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Summary. There are many metrics one could consider for estimating the size of the World 

Wide Web, and in the present chapter we focus on size in terms of the number N of Web pages. 

Since a database with all the valid URLs on the Web cannot be constructed and maintained, 

determining N by counting is impossible. For the same reasons, estimating N by directly 

sampling from the Web is also infeasible. Instead of studying the Web as a whole, one can try 

to assess the size of the publicly indexable Web, which is the part of the Web that is considered 

for indexing by the major search engines. 

Several groups of researchers have invested considerable efforts to develop sound sampling 

schemes that involve submitting a number of queries to several major search engines. Lawrence 

and Giles [8] developed a procedure for sampling Web documents by submitting various queries 

to a number of search engines. We contrast their study with the one performed by Bharat and 

Broder [21 in November 1997. Although both experiments took place almost in the samc period 

of time, their estimates are significantly different. 

In this chapter we review how the size of the indexable Web was estimated by three groups 

of researchers using three different statistical models: Lawrence and Giles [8, 9], Bharat and 

Broder 12J and Bradlow and Schmittlein [3]. Then we present a statistical framework for 

the analysis of data sets collected by query-based sampling, utilizing a hierarchical Baycs 

formulation of the Rasch model for multiple list population estimation developed in 161. Wc 

explain why this approach seems to be in reasonable accord with the real-world constraints 

and thus allows us to make credible inferences about the size of the Web. We give two different 

methods that lead to credible estimates of the size of the Web in a reasonable amount of time 

and are also consistent with the real-world constraints. 

1 Introduction 

The World Wide Web (henceforth the Web) has become an extremely valuable re­

source for a wide segment of the world's population. Conventional sources of infor­

mation (e.g. libraries) have been available to the public for centuries, but the Web has 

made possible what seemed to be only a researcher's dream: instantaneous access to 

journals, articles, technical report archives, and other scientific publications. Since 

* This chapter is an edited version of a paper presented at Interface 2001 [41. 
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almost anybody can create and "publish" Web pages, the Web has no coherent struc­

ture and consequently it is not easy to establish how much information is available. 

Evaluation of the size and extent of the Web is difficult not only because of its sheer 

size, but also because of its dynamic nature. We have to take into account how fast 

the Web is growing in order to obtain credible estimates of its size. Growth in this 

context is "an amalgam of new Web pages being created, existing Web pages being 

removed, and existing Web pages being changed" [111. As a result, any estimate of 

the size of the Web will be time dependent. 

The Web consists of text files written in HyperText Markup Language {HTML). A 

HTML file contains special fields called anchor tags, which allow an author to create 

a hyperlink to another document on the Web. When the user clicks on one of these 

fields, the Web browser loads the URL specified in the hyperlink, and thus the Web can 

be seen as a directed graph, g, with HTML pages as vertices and hyperlinks as edges. 

Albert et aI. [1] claim that the diameter of g, defined as the mean of the number of 

URLs on the shortest path between any two documents on the Web, can be expressed 

as a linear function of the number of vertices N of the graph g on a logarithmic scale. 

Using the value of N found by Lawrence and Giles [9], they concluded that "two 

randomly chosen documents on the Web are on average 19 clicks away from each 

other". Unfortunately, very little is known about the underlying structure of this highly 

connected graph. As a consequence, there is no direct method of estimating N. The 

dimensions of a database with all possible URLs on the Web will be huge, and, even if 

we could construct a URL database, we cannot determine which URLs correspond to 

valid Web documents. Sampling directly from the Web is infeasible: without a list of 

URLs, known in sample surveys as aframe, either implicit or explicit. it is impossible 

to take a valid probability sample. Alternative methods are also problematic, e.g. the 

length of the random walks required to generate a distribution over a subset of the 

Web that is close to the uniform may be extremely large [2]. 

If we cannot study the Web as a whole, we can try to assess the size of the publicly 

indexable Web. The indexable Web [II] is defined as "the part of the Web which is 

considered for indexing by the major engines, which excludes pages hidden behind 

search forms, pages with authorization requirements, etc.". Search engines such as 

Northern Light, AltaVista, or HotBot might give the impression that it is very easy to 

locate any piece of information on the Web. Since "several search engines consistently 

rank among the top ten sites accessed on the Web" [9], it should be obvious that the 

search services are used by millions of people daily. However, studies show that the 

search engines cover "fewer than half the pages available on the Web" [8], and as 

time goes by, they increasingly fail to keep up with the expanding nature of the Web. 

Several estimates of the total number of pages [8] indicate that because of the rapid 

growth of the Web, the fraction of all the valid sites indexed by the search engines 

continues to decrease. 

Search engines have the best Web crawlers, therefore it seems natural that we 

should try to exploit them. If we want to estimate the portion of the Web covered 

by the existent search engines, why shouldn't we use the search engines themselves? 

Lawrence and Giles [8] developed a procedure for sampling Web documents by 
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submitting various queries to a number of search engines. We contrast their study 

with the one performed by Bharat and Broder [2] in November 1997. Although both 

experiments took place almost in the same period of time, their estimates disagree. In 

Sect. 2 we show how the size of the Web was estimated by three groups of researchers: 

Lawrence and Giles [8,9], Bharat and Broder [2] and Bradlow and Schmittlein [31. 

