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Abstract 1 Introduction 

The structural theory of average-case com- There is a large gap between a problem 
PleitY7 introduced by Levin 7 gives a for- not being easy and the Same problem be- 
mal setting for discussing the A problem could have no 
inputs for which a problem is difficult. efficient worst-case algorithm but stiU be 

of ing difficult. 

This is vital to  understanding both when solvable for umostx instances, or on in- 

problem i‘ actually easy On in- ventional completeness- result can be rel- 
stances, and to determining which prob- atively meaningless in terms of the <ired 
lems might be suitable for applications re- life” difficulty of the problem, since two 

a stances that arise in practice. Thus, a con- 

Pir ing hard Problems) such as ‘rYPtog- 
raphy. This paper attempts to summarize 

problems can both be N P -  complete, but 
one can be solvable quickly on most in- 

the state of knowledge in this area, includ- 
ing some “folklore” results that have not 

t o  standardize and unify definitions. Fi- 
nauy, we indicate what we feel are inter- 
esting research directions. we hope that 

this area and provide an introduction to 
the area for people new to it. 

stances that arise in practice and the other 
not. However, uaverage run-time77 argu- 

ular distributions are also unenlightening 
as to the of real instances of 
a problem. ~ i ~ ~ ~ ,  they only analyze the 

than describing the inherent comple~ty of 
the problem. Secondly, the distributions 
of inputs that arise in practice are often 
difficult to  characterize, so analysis of al- 
gorithms on “nice” distributions does not 
capture the “real-life’’ average difficulty. 

exPficitlY appeared in Print. We also ments of particular algorithms for partic- 

this Paper Will motivate research in performance of specific algorithms rather 
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lems (computational problems together 
with distributions on instances). It should 
a h  provide results that are meaningful 
with respect to instances from an arbitraxy 
distribution that might arise. 

Besides capturing more accurately the 
“real world” difficulty of problems, the 
“a,verage-case complexity” of a problem 
is important in determining its suitability 
for applications such as cryptography and 
the de-randomization of algorithms. For 
such applications, one needs more than 
the mere existence of hard instances of the 
problem; one needs to  be able to generate 
instances in a way that guarantees that al- 
most all generated instances are hard. 

For these reasons, Levin in [Ll] intro- 
duced a structural theory of the average- 
catse complexity of problems. The main 
contributions of his paper were a gen- 
eral notion of a distributional problem, 
a machine-independent definition of the 
average-case performance of an algorithm, 
an appropriate notion of reduction be- 
tween distributional problems, and an ex- 
ample of a problem that was complete for 
the class of all N P  problems on sufficiently 
“uniform” distributions. Since, he and 
many others have built on this foundation 
(see e.g., [BCGL],[G2],[VL], [G3]). 

Despite the above work, I feel the struc- 
ture of average-case complexity has not re- 
ceived the attention due to  a central prob- 
lem in complexity theory. The goal of this 
paper is to motivate more research in this 
area, and to  make the research frontier 
more accessible to  people starting work in 
this area. 

Several caveats are necessary with re- 
spect to  this goal. As this is basically a 
propaganda piece, I will present my own 
personal view of what makes the field ex- 
citing. I will not present a comprehensive 
summary or bibliography of work in the 
area, nor do I claim that the work men- 
tioned here is the “best” in the area. I 

will also attempt to  “clarify” and “sim- 
plify” concepts in the area by presenting 
both my own equivalent formulations and 
also by trying to  make a uniform taxon- 
omy for concepts. The current definitions 
are the product of much thought and work 
by top researchers, so many researchers in 
the area will consider my attempts to  do 
this as a “confusion” and “complicating” 
of the issues rather than a “clarification 
and simplification” of them. However, I 
feel someone starting out in the area might 
benefit from seeing a variety of perspec- 
tives. Many of the results mentioned in 
this paper should be considered “folklore” 
in that they merely formally state ideas 
that are well-known to researchers in the 
area, but may not be obvious to  beginners 
and to the best of my knowledge do not 
appear elsewhere in print. 

2 Five possible worlds 

To illustrate the central role in complex- 
ity theory of questions regarding the aver- 
age case complexity of problems in N P ,  
we will now take a guided tour of five 
possible (i.e., not currently known to be 
false ) outcomes for these questions, and 
see how they would affect computer sci- 
ence. In each such “world”, we will look 
at the influence of the outcomes of these 
questions on algorithm design for such ar- 
eas as artificial intelligence and VLSI de- 
sign, and for cryptography and computer 
security. We will also consider the more 
technical issue of derandomization of al- 
gorithms (the simulation of probabilistic 
algorithms by deterministic algorithms). 
This will have a much smaller impact on 
society than the other issues, but we in- 
clude it as another situation (besides cryp- 
tography) where having difficult problems 
is actually useful. 

