SimHash: Hash-based Similarity Detection

Caitlin Sadowski
University of California, Santa Cruz
supertri@cs.ucsc.edu

Greg Levin
University of California, Santa Cruz
glevin@cs.ucsc.edu

December 13, 2007

1 Abstract

Most hash functions are used to separate and obscure
data, so that similar data hashes to very different
keys. We propose to use hash functions for the op-
posite purpose: to detect similarities between data.

Detecting similar files and classifying documents is
a well-studied problem, but typically involves com-
plex heuristics and/or O(n?) pair-wise comparisons.
Using a hash function that hashed similar files to sim-
ilar values, file similarity could be determined simply
by comparing pre-sorted hash key values. The chal-
lenge is to find a similarity hash that minimizes false
positives.

We have implemented a family of similarity hash
functions with this intent. We have further enhanced
their performance by storing the auxiliary data used
to compute our hash keys. This data is used as a
second filter after a hash key comparison indicates
that two files are potentially similar. We use these
tests to explore the notion of “similarity.”

2 Introduction

As storage capacities become larger it is increasingly
difficult to organize and manage growing file systems.
Identical copies or older versions of files often become
separated and scattered across a directory structure.
Consolidating or removing multiple versions of a file
becomes desirable. However, deduplication technolo-
gies do not extend well to the case where files are
not identical. Techniques for identifying similar files
could also be useful for classification purposes and as

an aid to search. A standard technique in similarity
detection is to map features of a file into some high-
dimensional space, and then use distance within this
space as a measure of similarity. Unfortunately, this
typically involves computing the distance between all
pairs of files, which leads to O(n?) similarity de-
tection algorithms. If these file-to-vector mappings
could be reduced to a one-dimensional space, then
the data points could be sorted in O(nlogn) time,
greatly increasing detection speed.

Our goal was to create a “similarity hash function.”
Typically, hash functions are designed to minimize
collisions (where two different inputs map to the same
key value). With cryptographic hash functions, colli-
sions should be nearly impossible, and nearly identi-
cal data should hash to very different keys. Our sim-
ilarity hash function had the opposite intent: very
similar files should map to very similar, or even the
same, hash key, and distance between keys should
be some measure of the difference between files. Of
course, “file size” is a sort of hash function on files
which satisfies these requirements. However, while
similar files are expected to have similar sizes, there
is no expectation that two files which are close in size
have similar content. It is not at all clear how to
condense information from a file into a more useful
one-dimensional key.

While SimHash does produce integer-valued hash
keys, we ended up relying on auxiliary data to re-
fine our similarity tests. Our key values are based
on counting the occurrences of certain binary strings
within a file, and combining these sums. Unfortu-
nately, the key values still end up being roughly pro-

portional to file size, causing many false positives.
However, the auxiliary data provides an easy and ef-
ficient means of refining our similarity detection. A
refined version of our keys based on file extension
gives a much wider spread of key values, and allevi-
ates some of the aforementioned problems.

3 Semantics of Similarity

“Similarity” is a vague word, and can have numer-
ous meanings in the context of computer files. We
take the view that in order for two files to be similar
they must share content. However, there are differ-
ent ways to define that sharing. For example, what
is the content of a file? Take a text file encoded in
rtf as an example. Content could refer to the entire
file, just the text portion of the file (not including
rtf header information), or the semantic meaning of
the text portion of the file (irrespective of the actual
text).

Many previous attempts at file similarity detection
have focused on detecting similarity on the text [1, 2]
level. We decided to use binary similarity as our met-
ric. Two files are similar if only a small percentage of
their raw bit patterns are different. This often fails to
detect other types of similarity. For example, adding
a line to source code file might shift all line numbers
within the compiled code. The two source files would
be detected as similar under our metric; the compiled
results would not. We decided on binary similarity
because we did not want to focus on one particular
file type (e.g. text documents) or structure.

