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ABSTRACT

Video sharing (e.g., YouTube, Vimeo, Facebook, TikTok) accounts

for the majority of internet traffic, and video processing is also foun-

dational to several other key workloads (video conferencing, vir-

tual/augmented reality, cloud gaming, video in Internet-of-Things

devices, etc.). The importance of these workloads motivates larger

video processing infrastructures and ś with the slowing of Moore’s

law ś specialized hardware accelerators to deliver more computing

at higher efficiencies. This paper describes the design and deploy-

ment, at scale, of a new accelerator targeted at warehouse-scale

video transcoding. We present our hardware design including a new

accelerator building block ś the video coding unit (VCU) ś and dis-

cuss key design trade-offs for balanced systems at data center scale

and co-designing accelerators with large-scale distributed software

systems. We evaluate these accelerators łin the wild" serving live

data center jobs, demonstrating 20-33x improved efficiency over our

prior well-tuned non-accelerated baseline. Our design also enables

effective adaptation to changing bottlenecks and improved failure
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management, and new workload capabilities not otherwise possible

with prior systems. To the best of our knowledge, this is the first

work to discuss video acceleration at scale in large warehouse-scale

environments.
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1 INTRODUCTION

Video sharing services are vital in today’s world, providing critical

capabilities across the globe to education, business, entertainment

and more. Video is the dominant form of internet traffic, making

up >60% of global internet traffic as of 2019 [10], and continues

to grow given 4K and 8K resolutions and emerging technologies

such as augmented and virtual reality, cloud video gaming, and

Internet-of-Things devices. Recently, the COVID-19 pandemic has

further amplified the importance of internet video platforms for

communication and collaboration: e.g., medical professionals us-

ing video platforms to share life-saving procedures or increased

YouTube usage (>15% of global internet traffic) [11].

While the computational demand for video processing is ex-

ploding, improvements from Moore’s Law have stalled [27]. Future

growth in this important area is not sustainable without adopt-

ing domain-specific hardware accelerators. Prior work on video

acceleration has focused primarily on consumer and end-user sys-

tems (e.g., mobile devices, desktops, televisions), with few video

products targeting data centers [37]. Introducing video transcoding

accelerators at warehouse-scale [4] is a challenging endeavor. In

addition to the high quality, availability, throughput, and efficiency

requirements of cloud deployments, the accelerator must support

the complexity of server-side video transcoding (i.e., plethora of

formats and complex algorithmic and modality trade-offs), deploy-

ment at scale (i.e., workload diversity and serving patterns), and

co-design with large-scale distributed systems.

In this paper, we address these challenges. To the best of our

knowledge, this is the first work to discuss the design and deploy-

ment of warehouse-scale video acceleration at scale in production.

Specifically, we make the following key contributions.

First, we present a new holistic system design for video accelera-

tion, built ground up for warehouse-scale data centers, with a new

hardware accelerator building block ś the video coding unit (VCU)

ś designed to work in large distributed clusters with warehouse-

scale schedulers. We detail our carefully co-designed abstractions,

partitioning, and coordination between hardware and software, as

well as specific design and engineering optimizations at the levels

of hardware blocks, boards, nodes, and geographically-distributed

clusters. For example, VCUs implement a sophisticated acceleration

pipeline and memory system, but are also designed with support

for stateless operations and user-space programmability to work

better with data center software. Similarly, our clusters are carefully

optimized for system balance under increased diversity and density,

but also support rich resource management abstractions and new

algorithms for work scheduling, failure management, and dynamic

tuning. Additionally, we discuss our approach to using high-level

synthesis to design our hardware for deeper architecture evaluation

and verification.

Second, we present detailed data and insights from our deploy-

ment at scale in Google including results from longitudinal studies

across tens of thousands of servers. Our accelerator system has

an order of magnitude performance-per-cost improvement (20x-

33x) over our prior well-tuned baseline system with state-of-the-art

CPUs while still meeting strict quality, throughput, latency, and

cost requirements across a range of video workloads (video sharing,

photos/video archival, live streaming, and cloud gaming). We also

present results demonstrating how our holistic co-design allows

for real-world failure management and agility to changing require-

ments, as well as enables new capabilities that were previously not

possible (increased compression, live video applications, etc).

The rest of the paper is organized as follows. Section 2 provides

background on why data center scale video transcoding is a chal-

lenging workload to accelerate. Section 3 discusses our system

design and implementation, with specific focus on new insights

around system balance and hardware-software co-design specific

to video acceleration at warehouse-scale. Section 4 presents mea-

surements from at-scale deployment in our production data centers,

Section 5 discusses related work, and Section 6 concludes the paper.

2 WAREHOUSE-SCALE VIDEO PROCESSING

In this section, we discuss key aspects of warehouse-scale video

processing platforms that make it challenging for hardware accel-

eration. We also describe how data center transcoding differs from

consumer devices.

2.1 Video Transcoding: Workload Challenges

APlethora ofOutput Files:Video sharing platforms like YouTube

enable a user to upload a video they created, and lets others reliably

view it on a variety of devices (e.g., desktop, TV, or mobile phone).

The video sharing platform (Figure 1) includes computing and stor-

age in data centers and streaming via a content-delivery network

(CDN) [15]. In this paper, we focus on the former two data center

components. Given the large range of screen sizes/resolutions, from

8K TVs down to low-resolution flip phones, most video platforms

will convert each uploaded video into a standard group of 16:9

resolutions1. These video files are computed and saved to the cloud

storage system and served as needed. This production of multiple

outputs per input is a key difference between a video sharing

service and a consumer video application like video chat.

video

Creator Viewer
Content
Delivery
Network

Cloud
Storage

Transcoding

Internal Network→InternetCloud Data Centers

Figure 1: Video platform functional diagram

Since lower resolutions have smaller file sizes and can be up-

scaled on a viewer’s device, the clientmay adapt to limited/changing

bandwidth by requesting a lower resolution (e.g., adaptive bitrate

or ABR [7, 16, 48]).

1For example, 256 x 144, 426 x 240, . . . , 3840 x 2160 (a.k.a. 4K), 7680 x 4320 (a.k.a. 8K)).
These are usually shortened to just the vertical dimension (e.g. 144p, 240p, . . . , 2160p,
and 4320p).
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A Plethora of Video Formats: Compressing video files makes

them much smaller, yielding storage and network bandwidth ben-

efits. Video coding specifications define how to decompress a com-

pressed video sequence back into pictures and Codecs are imple-

mentations of these specifications. Popular coding specifications

include H.264/AVC [28], VP9 [21], and AV1 [12]. High compression

is achieved using combinations of prediction, transformation, quan-

tization, entropy coding, and motion estimation [22, 24, 55]. Newer

specifications use more computation for higher compression gains.

While some devices (laptops, desktops) keep up with the latest

specifications via software decoders (running on general-purpose

processors), others (TV, mobile) use hardware (fixed-function) de-

coders for their power efficiency and speed and thus continue to

stick with older specifications. Therefore, to leverage new specifica-

tions when the viewer’s device supports it and use older ones when

the device does not, videos must be encoded in a plethora of dif-

ferent formats. Combined with the multiple resolutions described

above, this translates to a majority of work in the video process-

ing platform spent on transcoding. Contrast this with classic video

broadcast (TV) where video is encoded in one format and resolution

and all playback devices support that same format/resolution!

Algorithmic Trade-Offs in Video Transcoding: Figure 2a

shows the transcoding process by which a video is decoded from

one format into raw frames, scaled to the output resolution and then

encoded into another, potentially different, format, typically with

higher compression settings than the original consumer encoder.

Video sharing platforms must optimize these trade-offs to ensure

that users receive playable and high quality video bitstreams while

minimizing their own computational and network costs.

Encoding is a computationally hard search problem often taking

many orders-of-magnitude longer than decoding, involving trade-

offs between perceptual quality, resultant bitrate, and required

computation [55]. The encoder exploits redundancy within and

across frames to represent the same content in fewer bytes. The

high compute cost is due to the large search space of encoding

parameters, which is a combination of the resolution, motion, and

coding specification. New compression specifications grow the

search space by providing additional tools that the encoder can

apply to better express the redundancy in video content in fewer

bits.

Another key parameter to improve video quality and/or bitrate is

the use of non-causal information about the video frame sequence.

This leads to a choice of one-pass or two-pass algorithms used in

low-latency, lagged, or offline modes. The lowest-latency encoding

(e.g., videoconferencing, gaming) is low-latency, one-pass encoding

where each frame is encoded as soon as available but with limited

information on how to allocate bits to frames. In two-pass encoding,

frame complexity statistics are collected in the first pass and used to

make frame type and bit allocation decisions in the second pass [61]

over different timewindows. Two-pass encoding can be additionally

classified as below.

• Low-latency two-pass has no future information but is still

able to use statistics from the current and prior frames to

improve decisions on frame type and bit allocation.

Decode Raw 
Frame

Scale Raw 
Frame

Encode videovideo

(a) Single-output transcoding (SOT) pipeline

Decode
Scale Raw 360p Encode

Scale Raw 240p Encode
Scale Raw 144p Encode

EncodeRaw 480p
video 480p

video 360p

video 240p

video 144p

video 480p

(b) 480p multiple-output transcoding (MOT) pipeline

Figure 2: Data center video transcoding patterns

• Lagged two-pass encoding has a window of statistics about

future frames and allows for bounded latency (e.g., for live

streams).

• The best quality is offline two-pass (e.g., used in large-scale

video services like YouTube and Netflix) where frame sta-

tistics from the entire video are available when running the

second pass.

Finally, advanced encoding systems [7, 33] may do multiple com-

plete passes of any of the above encoding schemes combined with

additional analysis (e.g., rate quality curves for individual videos at

multiple operating points) to produce better quality/compression

trade-offs at additional computational cost.

Chunking and Parallel Transcoding Modes: The video pro-

cessing platform is designed to leverage warehouse infrastructure

to run as much in parallel as possible. Transcoders can also shard

the video into chunks (also known as closed Groups of Pictures, or

GOPs) that can each be processed in parallel [17]. The transcoder

can perform either single-output transcoding (SOT) or multiple-

output transcoding (MOT). As shown in Figure 2a, SOT is a straight-

forward implementation of a transcoder service, simply reading

an input chunk, decoding it, and then encoding a single output

variant (possibly after scaling). A separate task must be used for

each resolution and format desired.

MOT is an alternative approach where a single transcoding task

produces the desired combination of resolutions and formats for

a given chunk (Figure 2b). The input chunk is read and decoded

once, and then downscaled and encoded to all output variants in

parallel. This reduces the decoding overheads and allows efficient

sharing of control parameters obtained by analysis of the source

(e.g., detection of fades/flashes). MOT is generally preferred to SOT,

as it avoids redundant decodes for the same group of outputs, but

SOT may be used when memory or latency needs mandate it.

