On Non-Computable Functions

By T. RADO
(Manuscript received November 12, 1961)

The construction of non-computable functions used in this paper is based on the principle that a finite, non-empty set of non-negative integers has a largest element. Also, this principle is used only for sets which are exceptionally well-defined by current standards. No enumeration of computable functions is used, and in this sense the diagonal process is not employed. Thus, it appears that an apparently self-evident principle, of constant use in every area of mathematics, yields non-constructive entities.

I. INTRODUCTION

The purpose of this note is to present some very simple instances of non-computable functions. Beyond their simplicity, these examples throw light upon the following basic point. If a function $f(x)$ is to serve as an example of a non-computable function, then $f(x)$ must be welldefined in some generally accepted sense; hence the efforts to construct examples of non-computable functions reveal the general conviction that over and beyond the class of computable (general recursive) functions there is a much wider class, the class of well-defined functions. The scope of this latter class is vague; in some quarters, there exists a belief that this class will be defincd some day in precise terms acceptable to all. The examples of non-computable functions to be discussed below will be well defined in an extremely primitive sense; we shall use only the principle that a non-empty finite set of non-negative integers has a largest element. Furthermore, we shall use this principle only for exceptionally well-defined sets; and thus our construction will rest upon considerations which occur constantly in every area of mathematics. It may be of interest to note that we shall not use an enumeration of computable functions to show that our examples are non-computable functions. Thus, in this sense, we do not use the diagonal process.

II. TERMINOLOGY

We shall use binary Turing machines (that is, Turing machines with the binary alphabet 0,1), in the sense of the excellent presentation of

Kleene's Metamathematics (see Ref.), with the following exceptions. First, we do not permit a center shift; thus the machine must shift after the execution of an "overprint" instruction (the purpose is to simplify the following presentation). Second, we shall use the term "card" instead of "state." The reason is that the examples below were obtained as byproducts of a logical game (the Busy Beaver game described below) which the writer made up to familiarize beginners with the idea of a Turing machine; and it appeared that terms such as state, internal configuration, and the like had a mysterious connotation for beginners. To illustrate some notational conventions to be used, let us consider the following example of a binary, 3-card Turing machine.

C_{1}
0
102
1

C_{2}	
0	
111	
1	

C_{3}
0
112
1
100

Here $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ stand for Card 1, Card 2, and Card 3. On each card, the left-most column contains the alphabet 0,1 . The next column is the "overprint by" column; the next one is the "shift" column (where 0 is the code for a left shift and 1 is the code for a right shift). The last column is the "call card" column; it contains the index of the next card to be used, or 0 (zero), where 0 is the code for "Stop." This notation was found very convenient in situations where one wanted to enumerate (serialize) Turing machines with a given number of cards.
The reader is assumed to be familiar with the meaning (in the sense of Kleene; see Ref.) of the statement that a binary Turing machine "computes" a function $f(x)$. It is understood that we consider only functions of non-negative integers with values which are again non-negative integers.

III. THE BUSY BEAVER GAME

Consider a potentially both-ways infinite tape (see Ref.), where each square contains a 0 (all-zero tape). Start the 3 -card machine described in Section II (with its Card 1) under any square. The reader will find that the machine stops after a few shifts, and when it stops, there are six ones on the tape. Actually, this particular machine is one of the four highest scorers (as of today) in the international BB-3 game (the 3-card deck classification of the Busy Beaver game). The rules in this game are as follows.
i. The contestant selects a positive integer n; and then makes up his own n-card, binary, Turing machine (using the notational conventions explained in Section II).
ii. He starts his machine (with its Card 1) on an all-zero tape, and satisfies himself that his machine stops after a certain number s of shifts.
iii. He then submits his entry, as well as the shift-number s, to any member (in good standing) of the International Busy Beaver Club.
$i v$. The umpire first verifies that the entry actually stops exactly after s shifts. Note that this is a decidable issue; the umpire merely operates the entry, persisting through not more than the specified number s of shifts. If the entry fails to stop after s shifts, it is rejected; if it stops after fewer than s shifts, it is returned to the contestant for correction. After the entry has been verified, its score is the number of ones on the tape when it stops.