Finally, to  provide a human angle, we 
will consider the impact these questions 
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would have had on the sad story of Profes- 
sor Grouse, the teacher who assigned the 
young Gauss’s class the problem of sum- 
ming the numbers from 1 to 100. The be- 
ginning of this story is well-known, but 
few people realize that Professor Grouse 
then became obsessed with getting his re- 
venge by humiliating Gauss in front of the 
class, by inventing problems Gauss could 
not solve. In real life, t,his led to Grouse’s 
commitment to  a lunatic asylum (not a 
pleasant end, especially in the 19’th cen- 
tury) and to Gauss’s developing a life-long 
interest in number- t heoretic algorithms. 
Here, we imagine how the story might have 
turned out had Grouse been an expert 
in computational complexity at a time 
when the main questions about average- 
case complexity had been resolved. (We 
believe that this story inspired Gurevich’s 
“Challenger-Solver Game” [G 11). 

In this section, we will leave unresolved 
the questions of how to properly formal- 
ize the complexity assumptions behind the 
worlds. In pqrticular, we will leave open 
which model of computation we are talk- 
ing about, e.g., deterministic algorithms, 
probabilistic algorithms, Boolean circuits, 
or even quantum computers, and we shall 
ignore quantitative issues, such as whether 
an nlo0 time algorithm for satisfiability 
would be “feasible”. We also assume that, 
if an algorithm exists, then it is known to 
the inhabitants of the world. We also ig- 
nore the issue of whether it might be possi- 
ble that algorithms are fast for some input 
sizes but not others, which would have the 
effect of bouncing us from world to  world 
as technology advanced. 

We will take as our standard for whether 
these worlds are indeed “possible” the ex- 
istence of an oracle relative to which the 
appropriate assumptions hold. Of course, 
this is far from a definitive answer, and the 
existence of an oracle should not stop the 
researcher from attempting to find non- 

relativizing techniques to narrow the range 
of possibilities. Indeed, it would be won- 
derful to eliminate one or more of these 
worlds from consideration, preferably the 
pestilent Pessiland. We will try to  suc- 
cinctly and informally describe what type 
of algorithm and/or lower bound would be 
needed to conclude that we are in a partic- 
ular world. Barring the caveats mentioned 
in the previous paragraph, these condi- 
tions will basically cover all eventualities, 
thus showing that these are the only possi- 
ble worlds. (This is an informal statement, 
and will be more true for some worlds than 
others.) 

2.1 Algorithmica 

Algorithmica is the world in which P = 
N P  or some moral equivalent, e.g., N P  C 
BPP. In this world, Grouse would have 
even less success at stumping Gauss than 
he had in real life. Since Grouse needed 
to stump Gauss on a problem for which 
he (Grouse) could later present an answer 
to the class, he is restricted to problems 
which have succinct, easily verifiable so- 
lutions, i.e., N P .  Gauss could use the 
method of verifying the solution to  auto- 
matically solve the problem. 

Such a method of automatically pro- 
ducing a solution for a problem from 
the method of recognizing a valid solu- 
tion would revolutionize computer science. 
Seemingly intractable algorithmic prob- 
lems would become trivial. Almost any 
type of optimization problem would be 
easy and automatic; for example, VLSI 
design would no longer use heuristics, but 
could instead produce exactly optimal lay- 
outs for problems once a criterion for op- 
timality was given. Programming lan- 
guages would not need to  involve instruc- 
tions on how the computation should be 
performed, Instead, one would just spec- 
ify the properties that a desired output 
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should have in relation to  the input. If 
the specification language is such that it is 
easy to  evaluate whether an output meets 
the specification, then the compiler could 
automatically feed it to  the algorithm to 
solve the NP-complete problem to gener- 
ate the output. (This is the motivation 
behind logic-programming languages such 
as PROLOG, but in Algorithmica it would 
actually work that way!) 

Less obviously, P = N P  would make 
trivial many aspects of the artificial intel- 
ligence program that are in real life chal- 
lenging to  the point of despair. Inductive 
learning systems would replace our feeble 
attempts at expert systems. One could 
use an “Occam’s Razor” based inductive 
learning algorithm to automatically train 
a (computer to  perform any task that hu- 
mans can (see, e.g., [I ). Such an algo- 
rithm would take as input a training set 
of possible inputs and outputs produced 
by a human expert, and would produce 
the simplest algorithm that produced the 
same results as the expert. Thus, a com- 
puter could be taught to  recognize and 
patrse grammatically correct English just 
by having sufficiently many examples of 
correct and incorrect English statements, 
wj thout needing any specialized knowl- 
edge of grammar or English. (Th’ is as- 
sumes merely that there exists a simple 
algorithm that humans use to parse nat- 
ural languages. People have attempted 
to use neural nets to  do similar learning 
tasks, but that implicitly makes the much 
stronger assumption that the task is per- 
formable by a constant depth threshold 
circuit, which is not always reasonable.) 

