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ABSTRACT

Security of monolithic kernels, and even microkernels, relies on a large and complex

body of code (including both software and hardware components) being entirely

bug-free. Most contemporary operating systems can be completely compromised

by a bug anywhere in this codebase, from the network stack to the CPU pipeline’s

handling of privilege levels, regardless of whether a particular application uses that

feature or not. Even formally verified software is vulnerable to failure when the

hardware, or the hardware-software interface, has not been verified.

This thesis describes Antikernel, a novel operating system architecture consist-

ing of both hardware and software components and designed to be fundamentally

more secure than the existing state of the art. In order to make formal verifica-

tion easier, and improve parallelism, the Antikernel system is highly modular and

consists of many independent hardware state machines (one or more of which may

be a general-purpose CPU running application or systems software) connected by a

packet-switched network-on-chip (NoC).

The Antikernel architecture is unique in that there is no “all-powerful” software

which has the ability to read or modify arbitrary data on the system, gain low-level

control of the hardware, etc. All software is unprivileged; the concept of “root” or

“kernel mode” simply does not exist so there is no possibility of malicious software

achieving such capabilities.

The prototype Antikernel system was written in a mixture of Verilog, C, and

MIPS assembly language for the actual operating system, plus a large body of C++

in debug/support tools which are used for development but do not actually run on

the target system. The prototype was verified with a combination of simulation

(Xilinx ISim), formal model checking (using the MiniSAT solver integrated with

yosys), and hardware testing (using a batch processing cluster consisting of Xilinx

Spartan-3A, Spartan-6, Artix-7, and Kintex-7 FPGAs).
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CHAPTER 1

Introduction

1.1 Motivation

Computers are deeply integrated into our daily life and with the impending

rise of the Internet of Things (IoT) this role is likely to increase even further. As we

grow more dependent on them, and they become more interconnected, the potential

damage caused by an attack becomes even greater.

Unfortunately, most contemporary operating systems are excessively complex

and have a massive attack surface. Alternative designs such as microkernels improve

on this but still leave potential failure points. While formal verification of the entire

trusted computing base (TCB) can greatly reduce the number of attack vectors,

the current state of the art in operating system verification assumes correctness of

the hardware and hardware-software interface code, which can present an attractive

entry (or persistence) vector for the adversary.

Application security can be compromised in countless ways, some of which do

not involve arbitrary code execution (such as directory traversal in a web server).

Rather than trying to detect them all, this thesis focuses on damage control. An-

tikernel’s main goal is to protect the integrity of the OS and keep application-level

security domains separate from one another. Needless to say, the more an applica-

tion is able to compartmentalize itself into subsystems the more it can benefit from

these protections.

The defensive measures introduced in this work operate at the system level and

are orthogonal to application-layer mitigations such as ASLR, stack canaries, etc;

they can be used instead of them or together as part of a defense-in-depth strategy.

We have not implemented any application-layer countermeasures in our current

prototype, since the focus of this research is to explore the security implications of

the architecture rather than develop a production-ready system.

Unless otherwise stated, the threat model in this thesis is that of a remote

attacker with no physical access to the target system, but who can communicate with

1
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it arbitrarily through external interfaces (network etc). The goal is to prevent an

attacker from escalating privileges, or limit the extent to which doing so is possible.

Since many classical operating system designs are vulnerable to rootkits, which can

intercept and tamper with system calls and IPC to make detecting a compromise

much harder, methods for making rootkits difficult or impossible to deploy are of

significant interest as well.

1.2 Contributions

This work unifies two previously orthogonal fields within computer science and

engineering (hardware accelerators and operating system security) in order to create

a new model for operating system architecture which can enforce OS security policy

at a much lower level than previously possible.

In contrast to the conventional model of an OS kernel (a software component

running on a general-purpose processor, which coordinates the various hardware and

software components in the system) our system blurs or eliminates many of the clas-

sical boundaries between software, hardware, kernels, and drivers. Each hardware

device includes state machines which implement low-level resource management and

security for that particlar device, and provides an API via message passing directly

to userspace. Applications software may either access this API directly (as in an

exokernel) or through server software providing additional abstractions (as in a mi-

crokernel).

Perhaps most uniquely, there is no single piece of software or hardware in

our architecture which corresponds to the kernel in a classical OS. The operating

system is instead an emergent entity arising out of the collective behavior of a series

of distinct hardware modules, which together provide all of the services normally

provided by a kernel and drivers. By decentralizing to this extent, and creating

natural chokepoints for dataflow between functional subsystems, we significantly

reduce the portion of the system which is potentially compromised in the event of a

vulnerability in any one portion, and render API-hooking rootkits impossible. This

modular structure also allows piecewise formal verification of the system since the

dataflow between all components is constrained to a single well-defined interface.
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We have tested the feasibility of the architecture by creating a proof-of-concept

implementation targeting a Xilinx FPGA, and report some experimental results in-

cluding formal correctness proofs for several critical components. The implementa-

tion has been released as open source to encourage verification of our results and

further research.

1.3 Conventions Used in This Thesis

Monospaced font is used to for processor instructions, executable or other file

names, function names, and variable names.

Italic font is used for emphasis and direct quotes of third parties.

1.4 Organization

The remainder of this thesis is organized as follows:

Chapter 2 describes prior work in operating systems, security, and computer

architecture which is relevant to the remainder of the discussion.

Chapter 3 describes the architecture of the prototype system, beginning with

general design concepts and continuing on to details of core system components and

processor microarchitecture.

The Antikernel system does not exist in a vacuum; many custom tools were

created in order to ease design, implementation, or verification of the prototype.

These tools, as well as the hardware infrastructure used for testing, are discussed in

chapter 4.

Chapter 5 analyzes the security of the Antikernel architecture at a high level

including a more detailed security model and discussion of how the prototype was

verified for correctness. While the full source code for the machine-checked proofs

is located in the source distribution for brevity, the high-level architecture of each

proof is discussed.

Finally, chapter 6 contains concluding remarks and discussion of further work

which is planned in order further improve Antikernel.



CHAPTER 2

Prior Work

2.1 Introduction

This chapter begins by introducing the relationships between hardware and

software security in section 2.2. This material is central to the remainder of the

discussion. We then review existing kernel architectures, including the separation

kernel architecture, in section 2.3 and discuss their merits and weaknesses with

special emphasis on security.

Operating systems can be made more secure by moving carefully selected

components into hardware, which provides some protection against software-based

exploits. Hardware acceleration of operating systems has been the subject of sig-

nificant research in the past, but in nearly all cases the intention was to improve

performance rather than security. Section 2.4 reviews existing implementations of

operating systems and OS-related accelerators in custom hardware and examines

the possible security benefits of these designs.

Components in a distributed operating system typically communicate through

a packet-switched message passing interface such as a LAN. The SoC equivalent of

this is a network-on-chip (NoC). Section 2.5 introduces the NoC paradigm and

discusses the security aspects of various implementations.

The only way to achieve perfect security within a given threat model is to

mathematically prove correctness of the system. Section 2.6 provides some examples

of formal validation as applied to both hardware and operating system design and

discusses the necessity of validation for a security-critical hardware OS.

At first glance, the goals of close integration between system components and

minimizing communications overhead for performance, and explicit separation and

compartmentalization for security, appear contradictory. Section 2.7 describes sev-

eral multi-threaded CPU architectures and discusses how a barrel processor could

be integrated with a NoC in a hardware OS to provide a compromise, which has

low overhead but also strong compartmentalization between security domains.

4
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2.2 Hardware/Software Security Relationships

Software and hardware engineers sometimes fall into the trap of considering

their respective disciplines in isolation, ignoring the other. Unfortunately, many

security issues cannot be understood - or even seen to exist - without considering

both sides. We consider several different kinds of attack depending on whether the

hardware is the source of the attack or the target.

2.2.1 Software Attacking Hardware

The first class of attack we consider is that of malicious software attacking

the hardware. Any system which can potentially be damaged by software is at

risk. Examples of dangerous features are the abilities to overwrite or erase firmware

elsewhere on the board (as done by CIH, described in [1]), adjust voltage regulators

or fans, or control external robots and machinery (as was exploited to great effect

by Stuxnet, described in [2]).

This category also includes attacks in which malicious software causes hard-

ware under its control to harm external equipment or personnel, for example causing

a factory robot to cut up cars as they go down the assembly line. Sometimes these

dangerous features were unintended side effect of a careless design, such as in the

Therac-25 radiation therapy device.

The Therac-25 was intended to deliver low-energy electron beams or low-

energy X-ray beams (produced by directing a very high energy electron beam onto a

metal plate); delivering a high-energy electron beam to the patient should not have

been possible. Due to a complex interaction between a race condition and integer

overflow, however, certain sequences of keyboard input could lead to the machine

delivering a massive radiation overdose. This occurred at least six times during the

machine’s deployment, as documented in the subsequent accident investigation [3],

and resulted in the deaths of several patients. Although these were tragic accidents

rather than deliberate malice , it is easy to see that the impact of malware on such

a system could be catastrophic.

This was far from the only time in which real-world physical harm was caused

by a software bug. Toyota’s engine control units for certain car models contained
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a bug ( [4]) which could cause the control loop to freeze with the throttle set to

maximum. This was implicated in several fatal crashes.

Given that the vast majority of industrial control systems are computer-

controlled in some way, the potential for damage is immense. A German steel

mill was recently damaged ( [5]) in what appears to be a deliberate and carefully

planned attack perpetrated by attackers with detailed knowledge of the plant’s con-

trol systems. Similar operations may have been conducted as early as the Cold War

- a CIA campaign is alleged in [6,7] to have been behind a 1982 oil pipeline explosion

in Siberia.

Assuming that the ability to cause physical damage cannot be removed out-

right by hardware-based interlocks or safety mechanisms, mitigating these attacks

requires that the hardware have some way to determine that the request is per-

mitted by the operating system security policy. The classical way of doing this is

to only permit potentially dangerous machine instructions (such as writes to I/O

ports) to be executed in kernel mode, however several potential alternatives exist

and are addressed later in this thesis.

2.2.2 Software Attacking Software, Exploiting Hardware

These attacks involve malicious software manipulating hardware in order to

attack other software. An example of such an attack would be an unprivileged

process using a peripheral (graphics card, etc) to DMA shellcode into a privileged

process’s address space (demonstrated by [8] and many others) or, as in [9], read

encryption keys or other sensitive data.

Another possible attack of this category would be for an unprivileged process

to exploit a bug in the CPU (for example incorrect handling of register renaming or

pipeline forwarding after a mode switch) to affect the state of a privileged process.

In addition to actual silicon bugs, excessively complex architectures such as

x86 are vulnerable to implementation bugs caused by subtle documentation errors

or even differences in silicon between the two major vendors, Intel and AMD. CVE-

2006-0744 (see details in [10]) is an example of a vulnerability which, while not

strictly a silicon bug according to the vendor’s claims (Intel’s CPUs behaved as per
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their published documentation) could result in memory corruption in OSes written

to assume that the CPU adhered to the very slightly different AMD64 specification.

The impact of this issue was massive - user-to-kernel privilege escalation on 64-bit

Windows, Linux, Xen, FreeBSD, OpenBSD, and a host of other platforms. Software

workarounds for the syscall handler were able to fix the issue but little imagination is

required to see that the impact of a true silicon bug could be even more devastating.

2.2.3 Physical Attacks on Software, Exploiting Hardware

Early work on software security neglected the hardware, assuming that it was

trustworthy, flawless, and in a safe environment. This has been repeatedly proven

untrue (by [11–14] and countless others) with otherwise correct implementations of

well-known and trusted algorithms like RSA and AES failing horribly due to the

hardware being vulnerable to non-invasive attacks which induced a malfunction in

the device to produce an incorrect ciphertext. By analyzing the resulting ciphertexts

it is often possible to recover the plaintext, key, or both.

It is also possible to perform attacks merely by observing the externally visible

state of the targeted system while it processes sensitive information. Differential

power analysis, as described in [15, 16], is an example of such a technique, which

exploits the fact that each gate in a system uses more power to change state than

to remain idle. By correlating many traces of power over time, it is often possible

to recover some or all of a cryptographic key.

In addition to the non-invasive attacks mentioned above, it is also possible to

attack an embedded system by more invasive methods, such as physically placing

probes on internal wires inside a chip to monitor signals, cutting or shorting wires

(as demonstrated in [17]) with a focused ion beam (FIB), or using probes to inject

voltages into wires. These are capable of defeating essentially all software-based

security although physical antitamper techniques can increase the cost and difficulty

of such an attack.

Semi-invasive attacks, as introduced by [18], are an intermediate class of at-

tacks which involve removing the target IC from its packaging but not touching

it. Lasers, ultraviolet light, or electromagnetic fields can be used to induce targeted
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faults in the device; optical or EM sensors can also be used to observe internal state.

Using these techniques, the author demonstrated in [19,20] the ability to defeat the

readout protection on a commodity 8-bit microcontroller (Microchip PIC12F683)

using an inexpensive microscope, a UV germicidal lamp, and materials available at

any department store: a Dremel tool, drain cleaner, a hot plate, nail polish, and

nail polish remover... a one-time purchase of perhaps $500 plus a few dollars for

each chip being attacked.

2.2.4 Hardware Attacking Software

The other side of IC security involves protecting the end user of the device

from malicious modifications made to the hardware. This can involve anything

from slightly thinning a wire (so that it fails from electromigration long before the

intended service life is up) to adding a complex backdoor consisting of many gates

which, for example, causes a firewall appliance to disable filtering when a packet

containing a certain bit sequence is received. A group from NYU Poly explored

this topic in great detail in [21], presenting the first taxonomy of hardware-based

malware.

The author has previously suggested in [22] that FPGAs may be inherently

more secure than ASICs in this regard because FPGAs are so flexible at fabrication

time. While “blunt instrument” attacks, such as making the entire device fail early,

are still possible, high-level attacks targeting the business logic of a particular device

would be difficult to implement since the attacker has no way of knowing which logic

cells will do what. Although the attacker could potentially duplicate backdoor logic

for every general-purpose logic cell, this would add a large amount of overhead and

would likely be detected. (Particularly paranoid designers could even buy a lifetime

supply of their chosen FPGA before writing firmware. Since the code did not exist

at the time the chip was manufactured, there is no possibility of it containing a

targeted backdoor. This greatly reduces the portions of the device which need to

be audited.)

Hard IP cores present a more attractive target to the attacker (similar to an

ordinary ASIC), since their function is known in advance. An attacker could include
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logic in each of the gigabit serial transceivers, for example, that would send data to

the FPGA’s internal reconfiguration port (such as Xilinx’s ICAP, described in [23])

if a particular “magic” bit sequence were observed on the input. By sending a packet

containing the trigger sequence to a network port, writing it to a temporary file on

a SATA disk, or otherwise causing it to be sent through the transceiver the attacker

could then overwrite portions of the FPGA with malicious logic.

Another potential attack is to backdoor the design tools. FPGA vendors re-

lease new versions of their toolchains fairly frequently, and these downloads could

potentially be altered in transit by a well-equipped attacker (or compromised at the

source by attacking the vendor’s network or inserting an agent on the development

team). Since the synthesis and mapping tools have access to the RTL source, high-

level structures such as adder trees and known soft IP blocks can be identified and,

through subgraph isomorphisms, used to identify known algorithms such as AES.

(This is not too much of a stretch since FPGA synthesis tools already detect struc-

tures such as state machines to optimize synthesis). Backdooring of the toolchain

can be done at any time through software attacks on existing workstations and can

even be customized to a particular target, as demonstrated by [24]. In this case,

however, the toolchain was not the source of the attack: the RTL source of the

target system was compromised and a backdoored toolchain was used to prevent

the malware from showing up in synthesis reports.

2.2.5 Hardware Protecting Software

The same relationships can be used defensively as well. For example, protected

memory provides a hardware-enforced policy to prevent processes from writing to

each other’s memory. IOMMUs can mitigate the DMA attack described above.

Hardware interlocks on physically dangerous hardware can provide a vital

sanity check to prevent malfunctioning or malicious software from causing harm.

In the case of the Therac-25, the software bugs could have been rendered harmless

if the electron beam’s high-power mode was physically disabled when the X-ray

generation target was not in the path of the beam. 1

1Such a safety feature was, in fact, present in earlier Therac models. While the same software
bug was present in those systems it caused the machine to silently shut down rather than exposing
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Another potential defensive strategy, the primary focus of this thesis, is to

move portions of the OS kernel into hardware. By hard-wiring these components,

and only permitting state changes through a well-defined interface, it becomes im-

possible for their internal state to be tampered with in violation of policy. Perfor-

mance improvements are possible as well, by reducing the latency of system calls,

reducing the number of context switches due to interrupts, and allowing some hard-

ware drivers to execute in parallel with applications without using CPU resources.

2.3 Review of Kernel Architectures

2.3.1 Library

The simplest, albeit least secure, design for an embedded platform is the out-

right lack of an OS. The application is merely linked with a few support libraries for

controlling hardware to form a single executable. This is rare in systems more com-

plex than an 8/16 bit microcontroller running a few thousand lines of code, because

most larger systems require features such as tasks or threads. (An example system of

this would be a single-threaded C program linked with the target MCU’s peripheral

library.) Systems using a library as the only OS can be completely compromised

by a vulnerability anywhere in the entire codebase, but the hardware tends to be

so simple and cost-sensitive that running a full operating system is impractical or

impossible. On the bright side, most such platforms have limited communications

capabilities and are thus difficult to compromise remotely. As a consequence such

systems are beyond the scope of this thesis.

2.3.2 Monolithic Kernel

The next logical advance in architecture is to separate the kernel from applica-

tion code. Since system state is protected against accidental or malicious modifica-

tion from userspace, stability and security are improved significantly. Most systems

using monolithic kernels separate userspace applications from one another to some

extent (for example, by preventing applications run by different users from writing

to each others’ memory) but drivers and the core of the kernel run in the same

the patient to the full beam energy.
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address space with no protection against a buggy or rogue module tampering with

another module’s state. Embedded Linux (and its descendants, such as Android

and µcLinux) uses a monolithic kernel, as do VxWorks [25] and Windows CE [26].

Google’s Android operating system is based on the monolithic Linux kernel

but attempts to provide strong isolation between applications by running each appli-

cation as a separate Linux user account (see security model documentation in [27]).

Permissions are assigned to applications after confirming with the user during in-

stallation. Fine-grained access control is not typically possible as a user must accept

or reject all privileges at once, although this is a failure of the user interface rather

than the security model and several third-party add-ons attempt to provide this ca-

pability. Since it is based on Linux, there is no isolation between drivers and kernel

modules.

2.3.3 Microkernel

The lack of driver isolation mentioned above is solved to some extent by the

microkernel architecture. Only the bare minimum of the operating system runs

in privileged mode to provide a few core services (typically memory management,

interprocess communication, and threading) while hardware drivers and other OS

services (such as filesystems, network stacks, etc) run in userspace. This provides

protection against the simple case of a driver corrupting system state directly, and

potentially allows malfunctioning drivers or subsystems to be restarted or terminated

without catastrophic effects on overall system stability.

Unfortunately, however, real systems tend to be substantially more complex.

Any hardware device capable of DMA has the potential to overwrite (or observe)

critical kernel state. While IOMMUs (such as used by Intel VT-d) can help mitigate

these issues they are rarely used for this purpose; most use of IOMMUs to date has

focused on allowing virtual machines to access peripherals more efficiently.

Microkernels are commonly used on low-end microcontrollers, such as µC/OS-

II [28] and FreeRTOS [29] but are less popular on larger systems. There are many

potential reasons for this ranging from developer familiarity (developers are likely

to be most familiar with monolithic kernels) to performance (microkernels require
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more context switching, which typically comes with substantial runtime overhead).

QNX [30], L4 [31], and Symbian (now defunct) are among the few microkernels

which saw common use on higher-end processors. Some other modern platforms,

such as the XNU kernel [32] used in iOS, are hybrid designs which borrow some fea-

tures from microkernels but do not go far enough to be considered true microkernels.

As would be expected this offers a compromise between the compartmentalization

of a full microkernel and the performance of a monolithic kernel.

2.3.4 Separation Kernel

Separation kernels, as introduced by Rushby in [33], provide even stronger

guarantees of isolation than microkernels. The kernel is re-invented as a distributed

system in which each module manages its own security policy and is independent

of all of the other portions of the system, and modules communicate only through

a well-defined interface which limits the interactions to those allowed by a global

policy.

Rushby’s paper makes the point that allowing any program to be given ulti-

mate trust for any reason (for example, setuid root on Linux for the “ping” program

so it can send raw ICMP packets) admits them to the trusted computing base (TCB)

and thus that they, and all of their dependencies, are now critical to the security of

the system. A single security bug in the “ping” executable could allow an unpriv-

ileged local user, or potentially even a remote attacker, to gain root access. In an

appropriately decentralized system the “ping” executable could be replaced by an

otherwise unprivileged process whose only distinguishing characteristic is the ability

to send raw ICMP frames. Exploiting a bug in the ping command would then grant

only the ability to display text on the calling process’s tty and send ping packets;

other activities such as file system operations would not be possible.

Despite the obvious security benefits, separation kernels have not been widely

deployed. As with microkernels, the most likely reasons are the unfamiliar archi-

tecture (even for developers used to microkernels) and the perceived performance

overhead.

The Mathematically Analyzed Separation Kernel (MASK), developed jointly
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by Motorola and the National Security Agency (NSA) for a cryptographic SoC

known as the Advanced Infosec Machine (AIM), is one of the first separation kernels

to be deployed in a production system. The intended purpose was allowing the AIM

to process data at multiple classification levels simultaneously without any risk of

sensitive data leaking to a less secure domain. While the actual code and chip

design for the AIM are classified, the operating system architecture was described

by Motorola [34] in an unclassified paper.

Integrity [35] is a commercial separation-kernel based platform. It provides

fixed time slices for each application to ensure hard-realtime performance, and also

provides memory quotas to ensure that critical applications will always have at

least some minimal amount of memory available. The system is available both as

a standalone RTOS and as a hypervisor which can run more conventional guest

operating systems.

2.3.5 Exokernel

Another unusual OS architecture, MIT’s Exokernel [36,37] is focused on perfor-

mance but has several interesting properties when studied from a security viewpoint.

Rather than basing the OS on many layers of abstraction and forcing applications to

work at the highest level, drivers are simplified to the extreme. An exokernel driver

simply divides its resource into pieces (slices of CPU time, disk sectors, RAM pages,

and so on), provides an interface for programs to request and release these resources,

and enforces security policy by preventing one program from altering another’s data.

As with microkernels, higher level services such as filesystems and network stacks

are typically implemented as userspace servers or libraries. (It should be noted that

the exokernel architecture itself does not specify whether the lowest level drivers are

integrated into the kernel as in a monolithic design, or in separate processes as in a

microkernel.)

The original intention of the exokernel architecture was to improve perfor-

mance. For example, if an application needs temporary storage on disk for transient

data, there is no reason to impose the overhead of a file system. Instead, the ap-

plication can request a raw sector directly from the disk driver and use it. Even
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virtual memory paging is implemented at the application layer and used only when

needed. The authors of [37] report massive performance improvements, up to two

orders of magnitude in some of their tests.