In addition, we explain the discrepancy between the results they obtained. Sect. 3 

outlines our approach for calculating a lower bound on the size of the Web based 

on the data collected by Lawrence and Giles in December 1997. Our objective is 

to develop a procedure that could be applied in real time, allowing us in the future 

to monitor the growth of the Web by calculating estimates at several points in time. 

In the last section we present two different methods that give credible estimates of 

the size of the Web in a reasonable amount of time and are also consistent with the 

real-world constraints. 

2 Web Evaluation 

We defined the indexable Web as that part of the Web that is considered for indexing 

by the major engines. We have to make an unequivocal distinction between the index­

able Web and the union of the indices of all existent search engines. There are Web 

documents which might be indexed by a search engine, but, at a fixed time to, were 

not included in any index. Furthermore, pages with authorization requirements, pages 

hidden behind search forms, etc., are not compatible with the general architecture of 

the search engines, and it is unlikely that they will be indexed by any search engine 

in the near future. We can summarize these ideas as follows: 

I Web pages indexed at til I c I Indexable Web at to I c I Entire Web I 

where the above inclusions are strict. Based on the inferences we make about the size 

of the portion of the indexable Web covered by several popular search engines, our 

goal is to produce an estimate of the size of the whole indexable Web. 

Although there is no direct method of counting the number of documents on 

the Web, the search services disclose the number of documents they have indexed. 

Unfortunately, counts as reported by the services themselves are not necessarily trust­

worthy. It is not clear the extent to which duplicate pages, aliased URLs, or pages 

which no longer exist, are included in the reported counts. Despite these problems, 

we can still use the self-reported counts as an approximate order of magnitude of the 

search engines' indices (cf. 18]). 

If every single search service has a narrow coverage, the size of any index might 

offer only a very limited insight about the dimension of the indexable Web. Because 

any engine has some inherent contribution, the combined coverage of all of the existent 

engines would allow us to make better inferences about the size of the indexable Web. 
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2.1 Lawrence and Giles Study 

Lawrence and Giles [8,9] developed a procedure for sampling Web pages that does not 

necessitate access to any confidential database and that can be implemented with fairly 

modest computational resources using only public query interfaces. This procedure 

consists of running a number of queries on several search engines and counting the 

number of results returned by each engine. 

Lawrence and Giles [8] studied six major, widely available full-text search en­

gines, namely Alta Vista, lnfoseek, Excite, HotBot, Lycos and Northern Light. The 

experimenters selected 575 queries issued by scientists at the NEe Research Institute 

between 15 and 17 December 1997 and submitted those queries to the six search ser­

vices. They retrieved all of the results accessible through every engine and for each 

document they recorded the search engines which were able to locate it. Lawrence 

and Giles implemented a number of reliability assessments because the data obtained 

in this way cannot be used as-is due to several experimental sources of bias. 

Since search engines do not update their databases frequently enough, they often 

return URLs relating to Web documents that no longer exist or that may have changed 

and are no longer relevant to the query. Lawrence and Giles retained only those 

documents that could be downloaded, and then they removed duplicates including 

identical pages with different URLs. Some engines are case-sensitive and some are 

not, hence Lawrence and Giles did not use queries that contained uppercase characters. 

Another potential problem is that the six search engines use various ranking al­

gorithms to assess relevance. The Web documents served up by an engine should 

be perceived as the "best" matches as determined by the ranking procedure. Since 

relevance is difficult to determine without actually viewing the pages, ranking algo­

rithms might seriously bias our findings. To prevent this from happening, Lawrence 

and Giles retained only the queries for which they were able to examine the entire set 

of results. Queries returning more than 600 documents (from all engines combined 

after the removal of duplicates) were discarded for the purposes of the analysis. 

Lawrence and Giles provided us with data in the form of a :; 7G x G3 matrix. 

Each row contains the counts for an individual query. The first six columns are the 

number of pages found by AltaVista, Infoseek, Excite, etc. The next columns are the 

number of pages found by any two engines, then the pages found by any three engines, 

and so on. The last column contains the number of pages found by all six engines. 

Using the principle of inclusion and exclusion, we transformed the "raw" data into 

575 cross-classifying tables of dimension 2(; - 1. Let X I. X 2 ..... XI; be categorical 

variables corresponding to Alta Vista, Infoseek, Excite, HotBot, Lycos and Northern 

Light, respectively. Each variable has two levels: "]" stands for "found page" and "0" 

stands for "not found". Let V denote the set of all binary vectors of length 6. The 

contingency table for query k (1 s:: k s:: G75) can be expressed as S), = {.r~l;; E 

V}. For a given query, we do not know how many pages were not found by all six 

engines, therefore all G75 tables have a missing cell, which can be interpreted as the 

difference between the "real" number of pages existing on the Web and the number 

of pages actually found by the six engines for the queries in que~tion. 
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Table 1. Multiple list data for query 140 (S. Lawrence and c.L. Giles, private communication) 

Northern Light 

yes no 

Lycos Lycos 

yes no yes no 

HotBot HotBot HotBot HotBot 

yes no yes no yes no yes no 

yes 1 0 2 0 0 0 1 0 
yes Excite 

no 2 0 :3 2 0 0 0 2 
yes Infoseek 

yes 1 0 2 1 0 0 3 4 
no Excite 

no 1 :3 0 8 2 0 3 19 
AltaVista 

yes 0 0 0 1 0 0 0 0 
yes Excite 

no 0 0 0 0 5 1 
no Infoseek 

yes 0 0 0 0 0 4 22 
no Excite 

no 0 0 7 17 2 :3 :n '? 