Using the result that approximate 
counting is in the polynomial-time hierar- 
chty [St], exponential sized spaces of possi- 
ble sequences of events could be searched 
and a probability estimate for an event 
given observed facts could be output, thus 
producing Mr. Spock-like estimates for all 

sorts of complicated events. “Computer- 
assisted mathematics” would be a redun- 
dant phrase, since computers could find 
proofs for any theorem in time roughly 
the length of the proof. (We could use 
the above learning method to train the 
computer to  search for “informal proofs 
acceptable to  mathematicians” or “papers 
acceptable at FOCS”!) In short, as soon 
as a feasible algorithm for an NP-complete 
problem is found, the capacity of comput- 
ers will become that currently depicted in 
science fiction. 

On the other hand, in Algorithmica, 
there would be no way of telling differ- 
ent people or computers apart by informa- 
tional means. The above-mentioned learn- 
ing algorithms could simply learn to  mimic 
the behavior of another machine or per- 
son. Any code that could be developed 
could be broken just as easily. It would 
do little good to keep the algorithm the 
code is based on secret, since an identi- 
cal algorithm could be automatically gen- 
erated from a small number of samples of 
encrypted and clear-text messages. There 
would be no way to  allow some people 
access to  information without making it 
available to  everyone. Thus any means 
of identification would have to  based on 
some physical measurement, and the secu- 
rity of the identification would have to  be 
based on the unforgeability of the physical 
measurement and the extent to  which all 
channels from the measuring device to the 
identifier are tamper-proof. In particular, 
any file or information remotely accessible 
via a possibly insecure channel would ba- 
sically be publicly available. (The above 
assumes that no physical property is di- 
rectly observable at a distance, which may 
not be true. In particular, it may be pos- 
sible to  identify people based on certain 
quantum effects [BBR]). 

There seems to  be no reason why ran- 
domness could not be essential for the 
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worst- case algorithm for the NP-complete 
problem. No general techniques for de- 
randomization are known to be possible 
in a version of Algorithmica where, say, 
N P = R P # P .  

To show that we are in Algorithmica, 
one needs to present an efficient algorithm 
for some NP-complete language. A rela- 
tivized Algorithmica was given in [BGS]. 

2.2 Heuristica 

Heuristica is the world where N P  prob- 
lems are intractable in the worst-case, but 
tractable on average €or any samplable dis- 
tribution. 

Neuristica is in some sense a paradoxi- 
cal world. Here, there exist hard instances 
of N P  problems, but to find such hard 
instances is itself an intractable problem! 
In this world, Grouse might be able to 
find problems that Gauss cannot answer 
in class, but it might take Grouse a week 
to find a problem that Gauss could not 
solve in a day, and a year to find one that 
Gauss could not solve in a month. (Here, I 
am assuming that Gauss has some polyno- 
mial advantage over Grouse, since Gauss 
is after all a genius!) Presumably, “real- 
life ” is not so adversarial that it would 
solve intractable problems just to give us 
a hard time , so for all practical purposes 
this world is indistinguishable from Algo- 
rithmica. 

Or is it? In Heuristica, the time to 
solve a problem drawn from a distribution 
might be polynomial in not just the prob- 
lem size but also the time required to sam- 
ple from the distribution and the fraction 
of problems from the distribution that are 
at least as “hard” as the given problem. 
In other words, the average-case time to 
solve an N P  problem is a function of the 
average-case time to think up the prob- 
lem. This makes the situation not at all 
clear. Say that, on average, it takes us 

just twice as long to solve a problem as 
it does to think it up. As we all know, 
the solution to one mathematical problem 
invariably leads to another problem. So 
if we spend time T thinking up problem 
1, and then 2 T  solving it, and the solution 
leads to a second problem 2,  we have spent 
3T time thinking up problem 2. Thus, 
it might take 6 T  time to solve problem 2 
in Heuristica. (In Algorithmica, the time 
would be independent of how we thought 
up the problem.) Which leads to a prob- 
lem 3 which took 10T steps to think up, 
and so 20T time to solve. Since this recur- 
sion is exponential, in a few iterations we 
have crossed the border between “feasible” 
and “infeasible”. 

A more specific example of a possi- 
ble difference between Algorithmica and 
Weuristica would be V L S I  problems in- 
volving circuit minimization. In V L S I ,  
algorithms should be given some represen- 
tation of a function and then be able to de- 
sign a circuit that is minimal with respect 
to certain costs that computes the func- 
tion. In Algorithmica, you could make up 
such an algorithm in two stages. First, 
you could use your solution to an NP- 
complete problem to come up with an al- 
gorithm that will recognize when a circuit 
actually computes the specified function, 
this being a CO - N P  problem, since you 
could certify the circuit incorrect by pro- 
viding one input on which it does not pro- 
duce the specified value. Then, using the 
first algorithm as the defining criterion for 
what a possible solution is, the problem of 
minimization becomes an NP-type prob- 
lem, and you can solve it using your algo- 
rithm for an NP-complete problem. 