As with separation kernels, exokernels have not been widely deployed and have

mostly remained research curiosities. The author believes that this is unfortunate,

as the decentralized structure of an exokernel can be made very similar to a sepa-

ration kernel (although none of the original papers on the architecture explore this

possibility). Since the TCB of an exokernel is so tiny the attack surface is drastically

reduced compared to a typical monolithic kernel or even a microkernel.

2.3.6 Multikernel

The multikernel, developed by Microsoft Research [38], is an OS that can scale

to large numbers of cores - potentially even using different ISAs - by reinventing the

computer as a distributed system using concepts from supercomputing. Classical

abstractions like shared memory and system calls are discarded and replaced with

message passing between cores.

Barrelfish, the prototype implementation of the multikernel architecture, can

run on both x86 and ARM. Each core runs an exokernel-esque “CPU driver” that

provides context switching within that core. Cores are divided into a 2D grid net-

work; one core of each CPU serves as the gateway to other CPU sockets or remote

nodes accessed over Ethernet.

Performance testing of Barrelfish shows results comparable to, if not better

than, contemporary operating systems on the same hardware for most metrics.

2.3.7 Hypervisor

Instead of attempting to secure the kernel against attack, one can also take

a very different approach: Run multiple kernels in individual virtual machines on

top of a hypervisor. As long as the hypervisor is able to reliably enforce separation

between the VMs, individual security domains may be kept separate and compromise

of one domain cannot be extended to compromise of the others. An unfortunate

side effect of this approach is that a separate copy of the kernel and core services
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is required for each security domain, which increases the hardware requirements for

the host.

Qubes [39] is a virtualization-based compartmentalized OS intended for desk-

top computing. The OS implements many separation-kernel style isolation capa-

bilities while maintaining backward compatibility with most Linux applications by

means of re-using existing off-the-shelf components. Drivers which are considered

vulnerable to compromise, such as the TCP/IP stack, run in dedicated service VMs.

The major flaws of the architecture are reduced performance due to virtualization

overhead and the fact that it relies on the virtualization extensions of the (massively

complex) x86 architecture to provide isolation.

The authors of Qubes are clearly aware of this, saying “There is no such

thing as a 100% secure OS, at least on x86 COTS hardware. The software and

hardware is simply too complex to analyze for all potential errors in case of x86

platforms... It is hard not to think that there might be a bug in a CPU that could

e.g. allow for unauthorized ring3 to ring0 privilege escalation. Interestingly, no such

bugs have ever been publicly disclosed” (page 42). They believe, however, that their

architecture does provide a significant improvement over existing alternatives.

Although embedded platforms have made fairly limited use of virtualization

to date, the ARM architecture does have virtualization extensions and there have

been some attempts (such as [40, 41]) to virtualize smartphones. One proposed

use case is to run both a general purpose operating system for running end-user

applications and a dedicated RTOS for hard-realtime radio baseband functions on

the same CPU. Separation of personal and work applications on the same hardware

is mentioned as another scenario.

While virtualizing several independent operating systems may be a practical

option for systems requiring only a handful of security domains, it scales poorly

since a separate copy of the kernel (and associated driver infrastructure) is required

for each security domain. On an embedded device with fairly minimal amounts of

memory and CPU capacity, it is unlikely that running each functional subsystem in

its own VM will be practical.

ARM TrustZone [42,43] can be thought of as a hardware virtualization system
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integrated into the CPU that supports exactly two guests: trusted and untrusted.

The trusted guest is able to use all features of the CPU and access all peripherals

without restriction; the untrusted guest is prevented from accessing a configurable

set of memory address ranges or peripherals. While perhaps suitable for simpler

applications such as DRM with only one “secure” module, it does not support

large-scale compartmentalization with many independent security domains. It is

possible in principle to run a software-based hypervisor in the trusted mode, but this

essentially negates any of the security that would otherwise be gained. In addition

the secure OS is often excessively complex and susceptible to vulnerabilities of its

own, such as CVE-2013-3051 [44].

2.3.8 Conclusions

Each architecture can be seen to have strengths and weaknesses. Monolithic

kernels are efficient and easy to develop but have many potential points of fail-

ure. Microkernels are slower and can be harder to design, but system security and

stability is improved. Separation kernels take the microkernel concept to a more

extreme level and thus have the same traits as microkernels, but more so. Exoker-

nels are tricky to design well, and can suffer from the same task-switching overhead

problem as microkernels, but the performance gains from eliminating unnecessary

abstractions can make up for this and more. In addition, since the core drivers of

an exokernel are smaller and simpler than monolithic or even microkernel drivers,

they are less likely to contain bugs with stability or security impacts - something

which is often neglected by researchers focusing on the kernel itself. Hypervisors

have even more overhead than microkernels since applications run under a kernel

which is itself under the hypervisor, but they can easily run any number of guest

operating systems (which need not be the same) in their own security domain.

The exokernel architecture appears very promising but still leaves some things

to be desired. If the drivers run in kernel mode then the same security/stability

issues of a monolithic kernel are present (although perhaps to a reduced extent,

since the drivers are simpler). If the drivers run in userspace, then it is susceptible

to the same performance issues of a microkernel. What if it were possible to get
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the best of both worlds? We suggest that that moving the drivers into hardware, as

described in the next section, may offer a solution to this problem.

2.4 Operating Systems in Hardware

There are many examples in the literature of operating system components

being moved into hardware 2 however the majority of these systems are focused on

performance and do not touch on the security implications of their designs at all.

Fundamentally, any hard-wired OS component has an intrinsic local security

benefit over an equivalent software version - it is physically impossible for software

to tamper with it. This brings an unfortunate corollary - it cannot be patched if

a design error, possibly with security implications, is discovered. Extremely careful

testing and validation of both the design and implementation is thus required.

Hardware OSes may not, however, provide any global benefits to security. If

the hardware component does not perform adequate validation or authentication

on commands passed to it from software, compromised or malicious software can

simply coerce the hardware into doing its bidding. When evaluating a hardware

accelerator’s security properties it is important to keep this in mind.

2.4.1 Hardware Acceleration

[45] proposes a distributed OS built into a network-on-chip, or NoC. (The

NoC paradigm is covered more comprehensively in the next chapter of this paper.)

Rather than context switching, each task is given its own CPU. This completely

eliminates the need for many conventional OS capabilities like memory protection

or task scheduling and also provides the ability to do clock gating / speed adjustment

per “process”. The system is adapted to a modified version of the OSEK monolithic

RTOS on an FPGA. Some automated system generation by parsing source code

for each task is proposed but not implemented. This architecture has a massive

2This dissertation uses the term “hardware OS” to refer to a series of state machines imple-
mented in silicon which provide operating system services to a computer. Some other authors use
the same term to refer to a very different concept: a component of an operating system (which
is typically implemented in software) responsible for managing partitions of an FPGA or other
reconfigurable computing device.
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overhead in silicon area (at least one CPU per security domain is required, proba-

bly several since no context switching is supported and many domains are likely to

require more than one thread) which makes it somewhat impractical. While the ar-

chitecture exhibits some of the properties of a separation kernel, it is unclear whether

the interconnect provides any security (for example, preventing one processor from

spoofing another’s address in a message).

[46] proposes a basic RTOS which contains a simple hardware microkernel

implementing a scheduler (supporting up to 16 tasks), 16 semaphores, and 4 timers.

µC/OS-II was ported to this architecture (with a small software driver to provide

API compatibility with the original RTOS). Task switching is still done by software

as there are no register windows or hardware-based features for context switching.

Significant performance benefits are realized compared to a software-only imple-

mentation but the security implications of the architecture are not addressed. Since

there are no authentication or protection capabilities built into the accelerator, no

security benefit is realized.

[47] implements an FPGA-based prototype of a hardware RTOS. Results

are presented from synthesizing for 800nm CMOS, however it appears that the

chip was never actually manufactured. The hardware component of the RTOS

implements task scheduling, semaphores, interrupts, and timers. As with the above

papers in this section there is no mention of security whatsoever and the lack of any

authentication on the hardware-to-software interface means it provides no security

benefit.

[48] describes a microkernel-based OS using a 2D mesh NoC. Each node is a

CPU with a microkernel on it, running user processes and/or servers. They also ex-

amine the possibility of having the microkernel running on a single node and dismiss

this due to poor performance. Security is mentioned as a benefit of microkernel-

based systems in general but there is no discussion of the security aspects of their

specific implementation. The lack of any actual hardware acceleration makes the

system no more or less secure than an equivalent system using several physical PCs.

[49] presents a framework for codesign of a MP-SoC and the RTOS it runs.

It includes hardware-based memory allocation and several other features (such as
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basic IPC) and exposes this functionality to both CPU-based applications and hard-

ware accelerators. Some of the RTOS modules are dynamically generated based on

parameters such as the number of CPU cores in the system.

[50] proposes a “hardware OS kernel”, or HOSK, which is connected to a

conventional (unmodified) RISC processor and functions as an accelerator. The

HOSK implements task scheduling, semaphores, and context pre-fetching but does

not actually implement context switching (this is left to the CPU, since the HOSK

has no direct access to the CPU register file). Swapping of paged-out contexts to

external RAM is handled by the HOSK. Security is not addressed at all. Since the

HOSK functions purely as an accelerator and imposes no limitations on the system,

and does not appear to authenticate requests from the CPU in any way, security is

not improved.

[51] describes BORPH, an operating system for a reconfigurable platform

containing one or more CPUs and one or more reconfigurable components such

as FPGAs. It introduces the concept of a “hardware process”, which is function-

ally equivalent to a conventional operating system process and supports the same

IPC methods as POSIX (shared files, pipes, shared memory, signals, and sockets)

and can access conventional OS resources such as the filesystem. No special iso-

lation/authentication mechanisms are described and the platform runs on top of a

conventional Linux kernel so the architecture provides no real security benefits. The

concept of having interchangeable hardware and software modules using the same

API, however, is a promising one.

2.4.2 Security-Focused Designs

[52] presents the first implementation of a separation kernel in hardware. It

describes a distributed OS based on a “time-triggered network on chip” (TTNoC)

connecting a series of IP cores, each considered a separate partition within the

system. The TTNoC appears to be a shared bus, more so than a packet-switched

network, since it uses time-division multiple access (TDMA) to share the single

medium between all hosts. Each IP core contains a “Trusted Interface Subsystem”

or TISS, which ensures that the core cannot transmit out of its TDMA slot, and
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external - potentially untrustworthy - logic. An FPGA-based prototype is presented.

The network includes a global arbiter, the Trusted Network Authority or TNA,

which sets up virtual circuits either statically at configuration time or dynamically

via (signed) reconfiguration messages.

While the TTNoC provides the highly desirable property of complete and

deterministic isolation between hosts - no traffic sent by any other host can ever

impact the ability of another to communicate and thus there are no timing / resource

exhaustion side channels - it also results in the lack of burst capabilities and does

not scale well to systems involving a large number of hosts (in a system with N

nodes each one can only use 1/N of the available bandwidth).

The proposed design requires a separate CPU core (or hard accelerator) for

each security domain and does not appear to consider the possibility of sharing

CPU resources between applications. As with [45] this area overhead is likely to be

prohibitive for systems with more than a small number of security domains.

[53] describes a “zero-kernel operating system” or ZKOS. The general guiding

principles of “no all-powerful component”, “hardware-software codesign”, and “safe

design” are very similar to this work, as well as the conclusion that privilege rings are

an archaic and far too coarse-grained concept, however their solution is somewhat

different. Their system relies on “streams” (point-to-point one-way communications

links) and “gates” (similar to a syscall vector, allows one security domain to call

into another) for IPC and does not support arbitrary point-to-point communication.

Threading and message passing are implemented in hardware.

There is no support (by design) for interrupts in ZKOS; instead hard real-

time deadlines must be met by a single OS-controlled timer interrupt which ensures

hard-realtime deadlines can be met. As a result of this, peripherals are expected

to buffer data until polled and drop excess data if the interrupt is not called often

enough.

The ZKOS architecture appears to be primarily software based with min-

imal hardware support and does not support hardware processes/drivers, which

can greatly help efficient handling of hard real-time processing such as high-speed

networking. An extremely fine-grained tagged memory scheme (permissions bits
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associated with individual memory words) is used for access control at the cost of a

significant (100% - 300%) memory overhead.

BiiN [54] was the result of a joint Intel-Siemens project to develop a fault-

tolerant computer, which could be configured in several fault-tolerant modes includ-

ing paired lock-step CPUs. The system’s architecture was somewhat reminiscent of

a multikernel since it uses message passing for most communication and can scale

transparently to a network, although it predated Baumann’s paper by twenty years

and does support shared memory between processes on a single node.

A capability-based security system is used to control access to particular ob-

jects in memory or disk. It appears that the capabilities are managed by the “type

manager” for the particular resource of interest, making it similar to a microkernel

or exokernel. The system architecture advocates heavy compartmentalization with

each program divided up as much as possible, and using protected memory between

compartments (although the focus of this was reliability against hardware faults

through means such as error correcting codes and lock-stepped CPUs, not security

against deliberate tampering). No mention of formal verification could be found in

any published documentation.

BiiN also included microcoded support for some operating system functional-

ity, such as multiprocessing and remote procedure calls, and a programmable “chan-

nel processor” for accelerating I/O (although it appears that the channel processor

does not enforce security policy). The company closed down in 1989 [55] as a result

of poor management and failure to secure adequate market share.

2.4.3 Conclusions

Most older hardware-accelerated OS designs focused purely on performance;

typically there was no attempt to improve security and the systems were no more

secure than conventional ones. These systems often pushed boundaries in architec-

ture, however, and demonstrated new ways of blurring the classical kernel-hardware

interface which may be useful in secure systems.

Security-focused designs, conversely, tended to have massive overhead. The

TTNoC from [52] requires an entire CPU core for each security domain, rendering
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fine-grained compartmentalization impossible. ZKOS uses half of the system’s RAM

just to keep track of ownership tags and the authors expect this overhead to grow

even more once they implement hardware garbage collection.

The work described in this thesis combines these two orthogonal approaches

into a single unified whole, attempting to provide a reasonable level of performance

with high security.

2.5 Network-on-Chip as a Design Paradigm

One of the simplest ways to enforce isolation between different components

of a computer system is to actually build a distributed system in the form of a

multiprocessor system-on-chip (MP-SoC) containing one CPU core for each security

domain, as proposed in [45]. While this requires much more silicon area than a

single time-slicing CPU, by the simple expedient of placing bus wires between cores

where communication is allowed and not connecting other paths, it is possible to

absolutely prevent any unintended leakage of information. By having a trusted

“firewall” module on the link between two cores, it is even possible to limit the types

of information which may be exchanged, for example to disable write commands to

core X from core Y but allow them from Z. 3

Unfortunately, for systems with a nontrivial number of security domains it

is infeasible to physically provide all of the O(n2) point-to-point links from every

domain to every other domain it may need to communicate with. Instead, some

sort of shared communications medium is necessary. Since a separation kernel is

conceptually a distributed system, and most large-scale distributed systems are

connected via computer networks, the most obvious form of interconnect is a packet-

switched network-on-chip (NoC).

The basic network-on-chip paradigm was first introduced in [56]. The paper

suggests several possible trends for future NoCs, including the growing use of glob-

ally asynchronous / locally synchronous (GALS) systems implemented as source-

3The astute reader will note that the “absolute” isolation mentioned above is not truly absolute
due to attacks like differential power analysis between cores being theoretically possible. These
attacks would require tampering with the device during manufacture and are beyond the scope of
this paper.
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synchronous NoC interfaces. (On FPGAs, which tend to run at lower clock rates

and have well-characterized pre-built clock trees, this is less of an issue; in an ASIC

pushing the limits of process technology and lacking a regular structure reduction of

clock skew is a much more complex problem). The paper also suggests the possibil-

ity that future deep-submicron NoCs may have high enough bit error rates (BERs)

that including checksums and retransmit capabilities, as in LAN/WAN links, may be

necessary. The paper does not discuss the security implications of the architecture

at all.

[57] suggests that implementing a NoC in an FPGA is a waste of pro-

grammable logic resources, and that much more efficient design could be realized if

the FPGA included a NoC as one of the hard IP blocks provided in the fabric. The

paper also proposes an emulated FPGA model for researching NoC designs too big

to fit in current hardware. Security is not mentioned in the paper at all.

In the same line of reasoning, [58] observes that due to the low logic capacity

of FPGAs compared to ASICs, contemporary architectures tend to use very simple

buses to avoid wasting a large fraction of the design’s area on interconnect. The

paper further suggests that simplified NoC implementations could get adequate

performance for some applications while using a fraction of the area of a more

complex router. While the complex design does perform better in some applications,

the massive (4x-5x) increase in area does not justify the gains in many cases. A

hard-wired NoC would avoid this issue.

Although they are not single-chip systems, supercomputers are also distributed

computing platforms containing many coupled processors working toward a common

goal with a very high bandwidth interconnect. IBM’s Blue Gene/L supercomputer,

as detailed in [59], deviates from the typical model of many cores connected by one

shared bus/network and instead has multiple networks (five) specialized for spe-

cific tasks: the collective network (for global operations such as the MPI Reduce

or MPI Allreduce calls in MPI, the Message Passing Interface), the global barrier

network (for system-wide barrier synchronization), a 3D torus network for general-

purpose message passing, gigabit Ethernet for interfacing to the file servers, and a

system debug/setup network consisting of 100Mbit Ethernet and JTAG. The Blue



24

Gene also includes hardware support for multicast. A Blue Gene system can be di-

vided into several independent partitions which have no access to one another. This

provides the ability to run several different programs simultaneously on different

parts of the system (each running essentially on “bare metal” with little to no OS

overhead) and have strong isolation between them.

[60] addresses security, specifically memory accesses, in NoCs. The paper

proposes having a firewall module (Data Protection Unit, or DPU) integrated into

each NoC interface, blocking bad requests either at the source immediately as they

are sent, at the target just before processing, or both. The firewalls are based on a

ternary content-addressable memory (TCAM) mapping message header information

to memory page access rights. Detailed analyses of area and power overhead for

130nm CMOS (ST HCMOS9GPHS) are presented. It appears that the chip was

laid out for testing but not actually fabricated.

[61] is a commercial SoC interconnect fabric based on ARM’s AMBA, with

some NoC capabilities. The system includes firewalling to restrict access to main

memory from unprivileged code, however the system appears to be targeting mono-

lithic kernels and lacks the granularity required for separation kernel designs.

2.6 Formal Verification

Due to the massive setup costs involved, and near-impossibility of field up-

dates, design of an ASIC-based hardware RTOS must be done very carefully. Very

few of the papers cited in this chapter made any references to how the designs were

tested, validated, or proven correct.

If all logic within the TCB is formally validated against a suitable security

model then it is possible to say with absolute certainty that no attacks within that

model can compromise the security of the system. (In practice, as mentioned earlier

in this chapter, attacks which are outside the scope of the security model sometimes

present themselves.)

If possible, applications should be validated as well. Unfortunately this is

typically too labor-intensive for all but the simplest systems, but running under a

provably correct operating system will still allow strong guarantees to be made as



25

to the worst-case failure mode. It may still be possible, for example, for an attacker

to corrupt data in the back-end database if a web application is exploited, but not

for him to corrupt backups or avoid leaving traces in a log file.

In [62], Intel proposes use of a formal validation methodology to prove cor-

rectness of critical components of a complex system, in this case the Pentium 4

processor. Conventional validation methods are used to rapidly catch the major-

ity of bugs; once all known bugs have been caught a formal model is constructed

and validated to prove complete correctness of the system. Intel used the described

methodology to ensure 100% correctness of the ALU portion of the datapath, catch-

ing 18 bugs in the process which they believed would have escaped into production

silicon had the design not been formally validated. There is no discussion of whether

the MMU, privilege ring bits, and other similar logic were validated as well or not.

The very fact that malware exists on current generation x86 platforms clearly

demonstrates that “formally validated” does not mean “secure” - Intel’s validation

efforts focused on ALU correctness rather than security. Since x86 CPUs are de-

signed to have most OS security policy implemented in software, and merely provide

isolation between user and kernel memory, the hardware is unable to prevent a priv-

ileged process from tampering with the kernel since it has no way to tell that the

access is not authorized.

SeL4 [63] implements the first known formally validated operating system ker-

nel, (a port of the L4 microkernel). The group assumes the correctness of the C

compiler, approximately 600 lines of assembly language used for context switching

and cache setup, and the hardware; everything else is proven correct. The kernel was

initially developed as an abstract specification and modeled in a subset of Haskell,

which was then used as input to theorem proving software. Once the Haskell model

was proven correct, it was ported to optimized C and a proof of equivalency was

created. Several design decisions were made in the implementation for ease of formal

validation, for example minimizing the use of global variables.

[64] presents an example of the formal validation of a software-based separa-

tion kernel for use in security-critical military systems. The kernel consists of “over

3000 lines of C and assembly code” (the CPU architecture is not mentioned). The



26

methodology is fairly typical for formal validation - formulation of a state-machine

based model of the system, creating a formal specification of the properties they

wish to prove, automatic proof that the model satisfies said properties, then im-

plementation of the system and proof that it is logically equivalent to the verified

model.

It should be noted that partial validation of a system may lull one into a false

sense of security. For example if the kernel of a software-based system were to be

validated against a security model that assumes the hardware is correct, then a

user-to-kernel privilege escalation bug discovered in the hardware, the entire system

could be compromised. (In addition, the “600 lines of assembly” which the authors

of SeL4 assumed to be correct could potentially be vulnerable to attacks such as

the Intel sysret bug mentioned above). We believe that a truly secure platform can

only be developed if the hardware and software components critical to security are

developed in tandem and validated as a single entity.

2.7 Multithreaded CPU Architectures

2.7.1 Overview

The previous sections set out two apparently conflicting goals: Achieving a

secure system requires isolation between security domains, however allocating a

separate physical CPU to each security domain would make the SoC prohibitively

large, power-hungry, and expensive. What if there were a way to get the best of

both worlds?

Efficiently running multithreaded workloads on a single CPU has been the

subject of great effort by computer architects. One of the more radical solutions is

the barrel processor 4, which has traditionally been relegated to niche applications

because of its poor single-threaded performance. The idea of a barrel processor is

simple: maintain n thread contexts resident in the register file simultaneously, by

using register windows or similar means, and context-switch between them every

clock cycle.

4The name presumably comes from the image of a rolling barrel, where each plank represents
a thread and each angular position represents a pipeline stage.
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Generally, n is at least equal to the pipeline depth p of the processor. This

allows the pipeline to be much simpler since it is known a priori that no data

hazards can occur: If instruction 2 of thread A (denoted A2 in Fig. 2.1) depends on

instruction 1, there is no hazard because n−1 other instructions from other threads

execute in between them. By the time A2 gets to the register fetch stage, the

results of A1 will have been committed to the register file. As a consequence most

stall/forwarding/interlock logic in the pipeline can be eliminated, the critical path

shortened, and the maximum operating frequency increased. Very long pipelines

with little or no forwarding are the norm in barrel processors - the author considered

16 or even 32 pipeline stages for SARATOGA (Sec. 3.5.3) before deciding on 8 to

simplify the design.

A1 B1 C1

FETCH DECODE EXECUTE MEM WRITE

PIPELINE STAGE

TI
M

E A1 B1 C1

A1 B1 C1

A1 B1C2

A1B2 C2

D1 E1

E2 D1

E2

E2

E2

D2

D2

D2

Figure 2.1: Scheduling of 5 threads in a barrel processor with a 5-stage
pipeline

The major problem with a barrel processor is that, if the pipeline interlock /

forwarding logic is removed, it is illegal for more than one instruction from a given

thread to be in the pipeline at a time. This means that if less than p threads are

active at any point in time, wait states must be added. In the example shown in

Fig. 2.2 the CPU is running at a mere 60% efficiency.

