
On Non-Computable Functions

ByT. RADO

(Manuscript received November 12, 1961)

The construction of non-computable functions used in this paper is based
on the principle that a finite, non-empty set of non-negative integers has a
largest element. Also, this principle is used only for sets which are excep
tionally well-defined by current standards. No enumeration of computable
functions is used, and in this sense the diagonal process is not employed.
Thus, it appears that an apparently self-evident principle, of constant use
in every area of mathematics, yields non-constructive entities.

I. INTRODUCTION

The purpose of this note is to present some very simple instances of
non-computable functions. Beyond their simplicity, these examples
throw light upon the following basic point. If a function f(x) is to serve
as an example of a non-computable function, then f(x) must be well
defined in some generally accepted sense; hence the efforts to construct
examples of non-computable functions reveal the general conviction
that over and beyond the class of computable (general recursive) func
tions there is a much wider class, the class of well-defined functions. The
scope of this latter class is vague; in some quarters, there exists a belief
that this class will be defined some day in precise terms acceptable to
all. The examples of non-computable functions to be discussed below
will be well defined in an extremely primitive sense; we shall use only
the principle that a non-empty finite set of non-negative integers has a
largest element. Furthermore, we shall use this principle only for excep
tionally well-defined sets; and thus our construction will rest upon con
siderations which occur constantly in every area of mathematics. It may
be of interest to note that we shall not use an enumeration of computable
functions to show that our examples are non-computable functions.
Thus, in this sense, we do not use the diagonal process.

II. TEHMINOLOGY

We shall use binary Turing machines (that is, Turing machines with
the binary alphabet 0, 1), in the sense of the excellent presentation of

877

878 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1962

Kleene's Metamathematics (see Ref.), with the following exceptions.
First, we do not permit a center shift j thus the machine must shift after
the execution of an "overprint" instruction (the purpose is to simplify
the following presentation). Second, we shall use the term "card" instead
of "state." The reason is that the examples below were obtained as by
products of a logical game (the Busy Beaver game described below)
which the writer made up to familiarize beginners with the idea of a
Turing machine; and it appeared that terms such as state, internal con
figuration, and the like had a mysterious connotation for beginners.
To illustrate some notational conventions to be used, let us consider
the following example of a binary, 3-card Turing machine.

C3

o 102

1 113

o 111

1 102

o 112

1 100

Here C1 , C2 , C3 stand for Card 1, Card 2, and Card 3. On each card,
the left-most column contains the alphabet 0, 1. The next column is the
"overprint by" column; the next one is the "shift" column (where 0 is
the code for a left shift and 1 is the code for a right shift). The last col
umn is the "call card" column; it contains the index of the next card
to be used, or 0 (zero), where 0 is the code for "Stop." This notation was
found very convenient in situations where one wanted to enumerate
(serialize) Turing machines with a given number of cards.
The reader is assumed to be familiar with the meaning (in the sense

of Kleene; see Ref.) of the statement that a binary Turing machine
"computes" a function f(x). It is understood that we consider only func
tions of non-negative integers with values which are again non-negative
integers.

III. THE BUSY BEAVER GAME

Consider a potentially both-ways infinite tape (see Ref.), where each
square contains a 0 (all-zero tape). Start the 3-card machine described
in Section II (with its Card 1) under any square. The reader will find
that the machine stops after a few shifts, and when it stops, there are
six ones on the tape. Actually, this particular machine is one of the four
highest scorers (as of today) in the international BB-3 game (the 3-card
deck classification of the Busy Beaver game). The rules in this game are
as follows.

0" "ON-COMPUTABLE FUNCTIO"S 879

i. The contestant selects a positive integer n; and then makes up his
own n-card, binary, Turing machine (using the notational conventions
explained in Section II).
ii. He starts his machine (with its Card 1) on an all-zero tape, and

satisfies himself that his machine stops after a certain number 8 of shifts.
iii. He then submits his entry, as well as the shift-number 8. to any

member (in good standing) of the International Busy Beaver Club.
iu. The umpire first verifies that the entry actually stops exactly

after 8 shifts. Note that this is a decidable issue; the umpire merely
operates the entry, persisting through not more than the specified num
ber 8 of shifts. If the entry fails to stop after 8 shifts, it is rejected; if
it stops after fewer than 8 shifts, it is returned to the contestant for
correction. After the entry has been verified, its score is the number
of ones on the tape when it stops.
Naturally, the BB-n champion is the contestant who achieved, the

highest score (so far) in the BB-n classification. For example, in the
BB-:3 classification, the score of 6 was first achieved by R. Hegelman
(U.S. Naval Weapons Laboratory, Dahlgren, Virginia). This score has
been reached since by several others; but nobody knows as yet whether
() is the highest possible score in the BB-3 classification. The reader who
tries to settle this question will soon realize the difficulties involved in
this sort of problem. Beyond the enormous number of cases to survey,
he will find that it is very hard to see whether certain entries do stop
ut all. This is the reason for the requirement that each contestant must
submit the shift number 8 with his entry.

