
A Personal View of Average-Case Complexity

RUSSELL IMPAGLI AZZ o *
Computer Science and Engineering

UC, San Diego
9500 Gilman Drive

La Jolla, CA 92093-0114
r u s s e l l @ c s . u c s d . e d u

Abstract 1 Introduction

The structural theory of average-case com- There is a large gap between a problem
PleitY7 introduced by Levin 7 gives a for- not being easy and the Same problem be-
mal setting for discussing the A problem could have no
inputs for which a problem is difficult. efficient worst-case algorithm but stiU be

of ing difficult.

This is vital to understanding both when solvable for umostx instances, or on in-

problem i‘ actually easy On in- ventional completeness- result can be rel-
stances, and to determining which prob- atively meaningless in terms of the <ired
lems might be suitable for applications re- life” difficulty of the problem, since two

a stances that arise in practice. Thus, a con-

Pir ing hard Problems) such as ‘rYPtog-
raphy. This paper attempts to summarize

problems can both be N P - complete, but
one can be solvable quickly on most in-

the state of knowledge in this area, includ-
ing some “folklore” results that have not

t o standardize and unify definitions. Fi-
nauy, we indicate what we feel are inter-
esting research directions. we hope that

this area and provide an introduction to
the area for people new to it.

stances that arise in practice and the other
not. However, uaverage run-time77 argu-

ular distributions are also unenlightening
as to the of real instances of
a problem. ~ i ~ ~ ~ , they only analyze the

than describing the inherent comple~ty of
the problem. Secondly, the distributions
of inputs that arise in practice are often
difficult to characterize, so analysis of al-
gorithms on “nice” distributions does not
capture the “real-life’’ average difficulty.

exPficitlY appeared in Print. We also ments of particular algorithms for partic-

this Paper Will motivate research in performance of specific algorithms rather

*Research Supportem- -.Y

Thus, a structural theory of distribu-
tional complexity is necessary. Such a the-

ent intractability of distributional prob-

TSF YI ._ Nard CCR-
92-570979, Sloan- Research Fellowship BR-3311, ory should One to compare the inher-
and USA-Israel BSF Grant 92-00043

134
1063-6870195 $04.00 0 1995 IEEE

mailto:russell@cs.ucsd.edu

lems (computational problems together
with distributions on instances). It should
a h provide results that are meaningful
with respect to instances from an arbitraxy
distribution that might arise.

Besides capturing more accurately the
“real world” difficulty of problems, the
“a,verage-case complexity” of a problem
is important in determining its suitability
for applications such as cryptography and
the de-randomization of algorithms. For
such applications, one needs more than
the mere existence of hard instances of the
problem; one needs to be able to generate
instances in a way that guarantees that al-
most all generated instances are hard.

For these reasons, Levin in [Ll] intro-
duced a structural theory of the average-
catse complexity of problems. The main
contributions of his paper were a gen-
eral notion of a distributional problem,
a machine-independent definition of the
average-case performance of an algorithm,
an appropriate notion of reduction be-
tween distributional problems, and an ex-
ample of a problem that was complete for
the class of all N P problems on sufficiently
“uniform” distributions. Since, he and
many others have built on this foundation
(see e.g., [BCGL],[G2],[VL], [G3]).

Despite the above work, I feel the struc-
ture of average-case complexity has not re-
ceived the attention due to a central prob-
lem in complexity theory. The goal of this
paper is to motivate more research in this
area, and to make the research frontier
more accessible to people starting work in
this area.

Several caveats are necessary with re-
spect to this goal. As this is basically a
propaganda piece, I will present my own
personal view of what makes the field ex-
citing. I will not present a comprehensive
summary or bibliography of work in the
area, nor do I claim that the work men-
tioned here is the “best” in the area. I

will also attempt to “clarify” and “sim-
plify” concepts in the area by presenting
both my own equivalent formulations and
also by trying to make a uniform taxon-
omy for concepts. The current definitions
are the product of much thought and work
by top researchers, so many researchers in
the area will consider my attempts to do
this as a “confusion” and “complicating”
of the issues rather than a “clarification
and simplification” of them. However, I
feel someone starting out in the area might
benefit from seeing a variety of perspec-
tives. Many of the results mentioned in
this paper should be considered “folklore”
in that they merely formally state ideas
that are well-known to researchers in the
area, but may not be obvious to beginners
and to the best of my knowledge do not
appear elsewhere in print.

2 Five possible worlds

To illustrate the central role in complex-
ity theory of questions regarding the aver-
age case complexity of problems in N P ,
we will now take a guided tour of five
possible (i.e., not currently known to be
false) outcomes for these questions, and
see how they would affect computer sci-
ence. In each such “world”, we will look
at the influence of the outcomes of these
questions on algorithm design for such ar-
eas as artificial intelligence and VLSI de-
sign, and for cryptography and computer
security. We will also consider the more
technical issue of derandomization of al-
gorithms (the simulation of probabilistic
algorithms by deterministic algorithms).
This will have a much smaller impact on
society than the other issues, but we in-
clude it as another situation (besides cryp-
tography) where having difficult problems
is actually useful.