This determinism can be seen as an advantage as well, however, since (ignoring

the possibility of contention on multi-cycle I/O operations) each thread is guaranteed

a minimum of the 1
max(p,n)

of the total CPU cycles. This is highly beneficial for hard-

realtime applications.
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Figure 2.2: Scheduling of 3 threads in a barrel processor with a 5-stage
pipeline

Graphics processing units (GPUs) have many features in common with barrel

processors, the most notable being the massive number of registers (NVIDIA’s Ke-

pler microarchitecture, described in [65], has 65,536 registers per multiprocessor). A

common optimization in GPU architecture is to hide cache miss latency by removing

a thread from the run queue in the event of a cache miss and replacing it with an-

other one, thus ensuring that the processor continues to execute instructions at full

speed unless every single thread is blocking on memory. In most cases this means

that branch prediction and out-of-order execution are unnecessary, permitting the

processor to be even simpler.

Barrel processors are also very well-suited to applications with hard real-time

constraints because the threads are almost completely independent. Aside from

cache interference (which can be, optionally, eliminated by allocating a separate

region of the cache to each thread context) and contention for peripherals, there is

no way for a thread’s performance to be negatively affected by another.

2.7.2 Prior Implementations

[66] describes a barrel-esque processor which has a large number of thread

contexts sharing a relatively short (five stage) pipeline, ensuring that there is almost

always a thread ready to run. The system is analyzed as part of a non-ccNUMA

shared-memory system with local memory for each core and explicit message passing



29

between cores.

The XMOS XCore architecture [67] is a hardware multithreaded multicore

processor architecture developed for high-performance embedded systems. Each

core has eight hardware threads and a 4-stage pipeline; threads are scheduled in a

round-robin barrel fashion such that if ≤ 4 threads are active each gets 1/4 of the

CPU cycles and if more than 4 are active then each of the n threads gets 1/n of

the CPU. The cores include basic secure-boot capability - OTP ROM not readable

from outside the core and a fuse to disable JTAG. The intention is for the OTP

ROM to contain an encryption key and a boot loader which loads an image from

external Flash and decrypts it. Devices are available with 1 to 4 cores as of this

writing. Full hardware operating system support is not provided but timers, locks

and synchronizers are included.

The IBM Cell Broadband Engine [68] was originally developed for the PlaySta-

tion 3 game console and later used in many HPC systems such as the Roadrunner

supercomputer. The Cell, fabricated on a 90nm IBM process, is a hybrid archi-

tecture containing a single 64-bit dual-threaded dual-issue in-order PowerPC core

(Power Processing Element or PPE) plus eight SIMD cores (Synergistic Process-

ing Elements or SPEs). The PPE has a barrel-esque design: instructions from two

threads are issued alternately, which permits higher pipeline latency to be tolerated

without an excessive branch misprediction penalty.



CHAPTER 3

System Architecture

3.1 Design Philosophy

The Antikernel architecture is intended to be more, yet less, than simply a

“kernel in hardware”. By breaking up functionality and decentralizing as much as

possible we aimed to create a platform that allows applications to pick and choose the

OS features they wish to use, thus reducing their attack surface dramatically com-

pared to a conventional OS (and potentially experiencing significant performance

gains, as in an exokernel). If the application in question does not store any data

in the filesystem, for example, a vulnerability in the filesystem cannot be used to

compromise it. It may also access raw disk/flash sectors directly with less overhead

than if it were to go through a filesystem, while still being prevented from reading

or tampering with data belonging to other code.

Antikernel does not have any APIs or system calls whatsoever; all OS func-

tionality is accessed through message passing. To create a process, the user sends a

message to the CPU core he wishes to run it on. To allocate memory, he sends a

message to the RAM controller. Each of these nodes is self-contained and manages

its own state internally (although nodes are free to, and many will, request services

from other nodes).

There is no “all-powerful” software; all functionality normally implemented

by a kernel is handled by unprivileged software or hardware. Even the hardware is

limited in capability, for example the flash controller has no access to RAM used by

the CPU. By formally verifying the isolation and interprocess communication, we

can achieve a level of security which exceeds even that of a conventional separation

kernel: even arbitrary code execution on a CPU grants no privileges beyond those

normally available to userspace software. Escalation to “ring 0” or “kernel mode” is

made impossible due to the complete lack of such privileges; unprivileged userspace

runs directly on “bare metal”.

30
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3.2 Networks

At the highest logical level, an Antikernel-based system consists of a series

of nodes (userspace processes or hardware peripherals) organized in a quadtree and

connected by a packet-switched NoC with 16-bit addressing. Hardware and software

components are indistinguishable to developers and are addressed using the same

message passing interface. For the remainder of this thesis, NoC routing addresses

are written in IPv6-style hexidecimal CIDR notation. For example the subnet con-

sisting of all possible addresses is denoted 0000/0, 8002/16 is a single host, etc.

Figure 3.1: Example routing topology (simplified)

Each bottom-level leaf node (names prefixed with “n” in Fig. 3.1) is assigned

a /16 subnet (in other words, a single address) and corresponds to a single hardware

module. The next level nodes are routers for /14 subnets (names prefixed with “r”),

followed by routers for /12 subnets, and so on. Routers are instantiated as needed

to cover active subnets only; if there are only four nodes in the system the network

will consist of a single top-level router with four children rather than an eight-level

tree. Nodes may also be allocated a subnet larger than a /16 if they require multiple

addresses: perhaps the node “n800c/14” is a CPU with support for four hardware

thread contexts that runs each thread in its own security context and is allocated a

/14 sized subnet so that the remainder of the system can distinguish between the

threads.

One limitation of a strict quadtree design is that odd-sized subnet prefixes

are not supported since each router has four downstream ports which cannot be

combined: a node requiring two addresses must be assigned a /14 rather than a

/15. While this does lead to some waste of address space, given the scaling trends

observed in current and next-generation SoCs it is unlikely that any designs in the

near future will have anywhere near 65536 uniquely addressable devices on chip.

The architecture can, of course, be scaled to larger address sizes in the longer term
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should the address size present a limitation.

“The network” is actually two parallel networks (each 32 bits wide) specialized

for different purposes, as shown in Fig. 3.2. The RPC network transports fixed-size

datagrams consisting of one header word and three data words, and is optimized

for low-latency control-plane traffic. The DMA network transports variable size

datagrams consisting of three header words and zero to 512 data words, and is

optimized for high-throughput data-plane traffic. Each node uses the same address

on both networks to ensure consistency, although individual nodes are free to only

use one network and disable their associated port on the other (for example, nodes

“n8002/16”and “n8005/16”). Entire routers for one network or the other may be

optimized out by the code generator if all of their downstream ports are unused (for

example, there is no RPC router for the subnet 8004/14 as all nodes in that subnet

are DMA-only).

Figure 3.2: Example routing topology showing RPC and DMA

A full link for either network contains two independent unidirectional links,

each consisting of a 32-bit data bus and several status flags. Since the prototype

is FPGA-based all network links are system-synchronous, however they could fairly

easily be converted to source-synchronous for a GALS ASIC.

Packets for both networks begin with a single-word layer-2 routing header

containing the 16-bit source and destination node addresses, followed by protocol-

specific layer-3 headers. There is no header field to distinguish RPC and DMA

traffic; since the networks are physically distinct the protocol can be trivially deter-

mined from context.

Each network guarantees strict FIFO ordering, as well as reliable delivery, for

any two endpoints. More formally, given three nodes A, B, and C, RPC packets sent

from A to B will always arrive, and do so in the order that they were sent. There



33

is, however, no global temporal ordering implied for these packets with respect to

RPC packets sent from A to C, or DMA packets from A to B.

3.2.1 RPC

3.2.1.1 Packet Structure and Semantics

An RPC message (Fig. 3.3) consists of the standard layer-2 routing header

followed by an 8-bit call number indicating the operation to be performed (“call”),

a 3-bit type field (“op”), and 85 bits of data divided into one 21-bit partial word

and two 32-bit words. (The 21-bit field is often used as a 16-bit data halfword and

five one-bit status flags, although its interpretation is up to the endpoints.)

Source node Dest node
Call Op

Data

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

Bit
Word

0
1
2
3

Figure 3.3: Structure of an RPC packet

Any RPC transaction involves two nodes. The node which initiates the trans-

action is designated the master; the node responding to this packet is designated

the slave. These roles are not fixed and any node may choose to act as a master or

slave at any time.

3.2.1.2 Interrupt

The simplest kind of RPC transaction is is an interrupt (Fig. 3.4): a unidirec-

tional notification from master to slave. RPC interrupts are typically sent to inform

the slave that some long-running operation (such as a backgrounded DMA write to

slow flash memory) has completed at the master, or that an external event took

place (such as the arrival of a new Ethernet frame or a button press).
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The call field of an interrupt packet is set to a value chosen by the master

describing the specific type of event; the data fields may or may not be significant

depending on the specific master’s application-layer protocol. Since the field is 8

bits long any master may generate up to 256 uniquely distinguishable interrupts.

Note that the term “interrupt” was chosen because these messages convey

roughly the same information that IRQs do in classical computer architecture. While

the slave node may choose to interrupt its processing and act on the incoming

message immediately, it may also choose to buffer the incoming message and handle

it later. (If the slave runs out of buffer space it must process the message immediately

or discard it since there is no way to request retransmission of an interrupt. Link-

layer flow control may be used to prevent this problem as long as the slave does not

need to receive messages from another node while it is busy.)

Master Slave

RPC_TYPE_INTERRUPT
Call xx, data yy

Figure 3.4: Dataflow diagram for RPC interrupt transaction

Devices are encouraged to avoid imposing tight hard-realtime deadlines on

interrupt processing latency. This can be done in numerous ways, but one of the

simplest is for the node itself to function as a DMA master. This is made quite

easy since Antikernel’s message system makes no distinction between hardware pe-

ripherals and software processes, so OS services are not limited to flowing one way

(hardware provides services to software). Instead, all OS services, including the

name server (Sec. 3.3.1) and dynamic memory allocation (Sec. 3.4), are exposed to

hardware as well. This is discussed in greater detail in subsequent sections.

When Antikernel’s Ethernet MAC (a Verilog module) initializes, for example,

it queries the name server for the hostname ram, then sends a RAM ALLOCATE request

to allocate a page of physical memory. This address is stored in an internal register
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until a new frame arrives.

When a frame arrives it is buffered in an internal FIFO and the Ethertype is

checked against a list of registered layer-3 protocol handlers. If no match is found

the packet is of no interest to the system and is dropped. If a match is found,

however, the MAC will issue a DMA write to send the packet to RAM. Once the

write completes it calls RAM CHOWN to give the protocol handler access to the page,

then sends a ETH FRAME READY interrupt to the handler to inform it that a new

packet is ready for processing. The MAC then allocates a new page of physical

memory and prepares to repeat the cycle for the next packet.

3.2.1.3 Call

The second major kind of RPC transaction is a function call: a request by the

master that the slave take some action, followed by a result from the slave. This

result may be either a success/fail return value (Fig. 3.5) indicating that the remote

procedure call completed, or a retry request (Fig. 3.6).

The call field of a function call packet is set to a slave-dependent value de-

scribing one of 256 functions the master wishes the slave to perform. The meaning

of the data fields is dependent on the slave’s application-layer protocol.

A return packet (including a retry return) must have the same call value as

the incoming function call request to allow matching of requests to responses. The

meaning of the data fields is dependent on the slave’s application-layer protocol.

The RPC call protocol is capable, in principle, of out-of-order (OoO) transac-

tion processing (processing multiple incoming commands in the most efficient order,

rather than that in which they were received) however no semantics are currently

defined for matching reordered call and return packets and none of the nodes in

the current prototype implement OoO processing. The simplest option for adding

OoO would be to allow reordering of commands between nodes (in other words, two

incoming calls from different nodes could be processed in any order) however not for

one node (in other words, two incoming calls from the same node must be processed

in the order they arrived in).

Retry return values may be sent by the slave at any time in response to an
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Master Slave

RPC_TYPE_CALL
Call xx, data yy

RPC_TYPE_RETURN_
[SUCCESS|FAIL]
Call xx, data zz

Figure 3.5: Dataflow diagram for RPC call/return transaction

incoming RPC call request, but are typically only sent if the slave is already process-

ing another remote procedure call and has no free buffer space to save the message

for future processing. The act of rejecting an RPC call with a retry is required to

be idempotent - it does not result in any state change within the slave.

The master may treat a retry as a failure (if it cannot or does not wish to

retry) or repeat the function call request at any time in the future. There is no

limit on how many times a slave may reject an incoming RPC with a retry request,

however masters may choose to impose an arbitrary limit on wait time or number

of retries before timing out and declaring failure.
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Master Slave

RPC_TYPE_CALL
Call xx, data yy

RPC_TYPE_RETURN_
RETRY
Call xx, data zz

RPC_TYPE_CALL
Call xx, data yy

RPC_TYPE_RETURN_
[RETRY|SUCCESS|FAIL]
Call xx, data zz

Figure 3.6: Dataflow diagram for RPC call/retry transaction

3.2.1.4 Network Status / Reserved

Two type codes are reserved for network status notifications (sent by a router

or firewall to indicate that a packet could not be delivered because the destination

port is not present or is blocked by firewalling). No protocol has been defined for

these type codes yet and the current code does not implement them.

In addition, one type code is reserved for future expansion.

3.2.1.5 Flow Control

Flow control for the RPC network consists of a one-bit tx en flag and a two-

bit tx ack flag. When the packet is sent, tx en is asserted the same cycle as the

first data word. The transmitter then blindly sends the remainder of the packet,

and blocks until tx ack is set (by the recipient) to a nonzero value, which may be

an ACK (packet received successfully, Fig. 3.7) or NAK (recipient is busy, retrans-
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mit required). In the event of a NAK, the transmitter must re-send the packet

immediately (Fig. 3.8).

clk_noc

rpc_tx_en

rpc_tx_ack idle ack idle

rpc_tx_data routing rpc/data data data

Figure 3.7: Timing diagram for RPC send with successful ACK

clk_noc

rpc_tx_en

rpc_tx_ack idle nak idle ack idle

rpc_tx_data routing rpc/data data data routing rpc/data data data

Figure 3.8: Timing diagram for RPC send with one retransmit

The RPC protocol will function over links with arbitrary latency (and thus

register stages may be added at any point on a long link to improve setup times),

however a round-trip delay of more than one packet time will reduce throughput

since the transmitter must block until an ACK arrives before it can send the next

packet (Fig. 3.9).

clk_noc

rpc_tx_en

rpc_tx_ack idle ack idle

rpc_tx_data routing rpc/data data data routing rpc/data

Figure 3.9: Timing diagram for RPC send with delayed ACKs

The RPC router is a full crossbar which allows any of the five ports to send

to any other port, with multiple messages in flight simultaneously. Each exit queue

maintains a round-robin counter which increments (mod 5) each time a packet is

sent. In the event that two ports wish to send to the same destination simultane-

ously, the port identified by the round-robin counter is given max priority; otherwise

the lowest numbered source port wishing to send is permitted to do so. This ensures

baseline quality of service (each port is guaranteed 1/5 of the available bandwidth)

while still permitting bursting (a port can use up to 100% of available bandwidth if

all others are idle).
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There are two implementations of the RPC network transceiver at this time.

RPCv2Transceiver has an unpacked parallel interface intended to be used directly

by state machine logic, and RPCv2RouterTransceiver has a SRAM interface which

is intended to be used by routers or nodes requiring low-latency streaming processing

of messages.

3.2.2 DMA

3.2.2.1 Packet Structure and Semantics

A DMA message (Fig. 3.10) consists of the standard layer-2 routing header

followed by an opcode (read request, read data, or write data), data length, and a

32-bit address indicating the target of the DMA operation. This is then followed

by message content for “read data” and “write data” packets. The “read request”

packet has no data field. (One type code is left undefined for future expansion.)

Source node Dest node

Data

Op LenPadding
Address

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

Bit
Word

0
1

...
N+2

2

Figure 3.10: Structure of a DMA packet

The maximum DMA payload size is 512 32-bit words, or one 2KB memory

page. This size was chosen because it is a common size for FPGA block RAMs and

is the smallest power-of-two size sufficient for storing an entire Ethernet frame.

The network-level packet format, routers, and transceivers do not enforce any

word/page level alignment restrictions, however all nodes implemented to date re-

quire that operations be aligned to a 32-bit word boundary. Many nodes also refuse
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to process multi-word read or write bursts that cross a 2KB page boundary, since

access controls are done on a per-page basis and this would require multiple access

checks and possible burst truncation (if access was granted to part of the range, but

not the rest).

All write operations must be to an integral number of 32-bit words; byte

masking is not supported. If byte-level write granularity is required this is typically

implemented with a read-modify-write operation.

Since the DMA address field is 32 bits in size, a maximum of 4 GB may be

addressed within a single routing address. Nodes requiring > 4 GB of address space

may be assigned to larger subnets; for example a SD card controller might use a /14

subnet (4 routing addresses) to permit use of cards up to 16 GB (4x 4 GB) in size.

When sending pointers between nodes, unless the node to which the pointer

refers to can be inferred by context, it is necessary to send both the 16-bit rout-

ing address and the 32-bit pointer. The resulting 48-bit physical address uniquely

identifies a single byte of data within the system.

Physical addresses are written as the routing address (either hostname or

numeric forms are acceptable) followed by a colon and the full 32-bit pointer, such

as ram:cdcd1234 or 8003:00000800.5

3.2.2.2 Memory Read

A memory read transaction consists of one packet from master to slave, with

the type field set to “read request”, the address set to the location of the data being

requested, and the length set to the number of words being read. Note that the

data field is empty in this one case, even though the length field is nonzero. This

causes a slight increase in complexity for the transceiver cores and routers since the

type must be checked before the actual packet size is known.

If the request is permitted by the slave’s security policy, it responds with a

packet of type “read data”. Address and length are set as in the requested packet,

and the data field contains the data being returned.

If the request is not permitted by policy, the slave returns an error code to

5While this notation appears similar at first glance to x86 segment:offset addressing, the routing
and pointer fields in an Antikernel DMA address are fully independent and do not overlap.
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the master (see section 3.2.2.4) so that it knows that no response is forthcoming.

The master may then trigger an exception handler, reset, terminate the offending

process, or take any other action it deems appropriate.

3.2.2.3 Memory Write

A memory write transaction consists of one packet from master to slave, with

the type field set to “write data”, the address set to the location of the data being

written, and the length set to the number of words being written.

If the request is permitted by the slave’s security policy, it responds with a

“write complete” notification (see section 3.2.2.4). This allows the master to imple-

ment memory-fencing semantics for interprocess communication: to avoid potential

race conditions, one cannot send the pointer to another node (or change access

controls on it) until the in-flight write has completed.

If the request is not permitted, the slave returns an error code to the master

(see section 3.2.2.4) so that it knows the underlying physical memory has not been

modified. The master may then take any internal action it deems appropriate.

3.2.2.4 Command Status Notification

During initial architectural design it was decided that status messages (write

done acknowledgements and access-denied errors) were control-plane traffic, and

thus should travel on the RPC network as interrupt packets. By convention the

code for “write done” is 0x80 and “access denied” is 0x81.

This was, in retrospect, a poor decision: In a softcore CPU the RPC network

is typically under software control while the DMA network is controlled by the L1

cache. Requiring some RPCs to be handled by the cache increases the complexity of

this logic substantially. Furthermore, any DMA-capable device which implements

any security whatsoever (or allows writes) must also have a RPC connection, which

increases the amount of logic used for interconnect.

In the future we intend to refactor the existing code to use the fourth (currently

reserved) DMA packet type for memory status notifications. The type of status will

be conveyed either in the reserved space in the header between the opcode and

address, or in a single data word.
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3.2.2.5 Flow control

In order to send a packet (Fig. 3.11), the transmitter asserts tx en and places

the layer-2 routing header on tx data. It then waits for tx ack to go high be-

fore sending the remainder of the packet headers and (if applicable) the body. If

the receiver is not ready to accept new packets, it may delay assertion of tx ack

indefinitely (Fig. 3.12).

clk_noc

dma_tx_en

dma_tx_ack

dma_tx_data routing op/len addr data data

Figure 3.11: Timing diagram for DMA send

clk_noc

dma_tx_en

dma_tx_ack

dma_tx_data routing op/len addr data data

Figure 3.12: Timing diagram for DMA send with delayed ACK

The current DMA flow control scheme expects a fixed single-cycle latency

between routers. We plan to extend this in the future in order to support variable

latency for long-range cross-chip links, as was done for RPC.

As with RPC, there are two versions of the DMA router. DMATransceiver

has a SRAM interface for data and an unpacked register interface for headers, and

is intended for use by typical nodes. DMARouterTransceiver is intended for routers

or streaming applications, and has one SRAM interface for data and another for

headers.

The initial DMA router was based on a single buffer and a 5:1 mux to save area,

however the limitations of this design quickly became apparent. The current DMA

router uses the same arbiter and crossbar modules as the RPC router, although

the buffers are somewhat larger (one 2KB block RAM plus one 32 bit x 3 word

distributed RAM per port).
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3.3 System Information

Any nontrivial operating system needs a way for nodes to query various prop-

erties of the system, enumerate services, etc. We provide this capability with two

components: the system information server and the name server.

3.3.1 Name Server

The name server is always located at RPC address 8000/16 and functions much

like a DNS server, providing mappings between hostnames and NoC addresses. 6

Nodes can supply either a hostname to be converted to an address, or an address to

be converted to a hostname. It is also possible to enumerate the entire name table

to discover all nodes in the system.

Both hardware and software nodes may query the name table to determine

the addresses of other nodes. Hardware nodes may optionally “bake” the address

of another hardware node in at synthesis time to reduce boot time, however if the

node being queried is software-based (or may change addresses, perhaps due to

cosimulation) the address lookups must be dynamic.

The initial name table (a list of hardware nodes and their addresses) is loaded

into ROM at synthesis time. As software-based applications start up, they may

optionally register their address and hostname with the name server. In order to

prevent a malicious or compromised application from registering a name belonging

to a legitimate service, the entire RPC request, including the source address and

requested hostname, is signed.

The current prototype uses a pre-shared key cryptosystem (HMAC-SHA256)

to reduce FPGA gate count and shorten compile times for tests. The system devel-

oper generates a name registration request, signs it with the secret key, and then

places the signature into the source of the application before compiling it. This

does of course mean that reverse engineering of one device would reveal the key

used for all other devices in the family, so larger scale deployments would need to

use per-device keys or public key cryptography to maintain security.

6Host names are ASCII strings, up to 8 characters long, which uniquely identify a given node
in the NoC. Typically this is the same as the Verilog instance name of the node in the top-level
HDL file.
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One issue with the current protocol is that the network address (process ID)

the application will run as must be known at the time that the request is signed.

This requires that services wishing to register themselves with the name server must

start in a known, defined order since SARATOGA gives out process IDs on a first

come first served basis. We are exploring possible solutions to this issue but have

not yet come up with a satisfactory one.

