 24.00 70.00
Electronic information (ASVAB) 5293 9.16 30.00 70.00
Auto shop (ASVAB) 53.06 894 24.00 69.00
General science (ASVAB) 52.83 8.81 30.00 68.00
Numerical operations (ASVAB) 5279 8.40 24.00 62.00
Coding speed (ASVAB) 9205 7.96 27.00 72.00
Working Memory
ABC recall (LAMP) 46.11 26.14 0.00 100.00
Mental math (LAMP) 4760 2547 0.00 100.00
Slots test (LAMP) 60.20 19.01 0.00 95.00
Word span (LAMP) 59.82 26.24 0.00 100.00
Reading span (LAMP) 6221 24.02 0.00 100.00
ABCD test (LAMP) 37.09 2495 0.00 93.33
Spatial visualization (LAMP) 2939 2065 0.00 100.00
Figure synthesis (LAMP) 76.12 10.87 41.67 94.44
Ichikawa (LAMP) 7350 920 34.44 95.56
Information Processing Speed
Number fact reduction (LAMP) 375 1.50 0.28 8.00
Odd-Even test (LAMP) 135 0.41 0.19 3.58
Larger-Smaller test (LAMP) 054 0.12 0.37 1.72
Meaning identity (LAMP) 128 0.0 0.77 3.31
Semantic relations (LAMP) 186 045 0.22 3.22
Category identification (LAMP) 113 0.30 0.27 2.96
String matching (LAMP) 138 035 0.25 2.55
Santa’s figures (LAMP) 088 0.23 0.45 1.97
Palmer’s figures (LAMP) 1.22 0.31 0.29 2.87
General Knowledge
General knowledge survey (LAMP) 60.87 20.09 0.00 98.00
Meaning identity (LAMP) 9378 555 60.42 100.00

Note: Means with single digits

N refer to latency scores (in seconds) while means with double
digits refer to the percent correct

and associated slope measures were added to the equation. These included hints,
slope-hints, runs, and slope-runs. All four learning style variables remained in the
eql.Jation following backwards elimination (Multiple R = .82). The amount of
unique variance (11%) accounted for by these new variables beyond the other two

WHO IS LIKELY TO ACQUIRE PROGRAMMING SKILLS? / 11

Table 2. Five Factor Solution from Principal Axis Factor
'Extraction with Varimax Rotation

Factor Factor Factor Factor Factor

Variable 1 2 3 4 5

ABC recall .81 A3 -16 18 14
Arithmetic reasoning .66 32 =14 37 22
Math knowledge .64 20 -.18 .38 26
Mental math .63 14 09 10 18
Figure synthesis .63 Jo0 -02 20 A2
Reading span .56 22 -13 - .00 15
Slots test .56 22 =15 A1 .42
Spatial visualization .55 23 -13 A1 .04
Word span .55 4 =17 23 25
Ichikawa 54 00 -20 A2 A1
ABCD test .52 32 12 .25 04
Word knowledge 32 72 -1 36 03
Meaning identity (latency) -13 -68 44 12 =20
General knowledge survey .39 65 -23 33 -03
Paragraph comprehension 32 61 -0 .30 21
Meaning identity (percent correct) 31 .59 .08 A3 1
Semantic relations (latency) 05 =50 A4 =05 12
String matching -08 -03 71 -00 -08
Number fact reduction =32 -14 61 -03 -4
Odd-Even test -18 -16 60 -—-13 -08
Santa’s figures -03 A2 .58 .06 .08
Palmer’s figures -19 =12 57 10 06
Larger-Smaller test -21 -18 53 -13 -21
Category identification 03 -43 52 08 -13
Auto shop .08 A7 .03 .76 .09

41 15 =16 74 .02

Mechanical comprehension

Electronic information .30 22 -.08 73 10

48 18 58 -10

General science .38
Numerical operations .36 04 ~-20 .02 63
Coding speed 32 15 16 07 .60

riterion variance (68%) was accounted for by

In summary, a large amount of ¢ ; o
three sets of variables: incoming knowledge and skills, problem-solving abilities,

and learning behaviors. Table 3 shows the final solution. _ o
The WM factor was the best predictor of Pascal programming skill acquisition.