Finally, to provide a human angle, we
will consider the impact these questions

135

would have had on the sad story of Profes-
sor Grouse, the teacher who assigned the
young Gauss’s class the problem of sum-
ming the numbers from 1 to 100. The be-
ginning of this story is well-known, but
few people realize that Professor Grouse
then became obsessed with getting his re-
venge by humiliating Gauss in front of the
class, by inventing problems Gauss could
not solve. In real life, t,his led to Grouse’s
commitment to a lunatic asylum (not a
pleasant end, especially in the 19’th cen-
tury) and to Gauss’s developing a life-long
interest in number- t heoretic algorithms.
Here, we imagine how the story might have
turned out had Grouse been an expert
in computational complexity at a time
when the main questions about average-
case complexity had been resolved. (We
believe that this story inspired Gurevich’s
“Challenger-Solver Game” [G 11).

In this section, we will leave unresolved
the questions of how to properly formal-
ize the complexity assumptions behind the
worlds. In pqrticular, we will leave open
which model of computation we are talk-
ing about, e.g., deterministic algorithms,
probabilistic algorithms, Boolean circuits,
or even quantum computers, and we shall
ignore quantitative issues, such as whether
an nlo0 time algorithm for satisfiability
would be “feasible”. We also assume that,
if an algorithm exists, then it is known to
the inhabitants of the world. We also ig-
nore the issue of whether it might be possi-
ble that algorithms are fast for some input
sizes but not others, which would have the
effect of bouncing us from world to world
as technology advanced.

We will take as our standard for whether
these worlds are indeed “possible” the ex-
istence of an oracle relative to which the
appropriate assumptions hold. Of course,
this is far from a definitive answer, and the
existence of an oracle should not stop the
researcher from attempting to find non-

relativizing techniques to narrow the range
of possibilities. Indeed, it would be won-
derful to eliminate one or more of these
worlds from consideration, preferably the
pestilent Pessiland. We will try to suc-
cinctly and informally describe what type
of algorithm and/or lower bound would be
needed to conclude that we are in a partic-
ular world. Barring the caveats mentioned
in the previous paragraph, these condi-
tions will basically cover all eventualities,
thus showing that these are the only possi-
ble worlds. (This is an informal statement,
and will be more true for some worlds than
others.)

2.1 Algorithmica

Algorithmica is the world in which P =
N P or some moral equivalent, e.g., N P C
BPP. In this world, Grouse would have
even less success at stumping Gauss than
he had in real life. Since Grouse needed
to stump Gauss on a problem for which
he (Grouse) could later present an answer
to the class, he is restricted to problems
which have succinct, easily verifiable so-
lutions, i.e., N P . Gauss could use the
method of verifying the solution to auto-
matically solve the problem.

Such a method of automatically pro-
ducing a solution for a problem from
the method of recognizing a valid solu-
tion would revolutionize computer science.
Seemingly intractable algorithmic prob-
lems would become trivial. Almost any
type of optimization problem would be
easy and automatic; for example, VLSI
design would no longer use heuristics, but
could instead produce exactly optimal lay-
outs for problems once a criterion for op-
timality was given. Programming lan-
guages would not need to involve instruc-
tions on how the computation should be
performed, Instead, one would just spec-
ify the properties that a desired output

136

should have in relation to the input. If
the specification language is such that it is
easy to evaluate whether an output meets
the specification, then the compiler could
automatically feed it to the algorithm to
solve the NP-complete problem to gener-
ate the output. (This is the motivation
behind logic-programming languages such
as PROLOG, but in Algorithmica it would
actually work that way!)

Less obviously, P = N P would make
trivial many aspects of the artificial intel-
ligence program that are in real life chal-
lenging to the point of despair. Inductive
learning systems would replace our feeble
attempts at expert systems. One could
use an “Occam’s Razor” based inductive
learning algorithm to automatically train
a (computer to perform any task that hu-
mans can (see, e.g., [I). Such an algo-
rithm would take as input a training set
of possible inputs and outputs produced
by a human expert, and would produce
the simplest algorithm that produced the
same results as the expert. Thus, a com-
puter could be taught to recognize and
patrse grammatically correct English just
by having sufficiently many examples of
correct and incorrect English statements,
wj thout needing any specialized knowl-
edge of grammar or English. (Th’ is as-
sumes merely that there exists a simple
algorithm that humans use to parse nat-
ural languages. People have attempted
to use neural nets to do similar learning
tasks, but that implicitly makes the much
stronger assumption that the task is per-
formable by a constant depth threshold
circuit, which is not always reasonable.)

Using the result that approximate
counting is in the polynomial-time hierar-
chty [St], exponential sized spaces of possi-
ble sequences of events could be searched
and a probability estimate for an event
given observed facts could be output, thus
producing Mr. Spock-like estimates for all

sorts of complicated events. “Computer-
assisted mathematics” would be a redun-
dant phrase, since computers could find
proofs for any theorem in time roughly
the length of the proof. (We could use
the above learning method to train the
computer to search for “informal proofs
acceptable to mathematicians” or “papers
acceptable at FOCS”!) In short, as soon
as a feasible algorithm for an NP-complete
problem is found, the capacity of comput-
ers will become that currently depicted in
science fiction.