The quality of the analysis we want to perform depends on other factors which 

might or might not turn out to be significant. Web documents were added, removed, 

edited, and modified while the experimenters collected the data, hence the search 

results might also change. Search engines first look for the best matches within the 

segment of their index loaded in the main memory and only if the matches they found 

are not satisfactory, they expand the search to the rest of the database. This means 

that if we would submit the same query to the same search service at different times 

of the day, the set of results fetched might not be the same. Under some (nearly) 

improbable circumstances, a search engine might not return any documents present 

in other search engines' databases, in which case we would not be able to estimate 

the overlap between indices. 

We examined the intersections between the sets of pages corresponding to the 575 

queries aggregated over the six search engines and concluded that all the interactions 

between two queries appear to be significantly smaller than any set of pages matching 

a query. The segments of the Web defined by the 575 queries are for all practical 

purposes disjoint, hence we can view our data as a seven-way contingency table S in 

which "query" is a multilevel stratifying variable. 

We determined which engine performs better than the others. The relative cov­

eraRe Ill] of a search engine is defined by the number of references returned by 

a search service divided by the total number of distinct references returned. Notice 

that we can compute this ratio without having to estimate the missing cell. Table 2 

shows our calculations of the relative coverage for the six search services considered. 

HotBot appears to have the largest coverage, followed by AltaVista and Northern 

Light. Although relative coverage can express the quality of a search service with 

respect to the others, it cannot be used if we want to find a way to measure the com­

bined coverage of the six search engines with respect to the entire indexable Web. 
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By analyzing the overlap between pairs of search engines. one can easily calculate 

the fraction of the indexable Web covered by any of the six search engines. Since 

HotBot had reportedly indexed 110 million pages as of December 1l}97. Lawrence 

and Giles estimated that the absolute size of the indexable Web should be roughly :~:20 

million pages. We discuss in detail the validity of their estimate in Sect. 2.4 as part 

of our reanalysis of their data. In February 1l}99. Lawrence and Giles Il}l repeated 

Table 2. Estimated relative coverage of the six search engines employed 

Service II Coverage 

HotBot 52.027< 

AltaVista 37.2:j7, 

Northern Light 2(U9'!{ 

Excite 19.11 'X 
InfoSeek l:3.24'!{ 

Lycos 4.1S'X 

their experiment. The number of search engines was increased to II (AltaVista. Eu­

roseek. Excite, Google, HotBot, Infoseek, Lycos, Microsoft, Northern Light, Snap 

and Yahoo) and the number of queries was expanded to 1, 050, hence the data this 

time consists of a L 050 x (211 - 1) array. The experimenters did not make clear 

whether the 575 queries used for the first study were among the]. ();j() queries used 

for the second one. Northern Light had indexed 12M million pages at the time of the 

experiments, hence Lawrence and Giles approximated that there were tlUO million 

pages on the indexable Web. The estimation method was similar to the one employed 

in the previous study. Unfortunately, their analysis was done dynamically and the new 

data were not retained for possible reanalyses. 

2.2 Bharat and Broder Study 

In November 1997, Bharat and Broder [21 performed an analysis analogous in many 

respects to the one carried out by Lawrence and Giles. They employed only four 

engines, i.e. Alta Vista, Excite, Infoseek and HotBot. Instead of measuring directly 

the sizes and overlaps of the four search services, their approach involved generating 

random URLs from the database of a particular search engine and checking whether 

these pages were also indexed by the other search services. 

The experimenters approximated sampling and checking through queries. Rather 

than choosing queries made by real users, Bharat and Broder randomly generated their 

own queries. The queries were derived from a lexicon of about 400.000 words built 

from 300,000 documents existing in the Yahoo! hierarchy. The artificially generated 

queries were presented to one search service and the search re;,ults were retrieved. 

Since it is very hard to get a hold of the entire set of results, Bharat and Broder picked 

a URL at random from the top 100 matches that were found for every query, hence 

the results were heavily dependent on the ranking algorithm used by every search 
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engine and also on the particular choice of lexicon. Both the ranking strategy and the 

lexicon can introduce serious experimental bias, that is, some documents will have 

better chances of being included in the sample than others. 

For every query selected from one of the four indices, Bharat and Broder created 

a strong query intended to uniquely identify that particular page. They built the strong 

query by picking the most significant terms on the page and submitted it to the other 

search services. An engine £ had indexed page P if P was present in the set of results 

fetched from £. Because there is so much duplication on the Web, the set of results 

obtained might contain more than one document. It is not clear whether £ would have 

found page P if the original query that generated P had been submitted to £. 

Bharat and Broder performed two series of experiments: trials 1 (lO,OOO dis­

junctive queries) and 2 (5,000 conjunctive queries) in mid-1997, and trials 3 (10,000 

disjunctive queries) and 4 (lO,OOO conjunctive queries) in November 1997. We can 

see that the set of queries employed was considerably larger than the set used by 

Lawrence and Giles [81. 