With all of the other variables in the equation, this was the only one of the origi_nal
cognitive factors that remained significant. The algebra word problem solving

12 / SHUTE

Table 3. Hierarchical Regression Solution Predicting Overall Learning Outcome
(Multiple R = .82)

Variable Beta T Significance
Knowledge and Skills
Working memory factor 0.26 5.00 0.001
General knowledge factor 0.06 1.31 0.191
Processing speed factor -0.06 -1.15 0.149
Technical skills factor 0.04 0.81 0.418
Problem Solving Abilities
Problem identification 0.12 2.55 0.011
Sequencing 0.18 3.33 0.001
Learning Behaviors
Hints -0.23 -2.70 0.007
Slope-hints -0.18 -2.09 0.038
Runs 0.07 1.77 0.078
Slope-runs 0.09 2.21 0.028

abilities of identifying problems and sequencing solutions were also important predic-
tors of programming skill acquisition. Both of these variables showed positive
relationships to learning outcome. And of the learning behaviors, asking for hints from
the system was associated with si gnificantly lower outcome scores [16] while running
PIOgrams was a productive behavior (but only marginally significant). The slope
Mmeasures remained in the equation along with the total count measures. For slope-
hints, the more negative slopes (i.e., progressively fewer hints requested over time)

predicted learning outcome. But for slope-runs, the more positive slopes (i.e., progres-

sively more programs run over time) predicted learning outcome.

' From the results above, a logical conclusion would be that hint-asking, overall,
18 a suboptimal behavior. This is particularly disturbing since one of the main
features of intelligent tutoring systems is their ability to provide assistance
to learners. The last analysis examined hint-asking behavior more closely, 10
disambiguate hint-users from hint-abusers, That is, some individuals may have
requested a lot of hints becauge they really needed help. Others may have asked
for hints due to a Particular learning style. Additionally, some individuals
who af:tually needed help may not have asked for it, resulting in “floundering”
Pehav:lors, Wwhile others may not have asked for hints because they were proceed-
Ing satisfactorily. Table 4 sums up these four hypothetical categories of subjects.

WHO IS LIKELY TO ACQUIRE PROGRAMMING SKILLS? / 13

Table 4. Four Hypothetical Subject Categories

Expected
Errors Hints ' Outcome Category
Few Few High Productive
Few Many Low Hint-abusers
Many Few Low Counter-productive
Many Many High Hint-users

Table 5. Regression Solution Predicting Overall Learning Outcome

(Multiple A = .84)

Variable B T Significance
Hints 2.87 1.19 0.237
Errors -22.51 -9.58 0.001
Hints x Errors 5.84 7.87 0.001

This categorization of subject types was based on a rational analysis of needs. If
a subject does not make errors, he or she has little need for hints, but if a subject
makes a lot of errors, then there is a clear need for assistance. To test the main
effects of hints and errors on learning outcome (and particularly the interaction
between them), a regression analysis was computed. The solution is presented in
Table 5. Results indicated that the main effect of errors was significant as well as
the interaction between hints and errors (Multiple R = .84). The main effect of
hints on learning outcome was not significant.

To illustrate this interaction, rather than present scatterplots of the data, I
computed median splits for the main effects. This resulted in fgu{_ grogps of
subjects. Figure 4 represents these data. The four groups included: 1) kew LITOIS,
Few Hints (N = 115), 2) Few Errors, Many Hints (¥ = 13),93) Many Errors, Few
Hints (¥ = 11), and 4) Many Errors, Many Hints (¥ = 103).

The disordinal interaction depicted in Figure 4 supports the conclusior.l that
hints are differentially good/bad for different individuals. For individuals in the
“few errors” group, learning outcome was significantly higher (F1,126 = 18.29; p
< .001) if they worked out solutions on their own (i.e., asked for fewcr-hm.ts.) than
if they relied on the system for help (i.e., asked for many hints). But for mdmc!uals
in the “many errors” group, just the opposite was true: more hints were associated

with higher outcome scores (Fi,112 = 3.61; p = .06).