The name server provides several different read-only queries which require no

authentication: NAMESERVER FQUERY (forward query, given a hostname return the

address if found), NAMESERVER RQUERY (reverse query, given an address return the

hostname if found), and NAMESERVER LIST (name table listing, iterate over the entire

name table and return the Nth entry).

Name registration requires multiple RPC calls so a mutexing scheme is used.

The node first issues a NAMESERVER LOCK call, which returns successfully if the mutex

was granted. If the mutex is already held the application is asked to retry the lock

request. The mutex includes a timeout to prevent deadlocking: if 220 clock cycles

elapse without any calls to the critical section, the mutex automatically unlocks.

Once a lock is granted, the node sends four NAMESERVER HMAC calls, each one

specifying an index from 0 to 3 and a 64-bit chunk of the HMAC signature, followed

by a NAMESERVER REGISTER call, which actually registers the name with the server

and releases the lock. This function will fail if the HMAC signature is invalid, or

if the name table is full. Both NAMESERVER HMAC and NAMESERVER REGISTER fail if

the requesting node does not own the mutex.

3.3.2 System Info Server

The system information server always has the hostname “sysinfo” and cur-

rently provides three RPC methods on all Antikernel systems: get a 64-bit serial

number for the board or FPGA die, get the period of the core NoC clock, and get

the number of NoC clock cycles required to reach a given frequency. A simple 32-bit

iterative (one bit per clock) divider core is used to aid in these computations.

In addition, several more functions are currently supported only on Xilinx

7 series FPGAs. These allow querying the current value of several system health
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paraneters (die temperature, core voltage, auxiliary voltage, RAM voltage) as well

as the normal ranges of these parameters.7

3.4 Memory Management

One of the most critical services an operating system must provide is allowing

applications to allocate, free, and manipulate RAM. In the minimalistic environment

of an exokernel there is no need for an OS to provide sub-page allocation granularity,

so we require nodes to allocate full pages of memory and manage sub-page regions

(such as for C’s malloc() function) in a userspace heap. If a block larger than a page

is required, the node must allocate multiple single pages and map them sequentially

to its internal address space.

In order to simplify operating system implementation and security proofs,

as well as reduce the potential for race conditions or unintended data corruption

in application code, Antikernel’s memory management enforces a “one page, one

owner” model. Shared memory is intentionally not supported, however data may be

transferred from one node to another in a zero-copy fashion by changing ownership

of the page(s) containing the data to the new user. It is of course important for

the sending node to ensure that its write caches, if any, are flushed and all writes

have committed in order to ensure coherency. (In a software-based node this would

typically be handled by the C runtime library’s munmap(2) function.)

The Antikernel memory management API is extremely simple, in keeping with

the exokernel design philosophy. It consists of four RPC calls for manipulating

pages (“get free page count”, “allocate page”, “free page”, and “change ownership

of page”) as well as DMA reads and writes. A “write complete” RPC interrupt is

provided to allow nodes to implement memory fencing semantics before chown(2)ing

a page.

The data structures required to implement this API are extremely simple, and

thus easy to formally verify: a FIFO queue of free pages and an array mapping page

7In order to prevent these from being used to implement side channel attacks, the update rate
of the sensors will be deliberately capped at a few Hz. Further research is necessary to choose
an update rate which provides usefully current data to fan controllers etc, while not allowing one
node to perform side channel attacks on another using the sensor readings.
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IDs to owner IDs. When the memory subsystem initializes, the FIFO is filled with

the IDs of all pages not used for the internal metadata and the ownership array

records all pages as owned by the memory manager.

Requesting the free page count simply returns the size of the free list FIFO.

Allocating a page fails if the free list is empty. If not, the first page address

on the FIFO is popped and returned to the caller; the ownership records are also

updated to record the caller as the new owner of the page.

Freeing a page is essentially the allocation procedure run in reverse. After

checking that the caller is the owner of the page, it is zeroized to prevent any data

leakage between nodes, then pushed onto the free list and the ownership records

updated to record the memory manager as the new owner of the page.

Changing page ownership does not touch the free list at all; after verifying

that the caller is the owner of the page the ownership records are simply updated

with the new owner.

DMA reads and writes perform ownership checks and, if successful, return or

update the contents of the requested range. The current memory controller API

requires that all DMA transactions be aligned to 128-bit (4 word) boundaries, be a

multiple of 4 words in size, and not cross 2KB page boundaries.

The current prototype codebase contains two compatible implementations

of the Antikernel memory management API: BlockRamAllocator (backed by on-

die block RAM, parameterizable size) and NetworkedDDR2Controller (backed by

DDR2, currently fixed at 128MB capacity with a 16-bit bus). A parameterizable-

depth allocator backed by DDR3 is planned, but has not yet been implemented.

A standard Antikernel system must instantiate one of these with the hostname

“ram”. This memory is used as the default storage for large temporary data unless

a different storage node is explicitly requested at the time of allocation. Since

Antikernel’s architecture is inherently NUMA, multiple memory controllers may be

instantiated without causing problems as long as full 48-bit pointers are used to

avoid ambiguity.
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3.5 Processors and Threading

3.5.1 Introduction

We created two softcore CPUs during the development of Antikernel. Both

are in-order pipelined processors which use variants of the MIPS-1 instruction set,

however they use different approaches for interfacing with the NoC and thus binaries

for one cannot run on the other (although C programs which do not use any advanced

processor-specific features can be compiled against the libc for one or the other with

little to no change).

GRAFTON, the first to be designed (Sec. 3.5.2) is optimized for minimal

gate count at the expense of performance, can only run a single process (there

is no support for context switching), and is missing support for many important

features like code signing. It can, however, fit in a much smaller space: we are

currently using it on a Xilinx XC6SLX25 (15K LUT6s) to run the LAN interface

on a managed power distribution unit in our lab.

SARATOGA, the more recent processor (Sec. 3.5.3) is optimized for perfor-

mance above size, and has support for an arbitrary power-of-two number of hard-

ware thread contexts. It is substantially larger than GRAFTON, but has a deeper

pipeline and has much higher peak performance.

3.5.2 GRAFTON

3.5.2.1 Introduction

The first prototype of Antikernel used a custom-developed 32-bit CPU named

GRAFTON, after a nearby town. GRAFTON is a 5-stage-pipelined, single-issue

in-order processor heavily based on the MIPS-1 ISA but eliminating interrupts and

the standard coprocessors. While GRAFTON is intended to be compatible with C

compilers designed to target the MIPS-1 instruction set given appropriate flags and

linker scripts, no portability of binary software between GRAFTON and an actual

MIPS processor is implied or intended.

The core uses only one clock domain so the CPU clock and NoC clock must

be the same frequency. This limits the maximum operating frequency of the entire

SoC as the GRAFTON core was designed with size, rather than performance, as
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the primary goal.

While limited cooperative multitasking is theoretically possible, a GRAFTON

core can only use a single NoC address so no security compartmentalization is possi-

ble within one core. Although designs requiring multiple threads can be split among

multiple GRAFTON cores, this is inefficient and the SARATOGA core (Sec. 3.5.3)

will give better performance in this use case.

The typical programming model for GRAFTON is event driven: the processor

sleeps until an RPC interrupt arrives, handles it, then goes back to sleep. During

event handling the processor can send and receive RPCs, perform memory accesses,

etc. If an RPC interrupt arrives while the application is waiting for an RPC function

call to return, the application may choose to queue it in RAM for further processing

or handle it immediately.

The MIPS-1 instruction set allows for up to four coprocessors with 32 32-

bit registers each. The mtcx (Move To Coprocessor X) and mfcx (Move From

Coprocessor X) allow a 32-bit word to be moved between a coprocessor register

and a general purpose register. The MIPS ISA defines purposes for these registers,

however the gcc compiler does not use them so it is possible to redefine these

registers without breaking compiler compatibility. GRAFTON uses coprocessor 0

to interface to the MMU as well as the RPC network, trace port, and software

divider (see Fig. 3.13).

RPC txvr
Register �le

32 bits x 32 regs

Debug subsystem

Read bus

Instruction fetch

Instruction decode
Register IDs

Debug read

Execution unit

Register values

Forwarding
Coprocessor 0

Register ID
Read/write data

Messages to app

I-side L1 cache
128 lines x 16 bytes
Direct mapped
Virtually addressed

Instruction

Read address

ALU
Control �ow
Memory operations

D-side L1 cache
128 lines x 16 bytes
Direct mapped
Virtually addressed

Addr/write data

Read data

Branch/stall

Arbiter

MMU

Read/write requests
Virtually addressed

ELF loader

Initial PC

Cache misses

Cache misses
Writeback

DMA txvr

Figure 3.13: Block diagram of GRAFTON
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3.5.2.2 ALU

GRAFTON implements all of the standard MIPS-1 integer ALU instructions,

including multiplication using the FPGA’s DSP slices, however there is no support

for floating point since design of an efficient IEEE754 FPU was deemed out of scope

for a thesis focusing on security.

To reduce the area consumed by the core, division is implemented by a software

trap handler rather than hardware. Before the trap handlers are set up (Listing

3.1) any attempt to use the div or divu instructions will result in a null pointer

dereference and segmentation fault.

Once the trap handlers are set up, executing a divide will result in a jump to

the appropriate (signed or unsigned) division handler, with k0 set to the address of

the instruction after the divide. The dividend and divisor are stored in the hi and

lo registers respectively and are accessed by the trap handler with the mflo and

mfhi instructions. After the division completes the handler stores the remainder

and quotient back into hi and lo using mthi and mtlo and jumps to k0.

The standard C runtime library for GRAFTON includes a simple iterative

division routine based on the shift-and-subtract algorithm. This function uses the

stack for saving registers, so it cannot be used before the stack has been initialized.

Listing 3.1: Initializing division traps

1 la t0 , S ignedSo f tDiv i s i onHand le r

2 mtc0 t0 , d iv hand l e r

3 la t0 , Uns ignedSof tDiv i s ionHandler

4 mtc0 t0 , d ivu hand le r

3.5.2.3 Memory Bus and L1 Cache

GRAFTON has a split memory bus with separate instruction and data buses

leading to separate virtually-addressed, direct-mapped caches organized as 128 lines

of four 32-bit words each. This gives a total size of 2KB instruction and 2KB data

cache plus tag bits.

Both caches have single cycle latency for cache hits and do not use the output

register on the block RAMs, which limits the maximum operating frequency of the
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core to 40-75 MHz (in a densely packed -2 speed, and loosely packed -3 speed,

Spartan-6 FPGA respectively).

The cache banks have 32-bit read/write buses to an arbiter/controller which

uses the MMU (see Section 3.5.2.4) to translate the 32-bit virtual address being

fetched/flushed into a 48-bit virtual address and sends it out to the DMA network.

A fixed priority scheme is used for arbitration: D-side writes have max priority,

followed by D-side reads, and finally I-side reads. All read/write transactions consist

of a single 4-word cache line.

The current cache does not have an explicit flush feature. Instead, flushing the

D-side cache is accomplished by a software-based flush routine which sequentially

fetches the first 2KB of the boot sector of flash into a register and discards it. Since

the cache is 2KB and direct mapped, this guarantees that every cache entry will

be evicted. We plan to eventually add a dedicated flush instruction which allows a

selected range of the cache to be flushed in a more efficient fashion.

3.5.2.4 MMU

GRAFTON has a very simple MMU located between the L1 cache and the

DMA network interface, which provides programmable translation for 512 2KB

pages (1MB) of virtual address space starting at virtual address 0x40000000. All

memory accesses outside this range, or to pages for which no physical address is

mapped, result in a segmentation fault.

Since the page table is so small it is held entirely in block RAM on the FPGA

- in other words the page table and the TLB are one and the same. Each entry

contains three bits specifying read/write/execute access, the 16-bit NoC address of

the mapped device, and the 21-bit physical address of the device-side page being

mapped (the low 11 bits must be zero since mappings must be page aligned).

The mappings for a single page may be updated by executing the syscall in-

struction with a0 set to SYS MMAP. The mapping to configure is set by the mmu page id,

mmu phyaddr, mmu nocaddr, and mmu perms registers (see Listing 3.2).

Since permission checks are done by the destination of a DMA transfer, updat-

ing translations between physical and virtual addresses is an unprivileged operation.
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Software can map any physical address to any virtual address it wants; the first cache

miss will trigger a segmentation fault if the DMA request is denied. One somewhat

counterintuitive side effect of this design is that if a page which is not readable in

hardware is mapped as read-write, and the first cache miss to that address is a read,

it will be loaded into the L1 cache with read-write permissions. This means that

attempts to write to the memory will appear to succeed, triggering a segmentation

fault only when the cache line is flushed and the cache controller attempts to write

to the actual physical page.

When a segmentation fault occurs the CPU halts and asserts a 1-bit “segfault”

flag. External logic may use this to reset the CPU or take other action.

Listing 3.2: Mapping a page on GRAFTON

1 # Pre−s t a c k memory mapping

2 # No use o f data RAM (and , c on s e quen t i a l l y ,

3 # saved−temp r e g i s t e r s ) i s permi t t ed .

4 # a0 = Vir tua l base address o f page

5 # ( au toma t i c a l l y rounded down to 2KB boundary )

6 # a1 = Phys i ca l address w i th in the hos t to map

7 # ( au toma t i c a l l y rounded down to 2KB boundary )

8 # a2 = Network address o f the hos t to map

9 # a3 = Permissions to map

10 . g l o b l MmapHelper

11 MmapHelper :

12

13 mtc0 a0 , mmu page id

14 mtc0 a1 , mmu phyaddr

15 mtc0 a2 , mmu nocaddr

16 mtc0 a3 , mmu perms

17

18 l i a0 , SYSMMAP

19 syscal l

20
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21 j r ra

22 nop

3.5.2.5 Coprocessor 0 RPC Interface

Coprocessor 0 registers 1 through 7 (rpc dst addr, rpc src addr, rpc callnum,

rpc type, rpc d0, rpc d1, and rpc d2 respectively) contain unpacked versions of

a 32-bit RPC message. While this makes assembly-language message passing code

very clear and easy to read, it is inefficient for sending unrelated messages since

seven registers, rather than four, need to be loaded to send a message. Replying

to a message with only a few fields changed, however, is very efficient and does not

require complex bitmasking to do a read-modify-write of one field.

To send a message, the a0 register is loaded with the value 0x0001 (SYS SEND RPC)

and a syscall instruction is executed (Listing 3.3). There is no transmit FIFO; a

send blocks if another send is still in progress and hasn’t finished yet.

Listing 3.3: Sending an RPC message on GRAFTON

1 # Sends an RPC message

2 # Optimized rou t ine to minimize p i p e l i n e de l a y s

3 # a0 i s a po in t e r to an RPC message

4 . g l o b l SendRPCMessage

5 SendRPCMessage :

6

7 # Fi r s t load needs a nop to boo t s t r ap

8 lw t0 , 4( a0 )

9 nop

10

11 # From here on , i n t e r l e a v e to reduce need f o r nops

12 lw t1 , 8( a0 )

13 mtc0 t0 , rpc d s t addr

14 lw t2 , 12( a0 )

15 mtc0 t1 , rpc ca l lnum
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16 lw t3 , 16( a0 )

17 mtc0 t2 , rpc type

18 lw t4 , 20( a0 )

19 mtc0 t3 , rpc d0

20 lw t5 , 24( a0 )

21 mtc0 t4 , rpc d1

22 mtc0 t5 , rpc d2

23

24 # Do the ac t ua l send

25 l i a0 , SYS SEND RPC

26 syscal l

27

28 j r ra

29 nop

When a message is received, it is pushed into a FIFO capable of holding

256 messages (4KB). At any time, application software may load the a0 register

with the value 0x0002 (SYS RECV RPC) and execute a syscall instruction. The

receive blocks if a message is not present in the FIFO; a nonblocking read opcode

(SYS RECV RPC NONBLOCK, 0x0003) is defined but not currently implemented. A nop

operation is required in the delay slot after a SYS RECV RPC operation executes.

Once a message is received the application may read from the coprocessor 0

registers holding the message body. In order to pop the FIFO and allow receipt

of another message, software loads a0 with the value SYS RPC DONE (0x0004) and

executes a syscall instruction (Listing 3.4).

Due to the fact that DMA writes use the RPC network for synchronization,

race conditions may occur if a dirty cache line is flushed between the SYS RECV RPC

and SYS RPC DONE operations. Unless application code is absolutely certain that no

cache misses will happen, it is necessary to avoid memory write transactions during

this period. (This is one of several shortcomings of GRAFTON that were addressed

in the design of SARATOGA.)
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Listing 3.4: Receiving an RPC message on GRAFTON

1 # Receives an RPC message .

2 # Blocks u n t i l a message i s a v a i l a b l e .

3 # a0 i s an output po in t e r to an RPC message

4 . g l o b l RecvRPCMessage

5 RecvRPCMessage :

6

7 # Save the po in t e r

8 move t7 , a0

9

10 # Block u n t i l we ge t the message

11 l i a0 , SYS RECV RPC

12 syscal l

13 nop # de lay s l o t

14

15 # I t i s c r i t i c a l t h a t no memory wr i t e t r an sa c t i on s

occur

16 # be fo r e we i s s u e SYS RPC DONE to avoid race

cond i t i on s

17 # or message corrup t ion . The CPU w i l l au t oma t i c a l l y

18 # acknowledge t h e s e messages and may ove rwr i t e the

19 # coprocessor r e g i s t e r s in the proces s .

20

21 # Store i t i n t o r e g i s t e r s

22 mfc0 t0 , r p c s r c add r

23 mfc0 t1 , rpc d s t addr

24 mfc0 t2 , rpc ca l lnum

25 mfc0 t3 , rpc type

26 mfc0 t4 , rpc d0

27 mfc0 t5 , rpc d1

28 mfc0 t6 , rpc d2
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29

30 # Pop the FIFO

31 l i a0 , SYS RPC DONE

32 syscal l

33

34 # Write to memory

35 sw t0 , 0( t7 )

36 sw t1 , 4( t7 )

37 sw t2 , 8( t7 )

38 sw t3 , 12( t7 )

39 sw t4 , 16( t7 )

40 sw t5 , 20( t7 )

41 sw t6 , 24( t7 )

42 nop

43

44 j r ra

45 nop

3.5.2.6 RPC Function Calls

While the RPC network is intended to implement remote procedure call se-

mantics, the low-level API provided by GRAFTON only allows sending and receiv-

ing of raw NoC frames. A simple C wrapper can provide a high-level function call

interface.

Listing 3.5: A complete RPC function call on GRAFTON

1 /∗∗
2 @br ie f Performs a func t i on c a l l through the RPC

network .

3

4 @param addr Address o f t a r g e t node

5 @param cal lnum The RPC func t i on to c a l l
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6 @param d0 F i r s t argument ( on ly low 21 b i t s

v a l i d )

7 @param d1 Second argument

8 @param d2 Third argument

9 @param r e t v a l Return va lue o f the func t i on

10

11 @return zero on success , −1 on f a i l u r e

12 ∗/
13 int RPCFunctionCall (

14 unsigned int addr ,

15 unsigned int callnum ,

16 unsigned int d0 ,

17 unsigned int d1 ,

18 unsigned int d2 ,

19 RPCMessage t∗ r e t v a l )

20 {
21 //Send the query

22 RPCMessage t msg ;

23 msg . from = 0 ;

24 msg . to = addr ;

25 msg . type = RPC TYPE CALL;

26 msg . callnum = callnum ;

27 msg . data [ 0 ] = d0 ;

28 msg . data [ 1 ] = d1 ;

29 msg . data [ 2 ] = d2 ;

30 SendRPCMessage(&msg) ;

31

32 //Wait f o r a response

33 while (1 )

34 {
35 //Get the message
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36 RecvRPCMessage ( r e t v a l ) ;

37

38 // Ignore anyth ing not from the hos t o f i n t e r e s t .

39 //Save i n t e r r u p t s f o r f u t u r e p roce s s ing .

40 //Note t ha t incoming RPC func t i on c a l l s , or

41 // p i p e l i n i n g mu l t i p l e ou t s tand ing RPC ca l l s ,

42 // are not suppor ted in t h i s implementat ion .

43 i f ( r e tva l−>from != addr )

44 {
45 i f ( r e tva l−>type == RPC TYPE INTERRUPT)

46 PushInterrupt ( r e t v a l ) ;

47 continue ;

48 }
49

50 //See what i t i s

51 switch ( r e tva l−>type )

52 {
53 //Send i t again

54 case RPC TYPE RETURN RETRY:

55 SendRPCMessage(&msg) ;

56 break ;

57

58 // Fa i l

59 case RPC TYPE RETURN FAIL:

60 return −1;

61

62 //Success , we ’ re done

63 case RPC TYPE RETURN SUCCESS:

64 return 0 ;

65

66 //We’ re not ready f o r i n t e r rup t s , save them
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67 case RPC TYPE INTERRUPT:

68 PushInterrupt ( r e t v a l ) ;

69 break ;

70

71 default :

72 break ;

73 }
74

75 }
76 }

3.5.2.7 Debug Support

In order to allow synchronizing of a logic analyzer to certain regions of code,

or measuring the execution time between certain events, the CPU has a 1-bit “trace

flag” brought out to a top-level pin, which is asserted for one clock cycle during the

execution of a syscall instruction when a0 is set to SYS TRACE.

GRAFTON includes a JTAG debug core as a synthesis-time option, along with

a gdbserver so that standard debugging tools may be used with it. The debug core

provides numerous standard debug functions such as “connect”, “halt”, “resume”,

and “read registers”, and allows clearing of the “segfault” flag. Since GRAFTON

typically executes from flash or ROM it is not possible to set breakpoints by writing

to the code segment, so two hardware instruction breakpoints are provided. There

is no support for data read/write breakpoints in the current version of GRAFTON.

Due to the node-level security provided by Antikernel, it is not possible for

the JTAG debugger to simply read or write memory or I/O resources which be-

long to the application being debugged by sending NoC messages directly to the

peripheral. Instead, the debugger sits on the D-side virtual address bus between the

CPU core and D-side L1 cache. This effectively allows debugger memory accesses to

NAT through the L1 cache and become indistinguishable from application memory

accesses.

There is no authentication or security on the current debug core since it is
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intended to be used in development hardware only (production devices would disable

it at synthesis time). If necessary, it would be fairly simple to implement a password

or other authentication system to prevent unauthorized debugging.

3.5.2.8 ELF Loader

In order to eliminate the need for a boot loader or complex ROM image cre-

ation, GRAFTON includes a bare-bones ELF loader implemented as a simple mi-

crocoded state machine (around 200 lines of Verilog including whitespace, comments,

and debug print statements).

The loader reads the first 2KB of the executable into a SRAM buffer, then

verifies the ELF magic number and walks through the ELF header to locate the

ELF program headers. It then loops over the table of program headers and, if the

header is marked as loadable and has a nonzero size on disk, adds an entry to the

TLB (marked read-execute) for each 2KB page in the header.

The loader does have a number of limitations. It does not currently support the

.data segment needed for read-write global variables initialized to nonzero values

(initialized global constants in .rodata, or globals initialized to zero in .bss, are

fully supported). All data stored in program headers must be aligned to 2KB

boundaries, and the program header table must fit within the first 2KB of the

executable. All libraries must be statically linked or moved to server applications,

rather than dynamically linked.

After the loader finishes executing $pc is set to e entry which is the virtual

address of start, the first instruction in the program.

Other than magic-number sanity checks, no signature checks or verification of

the executable are performed. This is addressed in SARATOGA.