Naturally, the BB-n champion is the contestant who achieved the highest score (so far) in the BB- n classification. For example, in the BB-3 classification, the score of 6 was first achieved by R. Hegelman (U.S. Naval Weapons Laboratory, Dahlgren, Virginia). This score has been reached since by several others; but nobody knows as yet whether 6 is the highest possible score in the BB-3 classification. The reader who tries to settle this question will soon realize the difficulties involved in this sort of problem. Beyond the enormous number of cases to survey, he will find that it is very hard to see whether certain entries do stop at all. This is the reason for the requirement that each contestant must submit the shift number s with his entry.

lV. HIGHEST SCORE

There arises now the problem of determining the highest possible score in the BB- n classification. In line with the point of view explained in the introduction, we formulate this problem with due care and caution.

Returning to rule $i v$. of the game, we see that a valid entry in the BB-n classification is a pair (M, s), such that the following holds.
(a) M is an n-card binary Turing machine.
(b) s is a positive integer.
(c) M stops after exactly s shifts if started (with its Card C_{1}) on an all-zero tape.
In discussing rule $i v$. above, we noted that we can actually decide whether or not an entry (M, s) is valid. Also, if (M_{1}, s_{1}), (M_{2}, s_{2}) are valid entries such that $M_{1}=M_{2}$, then evidently $s_{1}=s_{2}$; hence the number of valid BB- n entries cannot exceed the number $N(n)$ of all
possible n-card, binary Turing machines. It is easy to see that

$$
\begin{equation*}
N(n)=[4(n+1)]^{2 n} \tag{1}
\end{equation*}
$$

Also, there exist valid BB- n entries; for example, on choosing the 0 -line of Card 1 as 110, one obtains an entry which stops after one shift.

Accordingly, if we denote by E_{n} the set of all valid BB- n entries (M, s), we obtain a non-empty, finite set E_{n} which has the following features.
(a) We actually exhibit elements of E_{n}; so E_{n} is non-empty as a matter of concrete observation.
(b) We not only know that E_{n} is finite, but for the number $N_{c}(n)$ of elements of this set of valid entries we have [see (1)] the inequalities.

$$
\begin{equation*}
1<N_{\mathrm{c}}(n)<N(n)=[4(n+1)]^{2 n} \tag{2}
\end{equation*}
$$

(c) For every pair (M, s) we can actually decide whether or not $(M, s) \varepsilon E_{n}$.
Evidently, E_{n} is (by current standards) an exceptionally well-defined non-empty, finite set. Yet, we shall show below that $N_{c}(n)$, the number of elements of E_{n}, is not a computable function of n. Next, each valid entry $(M, s) \varepsilon E_{n}$ has a definite score $\sigma(M, s)$ assigned to it (see Section III). Thus, for the same reasons, the set of these scores is an exceptionally well-defined non-empty finite set of non-negative integers. We denote by $\Sigma(n)$ the largest element of this set.
Thus

$$
\begin{equation*}
\Sigma(n)=\max [\sigma(M, s)] \text { for }(M, s) \varepsilon E_{n} . \tag{3}
\end{equation*}
$$

We shall see presently that $\Sigma(n)$ is not a computable function of n. Let us note, however, that it is entirely possible that $\Sigma(n)$ can be effectively determined for particular values of n. For example, evidently $\Sigma(1)=1$. Also, it has been proved that $\Sigma(2)=4$. We noted above that we know several BB-3 entries with a score of 6 ; hence $\Sigma(3) \geqq 6$, and it seems plausible that $\Sigma(3)=6$. Now while for low values of n it is quite hard to achieve a respectable score, Dr. C. Y. Lee observed (in a letter to the writer) that for higher values of n one can achieve very large scores. The following proof for the non-computability of $\Sigma(n)$ was obtained by developing this comment of Dr. Lee.

v. the growth of $\Sigma(n)$

Let $f(x), g(x)$ be two functions (as specified in Section II). We shall write

$$
f(x)>-g(x)
$$

to state that $f(x)>g(x)$ for x greater than a certain x_{0}. Using this notation, we shall now prove the following theorem.

Theorem. $\Sigma(n)>-f(n)$ for every computable (that is, general recursive) function $f(n)$. Hence $\Sigma(n)$ is not computable.