? There is an unequal number of subjects in each cell since 1) hints and errors are correla;ed and
2) some of the cells are more/less typical than others. For example, only eleven subj_ects (;()rnprllsc=,dmtl1et
“Many Errors, Few Hints” group. Most individuals making a lot.of errors request hints. Note also tha
the significant interaction reported in the text was based on continuous data. When the regression was
recomputed with the category data, the interaction remained significant.

14 / SHUTE

OVERALL OUTCOME
| {PERCENT CORRECT)

75

70l FEWHINTS g

8

| ea L MANY HINTS @—_
‘ S [~

i 45 | °

I

40 |

| |=t °

4

! FEW MANY
¥

AMOUNT OF ERRORS

Figure 4, Interaction bétween Hints and Errors,

| DISCUSSION

The question asked at the beginning of this article concerned the characteristics
of individuals who successfully acquired programming skills. This issue was
addressed in terms of the knowledge, skills, abilities and traits tested in this study.
The literature on individual differences in skill acquisition is replete with studies
showing that people acquire a new skill because of their incoming knowledge and
cognitive skills [12, 19, 20, 22). But there is much less in the individual differen-
ces literature concerning the role of problem-solving abilities and stylistic
reasures on new learning. The main research question in this article was: Once

WHO IS LIKELY TO ACQUIRE PROGRAMMING SKILLS? [15

the weighty influences of incoming knowledge and skills have been controlled, do
problem-solving abilities or stylistic variables contribute anything new in predict-
ing learning outcome? The appeal of investigating specific abilities is that they
can be instructed and learned while more basic cognitive skills are less subject to
change [23, 24].

' First, it was shown that individuals with higher scores on the working memory
factor evidenced higher scores on the criterion test battery. Working memory has
been shown to predict both declarative learning and procedural learning [25]. The
Pascal ITS used in this study involved both kinds of learning. Also, working
memory has been shown to correlate very highly with general reasoning abilities
[26] which has been shown to correlate highly with general intelligence [20]. So
these results were not at all surprising and replicated others’ findings on working
memory and cognitive skill acquisition. The more fundamental question about the

exact facets of working memory that cause improved learning goes beyond the
“““““ 0 w learning does appear to be mediated by working-

scope of this article. But new learning docs ap
memory capacity.

Next, problem-solving abilitics were estimated from scores on an algebra word
problems test battery. Those measures were then used as predictors of program-
ming skill acquisition after incoming knowledge and skills factors were entered
into the equation. Results indicated that there was additional, unique variance
accounted for by two of the problem-solving abilities. The two major points of
interest here are that certain skills measured in one domain (algebra) pre_dicted
skill acquisition in another domain (computer programming). This kind of transfer
of skills from one area to another is not often reported in the literature. Second,
two problem-solving abilities (problem identification and sequencing) sig.n?ﬁ-
cantly predicted programming-skill acquisition after the effects of the cognitive

factors were controlled. Translation and decomposition abilities did not predict
learning outcome. Because sequencing and decomposition skills were highly

lvuu.u.us U‘LII,\JU.IJJU. AFveiliudw W b ottt

correlated (r = .90), decomposition dropped out of the final equation as %t was
virtually indistinguishable from sequencing. The most probable explanation of
why translation was not included in the final equation is that in this sample 'of
non-programmers, the most difficult hurdle for most of them had to do with
formulating and organizing an outline solution for a given pro.blcx?l..Once that
structure was established (i.e., sequenced appropriately), translating 1t into Pascal
code was relatively easy, especially in conjunction with the tutor’s support. The
pedagogical approach taken by the ITS emphasized the hi ghe{, conccptu,z,il level of
programming (i.c., organizing a solution using programming “plan§ or con-
structs) more than the lower level, syntactical aspects of Pascal coding. Th}xs,
these findings based on the relative importance of the apilitics of understandfng
and sequencing are not surprising in light of the design and implementation

of the ITS.