3.5.2.9 Performance

GRAFTON was designed for size rather than speed. The current version tops

out at 75 MHz on a Xilinx Spartan-6 FPGA (-3 speed) and 110 on a Xilinx Artix-7

(-2 speed). On the Artix, resource usage is approximately 1700 flipflops, 2700 LUTs,

1100 slices, and 11 block RAMs for the CPU core alone. A minimal reference system
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(CPU, RAM, ROM, JTAG debug bridge, name server, system info, and the required

NoC routers) uses 6400 flipflops, 8100 LUTs, 2900 slices, and 30 RAMs.

Initial Dhrystone benchmark performance on GRAFTON was abysmal (0.035

DMIPS/MHz). We added a set of hardware performance counters and determined

that the I-side L1 cache had terrible performance (a miss rate of over 5% and 80

cycle latency on misses), and that the benchmark spent the overwhelming majority

of its time thrashing the cache and waiting for instruction fetches. Enabling compiler

optimizations (gcc -O2) shrunk the working set size significantly, reducing the cache

miss rate to 1.95%. After some optimizations to reduce L1 miss latency to 29 cycles,

Dhrystone performance reached 0.205 DMIPS/MHz.

It appears that the poor benchmark performance is largely, if not entirely, due

to the simplistic cache design (and not to overhead from security checks). We plan

to improve the cache in the future, perhaps increasing the size to more than a single

block RAM and/or making it associative, and explore ways to further reduce the

latency of misses.

3.5.3 SARATOGA

3.5.3.1 Introduction

The next-generation CPU for Antikernel is called SARATOGA (after another

nearby town). SARATOGA is a high-performance dual-issue in-order barrel pro-

cessor using a modified version of the the MIPS-1 instruction set with an 8-stage

pipeline and a parameterizable number of hardware threads (the default is 32, but

any power of two greater than or equal to eight is legal). This produces the net effect

of 8 virtual CPUs at 1/8 the core clock rate, time-sharing the same two execution

units.

While SARATOGA is intended to be compatible with C compilers designed

to target the MIPS-1 instruction set given appropriate flags and linker scripts, no

portability of binary software between SARATOGA and an actual MIPS processor

is implied or intended.

SARATOGA has eight pipeline stages: two of instruction fetch (IFETCH0 /

IFETCH1), two of instruction decode and register fetch (DECODE0 / DECODE1),
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Figure 3.14: Block diagram of SARATOGA

and four of execution (EXEC0 / EXEC1 / EXEC2 / EXEC3).

The scheduler decides what thread to run next during EXEC3, looks up the

program counter, and dispatches a 64-bit read on the I-side bus; the L1 cache has

two-cycle read latency so the instructions are available (in the event of a cache hit)

during the DECODE0 cycle.

During DECODE0 the register IDs are parsed out by combinatorial logic and

fed out to the register file. The decode/schedule logic then determines which instruc-

tion(s) to execute. If the first instruction is a cache miss, the CPU stalls regardless

of whether the second hit or missed (since there is no support for out-of-order execu-

tion). If both instructions hit, it will attempt to issue both. If the second instruction

uses the result of the first, there is a data hazard and the second instruction must

wait until the following cycle. Memory operations can only execute on unit 0 and

cannot be dual-issued with any other instruction in the current design; improving

this is planned for a future microarchitecture revision. The syscall instruction

uses all ports of the register file and thus uses both execution units. Multiply/di-

vide instructions can only execute on unit 0; there is no sense in dual-issuing them

since the MIPS-1 ISA has dedicated result registers which cannot be shared by two

concurrent multiply/divide operations. (If and when the processor is extended to

support a “multiply or divide to general-purpose register” instruction such as found
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in MIPS32, this scheduling restriction will be removed for those opcodes.)

Unlike an actual MIPS processor, SARATOGA does not have branch delay

slots (since successive instructions in an application actually execute many cycles

apart). If the first instruction in a pair is a jump the second does not execute at all;

if the second is a jump the first executes normally. The jump-and-link instruction

returns to the instruction 8 bytes after the jump as in the actual MIPS architecture.

The instruction in the delay slot may be anything (since it never executes), how-

ever it is recommended that it be a nop to improve code readability. This results

in code compatibility with MIPS C compilers and assemblers as long as they are

instructed to not use delay slots (for example the .set noreorder directive in the

GNU assembler, or the -fno-delayed-branch flag to gcc).

Branch operations begin in EXEC0 and the results from both execution units

are resolved during EXEC1, so that final writeback to the program counter can

occur during EXEC2.

3.5.3.2 Thread Scheduler

Threads in SARATOGA are scheduled using a circular linked list implemented

as a Verilog module, which supports atomic (single cycle) inserts and deletes with

2-cycle pipeline latency.

The processor begins in the idle state with no threads running. A free-list of

thread IDs is initialized to contain every valid thread ID, and a bitmap of thread

IDs is initialized to the “unallocated” state.

When a “create new thread” request is received from the ELF loader (see

section 3.5.3.8) the free list is popped, the bitmap is updated to reflect that this

thread ID is allocated, and the thread ID is now available for use (but is not yet

scheduled).

Once the ELF loader has finished initializing the thread, if everything was

successful, it issues a “run” request to the scheduler. The provided thread ID is

checked to make sure it’s not already in the run queue, then inserted into the linked

list.

During execution, the CPU reads the current thread from the linked list and
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schedules it for execution if possible, then goes on to the next thread in the linked

list the following cycle. If the thread is already in the pipeline (which may be true

if less than 8 threads are currently runnable) then it waits for one cycle and tries

again. If the thread is not in the run queue at all (which may be true if the thread

was just canceled, or if no threads are currently runnable), then the CPU goes to

the next thread and tries again the next cycle.

To delete a thread, it is removed from the linked list and pushed into the

free list, and the bitmaps are updated to reflect its state as free. The linked-list

pointers for the deleted thread are not changed; this ensures that if the CPU is

about to execute the thread being deleted it will correctly read the “next” pointer

and continue to a runnable thread the next clock cycle. (There are no race conditions

possible due to the multi-cycle latency of the allocate and free routines; by the time

the freshly deleted thread can be re-added to the run queue the CPU is guaranteed

to have continued to a runnable thread.)

The architecture allows for a thread to remove itself from the run queue with-

out terminating (although the thread management API does not currently provide

a means for doing this). This will allow threads blocking on long-running I/O op-

erations to place themselves in a “sleep” state from which they can quickly awake,

but which does not take up space in the CPU pipeline that other threads could

potentially be using.

3.5.3.3 Execution Units

SARATOGA has two execution units connected to separate ports on the reg-

ister file. Both are copies of the same Verilog module however some functionality is

left unconnected (and thus optimized out) in execution unit 1.

Each execution unit takes in two values from the register file during EXEC0,

and outputs one value to the register file during EXEC3.

During EXEC0, unit 0 may also dispatch an RPC send or receive, or a memory

transaction. Results from RPC receives (if data is available), as well as memory

operations (in case of an L1 cache hit) are available during EXEC2.

The multiply-divide unit consists of a switchable signed/unsigned multiplier
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which returns results during EXEC3. The divide instructions are currently unim-

plemented, but we intend to add a fully pipelined iterative divider that can accept a

new input every cycle and returns results a fixed 32 cycles later. Given the 8-stage

barrel design this leads to an apparent latency of 4 instructions (if 8 or less threads

are active) or less. If all 32 threads are active, divisions will never block.

All other ALU operations complete by EXEC1.

3.5.3.4 Register File

SARATOGA’s register file is logically 128 bytes (32 32-bit registers) for each

thread context. For the default of 32 threads, this comes out to 4096 bytes, or 4

KB. This size would, at first glace, seem to fit comfortably in one Xilinx 7-series

FPGA block RAM, or two Spartan-6 FPGA block RAMs.

Unfortunately, the register file must be capable of reading four registers and

writing two every clock cycle. Conventional FPGA block RAM uses dual-port 8T

SRAM cells and thus cannot access more than two words per clock. Adding R

additional read ports can be done with trivially with O(R) area overhead by creating

R individual dual-port memories sharing one write port but with separate read ports.

This does not solve the problem of multiple write ports, however. Several

proposed techniques, such as live value tables [69], were evaluated and rejected

before settling on the XOR-based technique described in [70]. This technique allows

dual port SRAM arrays to be scaled up to arbitrary numbers R of read ports and W

of write ports with O(W 2 +WR) area overhead, and O(logW ) critical path delay.

The heart of the algorithm is quite simple and takes advantage of the can-

cellation property of XOR (any value XORed with itself equals zero). A matrix

consisting of W +R rows by W columns of dual port SRAMs is constructed; to read

from port r the desired address is read from all W SRAMs in row r of the grid and

the outputs are fed into a W -input XOR tree. The output of the XOR tree is the

desired value.

Writing a value to port w is a two-step process. First, the desired address in

row R + w of the matrix is read back and the values are XORed together, yielding

the old value. This is then complemented, XORed with the new value, and written
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back to all SRAMs in column w of the grid. When the new values are XORed the

result will be the new value.8

We have implemented this memory as a fully parameterizable Verilog module

which supports arbitrary numbers of read and write ports, arbitrary sized memory

arrays, and can use either block or LUT RAM. The number of pipeline registers is

parameterizable from zero (for LUT RAM only) to two.

In addition to the register file, smaller instances of the same multiport mem-

ory module have found themselves useful in various support roles throughout the

processor (such as managing linked-list pointers in the thread scheduler, where the

“next” and “prev” pointers for two different nodes need to be updated in one clock

cycle to ensure atomicity of inserts and deletions).

3.5.3.5 L1 Cache

The L1 cache for SARATOGA is split into fully independent I- and D-side

banks, and is fully parameterizable for levels of associativity, words per line, and

lines per thread. The default configuration is 2-way set associative and 16 lines of

8 32-bit words, for a total size of 1KB instruction and 1KB data cache per thread

(plus tag bits) and 32KB overall. The cache is virtually addressed and there is

no coherency between the I- and D-side caches. (Since software cannot write to

instruction memory, and the instruction bus lacks a write port, this was deemed

unnecessary.)

The current cache is quite small per thread, which is likely to lead to a high

miss rate, but this is somewhat made up for by the ability of multithreading to

hide latency - if all 32 threads are active, a 32-cycle miss penalty can be incurred

without causing more than a single cycle of stalling. We have not yet implemented

performance counters (as in GRAFTON) for measuring cache performance; after

this is added there are likely to be numerous optimizations to the cache structure

(possibly including speculative prefetching of upcoming cache lines after a miss).

As with GRAFTON the cache lacks an explicit flush mechanism in the current

8Note that the value in cell (R+w,w) is overwritten and thus not included in the feedback XOR
calculation for writes. Since the cells along this diagonal are never read they can be optimized out
during the code generation process, resulting in a final area cost of W (W +R− 1) SRAM blocks.
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prototype. We intend to add one in the near future and are currently researching

efficient flush strategies.

3.5.3.6 MMU

In order to speed prototyping a very simple MMU was created, consisting of

a software-controlled TLB with no external page tables. It supports a parameteriz-

able number (the default is 32) of 2KB pages of virtual memory per thread, mapped

consecutively starting at virtual address 0x40000000. Each thread has a fully inde-

pendent virtual address space, meaning that the total amount of virtual memory

addressable by all threads combined in the default configuration is 32*32 = 1024

pages, or 2 MB. This has been sufficient for initial prototyping; a full MMU with

a TLB and external page tables in RAM is planned for the future but was deemed

beyond the scope of the thesis.

Since the MMU is accessed by software using an abstracted API (the OOB OP MMAP

RPC call on the OoB management interface) it will be possible to make fairly ex-

tensive changes to the internal MMU and TLB structure without breaking software

compatibility.

Each TLB entry consists of a valid bit, three permission flags (read/write/exe-

cute), a 16-bit node ID, and a 21-bit physical address within that node (all mappings

must be page aligned). This allows the full 48 bits of physical address space to be

used.

3.5.3.7 RPC Network Interface

The SARATOGA processor requires an RPC subnet with one address per

thread context, plus an extra address for out-of-band (OoB) management. Since

the thread count must be a power of two, and subnet sizes must be a power of two,

this results in the processor consuming 2N addresses for N threads.

The first address of the subnet is used as the OoB management address. This

ensures that any node which queries the name server for the hostname of the proces-

sor will get the management address, regardless of the number of threads supported.

The high half of the subnet is used for thread addresses; all other addresses in the

low half of the subnet are unused and incoming packets are ignored.
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In order to send an RPC message, the high half of the a0 register must be set

to SYS SEND RPC BLOCKING.9 The low half of a0, as well as a1, a2, and a3, are then

loaded with a 4-word RPC message. (The high half of a0 is used as the opcode

since this would normally be the source address of the packet, but this is added by

the hardware). A syscall instruction then actually sends the message.

This calling convention was chosen such that sending an RPC message would

appear to the compiler and user, as much as possible, to be an ordinary function

call. Since the standard C calling convention for MIPS passes arguments in a0, a1,

a2, and a3, a trivial wrapper function can be created (listing 3.6) which simply sets

the high half of a0 and invokes syscall before returning.

Listing 3.6: Sending a packed RPC message on SARATOGA

1 // void SendRPCMessage ( unsigned i n t a , unsigned i n t b ,

uns igned i n t c , unsigned i n t d)

2 SendRPCMessage :

3 lu i t0 , SYS SEND RPC BLOCKING

4 andi a0 , a0 , 0 x f f f f

5 or a0 , a0 , t0

6 syscal l

7 j r ra

If the calling code prefers to store the various message fields unpacked in a

struct, as was done with GRAFTON, the code becomes slightly more complex

since some bitmasking and shifting is required to generate the packed form of the

message (listing 3.7).

Listing 3.7: Sending an unpacked RPC message on SARATOGA

1 /∗
2 @br ie f Sends an RPC message

3

4 @param a0 Pointer to a RPCMessage t ob j e c t

9Note that the “blocking” part of the opcode name does NOT mean that the syscall will block
until the message has been sent. It will, however, block rather than failing if the transmit FIFO is
full.
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5 ∗/
6 . g l o b l SendRPCMessage

7 SendRPCMessage :

8

9 //Load arguments from RAM

10 lw t0 , 4( a0 ) // dst addr

11 lw t1 , 8( a0 ) // callnum

12 lw t2 , 12( a0 ) // type

13 lw a1 , 16( a0 ) //d0

14 lw a2 , 20( a0 ) //d1

15 lw a3 , 24( a0 ) //d2

16

17 //Pack in to r e g i s t e r s as nece s sa ry

18 lu i a0 , SYS SEND RPC BLOCKING

19 andi t0 , t0 , 0 x f f f f //mask o f f v a l i d addr

b i t s

20 andi t1 , t1 , 0 x f f //mask o f f v a l i d callnum

b i t s

21 andi t2 , t2 , 0x7 //mask o f f v a l i d type

b i t s

22 or a0 , t0 //addr word

23 s l l t1 , t1 , 24 // callnum

24 s l l t2 , t2 , 21 // type

25 or a1 , a1 , t1 // s h i f t e d callnum | d0

26 or a1 , a1 , t2 // f u l l op word

27

28 //Do the ac tua l ope ra t i on

29 syscal l

30

31 //Done

32 j r ra
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33 nop

Receiving an RPC message is essentially the same process in reverse. The

high half of a0 is loaded with SYS RECV RPC BLOCKING10 and a syscall instruction

is executed. When a message is ready, the four words written to (in order) v1, v0,

k0, and k1.

As with the argument registers, this set was chosen very carefully. v0 and v1

are the standard MIPS return registers. If the message is received in a function

using the standard MIPS calling convention, the “return value” of the function is

the second word of the RPC message. This contains both the RPC packet type

(success/failure state) as well as the first data word, and thus allows simple RPC

function calls to be performed entirely in registers without using memory. If the full

body of the RPC message is required, it may be either accessed through the other

registers directly, or by an assembly-language wrapper function (Listing 3.8) which

unpacks the message and stores it in a struct. 11

Listing 3.8: Receiving an unpacked RPC message on SARATOGA

1 /∗
2 @br ie f Rece ives an RPC message .

3

4 Blocks un t i l a message i s a v a i l a b l e .

5

6 @param a0 Pointer to an RPCMessage t ob j e c t f o r

s t o r i n g the r e s u l t in

7 ∗/
8 . g l o b l RecvRPCMessage

9 RecvRPCMessage :

10

11 //Save the po in t e r

10This call blocks until a message is received and currently has no non-blocking equivalent. We
plan to add a “check for message and return immediately if none found” call in the future.

11The names rpc header, rpc d0, rpc d1, and rpc d2 are aliases for v1, v0, k0, and k1 defined
in a header file for convenience.
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12 move t7 , a0

13

14 //Blocking RPC r e c e i v e

15 lu i a0 , SYS RECV RPC BLOCKING

16 syscal l

17

18 // Extract f i e l d s and s t o r e to memory

19 sw rpc d2 , 24( t7 ) //d2

20 sw rpc d1 , 20( t7 ) //d1

21 s r l t0 , rpc d0 , 24 // s h i f t out

callnum

22 s r l t1 , rpc d0 , 21 // s h i f t out type

23 l i t2 , 0x1FFFFF //mask f o r d0

24 and t2 , t2 , rpc d0 //mask out d0

25 andi t1 , t1 , 0x7 //mask f o r type

26 s r l t3 , rpc header , 16 //mask f o r s r c

addr

27 andi t4 , rpc header , 0 x f f f f //mask f o r dst

addr

28 sw t2 , 16( t7 ) //d0

29 sw t1 , 12( t7 ) // type

30 sw t0 , 8( t7 ) // callnum

31 sw t4 , 4( t7 ) // dst addr

32 sw t3 , 0( t7 ) // s r c addr

33

34 //Done

35 j r ra

36 nop

Since a new application starting up on a SARATOGA core does not know

the management address of its host CPU a priori, we provide a means for doing

so through the syscall instruction. At any time, an application may perform a



71

syscall with the high half of a0 set to SYS GET OOB to set the v0 register to the

current CPU’s management address. Aside from the RPC interface itself, all other

CPU management operations are accessed via RPCs to the management address.

As of now a total of four operations are supported by the management inter-

face. The first, OOB OP GET THREADCOUNT, returns the number of available threads.

OOB OP CREATEPROCESS creates a new process (detailed in the following section).

OOB OP MMAP creates or modifies a page table entry (section 3.5.3.6). OOB OP ATTEST

is used for remote attestation (section 3.5.3.9).

The OOB OP MMAP call is restricted to threads running on the processor (and

will modify the calling thread’s current page table state). All other calls are available

to any node in the system.

3.5.3.8 ELF Loader with Code Signature Checking

SARATOGA’s ELF loader is slightly more complex than GRAFTON’s due to

additional security features and multithreading support.

To create a new process, a node sends an OOB OP CREATEPROCESS call to the

CPU’s OoB management port, specifying the physical address of the executable to

run. The management system begins by allocating a new thread context, returning

failure if all are currently in use.

If a thread ID was successfully obtained, the ELF loader then issues a DMA

read for sizeof(Elf32 Ehdr) bytes to the supplied physical address, expecting to

find a well formed ELF executable header. If the header is invalid (wrong magic

numbers, incorrect version, or not a big-endian MIPS executable file) an error is

returned.

If the header is well formed, the loader then looks at the e entry field to find

the address of the program’s entry point. This is fed into a FIFO of data to be

processed by the HMAC-SHA256 hashing engine. (It is important to hash the entry

point address, as well as the contents of all executable pages, in order to ensure that

a signed application cannot be modified to start at a different address within the

code, potentially performing undesired actions.)

The loader then checks the e phoff field to find the address of the program
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header table, which stores the addresses of all segments (both loadable and not) in

the program’s memory image. It loops over the program header table and checks the

p type field for each entry. If the type is PT LOAD (meaning the segment is part of

the loadable memory image) then the loader reads the contents of the segment and

feeds them into the hashing engine, and stores the virtual and physical addresses

in a buffer for future mapping. If the type is 0x70000005 (an unused value in the

processor-defined region of the ELF program header type specification) then the

segment is read into a buffer holding the expected HMAC-SHA256 signature of the

executable.

After all loadable segments have been hashed, the signature is compared to

the expected value. If they do not match an error is returned and the allocated

thread context is freed.

If the signature is valid, the list of address mappings is then fed to the MMU.

Note that the ELF loader is the only part of the processor which has permission to

set the PAGE EXECUTE permission on a memory page; permissions for pages mapped

by software through the OoB interface are ANDed with PAGE READ WRITE before

being applied. This means that it is impossible by design for any unsigned code

to ever execute as long as the physical memory backing the executable cannot be

modified externally (for example, by modifying the contents of an external flash chip

while the program is executing). With appropriate choices of access controls for on-

chip memory, and use of encryption to prevent tampering with off-chip memory,

this risk can be mitigated.

After the initial memory mappings are created the program counter for the

newly created thread is set to the entry point address from the ELF header and the

thread is added to the run queue.

3.5.3.9 Remote Attestation

SARATOGA supports a simple form of remote attestation. When an appli-

cation is loaded by the ELF loader, the signature is stored in a buffer associated

with the thread ID. At any time in the future, any NoC node may ask the CPU

(through the OoB management interface) to return the signature associated with a
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given thread context.

This is done through the OoB RPC call OOB OP ATTEST. It takes two parame-

ters (the thread ID and a word index), and returns two values (the requested 32-bit

portion of the signature, and a revision counter). The revision counter increments

atomically every time the signature buffer is written, and is used to avoid returning

a mix of two hashes if a new executable is loaded during the attestation operation.

If the counter is not the same for all 8 words of the hash, then the attestation must

be repeated to gain valid data.

While there is currently no support for providing attestation to off-die enti-

ties (through some sort of cryptographic signature) this could certainly be added

in the form of a node with an embedded key which retrieves a hash by calling

OOB OP ATTEST, signs it, and sends it over a LAN/WAN link.

3.5.3.10 Performance and Layout

SARATOGA was built with speed as a higher priority than size, and the im-

plementation performance reflects this. The SARATOGA processor is much more

parameterizable than GRAFTON so it is important to specify the configuration

when discussing size or performance. Unless otherwise stated all performance num-

bers are for the default configuration (32 threads, 2-way cache associativity, 16 lines

of 8 words per cache bank).

The CPU can easily reach around 180 MHz on a Xilinx Artix-7 FPGA (-2

speed), and can be pushed to 200 with careful floorplanning of the L1 caches and

register file. Area is 5700 flipflops, 6400 LUTs, 2570 slices, and 44 RAMs for the

CPU itself. The reference system requires more NoC routers than the GRAFTON

reference due to the larger subnet size (although in a system with more peripherals

the overhead would be less significant as the intermediate routers would be serving

other children as well); the reference system is 12800 flipflops, 15100 LUTs, 5900

slices, and 77 RAMs. This includes all of the support infrastructure seen in the

GRAFTON reference system, as well as a nocsniff instance observing the CPU’s

RPC uplink to aid in debugging. (This would of course be omitted for security

reasons in a deployed system.)











CHAPTER 4

Tools and Infrastructure

4.1 Introduction

A system which cannot be tested or debugged is essentially useless. The

difficulty with Antikernel is striking a balance between security and testability: it

must be possible to confirm that the code is correct, and investigate failures if bugs

are found, without opening the system up to attack.