On the other hand, in Algorithmica,
there would be no way of telling differ-
ent people or computers apart by informa-
tional means. The above-mentioned learn-
ing algorithms could simply learn to mimic
the behavior of another machine or per-
son. Any code that could be developed
could be broken just as easily. It would
do little good to keep the algorithm the
code is based on secret, since an identi-
cal algorithm could be automatically gen-
erated from a small number of samples of
encrypted and clear-text messages. There
would be no way to allow some people
access to information without making it
available to everyone. Thus any means
of identification would have to based on
some physical measurement, and the secu-
rity of the identification would have to be
based on the unforgeability of the physical
measurement and the extent to which all
channels from the measuring device to the
identifier are tamper-proof. In particular,
any file or information remotely accessible
via a possibly insecure channel would ba-
sically be publicly available. (The above
assumes that no physical property is di-
rectly observable at a distance, which may
not be true. In particular, it may be pos-
sible to identify people based on certain
quantum effects [BBR]).

There seems to be no reason why ran-
domness could not be essential for the

137

worst- case algorithm for the NP-complete
problem. No general techniques for de-
randomization are known to be possible
in a version of Algorithmica where, say,
N P = R P # P .

To show that we are in Algorithmica,
one needs to present an efficient algorithm
for some NP-complete language. A rela-
tivized Algorithmica was given in [BGS].

2.2 Heuristica

Heuristica is the world where N P prob-
lems are intractable in the worst-case, but
tractable on average €or any samplable dis-
tribution.

Neuristica is in some sense a paradoxi-
cal world. Here, there exist hard instances
of N P problems, but to find such hard
instances is itself an intractable problem!
In this world, Grouse might be able to
find problems that Gauss cannot answer
in class, but it might take Grouse a week
to find a problem that Gauss could not
solve in a day, and a year to find one that
Gauss could not solve in a month. (Here, I
am assuming that Gauss has some polyno-
mial advantage over Grouse, since Gauss
is after all a genius!) Presumably, “real-
life ” is not so adversarial that it would
solve intractable problems just to give us
a hard time , so for all practical purposes
this world is indistinguishable from Algo-
rithmica.

Or is it? In Heuristica, the time to
solve a problem drawn from a distribution
might be polynomial in not just the prob-
lem size but also the time required to sam-
ple from the distribution and the fraction
of problems from the distribution that are
at least as “hard” as the given problem.
In other words, the average-case time to
solve an N P problem is a function of the
average-case time to think up the prob-
lem. This makes the situation not at all
clear. Say that, on average, it takes us

just twice as long to solve a problem as
it does to think it up. As we all know,
the solution to one mathematical problem
invariably leads to another problem. So
if we spend time T thinking up problem
1, and then 2 T solving it, and the solution
leads to a second problem 2, we have spent
3T time thinking up problem 2. Thus,
it might take 6 T time to solve problem 2
in Heuristica. (In Algorithmica, the time
would be independent of how we thought
up the problem.) Which leads to a prob-
lem 3 which took 10T steps to think up,
and so 20T time to solve. Since this recur-
sion is exponential, in a few iterations we
have crossed the border between “feasible”
and “infeasible”.

A more specific example of a possi-
ble difference between Algorithmica and
Weuristica would be V L S I problems in-
volving circuit minimization. In V L S I ,
algorithms should be given some represen-
tation of a function and then be able to de-
sign a circuit that is minimal with respect
to certain costs that computes the func-
tion. In Algorithmica, you could make up
such an algorithm in two stages. First,
you could use your solution to an NP-
complete problem to come up with an al-
gorithm that will recognize when a circuit
actually computes the specified function,
this being a CO - N P problem, since you
could certify the circuit incorrect by pro-
viding one input on which it does not pro-
duce the specified value. Then, using the
first algorithm as the defining criterion for
what a possible solution is, the problem of
minimization becomes an NP-type prob-
lem, and you can solve it using your algo-
rithm for an NP-complete problem.

The same process in Heuristica is not
guaranteed to produce good results. Your
first algorithm will work well on most cir-
cuits and specifications, but you don’t re-
ally care about most circuits. You really
want an algorithm that will work well on

138

circuits that are minimal instantiations of
specifications! Such circuits might not be
distributed in any nice way, and since it
would seem to take exponential time to
find such circuits, there is no reason why
they might not be the hard to find, hard
instances of the problem on which algo-
rithms fail in Heuristica.

Thus, a central problem in the structure
of average-case complexity is : if all prob-
lems in N P are easy on average, can the
same be said of all problems in the poly-
nomial hierarchy? (The circuit minimiza-
tion problem is in E r and problems involv-
ing repeated iterations of N P questions
are in PNp.) This question is explored
in more detail in [SW]. The best known
result along these lines is that of [BCGL]
reducing average case search problems to
average case decision problems.

As far as network security and cryptog-
raphy go, there would not be much of a dif-
ference between Algorithmica and Heuris-
tics. It would not be much help to have le-
gitimate users spend huge amounts of time
thinking up problems to uniquely identify
them if eavesdroppers can solve the prob-
lems in comparable amounts of time. One
should always assume that people willing
to break a system are also willing to use
significantly more resources doing so than
legitimate users are willing to spend rou-
tinely!