Another issue we do not explore is that of semantic
similarity. For example, two text files may use differ-
ent words but contain the same content in terms of
meaning. Or, two MP3 files of the same song with
different encodings may result in completely different
binary content. We focus on syntactic, not semantic,
similarity. In the words of Udi Manber, “we make no
effort to understand the contents of the files.” [3]

Broder [4] first made clear the distinction between
resemblance (when two files resemble each other) and
containment (when one file is contained inside of an-
other). As an example of a containment relation-
ship, take the case where one file consists of repeated

copies of another smaller file. The focus of SimHash
has been on resemblance detection. Two files with a
size disparity (as in the example above) are implic-
itly different; containment relationships between files
do not necessarily make two files ’similar’ under our
metric.

In order for files to be similar under our type of
metric, they must contain a large number of common
pieces. Another dividing point of techniques is the
granularity and coverage of these pieces. SimHash
operates at a very fine granularity, specifically byte or
word level. We do not attempt complete coverage; we
only care about the portions of the file which match
our set of bit patterns.

Given some similarity metric, there needs to be a
threshold to determine how close within that metric
files need to be to count as similar. We are focused on
files which have a strong degree of similarity, ideally
within 1-2% of each other.

Another issue is whether a form of similarity de-
tection is meant to operate on a relative or absolute
level. In other words, is the focus retrieving a set of
files similar to a given file, or retrieving all pairs of
similar files. SimHash does both.

4 Implementation

Our hash key is based on counting the occurrances of
certain binary strings within a file. The keys, along
with certain intermediate data, are stored in a rela-
tional database (Figure 1).A separate program then
queries the database for keys with similar values, and
outputs the results. The particulars of our method
are described below. Our code was written in C++,
and developed simultaneously for the Windows and
Macintosh platforms. While the code runs equally
well on both platforms, we used a Windows machine
for primary development and a Mac for most data
collection.

4.1 Computing Hash Keys

Since our notion of similarity is based on binary simi-
larity, we start by counting the occurrances of various
binary strings within the file under processing. We

e —
v

e S = =

files MR _ e B B

= Tl o b &8

T o= (==
v

Figure 1: SimHash processes files on a per-directory
basis and stores the hash keys and sum table values
in a relational database.

preselect a set of strings, called Tags, to search for.
We only use a subset of all possible strings of a given
length, as summing matches over all strings would
blur file differences. String size was important, since
shorter strings would not represent meaningful pat-
terns, and longer strings would not be expected to
occur with meaningful frequency in smaller files. We
chose to use 16 8-bit tags, although we experimented
with several different sets of tags.

Our SimHash program (Figure 2) opens each file in
a directory, scans through it, and looks for matches
with each of our tags. We decided to advance our
detection window one bit at a time, rather than one
byte, since bit patterns across consecutive bytes en-
code some information about byte order. When a
match is found, a skip counter is set and then decre-
mented in the following bits. This prevents overlaps
of matches on the same tag (for example, 0x00 will
only be detected twice, and not 9 times, when two
zero bytes are scanned). A count of matches, or hits,
is kept for each tag, and these are stored in a sum ta-
ble. The hash key is then computed as a function of
the sum table entries. We restricted our attention to
linear combinations of the sums, although we tried
various weighting schemes. Once this has all been
computed, the file name, path, and size, along with
its key and all entries in the sum table, are stored
in a MySQL database. Later on, we added the ca-
pacity to compute and store multiple keys per field,
so that different sum table weightings could be com-
pared side-by-side, or used as additional filters.

File binary data: ... 10110010111...
L
]
] (I
l l l l T I
Tagl = Tagl = TagN =
101100 111111 001011

Hash Key

- (=l 5 BD

SumTable

Figure 2: SimHash produces two levels of file simi-
larity data: tag counts make up the the sum table
entries, which are then combined to form a hash key.