2.2 Warehouse-Scale Processing: Challenges

Multiple Video Workloads and Requirements: YouTube’s

video processing platform [7, 34] currently supports multiple video-

centric workloads at Google: (1) YouTube itself that handles uploads

of multiple hundreds of hours of video every minute, (2) Google

Photos and Google Drive with a similar volume of videos, and

(3) YouTube Live with hundreds of thousands of concurrent streams.

These services differ in their load and access patterns. Their end-to-

end latency requirements also vary widely, from Live’s 100 ms to

video upload’s minutes to hours. As discussed above, spreading the
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work across many data centers around the world helps distribute

the load and meet latency requirements.

Video Usage Patterns at Scale: As with other internet media

content [25], video popularity follows a stretched power law dis-

tribution, with three broad buckets. The first bucket ś the very

popular videos that make up the majority of watch time ś rep-

resents a small fraction of transcoding and storage costs, worth

spending extra processing time to reduce bandwidth to the user.

The second bucket includes modestly watched videos which are

served enough times to motivate a moderate amount of resources.

And finally, the third bucket includes the long tail, the majority of

videos that are watched infrequently enough that it makes sense to

minimize storage and transcoding costs while maintaining playa-

bility. Note that old videos can increase in popularity and may need

to be reprocessed with a higher popularity treatment well after

upload.

Data Center Requirements: Designing video transcoding ASICs

for the data center can be fundamentally different than design-

ing for consumer devices. At the warehouse-scale, where many

thousands of devices will be deployed, there is an increased focus

on cost efficiency that translates into a focus on throughput and

scale-out computing [4]. The łtime to marketž also becomes criti-

cal, as launching optimized products faster can deliver significant

cost savings at scale. Additionally, unlike consumer environments

where individual component reliability and a complete feature set

are priorities, in a warehouse-scale context, the constraints are

different: fallback software layers can provide infrequently needed

features and reliability can be augmented by redundant deploy-

ments. Also, at large scale, testing and deploying updates can be

highly disruptive in data centers, and consequently systems need

to be optimized for change management.

Data Center Schedulers: One key characteristic of warehouse-

scale designs is the use of a common software management and

scheduling infrastructure across all computing nodes to orchestrate

resource usage across multiple workloads (e.g., Google’s Borg [59]).

This means that the video processing platform is closely designed

with the warehouse-scale scheduler. Processing starts with identi-

fying what output variants need to be generated for a given video

based on its characteristics and the application (video sharing, stor-

age, streaming, etc.). Based on the required output variants, an

acyclic task dependency graph is generated to capture the work to

be performed. The graph is placed into a global work queue system,

where each operation is a variable-sized łstepž that is scheduled on

machines in the data center to optimize available capacity and con-

currency. The step scheduling system distributes the load, adapting

to performance and load variations as well as service or infrastruc-

ture failures. The video system also orchestrates the parallelism

from chunking discussed earlier: breaking the video into chunks,

sending them to parallel transcoder worker services, and assem-

bling the results into playable videos. These kinds of platforms also

operate at a global scale and thus the platform is distributed across

multiple data centers. A video is generally processed geographically

close to the uploader but the global scheduler can send it further

away when local capacity is unavailable.

3 SYSTEM DESIGN

Summarizing the discussion above, transcoding is the most impor-

tant component of data center video platforms but poses unique

challenges for hardware acceleration. These include being able to

handle and scale to a number of different output resolutions and

formats, as well as handling complex algorithmic trade-offs and

quality/compression/computing compromises. These challenges are

compounded by attributes of warehouse-scale system design: inter-

and intra-task parallelism, high performance at low costs, ease of de-

ployment when operating at scale, co-ordinated scheduling and fail-

ure tolerance. Taken together, cloud video workloads on warehouse-

scale computers are very different from their consumer counter-

parts, presenting new infrastructure challenges around throughput,

quality, efficiency, workload diversity, reliability, and agility.

In response to these challenges, we designed a new holistic sys-

tem for video acceleration, built ground-up for data-center-scale

video workloads, with a new hardware accelerator building block ś

a video coding unit (VCU) ś co-designed to work in large distributed

clusters with warehouse-scale schedulers. Core to our solution is

hardware-software co-design, to architect the system to scalably

partition and optimize functionality at individual levels ś from in-

dividual hardware blocks to boards, nodes, and geographically-

distributed clusters, and across hardware, firmware, and distributed

systems software ś with appropriate abstractions and interfaces

between layers. We follow a few key high-level design principles in

optimizing for the distinct characteristics and constraints of a data

center deployment:

Globally Maximize Utilization: Given power and die-area con-

straints are more relaxed, our data center ASICs are optimized

for throughput and density, and multi-ASIC deployments amor-

tize overheads. In addition, we optimize system balance and global

work scheduling to minimize stranding (underutilized resources),

specifically paying attention to the granularity and fungibility of

work.

Optimize for Deployment at Scale: Software deployments have

varying degrees of disruption in data centers: kernel and firmware

updates require machine unavailability, in contrast to userspace

deployments which only require, at most, worker unavailability.

We therefore design our accelerators for userspace software control.

Also, as discussed earlier, individual component reliability can be

simplified at the warehouse level: hardware failures are addressed

through redundancy and fallback at higher-level software layers.

Design for Agility and Adaptability: In addition to existing

workload diversity, we have to plan for churn as applications and

use-cases evolve over time. We therefore design programmabil-

ity and interoperability in hardware, ossifying only the computa-

tionally expensive infrequently-changing aspects of the system.

Software support is leveraged for dynamic tuning (łlaunch-and-

iteratež) as well as adapt to changing constraints. An emphasis on

agility also motivates our use of high-level synthesis (HLS) to take

a software-like approach to hardware design.

In the rest of this section, we describe how these principles trans-

late to specific design decisions. Section 3.1 first introduces the

holistically co-designed system. Section 3.2 discusses the design

of our VCU hardware accelerator, and Section 3.3 discusses how

the VCU and its system is co-designed to work in larger balanced
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256-bit AXI bus
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/ Decoding

32-bit APB control bus

Temporal 
filter

Requester Interface

(c) Encoder core functional block diagram

Figure 3: Design at all scales: global system, chip, and encoder core

clusters and with the firmware and distributed software stack. Sec-

tion 3.4 discusses additional details of how we use HLS to accelerate

our design, and Section 3.5 summarizes the design.

3.1 Video Accelerator Holistic Systems Design

Figure 3a shows our overall system design. Each cluster operates

independently and has a number of VCU machines along with

non-accelerated machines. Each VCU machine has ś in addition

to the host compute ś multiple accelerator trays, each containing

multiple VCU cards, which in turn contain multiple VCU ASICs.

The VCU ASIC design is shown in Figure 3b and combines multiple

encoder cores (discussed in Figure 3c) with sufficient decode cores,

network-on-chip (NoC), and DRAM bandwidth to maintain encoder

throughput and utilization across our range of use-cases (i.e., MOT,

SOT, low-latency, offline two-pass).

At the ASIC level, we selected parts of transcoding to implement

in silicon based on their maturity and computational cost. The en-

coding data path is the most expensive (in compute and DRAM

bandwidth) and sufficiently stable that it was the primary candidate.

After encode, decoding is highly stable and is the next most domi-

nant compute cost, making it a natural second candidate. Much of

the rest of the system is continuously evolving, from the encoding

rate control software to work scheduling, so those areas were left

flexible. Additionally, we created a firmware and software focused

hardware abstraction that allowed for performance and quality

improvements post-deployment that will be further discussed in

Section 3.3.2.

At the board and rack levels, we chose to deploy multiple VCUs

per host to amortize overheads and make it simpler to avoid strand-

ing encoder throughput due to host resource exhaustion (i.e., VCU

hosts only serve VCU workers). This was also done because a high

density deployment fit our racking and data center deployment

approaches better than augmenting every machine in a cluster with

VCU capacity, allowing us to reuse existing hardware deployment

and management systems.

At the cluster level, we augmented our video processing platform

to account for the heterogeneous resources of the VCU in scheduling

work. Our video processing platform schedules graphs of work from

a cluster-wide work queue onto parallel worker nodes that includes

both transcoding and non-transcoding steps. Each VCU worker

node runs a process per transcode to constrain errors to a single

step. This newwork scheduler was fundamental tomaximizing VCU

utilization data center-wide, beyond just at the level of a single VCU.

As most of the ASIC area consists of encoder cores, maximizing the

encoder utilization is the key to maximizing VCU utilization. The

decoder cores are also taken into consideration, as under-utilizing

them leaves the host with unnecessary software decoding load.

Multiple-output transcoding (MOT) was considered foundational

for encoder utilization because of the benefits discussed in Section 2.

The efficiency of decoding once, scaling, and encoding an entire

MOT graph on a single VCU simplifies scheduling and reduces

resource consumption at the data center level. The typical structure

of a multi-output transcode is a single-decode and then the set of

conventional 16:9 outputs (e.g. for 1080p inputs: 1080p, 720p, 480p,

360p, 240p, and 144p are encoded). This scales down the decode

needs of the VCU by the number of outputs and generally only

doubles the encoding requirements2. Few videos require an entire

VCU for their MOT, so we designed our VCUs to perform multiple

MOTs and SOTs in parallel to boost encoder and VCU utilization.

3.2 VCU Encoder Core Design

The encoder core (Figure 3c) is the main element of the VCU ASIC

and is able to encode H.264 and VP9 while searching three refer-

ence frames. The core shares some architecture features with other

prior published work [57] ś pipelined architecture, local reference

store for motion estimation and other state, acceleration of entropy

encoding ś but is optimized for data center quality, deployment,

and power/performance/area targets.

Input 
Preprocessing Entropy Coding

DRAM 
Reader

Reconstruction 
& Compression

DRAM 
Writer

Motion Estimation

Rate Distortion Opt.

Partitioning

Temporal Filter

Reference 
Reading & 

Decompression
Reference Store

Figure 4: Encoder core functional pipeline

Figure 4 shows the main functional blocks in the pipeline (con-

nected by small black arrows) as well as the data flow into and

out of the reference store (connected by large gray arrows). The

basic element of the pipelined computation is either a 16x16 mac-

roblock (H.264) or a 64x64 superblock3 (VP9) ś the largest square

group of pixels that a codec operates on at a time. Though the

stages of the pipeline are balanced for expected throughput (cycles

2The pixel processing requirements of a multi-output transcode approximates a geo-
metric series (e.g., 1080p is approximately 2 megapixels per frame; 720p + 480p + . . . +
144p sum to ~1.7 Mpixels).
3For simplicity, we will only talk about macroblocks in the rest of the discussion.
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per macroblock), the wide variety of blocks and modes can lead

to significant variability. To address this, the pipeline stages are

decoupled with FIFOs, and full FIFO backpressure is used to stall

upstream stages when needed.