A more elaborate method than the one used by Lawrence and Giles [8, 9] was 

employed to assess what fraction of the indexable Web was covered by an individ­

ual search engine involved in the study. The experimenters calculated engine size 

estimates by minimizing the sum of the squared differences of the estimated over­

laps between pairs of search engines. Since Alta Vista reportedly indexed 100 million 

pages, Bharat and Broder concluded that the indexable Web had roughly 160 million 

pages in November 1997. We will come back with a detailed discussion of the validity 

of these results in Sect. 2.4. 

2.3 Bradlow and Schmittlein Study 

Another attempt to evaluate the Web was carried out by Bradlow and Schmittlein 

[3] during October 1998. They tried to assess the capability of six search engines 

(the very same engines employed in Lawrence and Giles [8]) to find marketing and 

managerial information using query-based sampling. Twenty phrases were chosen 

to be submitted to the search engines. The phrases had to be representative of the 

marketing world and also adequately precise (any number of pages could be relevant 

for an ambiguous query, hence our inferences could be adversely biased if too many 

relevant pages were found). 

The six search engines combined returned 1, 588 different pages. For each of 

these pages, the experimenters recorded the binary pattern of length 6 describing 

what engines successfully detected the page (as before, "I" stands for "found page" 

and "0" for "not found"), the number of page links (0 - 5, 6 - 10, or 10+) and the 

domain type, indicating whether the site where the page was located was commercial 

(.com), academic (.edu), an organization (.org) or some other type of site ("other"). 

In addition, two phrase characteristics were also recorded - newer versus older and 

academic versus managerial- for more details see Bradlow and Schmittlein [3]. 

The originality of this approach comes in the way Bradlow and Schmittlein ana­

lyzed the data they collected. Each search engine and Web page are assumed to lie in 

a D-dimensional space. The probability that a given engine will capture some page is 
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a decreasing function of the distance between the engine and the page, hence a search 

engine is more likely to capture pages located in its immediate vicinity than pages 

that are situated at some considerable distance. 

In the first model they proposed, they placed all the engines in the origin of a one­

dimensional space (D = 1). Search engines tend to find the same Web pages, and 

consequently the "'less resourceful" engines index only a subset of the pages indexed 

by the "more powerful" engines. The second model studied differs from the tirst one 

only with respect to the number of hypothesized dimensions of the underlying space: 

they took D = 2 to be a reasonable choice. Their third model is more flexible than 

the previous two because it allows the engine locations to vary in a two· dimensional 

space. 

To be more specific, let Pt.jk be the probability that the kth URL for the jth phrase 

is found by engine i. Moreover, dijk denotes a squared Mahalanobis distance between 

the location of the ith engine and the location of the kth URL for phrase j in the JJ­

dimensional space. If 11. is "the rate at which the probability an engine finds a given 

URL drops off", we can express Pijk as a function of dijl, by 

1 
( I ) 

Jii)A = 1 + ri" . 
I)k 

Bradlow and Schmittlein tit all three models using a Markov chain Monte Carlo 

sampler. The tirst two models were invalidated by the data, while "he third seems 

to tit their data reasonably well. This is a clear indication that every search engine 

"carves out" its own location in the URL space. 

Bradlow and Schmittlein 13] conclude that, for marketing/managerial queries, 

"the reader should feel contident that the search engines cover about DO'X of what 

exists to be found for these kind of phrases". Although the authors argue that their 

modeling technique is superior to any other study performed and that "these kinds 

of marketing/management documents are relatively easy to locate", the result they 

came up with appears to conflict with what we know about search engine behavior. 

There are elements of their model and analyses, however, that would be worth further 

investigation as elaborations of the approach suggested in this chapter. 

2.4 The Size of the lndexable Web 

Here we describe explicitly the statistical models and inherent assumptions that un­

derlie the estimates of Lawrence and Giles [S, 91, and Bharat and Broder [21. 

Let £, and £'2 be two search engines with indices 1j', and 1,''2, respectively. Denote 

by [2 the complete set of documents available on the indexable Web. We make two 

major assumptions: 

(A I) The indices El and E2 are samples drawn from a uniform distribution over 

f? 

(A2) El and E'2 are independent. 

Denote by IAI the number of elements of the set k The tirst as'iumption says that 
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while (A2) implies 

(3) 

We can estimate P(E1 n E 2 1E2 ) from our data by 

(4) 

where Al and A2 are the sets of pages returned when all the queries utilized in a 

study were submitted to engines Eland E 2. As a result, the size of the Web can be 

estimated by 

(5) 

where l x J is the largest integer smaller than or equal to x. 

Formula (5) gives us a way to extrapolate the size of the indexable Web based on 

the published size of the index of an engine Eland on the estimated overlap between 

Eland another engine E 2. But assumptions (AI )-(A2) are not necessarily satisfied. 

The search engines do not index Web documents at random. They employ two major 

techniques to detect new pages: user registration and following (hyper)links [9]. On 

one hand, people who publish on the Web have the tendency to register their pages with 

as many services as possible. On the other hand, popular pages that have more links 

to them will have greater chances to be indexed than new (hence unlinked) pages. We 

infer that search engines will be more inclined to index several well-defined fractions 

of the indexable Web, which will induce a positive or negative correlation between 

any two search engines indices. Since the probability of a page being indexed is 

not constant, a search engine's index will represent a biased sample from the entire 

population of Web documents. 