The same process in Heuristica is not 
guaranteed to produce good results. Your 
first algorithm will work well on most cir- 
cuits and specifications, but you don’t re- 
ally care about most circuits. You really 
want an algorithm that will work well on 
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circuits that are minimal instantiations of 
specifications! Such circuits might not be 
distributed in any nice way, and since it 
would seem to take exponential time to  
find such circuits, there is no reason why 
they might not be the hard to  find, hard 
instances of the problem on which algo- 
rithms fail in Heuristica. 

Thus, a central problem in the structure 
of average-case complexity is : if all prob- 
lems in N P  are easy on average, can the 
same be said of all problems in the poly- 
nomial hierarchy? (The circuit minimiza- 
tion problem is in E r  and problems involv- 
ing repeated iterations of N P  questions 
are in PNp.)  This question is explored 
in more detail in [SW]. The best known 
result along these lines is that of [BCGL] 
reducing average case search problems to 
average case decision problems. 

As far as network security and cryptog- 
raphy go, there would not be much of a dif- 
ference between Algorithmica and Heuris- 
tics. It would not be much help to  have le- 
gitimate users spend huge amounts of time 
thinking up problems to  uniquely identify 
them if eavesdroppers can solve the prob- 
lems in comparable amounts of time. One 
should always assume that people willing 
to  break a system are also willing to use 
significantly more resources doing so than 
legitimate users are willing to spend rou- 
tinely! 

As we shall see later, there are sev- 
eiral ways of formalizing a problem’s being 
“(easy-on-average” . In some of these def- 
initions, some de-randomization follows; 
for example, one can show that if all 
ATP problems have polynomial-on-average 
probabilistic algorithms in the sense of 
Levin, then BPP = ZPP.  However, we 
feel this is more of an artifact of the defi- 
nition than an essential fact about Heuris- 
tka.  We will present alternate definitions 
in the next section. 

From the results of [ILe], being in Heur- 

sitica is basically equivalent to knowing a 
method of quickly solving almost all in- 
stances of one of the average-case complete 
problems on the uniform distribution (see 
e.g., [Ll],[G2],[VL], [G3]). and having a 
lower bound for the worst-case complex- 
ity of some NP-complete problem. We do 
not know of any relativized Heuristica us- 
ing Levin’s definition of average-case com- 
plexity. However, there is an oracle in 
which every problem in N P  has an al- 
gorithm that solves it on most instances, 
yet N P  P/poly ([IR2]). The difference 
between the two definitions is that in the 
weaker one, the algorithm always runs in 
polynomial time but occasionally gives an 
incorrect answer, whereas Levin’s stronger 
definition insists that the algorithm be al- 
ways correct, but it may occasionally run 
for more than polynomial time. (This dif- 
ference will be detailed in the next sec- 
tion.) We do not know whether these two 
criteria for N P  being easy on average are 
equivalent, and we feel it is a question 
worth exploring. 

2.3 Pessiland 

Pessiland is, to my mind, the worst of all 
possible worlds, the world in which there 
are hard average-case problems, but no 
one-way functions. By the non-existence 
of one-way functions,we mean that any 
process f(x) that is easy to  compute is 
also easy to  invert in the sense that, for 
almost all values of z, given f(x), it is pos- 
sible to find some X I  with f(d) = f(z) in 
roughly the same amount of time it took 
to  compute f(x). In Pessiland, it is easy 
to generate many hard instances of N P -  
problems. However, there is no way of gen- 
erating hard solved instances of problems. 
For any such process of generating prob- 
lems, consider the function which takes the 
random bits used by the generator as in- 
put and outputs the problem. If this func- 
tion were invertible, then given the prob- 
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lem, one could find the random bits used 
to  generate the problem, and hence the so- 
lu tion. 

In Pessiland, Grouse could pose Gauss 
problems that even the budding genius 
could not solve. However, Grouse could 
not solve the problems either, and so 
Gauss’s humiliation would be far from 
complete. 

In Pessiland, problems for many do- 
mains will have no easy solutions. 
Progress will be like it is in our world: 
made slowly through a more complete 
understanding of the real-world situation 
and compromises by using unsatisfactory 
heuristics. Generic methods of problem 
solving will fail in most domains. How- 
ever, a few relatively amazing generic al- 
gorithms are possible based only on the 
non-existence of one-way functions. For 
example, [ILe] gives a method of using a 
generic function inverter to learn in aver- 
age polynomial time the behaviour of an 
unknown algorithm by observing its input- 
output behaviour on some samplable input 
distribution. It would also be possible to  
give a generic data compression method, 
where if one knows the process by which 
strings are being produced, i.e. an algo- 
rithm that produces samples according to 
the distribution, then, in the limit, strings 
can be compressed to  an expected length 
of the entropy of the distribution ([IZ]). 