As we shall see later, there are sev-
eiral ways of formalizing a problem’s being
“(easy-on-average” . In some of these def-
initions, some de-randomization follows;
for example, one can show that if all
ATP problems have polynomial-on-average
probabilistic algorithms in the sense of
Levin, then BPP = ZPP. However, we
feel this is more of an artifact of the defi-
nition than an essential fact about Heuris-
tka. We will present alternate definitions
in the next section.

From the results of [ILe], being in Heur-

sitica is basically equivalent to knowing a
method of quickly solving almost all in-
stances of one of the average-case complete
problems on the uniform distribution (see
e.g., [Ll],[G2],[VL], [G3]). and having a
lower bound for the worst-case complex-
ity of some NP-complete problem. We do
not know of any relativized Heuristica us-
ing Levin’s definition of average-case com-
plexity. However, there is an oracle in
which every problem in N P has an al-
gorithm that solves it on most instances,
yet N P P/poly ([IR2]). The difference
between the two definitions is that in the
weaker one, the algorithm always runs in
polynomial time but occasionally gives an
incorrect answer, whereas Levin’s stronger
definition insists that the algorithm be al-
ways correct, but it may occasionally run
for more than polynomial time. (This dif-
ference will be detailed in the next sec-
tion.) We do not know whether these two
criteria for N P being easy on average are
equivalent, and we feel it is a question
worth exploring.

2.3 Pessiland

Pessiland is, to my mind, the worst of all
possible worlds, the world in which there
are hard average-case problems, but no
one-way functions. By the non-existence
of one-way functions,we mean that any
process f(x) that is easy to compute is
also easy to invert in the sense that, for
almost all values of z, given f(x), it is pos-
sible to find some X I with f(d) = f(z) in
roughly the same amount of time it took
to compute f(x). In Pessiland, it is easy
to generate many hard instances of N P -
problems. However, there is no way of gen-
erating hard solved instances of problems.
For any such process of generating prob-
lems, consider the function which takes the
random bits used by the generator as in-
put and outputs the problem. If this func-
tion were invertible, then given the prob-

139

lem, one could find the random bits used
to generate the problem, and hence the so-
lu tion.

In Pessiland, Grouse could pose Gauss
problems that even the budding genius
could not solve. However, Grouse could
not solve the problems either, and so
Gauss’s humiliation would be far from
complete.

In Pessiland, problems for many do-
mains will have no easy solutions.
Progress will be like it is in our world:
made slowly through a more complete
understanding of the real-world situation
and compromises by using unsatisfactory
heuristics. Generic methods of problem
solving will fail in most domains. How-
ever, a few relatively amazing generic al-
gorithms are possible based only on the
non-existence of one-way functions. For
example, [ILe] gives a method of using a
generic function inverter to learn in aver-
age polynomial time the behaviour of an
unknown algorithm by observing its input-
output behaviour on some samplable input
distribution. It would also be possible to
give a generic data compression method,
where if one knows the process by which
strings are being produced, i.e. an algo-
rithm that produces samples according to
the distribution, then, in the limit, strings
can be compressed to an expected length
of the entropy of the distribution ([IZ]).

Finding other algorithmic implications
of the non-existence of one-way functions
is an interesting research direction. More
generally, the structural theory of cryptog-
raphy under the axiom that one-way func-
tions exist is rich; is there a similarly rich
theory under the axiom that there are no
one-way functions?

There does not seem to be a way of
making use of the hard problems in Pessi-
land in cryptography. A problem that no
one knows the answer to cannot be used
to distinguish legitimate users from eaves-

droppers. This intuition is made formal
in [ILu], where it is shown that one-way
functions are necessary for many crypto-
graphic applications.

The existence of hard average-case
problems in a non-uniform setting has
been shown by Nisan and Wigderson
([NW])to be sufficient for generic de-
randomization. Note that the definition of
difficult problem they use is much stronger
than the negation of Levin’s definition of
an easy-on-average problem. They give
a smooth trade-off between the difficulty
of a problem and its consequences for
the de-randomization of algorithms; if a
problem in E has exponential difficulty,
then P = BPP; if such a problem has
super-polynomial difficulty, then BPP C

Levin ([L2]) gives an example of a func-
tion that is complete for being one-way,
so having an algorithm for inverting this
function suffices to show that there are
no one-way functions. To then show that
you are in Pessiland, you need to give an
average-case lower bound for some prob-
lem in N P .

D T I M E (2 7 9 .

2.4 Minicrypt

In Minicrypt, one-way functions exist,
but public key cryptography is impossi-
ble. We here identify public key cryp-
tography with the task of agreeing on a
secret with a stranger via a publicly ac-
cessible channel, although strictly speak-
ing, public key cryptography is just one
method of accomplishing this task. The
one-way function could be used to gener-
ate hard, solved problems: the generator
would pick 2, compute y = f(x) and pose
the search problem, “Find any x’ with
f(x’) = y” knowing one solution, x. Thus,
in Minicrypt, Grouse finally gains the up-
per hand, and can best Gauss in front of
the class.