Encoder Core Pipeline Stages: The first pipeline stage imple-

ments the classic stages of a block-based video encoding algorithm:

motion estimation, sub-block partitioning, and rate-distortion-based

transform and prediction mode selection [57, 65]. This is by far the

most memory-bandwidth-intensive stage of the pipeline, interfac-

ing heavily with the reference store (discussed below). A bounded

recursive search algorithm is used for partitioning, balancing the

coding overhead of smaller partitions against a reduction in net er-

ror. Per-codec logic selects from a number of transform/prediction

mode candidates using approximate encoding/decoding to optimize

bit rate and quality, and the number of rounds can be programmed.

High-Level Synthesis (Section 3.4) was critical to experimenting

with different algorithms and implementations.

The next stage implements entropy encoding for the output block,

decoding of the macroblock (needed for the next stage), as well as

temporal filtering for creating of VP9’s alternate reference frames.

This stage is sequential-logic-heavy and consequently challenging

to implement in hardware [45]. While entropy decoding is fully

defined by the specification, entropy encoding has many differ-

ent algorithm and implementation options, e.g. VP9’s per-frame

probability adaptation [42]. Temporal filtering is a great example

of an optimization that we added given the more relaxed die-area

constraints in a data center use case. It uses motion estimation

to align 16x16 pixel blocks from 3 frames and emits new filtered

blocks with low temporal noise. This allows for the creation of

non-displayable, synthetic alternate reference frames [6, 63] that

improves overall compression, and is a feature present in VP8, VP9,

and AV1. The temporal filter can be iteratively applied to filter more

than 3 frames, providing an additional quality/speed trade-off.

The final stage of the pipeline takes the decoded output of the

encode block and applies loop filtering and lossless frame buffer

compression. The former requires access to pixels from adjacent and

top blocks, which are stored in local SRAM line buffers. The latter

losslessly compresses eachmacroblockwith a proprietary algorithm

that minimizes memory bandwidth while staying fast enough not

to be a bottleneck. The frame buffer compression reduces reference

frame memory read bandwidth by approximately 50%.

Data Flow and Memory System: The DRAM reader block inter-

faces to the NoC subsystem, and is responsible for fulfilling requests

for data from other blocks, primarily the reference store. This block

also includes the preprocessor and frame buffer decompression logic.

Similarly the DRAM writer block interfaces to the NoC subsystem

for writes to DRAM.

The most memory-intensive element of video encoding, as noted

earlier, is in the motion estimation stage, to find blocks of pixels

from the reference frames most similar to the current block. VP9 al-

lows blocks from multiple reference frames to be combined, further

increasing the search space. Consequently, a key element of our

design is an SRAM array reference store that holds the motion search

window. A reference store of 144K4 pixels can support each pixel

4144K pixels = 768 pixels wide and 192 pixels tall. The width of 768 pixels represents a
maximum tile columnwidth of 512 pixels (8x84-pixel macroblocks) and a 128 horizontal

(macroblock) in a tile column to be loaded exactly once during that

column’s processing and a maximum of twice during the frame’s

processing5. The reference store supports LRU eviction.

Given the deterministic DRAM access pattern, our design can

deeply prefetch the needed macroblocks, resulting in high mem-

ory subsystem latency tolerance and maximizing memory-level

parallelism. Additionally, the local search memory allows for an

exhaustive, multi-resolution motion search (down to 1/8th pixel res-

olution), achieving higher throughput and better results than are

typically obtained in a software motion estimation implementation.

The architecture of the encoding core eliminates most memory

hazards, allowing for an out of order memory subsystem. In partic-

ular, all the inputs (reference buffers, input frame) are not modified

during encoding, the encoded frame is written sequentially, and the

decoded version of the newly encoded frame (which will become

a reference frame for the next frame) is also written sequentially.

The primary hazard is the use of cross-tile boundary macroblocks

for the in-loop deblocking filter, which is avoided by a memory

barrier at the end of each tile column. Consequently, each core

in our design can have dozens of outstanding memory operations

in flight. The architecture aligns accesses to the natural memory

subsystem stride and does full writes to avoid read-modify-write

cycles in the DRAM subsystem.

Control and Stateless Operation: The encoder IP block is pro-

grammed via a set of control/status registers for each operation.

All inputs ś the frame to be encoded, all reference frames, other

auxiliary inputs (quantization parameter look-up tables, probabil-

ity tables, temporal motion vectors) ś are stored in VCU DRAM,

as are all the outputs ś the encoded frame, the updated reference

frame, temporal motion vectors and updated probability tables. This

allows the encoder cores to be interchangeable resources, where

the firmware can dispatch work to any idle core. The bandwidth

overhead from transferring state from DRAM is relatively small

compared to the bandwidth needed to load reference frames, as

discussed above. While an embedded encoder (in a camera, for

example) might prefer to retain state across frames to simplify pro-

cessing its single stream, this stateless architecture is better for a

data center ASIC where multiple streams of differing resolutions

and frame rates (and hence processing duration) are interleaved.

3.3 System Balance and Software Co-Design

We next discuss how we brought the hardware together in an opti-

mal system balance, and elaborate on the co-design across hardware

and software.

3.3.1 Provisioning and System Balance: The VCU ASIC floorplan is

shown in Figure 5a and comprises 10 of the encoder cores discussed

in Section 3.2. All other elements are off-the-shelf IP blocks6. VCUs

are packaged on standard full-length PCI Express cards (Figure 5b)

to allow existing accelerator trays and hosts to be leveraged. Each

machine has 2 accelerator trays (similar to Zhao et al. [66]), each

search window on each side (most video motion is horizontal, so search is biased in
that direction). The height of 192 pixels includes the 64-pixel macroblock and two
64-pixel windows vertically.
5For H.264, which lacks tile columns, the reference store is configured as a raster store
of 64x16 pixel blocks. By increasing the reference store to 394K pixels (2048 x 128), the
core can provide efficient encoding for up to 2048 pixel wide videos.
6The decoder cores are off-the-shelf, but SRAM ECC was added for data center use.
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Figure 5: Pictures of the VCU

containing 5 VCU cards, and each VCU card contains 2 VCUs, giving

20 VCUs per host. Each rack has as many hosts as networking,

physical space, and cluster power/cooling allow.

In terms of speeds and feeds, VCU DRAM bandwidth was our

tightest constraint. Each encoder core can encode 2160p in real-

time, up to 60 FPS (frames-per-second) using three reference frames.

The throughput scales near-linearly with reduced pixel count from

lower resolutions. At 2160p, each raw frame is 11.9 MiB, giving an

average DRAM bandwidth of 3.5 GiB/s (reading one input frame

and three references and writing one reference). While the access

pattern causes some data to be read multiple times, the lossless ref-

erence compression reduces the worst-case bandwidth to ~3 GiB/s

and typical bandwidth to 2 GiB/s. The decoder consistently uses

2.2 GiB/s, so the VCU needs ~27-37 GiB/s of DRAM bandwidth,

which we provide with four 32b LPDDR4-3200 channels (~36 GiB/s

of raw bandwidth). These are attached to six x32 DRAM chips, with

the additional capacity used for side-band SECDED ECC [26].

Other system resources to be balancedwere VCUDRAM capacity

(the 8 GiB usable capacity gave modest headroom for all workloads)

and network bandwidth (only 2/3 loaded in a pathological worst-

case). Host CPU cores, DRAM capacity, DRAM bandwidth, and PCI

Express bandwidth were also evaluated but found to be indirectly

bound by network bandwidth, needing at most 1/3 of the system

resources. Appendix A provides a more detailed discussion of these

system balance considerations.

3.3.2 Co-Design for Fungibility and Iterative Design: The software

and hardware were loosely coupled to facilitate parallel develop-

ment pre-silicon and continuous iteration post-silicon. The codec

cores in the VCU are programmed as opaque memories by the

on-chip management firmware (the firmware and driver stack are

oblivious to their content). The management firmware exposes

userspace mapped queues that expose 4 commands: run-on-core,

copy-from-device-to-host, copy-from-host-to-device, and wait-for-

done. Notably, run-on-core does not specify a particular core, leav-

ing it to the firmware to schedule.

We designed the system assuming that multiple userspace pro-

cesses would be needed to reach peak utilization at the VCU level

since we use a process-per-transcode model and the VCU is fast

enough to handle multiple simultaneous streams. The firmware

schedules work from queues in a round-robin way for fairness

(ensuring forward progress) and to maximize utilization. Software

describes the work as a data dependency graph which allows op-

erations to start and end out-of-order while respecting dependen-

cies between them. Typically, each userspace process controls one

firmware queue with multiple threads multiplexed onto it. One

thread enqueues commands to decode video in response to the

need for new frames, while another enqueues commands to scale

or encode video as frames become available. The loose coupling

allows userspace software to adjust the flow of frames through

codecs, efficiently expressing 2-pass encodes (low-latency, lagged,

or offline) and changing codec modes (scaling, temporal filtering,

H.264, VP9) without requiring other system changes.

It is substantially easier to iterate on userspace software in data

centers than on any lower level software (firmware, kernel) because

low level software updates require disruptions such as machine

reboots and therefore take longer to roll out globally. Userspace

VCU programming was vital for rapid iteration on the rate control

algorithms after initial deployment (results in Section 4.3).

3.3.3 Co-Design for Work Scheduling & Resiliency: To realize the

maximum per-VCU and data center-wide VCU utilization, we

moved our video processing scheduler from a uniform CPU cost

model (fixed CPU-seconds/seconds per graph step) to an online

multi-dimensional bin-packing scheduler [19]. This ensures that no

single VCU becomes completely saturated and no video transcoding

task (a step in the dependency graph) becomes resource starved.

Each cluster has multiple logical "pools" of computing defined by

use case (upload, live) and priority (critical, normal, batch) that

trade-off resources based on each pool’s demand. Each pool has

its own scheduler and multiple workers of different types (e.g.

transcoding, thumbnail extraction, generating search signals, fin-

gerprinting, notifications, etc), some with exclusive access to a

VCU and some doing regular CPU based processing.

Each type of worker defines its own set of named scalar resource

dimensions and a capacity for each. For example, resources for the

VCU workers include fractional decode and encode cores, DRAM

bytes, and fractional host CPU. We also use synthetic resources to

provide an additional level of control (for example, to limit the

amount of software decode to indirectly save PCI Express band-

width which is otherwise hard to attribute to a specific process).

CPU processing workers use the same scheduler but most retain the

prior one-dimensional "single slot per graph step" model with the

configured worker size (RAM, CPU) and per step average resource

usage determining the number of available slots per worker.

The worker type also defines a mapping from a step request

(which includes input video dimensions, input format, output for-

mats, encoding parameters) to the amount and type of resource re-

quired. The VCU estimations were initially based on measurements

of representative workloads in an unconstrained environment and

then tuned using production observations. This per-worker type

mapping admits different resource costs for dynamic tuning and

future VCU and CPU changes. As an example, for the VCU, this

mapping enabled opportunistically boosting encoder utilization to dy-

namically leverage the host CPU for decoding (based on a synthetic

resource dimension discussed earlier) when hardware decoding be-

came a resource bottleneck. (Additional agility results are discussed

in Section 4.3.)