All four of the learning style measures pred
this tells us is that there are certain behaviors W

icted the learning criterion. What
hich seem to be more efficacious

16 / SHUTE

during learning a new skill than others. A particular learning style indicator,
hint-asking, showed a significant and strong negative correlation with learning
outcome (r = —.64). The obvious (but misleading) conclusion is that problem
solving on one’s own without excessive assistance from a tutor leads to better
learning outcome. It was later shown that this statement is only true for a certain
class of individuals (i.c., those making few errors). For others (i.e., those making
more errors), it was better to seek tutorial assistance. Furthermore, hint-slope data
showed that if one had to ask for hints, it was better to get assistance early in the
tutor and try to avoid relying on help during the later stages of learning.

The four hypothetical subject categorics and expected outcomes were thus
supported by the data. Some people asked for hints due to their learning style
(“hint-abusers™). Others asked for hints because they were having problems
(“hint-users”). For the persons not using the hint option, those making few errors

did not really need help, but there were some individuals who, for whatever

nnnnn o~ P H e s rean dlen
reasons, chose not to get help from the system. This group did worse on the

outcome measure than any other category of subjects.

The overall picture that emerges from these findings is that success in learning
programming skills from the Pascal ITS used in this study can be predicted by
working-memory capacity, good problem-solving abilities, and being an active
leafner (i.c., running programs, working out solutions on one’s own, or seeking
assistance when appropriate). It is important to keep in mind, though, that these
results are mediated by the interaction involving leamning environment, learner
behfaviors, and learning outcome measures employed in this study. The ITS
cnvironment differed between persons as a result of learners’ activities. That is, if
a person proceeded through the tutor by repeatedly asking for hints (whether help
was really needed or not), then the environment was more structured or didactic.

But for individuals relying on their own problem-solving abilities, the environ-

;)ne;nt .wasmliss_lsltructurcd, eliciting more trial-and-error types of learning
aviors. 1lustrate

d in Figure 4 by the disordinal interaction, some environ-
meqts are better suited for some individuals than others. The more didactic
environment resulting from many hints being requested is better for those commit-
ting many errors, while the more trial-and-error environment resulting from mini-
mal hints is better for subjects making fewer errors during learning.

What are the implications of these findings for programming teachers and ITS
developers? Since certain problem-solving abilities, as outlined and tested in this
study, are highly correlated with successfu] acquisition of programming
sk111§, and since these same abilities are trainable [23}, computer programming
curricula may benefit from the inclusion of supplemental instruction on relevant
problem-solving skills (e. 8-, part-task training of sequencing skills).

Imensions: i i i i
learning styles. learning environment, learning outcome, subject matter, and

WHO IS LIKELY TO ACQUIRE PROGRAMMING SKILLS? / 17

Information about an individual’s cognitive process measures may also be used
to vary instruction in a principled manner, such as teaching smaller chunks of
relevant knowledge for those with lower WM capacity. In other words, since WM
capacity was shown to be an important predictor of programming skill acquisition,
and the functional size of an individual’s working memory cannot be directly
manipulated, instruction may be varied based on differing units of knowledge for
those individuals judged (by simple testing) to have smaller WM capacities.

Furthermore, if a person is making more than the usual number of errors
during learning, he or she could be encouraged to get help from the system, or the
system could give help, unsolicited. If a person is judged to be making less than
the average number of errors, the system could either impose a limitation on the
number of hints a person may receive, or reinforce an individual’s independence
in the learning process, especially in the latter stages of learning.

In conclusion, a large amount of the criterion variance (68%) can be explained
by just a few variables. This information can be used to enhance instruction,
focusing on those variables impacting programming skills acquisition, or we can
use the findings to predict who will acquire good programming skills for selection
and classification purposes. If the designated variables can be instructed and/or
trained, we can maximize instruction for more individuals, which is the purpose of
ITS’s, in particular, and education, in general. For purposes of selection and
classification, our findings highlight the variables that allow us to predict who is
likely to acquire programming skills.