140

There are no known positive algorithmic
aspects to Minicrypt, except that you can
use the one-way function to get a pseudo-
ra:ndom generator that can be used to de-
randomize algorithms [HILL].

On the other hand, it is possible for par-
ticipants in a network to identify them-
sellves to other participants and to authen-
ticate messages as originating from them
using electronic signatures [NY], [?I. It is
possible to prove facts about a secret in
in a way that discloses no other informa-
tion about the secret ([?],[GMWI). It is
possible, if a small amount of information
is agreed upon in advance, to set up a pri-
vaie unbreakable code between two partic-
ipants in the network that will allow them
to talk privately over a publicly accessi-
ble channel. ([HILL],[GGM], [LR]). How-
ever, it is impossible to have secure elec-
tions over a public channel, or to establish
a private code without sending some in-
formation through a secure channel. It is
not known how to have anonymous digi-
tal money in such a world. Many other
applications involving multiple participant
protocols seem impossible if you cannot es-
tatblish private codes on public channels.

To prove that the real world is
MLinicrypt, one would have to prove that
no efficient algorithm exists for inverting
some one-way functions, and also show
how to break any secret-key agreement
protocol. There seems to be no nice char-
acterization of secret-key agreement pro-
tocols, and maybe this is inherent to the
problem ([Ru]), so it is not clear how one
could even start to do the latter. [IR] gives
a relativized Minicrypt.

2.5 Cryptomania

In Cr yptomania, public-key cryptography
is possible, i,e., it is possible for two par-
ties to agree on a secret message using
only publicly accessible channels. In Cryp-

tomania, Gauss is utterly humiliated; by
means of conversations in class, Grouse
and his pet student would be able to
jointly choose a problem that they would
both know the answer to, but which Gauss
could not solve. In fact, in such a world,
Grouse could arrange that all the students
except Gauss would be able to solve the
problems asked in class!

Such a secret key agreement protocol
implies the existence of a one-way function
[ILu], so we still have pseudo-randomness,
signatures, identification, zero-knowledge,
etc. Also, if one does the secret-key
exchange using trap-door one-way func-
tions (and all known protocols are either
explicitly or implicitly using such func-
tions), one can do almost any crypto-
graphic task imaginable! (See [?],[?I).
Any group of people can agree to jointly
compute an arbitrary function of secret in-
puts without compromising their secrets.
This directly includes, for example, se-
cure electronic voting, or anonymous dig-
ital cash, although not necessarily in a
practical form. Unlike in the other worlds
where establishing privacy is a technologi-
cal challenge, the technology of Cryptoma-
nia would limit the capability of author-
ities to restrict privacy. Most decisions
about how much privacy is available to cit-
izens of such a world would be guided by
social and political processes rather than
technical capability. For example, there
are a whole gamut of possible electronic
money systems , some of which protect
user anonymity to a greater extent than
others. Which becomes the standard is a
matter of political choice - although per-
haps not a democratic choice, since the
standards are now set without much pub-
lic discussion except within a small circle
of interested parties.

This world is the one closest to the real
world, in that as far as we know, the RSA
cryptosystem is secure. Public key cryp-

141

tography is currently in the transition pro-
cess of being accepted as a standard, al-
though both technical and political issues
block full implementation of the above-
mentioned protocols.

However, blind acceptance of the ex-
istence of public key cryptosystems as a
de facto complexity axiom is unwarranted.
Currently, all known secure public key
cryptosystems are based on variants of
RSA, Rabin, and Diffie-Hellman crypto-
systems. If an efficient way of factoring in-
tegers and solving discrete logarithms be-
came known, then not only would the pop-
ular public key cryptosystems be broken,
but there would be no candidate for a se-
cure public-key cryptosystem, or any real
methodology for coming up with such a
candidate. There is no theoretical reason
why factoring or discrete log should be in-
tractable problems. Confidence that they
are intractable is based on our ignorance of
any good method for solving the problems
after more than twenty years of intense re-
search. However, the same twenty years
have vastly improved number-theoretic al-
gorithms, so there is no reason to suspect
similar improvements do not lie ahead.
This makes it impossible to pick param-
eters for public-key sizes that will be still
secure in say 20 years. In fact, the earliest
guess for such a parameter 20 years ago
was recently broken. More speculatively,
it has been recently shown how to solve
both problems in the quantum computer
model [Sh]. The existence of public-key
cryptography is fragile at best.

To prove that we live in Cryptomania,
one must prove that a particular secret-
key exchange protocol is secure. Proving
a strong lower bound on the average case
time to factor or take discrete logs would
be sufficient, and no other problems are
currently candidates for founding public-
key cryptography. Brassard[Bra] gives a
relativized world where public-key cryp-

tography is possible.

3 Definitional issues

The definitions Levin gave for the ba-
sic concepts of his theory seem counter-
intuitive to many people on first reading.
For example, he talks about the expecta-
tion of some positive power of the time
taken by an algorithm, rather than that of
the time. In this section, we will give some
equivalent formulations of Levin’s defini-
tions that are intended to justify the def-
initions and make them seem more intu-
itive. We will also present some variations
of these definitions that seem related but
not equivalent.