The scheduler is horizontally scaled due to the large number

of workers and the need for low latency. It maintains a sharded,

in-memory availability cache of all workers and their current re-

source capacity across all dimensions, distributing the work and
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periodically receiving updates from the workers about their avail-

able resources. Work is distributed using a load-maximizing greedy

scheduling algorithm across all resources. This causes workers to

become idle when pool-level usage drops, at which point they may

be stopped and reallocated to other pools in the cluster, maximizing

cluster-wide VCU utilization. Another part of the scheduler sizes

the workers based on workload mix demand.

In the event of an error, the work is rescheduled on another

VCU or with software transcoding, leveraging the existing video

processing framework retry mechanism.

...

Service Request 
Queue

Worker Picker Availability Cache

Worker 0
Available: {D 0; E 7,000...}

Worker 1
Available: {D 1,000; E 7,000...}

Worker N
Available: {D 3,000; E 10,000...}

Request
Need: {D 500; E 3,750...}

Figure 6: Video processing work scheduler

Figure 6 illustrates our design with VCU workers showing just

the decoder (D) and encoder (E) core dimensions. To avoid fractions,

the core dimensions use millicores so each VCU has 3,000 millide-

code cores and 10,000 milliencode cores available. In the example,

the Request requires 500 millidecode cores and 3,750 milliencode

cores. The worker picker sees in its availability cache that Worker 0

has insufficient decode resources and thus will schedule the Request

on Worker 1 (first fit by worker number). Worker N is fully idle and

thus is a candidate for being stopped to free up resources.

3.4 High-Level Synthesis for Agility

The state-of-the-art hardware design flow adopted in the VCU

development is a combination of Mentor Graphics’ Catapult [52]

tool and an in-house integration tool called Taffel that creates the

C++ and Verilog fabric for composing individual HLS leaf blocks.

We implemented the encoder core design using a C++ based HLS

design flow for faster development and design iteration and to avoid

maintaining a separate architectural simulation model [56]. C++

development enabled the use of LLVM’s AddressSanitizer [50] and

MemorySanitizer [54] to discover hardware issues (out-of-bounds

access, use-of-uninitialized-data, etc.) that would have been in-

feasible to find with conventional RTL simulation or emulation

environments due to the size and duration of the tests. These issues

mapped directly back to architectural errors that could be easily

fixed and verified, typically in under a day.

During pre-silicon verification, our video processing system ran

full quality regressions using HLS C++ simulations across our orig-

inal, internal-only, large user-generated content corpus in around

1 week. Initial results showed severe quality problems; after tuning

and improving the software (e.g., rate control) and re-evaluating,

the quality of the hardware was sufficient to tape-out the VCU.

This design methodology allowed for the first silicon tape out to be

immediately usable for transcoding at scale. In addition, our design

flow had several other significant benefits, discussed below.

High Productivity and CodeMaintainability:With HLS, there

was 5-10x less code to write, review, and maintain compared to a

traditional Verilog approach. We could implement more encoder

features with the available time and engineering resources.

Massively Accelerated Verification: Relying on standard soft-

ware development tool flows, the C++ design exploited cloud com-

pute for embarrassingly parallel verification. As a result, testing

throughput was multiplied by 7-8 orders of magnitude over RTL

simulation. HLS exposed over 99% of the functional bugs during

C++ testing, before ever running full VCU RTL simulation.

Focusing Engineering Effort on High-Value Problems: Cycle-

by-cycle data path control logic was designed by the HLS compiler,

and we spent more time on algorithm and (macro)architecture

design. We skipped the strenuous verification of the microarchitec-

ture since the HLS flow does not suffer the human errors that ail

traditional Verilog designs.

Design Space Exploration: Due to the significant microarchi-

tectural design and verification effort with Verilog, there is often

only time to evaluate one RTL design, limiting the architecture

design. With our flow, we were able try numerous architectures

and algorithms to find optimal quality-silicon area trade-offs for

the numerous design choices in many encoding problems (motion

estimation, block partitioning, and rate-distortion optimization).

This led to significant gains in encoder compression efficiency while

allowing us to stay within the area budget.

Late Feature Flexibility: We were able to make architectural ad-

justments late in the project to support late feature requests and

address challenges exposed in the place and route stage of the phys-

ical design. For subsequent chip designs, our design flow will make

migration to new silicon process nodes and clock frequency targets

effortless.

While manual RTL may have saved some VCU silicon, the afore-

mentioned benefits overwhelmingly tip the scales and we believe

HLS was the right choice for this design (given the somewhat

relaxed power and die-area constraints for data center ASICs). Fur-

thermore, in cases where a legacy Verilog reference design was

available, the HLS implementations reached silicon area parity.

3.5 Discussion

As can be seen from the prior discussions, the distinct require-

ments of cloud video workloads (diversity, throughput, quality) and

warehouse-scale environments (efficiency, reliability, agility, scale)

combined with new degrees of freedom (relaxed power/area con-

straints, multi-ASIC solutions, and hardware-software co-design)

lead to distinct design innovations and engineering optimizations,

both at the overall holistic system level and for individual compo-

nents. Below, we summarize how our resulting warehouse-scale

video acceleration system design is fundamentally different from

consumer-centric designs in significant ways.

From a data center perspective, our VCU ASIC implements a

more sophisticated encoder pipeline with more area-intensive opti-

mizations (like temporal filtering and an aggressive memory sys-

tem) and embraces density across multiple encoder and decoder

cores. But at the same time, some aspects are simplified. Only the

most compute-intensive aspects of the algorithm are ossified in

hardware, with software fall-back (on general-purpose CPUs) for
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infrequently-used or dynamically-changing computations. Simi-

larly, resiliency mechanisms are simpler at the ASIC level (e.g.,

SRAM error detection in the encoder cores), relying instead on high

levels of redundancy and software failure management. In addi-

tion, the VCU supports stateless operation and user-space firmware

control, to provide fungibility and programmability with minimal

disruption to traditional data center deployments. This can be lever-

aged at higher levels of the system for interoperable scheduling and

continuous tuning. We also use high-level synthesis to design our

ASICs for more sophisticated verification and design exploration,

as well as late-feature flexibility.

We assemble multiple VCUASICs in bigger systems and optimize

the provisioning and system balance across computing, memory,

and networking to match the diversity and fast-changing require-

ments of data center workloads. At the same time, with hardware-

software co-design, we provide fungible units of work at the ASIC-

level and manage these as cluster-level logical pools for novel work

shapes and continuously evolving applications. Our design supports

computationally-intensive multiple-output transcoding (MOT) jobs

and our scheduler features rich abstractions and a new bin-packing

algorithm to improve utilization.

4 DEPLOYMENT AT SCALE

Below, we evaluate our design. Section 4.1 quantifies the perfor-

mance and quality improvement of our system on the public vbench

benchmark, followed by fleetwide results on production workloads

in Section 4.2. Sections 4.3 and 4.4 evaluate our co-design approach

in post-deployment tuning and inmanaging failures, and Section 4.5

concludes with a discussion of new workloads and application ca-

pabilities enabled by hardware acceleration.

4.1 Benchmarking Performance & Quality

Experimental Setup: We study accelerator performance and effi-

ciency using vbench [39]. This public benchmark suite consists of

a set of 15 representative videos grouped across a 3-dimensional

space defined by resolution, frame rate, and entropy. We load the

systems under test with parallel ffmpeg [14] transcoding workloads

processing vbench videos and we measure throughput in pixels

encoded per second (Mpix/s), which allows comparison across a

mix of resolutions7.

In comparing to alternative approaches, we faced a few key

challenges. Notably, our accelerator’s target perceptual quality and

bitrate trade-offs differed from the off-the-shelf accelerators avail-

able during the VCU’s development. So, it was important to go

beyond pure throughput comparisons to include quality for an

accurate comparison.

We studied two baselines: a dual-socket server with Intel Skylake

x86 CPUs and 384 GiB of DRAM, and a system with 4 Nvidia T4

GPUs with the dual-socket server as the host. We compare these

to our production acceleration system with 10 cards (20xVCU) but

also present data for an accelerator system with 4 cards given

the 4-card GPU baseline. In the GPU and accelerator systems, all

video transcoding is offloaded to the accelerators, and the host is

only running the ffmpeg wrapper, rate control and the respective

7Megapixels per second ś Mpix/s ś is computed by multiplying the throughput in
frames per second by the width and height, in pixels, of the encode output(s).

device drivers. Inherent in any comparison like this are differences

in technology nodes and potential disadvantages to off-the-shelf

designs from not having access to the software for co-design, etc.

But, we nonetheless present comparisons with other accelerators to

quantify the efficiency of the accelerator relative to state-of-the-art

alternatives in that time frame.

Table 1: Offline two-pass single output (SOT) throughput in

VCU vs. CPU and GPU systems

System Throughput [Mpix/s] Perf/TCO8

H.264 VP9 H.264 VP9

Skylake 714 154 1.0x 1.0x

4xNvidia T4 2, 484 Ð 1.5x Ð

8xVCU 5, 973 6, 122 4.4x 20.8x

20xVCU 14, 932 15, 306 7.0x 33.3x

Encoding Throughput: Table 1 shows throughput and perf/TCO

(performance per total cost of ownership) for the four systems and

is normalized to the perf/TCO of the CPU system. The performance

is shown for offline two-pass SOT encoding for H.264 and VP9.

For H.264, the GPU has 3.5x higher throughput, and the 8xVCU

and 20xVCU provide 8.4x and 20.9x more throughput, respectively.

For VP9, the 20xVCU system has 99.4x the throughput of the CPU

baseline. The two orders of magnitude increase in performance

clearly demonstrates the benefits of our VCU system.

In fact, our production workload is largely MOT, which was

not supported on our GPU baseline. Prior to VCU, the production

workload used multiple SOTs instead of running MOT on CPU

given the high latency. MOT throughput is 1.2-1.3x higher than

SOT (976 Mpix/s on H.264 and 927 Mpix/s on VP9), stemming from

the single decode that is reused to produce all the output resolutions.

Given that the accelerators themselves are a non-trivial addi-

tional cost to the baseline, we use perf/TCO as onemetric to compare

the systems. We compute perf/TCO by dividing the achieved per-

formance by the total cost of ownership (TCO)9 which is the capital

expense plus 3 years of operational expenses, primarily power. For

H.264 encoding, the perf/TCO improvement of the VCU system

over the baseline is 4.4x with 4 cards, and 7.0x in the denser produc-

tion system. By comparison, the GPU option is a 1.5x improvement

over the baseline. The cost of the GPU is driven by many features

that are not used by video encoding, but at the time of development,

it was the best available off-the-shelf option for offloading video

encoding. For VP9 encoding, VCU improves perf/TCO over the

baseline by 20.8-33.3x depending on the card density. VP9 is more

computationally expensive than H.264, as can be seen in the raw

throughput measurements on the baseline Skylake system, making

an accelerator an even more attractive option for that format.