The estimate in Lawrence and Giles [8] was based on the overlap between Al­

taVista and HotBot. Since they were the engines with the largest (relative) coverage 

at the time of the tests (among the six engines studied), their indices will have "lower 

dependence because they can index more pages other than the pages the users register 

and they can index more of the less popular pages on the Web" [8]. The reported 

size of HotBot was 110 million pages, hence Lawrence and Giles found 320 million 

pages to be an estimate of the size of the indexable Web in December 1997. Bharat 

and Broder argue that the indexable Web should have about 160 million pages as of 

November 1997, since AltaVista had reportedly indexed 100 million pages at that 

time and "had indexed an estimated 62% of the combined set of URLs" [2 J. There is a 

clear discrepancy between the two estimates. Since the queries used by Lawrence and 

Giles were issued by researchers, they relate to topics few users search for. Search en­

gines are oriented toward finding information the average user wants, thus Lawrence 
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and Giles might have underestimated the overlap between indices. On the other hand, 

Bharat and Broder might have overestimated the overlap since the engines have a 

tendency to locate content-rich documents and these are the documents the randomly 

generated queries are inclined to match. As a consequence, it appears that Lawrence 

and Giles overestimated the size of the index able Web, whereas Bhara[ and Broder 

underestimated it. 

Although the Web is a dynamic environment, it can be assumed that the population 

of Web documents is closed at a fixed time to. i.e. "there are no changes in the size of 

the population due to birth, death, emigration or immigration from one sample to the 

next" 15]. This definition translates in our framework to: 110 Weh pages were added. 

deleted or modified while the data was collected. Since the entire index able Web can 

be considered closed at a fixed time til, the subpopulation of pages that would match 

query k, 1 ~ k ~ 575, will also be closed at time til, Our goal is to assess the size N, 

of the popUlation of pages defined by query k at time to (i.e., December 1997) using 

the standard multiple-recapture approach to population estimation. In the capture­

recapture terminology. Web pages are referred to as individuals or ohjects and search 

engines as lists. 

More precisely, we have six samples Li , ... , La, where L ~. 1 ~ i 'S; G, represents 

the best matches for query k found by engine i. Following Fienberg [51. let "7+ and 

n~l be the number of individuals in the samples L1 and L~·. respectively, and Tl7l be 

the number of individuals in both lists. The classical capture-recapture estimate for 

N, based on the first two lists is 

(6) 

i.e. the traditional "Petersen" estimate. We can compute the Petersen estimates for P'h 

based on all pairs of the six available lists. The Petersen estimate assumes the objects 

are heterogeneous (A I) and the lists are pairwise independent (A2), hence Eq. (5) and 

the Petersen estimate (6) are built on the same suppositions. Moreover. we can see 

that the estimate Lawrence and Giles found for the index able Web is nothing more 

than a Petersen estimate scaled up by a factor, namely the number of pages HotBot 

had reportedly indexed divided by the total number of pages found by HotBot for the 

575 queries. 

We considered the seven-way table S collapsed across queries and computed the 

traditional capture-recapture estimates for the number N of Web pages matching 

at least one of the queries used. Only 7 out of 15 were above the observed number 

of objects in the six lists, which represents a lower bound for the "real" number of 

pages N. In Fig. 1. we give the proportion T, of Petersen estimates smaller than the 

observed number of pages Tik for every six-way contingency table S,. Proportion 

T" is bigger than 50% for almost half the queries. This is clear evidence that the 

assumptions (A 1 )-(A2) do not hold. These calculations also suggest that there is 

positive and also negative dependence between pairs of search engines across the G 7G 

queries. Since the six search engines attempt to maintain full-text indices of the entire 
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indexable Web, the interactions we observed are the result of the bias introduced by 

the query-based sampling. 

0.0 0.2 0.4 0.6 0.8 1.0 

Fig. 1. Proportion of Petersen estimates smaller than nk 

3 Our Approach for Estimating the Size of the Web 

The 575 queries of Lawrence and Giles [8] define a population of Web documents, 

while the union of the indices of the search engines employed define another popula­

tion of pages. We observed the intersection between the two populations and summa­

rized it in a seven-way contingency table S with missing entries. If we were able to 

approximate the number of pages not found by all the search engines used for every 

query, we could draw inferences about the dimension of the population of pages rele­

vant to the 575 queries. Based on this estimate and on the published size of the index 

of one of the six search engines, we could extrapolate the number of Web documents 

contained in the dotted rectangle in Fig. 2. This approach provides a lower bound of 

the size of the index able Web as of December 1997, and in the following sections we 

propose one possible implementation of it using an approach suggested in Fienberg 

at a!. [6\. 

3.1 The Rasch Model 

The subpopulation of Web documents matching query k, 1 :s; k :s; 575, is a closed 

population at a given point in time. Our objective is to estimate its unknown size 
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Indexable Web 

Fig. 2. The two populations of Web pages thai define the ohserved data 

NI,; using multiple lists or sources. We make use of the kth contingency table S, . 

that cross-classifies individuals (Web pages) based on which search engines (or lists) 

were able to locate them. This is the usual setting for the multiple-recapture population 

estimation problem, which originated in estimating wildlife and fish populations. 