3.1 Infinite input distributions
versus ensembles of finite in-
put distributions

One feature of Levin’s definition that I
personally find unappealing is that in his
definition of a distributional problem, the
input distribution is a single distribution
on all inputs of all sizes. I prefer to think
of the input distribution as being, at any
fixed time, on a finite set of possible in-
puts of at most some fixed size. However,
as technology improves, the size of inputs
that we are interested in increases (since
most computational problems arise from
the technology itself). So the inputs for an
average-case problem are to my mind best
modeled by a sequence of finite probability
distributions on strings of bounded size,
where the sequence is parameterized by
the input size. Fortunately, as we shall see,
Levin’s definition of average-case complex-
ity remains pretty much unchanged under
either model. So the choice of finite ver-
sus infinite input distributions is merely
an aesthetic one.

The proof here is messy, but stupid. It

142

is included for completeness, but please
feel free to accept the moral without get-
ting bogged down in the computation. I
include Levin’s definition of a time func-
tion’s being “polynomial-on-average” here
without explanation or justification, so
th,at we can eliminate the infinite distribu-
tions once and for all. If you don’t want to
try to make sense of this definition, skip to
thle next subsection, where an equivalent
formulation is given.

(Intuitively, in the following, T (i) rep-
resents the time taken by a machine on
input i.)

DIEFINITION 3.1: A distribution on the
positive integers Z+ is a function p :
2-l + R where p (i) 2 0 and CiEZ+ p (i) =
1, A distribution on a finite set 5’ is the
same replacing Z+ with 5’ in the sum.
An ensemble of distributions is a sequence
of distributions pn, n E Z+, where each
pn is a distribution on the set of posi-
tive integers with binary length at most
n. A function T : Z+ + Z+ is polyno-
mial on average with respect to p, a dis-
trjbution on Z+, if there is some E > 0 so
that T(i)El i l - lp(i) converges. We
sa,y that T is polynomial on average with
respect to an ensemble of distributions
pn,, n E Z+ if there is an E > 0 so that
the expectation of T(i)‘ when i is chosen
according to pn is O (n) ,

Proposition 1: Let p be a distribution
on. Z+ and let pn be the restriction of p
to numbers of length at most n. Then any
function T is polynomial on average with
re,spect to p if and only if it is polynomial
on average with respect to the ensemble
A,, n E Z+.

Proof: Assume T is polynomial on aver-
&@;e with respect
to p. So xiT(i)‘\ i1-’p(i) converges for
some E > 0. Then Ei,li15nT(i)Epn(i) 1.

I: Ei,Iil&/ lil >T(i>‘(Cl(i>/ProbiE,Z+ [I i l

n]) = O (n) x i T (i) E l i l - l p (i) = O (n) , so
T is polynomial on average with respect

Conversely, if T is polynomial on
average with respect to pn, there is
some E > 0 so that T(i)€ has expec-
tation O (n) when i is chosen accord-
ing to n. Then Qil=nT(i)‘p(i) 5

O (n) . Thus Ei(T(i)E/3) l i l -1p(i) =

to pn-

Ci,lil<n T(i)‘p(i) 5 Ci,lil<n T(i) ‘~n(i) =

&T(i)c/3Llil ~ (i) w - 1 4 i) +
C i , ~ (i) ~ / 3 > 1 i l T (i) t / 3 I i I -1 A i) I Cidi) +
~ i , T ~ i ~ € / 3 ~ l i l (T (i) ~ / (l i l T (i) 2 / 3 E)) p (i) I 1 +
En E;, (T (i) ‘ ~ (i 1) /n3 - -

1 +E, O (n) / n 3 = 1 +E, O(l/n2) , which
converges. So T is polynomial on average
with respect to p. 0.

From now on then, we will look at the
input as coming from one element of an
ensemble of distributions.

3.2 Expected Time versus the
“Average Case”

Why did Levin look at the expectation of
T E rather than T? The traditional an-
swer is that the expectation of a func-
tion might be small, but some polynomial
of that function, huge, For example, if
T (z) = n for all but a l / an fraction of
inputs, but was 2n on those inputs, then
the expectation of T is O (n) , but the ex-
pectation of T 2 is 0 (2 n) . Thus, if you first
do a computation that’s expected polyno-
mial time, and then compute a worst-case
polynomial-time function of the result, the
whole process might not be expected poly-
nomial time. Levin’s definition closes the
class of average-case polynomial problems
under such transformations.