In a perf/watt comparison of the systems, the VCU system

achieves 6.7x better perf/watt than the CPU baseline10 for single

output H.264, and 68.9x higher perf/watt on multi-output VP9.

Encoding Quality: Using the vbench microbenchmark, we com-

pare the encoding quality of the VCU (both H.264 and VP9) versus

8Perf/TCO is relative to the Skylake baseline with both sockets used.
9We are unable to discuss our detailed TCOmethodology due to confidentiality reasons.
At a high-level, our approach parallels TCO models discussed in prior work [4].
10We use only active power for the CPU system, subtracting idle. We did not collect
active power for the GPU, hence we do not report those comparisons.
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Figure 7: Rate-distortion (RD) curves comparing VCU encodings of the vbench video suite, to software libx264 and libvpx11.

software encoding using libx264 and libvpx. Figure 7 shows the

operational rate-distortion (RD) curves [44, p. 26ś28] for each vbench

video, with peak signal-to-noise ratio (PSNR) representing distor-

tion on the vertical axis, bitrate (bits per second of video stream)

on the horizontal axis. Each line is a video in the vbench suite, with

points on the curves formed by encoding each video at a different

target bitrate. RD curves are effective visualizations of the nature

of lossy video encoding; encoders may represent a video using

more or fewer bits to achieve higher or lower perceptual quality,

as measured by PSNR in this case. The improvement of VP9 over

H.264 is visible in Figure 7 (higher is better), where the RD curves

in the bottom graphs have shifted to the left, i.e. the VP9 encoder

uses fewer bits while maintaining comparable visual quality. The

RD curves also show the high variance in encoding quality across

videos. The topmost curves, e.g. presentation and desktop, have

content that is easy to encode, i.e. high PSNR values at very low

bitrates. VP9 encodings of these videos have lower PSNR values, yet

this is intentional as there is minimal improvement in subjective

visual quality with PSNR values above 45 dB [9]. In contrast, the

bottom most curves, e.g. holi, are videos with a lot of motion, and

they are harder to encode. For the same bitrate, the VP9 encodings

of holi have higher PSNR than H.264.

We compare the encoding quality of VCU using BD-rate for each

video relative to the software baseline, and average across the suite.

BD-rate represents the average bitrate savings for the same quality

(PSNR in this case) [5]. Comparing VCU-VP9 and Software-H.264

illustrates the advantages of hardware acceleration. VCU leverages

the improved coding efficiency of VP9 relative to H.264 to achieve

11The PSNR Ceiling at 45 dB depicts the limit for visually perceptible quality improve-
ments [9].

30% BD-rate improvement relative to libx264. The high compute

cost of VP9 makes it computationally infeasible at scale in software.

VCU H.264 encodings are on average 11.5% higher BD-rate than

libx264, and VCU VP9 is 18% greater BD-rate than libvpx. This is

expected as the pipelined architecture cannot easily support all the

same tools as CPU, such as Trellis quantization [49]. Section 4.3

will show how hardware bitrate has improved steadily over time

via rate control tuning, such that both H.264 encoders are currently

comparable.

4.2 Production Results

We next present data from fleetwide deployment and tuning, serv-

ing real production upload workloads (discussed in Section 2). Com-

pared to the small ffmpeg benchmarks in vbench, we now measure

the production transcoding service throughput, which also includes
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Figure 8: Throughput per VCUmeasured for real production

video transcoding workloads
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Figure 9: Post-launch accelerator workload scaling.

moving video onto and off the host and a different mix of resolutions

and workloads.

Figure 8 shows throughput per VCU measured in Mpix/sec for

video upload workloads from production. The top, blue line is the

main MOT worker job, and we observe about 400 Mpix/sec (the

difference vs. vbench MOT throughput is due to I/O and workload

mix). The bottom, red line is our single output transcoder and has a

lower throughput of around 250 Mpix/sec because the worker must

also produce inefficient low-resolution outputs for high-resolution

inputs.

Performance measurements from production jobs are consistent

with the trends observed with vbench: doing MOT instead of SOT

is a big win. The lack of variability in the MOT line also illustrates

that we are able to utilize the cores close to maximum capacity.

Software encoding is no longer in production to present a concur-

rent fleetwide comparison, but the relative throughput of software

versus hardware encoding is similar to vbench data.

4.3 Benefits of Co-Design in Deployment

Like any other hardware project, the initial measured through-

put of hardware differs from predicted pre-silicon prototyping or

simulation/emulation, offering substantial room for improvement

post-launch. Our co-design across hardware and software created

multiple opportunities for tuning. Figure 10 shows the improvement

in coding efficiency on VCU for H.264 and VP9 as the percent dif-

ference in bitrate relative to software (i.e., libx264 and libvpx) from

the time the accelerators were deployed. Encoder rate control runs
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Figure 10: Hardware bitrate improvement over time relative

to Software (data points weighted by per-format egress)

exclusively on the host and has improved over time, eventually sur-

passing software bitrates at iso-quality, including competing with

improvements in software encoding. Improved group-of-pictures

structure selection, better use of hardware statistics, introduction of

additional reference frames, and importing rate control ideas from

the equivalent software encoders were all valuable post-deployment

optimizations. In many cases automated tuning tools were applied

with success.

Figures 9a and 9b show the growth in total throughput per job

with chunked output and live transcoding. As real workloads were

deployed, various performance bottlenecks in the software stack

were discovered and fixed. Continuous profiling tools at all levels

of the stack (userspace, host kernel, firmware) substantially con-

tributed to this progress. For example, measurements of loaded

machines showed ~40 Gbps of average inter-socket bandwidth

indicating NUMA bottlenecks, and a post-launch rollout of NUMA-

aware scheduling for the accelerator jobs showed performance

gains of 16-25%.

One additional benefit of the hardware-software co-design is

that the scheduler can make trade-offs to reduce resource stranding.

For example, Figure 9c shows how some hardware decode is shifted

back to VCU host CPU to reduce encoding core stranding. We

enabled this optimization after month 6 (on the horizontal axis), at

which point one can see the average decoder utilization drop from

approximately 98% to 91% (on the vertical axis).

4.4 Failure Management

Reliability is a first class concern [4] in the full hardware life cycle

(delivery, burn-in, fault detection, repair, update, decommission).

In this section, we discuss how our hardware-software co-design

decisions from Section 3 helped address failure management.

Failure Monitoring and Workflow: As noted above, the VCUs

are deployed in a dense configuration: 20 VCUs per host with many

hosts per rack. In our warehouse environment, the rack is the unit

of deployment, while the unit of repair is individual components:

PCI Express cards, chassis, cables, power supplies, fans, CPUs, etc.

Consequently, an individual host has dozens of discrete compo-

nents that may need repair, and it is responsible for collecting fault

management information from the components. The VCU firmware

provides telemetry from the cards reporting various health and fault

metrics (temperature, resets, ECC errors, etc). When a sufficient
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number of faults have accumulated, a host will be marked as unus-

able and queued for repairs. To protect against faulty repair signals

causing large scale capacity loss, the number of systems allowed in

repair states is capped. Therefore the warehouse scheduler needs

to tolerate a modest number of faulty systems in production while

human technicians repair those that have been removed.

VCU Failures: It is not cost effective to send a system to repair

when a small fraction of the VCUs have failed. Accordingly, the fail-

ure management system has the capability to disable an individual

VCU so that the majority of the system can remain available, and

the load balancing software adapts to this degradation. Given the

number of encoder cores on the VCU, it would also be possible to

disable individual cores, but many failure modes affect the whole

VCU (e.g., DRAM errors). Managing VCUs with variable through-

put due to failed cores adds to system complexity, so we chose to

treat an entire VCU as the lowest level of fault management, with

our board providing independent power rails for each VCU. The

correlation between card swaps and VCU failures confirms that

VCU failures are largely independent.

Memory/Host Failures: Given the large amount of DRAM and

embedded SRAM in the transcoding system, memory corruption

errors are a significant source of concern. To detect manufacturing

escapes, DRAM test patterns are written and evaluated during

burnin. While the DRAM has SECDED ECC, many of the embedded

SRAMs only have double-error-detect, as the latency impact of error

correction was unacceptable but the reliability impact was tolerable.

In production, high levels of correctable or uncorrectable faults will

result in disabling the VCU and will eventually trigger a repair

flow (including using MABIST [3]). Failures in the host, expansion

chassis, or associated cables result in the full host being disabled.

Avoiding łBlack-Holingž: At the system level, a failed transcod-

ing operation on a given VCU will be retried at higher layers of soft-

ware and typically assigned to a different VCU or software worker.

However, a failing but not yet disabled VCU is often ‘fast’ relative

to a working one and can naturally result in łblack-holingž [35],

where a disproportionate amount of traffic is sent to these bad sys-

tems. After encountering this issue in practice, we implemented

the following mitigation: a transcoding worker, upon encountering

a hardware failure, immediately aborts all work on the VCU, which

is retried at the cluster level. A new worker, when first assigned

to a VCU, does a functional reset and runs a set of short ‘golden’

transcoding tasks across every VCU core to detect persistent faults

(relying on the core’s deterministic behavior). If one is found, the

worker refuses to start, preventing the bad VCU from being used

until the fault management software disables the VCU or host.

Reducing łBlast Radiusž:As discussed earlier, videos are sharded

into short chunks and are typically processed in parallel across hun-

dreds of VCUs, so a single failing VCU can corrupt many videos.

Video playback systems are generally tolerant of corruption, as

broadcast media is susceptible to both erasure and corruption dur-

ing transmission [29]. We still prefer to reduce this issue, so our

system includes high-level integrity checks (i.e., video length must

match the input) that detect and prevent most corruption. Addi-

tionally our software records the VCUs on which each chunk is

processed for fault correlation. Nonetheless, the system will have

bad video chunks escape, which is also seen with CPU based encod-

ing. A future enhancement would be to use consistent hashing [32]

to reduce the number of VCUs on which a given video is processed.

4.5 New Capabilities Enabled by Acceleration

Successful accelerators are not just about cost reductions but funda-

mentally enable new capabilities that were not previously possible.

This section highlights two examples that were enabled by our VCU

systems that were infeasible at scale (too expensive or too complex)

with our legacy software infrastructure.

Enabling Otherwise-Infeasible VP9 Compression: As noted

earlier, VP9 software encoding is typically 6-8x slower and more

expensive than H.264 ś a 150 frame 2160p chunk (5 seconds at

30 FPS) encoded on multiple CPU cores often takes 15 wall time

minutes and over a CPU-hour. Consequently, even with chunk-

level parallelism, it was infeasible from both a cost and latency

perspective to produce VP9 at the time of video upload. Hence,

in the non-accelerated scenario, VP9 would only be produced for

the most popular videos using low-cost batch CPU after upload.