A variation of the key function was implemented
to account for file extensions. It is not unreasonable
to claim that two files are inherently different if they
contain different extensions. Given this, it would be
desirable for our hash function to assign very different
values to any two files with different extensions. To
this end, we compute a simple hash of the (first three
characters of) a file’s extention, with a value between
0 and 1. The distribution of these values should be
fairly uniform across the space of possible extensions.
We then multiply this extension value by MAX_INT,
and add that to our previous key value. Since we
only care about the distance between keys, and not
their actual values, this will not affect the relation
between files with the same extension, while it will
tend to widely separate files of different extensions.
This has the effect of more evenly distributing our
key values across the space of 32-bit integers, and
making cross-extention key matches very unlikely.

Figures 3 and 4 are visualizations of various key
spaces, with key values plotted against file sizes. Fig-
ure 3 shows the key spaces of the Uniform and Skew
keys, with the line y = x plotted for reference. Note
that both key values are roughly proportional to file

90000 T T

Skew Hash Key + +
Uniform Hash Key N
80000 Filesize Reference

70000 - ' 4
60000 - + i

50000 - + +

Hash Keys

40000 1
",
+
30000 - +
+
+

20000

10000

0 5000 10000 15000 20000

Filesize (bytes)

Figure 3: Visualization of Key Spaces for Uniform
and Skew Keys

size, although the Skew Key has a wider variance.
Figure 4 shows the Skew Key with file extension mod-
ification. Keys span the full range of 32-bit values,
with horizontal stripes representing different file ex-
tensions. It is clear from the picture that key hits
between different file types would be highly unusual.

4.2 Finding Similarities

Once the database has been populated with the data
from a test directory, we use a second program called
SimFind to look for similar keys (Figure 5). One file
at a time, we perform a SQL query on its key to find
all other key values within a certain tolerance range.
We set a single tolerance level, and the multiply this
value by the size of our target file, since we expect
key values to increase proportionally to file size. This
is only the first level of our similarity filter. For each
file returned in this query, we first discard it if the
file size differs too much from our first file. Next,
we compute the distance between their sum tables,
which is just the sum of the absolute values of the
differences between their entries. If this distance is
within a certain tolerance, then we report the two
files as similar. Further, if the sum table distance is
zero, the two files are compared directly to determine
if they are, in fact, identical files.

Essentially, two files are deemed similar if they con-

4.5e409 . . .

4409

3.5e409 i

3e409 |-

ot + + o

= 250409 [+ P + q
2 + + + + +

H e e e 4o el e R e e e e e T
: PO + PN
E 4+

“ 20400 AHHBMHEH It el R R R H
3 it i B R

< e # 4+ o

= Wi

= 1.5e409 MMM B HE + + + o+ + + + o+ + 4
= -

it
.

i
T e

0 5000 10000 15000 20000

Filesize (bytes)

Figure 4: Visualization of Skew Key Space with File
Extension Modification

tain a very similar number of each of our selected
tags in their bit patterns. This method has several
strengths and drawbacks. Because the ordering of the
tag matches within a file is not accounted for, rear-
ranging the contents of a file will, up to a point, have
little impact on key values and sum tables. Similarly,
adding or removing small pieces of a file will have only
a small effect on these values. Consequently, small
changes to a file shouldn’t throw off our similarity
measure. Further, the results of our calculations are
relatively easy to understand and reason about. Be-
cause “similarity” is based on the numerical distance
between values, we can easily change the tolerance
level for key and sum table distance matches. Of
course, increasing tolerance values both widens the
range of similar files found and increases the number
of false positives, so a good balance between these
must be found.

As the order of strings within files is not measured,
very different files can be detected as similar if they
happen to share too many bit patterns. In particu-
lar, the Law of Large Numbers makes false positives
within our key space likely. Since key similarity is
the comparison that could be theoretically performed
with an O(logn) search through a sorted list, an ex-
cess of false positives here means a larger number
of pair-wise comparisons that must be performed on
our sum table, even if those comparisons are compu-

Sum Table Hits

Threshold

Figure 5: SimFind identifies all files which have key
values within a certain tolerance of a particular file,
then performs pairwise comparisons among the sum
table entries to return a filtered selection of similar
files.

tationally minimal.