APPENDIX 1: BATTERY OF CAM TESTS—VERSION 1.0
I. WORKING MEMORY (Percent correct)

A. Quantitative

ABC Recall: Subjects must learn and remember numeric values assigned to the
letters A, B, and C. Statements (.8, A = B/2) arc presented one at a time, and
subjects are permitted to look at each one for as long as desired before going on 10
the next statement. They are then asked to recall the values of the letiers one ata
time. Some of the problems ar¢ morc difficult than others since values must bc
computed (e.g., A = 2 x 8 or, A =16). Still other values cannot be computed until
the value of another letter is known (¢.g., B=A +4). Even-odd reliability = .95.

Mental Math: This task requires subjects to calculate a subtraction or division
problem mentally, and then choose the correct answer from 5 altcmatllves. A
problem appears on the screen for 2 seconds (preceded by 2 warning asterisk) and

This error count can be made by the TTS, maintained and monitored in a history list, If the number

of errors exceeds some threshold value,
requested.

that could invoke some tutoring, even if mot explicitly

18 / SHUTE

then disappears. Subjects mentally solve the problem for as long as they vyish.
When they have the answer, they hit the space bar to see the five alternatives,

They have 4 seconds to type in the number of the correct answer. Even-odd
reliability = .88.

Slots Test: This test presents simple math equations (e.g., 5 + 2') in five sequen-
tial positions on the screen. Subjects must calculate the eqpatlons as they are
presented and remember the answer for each position. Fo!lf)wm g the presentation
of all equations, a question mark appears in one of the positions, and subject.s mus;
type in the corresponding answer. The five positions are mar!ced by honzqnta
lines, one next to the other. Problems are presented from left to right, one ata t}me.
Two rates of presentation exist (i.e., slow and fast) and before each trial, subjects
are warned to get ready for cither a slow or fast item. Each problem presents
between 1 and 10 math equations. In the more difficult items, new math Rroblems
may be presented in a slot where a problem was already presented. Subjects are

""""" J P
required to remember the most recent answer. Even-odd reliability = .91.

B. Verbal

ABCD Test: Subjects are Presented with five general rules:

Rule 1-—Set 1= A and B,
Rule2—Set 2 = Cand D,
Rule 3—Set 1 can either precede or follow Set 2.
Rule 4—A can either precede or follow B.
Rule 5—C can either precede or follow D.

Each problem consists of three instructions presented one at a time concerning
Sets 1 and 2. For examnla-

cxample: 1) A precedes B. 2) Set 1 follows Set 2. 3) C precedes
D. Each instruction js Presented one at a time, and subjects may look at each one

answers. They then choose the
Even-odd reliability = .81.

Word Span Test: Subjects are required to memorize a short list of words and
answer questions about them, A “Get Ready!1” warning precedes the words,
which are presented one at a time. The questions are asked in an equation-like

format. For ¢xample, if the list were ‘neat, burp, inn’, a possible question is ’neat
+1 =7, Thi i

WHO IS LIKELY TO ACQUIRE PROGRAMMING SKILLS? / 19

told how many questions they had correct for that word list. ‘Even-odd
reliability = .93.

Reading Span: This task tests subjects’ ability to classify true/false state-
ments and their short-term memory capacity. Subjects are presented a list of
sentences of general knowledge which they must determine to be true/like
(L) or false/different ("D’). Concurrently, they must memorize the last word in
each sentence (this word is highlighted a different color from the other words).
Sentences are presented one at a time, after which they are asked to type in the first
two letters of each word in the order that they appeared. Subjects receive partial
credit if the correct letters are typed in, but in the wrong sequence. Even-odd
reliability = .93.

C. Spatial

Figure Synthesis: Two geometric figures are presented for subjects who are
instructed to imagine the shape if the pieces were rearranged to form one figure.
These figures are then replaced by a third figure. The subject must determine
whether or not the third figure could be formed from the combined figures.
Reaction time is presented when subjects give the correct response. Even-odd

reliability = .65.