Additionally, to reduce the effect of batch preemption, each resolu-

tion was produced by SOT, increasing the amount of CPU spent on

re-decoding. With VCUs, we could instead shift to producing both

VP9 and H.264 at upload time and leverage efficient MOT encoding.

Enabling New Use-Cases: In internet broadcasting scenarios,

camera-to-eyeball delays of under 30 seconds are desirable. Our

software-based encoding pipeline could produce VP9 for live

streams only by encoding many short (2-second) chunks in parallel,

trading end-to-end latency for throughput. As a concrete example,

a 2-second 1080p chunk could be encoded in 10 seconds, the encod-

ing system would transcode 5-6 chunks concurrently to achieve the

needed throughput of a 1 video-sec/second. In practice, additional

buffering was needed due to high variance in software encoding

throughput. This necessarily limited the resolution, quality, and

affordability of VP9; today, a single VCU can handle this MOT in

real time. The consistency of the hardware transcode speed enabled

an affordable 5-sec end-to-end latency stream in both H.264 and

VP9. An additional new use case was Stadia, Google’s cloud gaming

service, which requires extremely low encoding latency at high

resolution, high framerates, and excellent visual fidelity. By using

the low-latency two-pass VCU based VP9 encoding, Stadia can

achieve these goals and deliver 4K 60 FPS game play on connections

of 35 Mbps.

5 RELATED WORK

There is a large body of work on hardware blocks for encod-

ing/decoding (e.g., [2, 43, 60]). None of these studies discuss the

block’s integration into data center environments. Commercially,

Ambarella [1] provides H.264 encoding (but not VP9) and Samsung

Exynos [47] has support for H.264 and VP9 (but optimized for real-

time transcoding, not high-quality offline two-pass). Mobile phones

include encoders that are much smaller and more power-efficient,

but with more relaxed quality and bitrate requirements. Our work,

in addition to designing our own hardware block targeting our

workload’s stringent quality requirements, also takes a systems

approach to designing and deploying them for the data center.
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Some GPUs include support for video transcoding (e.g., one to

three H.264 or H.265 encoding cores and some VP9 decoding cores),

but, again, these are designed primarily for consumer applications

and do not meet the quality requirements of video sharing work-

loads. Commodity GPU encoders provide performance and power

improvements over a CPU, but the quality is only comparable to

libx264 superfast up to medium settings, and notably not compa-

rable to the high quality preset [36, 62]. Additionally, the small

number of encoder cores per GPU require a very large number of

host systems and cards to handle the necessary throughput posing

both power and density challenges.

More broadly, there has been a large body of work on machine

learning accelerators (e.g., [8, 18, 30, 38, 64]) including some that

have discussed co-design across hardware and software (e.g., [23]).

Similarly, there have been other studies that have examined system

balance issues for warehouse-scale general-purpose workloads. The

ASIC clouds paper [40] discusses assembling accelerator ASICs in

large warehouse-scale environments including a simple case-study

of a simple H.265 video encoder. However, their study focuses on

TCO trade-offs (e.g., łtwo-for-two rule on ASIC NREs vs non-ASIC

TCO). Accelerometer is an analytical model to evaluate accelera-

tion opportunities in operations that are common to cloud work-

loads [53]. In contrast to these studies, this paper is the first work

on broadcast-quality video acceleration at scale in large warehouse-

scale environments, focusing at depth on the design trade-offs for

commercial production workloads serving hundreds of hours of

uploads per minute, as well as discussing co-design trade-offs with

a production video processing software stack and deployment at

scale.

Prior work for data center resource management has largely

focused on the heterogeneity of the workload [13], and on the vari-

ability of performance due to interference for applications running

on multicore processors [51, 58]. Scheduling for heterogeneity due

to generations of servers in a data center has not covered the ex-

treme case of accelerators [41, 46]. To the best of our knowledge,

our work is the first to present data center accelerator resource

management via multi-dimensional bin-packing, an approach that

provides high availability, utilization, and scalability.

6 CONCLUSION

Video processing is an important and fast-growing foundational

workload in warehouse-scale data centers and clouds. The expo-

nential growth in video transcoding and storage, combined with

slowing technology scaling, provide challenges around sustaining

existing growth and managing costs along with opportunities to

unlock new capabilities, through hardware acceleration. Video ac-

celeration on the server side, at warehouse-scale, brings significant

challenges around dealing with the workload complexity (transcod-

ing algorithm trade-offs, quality/throughput requirements) and

data-center-scale (co-design with distributed processing at scale

and with high churn). In this paper, we address these challenges,

presenting (to the best of our knowledge) the first work to dis-

cuss the design and deployment of video transcoding at scale in a

large production fleet supporting multiple video-centric workloads

(video sharing, photos/video archival, live streaming, cloud gaming)

with stringent quality, throughput, latency, and cost requirements.

We present the design of our system, including a new hardware

accelerator building block ś the video coding unit (VCU) ś and a

system architecture that balances individual codec hardware blocks

in VCUs, VCUs in boards and systems, all the way to individual

systems in clusters and geographically-distributed data centers.

We highlight how our co-design across hardware and software (at

all levels from the firmware to the distributed data center sched-

uler) allow for improved efficiency, but, more importantly, improve

fungibility and iterative design. We present results using public

benchmarks and from our at-scale deployment. Our accelerator

system has an order-of-magnitude performance-per-cost improve-

ment over our prior baseline system (20x-33x) while meeting strict

quality requirements, and our careful hardware-software co-design

allows for real-world failure management and dynamic tuning. Our

accelerator also enabled new capabilities and workloads (savings on

network bandwidth and storage, live/video-on-demand workloads,

cloud gaming, etc).

We believe we have only touched the tip of the iceberg on video

acceleration. There are several system design trade-offs and oppor-

tunities that merit increased analysis (e.g., host computing design,

accelerator disaggregation and sharing, new specifications like AV1,

compiler-assisted software sanitizers applied to HLS C-simulation,

etc). Similarly, rich opportunities for future innovation lie in combin-

ing transcoding with other machine-learning on video (for example,

to automatically generate captions or enable video search) or, more

broadly, offloading additional video processing currently applied

between decoding and encoding.
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A SYSTEM BALANCE DETAILS

Here we present additional details on system balance that were

summarized in Section 3.3.1. There is no global cluster-level per-

formance target as each region has unique characteristics. The

ideal state is based on equalizing the throughput of all clusters in

a region to minimize the cost of regional redundancy while meet-

ing demand. The lower performance bound is set by the ability to

amortize the overheads that don’t scale linearly with the amount

of video transcoding, which includes non-transcoding resources

and additional VCU racks needed for availability. Real-world con-

straints preclude the ideal state over extended periods of time, but

these cluster-level considerations impact the target throughput of

an accelerator host machine.

VCU host machines are not shared with other jobs, thus insulat-

ing workers from łnoisy-neighborž performance and availability

concerns. We minimize the łdata center taxž [31] by putting as

many accelerators into a host as its CPU, DRAM, and network will
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Figure 11: System balance considerations: speed & feeds

support. Combined with the throughput and cost optimized VCU

design, this delivers a perf/TCO optimized accelerator system.

A.1 System-Level Design Target

To minimize development cost and risk, we reused existing com-

ponents when possible. The goal was to maximize transcodes per

system and minimize cost per transcode, even if certain extreme

usage scenarios might incur stranding. For example, a system de-

signed to exclusively handle 720p videos might become overloaded

if it were mostly processing 144p videos (25x fewer pixels). We ad-

dress these situations using the data center optimization co-design

discussed in Section 3.3.2.

The host-level system constraints are shown in Figure 11. First,

there is the 100 Gbps Ethernet interface that connects the host to the

data center network and through which all control and video data

will pass. The hosts (dual-socket Intel Skylakes) have ~100 usable

logical cores, ~1600 Gbps of host DRAM bandwidth, and support

up to four PCI Express expansion chassis [66] each attached with

a ~100 Gbps PCI Express Gen3x16 connection. Each chassis can

be configured to host between 200 and 500 Gbps of accelerator

hardware. In aggregate, a system can host accelerator attachment

ratios between 400 to 2000 Gbps.

A.2 Bandwidth as Transcoding Throughput

Our initial analysis of throughput suggested that the 100 Gbps net-

work interface would be the primary constraint on the accelerator

system’s transcoding throughput. Theworst-case output bandwidth

is set by the low-latency, single-pass encoder core throughput scaled

by the number of cores per host, which corresponds to a fully SOT

workload (decoding is ignored).

YouTube recommends a range of upload bitrates [20], from

1 Mbps for a 360p, 30 FPS video to 68 Mbps for a 2160p, 60 FPS

video, with an average of 6.1 pixels-per-bit. This gives a network

interface transcoding limit of ~600 Gpixel/s per system. Allowing

for double the łidealž upload bitrates and up to 50% overheads for

RPC overheads and unrelated traffic reduces this to ~153 Gpixel/s

for each accelerator host, but enables tolerance of 2:1 or even 4:1

rack-level over-subscription to help reduce per-host costs based on

typical bandwidth usage. The PCI Express non-video data related

to operating the VCUs is <4 kiB per frame (each direction), which

gives ~0.6 Gbps for 2160p and ~22 Gbps for entirely 360p video

for the 153 Gpixel/s throughput, easily met by even the densest

host attachment option. The encoder throughput from Section 3.3.1,

equivalent to ~0.5 Gpixel/s, gives a ceiling of 30 VCUs per host for

real-time or 150 VCUs for offline two-pass.

Table 2: Host resources scaled for 153 Gpixel/s throughput

Use Logical Cores DRAM Bandwidth

Transcoding overheads 42 214 Gbps

Network & RPC12 13 300 Gbps

Total 55 712 Gbps

A.3 Host CPU Usage and Memory Bandwidth

In the fully-accelerated transcoding use case, the host CPU cores

are handling networking, launching new transcoding processes,

muxing and demuxing the video streams, transcoding audio, and

operating the accelerators. Individual transcoding processes re-

quire only a couple of MiB of system memory, as VCU DRAM holds

the uncompressed video frames. Measurements for the CPU, host

DRAM bandwidth, and transcoding throughput were made on ex-

isting systems (GPUs, no-op transcoding, etc.). Table 2 shows the

values scaled to the above network limit, which are about half of

what the target host system provides.

A.4 VCU DRAM Capacity

The primary use of DRAM during transcoding is to hold uncom-

pressed and reference frames for both decoding and encoding.

The encoder core’s reference compression significantly reduces

the DRAM bandwidth but slightly increases (+~5%) the DRAM foot-

print. The maximum expected 2160p resolution in VP9 with 10-bit

color depth gives ~140 MiB for reference frames (8 plus 1 output).