The first step is to provide a means for external code to communicate with the

nodes within the SoC. We chose to use the IEEE 1149.1 Joint Test Action Group

(JTAG) boundary scan protocol for this as it is natively supported by the FPGA

and requires no additional pins beyond those used to load the FPGA bitstream

during development.

4.2 Libjtaghal

4.2.1 Layer 1: libjtaghal and jtagd

Early development and testing used Xilinx’s impact tool for programming

the boards however Xilinx does not provide any sort of SDK for using their JTAG

adapter to perform in-circuit test operations aside from executing a fixed script in

a SVF file so this was unsuitable for further work.

After examining and rejecting several existing tools such as openocd [71],

urjtag [72], and xc3sprog [73] for several reasons, including inability to operate in

a client-server environment and overly restrictive licenses, the author decided a new

tool was warranted. This resulted in the creation of a library known as libjtaghal

- the JTAG Hardware Abstraction Layer - and an associated jtagd service that

bridges any adapter supported by libjtaghal out to a TCP socket.

The current lab environment runs one jtagd for each of our 20 FPGA devel-

opment boards on a rackmounted server with an Intel i7 920 processor, connected

via a tree of USB hubs to JTAG adapters using the FTDI FT232H chipset. The

developer’s computer then communicates with the jtagd over the LAN to load

78
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bitstreams onto the board and run test cases. Due to scaling and performance lim-

itations caused by the time-shared half-duplex USB bus, we are planning to make

an FPGA-based debug card which implements the jtagd protocol in an FPGA and

bridges a large number of JTAG ports directly to Gigabit Ethernet.

4.2.2 Layer 2/3: JtagDebugController and nocswitch

In order for test code running on a developer’s computer to interact with the

prototype, we needed some way to move RPC and DMA messages over the JTAG

link. The initial implementation of this scheme required that the computer poll

the board to confirm that transmit buffer space was free, then send a packet, then

set a “push packet to network” bit in the status register once the packet was fully

received. An analogous approach was used for receiving packets from the board.

The end result was a half-duplex system whose performance was severely impacted

by latency.

After running into bottlenecks using this interface for unit tests, we dis-

carded the entire layer-2 encapsulation and started from scratch. The new system

uses Ethernet-style framing in full-duplex system-synchronous mode and somewhat

sidesteps the typical scan structure of JTAG.

Once the FPGA is configured, the host loads the FPGA’s JTAG instruction

register with the USER1 instruction, moves to the SHIFT-DR state, and stays there.

The host clocks data into TDI constantly such that TCK is effectively free-running,

sending idle code words (0x20080000) if there is no data to send (Fig. 4.1). On each

rising edge of TCK the debug core shifts the incoming bit into the 32-bit JTAG

data register and checks if DR equals a “magic” sync word (0x555555D5), which

denotes the start of a data frame and allows the receiver to synchronize to 32-bit

word boundaries; the same framing is used to send data from the board to the host.

In this example, two RPC messages are being sent, one in each direction. The

start of an RPC or DMA message is denoted by a header word (0x60200000 in this

example) which specifies the type of message, the frame length, a sequence number,

and a “credit” counter indicating the number of words free in the remote node’s

ingress buffer as of that sequence number. By subtracting the number of words sent
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since the packet with that sequence number ended (which are currently in flight)

the sender can determine a lower bound on available space in the buffer and make

sure not to send frames before the recipient is ready for them. (The idle code words

contain credit counters in the low 11 bits, set to zero for clarity in this example, so

that buffer state can be maintained even when no frames are being sent.)

555555D5
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60200000

c0008000
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22222222
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DR out
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Figure 4.1: JTAG framing example

Since TMS remains at 0 and the JTAG state machine remains in SHIFT-DR

during this entire period, there is no overhead of constantly sending UPDATE /

CAPTURE commands and the transmit and receive datapaths may operate fully

asynchronously (although sharing the same clock). At any time, the host is free to

return the JTAG state machine to the idle state and perform ordinary boundary

scan operations; the transfer will resume once USER1 is selected again. Single 32-

bit words may be scanned individually if this high-speed mode is not supported by

the test equipment in use.

While libjtaghal provides an API allowing applications to send and receive

messages to the board by directly opening a JTAG connection or by communicating

over TCP with a jtagd, this is not the common use case since it does not provide

a means for multiple applications to communicate with the board simultaneously.

In order to fulfill this need, we created an application called nocswitch which

acts as a PC-based NoC router. It connects to the target board through jtagd
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and accepts TCP connections from applications on the host system (or potentially

remote nodes in a LAN environment), assigning a unique address in the c000/2

subnet to each client. The nocswitch then takes packets arriving on any interface

and forwards them out the appropriate port.

This allows a single FPGA system to exchange layer-2 frames over JTAG with

our entire suite of development tools including an internal logic analyzer (section

4.8), gdbserver for our softcore CPU, and NoC packet sniffer (section 4.7). Both

C++ (for PC-based unit tests) and Verilog (for hardware cosimulation) libraries are

provided to interface with the nocswitch protocol.

Debug features can often present a potential point of entry for an attacker so it

is important to secure them. While it is certainly possible for an implementation to

fuse off the JTAG interface, Antikernel’s compartmentalized security model should

make this unnecessary since the debug bridge forces the high two bits of all incoming

source addresses high (thus forcing them into the debug subnet c000/2). Since host-

based nodes cannot impersonate on-chip entities the security model is not broken

by the debug bridge (although of course nothing stops one host-based debug tool

from impersonating another).

4.3 Splash

4.3.1 Motivation

Development of a system such as Antikernel poses some unique challenges:

code is written for many languages across many architectures. A “standard” work-

flow would involve running one IDE for PC software (test cases and tools), one

for embedded software (Antikernel applications and drivers), and one for FPGA

development (the network, CPU, and hardware processes).

In such a workflow there are many consecutive build and test cycles moving

from one IDE to the next, with the potential for erroneous results if one compile

process was forgotten while testing in another tool. Furthermore, automated re-

gression testing is difficult because most conventional build/unit testing frameworks

cannot support cross-architecture dependencies and have poor support for testing

on embedded platforms (which are heterogeneous and not interchangeable - each
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test case can only run on a subset of the available boards).

A brief, but unsuccessful, attempt was made to use CMake [74] and CTest [75]

to improve this workflow. While it was relatively easy to get native C++ compilation

for the host system and some FPGA compilation working, and CMake is able to

support cross-compilers, CMake does not support building C/C++ code for multiple

instruction sets or operating systems in the same source tree. Furthermore, while

CTest has a “parallel test” option, it does not support heterogeneous clusters.

Parallelizing of compile and test steps is absolutely critical when working with

a codebase this large. The current prototype system consists of 80 C/C++ executa-

bles, 5 C/C++ shared libraries, 5 C/C++ static libraries, 31 FPGA bitstreams, 5

CPLD bitstreams, 18 simulation testbenches, 21 formal verification testbenches, and

54 hardware-in-loop (HiL) tests. Some of these are run multiple times; for example

jtagd is compiled for x86-64 Linux, x86-64 Windows, and ARM Linux, and some

of the HiL tests are run several times on different hardware configurations.

The only remaining option was to create a custom tool. After some study of

existing open and closed source build systems to find good ideas, it was decided that

the system would be modeled most closely on Google’s in-house cloud build system,

Blaze [76]. The result was a system called Splash - the closest thing to the opposite

of “blaze” that we could think of, in keeping with the classic “A’s not B” naming

tradition.

4.3.2 Architecture

The core data structure in Splash is the BuildGraph. This a directed acyclic

graph of BuildGraphNode objects, with edges from output nodes to the files and

objects used to create them. For example, a CppExecutableNode would have

edges to one or more CppObjectNode objects, which would have edges in turn to

CppSourceNode objects.

Each BuildGraphNode object has a virtual function called Update(). This

function recursively calls Update() on all dependencies, then computes a SHA-256

hash which uniquely describes a particular state of the node (hashes of dependencies,

target architecture, contents of source files, compiler flags, compiler version, etc).
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Since the hash describes the full state of the node, if an output file exists for a given

hash then there is no need to re-generate it. This leads to an obvious optimization:

Update() first checks if the corresponding output exists in splashbuild/$HASH/

and returns immediately if so. Otherwise, a batch job is submitted to the cluster to

generate it. If any of the node’s dependencies are still building, the job is marked

as depending on those jobs so that it will not be scheduled until they complete.

The BuildGraph object contains two lists of nodes: targets and tests. The

default “build” operation issues an Update() call to all “target” nodes, waits until

all submitted jobs have completed, then issues an Update() call to all “test” nodes

and waits for completion. Another common operation is to rerun a test, rebuilding

any required objects beforehand. (A future version of the code may optimize per-

formance by dispatching build and test jobs simultaneously, such that tests begin

running as soon as their respective dependencies are built, rather than waiting for

the entire build to finish.)

Splash is designed in a modular fashion so that many external dependencies

can be freely swapped out. For example, rather than using raw libslurm calls to

submit jobs to the cluster, an abstract Cluster object is passed to each Update()

call. As of now the only supported back end is SLURM however support could easily

be added for other cluster managers.

4.3.2.1 Splashfiles

In order to save development time and avoid writing a parser for a custom

domain-specific language, Splash was written as a C++ library; the “build scripts”

are actually C++ source files which link to libsplashcore. When the splash

binary initializes, it creates BuildGraphNode objects for each build script, updating

them as needed.

Once the build binaries are created, splash calls dlopen(2) to load each one,

then finds the CreateNodes() export in each build binary and calls them. After all

nodes have been created, CreateEdges() in each Splashfile is called to create all of

the edges between them.

After the entire BuildGraph has been created, splash then traverses the graph
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and performs the requested operations.

In retrospect this led to what could be considered excessively complex build

scripts. A possible future enhancement would be to make a scripting front end for

libsplashcore which provides the same power with an easier user interface.

Re-creating the BuildGraph each build, including parsing dependencies, also

leads to a significant performance penalty with large codebases. We intend to explore

solutions involving in-memory caching to improve setup performance in the future.

4.3.2.2 Targets

Since Splash was designed with multi-architecture support from the ground

up, every target is associated with an architecture and there are separate binary

directories for each architecture. For example, the jtagd source files are inputs to

the “jtagd-x86 64-linux-gnu” and “jtagd-arm-linux-gnueabihf” targets, which pro-

duce the binaries splashbuild / x86 64-linux-gnu / jtagd and splashbuild

/ arm-linux-gnueabihf / jtagd respectively.

A single Splashfile can create binaries for any supported architecture with the

same ease as the host architecture, creating the appropriate compiler object by call-

ing CppToolchain::CreateCppToolchainCached() with the desired architecture

name. By looping over a list of architectures, the same code can be compiled for

multiple architectures in one build script, as shown below.

Listing 4.1: Creating a C++ executable targeting three different plat-

forms

1 SPLASHFILE EXPORT void CreateNodes ( BuildGraph∗ graph )

2 {
3 //Save some u s e f u l v a r i a b l e s

4 s t r i n g s r c d i r =

5 GetDirOfFi le ( Canonica l i zePath ( FILE ) ) ;

6

7 //Find a l l o f the source f i l e s

8 vector<s t r i ng> s o u r c e f i l e s ;

9 FindFi lesByExtens ion ( s r cd i r , ” . cpp” , s o u r c e f i l e s ) ;
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10

11 //Generic compi ler s e t t i n g s

12 CppCompileFlagList c f l a g s ;

13 c f l a g s . push back (new CppStandardFlag (

14 CppStandardFlag : : CPP STANDARD 11) ) ;

15 c f l a g s . push back (new CppOptimizationLevelFlag (

16 CppOptimizationLevelFlag : :OPT LEVEL NONE) ) ;

17 c f l a g s . push back (new CppDebugInfoFlag ) ;

18 c f l a g s . push back (new CppPro f i l ingFlag ) ;

19

20 //Linker s e t t i n g s

21 CppLinkFlagList l f l a g s ;

22 l f l a g s . push back (new CppLinkLibraryByTargetNameFlag (

23 ” j t a gha l ” , graph ) ) ;

24 l f l a g s . push back (new CppLinkProf i l ingFlag ) ;

25

26 //Mul t iarch b u i l d

27 s t r i n g arches [ ]=

28 {
29 ”x86 64−l inux−gnu” ,
30 ”x86 64−w64−mingw32” ,

31 ”arm−l inux−gnueabihf ”

32 } ;
33 for ( s i z e t i =0; i<s izeof ( a rches ) / s izeof ( a rches [ 0 ] ) ; i

++)

34 {
35 s t r i n g arch = arches [ i ] ;

36

37 CppToolchain∗ t oo l cha i n =

38 CppToolchain : :

CreateDefaultToolcha inForArchitectureCached
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(

39 arch ) ;

40

41 CppLinkFlagList l f l a g s a r c h = l f l a g s ;

42 s t r i n g f td2xx path =

43 FindSharedLibrary ( ” ftd2xx ” , arch ) ;

44 i f ( ! f td2xx path . empty ( ) )

45 l f l a g s a r c h . push back (

46 new CppLinkLibraryByPathFlag ( f td2xx path )

) ;

47

48 //Define the a c t ua l l i b r a r y

49 CppExecutableNode : : CreateCppExecutableNode (

50 graph ,

51 s o u r c e f i l e s ,

52 too l cha in ,

53 c f l a g s ,

54 l f l a g s a r c h ,

55 ” j t a g c l i e n t ” ,

56 true ) ;

57 }
58 }

4.4 Test Cluster

4.4.1 Introduction

Development of Antikernel was performed by writing code for a module, fol-

lowed by testing using a mix of simulation, formal methods, and HiL methods to

ensure correctness. A large suite of unit tests (well over a hundred separate tests)

was used to confirm that newly written code worked correctly and did not introduce

any regression bugs or break existing functionality.
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Since many of the tests take a nontrivial amount of time to run (often due

to bandwidth limitations on the JTAG link), and many FPGA development boards

were available, parallelizing across the hardware seemed like an obvious way to speed

up the testing.

4.4.2 Software Construction

The current test cluster (nicknamed “White Dwarf”) consists of twenty FP-

GA/CPLD dev boards of ten distinct models ranging from tiny 32-macrocell CPLDs

to 200K logic cell FPGAs, managed using the Simple Linux Utility for Resource

Management (SLURM, described in [77]). Each type of board is assigned to a sepa-

rate cluster partition for scheduling and each physical board has its own hostname.

For example, our two Digilent Atlys boards [78] have hostnames atlys0 and atlys1;

a test case compiled for the Atlys platform is then submitted to the atlys partition

and will run on whichever node becomes available first.

Since SLURM expects to run jobs on compute nodes that have full operating

systems, some tweaking (inspired by the IBM BlueGene’s architecture, [59]) of the

usual SLURM workflow was needed: the slurmd process for each FPGA compute

node runs on an associated x86 service node (Fig. 4.2), which may host slurmds for

many FPGA compute nodes.

Developer workstations x86 compute node

x86 compute node

x86 compute node

x86 compute node

x86 JTAG I/O node SLURM controller

USB hub

JTAG adapterJTAG adapterJTAG adapter

FPGA boardFPGA boardFPGA board

Gigabit Ethernet
USB 2.0
JTAG

x86 service node

Figure 4.2: Test cluster architecture (simplified for clarity)

When a HiL test job starts, it begins to execute on the service node. The first

thing to execute in our workflow is a C++ setup utility called slurmwrapper. This
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tool takes a series of arguments from the FPGAUnitTestNode object in the test script

specifying the bitstream to use, whether nocswitch or cosimulation are used, etc,

as well as environment variables from SLURM providing information such as the

node the current job was assigned to (so that it can disambiguate between multiple

compute nodes sharing one service node).

After looking up the node ID, slurmwrapper looks in a text file to find the

hostname and port of the jtagd for the associated compute node. This is currently

a single x86 I/O node however we plan to create dedicated FPGA-based hardware

for this purpose in the future.

If the test case specified a firmware image to load, jtagclient is then in-

voked to load it (this is generally the case for all tests except those testing the

firmware loading algorithms themselves). Once firmware is loaded, nocswitch and

cosimbridge are started if needed.

After all of the support servers are running, slurmwrapper then launches any

debug tools (logic analyzer, NoC packet sniffers, gdbserver) needed for the run,

and waits for them to report that initial configuration is done (for example, logic

analyzer trigger conditions have been selected). The current slurmwrapper code

assumes that the developer’s workstation is also the service node, which prevents

use of GUI debug tools on configurations where this is not the case, but a future

version of the code will launch the debug tools via ssh on the node from which the

job was submitted (presumably the developer’s workstation).

At this point the test case itself is started, with the jtagd (if not using

nocswitch) or nocswitch server’s hostname and port, as well as the hostname/port

to the UART console server (if any), as command-line arguments. Upon completion

the exit code is noted and slurmwrapper waits for the debug tools to be closed.

Before terminating, jtagclient is invoked a second time to reset the target board

to a clean state.

4.4.3 Hardware Construction

The FPGA cluster was initially located on a desk in the author’s office when

it consisted of a handful of boards (Fig. 4.3) but quickly grew to the point of being
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impractically large (Fig. 4.4). At that point, it was moved to a 19” rack (Fig.

4.5, 4.6) which also holds the I/O nodes and a small x86 compute cluster used for

compiling the FPGA bitstreams.

When racking the cluster, the small boards were mounted to laser-cut 100 mm

x 160 mm acrylic frames (Fig. 4.7) and inserted into a 3U Eurocard chassis, and

all new designs were designed with the PCB in the same form factor (Fig. 4.8. The

boards were oriented such that power, JTAG, and USB-serial connections were fed

from the rear, and Ethernet from the front. The three largest boards (two Digilent

Atlys and a Xilinx AC701) were placed horizontally in 1U server cases as they were

more than 100mm long in the shortest dimension.

Figure 4.3: Small FPGA cluster on desk
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Figure 4.4: Large FPGA cluster on desk

Figure 4.5: FPGA cluster on rack
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Figure 4.6: FPGA cluster on rack



92

Figure 4.7: Acrylic shim FPGA card removed from rack

Figure 4.8: Custom-built FPGA card removed from rack
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4.5 Constgen

One problem frequently encountered when co-designing an embedded hard-

ware device and the associated software is managing large numbers of named con-

stants (register IDs, bitfields, etc) across multiple languages. For example, in an

Antikernel-based system each node on the RPC network has a series of named op-

codes used in the Verilog implementation, but these same opcodes must also be

used in C code by any application software wishing to use the services provided by

that node. Furthermore, if the opcode values change for any reason (optimization

of instruction decoding, for example) then the headers for both languages must be

regenerated and the affected code recompiled.

The first attempt at solving this problem was a short shell script written

in PHP which read a file containing tab-separated name-value pairs in either C

or Verilog syntax (Listing 4.2), using any supported base, with or without length

specifiers, and generated C and Verilog headers (Listings 4.3, 4.4). C++ style

comments are supported in the input file but not propagated into the generated

code.

Listing 4.2: Constgen input file

1 // @ f i l e

2 // @author Andrew D. Zonenberg

3 // @br ie f Opcode cons tan t s f o r SARATOGA OoB management

por t

4

5 OOB OP NOP 8 ’ h00

6 OOBOPGETTHREADCOUNT 8 ’ h01

7 OOB OP CREATEPROCESS 8 ’ h02

8 OOBOPMMAP 8 ’ h03

9 OOB OP ATTEST 8 ’ h04

While the initial script was highly effective at solving the target problem, it

was soon realized that allowing the named constants to be used in debug and build

tools would allow even more powerful introspection capabilities. This resulted in
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constgen being ported to C++ and integrated with Splash.

As of now the only supported output formats are C #define and Verilog

localparam declarations, however we plan to support other formats (for example,

C++ enum) in the future.

Listing 4.3: Constgen C/C++ output

1 //////////////////////////////////////////////////////

2 // Generated au t oma t i c a l l y by CppConstgenNode from / nf s /

home/azonenberg /Documents/ l o c a l /programming/achd−soc /

trunk / r t l /achd−soc / sara toga /

SaratogaCPUManagementOpcodes . cons tan t s

3 // DO NOT EDIT

4 //////////////////////////////////////////////////////

5

6 #ifndef

CONSTGEN INCLUDE GUARD SaratogaCPUManagementOpcodes

7 #define

CONSTGEN INCLUDE GUARD SaratogaCPUManagementOpcodes

8

9 #define OOB OP ATTEST 0x4 /∗ 8 b i t s wide ∗/
10 #define OOBOP CREATEPROCESS 0x2 /∗ 8 b i t s wide ∗/
11 #define OOBOPGETTHREADCOUNT 0x1 /∗ 8 b i t s wide ∗/
12 #define OOBOPMMAP 0x3 /∗ 8 b i t s wide ∗/
13 #define OOB OP NOP 0x0 /∗ 8 b i t s wide ∗/
14

15 #endif //#i f n d e f

CONSTGEN INCLUDE GUARD SaratogaCPUManagementOpcodes

Listing 4.4: Constgen Verilog output

1 //////////////////////////////////////////////////////

2 // Generated au t oma t i c a l l y by Veri logConstgenNode from /

nf s /home/azonenberg /Documents/ l o c a l /programming/achd−
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soc / trunk / r t l /achd−soc / sara toga /

SaratogaCPUManagementOpcodes . cons tan t s

3 // DO NOT EDIT

4 //////////////////////////////////////////////////////

5

6 localparam OOB OP ATTEST = 8 ’ h4 ;

7 localparam OOBOP CREATEPROCESS = 8 ’ h2 ;

8 localparam OOBOPGETTHREADCOUNT = 8 ’ h1 ;

9 localparam OOBOPMMAP = 8 ’ h3 ;

10 localparam OOB OP NOP = 8 ’ h0 ;

4.6 Nocgen

4.6.1 Design Goals

During early development, the top-level Verilog modules were created by hand

in a text editor. This did work, but manually instantiating all of the NoC routers,

calculating PLL multipliers, assigning addresses to nodes, populating the ROMs

for the name server, and creating pinout constraints was labor-intensive and error-

prone. This was made worse by the fact that designs often needed to be re-targeted

from one board to another due to outgrowing the capacity of the originally selected

FPGA.13

We created a tool called nocgen to generate all of these elements automatically.

As with constgen, it started out as a shell script but evolved into a C++ module

for Splash. The inputs to nocgen are a script file (example: listing 4.6) and a board

support file (example: listing 4.5).

By separating generic board data from the design-specific code, we eliminate

the need to create a large number of nearly-identical constraint files for each of

several unit tests running on the same hardware. Furthermore, porting of a given

design to a different board which provides the same required interfaces (in this

13While targeting the highest-capacity FPGA in the cluster would largely eliminate this issue,
it would result in much longer test run times since there would be no way to run tests in parallel.
The best cluster utilization can be obtained if tests are balanced such that the total run time for
the tests assigned to each cluster partition is about the same.
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example, a clock and a UART without flow control) is a matter of changing one line

in the Splashfile. Building the same design for several compatible boards can even

be done in one Splashfile by looping over an array of board support file names (as

was done for our indirect Flash programming firmware).

4.6.2 Operation

The first step in nocgen processing is to read and parse the board support

file (*.bsp). This specifies the device being targeted and (in the case of JTAG) the

position of the device in the scan chain. (As of now the chain position is unused,

however in the future this will be used to allow automated program/debug tools to

match firmware images to devices in multi-FPGA boards.)