Proof. Assign a computable function $f(x)$. Introduce the auxiliary function

$$
\begin{equation*}
F(x)=\sum_{i=0}^{x}\left[f(i)+i^{2}\right] . \tag{4}
\end{equation*}
$$

Then (see Ref.) $F(x)$ is also computable. Evidently

$$
\begin{align*}
F(x) & \geqq f(x) . \tag{5}\\
F(x) & \geqq x^{2} . \tag{6}\\
F(x+1) & >F(x) . \tag{7}
\end{align*}
$$

Now since $F(x)$ is computable, we have a binary Turing machine M_{F}, with a certain number C of cards (states) which computes $F(x)$ (in the sense described in Kleene; see Ref.). Now assign any integer $x \geqq 0$. We have then a binary Turing machine $M^{(x)}$, with $x+1$ cards (states) which prints on an all-zero tape $x+1$ consecutive ones and stops under the right-most one of these ones. For $x=2$, for example, $M^{(2)}$ has the 3 cards:

C_{1}
0

Now consider the binary Turing machine $M_{F}{ }^{(x)}$ given by the symbolic diagram:

$$
M_{p}^{(r)}: M^{(r)} \rightarrow M_{p} \rightarrow M_{p}
$$

If the cards of $M_{F}{ }^{(x)}$ are written out with consecutive indices, then it is seen to have $1+x+2 C$ cards. If started on an all-zero tape, $M_{P}{ }^{(x)}$ will first print (going to the right) a string of $x+1$ consecutive ones; then, beyond a 0 to the right, it will print a string of $F(x)+1$ consecutive ones; finally, beyond a 0 to the right, it will print a string of $F[F(x)]+1$ consecutive ones, and then will stop (under the right-most 1 it printed). Thus evidently $N_{F}{ }^{(x)}$ is a valid entry in the BB- $(1+x+2 C)$ classifi-
cation with a score equal to

$$
3+x+F(x)+F[F(x)] .
$$

Hence, the maximum score $\Sigma(1+x+2 C)$ in this classification satisfies the inequality

$$
\begin{equation*}
\Sigma(1+x+2 C) \geqq 3+x+F(x)+F[F(x)] . \tag{8}
\end{equation*}
$$

Now since cvidently $x^{2}>-(1+x+2 C)$ and $F(x) \geqq x^{2}$ [sce (6)], it follows that

$$
\begin{equation*}
F(x)>-(1+x+2 C) \tag{9}
\end{equation*}
$$

Also, $F(x)$ is monotone increasing by (7); hence (9) yields

$$
\begin{equation*}
F[F(x)]>-F(1+x+2 C) \tag{10}
\end{equation*}
$$

From (8) and (10) we see that

$$
\Sigma(1+x+2 C)>-F(1+x+2 C)
$$

hence (since $F(x) \geqq f(x)$)

$$
\Sigma(1+x+2 C)>-f(1+x+2 C)
$$

On setting $n=1+x+2 C$, we obtain finally

$$
\Sigma(n)>-f(n)
$$

and the theorem is proved.
The rate at which $\Sigma(x)$ grows is illustrated by the following intuitive observation. A Turing machine M_{H} for computing $H(x)=x!$ can be constructed with not more than 26 states. Let us consider the chain of Turing machines:

$$
M^{(x)} \rightarrow M_{H} \rightarrow M_{H} \rightarrow M_{H} \rightarrow M_{H}
$$

It follows from (8) that the number of ones which is produced by this chain is more than $(((x!)!)!)!$. Using the construction of the machine M_{H} mentioned above, we may show that by combining these machines properly, the number of states required for this chain of machines for $x=7$, for instance, is not more than 100. Therefore, $\Sigma(100)$ is at least $(((7!)!)!)!$. Since $\Sigma(100)$ is probably far bigger than this lower bound, it would be interesting to know how large a lower bound one can get for $\Sigma(100)$.
vi. The function $S(n)$