As mentioned in Section 2.1, a key use-case is handling aMOT on

a single VCU. The decode and encode footprint for MOT comes to

~420 MiB. Keeping up to 15 frames for lagged and offline two-pass

encoding modes requires ~180-220 MiB. Padding requirements and

ephemeral buffers brings the expected largest, 2160p total footprint

to roughly 700 MiB per MOT and 500 MiB per SOT.

Scaling this to the network throughput limit gives a worst-case

VCU DRAM requirement for low-latency SOT of 150 GiB (less than

the 240 GiB of 30 VCUs) and 750 GiB for offline two-pass (less than

the 1200 GiB of 150 VCUs), which supports using 8 GiB of DRAM

per VCU since 4 GiB would be insufficient. The efficiency of MOT

reduces these numbers by ~25% due to the reuse of decoded frames

across outputs.

A.5 Aggregate System Limit

These values led us to maximize the number of VCU per expansion

chassis, but concerns on the size of the failure domain and avail-

ability led us to limit each system to only two expansion chassis.

Optimizing the cores per VCU led us to put two VCUs per PCI Ex-

press Gen3x16, giving 20 VCUs per host system. These conservative

choices, specifically made to optimize time-to-market velocity, are

well under the limits discussed above for the network, PCI Express,

and host system levels. This headroom made it easier to maximize

accelerator utilization, but it also left the door open to changing

the system configuration after gaining production experience.

1225 Gbps sustainedwith bursts to 100 Gbps; needing a conservative six DRAMaccesses
per network byte.

613



Warehouse-Scale Video Acceleration: Co-design and Deployment in the Wild ASPLOS ’21, April 19–23, 2021, Virtual, USA

REFERENCES
[1] Ambarella 2015. Ambarella H2 Product Brief. Ambarella. Retrieved February 13,

2021 from https://www.ambarella.com/wp-content/uploads/H2-Product-Brief.
pdf

[2] Ihab Amer, Wael Badawy, and Graham Jullien. 2005. A design flow for an H.264
embedded video encoder. In 2005 International Conference on Information and
Communication Technology. IEEE, 505ś513. https://doi.org/10.1109/ITICT.2005.
1609647

[3] Paul H. Bardell, William H. McAnney, and Jacob Savir. 1987. Built-in Test for
VLSI: Pseudorandom Techniques. Wiley-Interscience, USA.

[4] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ranganathan. 2018. The
Datacenter as a Computer (3 ed.). Morgan & Claypool Publishers. https://doi.
org/10.2200/S00874ED3V01Y201809CAC046

[5] Gisle Bjùntegaard. 2001. Calculation of Average PSNR Differences between RD-
curves. In ITU-T SG 16/Q6 (VCEG-M33). ITU, 13th VCEG Meeting, Austin, TX,
USA, 1ś4.

[6] Cheng Chen, Jingning Han, and Yaowu Xu. 2020. A Non-local Mean Temporal
Filter for Video Compression. In 2020 IEEE International Conference on Image Pro-
cessing (ICIP). IEEE, 1142ś1146. https://doi.org/10.1109/ICIP40778.2020.9191313

[7] Chao Chen, Yao-Chung Lin, Anil Kokaram, and Steve Benting. 2017. Encoding
Bitrate Optimization Using Playback Statistics for HTTP-based Adaptive Video
Streaming. arXiv:1709.08763 https://arxiv.org/abs/1709.08763

[8] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. 2014. DianNao: A Small-Footprint High-Throughput Accel-
erator for Ubiquitous Machine-Learning. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’14). Association for Computing Machinery, New York, NY,
USA, 269ś284. https://doi.org/10.1145/2541940.2541967

[9] Yanjiao Chen, Kaishun Wu, and Qian Zhang. 2015. From QoS to QoE: A Tutorial
on Video Quality Assessment. IEEE Communications Surveys & Tutorials 17, 2
(2015), 1126ś1165. https://doi.org/10.1109/COMST.2014.2363139

[10] Cam Cullen. 2019. Sandvine Internet Phenomena Report Q3 2019. Sandvine.
Retrieved August 19, 2020 from https://www.sandvine.com/hubfs/Sandvine_
Redesign_2019/Downloads/Internet%20Phenomena/Internet%20Phenomena%
20Report%20Q32019%2020190910.pdf

[11] Cam Cullen. 2020. Sandvine Global Internet Phenomena COVID-19 Spotlight. Sand-
vine. Retrieved August 20, 2020 from https://www.sandvine.com/blog/global-
internet-phenomena-covid-19-spotlight-youtube-is-the-1-global-application

[12] Peter de Rivaz and Jack Haughton. 2019. AV1 Bitstream & Decoding Process
Specification. The Alliance for Open Media. Retrieved February 13, 2021 from
https://aomediacodec.github.io/av1-spec/av1-spec.pdf

[13] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-Aware Schedul-
ing for Heterogeneous Datacenters. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’13). Association for Computing Machinery, New York, NY,
USA, 77ś88. https://doi.org/10.1145/2451116.2451125

[14] FFmpeg developers. 2021. FFmpeg: A complete, cross-platform solution to record,
convert and stream audio and video. FFmpeg.org. https://ffmpeg.org/

[15] John Dilley, Bruce Maggs, Jay Parikh, Harald Prokop, Ramesh Sitaraman, and
Bill Weihl. 2002. Globally distributed content delivery. IEEE Internet Computing
6, 5 (2002), 50ś58. https://doi.org/10.1109/MIC.2002.1036038

[16] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu, Riad S. Wahby, and
Keith Winstein. 2018. Salsify: Low-Latency Network Video through Tighter
Integration between a Video Codec and a Transport Protocol. In Proceedings of
the 15th USENIX Conference on Networked Systems Design and Implementation
(NSDI’18). USENIX Association, USA, 267ś282.

[17] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki Bal-
asubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George
Porter, and Keith Winstein. 2017. Encoding, Fast and Slow: Low-Latency Video
Processing Using Thousands of Tiny Threads. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). USENIX Association,
Boston, MA, 363ś376. https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/fouladi

[18] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyrakis. 2017.
TETRIS: Scalable and Efficient Neural Network Acceleration with 3D Memory. In
Proceedings of the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’17). Association for
Computing Machinery, New York, NY, USA, 751ś764. https://doi.org/10.1145/
3037697.3037702

[19] M.R Garey, R.L Graham, D.S Johnson, and Andrew Chi-Chih Yao. 1976. Resource
constrained scheduling as generalized bin packing. Journal of Combinatorial
Theory, Series A 21, 3 (1976), 257ś298. https://doi.org/10.1016/0097-3165(76)
90001-7

[20] Google, Inc. 2017. Recommended upload encoding settings. Google, Inc. Retrieved
Feburary 13, 2021 from https://support.google.com/youtube/answer/1722171

[21] Adrian Grange, Peter de Rivaz, and Jack Haughton. 2016. Draft VP9 Bitstream
and Decoding Process Specification. Google. Retrieved February 13, 2021 from

https://www.webmproject.org/vp9/
[22] Dan Grois, Detlev Marpe, Amit Mulayoff, Benaya Itzhaky, and Ofer Hadar. 2013.

Performance comparison of H.265/MPEG-HEVC, VP9, and H.264/MPEG-AVC
encoders. In 2013 Picture Coding Symposium (PCS). IEEE, 394ś397. https://doi.
org/10.1109/PCS.2013.6737766

[23] Kaiyuan Guo, Song Han, Song Yao, Yu Wang, Yuan Xie, and Huazhong Yang.
2017. Software-Hardware Codesign for Efficient Neural Network Acceleration.
IEEE Micro 37, 2 (2017), 18ś25. https://doi.org/10.1109/MM.2017.39

[24] Liwei Guo, Jan De Cock, and Anne Aaron. 2018. Compression Performance
Comparison of x264, x265, libvpx and aomenc for On-Demand Adaptive Stream-
ing Applications. In 2018 Picture Coding Symposium (PCS). IEEE, 26ś30. https:
//doi.org/10.1109/PCS.2018.8456302

[25] Lei Guo, Enhua Tan, Songqing Chen, Zhen Xiao, and Xiaodong Zhang. 2008.
The Stretched Exponential Distribution of Internet Media Access Patterns. In
Proceedings of the Twenty-Seventh ACM Symposium on Principles of Distributed
Computing (PODC ’08). Association for Computing Machinery, New York, NY,
USA, 283ś294. https://doi.org/10.1145/1400751.1400789

[26] R. W. Hamming. 1950. Error detecting and error correcting codes. The Bell
System Technical Journal 29, 2 (1950), 147ś160. https://doi.org/10.1002/j.1538-
7305.1950.tb00463.x

[27] John Hennessy and David Patterson. 2018. A new golden age for computer
architecture: Domain-specific hardware/software co-design, enhanced security,
open instruction sets, and agile chip development. In 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 27ś29. https:
//doi.org/10.1109/ISCA.2018.00011

[28] International Telecommunication Union 2019. H.264: Advanced Video Coding for
generic audiovisual services. International Telecommunication Union. Retrieved
February 13, 2021 from https://www.itu.int/rec/T-REC-H.264-201906-I/en

[29] Jae-Won Suh and Yo-Sung Ho. 2002. Error concealment techniques for digital
TV. IEEE Transactions on Broadcasting 48, 4 (2002), 299ś306. https://doi.org/10.
1109/TBC.2002.806797

[30] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo
Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis of a
Tensor Processing Unit. In Proceedings of the 44th Annual International Symposium
on Computer Architecture (ISCA ’17). Association for Computing Machinery, New
York, NY, USA, 1ś12. https://doi.org/10.1145/3079856.3080246

[31] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Profiling a Warehouse-
Scale Computer. In Proceedings of the 42nd Annual International Symposium on
Computer Architecture (ISCA ’15). Association for Computing Machinery, New
York, NY, USA, 158ś169. https://doi.org/10.1145/2749469.2750392

[32] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and
Daniel Lewin. 1997. Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web. In Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing. Association for
Computing Machinery, 654ś663. https://doi.org/10.1145/258533.258660

[33] Ioannis Katsavounidis. 2018. Dynamic optimizer - a perceptual video
encoding optimization framework. Netflix. Retrieved August 19,
2020 from https://netflixtechblog.com/dynamic-optimizer-a-perceptual-video-
encoding-optimization-framework-e19f1e3a277f

[34] Anil Kokaram, Thierry Foucu, and Yang Hu. 2016. A look into YouTube’s video
file anatomy. Google, Inc. https://www.googblogs.com/a-look-into-youtubes-
video-file-anatomy/

[35] Ramana Rao Kompella, Jennifer Yates, Albert Greenberg, and Alex C Snoeren.
2007. Detection and localization of network black holes. In IEEE INFOCOM 2007-
26th IEEE International Conference on Computer Communications. IEEE, 2180ś2188.
https://doi.org/10.1109/INFCOM.2007.252

[36] Jan Kufa and Tomas Kratochvil. 2017. Software and hardware HEVC encoding. In
2017 International Conference on Systems, Signals and Image Processing (IWSSIP).
IEEE, 1ś5. https://doi.org/10.1109/IWSSIP.2017.7965585

[37] Kevin Lee and Vijay Rao. 2019. Accelerating Facebook’s infrastructure with
application-specific hardware. Facebook. Retrieved August 20, 2020 from https:
//engineering.fb.com/data-center-engineering/accelerating-infrastructure/

[38] Daofu Liu, Tianshi Chen, Shaoli Liu, Jinhong Zhou, Shengyuan Zhou, Olivier
Teman, Xiaobing Feng, Xuehai Zhou, and Yunji Chen. 2015. PuDianNao: A

614



ASPLOS ’21, April 19–23, 2021, Virtual, USA Parthasarathy Ranganathan, et al.