IV. HIGHEST SCOH!!:

There arises now the problem of determining the highest possible
score in the BB-n classification. In line with the point of view explained
in the introduction, we formulate this problem with due care and cau
tion.
Returning to rule iv. of the game, we see that a valid entry in the

BB-n classification is a pair (M ,8), such that the following holds.
(a) ill is an n-card binary Turing machine.
(b) 8 is a positive integer.
(c) M stops after exactly 8 shifts if started (with its Card C1) on an

all-zero tape.
In discussing rule i». above, we noted that we can actually decide

whether or not an entry (11£,8) is valid. Also, if (1Vl1,8d , (lvI2,82) are
valid entries such that M1 = M2 , then evidently 81 = 82 ; hence the
number of valid BB-n entries cannot exceed the number N(n) of all

880 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1962

possible n-card, binary Turing machines. It is easy to see that

N(n) = [4(n + l)t' (1)

Also, there exist valid BB-n entries; for example, on choosing the O-line
of Card 1 as 110, one obtains an entry which stops after one shift.
Accordingly, if we denote by En the set of all valid BB-n entries (M,s),

we obtain a non-empty, finite set En which has the following features.
(a) We actually exhibit elements of En ; so En is non-empty as a

matter of concrete observation.
(b) We not only know that En is finite, but for the number N.(n)

of elements of this set of valid entries we have [see (1)] the in
equalities.

1 < N.(n) < N(n) = [4(n + l)fn (2)

(c) For every pair (M,s) we can actually decide whether or not
(M,s) e En.

Evidently, En is (by current standards) an exceptionally well-defined

non-empty, finite set. Yet, we shall show below that Nc(n), the number
of elements of En , is not a computable function of n. Next, each valid
entry (M,s) e En has a definite score u(M,s) assigned to it (see Section
III). Thus, for the same reasons, the set of these scores is an exceptionally
well-defined non-empty finite set of non-negative integers. We denote
by ~ (n) the largest element of this set.
Thus

~ (n) = max [q(M,s)] for (M,s) e Ell . (3)

We shall see presently that ~ (n) is not a computable function of n.
Let us note, however, that it is entirely possible that ~ (n) can be effec
tively determined for particular values of n. For example, evidently
~ (1) = 1. Also, it has been proved that ~ (2) = 4. We noted above
that we know several BB-3 entries with a score of 6; hence ~(3) ~ 6,
and it seems plausible that ~ (3) = 6. Now while for low values of n
it is quite hard to achieve a respectable score, Dr. C. Y. Lee observed
(in a letter to the writer) that for higher values of n one can achieve
very large scores. The following proof for the non-computability of ~(n)
was obtained by developing this comment of Dr. Lee.

V. THE GROWTH OF ~(n)

Let I(x), g(x) be two functions (as specified in Section II). We shall
write

I(x) >- g(x)

ON NON-COMPUTABLE FUNCTIONS 881

to state that f(x) > g(x) for x greater than a certain xo. Using this
notation, we shall now prove the following theorem.
Theorem. ~(n) > - fen) for every computable (that is, general re

cursive) funetion j'(n), Hence ~ (n) is not computable.
Proof. Assign a computable function j(x). Introduce the auxiliary

function

x

F(x) = L [f(i) + i2] .
i=O

Then (see Ref.) F(:!:) is also computable. Evidently

F(x) ~ j(x).

F(:!.' + 1) > F(x).

(4)

(5)

(6)

(7)

Now since F(:!:) is computable, we have a binary Turing machine 1111' ,
with a certain number C of cards (states) which computes F(x) (in
the sense described in Kleene; see Ref.). Now assign any integer x ~ O.
We have then a binary Turing machine 1I1(x>, with x + 1 cards (states)
which prints on an all-zero tape x + 1 consecutive ones and stops under
the right-most one of these ones, For ;r = 2, for example, 111(2) has the

3 cards:

o 112

110

o ns o 101

1

Now consider the binary Turing machine 111/x) given by the symbolic

diagram:

M I'(x) :111(x) -+ 1111' -+ M» .

If the cards of 111/x) are written out with consecutive indices, then it is
seen to have 1 + ;1: + 2(,' curds. If started on an all-zero tape, M I'(x) will
first print (going to the right) a string of ;l~ + 1 consecutive ones; then,
beyond a 0 to the right, it will print a string of F (x) + 1 consecutive
ones; finally, beyond a 0 to the right, it will print a string of F[F(x)] + 1
consecutive ones, and then will stop (under the right-most 1 it printed).
Thus evidently N F(X) is a valid entry in the BB-(l + x + 2C) elassifi-

882 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1962

cation with a score equal to

a+ x + F(x) + F[F(x)].

Hence, the maximum score 2:(1+ x + 2C) in this classification satisfies
the inequality

2:(1 + :1: + 2C) ~ 3 + x + F(x) + F[F(x)]. (8)

Now since evidently ;1:
2 > - (1 + ;1: + 2C) and F(:I:) ~ x

2 [see (6)],
it follows that

F(x) >- (1 + x + 2C).

Also, F(x) is monotone increasing by (7); hence (9) yields

F[F(x)] > - F(1 + z + 2C).