Let i = 1, .. ., Nk index the individuals and j = 1 .... , J = 6 index the lists . Define 

X ij = {I. if engine j loc~ted page i . 
0, otherwise. 

In other words, X ij = 1 if individual i appears on list j . Let Pi) be the probability 

of this event. The number of Web pages identified by at least one search engine for 

query k is n k. Clearly, estimating N /, is equivalent to estimating N, - n" . We require 

a model that allows for 

I. Heterogeneity of capture probabilities: The probability of a page being indexed 

by a search engine is not constant. Pages with more links to them are more likely 

to be located by a search service [9]. 

2. List dependencies: Search engines are more inclined to index certain fractions 

of the Web, hence the search results they return will be correlated. 

3. Heterogeneity among search services: Each engine has a specific built-in 

searching mechanism and because this mechanism is different from one engine 

to the other, the set of Web documents indexed by every service will also be 

different. 

Rasch [10] introduced a simple mixed-effects generalized linear model that allows 

for object heterogeneity and list heterogeneity. The multiple-recapture model can be 

expressed as 

lo g { ~ } = (f i+ ! 3J : i = l. ... . N,, ; j = l. .... .I: 
1 - Pi) . 
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where Bi is the random catchability effect for the ith Web page, and f3j is the fixed 

effect for the penetration of engine j into the target population represented by all 

indexable Web documents relevant for the kth query. The heterogeneity of capture 

probabilities across objects depends on the distribution Fe of B = (Bl' ... , B N k ). Note 

that, if we set the Bi in Eq. (7) equal to zero, the log-odds of inclusion of object i on 

list j depends only on the list, and thus the Rasch model reduces to the traditional 

capture-recapture model with independent lists. When the Bi's are different from zero 

and we treat them as random effects, this model is multilevel, with lists at one level 

and individuals at another. 

Fienberg et al. [6] showed how to analyze one query using a Bayesian approach 

for estimating the parameters of the Rasch model. They employed the following full 

Bayesian specification: 

Bern(pjIBi ); i = 1, ... , Nk ; j = 1, ... ,.1; 

Fe(Bi); i = 1, ... , Nk; (8) 

G(j(f3j); j = 1, ... ,.J. 

This permits us to describe all of the model components, and alter precisely those parts 

that need adjustment to reflect the dependency in the data. We use an extension of the 

Markov chain Monte Carlo technique for fitting item-response models, as described 

in Johnson et al. [7]. Following Fienberg et al. [6], we assume that the vector of 

list parameters f3 = (f31, ... , (36) is distributed N 6 (0, 10 . 16 ) and is independent of 

(B, a2 , Nk). The catchability parameter vector is distributed Bla2 , Nk rv NNk (0, a2 . 

I) and a 2 rv r- 1 (1, 1). This distribution is proper but presumes that we have little 

knowledge about the search engines indices and about their underlying indexing 

algorithms. As the prior distribution of Nb we use a variation of the Jeffrey's prior 

(9) 

This specification is robust to the choice of Nk"ax and can be as small as 10,000 or 

as large as 1,500,000. The latter threshold was used when fitting the Rasch model 

for the table collapsed across queries. 

To illustrate the use of this model, we consider query 140, which has n140 = 159 

URLs, and we compare the results obtained by fitting the Bayesian Rasch model with 

the classical Petersen estimates. The posterior distribution of N 140 is skewed, while 

the median (639) is not very close to the mode (481; Fig. 3). The 95% confidence 

interval for N 140 is [330,1691]. The 95% highest posterior density (HPD henceforth) 

interval is [268,1450]. This 95% HPD interval for the Bayesian Rasch model is an 

equal-tailed probability interval [6]. The lower end of the HPD interval is only slightly 

smaller than the lower end of the 95% confidence interval, whereas the upper ends 

of the two intervals are a lot farther apart. We are not surprised by this fact since the 

posterior distribution has a long right tail. Both the mean (165) and the maximum 

(322) of the Petersen estimates are bigger than the observed number of pages. The 

Petersen estimates suggest that the expected number of pages is only twice as large as 
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Fig. 3. Posterior di stribution of the projected numher of Weh pages I\h for query Q 1 111 

n140 , as compared with the Rasch model estimate, which is at least four times larger 

than n140. 

As the observed number of pages n k increases, the posterior distribution of the 

projected number of pages N k moves toward a symmetric distribution . The Petersen 

estimator constantly underestimates Nk when compared with the inferences we draw 

through the Rasch model. Since the assumptions the Rasch model is built on are a lot 

closer to reality than the assumptions (AI )- (A2) we make when lI sing the Petersen 

estimator, we are inclined to give more credit to the Rasch model. Moreover, the 

Lawrence and Giles approximation of the size of the indexable Web is of the same 

order of magnitude as the Petersen estimator. 