Polyvalent Machine Learning Accelerator. SIGPLAN Not. 50, 4 (March 2015),
369ś381. https://doi.org/10.1145/2775054.2694358

[39] Andrea Lottarini, Alex Ramirez, Joel Coburn, Martha A. Kim, Parthasarathy
Ranganathan, Daniel Stodolsky, andMarkWachsler. 2018. vbench: Benchmarking
Video Transcoding in the Cloud. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’18). Association for Computing Machinery, New York, NY,
USA, 797ś809. https://doi.org/10.1145/3173162.3173207

[40] Ikuo Magaki, Moein Khazraee, Luis Vega Gutierrez, and Michael Bedford Taylor.
2016. ASIC Clouds: Specializing the Datacenter. In Proceedings of the 43rd Inter-
national Symposium on Computer Architecture (ISCA ’16). IEEE Press, 178ś190.
https://doi.org/10.1109/ISCA.2016.25

[41] Jason Mars and Lingjia Tang. 2013. Whare-Map: Heterogeneity in "Homoge-
neous" Warehouse-Scale Computers. In Proceedings of the 40th Annual Interna-
tional Symposium on Computer Architecture (ISCA ’13). Association for Comput-
ing Machinery, New York, NY, USA, 619ś630. https://doi.org/10.1145/2485922.
2485975

[42] Debargha Mukherjee, Jim Bankoski, Adrian Grange, Jingning Han, John Koleszar,
Paul Wilkins, Yaowu Xu, and Ronald Bultje. 2013. The latest open-source video
codec VP9 - An overview and preliminary results. In 2013 Picture Coding Sympo-
sium (PCS). IEEE, 390ś393. https://doi.org/10.1109/PCS.2013.6737765

[43] Ngoc-Mai Nguyen, Edith Beigne, Suzanne Lesecq, Duy-Hieu Bui, Nam-Khanh
Dang, and Xuan-Tu Tran. 2014. H.264/AVC hardware encoders and low-power
features. In 2014 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS).
IEEE, 77ś80. https://doi.org/10.1109/APCCAS.2014.7032723

[44] Antonio Ortega and Kannan Ramchandran. 1998. Rate-distortion methods for
image and video compression. IEEE Signal Processing Magazine 15, 6 (1998),
23ś50. https://doi.org/10.1109/79.733495

[45] Grzegorz Pastuszak. 2016. High-speed architecture of the CABAC probability
modeling for H.265/HEVC encoders. In 2016 International Conference on Signals
and Electronic Systems (ICSES). IEEE, 143ś146. https://doi.org/10.1109/ICSES.
2016.7593839

[46] Francisco Romero and Christina Delimitrou. 2018. Mage: Online and Interference-
Aware Scheduling for Multi-Scale Heterogeneous Systems. In Proceedings of the
27th International Conference on Parallel Architectures and Compilation Techniques
(PACT18). Association for Computing Machinery, Article 19, 13 pages. https:
//doi.org/10.1145/3243176.3243183

[47] Samsung 2018. Exynos 8895 Processor: Specs, Features. Samsung. Retrieved Feb-
ruary 13, 2021 from https://www.samsung.com/semiconductor/minisite/exynos/
products/mobileprocessor/exynos-9-series-8895/

[48] Y. Sani, A. Mauthe, and C. Edwards. 2017. Adaptive Bitrate Selection: A Survey.
IEEE Communications Surveys Tutorials 19, 4 (2017), 2985ś3014. https://doi.org/
10.1109/COMST.2017.2725241

[49] H. Schwarz, T. Nguyen, D. Marpe, and T. Wiegand. 2019. Hybrid Video Coding
with Trellis-Coded Quantization. In 2019 Data Compression Conference (DCC).
IEEE, 182ś191. https://doi.org/10.1109/DCC.2019.00026

[50] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In Proceed-
ings of the 2012 USENIX Conference on Annual Technical Conference (USENIX
ATC’12). USENIX Association, USA, 28.

[51] Daniel Shelepov, Juan Carlos Saez Alcaide, Stacey Jeffery, Alexandra Fedorova,
Nestor Perez, Zhi Feng Huang, Sergey Blagodurov, and Viren Kumar. 2009. HASS:
A Scheduler for Heterogeneous Multicore Systems. SIGOPS Oper. Syst. Rev. 43, 2
(April 2009), 66ś75. https://doi.org/10.1145/1531793.1531804

[52] Siemens Digital Industries Software 2021. Catapult High-Level Synthesis. Siemens
Digital Industries Software. Retrieved Feburary 13, 2021 from https://www.
mentor.com/hls-lp/catapult-high-level-synthesis

[53] Akshitha Sriraman and Abhishek Dhanotia. 2020. Accelerometer: Understanding
Acceleration Opportunities for Data Center Overheads at Hyperscale. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’20). Association for
Computing Machinery, New York, NY, USA, 733ś750. https://doi.org/10.1145/
3373376.3378450

[54] Evgeniy Stepanov and Konstantin Serebryany. 2015. MemorySanitizer: Fast
Detector of Uninitialized Memory Use in C++. In Proceedings of the 13th Annual
IEEE/ACM International Symposium on Code Generation and Optimization (CGO
’15). IEEE Computer Society, USA, 46ś55. https://doi.org/10.1109/CGO.2015.
7054186

[55] Gary J. Sullivan and ThomasWiegand. 2005. Video Compression - From Concepts
to the H.264/AVC Standard. Proc. IEEE 93, 1 (2005), 18ś31. https://doi.org/10.
1109/JPROC.2004.839617

[56] A. Takach. 2016. High-Level Synthesis: Status, Trends, and Future Directions. IEEE
Design & Test 33, 3 (2016), 116ś124. https://doi.org/10.1109/MDAT.2016.2544850

[57] Tung-Chien Chen, Chung-Jr Lian, and Liang-Gee Chen. 2006. Hardware archi-
tecture design of an H.264/AVC video codec. In Asia and South Pacific Conference
on Design Automation, 2006. IEEE, 8 pp.ś. https://doi.org/10.1109/ASPDAC.2006.
1594776

[58] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer. 2012. Scheduling
heterogeneous multi-cores through performance impact estimation (PIE). In 2012
39th Annual International Symposium on Computer Architecture (ISCA). IEEE,
213ś224. https://doi.org/10.1109/ISCA.2012.6237019

[59] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. 2015. Large-scale cluster management at Google with
Borg. In Proceedings of the European Conference on Computer Systems (EuroSys).
Association for Computing Machinery, Bordeaux, France, Article 18, 17 pages.
https://doi.org/10.1145/2741948.2741964

[60] K.Wei, S. Zhang, H. Jia, D. Xie, andW. Gao. 2012. A flexible and high-performance
hardware video encoder architecture. In 2012 Picture Coding Symposium. IEEE,
373ś376. https://doi.org/10.1109/PCS.2012.6213368

[61] P. H. Westerink, R. Rajagopalan, and C. A. Gonzales. 1999. Two-pass MPEG-2
variable-bit-rate encoding. IBM Journal of Research and Development 43, 4 (1999),
471ś488. https://doi.org/10.1147/rd.434.0471

[62] M. A. Wilhelmsen, H. K. Stensland, V. R. Gaddam, A. Mortensen, R. Langseth,
C. Griwodz, and P. Halvorsen. 2014. Using a Commodity Hardware Video En-
coder for Interactive Video Streaming. In 2014 IEEE International Symposium on
Multimedia. IEEE, 251ś254. https://doi.org/10.1109/ISM.2014.58

[63] Yaowu Xu. 2010. Inside WebM Technology: The VP8 Alternate Reference Frame.
Google, Inc. Retrieved Feburary 13, 2021 from http://blog.webmproject.org/2010/
05/inside-webm-technology-vp8-alternate.html

[64] Xuan Yang, Mingyu Gao, Qiaoyi Liu, Jeff Setter, Jing Pu, Ankita Nayak, Steven
Bell, Kaidi Cao, Heonjae Ha, Priyanka Raina, Christos Kozyrakis, and Mark
Horowitz. 2020. Interstellar: Using Halide’s Scheduling Language to Analyze
DNN Accelerators. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS ’20). Association for Computing Machinery, New York, NY, USA, 369ś
383. https://doi.org/10.1145/3373376.3378514

[65] Yu-Wen Huang, Bing-Yu Hsieh, Tung-Chien Chen, and Liang-Gee Chen. 2005.
Analysis, fast algorithm, and VLSI architecture design for H.264/AVC intra frame
coder. IEEE Transactions on Circuits and Systems for Video Technology 15, 3 (2005),
378ś401. https://doi.org/10.1109/TCSVT.2004.842620

[66] Whitney Zhao, Tiffany Jin, Cheng Chen, Siamak Taveallaei, and Zhenghui Wu.
2019. OCP Accelerator Module Design Specification. Open Compute Project.
Retrieved February 13, 2021 from https://www.opencompute.org/documents/ocp-
accelerator-module-design-specification-v1p0-3-pdf

615


	Abstract
	1 Introduction
	2 Warehouse-scale Video Processing
	2.1 Video Transcoding: Workload Challenges
	2.2 Warehouse-Scale Processing: Challenges

	3 System Design
	3.1 Video Accelerator Holistic Systems Design
	3.2 VCU Encoder Core Design
	3.3 System Balance and Software Co-Design
	3.4 High-Level Synthesis for Agility
	3.5 Discussion

	4 Deployment at scale
	4.1 Benchmarking Performance & Quality
	4.2 Production Results
	4.3 Benefits of Co-Design in Deployment
	4.4 Failure Management
	4.5 New Capabilities Enabled by Acceleration

	5 Related Work
	6 Conclusion
	Acknowledgments
	A System Balance Details
	A.1 System-Level Design Target
	A.2 Bandwidth as Transcoding Throughput
	A.3 Host CPU Usage and Memory Bandwidth
	A.4 VCU DRAM Capacity
	A.5 Aggregate System Limit

	References