Finding other algorithmic implications 
of the non-existence of one-way functions 
is an interesting research direction. More 
generally, the structural theory of cryptog- 
raphy under the axiom that one-way func- 
tions exist is rich; is there a similarly rich 
theory under the axiom that there are no 
one-way functions? 

There does not seem to  be a way of 
making use of the hard problems in Pessi- 
land in cryptography. A problem that no 
one knows the answer to cannot be used 
to  distinguish legitimate users from eaves- 

droppers. This intuition is made formal 
in [ILu], where it is shown that one-way 
functions are necessary for many crypto- 
graphic applications. 

The existence of hard average-case 
problems in a non-uniform setting has 
been shown by Nisan and Wigderson 
([NW])to be sufficient for generic de- 
randomization. Note that the definition of 
difficult problem they use is much stronger 
than the negation of Levin’s definition of 
an easy-on-average problem. They give 
a smooth trade-off between the difficulty 
of a problem and its consequences for 
the de-randomization of algorithms; if a 
problem in E has exponential difficulty, 
then P = BPP;  if such a problem has 
super-polynomial difficulty, then BPP C 

Levin ([L2]) gives an example of a func- 
tion that is complete for being one-way, 
so having an algorithm for inverting this 
function suffices to  show that there are 
no one-way functions. To then show that 
you are in Pessiland, you need to  give an 
average-case lower bound for some prob- 
lem in N P .  

D T I M E ( 2 7 9 .  

2.4 Minicrypt 

In Minicrypt, one-way functions exist, 
but public key cryptography is impossi- 
ble. We here identify public key cryp- 
tography with the task of agreeing on a 
secret with a stranger via a publicly ac- 
cessible channel, although strictly speak- 
ing, public key cryptography is just one 
method of accomplishing this task. The 
one-way function could be used to gener- 
ate hard, solved problems: the generator 
would pick 2, compute y = f(x) and pose 
the search problem, “Find any x’ with 
f(x’) = y” knowing one solution, x. Thus, 
in Minicrypt, Grouse finally gains the up- 
per hand, and can best Gauss in front of 
the class. 
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There are no known positive algorithmic 
aspects to  Minicrypt, except that you can 
use the one-way function to  get a pseudo- 
ra:ndom generator that can be used to  de- 
randomize algorithms [HILL]. 

On the other hand, it is possible for par- 
ticipants in a network to  identify them- 
sellves to  other participants and to authen- 
ticate messages as originating from them 
using electronic signatures [NY], [?I. It is 
possible to  prove facts about a secret in 
in a way that discloses no other informa- 
tion about the secret ([?],[GMWI). It is 
possible, if a small amount of information 
is agreed upon in advance, to  set up a pri- 
vaie unbreakable code between two partic- 
ipants in the network that will allow them 
to talk privately over a publicly accessi- 
ble channel. ([HILL],[GGM], [LR]). How- 
ever, it is impossible to have secure elec- 
tions over a public channel, or to  establish 
a private code without sending some in- 
formation through a secure channel. It is 
not known how to have anonymous digi- 
tal money in such a world. Many other 
applications involving multiple participant 
protocols seem impossible if you cannot es- 
tatblish private codes on public channels. 

To prove that the real world is 
MLinicrypt, one would have to  prove that 
no efficient algorithm exists for inverting 
some one-way functions, and also show 
how to break any secret-key agreement 
protocol. There seems to  be no nice char- 
acterization of secret-key agreement pro- 
tocols, and maybe this is inherent to  the 
problem ([Ru]), so it is not clear how one 
could even start to  do the latter. [IR] gives 
a relativized Minicrypt. 

2.5 Cryptomania 

In Cr yptomania, public-key cryptography 
is possible, i,e., it is possible for two par- 
ties to  agree on a secret message using 
only publicly accessible channels. In Cryp- 

tomania, Gauss is utterly humiliated; by 
means of conversations in class, Grouse 
and his pet student would be able to  
jointly choose a problem that they would 
both know the answer to, but which Gauss 
could not solve. In fact, in such a world, 
Grouse could arrange that all the students 
except Gauss would be able to  solve the 
problems asked in class! 