3.2 Collapsing versus Regression 

Estimating the total number of documents N on the indexable Web r elevant to at least 

one of the 575 queries is a key step in our analysi s. Each of the 575 queries d efines 

approximately disjoint segments of the Web. Since the Rasch model provides a good 

estimate of the size i f,: of each subpopulation, we would be tempted to approximate 

N as 
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(10) 

k=1 

Although simple and appealing, it is not easy to make use ofEq. (10) in practice since 

it requires fitting a Rasch model for every query we work with. An alternative solution 

is to fit the Rasch model for the contingency table So derived from the seven-way 

table S by collapsing across queries. We are aware that the different queries induce 

heterogeneous populations of pages, hence building our reasoning solely on the six­

way cross-classification So might seriously bias our findings. On the other hand, the 

heterogeneity effect might not be as strong as we expect and so it might be adequate 

to make use of So. 

To account for the possible heterogeneity effect, we sampled without replacement 

128 queries from the 575 queries (about 20%) contained in the data set, and we used 

the Rasch model to estimate the number of relevant pages that were not found by any 

of the search engines. We estimated Nk for the queries not selected in the sample 

by employing simple linear regression. We modeled the posterior mean, median and 

mode of Nk as a function of the observed number of pages for every query in the 

sample and ended up with the following models: 

(M1) 10g(NI.nean) = 4.67 + 19.2 ·log(nk), 

(M2) 10g(Ntedian) = 130.6 ·log(nk), 

(M3) 10g(N':'Ilod,,) = -2.88 + 41.94· log(nk). 

(11 ) 

The coefficients of determination for models (Ml), (M2) and (M3) are 75%, 99% 

and 93% respectively. Care should be taken when interpreting the coefficient of de­

termination R2 for (M2), since the intercept is not present in the model. The plot of 

observed versus fitted values (Fig. 4) confirms the validity of the models we proposed. 

It appears that the projected number of pages germane to query Qk is directly propor­

tional on a logarithmic scale to nk, that is, the total number of Web pages identified 

by the six search engines combined. The models (M2) and (M3), which are the "best" 

regressions, can be employed to predict N/,; for the queries for which we did not fit the 

Rasch models. The six search engines employed by Lawrence and Giles [8] identified 

49,416 pages on the Web relevant to at least one of the 575 queries. The predicted 

number of relevant pages is 167,298 if we use model (M2) and 125,368 if we use 

model (M3). Therefore these regression-based projections suggest that there exist at 

least twice as many relevant pages on the Web that were not found by any search 

engine. 

In Fig. 5, we present the posterior distribution of N from fitting the Bayesian Rasch 

model for table So. This distribution is symmetric and unimodal, with a posterior 

median equal to No = 184,160. The 95% HPD interval for N is [173427,199939]. 

The mean 50,440 of the Petersen estimates is only slightly bigger than the total 

number of pages no = 49,416 captured by the combined search engines for all the 

queries, whereas the maximum is 75, 130. Consequently, the projected number of 

pages N using the Petersen estimator is not even twice as large as no, while using 

the Rasch model the same quantity would be approximated to be almost four times 

as large as no. 
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Recall that (3J, 1 S .i S 6, is the fixed effect for the penetration of engine j 

into the target population. Figure 6 portrays the catch effort of Alta Vista across all of 

the 128 sample queries. We plotted several summary statistics based on the posterior 

distribution of (31 from the samples we generated using the Rasch model. The overall 

catch effort , 6 ~ of Alta Vista is taken to be the posterior median of the Rasch model 

for table So. Figure 6 offers unmistakable evidence that the performance of Alta Vista 

remains stable across the 575 queries used, since {3ii stays within the 95% confidence 

limits for almost all 128 queries. The posterior distributions of those (31's for which 

(3\1 lies outside the 95% confidence intervals might not be well approximated due 

to insufficient information - few Web pages observed for the corresponding queries . 

The rest ofthe search engines exhibit the same unvarying behavior. When interpreting 

Fig. 6, we have to keep in mind that the 575 queries have no "natural" order; they were 

labeled with "1", "2", .. . , "575" in the same order in which Lawrence and Giles 18J 
included them in the initial 575 x 63 matrix they provided us with. This means that 

the curves in Fig. 6 have no intrinsic meaning. However, Fig. 6 is useful for observing 

the tightness of the quantiles of the estimated catch efforts of the queries about the 

overall catch effort: only 3 queries of the 128 deviate significantly from the collapsed 

value . 
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Fig. 6. Catehability effect of AltaVista across the queries selected in the sample. The vertical 

axis represents the number value of /31 in model (7) and the curves connect the quantiles of the 

128 sample queries displayed along the horizontal axis in an arbitrary order 
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4 Scaling Up to the Web 

We are now in a position to provide estimates for N based on the analyses described 

in the preceding section: 

• Method 1: Select a sample from the set of queries, fit the Rasch model for every 

sample query and extend the results to the rest of the queries via regression . 

• Method 2: Find a direct estimate for N by fitting the Rasch model for the seven­

way table S collapsed across queries. 

For the Lawrence and Giles data, method I gives Nt = 167, 298 as an estimate 

for N if model (M2) is employed, while using method 2 we obtain a slightly larger 

value, namely N'2 = 184,160. Thus both techniques return results within the same 

order of magnitude. However, Method 2 fully overlooks the heterogeneity existent 

among queries and although this method is less expensive to implement, in some 

particular circumstances we might favor method I. 