It is evident from our definitions that the set E_{n} of valid BB- n entries coincides with the set of the n-card stoppers, where by a stopper we
mean a (binary) Turing machine which, if started on an all-zero tape with its card C_{1}, will stop after a while. Now the second coordinates s of the valid BB- n entries (M, s) constitute a finite, non-empty set of positive integers; we denote by $S(n)$ the largest element of this set. Thus $S(n)$ is the maximum of the shift-numbers of the n-card stoppers. Clearly

$$
\begin{equation*}
S(n) \geqq \Sigma(n) \tag{11}
\end{equation*}
$$

Indeed, since we do not permit center-shifts, a BB-n entry must shift after it prints a 1 ; thus (11) is obvious. From the theorem in Section V and from (11) we see that

$$
\begin{equation*}
S(n)>-f(n) \tag{12}
\end{equation*}
$$

for every computable function $f(n)$. Thus $S(n)$ is non-computable (the reader will readily see that this result is equivalent to the undecidability of the so-called halting problem).

vii. the function $N_{e}(n)$

This function, defined above as the number of elements of the set E_{n} (that is, the number of n-card stoppers) does not grow unreasonably fast [see (2)]. However, we can discuss it as follows. Let us denote by $N(s, n)$ the number of those BB- n entries which stop after exactly s shifts. Evidently, the computation of $N(s, n)$ can be readily programmed; informally, one finds the value of $N(s, n)$ by running each one of the n-card binary Turing machines [whose number is given by (1)], persisting through not more than the given number s of shifts, and noting the number of those that stop after exactly s shifts. Let us put

$$
\begin{align*}
& G(s, n)=\sum_{i=1}^{s} N(i, n), \tag{13}\\
& \Phi(s, n)=N_{c}(n)-G(s, n) . \tag{14}
\end{align*}
$$

Clearly, $G(s, n)$ is the number of those BB- n entries that stop after not more than s shifts; thus $G(s, n) \leqq N_{\ell}(n)$, and hence $\Phi(s, n) \geqq 0$. Since evidently $G(s, n)=N_{c}(n)$ for $s=S(n)$, we see that $S(n)$ is the smallest value of s for which $\Phi(s, n)=0$; in symbols:

$$
\begin{equation*}
S(n)=(\mu s)[\Phi(s, n)=0], \tag{15}
\end{equation*}
$$

where ($\mu \mathrm{s}$) means "the smallest s such that." From (13)-(15) it follows (see Ref.) that if $N_{e}(n)$ were computable then $S(n)$ would be computable too; since we know that $S(n)$ is not computable, it follows that $N_{\rho}(n)$ is non-computable.

7.1 Remark

Suppose that, for a certain integer n_{a}, we somehow succeeded in determining the exact value of $N_{e}\left(n_{0}\right)$. From (13)-(15) it follows that we can then determine $S\left(n_{0}\right)$ also, and hence finally $\Sigma\left(n_{0}\right)$. Various other comments will readily occur to the reader. For example, the easily proved inequality

$$
\mathrm{S}(n) \leqq(n+1) \Sigma(5 n) 2^{\Sigma(5 n)}
$$

gives rise to some curious observations.

VIII. SUMMARY

Inspection of the preceding presentation shows that we used in our constructions only the following "principle of the largest element": If E is a non-empty, finite set of non-negative integers, then E has a largest element. This principle is used constantly, as a matter of course, in every field of mathematics. Our examples above show that this principle, even if applied only to exceptionally well-defined sets E, may take us beyond the realm of constructive mathematics. Of course, common everyday experiences may be used to illustrate this sort of phenomenon. For example, when the writer wanted to find a certain highway on an automobile trip, he received the following directions from the foreman of a construction crew: "Drive straight ahead on this road; you will cross some steel bridges; and after you cross the last steel bridge, make a left turn at the next intersection." Luckily, the unsolvable problem implied by this advice was resolved by a member of the construction crew who volunteered the information that "after you cross the last, steel bridge, there isn't another steel bridge until you reach Richmond, 130 miles away." The reader may find it amusing to verify, by detailed study of the excellent book of Kleene (Ref.), that this little story illustrates, in a concrete manner, some truly basic points in the theory of computable functions.

IX. ACKNOWLEDGMENT

The writer takes pleasure in thanking Dr. C. Y. Lee (of Bell Telephone Laboratories) for a number of stimulating comments.

REFERENCE

1. Kleene, S. C., Intraduction to Metamathematics, D. Van Nostrand Co., Princeton, N. J., 1952.