Such a secret key agreement protocol 
implies the existence of a one-way function 
[ILu], so we still have pseudo-randomness, 
signatures, identification, zero-knowledge, 
etc. Also, if one does the secret-key 
exchange using trap-door one-way func- 
tions (and all known protocols are either 
explicitly or implicitly using such func- 
tions), one can do almost any crypto- 
graphic task imaginable! (See [?],[?I ). 
Any group of people can agree to  jointly 
compute an arbitrary function of secret in- 
puts without compromising their secrets. 
This directly includes, for example, se- 
cure electronic voting, or anonymous dig- 
ital cash, although not necessarily in a 
practical form. Unlike in the other worlds 
where establishing privacy is a technologi- 
cal challenge, the technology of Cryptoma- 
nia would limit the capability of author- 
ities to  restrict privacy. Most decisions 
about how much privacy is available to  cit- 
izens of such a world would be guided by 
social and political processes rather than 
technical capability. For example, there 
are a whole gamut of possible electronic 
money systems , some of which protect 
user anonymity to  a greater extent than 
others. Which becomes the standard is a 
matter of political choice - although per- 
haps not a democratic choice, since the 
standards are now set without much pub- 
lic discussion except within a small circle 
of interested parties. 

This world is the one closest to  the real 
world, in that as far as we know, the RSA 
cryptosystem is secure. Public key cryp- 
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tography is currently in the transition pro- 
cess of being accepted as a standard, al- 
though both technical and political issues 
block full implementation of the above- 
mentioned protocols. 

However, blind acceptance of the ex- 
istence of public key cryptosystems as a 
de facto complexity axiom is unwarranted. 
Currently, all known secure public key 
cryptosystems are based on variants of 
RSA, Rabin, and Diffie-Hellman crypto- 
systems. If an efficient way of factoring in- 
tegers and solving discrete logarithms be- 
came known, then not only would the pop- 
ular public key cryptosystems be broken, 
but there would be no candidate for a se- 
cure public-key cryptosystem, or any real 
methodology for coming up with such a 
candidate. There is no theoretical reason 
why factoring or discrete log should be in- 
tractable problems. Confidence that they 
are intractable is based on our ignorance of 
any good method for solving the problems 
after more than twenty years of intense re- 
search. However, the same twenty years 
have vastly improved number-theoretic al- 
gorithms, so there is no reason to suspect 
similar improvements do not lie ahead. 
This makes it impossible to pick param- 
eters for public-key sizes that will be still 
secure in say 20 years. In fact, the earliest 
guess for such a parameter 20 years ago 
was recently broken. More speculatively, 
it has been recently shown how to solve 
both problems in the quantum computer 
model [Sh]. The existence of public-key 
cryptography is fragile at best. 

To prove that we live in Cryptomania, 
one must prove that a particular secret- 
key exchange protocol is secure. Proving 
a strong lower bound on the average case 
time to factor or take discrete logs would 
be sufficient, and no other problems are 
currently candidates for founding public- 
key cryptography. Brassard[Bra] gives a 
relativized world where public-key cryp- 

tography is possible. 

3 Definitional issues 

The definitions Levin gave for the ba- 
sic concepts of his theory seem counter- 
intuitive to  many people on first reading. 
For example, he talks about the expecta- 
tion of some positive power of the time 
taken by an algorithm, rather than that of 
the time. In this section, we will give some 
equivalent formulations of Levin’s defini- 
tions that are intended to  justify the def- 
initions and make them seem more intu- 
itive. We will also present some variations 
of these definitions that seem related but 
not equivalent. 

3.1 Infinite input distributions 
versus ensembles of finite in- 
put distributions 

One feature of Levin’s definition that I 
personally find unappealing is that in his 
definition of a distributional problem, the 
input distribution is a single distribution 
on all inputs of all sizes. I prefer to  think 
of the input distribution as being, at any 
fixed time, on a finite set of possible in- 
puts of at most some fixed size. However, 
as technology improves, the size of inputs 
that we are interested in increases (since 
most computational problems arise from 
the technology itself). So the inputs for an 
average-case problem are to my mind best 
modeled by a sequence of finite probability 
distributions on strings of bounded size, 
where the sequence is parameterized by 
the input size. Fortunately, as we shall see, 
Levin’s definition of average-case complex- 
ity remains pretty much unchanged under 
either model. So the choice of finite ver- 
sus infinite input distributions is merely 
an aesthetic one. 

The proof here is messy, but stupid. It 

142 



is included for completeness, but please 
feel free to  accept the moral without get- 
ting bogged down in the computation. I 
include Levin’s definition of a time func- 
tion’s being “polynomial-on-average” here 
without explanation or justification, so 
th,at we can eliminate the infinite distribu- 
tions once and for all. If you don’t want to  
try to  make sense of this definition, skip to  
thle next subsection, where an equivalent 
formulation is given. 

(Intuitively, in the following, T ( i )  rep- 
resents the time taken by a machine on 
input i.) 