Table 3 gives the estimates of the absolute coverage of the six search engines we 

obtained by employing methods I and 2. We contrast our findings with the coverage 

estimates of Lawrence and Giles [8]. Our estimates suggest that HotBot, the engine 

with the largest coverage in December 1997, indexed only about 15% of the indexable 

Web, rather than 34% as calculated by Lawrence and Giles. In addition, our combined 

coverage of the six search engines is approximately equal to the coverage of AltaVista 

estimated by Lawrence and Giles' 

Table 3. Estimated coverage of the search engines used relative to the indexable Web as of 

December 1997 (Percentages) 

Estimates based on 

Method 1 Method 2 

Combined coverage of en- 29.54 27.00 

gines used 

AhaVi ta 11.00 10.00 2 .00 

Infoseek 3.91 3.60 10.00 

Excite 5.65 5.12 14.00 

HotBot 15.37 14.00 34.00 

Lyco 1.23 1.11 3.00 

orthem Light 7.80 7.00 20.00 

Common coverage of en- 0.06 0.03 

gines u e-d 

We cannot make inferences about the size of the indexable Web based on our data 

alone . Consider a search engine [.1 with index E [. The relationship in Eq. (2) tells us 

that the number of documents available on the indexable Web can be estimated by 
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l lEll J (\2) 
P(Et) . 

We approximate P( E 1 ) as the ratio between the total number of pages located by [; I 

for all queries used and the estimate for N we employed. Currently, we have no choice 

but to rely on the size of the index of [; I as reported by the engine itself. Since these 

published estimates are not reliable, we used Eq. (12) for several search engines and 

compared the results we obtained (Table 4). Lawrence and Giles argued that HotBot 

had reportedly indexed 1 \0 million pages as of December 1997, and consequently 

they based their estimates on this value. On the other hand, Bharat and Broder [21 

claimed that "Search Engine Watch reported the following search engines sizes (as 

of November 5, 1997): AltaVista = 100 million pages, HotBot = 80 million, Excite 

= 55 million, and Infoseek = 30 million pages". The first row uses N l • while all the 

other values use N2 as an estimate of N. 

Table 4. Ahsolute estimates for the size of the Web as of December 1997 (millions of pages) 

Reported Sizes 

HotBot HotBot* Infoseek AltaVista Excite 

(80) ( I 10) (30) ( 100) (55) 

Our Web size (Method I) 520.63 715.87 767.30 909.29 974.21 

Combined coverage of engines used 153.78 211.45 226.46 268 . .'57 287.7G 

(collapsed) 

AltaVista (collapsed) 57.26 78.7:l 84.:39 100.00 107.15 

Infoseek (collapsed) 20.36 27.99 ;m.oo ~~5.,55 38.09 

Excite (collapsed) 2!J.:l9 40.42 43.32 51.33 55.00 

HotBot (collapsed) 80.00 110.00 117.90 1:~9.71 149.70 

HotBot (collapsed) 80.00 110.00 117.90 139.71 149.70 

Lycos (collapsed) G.:l9 8.78 9.42 1l.Hi 11.% 

Northern Light (collpased) 40.58 55.80 59.81 70.88 75.94 

Common coverage of engines used 0.16 0.22 0.2;3 0.28 0.30 

(collapsed) 

Our lowest bound of the size of the indexable Web is 520 million pages, while 

Lawrence and Giles [8J obtained an estimate of 320 million pages as of December 

1997. Remember that Bharat and Broder [2 J argued that the Web had only 200 million 

pages in November 1997. In order to contrast our inferences with the results found 

by Lawrence and Giles, we scaled up the posterior distribution of N from fitting the 

Rasch model for table So, using an estimate of the size of HotBot of 110 million pages. 

This technique allows us to find a distribution of the number of pages available on 

the indexable Web. The median of this distribution is 788 million pages (see Table 4). 

while the 95% HPD interval is [742,856] million pages. If we use the same "external" 
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information as Lawrence and Giles, we would say that the Web was at least twice as 

big in 1997 as what was believed until today [2, 8]. In addition, HotBot seems to have 

the largest index, between 80 and 150 million pages, followed by AltaVista, between 

57 and 107 million pages. 

We have to emphasize that the method we used for assessing the size of the 

Web has several shortcomings, and consequently we need to be very careful when 

interpreting the results obtained by employing it. We pointed out before that the 

reported sizes of search engines indices are far from being reliable, hence the quantity 

with which we scale up might not reflect the truth. Furthermore, the "scaling up" itself 

might not be an adequate solution for our problem. Suppose HotBot has a very good 

performance in region A, but does very poorly in region B. Moreover .. assume that 

A and B are included in the population of pages relevant to at least one of the 575 

queries. According to the method we employed, we would use the same scaling factor 

for both regions. If these hypotheses were true, we would obviously reach an erroneous 

conclusion. Nonetheless, we believe that the situation we described is very unlikely 

to have actually occurred for the six search engines employed in our study. 

5 Open Research Questions 

I. How to sample from the Web directly, without exploiting the search engines? 

2. How to obtain a more reliable estimate of the size of the Web without using a 

reported size of some search engine index? 

3. Are there better ways of expressing/summarizing the amount of information on 

the Web besides the ones mentioned in this chapter? 

4. A new generation of search engines built with different tools, such as Google, 

has revolutionized Web searches, and the assumptions of the Rasch model are 

unlikely to hold if we were to look at the engines today. How does that change 

the way the statistical analyses are performed? 
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