5 Results

We explored how different selections of tags and tag
weights affected our results. We also investigated fac-
toring in other data, such as the file extension, when
computing hash keys. We ran tests on a variety of
data sets, both artificially generated and found in the
wild. Due to time limitations, we were not able to run
as rigorous tests or make as interesting improvements
as we would have liked. However, we still gleaned
some interesting results.

We found that an unbalanced weighting scheme
where only a few tags were used to compute a key
worked best on a realistic file set, although a more
uniform weighting scheme performed better on con-
trived data sets. We also identified several problems
with our method which highlight areas for future
work.

5.1 Chosing Tags and Keys

As mentioned above, we settled on 16 8-bit tags to
apply our similarity measure. In trying to select tags,
we noticed that 0x00 was often the most significant
single indicator of file structure. This is not suprising,
as some files are padded with large sections of zeros,
while data rich files and text files contain few or no
zero bytes. Other than 0x00, an essentially random
selection of bytes values seem to perform generally
better than contrived or structured tag sets. We in-
cluded the ASCII representations of ’e’ and ’t’, as
these appeared to be strong indicators of text-based
data, and also non-ASCII range bytes which would
not be less prevalent in text files.

We also investigated various relative weightings of
tags in the calculation of the hash key. We tried
equal and unequal weightings of all tags, as well as
giving zero weights to (i.e. ignoring) a large frac-
tion of our tags. On the whole, this last scheme per-
formed best on real file sets. One measure of key
performance was the ratio of sum table hits to key
hits. That is, what fraction of key hits are validated
as actually similar according to the sum table? The
higher this ratio, the lower the presumed false pos-
itive rate of the key. We also included comparisons
using the file extention modification to keys. Fig-
ure 6 shows results of comparing four keys on two
distinct file sets. The Uniform Key has all 16 tags
weighted equally, while the Skew Key applies uneven
weights to only 4 of the tags, with the 0x00 tag get-
ting the largest weight (other weighting schemes were
tested, but were found to regularly lie between these
two extremes). The “Similar Files” set contains a se-
quence of 4K files, each of which differs in only a few
bytes from its predecessor. Consequently, “nearby”
files should all be considered similar. The “Differ-
ent Files” set contains a sample of assorted files from
a real file system. From this set, files with apparent
similarities were removed, and all files were truncated
to 4K to make results more easily comparable. That
we observe a smaller rate of false positives on a set of
similar files is not surprising, since there are simply
fewer dissimilar files. For the somewhat more realis-
tic set of different files, the Skew Key shows better
performance. Running tests on several other data

ok

001

(Sum Table Hits)/(Key Hits) Ratio

0001
001 ol 1 10

Tolerance

Figure 6: Comparing effectiveness of different key
strategies on sets of predominantly similar and pre-
dominately different files.

sets confirmed this observation and so the Skew Key
was adopted as the standard key for future tests.
The next trial demonstrated the value of the file ex-
tension key modification. Figure 7 shows key hits and
sum table hits for the Skew Key, with and without
the file extension modification. The trial was run on
10,364 files from a random selection of directories on
an existing Mac filesystem. To normalize the results,

values were divided by , the total number of

n
2
pairs of files is the test set. Even at a rather high
tolerance, the Skew Key with extensions is only re-
porting a match for about one in 5000 pairs, or about
two hits per file. In other words, only a small num-
ber of auxiliary sum table comparisons are needed on
average. While this data set is small compared to an
entire file system, the small percentage of matches
is an encouraging sign that our methods have some
hope of scaling well to larger file sets.