DIEFINITION 3.1: A distribution on the 
positive integers Z+ is a function p : 
2-l + R where p ( i )  2 0 and CiEZ+ p ( i )  = 
1, A distribution on a finite set 5’ is the 
same replacing Z+ with 5’ in the sum. 
An ensemble of distributions is a sequence 
of distributions pn, n E Z+, where each 
pn is a distribution on the set of posi- 
tive integers with binary length at most 
n. A function T : Z+ + Z+ is polyno- 
mial on average with respect to p,  a dis- 
trjbution on Z+,  if there is some E > 0 so 
that T(i)El i l - lp( i )  converges. We 
sa,y that T is polynomial on average with 
respect to an ensemble of distributions 
pn,, n E Z+ if there is an E > 0 so that 
the expectation of T(i)‘ when i is chosen 
according to  pn is O ( n ) ,  

Proposition 1: Let p be a distribution 
on. Z+ and let pn be the restriction of p 
to numbers of length at most n. Then any 
function T is polynomial on average with 
re,spect to  p if and only if it is polynomial 
on average with respect to the ensemble 
A,, n E Z+. 

Proof: Assume T is polynomial on aver- 
&@;e with respect 
to  p. So xiT(i)‘\ i1-’p(i)  converges for 
some E > 0. Then Ei,li15nT(i)Epn(i) 1. 

I: Ei,Iil&/ lil >T(i>‘(Cl(i>/ProbiE,Z+ [ I  i l  

n])  = O ( n )  x i T ( i ) E l i l - l p ( i )  = O ( n ) ,  so 
T is polynomial on average with respect 

Conversely, if T is polynomial on 
average with respect to  pn, there is 
some E > 0 so that T( i )€  has expec- 
tation O ( n )  when i is chosen accord- 
ing to  n. Then Qil=nT(i)‘p(i) 5 

O ( n ) .  Thus Ei(T( i )E/3) l i l -1p( i )  = 

to pn-  

Ci,lil<n T(i)‘p(i) 5 Ci,lil<n T( i ) ‘~n( i )  = 

&T(i)c/3Llil ~ ( i ) w - 1 4 i )  + 
C i , ~ ( i ) ~ / 3 > 1 i l T ( i )  t / 3  I i I -1 A i )  I Cidi )  + 
~ i , T ~ i ~ € / 3 ~ l i l ( T ( i ) ~ / ( l i l T ( i ) 2 / 3 E ) ) p ( i )  I 1 + 
En E;, ( T ( i ) ‘ ~ ( i  1) /n3 - - 

1 +E, O ( n ) / n 3  = 1 +E, O(l/n2) ,  which 
converges. So T is polynomial on average 
with respect to  p. 0.  

From now on then, we will look at the 
input as coming from one element of an 
ensemble of distributions. 

3.2 Expected Time versus the 
“Average Case” 

Why did Levin look at the expectation of 
T E  rather than T?  The traditional an- 
swer is that the expectation of a func- 
tion might be small, but some polynomial 
of that function, huge, For example, if 
T ( z )  = n for all but a l / an  fraction of 
inputs, but was 2n on those inputs, then 
the expectation of T is O ( n ) ,  but the ex- 
pectation of T 2  is 0 ( 2 n ) .  Thus, if you first 
do a computation that’s expected polyno- 
mial time, and then compute a worst-case 
polynomial-time function of the result, the 
whole process might not be expected poly- 
nomial time. Levin’s definition closes the 
class of average-case polynomial problems 
under such transformations. 

However, I think there’s a better rea- 
son. Levin’s definition is not intended to  
capture the expected cost to  the solver; 
rather, it captures the trade-off between 
a measure of difficulty and the fraction 
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of hard instances of the problem, i.e., be- 
tween a time bound T and the fraction 
of instances that take the algorithm more 
than T time. This trade-off should be 
polynomial in T :  only a sub-polynomial 
fraction of instances should require super- 
polynomial time, only a quasi-polynomial 
fraction more than quasi-polynomial time, 
etc. Thus, the time to  find, through ran- 
dom sampling, an instance requiring more 
than T time is at least T' ,  so the poser 
does not have more than a polynomial ad- 
vantage over the solver. Levin hints at 
this in the last sentence of his original pa- 
per, and Gurevich has explained it nicely 
in [GI]. However, I feel that the following 
formal statement based on this intuition 
might be helpful to  have in the literature: 

DEFINITION 3.2: A distributional prob- 
lem is a function f and an input ensemle 
p,, n E Z+. The distributional prob- 
lem f on input ensemble pn is said to be 
in AwgP if there is an algorithm to com- 
pute f whose running time is polynomial 
on average with respect to p n .  An algo- 
rithm computes f with benign faults if it 
either outputs an element of the range of 
f or " ?" and if it outputs anything other 
than ?, it is correct (f of the input.) A 
polynomial-time benign algorithm scheme 
for a function f on p, is an algorithm 
A(z ,6)  so that: 

0 A runs in time polynomial in IzI and 
1/6. 

A computes f(z) with benign faults. 

0 V6,l > 6 > 0 and all n E Z+,  
PTO~,E~,Z+[A(X,  S )  =?] 5 6. 

Proposition 2: A problem f on input 
ensemble ,un is in AvgP if and only if it 
has a polynomial-time benign algorithm 
scheme. 