Listing 4.5: Example NocGen board support file

1 //////////////////////////////////////////////////////

2 // Globa l s t u f f

3

4 //The t a r g e t dev i c e

5 t a r g e t xc6s lx9−2tqg144 scanpos 0

6

7 //20 MHz c l o c k input

8 c l o ck c l k i n input P55 std LVCMOS33 f r e q 20M

9

10 //////////////////////////////////////////////////////

11 // UART (no f l ow con t r o l )

12

13 s i g n a l ua r t rx input P39 std LVCMOS33

14 s i g n a l ua r t tx output P40 std LVCMOS33

15

16 //////////////////////////////////////////////////////

17 // SPI f l a s h

18

19 s i g n a l s p i c s n output P38 std LVCMOS33
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20 s i g n a l s p i s c k output P70 std LVCMOS33

21 s i g n a l sp i da t a [ 0 ] inout P64 std LVCMOS33

22 s i g n a l sp i da t a [ 1 ] inout P65 std LVCMOS33

23 s i g n a l sp i da t a [ 2 ] inout P62 std LVCMOS33 pul lup

24 s i g n a l sp i da t a [ 3 ] inout P61 std LVCMOS33 pul lup

The BSP also specifies the net name, pin location, and I/O standard of each

signal connected to an FPGA pin, as well as additional metadata such as the fre-

quency of a clock input and whether on-die terminators/pullups are required. This

can be easily extended to specify setup/hold requirements for off-die devices however

this is not currently implemented.

After the BSP is loaded, the main script (*.nocgen) is parsed. This contains

a series of global commands (for example “top” which specifies the name of the

top-level module being generated, or “namesrvr key” which specifies the HMAC

password used for signing writes to the name server).

Listing 4.6: Example NocGen script

1 // Top− l e v e l module name

2 top NetworkedUARTTestBitstream

3

4 //Pre−shared HMAC key f o r the name se r v e r to a l l ow

wr i t i n g

5 namesrvr key ”ThisIsALongAndComplicatedPassword”

6

7 // Clock genera t ion

8 p l l MainClockPLL

9 i n c l k c l k i n

10 outc lk c l k noc f r e q 100M duty 0 .5 phase 0 . 0

11 endp l l

12

13 // The UART

14 node uart NetworkedUART
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15 input 1 ua r t rx port ua r t rx

16 output 1 ua r t tx port ua r t tx

17 rpc

18 dma

19 endnode

After the global commands come a series of blocks, each corresponding to a

single module instance in the generated RTL. The most common block is the node

block, which represents a node in the NoC. The user can specify the NoC hostname

of the module, the Verilog module type, connections to the RPC and DMA network,

and which top-level inputs and outputs from the BSP file should be connected to

each port on the module.

Another common block type is the pll block, which instantiates a phase-locked

loop (or equivalent clock synthesizer) and a global clock buffer for each output. All

outputs are gated by the PLL lock signal to avoid glitching during startup.

Note that the the output clocks are specified as frequencies rather than mul-

tiply/divide values, and the input clock is identified by the net name from the BSP.

This ensures that all PLL configuration values will be automatically recomputed if

the design is re-targeted to a new board. The tool will iterate over possible mul-

tiply/divide values and report an error if the target frequencies cannot be created,

or would require a VCO frequency outside the target device’s allowed range. A

minimum of one PLL is required for each design, in order to produce a signal called

clk noc which is used as the clock for all NoC nodes. Additional outputs on this

PLL, and additional PLLs, may be instantiated as necessary for nodes requiring

additional clocks.

In addition to the nodes specified in the script, two metadata nodes are auto-

matically generated: namesrvr, a NOCNameServer object located at address 0x8000,

and sysinfo, a NOCSysinfo object. These nodes are automatically populated with

configuration data derived from the rest of the SoC: for example, the sysinfo service

is configured to report the known frequency of clk noc.

Once all of the node blocks have been read, the next step is to assign addresses

to all nodes with either an RPC or DMA connection. This is currently done in a



99

greedy fashion: all nodes requiring /16 subnets are allocated addresses starting

from 0x8000, in the order that they occur in the script file. All nodes requiring

/14 subnets are then given addresses (rounding up to the nearest multiple of four

as necessary), then /12, and continuing until all nodes have been given an address.

(A future version of nocgen may incorporate packing optimizations to minimize the

number of hops between nodes which communicate frequently, minimize the number

of routers required by placing nodes with only one network connection at adjacent

addresses, or strike a balance between these two goals.)

After all nodes have been given addresses, RPC and DMA routers are created

in a quadtree. Routers with no children are automatically removed, however routers

with one child remain to prevent network loops.14

A JtagDebugController is then attached to the root of the top-level router.

We may add an option to disable this in the future if debugging of the generated

design will not be required, as an additional layer of security or to provide a (tiny)

reduction in resource usage.

After the full NoC topology is generated, all required ROM initialization files

(for the name server, logic analyzers, etc) are produced. The top-level module

Verilog code is generated and written to disk. Finally, the constraints file is created.

As of now the only supported constraint format is UCF (for Xilinx ISE) however

we intend to add support for Synopsys-style constraints in the future. This should

allow designs to be ported to Xilinx’s Vivado toolchain, or many other EDA vendors’

toolchains, with no changes to the RTL or nocgen script file.

In the future we intend to refactor nocgen’s handling of cryptographic key

material to more clearly separate it from application code (perhaps by loading it

from a separate file).

14If this were not done, a forwarding loop could be created. Consider the case of a router at
0x8000/16 directly under a router at 0x8000/12. A packet destined to 0x8005 would be forwarded
up by the child router, down by the parent router, and continue circulating forever. We plan to
address this issue in the future by configuring routers to drop packets coming in the upstream
interface if the destination address is not in the local subnet, which would allow these redundant
routers to be optimized out.
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4.7 Nocsniff

4.7.1 Introduction

Since an Antikernel-based system is based on a network architecture, it is

reasonable to believe that something analogous to existing network debugging tools

could be used to aid in design and debugging. The obvious first choice is a packet

sniffer.

We created a simple sniffer known as nocsniff, which sits on a NoC link

between any leaf node and its parent router. Note that since the sniffer turns the

point-to-point NoC link into a point-to-multipoint link, the assumptions made in

section 5.3.2.2 are violated and thus none of the security proofs are valid for a system

containing a sniffer; as a result once the Antikernel DRC tool is created it will flag

any sniffer instances as violations of the isolation requirements. The sniffer is meant

to be used during development and then disabled at synthesis time before deploying

the system.

4.7.2 Capture Core

The capture core is a simple Verilog module which buffers incoming NoC

frames in an internal block RAM based FIFO and streams in real time to a PC-

based analysis application through the JTAG debug interface. It can be easily

instantiated in nocgen, as shown in listing 4.7.

Listing 4.7: Instantiating a sniffer in nocgen

1 s n i f f e r CpuSni f f

2 t a r g e t cpu

3 e n d s n i f f e r

Due to the large difference in bandwidth between JTAG (66 Mbps raw signal-

ing rate for a Xilinx 7-series FPGA, page 57 of [79]) and the NoC (25.6 Gbps for

full duplex RPC+DMA at 200 MHz) it is clearly impossible to stream a full-speed

packet burst at full line rate. The capture buffer in the sniffer (default size 2KB for

each direction) must be large enough to handle the maximum expected traffic burst

to avoid dropping packets; if this happens a dummy “overflow” frame is generated



101

so that the developer is made aware of the situation.

In order to reduce the risk of dropping interesting packets, we plan to imple-

ment filter rules in the capture core which will only capture packets matching the

provided selector(s) and drop any others. This will allow efficient streaming capture

of a few tens of Mbps of “interesting” traffic out of many Gbps of raw packets.

The current version of nocsniff does not capture DMA traffic, however this

is planned for a future version.

4.7.3 Packet Viewer

The PC-side packet viewer is a gtkmm based application which connects to the

target via a nocswitch server. FPGA unit test nodes in Splash can be configured

to automatically start as many sniffers as required before launching the test case

(listing 4.8).

Listing 4.8: Using a sniffer from Splash

1 auto node = FPGAUnitTestNode : : CreateFPGAUnitTestNode (

2 /∗ s t u f f here ∗/ ) ;
3 node−>UseSn i f f e r ( ”CpuSnif f ” ) ;

4 node−>UseSn i f f e r ( ” EthSn i f f ” ) ;

The current viewer simply shows a live listing of packets updating in real time.

Packets are automatically decoded as they arrive. First, the source and destination

hostnames are looked up with the name server (caching mappings once looked up

to avoid excessive load on the name server).

The viewer then examines the RPC packet type to determine which node’s

protocol to use. As a general rule the application-layer protocol is defined by the

source node for interrupts and function returns, and the destination node for func-

tion calls. The nocgen file for the top-level module is then consulted to determine

the Verilog module type corresponding to that hostname. If none is found, a simple

hex dump of the packet is shown instead of a protocol decode.

If the Verilog module is successfully located, the packets are then decoded by

comparing them against a protocol database generated from comments in the Verilog
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source. In other words, the in-source documentation is the protocol decoder. This

data-driven approach eliminates any need to waste developer time writing protocol

decoders by hand.

At synthesis time a parser built into Splash scans each Verilog module for spe-

cial comments using an extended form of Doxygen syntax, then builds the protocol

database as an easily parseable text file. An example of these comments is shown

in listing 4.9. (Note the reference to the constgen file in the @opcodefile directive,

used to decode binary opcode values to human-readable mnemonics.)

Listing 4.9: Extended Doxygen syntax used by nocsniff

1 /∗∗
2 @f i l e

3 @author Andrew D. Zonenberg

4 @br ie f Block RAM based on−ch ip memory us ing the same API

as NetworkedDDR2Controller .

5

6 @module

7 @opcode f i l e . . / ddr2/NetworkedDDR2Control ler opcodes .

cons tan t s

8

9 @rpcfn RAM GET STATUS

10 @br ie f Gets the curren t s t a t u s o f the RAM con t r o l l e r .

Blocks u n t i l i n i t i s done .

11

12 @rpcfn ok RAM GET STATUS

13 @br ie f RAM s t a t u s r e t r i e v e d

14 @param ready d0 [ 1 6 ] : dec I nd i c a t e s i f memory i s

f u l l y i n i t i a l i z e d

15 @param freepagecount d0 [ 1 5 : 0 ] : dec Number o f f r e e RAM

pages

16

17 @rpcfn RAMALLOCATE
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18 @br ie f A l l o c a t e s one page o f memory .

19

20 @rpcfn ok RAMALLOCATE

21 @br ie f Memory a l l o c a t e d . The a l l o c a t e d page i s zero−
f i l l e d .

22 @param addr d1 [ 3 1 : 0 ] : hex Address o f new memory page

23

24 @rp c f n f a i l RAMALLOCATE

25 @br ie f Out o f memory .

26

27 @rpcfn RAMCHOWN

28 @br ie f Change ownership o f a page o f RAM. The c a l l e r

l o s e s a l l r i g h t s to the page .

29 @param addr d1 [ 3 1 : 0 ] : hex Address o f page to

chown

30 @param new owner d2 [ 1 5 : 0 ] : nocaddr New owner o f page

31

32 @rpcfn ok RAMCHOWN

33 @br ie f Ownership records updated .

34

35 @rp c f n f a i l RAMCHOWN

36 @br ie f Access denied . The c a l l e r p robab l y didn ’ t own the

page .

37

38 @rpcfn RAM FREE

39 @br ie f Free a page o f RAM. The c a l l e r l o s e s a l l r i g h t s to

the page .

40 @param addr d1 [ 3 1 : 0 ] : hex Address o f page to f r e e

41

42 @rpcfn ok RAM FREE

43 @br ie f Memory f r e ed .
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44

45 @rp c f n f a i l RAM FREE

46 @br ie f Access denied . The c a l l e r p robab l y didn ’ t own the

page .

47

48 @rpcint RAMWRITE DONE

49 @br ie f Write committed .

50 @param len d0 [ 1 5 : 0 ] : dec Length o f the wr i t t en data

51 @param addr d1 [ 3 1 : 0 ] : hex Address o f wr i t t en data

52

53 @rpcint RAM OP FAILED

54 @br ie f Access denied .

55 ∗/

As a result of using the nocgen file for hostname→module type lookups, there

is currently no support for protocol decodes of software-based services, as they do not

exist as nodes in the nocgen file. A planned future fix is to use the nocgen file to find

address ranges associated with a SARATOGA processor. The viewer can then use

SARATOGA’s OOB OP ATTEST call to look up the signature for a given process ID in

that range, consult the Splash database to find the SignedFirmwareNode associated

with that hash, and backtrack to find the associated CppExecutableNode object.

This would then allow scanning of the relevant source files for Doxygen comments

and protocol decoding off of them.

In the screenshot below (Fig. 4.9) the unit test testcase queries the CPU for

the number of thread contexts, then creates a process from the signed ELF image

at physical address 0 of the device rom. The application (echofw) then starts up,

allocates and maps memory pages for stack and .bss, then registers itself with the

name server.

Note that the reverse name lookups for echofw appear to violate causality,

since the hostname is looked up successfully before it is even registered! This is a

consequence of latency in the link: traveling over JTAG to the jtagd server, then

over TCP to nocswitch, then over TCP to the viewer incurs one or two milliseconds
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Unfortunately, neither of these tools could be used in the development of An-

tikernel. SignalTap is specific to Altera devices, and our lab is entirely stocked with

Xilinx boards. ChipScope can only be used with Xilinx’s proprietary programming

cable (or license-built third-party ones), which costs over ten times as much as the

custom JTAG adapters we built for use with libjtaghal. While our lab does have

one Xilinx platform cable, constantly reaching behind the equipment rack to move

it from one board to another would be impractical. Buying a sufficient number of

them (and the associated software licenses) to support each FPGA board would be

prohibitively expensive.

Furthermore, unit testing of some modules can be made significantly easier if

internal state is observable. While ChipScope does provide a scripting API of sorts,

the poorly documented Tcl example code did not appear to have much potential for

building a solid, reliable unit testing suite.

The last nail in ChipScope’s coffin, for our lab, was the unstable driver. The

programming adapter worked correctly for a while after being plugged in, but after

a period which ranged from hours to days it would stop responding. Unplugging

and replugging the cable, or moving to a different USB port, was of no help; the

only solution which would restore proper functionality was a full reboot of the host

computer.

The end result was a tool which became known as RED TIN. (The name has

no meaning, after a debate among research group members failed to produce any

consensus the author picked an adjective and noun at random from a dictionary.)

4.8.2 Capture Core

On-chip data capture is handled by a RedTinNocWrapper instance. This mod-

ule contains NoC transceivers, interface logic, and a RedTinLogicAnalyzer instance,

which handles the actual data capture.

The RedTinLogicAnalyzer module contains a circular buffer of configurable

width and depth for capture data, and a second buffer for timestamp values. When

the LA is idle it writes to the capture buffer through a 3-stage flipflop shift register

(to provide a very large setup margin and prevent the LA from dragging the DUT



107

into sub-optimal placement locations) every clock cycle, setting the timestamp to 1.

When a trigger event occurs, the LA enters capture mode. During capture

mode it compares the second and third samples in the shift register, writing the

incoming data to the capture buffer if they are different. A 32-bit repeat counter

increments every cycle that the values are the same. When the values differ it is

written to the timestamp buffer and reset to zero. This provides simple (run-length

encoding) compression to allow long periods of inactivity to be stored in fewer words

of the memory.15

The actual trigger logic takes advantage of the shift register LUT function

found in most modern FPGAs (Fig. 4.10). This mode allows the SRAM cells of the

LUT to be connected end to end as a shift register, with dedicated input/output,

clock, and shift-enable pins. In order to allow smaller shift registers than the maxi-

mum (32 bits, in the case of a Xilinx Spartan-6 or 7 series device) the combinatorial

inputs of the LUT can be used as an address selector, to connect the LUT output

to any bit within the shift register.

Although the shift register address is typically held constant in order to create

a fixed-length shift register, it is allowed to change at run time. Rather than thinking

of the resulting structure as a variable-length shift register, it is instructive to think

of it as a LUT whose contents can be shifted one bit at a time on demand (Fig. 4.11).

By connecting the shift register input and clock to a control bus, and providing a

means for gating the LUT output to avoid glitching, we get a 5-input combinatorial

function whose behavior can be changed at run time by shifting a new truth table

in one bit at a time over 32 cycles.

This capability is sometimes referred to as “poor man’s partial reconfigura-

tion”, or “poor man’s PR”. It has numerous disadvantages over true partial reconfig-

uration (for example, it cannot change routing between LUTs, or alter the behavior

of any hard IP blocks). It also has major advantages for our purpose: it uses general

fabric routing and provides much more flexibility in layout than typical PR flows

(which typically reconfigure a large rectangular tile of the FPGA all at once, losing

15In addition to capturing a new sample when the values change, a timeout function forces a
new sample to be captured after a certain number of clock cycles, to prevent the LA from hanging
for more than a few seconds if the device under test stops toggling signals for some reason.
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Figure 4.10: Shift register LUT (only four bits shown for clarity)

any state held in it). Vendor PR flows normally require the configuration bitstream

for each reconfigurable region to be generated with their full development toolchain.

The “poor man’s PR” approach, on the other hand, can generate the LUT truth

tables via arbitrary code since the addressing of bits in the shift-register LUT is well

documented.

We use this reconfiguration technique in our trigger logic to create triggers for

N input channels with N/2 reconfigurable LUTs. One input of each LUT is unused

and tied low; the other four are connected to the current and previous state of two

signals in the LA’s input register. By generating an appropriate truth table in the

PC-based control application and sending it to the LA via NoC frames, we can cause

each LUT to return true when the desired trigger condition has been met. (Since

both the current and previous state are stored, we can trigger on changes as well as
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data ROM containing signal names and widths (typically generated by nocgen) via

DMA messages. This is used to populate the list of channels in the user interface,

as well as when generating trigger conditions.

In order to capture data the user simply enters a series of values into the

“trigger on” column and presses the “start” button; a capture then begins when all

of the trigger conditions are matched. The trigger conditions may be in any legal C

or Verilog number format (enumerated constants are not yet supported). Entering

no triggers results in an immediate, unconditional trigger.

When the button is pressed the software converts the trigger conditions into a

series of truth tables, one per two channels, describing the conditions under which

the trigger is matched. These truth tables are then sent in DMA messages to the

capture core, and the control software then blocks until an RPC interrupt indicating

a trigger event is received.

When a trigger event occurs, the viewer issues a series of DMA reads to read

back the contents of the capture buffer. The resulting waveform is unpacked into

arrays for each signal (using the width information read from the metadata ROM)

and displayed to the user.

We spent a substantial amount of time tweaking the visualization to make it

more attractive and useful. Although we have not conducted any sort of formal user

study, selecting contrasting colors for adjacent signals (rather than displaying them

all in one shade of green or blue as seems to be the de facto standard) made it much

easier for the author to quickly follow signals in large, complex captures. We also

collapse long periods with no transitions into a small space, so that captures with

infrequent events can be scrolled quickly.

The viewer is a modular architecture and can support other signal sources be-

yond RED TIN through a library we call libscopehal. We have partial support for

Rigol’s DS1102D oscilloscope, although their USB interface appears to be somewhat

unreliable and we had difficulty getting deep-memory captures to work properly.



CHAPTER 5

Security Analysis

5.1 Threat Model

Antikernel’s primary goal is to enforce compartmentalization between userspace

processes, and between userspace and the operating system. The focus is on damage

control, rather than preventing initial penetration (although existing state-of-the-art

techniques can be used to harden applications against this).

In particular, Antikernel aims to make all of the following scenarios impossible,

given that an attacker has gained unprivileged code execution within the context of

a userspace application or service: download a backdoor payload and configure it to

run after system restart, modify executable code in memory or persistent storage,

intercept/spoof/modify system calls or IPC of another process, read or write private

state of another process, or gain access to handles belonging to another process by

any means.

The attacker is assumed to be remote so physical attacks are not considered.

Existing antitamper techniques can, of course, be used along with the Antikernel

architecture to produce a system with some degree of robustness against physical

tampering; but it is important to note that no physical security is perfect and

an attacker with unrestricted physical access to the system is likely to be able to

penetrate any security given sufficient time and budget.

For the scope of this chapter, we consider an abstract RTL-level model of

the system with ideal digital signals in which it is not possible for the state of one

register or input pin to observe or modify the state of another except if they are

connected through combinatorial logic in the RTL netlist.16

16In practice it is sometimes possible for this property to be violated (for example by DRAM
read disturbance, as described in [82, 83]). Such attacks exploit subtle layout-vs-schematic (LVS)
mismatches which are not picked up by automated tools. While detecting these bugs is certainly an
important task, it requires a level of solid-state physics better suited to a dissertation on electrical
engineering so we leave it as an open research problem and focus on the computer science problem:
ensuring safety of the pre-layout netlist.
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5.2 Requirements

An Antikernel system must provide unforgeable attribution for all NoC com-

munication between nodes and ensure that all NoC communications between nodes

are authentic and unmodified. In order to prevent this security from being trivially

bypassed it must also prevent information from leaking between nodes through chan-

nels other than the NoC (either through additional wires, or through state leakage

within one node in violation of security policy). For example, the memory controller

node must ensure that all memory is zeroized before allocating and that no node

can read or write memory it does not own. A multithreaded CPU must prevent any

thread from affecting the state of another except by means of sending it an RPC or

DMA message.

While hardware nodes are implicitly trusted to be authentic (since they are

physically immutable under this threat model and we assume the supply chain is

secure), the functionality of software-based nodes is not known a priori. In order to

authenticate a software-based node, we must have some way of uniquely identifying

the code it is running.

The simplest way of doing this is to enforce mandatory code signing in the

executable loader. If the system is incapable of marking any memory as executable at

run time, or writing to executable pages, then we know that the currently executing

code is the same as that which was loaded from ROM. If the signature on this

code was verified when the executable was loaded, then we know that the currently

running code is the same code which was signed. All we must do at this point is

store the computed signature/hash for each executable as it is loaded and provide a

means to securely query it at run time. We then have most of the core functionality

required for remote attestation [84], but between NoC nodes rather than physically

separate computers.

5.3 Prototype Verification

5.3.1 Methodology and Goals

We have performed fairly extensive verification on the current prototype sys-

tem using a mix of simulation, HiL testing on our test cluster (section 4.4), and
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formal methods. All tests are fully automated and run by Splash (section 4.3)

before every commit.

The general verification methodology begins by creating at least one HiL test

for each module or subsystem being verified, supplemented by simulation tests in

some cases to speed the design cycle. The focus of this level of verification is catching

obvious bugs that occur when the module is used as intended. 100% of the modules

in the project receive at least this level of verification.

In addition, the most critical subsystems are provably verified against a for-

mal model of the desired behavior. The choice of modules to verify is determined

by several factors including their importance to the security model (the worse the

impact of a bug, the more important provable correctness is) and their complexity

(simpler modules are easier to prove correct).17

So far we have proven correctness properties on all of the interconnect and

communications modules. (Details of exactly which properties were proven are

described in the following sections.) Many subtle bugs were found and fixed in

this process which would likely have gone undetected otherwise. One bug in the

DMA transceiver’s retransmit logic, triggered by NoC congestion at a precise time

relative to the time the packet was sent, caused a glitch on the dma tx en signal

which could have resulted in packet data being interpreted as headers and allowed

spoofing. Multiple bugs in the name server’s error handling were found which could

have led to a hang (denial of service) when returning error codes from malformed

commands.