5.2 Problems

There are a number of problems with our method,
although it is not clear if any generalized similar-
ity measure could address all of these. One prob-
lem we encountered was certain file formats with very
large headers. Postscript is an example of this. We

001 |

0001 | - 4

Fraction of All Pairs Hit

00001 | Bl

1e-05
001 ol 1 10

Tolerance

Figure 7: Number of key and sum table hits with and
without the file extension key modification. Results
are scaled by the total number of file pairs in the file
set (i.e. “n choose 2”).

took 200 randomly generated 4K ASCII files (which
should have no more similarity than would be pre-
dicted by the averaging effects of the Law of Large
Numbers), and then converted them to both PDF
and Postscript. The results of applying the Skew
Key to these three sets is shown in Figure 8. The
exact same text content is identified as “similar” at
much lower tolerance levels for the Postscript ver-
sions of files than it is for PDF or raw text. This is
due to common headers and file padding in the more
complex file formats. For example, 4K of raw text
translates into a 12K PDF, and an enormous 252K
Postscript file. Obviously, the majority of the file is
structural, and so two Postscript files with entirely
different data will still be remarkably similar on the
binary level. This makes detecting differences in data
problematic. A potential solution would be to manu-
ally set the tolerance levels for different file formats.
A very low tolerance setting for Postscript extensions
would rule out similarity for differences that amount
to only a very small percentage of the file size.

Another problem we haven’t addressed well is
scale. Due to time and computing constraints, we
have only used a maximum test set of 10000 files.
As the presumed environment for similarity detection
would be file systems of potentially millions of files, it

Hits

20000

15000

10000

5000

]

001 ol 1 10

Tolerance (logseale)

Figure 8: Sum table hits for 200 randomly gener-
ated ASCII files, with data converted to PDF and
Postscript formats. Large file headers in Postscript
cause the same content to be identified as similar at
much lower tolerance levels.

is not immediately obvious how well our results scale.
In terms of space usage, only a few hundred bytes are
necessary to store the SimHash information associ-
ated with a particular file. Most of this overhead is
taken up with a textual filepath for increased read-
ability. However, that text could be replaced with the
file inode address or a hash of the filepath, reducing
the space usage to approximately 100 bytes per file.

We ran our SimFind process on sets of similar files
that ranged in size from 500 to 8000, and timed
the results. The results are shown in Figure 9 A
quadratic curve is plotted for reference, and our time
growth does appear to be O(n?). This is exactly the
sort of prohibitive growth that the hash key method
is intended to avoid, although we must keep in mind
that these are sets of very similar files, where nu-
merous key hits are expected. It should only take
O(logn) time to determine the number of key matches
against a file, but if the number of matches is propor-
tional to the total number of files, then we will need
to perform O(n) sum table comparisons for each file.
O(n?) growth may be unavoidable. However, within
a typical file system, it may be the case that the num-
ber of files that actually generate key hits against a
single file is a tiny fraction of the overall file count.

3000

T
(x*x) /90000

2500 |

1500 |-

1000 |-

500 |- _— 4

0 2000 4000 6000 8000 10000 12000 14000 16000

Number of (4k) Files

Figure 9: Run time versus file count for SimFind on
sets of similar files, with a quadratic curve plotted for
reference.

If we are lucky, this fraction would small enough to
make the constant on the O(n?) of a manageable size,
so that our method would be still be efficient in prac-
tice. In any case, it was not our expectation that key
hits by themselves would not provide a reliable mea-
sure of fine-grained similarity. Instead, we expected
that they would provide a strong filter which would
greatly reduce the number of pair-wise comparisons
subsequently needed.

A final difficulty that we have not yet come to
terms with is the relation between key and sum table
hits. Sum table hits represent a much more accu-
rate measure of similarity. Ideally, if sum table com-
parisons would label two files as similar, then those
two files should pass the key similarity test. In prac-
tice, however, this ideal may not be desirable. Con-
sider the Uniform Key, where all tags are given equal
weights. If two files have a sum table distance of
20, then the differences in their keys would lie some-
where between 0 and 20. If our sum table tolerance
is 20, then our key hit tolerance should be 20 as well
to allow all possible sum table hits to be checked.
However, only in the extreme case is this high a key
tolerance necessary. We compared sum table hits to
key hits in a data set of similar files made by succes-
sively appending bytes to a starter file. In this worst
case scenario, the sum hit to key hit ratio approaches

one.