However, I think there’s a better rea-
son. Levin’s definition is not intended to
capture the expected cost to the solver;
rather, it captures the trade-off between
a measure of difficulty and the fraction

143

of hard instances of the problem, i.e., be-
tween a time bound T and the fraction
of instances that take the algorithm more
than T time. This trade-off should be
polynomial in T : only a sub-polynomial
fraction of instances should require super-
polynomial time, only a quasi-polynomial
fraction more than quasi-polynomial time,
etc. Thus, the time to find, through ran-
dom sampling, an instance requiring more
than T time is at least T' , so the poser
does not have more than a polynomial ad-
vantage over the solver. Levin hints at
this in the last sentence of his original pa-
per, and Gurevich has explained it nicely
in [GI]. However, I feel that the following
formal statement based on this intuition
might be helpful to have in the literature:

DEFINITION 3.2: A distributional prob-
lem is a function f and an input ensemle
p,, n E Z+. The distributional prob-
lem f on input ensemble pn is said to be
in AwgP if there is an algorithm to com-
pute f whose running time is polynomial
on average with respect to p n . An algo-
rithm computes f with benign faults if it
either outputs an element of the range of
f or " ?" and if it outputs anything other
than ?, it is correct (f of the input.) A
polynomial-time benign algorithm scheme
for a function f on p, is an algorithm
A(z ,6) so that:

0 A runs in time polynomial in IzI and
1/6.

A computes f(z) with benign faults.

0 V6,l > 6 > 0 and all n E Z+,
PTO~,E~,Z+[A(X, S) =?] 5 6.

Proposition 2: A problem f on input
ensemble ,un is in AvgP if and only if it
has a polynomial-time benign algorithm
scheme.

Proof Assume f on p, is in AvgP.
Then there is an algorithm A so that

for T A (z) the time T takes on input
5, E ~ p , ~ ~ , z t [T A (z) ~] = O(n). Then
Prob[TA(z) 2 O((kn)'/ '>] 5 l / k . So the
algorithm B where B (z , 6) simulates A for
O(n/6)1/c steps, and outputs ? if A fails
to halt is a benign algorithm scheme for f .

Conversely, assume B (z , 6) is a benign
algorithm scheme for f with time at most
(Izl/S)". Then let A be the algorithm
that simulates B with parameters 6 =
l /2, 114, 1/8 ,... until an answer is given.
The expectation of the power 1/2c of the
time of A on inputs from ,un is then at
most: (27~) ' /~ + 1/2(4n)*l2 + 1/4(8n)lI2 +
... = n1/2(~,(2-i/2) = O(n1i2)., since at
most 1/2 of the inputs run for more than
one iteration, at most 1/4 more than two
iterations, etc. So A is a polynomial on
average algorithm for f 0 ,

DEFINITION 3.3: A distribution ensemble
pn is samplable if there is a probabilistic
polynomial-time algorithm A that on in-
put 2n produces outputs distributed ac-
cording to pn. The class DistNP is the
class of distributional problems in N P
where the input distribution is samplable.

Proposition 3: If every problem in
Dis tNP has a polynomial-time benign er-
ror algorithm that produces an output
with probability 1 - l /n2, then DistNP C
AvgP.

Sketch: We reduce finding a benign algo-
rithm scheme for the problem to finding a
l /n2 benign error algorithm for the same
problem but a slightly different input dis-
tribution. In the second problem, you pick
an input by picking a random n' from 1
to n amd then sampling according to n'
as the first problem does. Given an in-
stance from the original problem, and an
error parameter S , we use the l / n 2 benign
error algorithm on the input distribution
for n = 1/6.

144

From this it follows that there is some
fixed polynomial p so that there is an al-
gorithm solving one of the average-case
complete problems with probability 1 -
l / p (n) and only making benign faults,
then DistNP AvgP.

3;.3 Extensions

Rephrasing Levin’s definition in this light
gives us some insight into extensions. The
first obvious extension is to change our
model from deterministic to probabilistic
computation. There are several ways of
doing this. The first would be to insist
that all errors be benign on all random
inputs of the algorithm . I call the result-
ing class AvgZPP, for average case, zero-
error probabilistic algorithms. Then it is
relatively easy to use results of [NW] to
prove the following:

Proposition 4: If
LIistNP AvgZPP then B P P = ZPP.

However, this is saying less about the av-
erage case hardness of problems in N P
tlhen about error-free vs. error prone ran-
domized computation. For example, it is
an open problem whether DistBPP C
AivgZPP, but a problem in B P P should
not be considered hard on average in-
stances! Thus we could define an average-
case version of BPP:

DEFINITION 3.4: A probabilistic
algorithm returning output possibly ? is
statistically benign for decision problem f
if on any input, the probability that the al-
gorithm returns an answer other than f(z)
is at most 1/3. Similarly for a statistically
benign algorithm scheme. The class of dis-
tributional problems which have poly-time
statistically benign algorithm schemes is
ciilled AVgBPP.

It, is also easy to present a non-uniform
version of AvgP in the obvious way, which

we will call AvgPlpoly.

However, even these more robust defini-
tions fail to bridge the gap between what
is not easy and what is hard. This gap
is largely caused by the insistence on the
algorithm making only benign errors.

DEFINITION 3.5: An algorithm scheme for
a distributional problem is an algorithm
A(z ,S) so that for z chosen according to
the distribution ensemble and any fixed
6 > 0, the probability that A fails to re-
turn a correct answer is at most 6. H P
for heuristic polynomial-time is the class of
distributional problems with a determinis-
tic poly-time algorithm scheme, and sim-
ilarly H P P is the class of distributional
problems with a probabilistic poly-time al-
gorithm scheme, and H Plpol y with a non-
uniform algorithm scheme.