From (8) and (10) we see that

2:(1 + ;1:+ 2C) > - F(l + :1: + 2C);

hence (since F(x) ~ f(x»

2:(1 + x + 2C) > - f(1 + x + 2C).

On setting n = 1 + x + 2C, we obtain finally

2:(n) >- f(n)

(9)

(10)

and the theorem is proved.
The rate at which 2:(x) grows is illustrated by the following intuitive

observation. A Turing machine llt!H for computing H(x) = xl can be
constructed with not more than 26 states. Let us consider the chain of
Turing machines:

:Al("') -- MH ----+ :AIH ----+ :AIH ----+ }.i[H•

It follows from (8) that the number of ones which is produced by this
chain is more than « (xl) 1)I)!. Using the construction of the machine
M H mentioned above, we may show that by combining these machines
properly, the number of states required for this chain of machines for
;1: = 7, for instance, is not more than 100. Therefore, 2:(100) is at least
«(7 I) !) !)!. Since 2: (l00) is probably far bigger than this lower bound,
it would be interesting to know how large a lower bound one can get
for 2:(100).

VI. THE FUNCTION S(n)

It is evident from our definitions that the set E 7I of valid BB-n entries
coincides with the set of the n-card stoppers, where by a stopper we

ox "'ON-COMPUTABLE FUNCTIONS 883

mean a (binary) Turing machine which, if started on an all-zero tape
with its card C1 , will stop after a while. Now the second coordinates s
of the valid BB-n entries (M,s) constitute a finite, non-empty set of
positive integers; we denote by Sen) the largest element of this set.
Thus S(n) is the maximum of the shift-numbers of the n-card stoppers.
Clearly

Sen) ;;; ~(n). (11)

Indeed, since we do not permit center-shifts, a BB-n entry must shift
after it prints a 1; thus (11) is obvious. From the theorem in Section V
and from (11) we see that

Sen) > - fen) (12)

for every computable functionf(n). Thus Sen) is non-computable (the
reader will readily see that this result is equivalent to the undecidability
of the so-called halting problem).

VII. THE FUNCTION Ne(n)

This function, defined above as the number of elements of the set En
(that is, the number of n-card stoppers) does not grow unreasonably
fast [see (2)]. However, we can discuss it as follows. Let us denote by
N(s,n) the number of those BB-n entries which stop after exactly s
shifts. Evidently, the computation ofN(s,n) can be readily programmed;
informally, one finds the value of N(s,n) by running each one of the
n-card binary Turing machines [whose number is given by (1)], per
sisting through not more than the given number s of shifts, and noting
the number of those that stop after exactly s shifts. Let us put

8

G(s,n) = L N(i,n),
1'=1

<I>(s,n) = N,.(n) - G(s,n).

(13)

(14)

Clearly, G(s,n) is the number of those BB-n entries that stop after not
more than s shifts; thus G(s,n) ~ Ne(n), and hence <I>(s,n) ;;; O. Since
evidently G(s,n) = Ne(n) for s = Sen), we see that Sen) is the smallest
value of s for which <I>(s,n) = 0; in symbols:

Sen) = (/As)[<I>(s,n) = 0], (15)

where (/As) means "the smallest s such that." From (13)-(15) it follows
(see Ref.) that if Ne(n) were computable then Sen) would be comput
able too; since we know that Sen) is not computable, it follows that
Ne(n) is non-computable. .

884 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1962

7.1 Remark

Suppose that, for a certain integer no, we somehow succeeded in
determining the exact value of N.(no). From (13)-(15) it follows that
we can then determine S(no) also, and hence finally 2;(no). Various
other comments will readily occur to the reader. For example, the easily
proved inequality

S(n) ~ (n + 1) 2;(511,) 2~(5n)

gives rise to some curious observations.

VllI. SUMMARY

Inspection of the preceding presentation shows that we used in our
constructions only the following "principle of the largest element":
If E is a non-empty, finite set of non-negative integers, then E has n
largest element. This principle is used constantly, as a matter of course,
in every field of mathematics. OUl' examples above show that this prin
ciple, even if applied only to excepiionallu well-defined sets E, may take
us beyond the realm of constructive mathematics. Of course, common
everyday experiences may be used to illustrate this sort of phenomenon.
For example, when the writer wanted to find a certain highway on an
automobile trip, he received the following directions from the foreman
of a construction crew: "Drive straight ahead on this road; you will
cross some steel bridges; and after you cross the last steel bridge, make
a left turn at the next intersection." Luckily, the unsolvable problem
implied by this advice was resolved by a member of the construction
crew who volunteered the information that "after you cross the last
steel bridge, there isn't another steel bridge until you reach Richmond,
130 miles away." The reader may find it amusing to verify, by detailed
study of the excellent book of Kleene (Ref.), that this little story illus
trates, in a concrete manner, some truly basic points in the theory of
computable functions.

IX. ACKNOWLEDGMENT

The writer takes pleasure in thanking Dr. C. Y. Lee (of Bell Telephone
Laboratories) for a number of stimulating comments.

REFERENCE

1. Kleene, S. C., Introduction to Metamathematics, D. Van Nostrand Co., Prince
ton, N. J., 1952.