In general, it may be that a key tolerance of 15 only
eliminates 10% of our sum table hits, but reduces the
number of false positives by 40%. This phenomenon
is visible in Figure 7, where the improved key with
extensions admits fewer sum table hits. The trade-
off for performance vs. accuracy may be acceptable
or even desirable. More work would be required to
explore the interaction of these two tolerances, and
their actual values could be set based on the needs of
a given implementation environment.

6 Related Work

The problem of identifying file similarity is not a new
one, although no one seems to have discovered a con-
sistently good general solution. The most relevant
paper to SimHash is over ten years old [3]. There has
also been a body of research focusing on redundancy
elimination or deduplication. Much of the research
on similarity detection since then has focused on very
specific applications and filetypes. This includes:

e technical documentation [1]
e software systems [5]

e plagiarism detection [2] [6]
e music [7]

e web pages [§]

In most cases, the main goal of redundancy elim-
ination is a reduction in either bandwidth or stor-
age. Redundancy elimination can focus on eliminat-
ing multiple copies of the same file, or else preventing
repeats of specific blocks shared between files. The
standard way to identify duplicate blocks is by hash-
ing each block. Venti [9] is an archival storage sys-
tem which only stores only one copy of every block.
As files are modified, new copies of modified blocks
are written to disk, without changing references to
unmodified blocks. Shared or unmodified blocks are
identified by comparing hashes of the blocks within
a file before writing to disk. LBFS [10] exemplifies
a similar idea but is focused on bandwidth reduc-
tion; when a file is changed, only modified blocks are

sent over the network. Redundancy elimination at
the block (or chunk) level provides a coarse-grained
method of file similarity; files which share enough
identical blocks are similar. Forman et al[l] took
this approach when identifying similar documents in
a repository. A file is represented by a collection of
hashes of content-based chunks. If the collections of
a set of files share a large overlap, then the files are
considered similar.

A natural question when classifying blocks is how
to identify block boundaries. The options for this
include fixed size chunking (for example, filesystem
blocks), fixed size chunking over a sliding window
(rsync [11]), or some form of dynamic content-based
chunking [10]. Content-defined chunking consistently
outperforms fixed sized chunking at identifying re-
dundancies, but involves larger time and space over-
heads [12].

Instead of coalescing repeated blocks, delta-
encoding works at a finer granularity. Essentially,
it uses the difference (or delta) between two files to
represent the second one. This is only effective when
the two files resemble each other closely Different ver-
sions in a version control system is a good example.
DERD [13] investigates dynamically identifying simi-
lar files (or web pages) and then using delta-encoding
to shrink the total footprint of similar pairs. The
goal of REBL [14] is heavy redundancy elimination
with a combination of previous techniques. Identi-
cal and similar (content-based) chunks are identified.
Identical chunks are removed, and similar chunks
are delta-encoded. The remaining chunks are com-
pressed, which essentially is redundancy elimination
within one file.

Udi Manber [3] developed a technique for finding
what he calls approzimate fingerprints of a file. His
approach involves the concept of a set of anchors, or
small patterns of characters. In each file, a checksum
of the characters around occurances of each anchor
is computed. This set of checksums forms the fin-
gerprints for the file, and is compared against finger-
prints for other files when searching for similar files.
Our sum table counts are in a similar vein. An im-
portant distinction between the two ideas is that we
also form one hash key for each file to serve as an
initial identification of similar files.

7 Future Work

There are many ways to extend and build on the ideas
and methods presented here, some of which were dis-
cussed in the results section. We could be using a
broader range of hashkeys. We could also combine
hash keys in a progressive filtering scheme to remove
false positives before getting to the level of sum table
comparisons. We could add additional, more accu-
rate, pairwise comparisons as a post-processing step
to further pair down sum table hits. We could also
try and combine our similarity metric with others.