Spatial Visualization: This task requires 3-dimensional visualization. Subjects
read descriptions of blocks and visualize how they appear before and after various
manipulations (e.g., colors, initial size, ensuing size, number of blocks it may be
cut into, etc.). The subject is allowed to study the description for 30 seconds before
the first question is asked (although the description remains on the screen

throughout the problem). Subjects work the problems mentally and then choose
ane of tha multinla chnice ancwers neing the letters A through O. SUbjeCts arc

Wilw U1 W .u.lullll.ll\l WAIUINAY QIS YY Wwad wwraas v ablibCo £ RMAAVES

given 60 seconds to respond, at which time they are told to enter their response
(within another 10 seconds). If no response is entered during that time, the item %s
counted wrong. For each description, three or more questions may be asked in this
multiple choice format. Even-odd reliability = .84.

Ichikawa: This test presents a 5 x 5 matrix of squares containing 7 asterisks.
The placement of the asterisks is random. Subjects see a warning asterisk, the
matrix filled with asterisks, and then a blank matrix with a question mark in one of
the squares. Subjects are to determine whether or not an astcrisk. was in that
square, and respond with °L’ (correct) or "D’ (not correct). Subjects haw? 3
seconds to respond, and then a new blank matrix appears with another qucs'uon
mark in it. For each matrix, three positions arc questioned. The computcr.prowdcs
accuracy feedback. Subjects are allowed to study the initial matrix for 2
seconds, followed by a 1 second delay before questions are asked. Even-odd

reliability = .73,

22 | SHUTE

answer (¢.g., 'TE’ for Texas). The computer responds with ’correct’ or *wrong’,
Even-odd reliability = .93,

Meaning Identity: Two words are presented and the subject must d?cid.e
whether they have the same or different meanings. Subjects are to type in *L’ if

they have the same meaning, and *D’ if they have different meanings. Even-odd
reliability = .80.

Semantic Relations Verification Test: Subjects must determine whether or not
simple sentences are true (CL’) or false ("D’) (e.g., "Theft is a crime’ would be a
true sentence). The computer responds with whether or not the subject made the

correct response, and the reaction time if the response is correct. Even-odd
reliability = .84,

ACKNOWLEDGMENTS

I wish to sincerely thank Lisa Gawlick, Roy Chollman, Carmen Pena, Elena
Selles and Rich Walker for help in data collection. T am very much indebted to
Dan Woltz, Pat Kyllonen, Wes Regian, Ray Christal and Bill Tirre for their help
and insightful suggestions during the conduct of this research. Finally, I would

like to acknowledge the creative and industrious programmers who worked on this
project: Tony Beauregard and Kym Costa,

REFERENCES

. B. Adelson and E. Soloway, Methodology Revisited: The Cognitive Underpinnings of
Programmers’ Behavior, in Human-Computer Interaction, G. Salvendy (ed.), Elsevier,

Amsterdam, pp. 181-184, 1984.]

2. R. Brooks, Toward a Theory of the Cognitive Process in Computer Programming,
International Journal of Man-Machine Studies, 9, pp. 737-751, 1977.

3. J.L. Dyck and A, P. Trent, Learning 1o Program in LOGO as a Function of Instruc-

tional Method and Cognitive Ability, Paper presented at the AERA, Boston,
Massachusetts, April 1990,

4. R.E. Mayer, I. L. Dyck, and W. Vilberg, Learning to Program and Learning to Think:
What’s the Connection?, Communication

s of the ACM, 29:7, pp. 605-610, 1986. '
5. M.C.Penaand W, C. Tirre, Cognitive Correlates of the Early Stages of Programming
Skill Acquisition, Paper presented at the AERA, Boston, Massachusetts, April 1990.
6. R. T. Redmond and J. B, Gasen, PAST: Viewing the Programming Process, Behavior
Research Methods, Instruments, and Computers, 20:5, pp. 503-507, 1988.
» Access and Use of Previous Solutions in a Problem

Solving Situation, Technical Report 29, Cognitive Science Laboratory, Princeton
University, Princeton, New Jersey, June 1988.

[y

10.

11.

12.

13.

14,

15.

16.

17.

18.
19.

20.

21.

22,

23.

24.

25.

WHO IS LIKELY TO ACQUIRE PROGRAMMING SKILLS? / 23

R. E. Snow, Aptitude Processes, in Aptitude, Learning and Instruction, Vol. 1, R. E.
Snow, P. A. Federico, and W. E. Montague (eds.), Lawrence Erlbaum Associates,
Hillsdale, New Jersey, pp. 27-63, 1980.