5.3.2 Assumptions

No mathematical proof can be complete without stating the assumptions which

it relies on. For something as complex as a correctness proof for a major subsystem

of an operating system, the necessary groundwork is substantial. We describe the

specific assumptions for our proofs in the following sections.

17While full verification of the entire implementation is of course desirable, and a goal we are
working toward, it would likely require many additional man-years and would be impractical to do
within the scope of a single doctoral dissertation. Additionally, several components of the design
are still being optimized and improved, making a correctnesss proof of the current code a waste of
time.
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5.3.2.1 Physical Synthesis and Place-And-Route

All of the low-level proofs of correctness were performed on post-synthesis RTL

netlists using yosys. We assume correctness of the temporal induction proof system

in yosys and the SAT solver (MiniSAT by default, although different solvers can be

configured at run time). In other words, we assume that if the post-synthesis netlist

is inconsistent and one or more of the assertions in the netlist are violated, that the

solver will correctly detect the error and declare the proof to not hold.

These proofs are only valid down to the RTL level for the current prototype.

The actual synthesis and place-and-route (PAR) of the prototype systems were

performed using Xilinx’s proprietary tools; correctness of these tools and the FPGA

silicon is assumed.18

A future implementation of our architecture targeting ASIC could be veri-

fied much more extensively at this level since it is possible to extract netlists from

polygon-level layout and perform equivalence checking against the post-synthesis

netlist. If yosys was used as the synthesis tool, assertion checking could be done on

the actual post-synthesis RTL netlist, followed by equivalency checking against the

post-PAR technology mapped netlist. This could be combined with post-fab mi-

crography on selected dies, and image analysis to compare the manufactured silicon

against the post-PAR polygons, to provide an extremely high degree of assurance

that the actual manufactured silicon obeys the proven properties.

5.3.2.2 Network Topology

Most of the proofs later in this chapter assume that the network topology of the

specific SoC being analyzed is “sane”, in other words it adheres to the architecture

described in the previous chapters.

More formally, it is assumed that the RPC network consists of a series of

RPCv2Router objects connected in a quadtree, with nodes under the routers. All of

these nodes must connect to the RPC network with either an RPCv2RouterTransceiver

or an RPCv2Transceiver object, configured as a leaf node (with the exception of

18Since the FPGA microarchitecture is undocumented, equivalence checking on the actual FPGA
bitstream would not be possible without extensive reverse engineering of the silicon. While an
interesting problem, and one that the author is actively working on [85], it is beyond the scope of
this thesis.
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the multithreaded CPUs such as SARATOGA, which are treated as multiple nodes

under one router for the scope of the network-level proofs).

The DMA network is assumed to consist of a series of DMARouter objects

connected in a quadtree, and nodes under the routers. Each node must connect

to the DMA network with a DMATransceiver or DMARouterTransceiver object,

configured as a leaf node. As with the RPC network, multithreaded CPUs are a

special case and handled separately.

Furthermore, it is assumed that if any node connects to both networks it uses

the same address on each, and that there is no information flow between nodes

outside of the NoC (for example, by wires that do not pass through a NoC router,

or off-die paths on the printed circuit board).

All of the test SoCs created as part of this thesis were generated by the nocgen

tool (Sec. 4.6), which is intended to enforce these requirements for the top-level mod-

ule, however its correctness has not yet been proven. Verifying that any particular

generated source file (and the instantiated modules) meet these requirements is rel-

atively easy to do by inspection. In the future we intend to create a DRC tool which

uses yosys to parse the actual RTL source for a particular SoC and verifies that all

of the on-chip topology requirements are met.

5.3.3 RPC Network

5.3.3.1 Layer-2 Packet Handling

All four combinations of RPC transceivers (node or router at each end) for a

layer-2 link were formally verified using yosys. The goal was to prove that regardless

of what traffic enters a transceiver, it will always be interpreted properly at the other

end, and there is no possibility of causing data to be interpreted as headers or vice

versa.

Each test case instantiates one transmitter and one receiver of the appropriate

types, as well as testbench code. yosys is then run on each testbench to synthesize

to RTLIL intermediate representation, followed by invoking the SAT solver to prove

the assertions in the testbenches. If the solver declares that all assertions pass, the

proof is considered to hold.
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While the testbenches are all slightly different due to the differences in interface

between router and client transceivers, their basic operation is the same. When

the test starts, all outputs are in the idle state and remain so in the absence of

external stimuli. When a transmit is requested, the test logic stores the signals at

the transceiver’s inputs and asserts that the same data exits the receiver a fixed

time later. The test also verifies that attempts to transmit while the receiver is

busy block until the receiver is free (thus preventing dropped packets) and that the

transceiver fully resets to its original state after sending a packet.

The testbenches may be found in the provided source distribution under

/trunk/tests/RPCv2XXToYYChannelTest/ where XX and YYmay be either “Client”

or “Router”.

5.3.3.2 Layer-3 Packet Routing

It is also necessary to prove that packets are correctly forwarded to the desired

layer-3 destination by routers.

We can map the quadtree directly to routing addresses by allocating two bits

of the address to each level of the tree. Each router simply checks if the high bits

match its subnet, forwards out the downstream port identified by the next two bits

if so, and otherwise forwards out the upstream port. It is easy to see by inspection

that this algorithm will always lead to a correct tree traversal.

Since correct routing at the node level combined with a valid quadtree topology

implies correct routing at the network level, and the proofs in the previous section

show that link-layer forwarding is correct, the proof for correct end-to-end forward-

ing thus reduces to showing that RPCv2Router correctly implements the routing

algorithm.

In order to reduce the search space for the solver the automated proof was

split into two halves, split at the packet buffer SRAM.

The first half of the proof, RPCv2RouterIngressQueueTest, is responsible for

showing that when an incoming packet arrives it is written correctly to SRAM, and

the transceiver is kept in the “busy” state until the packet has been forwarded. The

Verilog for this proof is located at /trunk/tests/RPCv2RouterIngressQueueTest.
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The second half of the proof, RPCv2RouterExitQueueTest, is responsible for

showing that, once a packet has arrived and been written to SRAM, it is forwarded

to the correct location. The Verilog for this proof is located at /trunk/tests/R-

PCv2RouterExitQueueTest.

5.3.4 DMA Network

5.3.4.1 Layer-2 Packet Handling

All four combinations of DMA transceivers (node or router at each end) for a

layer-2 link were formally verified using yosys. The goal was to prove that regardless

of what traffic enters a transceiver, it will always be interpreted properly at the other

end, and there is no possibility of causing data to be interpreted as headers or vice

versa.

Each test case instantiates one transmitter and one receiver of the appropriate

types, as well as testbench code. yosys is then run on each testbench to synthesize

to RTLIL intermediate representation, followed by invoking the SAT solver to prove

the assertions in the testbenches. If the solver declares that all assertions pass, the

proof is considered to hold. The basic structure of the proofs is similar to those for

the RPC network.

It is important to note that due to the large maximum packet size (512 words)

it was not possible to run the DMA network proofs to a steady state, thus the

proof is not complete. The current proof is artificially limited to examining state

for the first 64 cycles and shows that no assertions are violated during this time.

Running the solver on each proof takes about ten minutes on a single CPU core and

uses between three and ten gigabytes of RAM; given a sufficiently large amount of

CPU time and RAM there is no reason why the proof cannot be extended until a

steady state is reached. We plan to explore integrating a parallel SAT solver with

yosys in order to run the full proofs on a cluster in the future, however this is

beyond the scope of this thesis. We are also working with the developers of yosys

to explore whether better performance can be obtained by using a SMT solver on a

more abstract form of the netlist. Early results are encouraging however more work

is required.
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The testbenches may be found in the provided source distribution under

/trunk/tests/DMAXXToYYChannelTest/ where XX and YYmay be either “Client”

or “Router”.

5.3.4.2 Layer-3 Packet Routing

Aside from the transceivers, the majority of the DMA network router is iden-

tical to that of RPC, instantiating the same modules. The only changes were adding

an additional SRAM buffer and multiplexer for each port since the DMA transceiver

has separate memory channels for headers and packet bodies, as opposed to the sin-

gle channel for RPC.

We believe that these changes are sufficiently non-intrusive that the probability

of them containing a security-critical bug is very low. Although a full part-wise

verification of the router (as was done for RPC) is certainly possible, and should be

performed before an Antikernel system is actually deployed in a critical application,

we believe that doing so at this stage of development would be an inefficient use of

research time.

5.3.5 Name Server

Even if the layer-3 links between nodes are secure and packet misrouting is

impossible, if a rogue node can somehow trick a target node into sending its traffic to

the wrong address then MITM attacks can still occur. This can be done by causing

the name server to report the wrong address when queried.

Avoiding this requires proving two properties: First, the name server must

always return the correct entry (if one exists) from its table when queried, or an

error if none exists. Second, the name server must only insert names into the table,

or remove them, if authorized by system security policy.

The top-level NOCNameServer module consists of several RAM blocks, an RPC

transceiver, an HMAC-SHA256 engine, a “target matching” system (which compares

outputs of the RAMs against a value being searched for), a mutex, and the main

control state machine.

We assume correctness of the RAM and prove correctness of the transceiver

separately. The mutex, target matching logic, and HMAC cores have undergone
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conventional validation but do not have correctness proofs as of this writing. Several

correctness properties have been proven on the control state machine, as described

in the following sections.

5.3.5.1 General Correctness / Liveness

We currently have a partial liveness proof on the name server, which shows that

the NAMESERVER LIST and NAMESERVER LOCK calls will always terminate in constant

time and return the name server to the idle condition. The proof also shows that

these two calls will always behave as specified by the formal model, and will never

modify any state outside that which was requested.

The remaining opcodes (namely NAMESERVER FQUERY, NAMESERVER RQUERY,

NAMESERVER HMAC, and NAMESERVER REGISTER) are not yet tested as the proof is

still in progress - the name server contains by far the most complex state machine

we have attempted a formal correctness proof of to date.

This testbench may be found in the provided source distribution under /trunk-

/tests/NOCNameServer control/.

5.3.5.2 Name Lookups

We have verified correct operation of the name server’s lookup functionality

via conventional verification techniques, including automated unit testing, but have

not yet completed a formal correctness proof. Although nearly every test uses the

name server to some extent, the tests specifically intended to verify its correctness

are located in the source distribution at /trunk/tests/NameServer and /trunk/test-

s/NocSwitchNameServer.

5.3.5.3 Name Removal

Name removal is easy to do securely: The request to remove a name must come

from the node itself. Since the network is trusted, receiving a packet from 0x8003

asking to delete the name corresponding to 0x8003 implies that this operation was

requested by the node in question.

Proof: The current implementation of the name server does not support delet-

ing a name once registered. Therefore, it is vacuously true that the delete function
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does not violate security policy.

5.3.5.4 Name Insertion

Names for hardware nodes that are “baked” into the name table at logic syn-

thesis time require no further authentication since the source code of the SoC is

trusted implicitly (and an attacker has no way to modify these addresses).

Names being registered by a random NoC node at run time, however, are

not inherently trusted. In order to prevent malicious name registrations, the name

server requires a HMAC-SHA256 signature to be presented and validated before the

name can be registered.

As with name lookups, we have tested this functionality using conventional

verification techniques but have not yet completed a formal correctness proof.

5.3.6 RAM controller

There are two implementations of the RAM controller API, BlockRAMAllocator

and NetworkedDDR2Controller.

We have an extensive test suite, located in the source distribution at /trunk-

/tests/NetworkedDDR2ControllerTest, which performs a series of tests designed to

find all of the main classes of malfunction we could think of.

In one test, numerous pages are allocated by one NoC node and another at-

tempts to access them by various means, before and after changing permissions.

This is intended to detect errors in permissions handling.

Another test allocates the entirety of RAM and verifies that each page pointer

is returned once, and only once. This test is intended to detect errors in which the

free list double-counts, loses a page, or otherwise becomes inconsistent.

Yet another test allocates all of RAM again, fills it with a periodic sequence

of bits (including the page ID), reads it back, and confirms that the data is as

expected. This is intended to detect collisions (such as a stuck address line) in

which two addresses refer to the same physical memory. The test then frees all

but the first page of memory and verifies that the first page is unmodified. It then

re-allocates the freed pages, reads them all back, and confirms that they contain
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zeroes rather than the old data. This is intended to detect errors in which data fails

to be sanitized upon freeing, or the wrong pages are sanitized.

In order to ensure interoperability, the same compiled test binary is run on

bitstreams containing both RAM controller implementations and is expected to work

seamlessly with both.

While we have not yet performed formal verification of either, a correctness

proof of BlockRAMAllocator (the simpler one) is planned for the near future.



CHAPTER 6

Conclusions and Future Work

6.1 Summary

The overall goal of this research was to determine whether moving operating

system functionality into hardware is a practical means for improving operating

system security. This involved the creation of an initial prototype which can serve

as a basis for future research in the area.

Since the current prototype is primarily a proof of concept, many useful sub-

systems (such as the networking stack and filesystem) are missing major features or

entirely absent. Although many of the core components (such as the NoC) have been

formally verified, many higher-level components and peripherals have received basic

functional testing only and the full system should be considered research-grade.

In order to encourage the widest possible use, the source code for the current

prototype (including all of our internal tools) has been released as open source

under the 3-clause BSD license, which grants any person permission to use it for

both commercial and academic applications without needing to release the source

to their software. As of this writing there is an on-line source browser available on

the author’s project website [86].

6.2 Conclusions

We have defined a high-level architecture, Antikernel, for an operating system

which freely mixes hardware and software components as equal peers connected

by a packet-switched network. The architecture takes the ideal of “least required

privilege” to the extreme by having each node in the network be a fully encapsulated

system which manages its own security policy, and only allows access to its internal

state through a well-defined API.

The architecture draws inspiration from numerous existing operating system

architectures, such as the microkernel (minimal privileged functionality with most

services in userspace), the exokernel (drivers as very thin wrappers around hardware

122
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providing nothing but security and sharing), and the separation kernel (enforcing

strong isolation between processes except through a defined interface).

Additionally, the highly modular structure of an Antikernel system is (by

design) very amenable to formal verification. Since there is no way for data to flow

between nodes other than via the NoC, and the NoC infrastructure has been proven

to correctly route packets, each node can be verified independently. If we define

security of the entire system as the condition where all security properties of each

node are upheld, we can then prove security by proving security of the interconnect,

as well as proving that every node’s security policy is internally consistent (in other

words, policy cannot be violated by sending arbitrary messages to the NoC interface

or any external communications interfaces).

We have tested the feasibility of the architecture by creating an initial proto-

type and formally verifying correctness of several subsystems within the prototype.

While the simplistic cache model of our current prototype CPUs has led to poor per-

formance in early benchmarks, this is not an inherent limitation of the architecture

and we are working to improve the caches.

We hope that this work will serve to inspire future research at the intersection

of computer architecture and security, and lead to more convergent full-stack design

of critical systems. Blurring the lines between hardware and software appears to be

a promising architectural model and one warranting further study. By releasing all

of our source code we hope to encourage future work building on top of our design.

We intend to continue active development and refactoring over the coming years as

well.

6.3 Future Work

While the current prototype does show that hardware-based operating systems

are practical and can be highly secure, it is far from usable in real-world applications.

Many features which are necessary in a real-world operating system could not be

implemented due to limited manpower so effort was focused on the most critical

core features such as memory and process management.
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6.3.1 Application Permissions

One feature lacking in the current Antikernel prototype is the ability for only

a specific subset of applications to be granted access to important APIs or devices

(for example, the camera or network stack) in a secure fashion which is controlled

by the operating system. This is rarely used in desktop operating systems, where

it is typically assumed that any software can access anything that the current user

can, but is common in mobile platforms such as Android.

We have considered several possible implementations for this; one of the most

promising is to add an extra section to SARATOGA’s extended ELF format. This

section would contain a list of scripted RPC messages which would be sent by

the ELF loader (from the application’s address) before the application could begin

executing code, in order to set up a defined state when the application started.

These messages could be used to instruct a peripheral (or firewall core on the NoC)

to drop any further packets from that address, or to disable certain features, or to

impose limits on maximum RAM, disk, or CPU usage.

Since the list of messages would be located in the executable headers, it could

be easily inspected by a user when deciding whether to install or trust the applica-

tion. The list would be covered by the same signature as the rest of the executable

so any tampering would result in the application failing to run. As long as the

semantics of the messages were correctly implemented (for example, firewall cores

were proven to actually drop packets when instructed to) and the CPU was proven

to always send the messages before executing any application code, the resulting

sandbox would in principle be impossible to escape. 19

Another related open problem is how to destroy the sandbox (delete firewall

rules and quota limits) once the contained application has terminated. Clearly the

application cannot send a message to destroy its own sandboxing, as this would allow

trivial escapes. Another obvious idea is for the CPU to send a message to the firewall

nodes from the OoB management address, however in Antikernel’s decentralized

model all nodes are equal and the number (and addresses) of CPUs may not be

19If the sandboxed application had permission to send messages to another node which did have
access to the target resource, and which had an input parsing vulnerability, it would potentially
be possible to escalate privileges horizontally.
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known to the firewall so it would have no way to authenticate the message.

One promising solution to this problem is to have the “create firewall rule”

message somehow specify the address of the CPU that the application is running on.

The CPU could then send a series of scripted “remove firewall rule” messages from

the OoB address, which could not be spoofed by the application. This, however,

poses the (currently unsolved) problem of how the firewall can trust that the address

in question is actually the host CPU, and not a collaborating piece of malware.

A very similar problem is that of ensuring that there are no resource leaks.

When an application terminates the RAM controller (for example) should have some

way of knowing that it needs to release all of the memory allocated to that node.

Since there is no harm in allowing an application to free its own memory, however,

these messages can simply be sent from the application’s own address during the

shutdown process or by C runtime library cleanup code.

6.3.2 Persistent Identifiers

In order to implement features such as file systems (which persist data across

power cycles) it is important to be able to reliably identify an application over mul-

tiple reboots so that ownership records can be accurately maintained. Furthermore,

name server registrations as currently implemented require that the address being

registered be part of the signed packet.

The current prototype simply relies on the initialization code starting all ap-

plications in the same order (and thus receiving the same thread ID since these

are allocated in FIFO order every boot). A more stable system for binding IDs is,

however, desirable.

6.3.3 Additional Formal Verification

As of this writing, neither of the memory controller implementations have been

formally verified. While fairly extensive automated testing has been performed, and

they appear to work correctly, full proofs were not possible in the time available.

No part of SARATOGA or GRAFTON (other than of course the NoC transceivers)

has been formally verified to date. While SARATOGA’s architecture was designed
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to minimize the risk of accidental data leakage between thread contexts, until full

verification is completed we cannot rule out the possibility that such a bug exists.

Eventually we would like to verify that the CPUs themselves correctly imple-

ment the semantics of our reduced MIPS-1 instruction set. If we then compiled our

application code with a formally verified C compiler (such as CompCert C [87,88])

we could have full equivalency proofs from C down to RTL. 20 This could then be

combined with verification of the C source code, resulting in fully verified correct

execution from application software all the way down to RTL.

The current nocgen tool empirically seems to generate correct Verilog however

it has not been formally verified and there is currently no way to automatically verify

that its output is correct. There is also no way to automatically verify that third-

party IP has a valid transceiver configuration without time-consuming source code

auditing. We plan to create a DRC tool (as discussed in section 5.3.2.2) which will

be run as part of the build process and ensure that the actual RTL netlist adheres

to the network topology requirements for the security proofs to hold.

6.3.4 Additional Peripherals

The prototype codebase contains a basic IPv6 offload engine as a hardware

module, as well as an ICMP module (which currently only handles SLAAC and

inbound ping requests) however there currently is no support, in either hardware or

software, for upper-level protocols. We intend to create a software-based TCP and

UDP stack which runs on SARATOGA over the coming months.

Needless to say, many more peripherals could be created as well.

6.3.5 Profile-Guided NoC Optimization

The current nocgen tool assigns nodes to addresses in a greedy fashion. This

is rarely optimal.

To optimize for size, nocgen should consider which nodes use only RPC or

only DMA connections, and pack these into as few subnets as possible so that as

20The current CompCert compiler does not support the MIPS instruction set - only x86, ARM,
and PowerPC. We plan to explore adding formally verified MIPS code generation to this or another
verified C compiler in the future.
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many routers as possible can be optimized out (due to having no children).

To optimize for performance, the design should be synthesized with instru-

mented routers and profiled to determine which nodes talk to each other the most.

This will then be combined with optimization goals (hints describing which paths

are most important to reduce latency on) in order to create a NoC in speed-critical

links are as short as possible. Latency optimization can have dramatic effects: the

author managed to achieve a 32% speedup on GRAFTON’s Dhrystone benchmark

score by manually swapping two nodes, thus shaving two hops off the link between

the CPU and ROM.

6.3.6 CPU Improvements

6.3.6.1 GRAFTON

The GRAFTON processor works well and is currently in use running the con-

trol interfaces on some of our internal test equipment. The L1 cache, however, has

terrible performance (I-side miss rates in excess of 5% on the Dhrystone bench-

mark) and we plan to explore options for getting better cache performance without

massively increasing the required die area.

6.3.6.2 SARATOGA

As with GRAFTON, the SARATOGA processor is largely functional but has

substantial room for improvement. The current microarchitecture has a single load-

/store unit, which also has a control hazard prohibiting issuing a load or store with

any other instruction. As a result the IPC figure for any code containing a significant

fraction of loads and stores can be no better than 1.0.

We plan to redesign the load/store system such that ALU instructions can

be dual-issued alongside memory instructions. We also intend to add a second

load/store unit, which will permit two simultaneous memory operations (two loads,

two stores, or one of each) to be issued during the same cycle as long as they both

target the same cache line.

The current microarchitecture requires one hardware thread context for every

thread, which can substantially increase the size of the register file for larger systems.
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We plan to allow the CPU to be allocated a subnet with more addresses than

hardware threads (for example, 128 addresses and 32 hardware threads). The CPU

could then allocate a page of physical memory from the OoB address and page

contexts in and out of the register file as needed. Since this memory would be

owned by the CPU it would be impossible for any other node in the system to

tamper with contexts during swapping.

While the current microarchitecture does implicitly hide I/O and memory fetch

latency to some degree (by thread switching immediately after each instruction)

there is some wasted performance since the blocking thread is still on the run queue

and thus wasting one cycle out of every N. A future improvement to the architecture

could remove threads blocking on L1 misses or waiting for incoming RPCs from the

run queue, preventing them from using any cycles whatsoever until an event occurs

which results in them becoming runnable again.

We have not yet done extensive performance benchmarking on SARATOGA

due to the lack of hardware performance counters. We plan to add a synthesis-time

option to create per-thread performance counters which record the number of cache

hits, misses, time spent waiting on cache misses, instructions issued, instructions

dual-issued, and possibly additional metrics.

6.3.7 Defense in Depth

Our current prototype is intended to be a proof of concept for hardware-based

compartmentalization at the OS level. As a result, we do not incorporate any of

the numerous defensive techniques in the literature for guarding against physical

tampering, fault injection, or software-based exploits targeting userland software.

Further work could explore integrating some of this work with Antikernel.

Possible defense-in-depth techniques include error-correcting RAM, encryption of

off-chip memory and flash, SEU protection, redundant logic or lock-step CPUs for

glitch protection, hardware sensor monitoring, and control flow integrity protection.
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