Proof Assume f on p, is in AvgP. 
Then there is an algorithm A so that 

for T A ( z )  the time T takes on input 
5, E ~ p , ~ ~ , z t [ T A ( z ) ~ ]  = O(n). Then 
Prob[TA(z) 2 O((kn)'/ '>] 5 l / k .  So the 
algorithm B where B ( z ,  6) simulates A for 
O(n/6)1/c steps, and outputs ? if A fails 
to halt is a benign algorithm scheme for f .  

Conversely, assume B ( z ,  6) is a benign 
algorithm scheme for f with time at most 
(Izl/S)". Then let A be the algorithm 
that simulates B with parameters 6 = 
l /2,  114, 1/8 ,... until an answer is given. 
The expectation of the power 1/2c of the 
time of A on inputs from ,un is then at 
most: (27~) ' /~  + 1/2(4n)*l2 + 1/4(8n)lI2 + 
... = n1/2(~,(2-i/2) = O(n1i2)., since at  
most 1/2 of the inputs run for more than 
one iteration, at most 1/4 more than two 
iterations, etc. So A is a polynomial on 
average algorithm for f 0 ,  

DEFINITION 3.3: A distribution ensemble 
pn  is samplable if there is a probabilistic 
polynomial-time algorithm A that on in- 
put 2n produces outputs distributed ac- 
cording to pn.  The class DistNP is the 
class of distributional problems in N P  
where the input distribution is samplable. 

Proposition 3: If every problem in 
Dis tNP has a polynomial-time benign er- 
ror algorithm that produces an output 
with probability 1 - l /n2,  then DistNP C 
AvgP. 

Sketch: We reduce finding a benign algo- 
rithm scheme for the problem to finding a 
l /n2  benign error algorithm for the same 
problem but a slightly different input dis- 
tribution. In the second problem, you pick 
an input by picking a random n' from 1 
to n amd then sampling according to  n' 
as the first problem does. Given an in- 
stance from the original problem, and an 
error parameter S ,  we use the l / n 2  benign 
error algorithm on the input distribution 
for n = 1/6. 
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From this it follows that there is some 
fixed polynomial p so that there is an al- 
gorithm solving one of the average-case 
complete problems with probability 1 - 
l / p ( n )  and only making benign faults, 
then DistNP AvgP. 

3;.3 Extensions 

Rephrasing Levin’s definition in this light 
gives us some insight into extensions. The 
first obvious extension is to  change our 
model from deterministic to  probabilistic 
computation. There are several ways of 
doing this. The first would be to insist 
that all errors be benign on all random 
inputs of the algorithm . I call the result- 
ing class AvgZPP, for average case, zero- 
error probabilistic algorithms. Then it is 
relatively easy to use results of [NW] to 
prove the following: 

Proposition 4: If 
LIistNP AvgZPP then B P P  = ZPP.  

However, this is saying less about the av- 
erage case hardness of problems in N P  
tlhen about error-free vs. error prone ran- 
domized computation. For example, it is 
an open problem whether DistBPP C 
AivgZPP, but a problem in B P P  should 
not be considered hard on average in- 
stances! Thus we could define an average- 
case version of BPP: 

DEFINITION 3.4: A probabilistic 
algorithm returning output possibly ? is 
statistically benign for decision problem f 
if on any input, the probability that the al- 
gorithm returns an answer other than f(z) 
is at most 1/3. Similarly for a statistically 
benign algorithm scheme. The class of dis- 
tributional problems which have poly-time 
statistically benign algorithm schemes is 
ciilled AVgBPP. 

It, is also easy to  present a non-uniform 
version of AvgP in the obvious way, which 

we will call AvgPlpoly. 

However, even these more robust defini- 
tions fail to bridge the gap between what 
is not easy and what is hard. This gap 
is largely caused by the insistence on the 
algorithm making only benign errors. 

DEFINITION 3.5: An algorithm scheme for 
a distributional problem is an algorithm 
A(z ,S)  so that for z chosen according to  
the distribution ensemble and any fixed 
6 > 0, the probability that A fails to  re- 
turn a correct answer is at most 6. H P  
for heuristic polynomial-time is the class of 
distributional problems with a determinis- 
tic poly-time algorithm scheme, and sim- 
ilarly H P P  is the class of distributional 
problems with a probabilistic poly-time al- 
gorithm scheme, and H Plpol y with a non- 
uniform algorithm scheme. 

To get some idea for the difference, 
[NW] shows how to use any problem 
in DistNP but not in HPlpoZy for de- 
randomization. [IR2] was able to  con- 
struct an oracle where DistNP H P  
but N P  9 P/poZy, but the same for 
AvgPlpoZy is not known. However, many 
of the reductions between average-case 
problems work equally well for the heuris- 
tic classes as for the average-case classes. 
Investigating the differences between the 
average-case and heuristic distributional 
classes is another important research di- 
rection. 
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