There are few other metrics aside from binary simi-
larity which would extend to the diversity of filetypes
available in a system. One other example is meta-
data about files. We did not use file metadata for file
similarity detection because we wanted our code to
be cross-platform compatible. We also did not want
to get caught up with issues of metadata reliability,
and so limited our focus to the actual contents of the
file. However, one could imagine adding heuristics
for metadata similarity to the mix.

Multiple similarity metrics for different filetypes
could be combined to have a cohesive file similarity
measure for the entire system. Extending SimHash
to provide varying built-in tolerance levels for differ-
ent extensions may alleviate this problem somewhat,
but there will still be some filetypes for which binary
similarity does not work (like music files).

8 Conclusions

We developed a similarity hash function, called
SimHash, which stores a set of hash keys and auxil-
iary data per file, to be used in determining file sim-
ilarity. We define similarity on a binary level, and
experimented with variations of our metric. We dis-
covered some fundamental limitations to a general-
purpose similarity hash function for files, and direc-
tions for future work.

9 Acknowledgments

Thanks to Ian Pye for help with getting MySQL
up and running, and teaching us Python for all our

scripting needs.

10 Code

Source code for SimHash is available under GPL v2
at: http://code.google.com/p/simhash/.

References

[1] G.Forman, K. Eshghi, and S. Chiocchetti. Find-
ing similar files in large document repositories.
Conference on Knowledge Discovery in Data,
pages 394-400, 2005.

[2] T.C. Hoad and J. Zobel. Methods for identifying
versioned and plagiarized documents. Journal
of the American Society for Information Science
and Technology, 54(3):203-215, 2003.

[3] U. Manber. Finding similar files in a large file
system. Proceedings of the USENIX Winter 1994
Technical Conference on USENIX Winter 1994
Technical Conference table of contents, pages 2—
2, 1994.

[4] A.Broder. On the resemblance and containment
of documents. Proceedings of the Compression
and Complexity of Sequences, page 21, 1997.

[5] T. Yamamoto, M. Matsusita, T. Kamiya, and
K. Inoue. Measuring Similarity of Large Soft-
ware Systems Based on Source Code Correspon-
dence. Proceedings of the 6th International Con-
ference on Product Focused Software Process Im-

provement (PROFES05), 2005.

[6) Y. BERNSTEIN and J. ZOBEL. A scalable
system for identifying co-derivative documents.
Lecture notes in computer science, pages 55—67.

[7] M. Welsh, N. Borisov, J. Hill, R. von Behren,
and A. Woo. Querying large collections of music
for similarity, 1999.

[8] D. Buttler. A Short Survey of Document Struc-
ture Similarity Algorithms. International Con-
ference on Internet Computing, pages 3-9, 2004.

[9]

[10]

[11]

[12]

[13]

[14]

S. Quinlan and S. Dorward. Venti: a new
approach to archival storage. Proceedings of
the FAST 2002 Conference on File and Storage
Technologies, 2002.

A. Muthitacharoen, B. Chen, and D. Mazieres.
A low-bandwidth network file system. Proceed-
ings of the eighteenth ACM symposium on Op-
erating systems principles, pages 174-187, 2001.

A. Tridgell and P. Mackerras. The rsync algo-
rithm. 1996.

C. Policroniades and I. Pratt. Alternatives for
detecting redundancy in storage systems data.
Proceedings of the USENIX Annual Technical
Conference 2004 on USENIX Annual Technical
Conference table of contents, pages 6-6, 2004.

F. Douglis and A. Iyengar. Application-specific
deltaencoding via resemblance detection, 2003.

Purushottam Kulkarni, Fred Douglis, Jason
LaVoie, and John M. Tracey. Redundancy
elimination within large collections of files. In
ATEC’04: Proceedings of the USENIX Annual
Technical Conference 2004 on USENIX Annual
Technical Conference, pages 5-5, Berkeley, CA,
USA, 2004. USENIX Association.

10