To get some idea for the difference,
[NW] shows how to use any problem
in DistNP but not in HPlpoZy for de-
randomization. [IR2] was able to con-
struct an oracle where DistNP H P
but N P 9 P/poZy, but the same for
AvgPlpoZy is not known. However, many
of the reductions between average-case
problems work equally well for the heuris-
tic classes as for the average-case classes.
Investigating the differences between the
average-case and heuristic distributional
classes is another important research di-
rection.

References

[BGS] T.Baker, J. Gill and R. Solo-
vay Relativizations of the P=NP
question, SIAM J. Comput.,
1975, pp. 431-442.

[BBR] Bennett, C., Brassard, G.,
Robert, J., “Privacy Amplifica-
tion by Public Discussion”, Siam

145

[HILL]

J . on Computing, Vol. 17, No. 2, [ILe]
1988, pp. 210-229.

S. Ben-David, B. Chor,O. Gol-
dreich, and M. Luby, On the
Theory of Average Case Com-
plexity, STOC 22 (1990), 379-
386.

G. Brassard, Relativized Cryp-
tography, IEEE Trans. Inform.
Theory, IT-29 (1983), 877-894.

W. Diffie and M. HeUman,
“New directions in cryptogra-
phy”, IEEE Trans. Inform. The-
ory, Vol. 22, 1976, pp. 644-654.

Goldreich, O., S. Goldwasser,
and S. Micali, “How to Con-
struct Random Functions”, J . of
ACM, Vol. 33, No. 4, 1986, pp.

[ILUI

[IR]

[I W 792-807.

Goldreich, O., Micali, S., and
Wigderson, A., “Proofs that [IZ]
Yield Nothing But their Valid-
ity or All Languages in NP have
Zero-Knowledge Proofs”, J . of
the ACM, Vol. 38, No. 3, July
1991, pp. 691-729.

[L11
Y. Gurevich The Challenger-
Solver Game Bulletin of the
EATCS, October, 1991.

[La1
Y. Gurevich Average case com-
pleteness JCSS [LRI

Y. Gurevich Matrix block de-
composition is complete for the
average case 31’st FOCS, 1990,
pp. 802-811.

J. Has- [NW]
tad, R. Impagliazzo,L. Levin,
and M. Luby, Pseudo-Random
Generators Based on One-way
Functions. To appear, SIAM [NY]
Journal of Computing.

R. Impagliazzo and L. Levin, No
Better Ways of Finding Hard
NP-Problems Than Picking Uni-
formly at Random. Proceedings
of the 31 ’st IEEE Symposium on
Foundations of Computer Sci-
ence, 1990.

R. Impagliazzo and M. Luby,
One-way Functions are Essential
for Complexity Based Cryptog-
raphy. Proceedings of the 30 ’th
IEEE Symposium on Founda-
tions of Computer Science, 1989.

R. Impagliazzo and S. Rudich,
Limits on the Provable Conse-
quences of One-way Functions.
Proceedings, 20 ’th A C M Sympo-
sium on Theory of Computing,
1989 .

R. Impagliazzo and S. Rudich, in
preparation.

R. Impagliazzo and D. Zucker-
man, How to Recycle Random
Bits. Proceedings of the 30 ’th
IEEE Symposium on Founda-
tions of Computer Science, 1989.

L. Levin, Average Case Com-
plete Problems SIAM J. Com-
put. 15 (1986), 285-286.

L. Levin. ?

Luby M., and Rackoff, C., “How
to Construct Pseudorandom Per-
mutations From Pseudorandom
Functions”, SIAM J. on Com-
puting, Vol. 17, No. 2, 1988, pp.
3 73- 386.

N. Nisan and A. Wigderson,
Hardness vs. Randomness, JCSS
?

Naor, M. and Yung, M., “Uni-
versal One-way Hash Functions

146

[Stl

[s Vir]

and Their Applications”, 21TSt
STOC, 1989, pp 33-43.

Ostrovsky, R and Wigderson,
A., “One-way Functions are
Essential for Non-Trivial Zero-
Knowledge”, 2nd Israel Sympo-
sium on the Theory of Comput-
ing and Systems, 1993, pp. 3-17.

R. Rivest, A. Shamir and L.
Adleman, “A method for obtain-
ing digital signatures and public-
key cryptosystems”, Comm. of
the ACM, Vol. 21, 1978, pp. 120-
126.

Rompel, J., “One-way Functions
are Necessary and Sufficient for
Secure Signatures”, 22nd STOC,
1990, pp 387-394.

S. Rudich The Role of Inter-
action in Public Key Cryptogra-
phy, Crypto, 91.

P. Shor, Algorithms for Quan-
tum Computation: Discrete Log-
arithms and Factoring, FOCS,
1994.

L. Stockmeyer On approxima-
tion algorithms for #P TCS 3,
1977,l-22.

R. Schuler and 0. Watanabe, To-
wards Average-Case Complex-
ity Analysis of NP Optimization
Problems, this proceedings.

R. Venkatesan and L. Levin Ran-
dom instances of a graph color-
ing problem are hard, STOC 20
(1988), 217-222.

147