K. Swan and J. B. Black, The Cross-Contextual Transfer of Problem Solving Skills,
Technical Report, Teachers College, Columbia University, New York, 1987. '
Department of Defense, Test Manual for the Armed Services Vocational Aptitude
Battery (DoD, 1340.12AA), U.S. Military Entrance Processing Command, North
Chicago, Illinois, 1984.

P. C. Kyllonen and R. E. Christal, Cognitive Abilities Measurement Battery, Version 1,
unpublished manuscript and computer program, 1990.

M. C. Pena, Cognitive Determinants of the Early Stages of Programming Skill
Acquisition, unpublished Master’s thesis, St. Mary’s University, San Antonio, Texas,
1989.

J. G. Bonar, R, Cunningham, P. Beatty, and W. Weil, Bridge: Intelligent Tutoring with
Intermediate Representations, Technical Report, LRDC, University of Pittsburgh,
Pittsburgh, 1988. '

E. Soloway, J. G. Bonar, and K. Ehrlich, Cognitive Strategies and Looping Construc-
tions: An Empirical Study, Communications of the Association for Computing
Machinery, 26, pp. 853-861, November 1983. :

P. C. Kyllonen and R. E. Christal, Cognitive Modeling and Learning Abilities: A
Status Report of LAMP, in Testing: Theoretical and Applied Issues, R. Dillon and
J. W. Pellegrino (eds.), Freeman, San Francisco, 1989. ‘

V. 1. Shute, D. J. Woltz, and J. W. Regian, An Investigation of Learner Differences in
an ITS Environment: There’s No Such Thing as a Free Lunch, in Artificial Intelligence
and Education, D. Bierman, J. Breuker, and J. Sandberg (eds.), I0S, Amsterdam,
pp- 260-266, 1989.

J. R. Anderson, Skill Acquisition: Compilation of Weak-Method Problem Solutions,
Psychological Review, 94, pp. 192-210, 1987.

A. Baddeley, Working Memory, Clarendon Press, Oxford, 1986.

D. I. Woltz, An Investigation of the Role of Working Memory in Procedural Skill
Acquisition, Journal of Experimental Psychology: General, 117, pp. 319-331, 1988.
P. L. Ackerman, Determinants of Individual Differences during Skill Acquisition:
Cognitive Abilities and Information Processing Perspectives, Journal of Experimental
Psychology: General, 117, pp. 288-318, 1988.

R. B. Cattell, Abilities: Their Structure, Growth, and Action, Houghton-Mifflin,
Boston, 1971. .

P. C. Kyllonen and D. J. Woltz, Role of Cognitive Factors in the Acquisition of
Cognitive Skill, in Abilities, Motivation, and Methodology, R. Kanfer, P. L. Ackerman,
and R. Cudeck (eds.), Lawrence Frlbaum Associates, Hillsdale, New Jersey, pp. 239-

280, 1989,
1. D. Bransford and B. S. Stein, The IDEAL Problem Solver, W. H. Freeman, New

York, 1984. . .
V. J. Shute and R. Glaser, A Large-scale Evaluation of an Intelligent Discovery World:

Smithtown, Interactive Learning Environments, 1, pp. 51-76, 199.0. ’
P. C. Kyllonen and D. Stephens, Cognitive Abilities as Determinants of Success in

Acquiring Logic Skill, Learning and Individual Differences, in press.

24 | SHUTE

26. P. C. Kyllonen and R. E. Christal, Reasoning Ability Is (Little More Than) Working-
Memory Capacity, Intelligence, in press.
27. P. C. Kyllonen and V. J. Shute, A Taxonomy of Leaming Skills, in Learning and

Individual Differences, P. L. Ackerman, R. J. Stcrnberg, and R. Glaser (cds.), W. H.
Freeman, New York, pp. 117-163, 1989.

Direct reprint requests to:

Dr. Valeric J. Shute
Air Force Human Resources Laboratory

Cognitive Skiiis Assessment Branch
Brooks Air Force Base, TX 78235

