Coding Theorems for a Discrete Source
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Abstract

Consider a discrete source producing a sequence of message letters from a finite alphabet.
A single-letter distortion measure is given by a non-negative matrix (d;;). The entry dj;
measures the ‘‘cost’” or ‘‘distortion’’ if letter i is reproduced at the receiver as letter j. The
average distortion of a communications system (source-coder-noisy channel-decoder) is taken
tobed = Y, P;d; where P is the probability of i being reproduced as j. It is shown that

t,
there is a fur:ction R(d) that measures the ‘‘equivalent rate’’ of the source for a given level of
distortion. For coding purposes where a level d of distortion can be tolerated, the source acts
like one with information rate R(d). Methods are given for calculating R(d), and various
properties discussed. Finally, generalizations to ergodic sources, to continuous sources, and to
distortion measures involving blocks of letters are developed.

In this paper a study is made of the problem of coding a discrete source of information,
given a fidelity criterion or a measure of the distortion of the final recovered message at the
receiving point relative to the actual transmitted message. In a particular case there might be a
certain tolerable level of distortion as determined by this measure. It is desired to so encode the
information that the maximum possible signaling rate is obtained without exceeding the
tolerable distortion level. This work is an expansion and detailed elaboration of ideas presented
earlier [ 1], with particular reference to the discrete case.

We shall show that for a wide class of distortion measures and discrete sources of
information there exists a function R(d) (depending on the particular distortion measure and
source) which measures, in a sense, the equivalent rate R of the source (in bits per letter
produced) when d is the allowed distortion level. Methods will be given for evaluating R(d)
explicitly in certain simple cases and for evaluating R(d) by a limiting process in more
complex cases. The basic results are roughly that it is impossible to signal at a rate faster than
C / R(d) (source letters per second) over a memoryless channel of capacity C (bits per second)
with a distortion measure less than or equal to d. On the other hand, by sufficiently long block
codes it is possible to approach as closely as desired the rate C / R(d) with distortion level d.

Finally, some particular examples, using error probability per letter of message and other
simple distortion measures, are worked out in detail.

The Single-Letter Distortion Measure. Suppose that we have a discrete information source
producing a sequence of letters or ‘‘word’’ m = m |, m,, msz,...,m,, each chosen from a
finite alphabet. These are to be transmitted over a channel and reproduced, at least
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approximately, at a receiving point. Let the reproduced word be Z = z,, z,,...,z,. The z;
letters may be from the same alphabet as the m; letters or from an enlarged alphabet including,
perhaps, special symbols for unknown or semi-unknown letters. In a noisy telegraph situation
m and Z might be as follows:

= I HAVE HEARD THE MERMAIDS SINGING...
9

? ?
Z = 1T H?VT HEA?D TSE B?RMAIDZ ??NGING...
In this case, the Z alphabet con31sts of lhe ordinary letters and space of the m alphabet, together

with additional symbols **?"’, “A" “B” etc., indicating less certain identification. Even
more generally, the Z alphabet mlght be entirely different from the m alphabet.

Consider a situation in which there is a measure of the fidelity of transmission or the
‘‘distortion’’ between the original and final words. We shall assume first that this distortion
measure is of a very simple and special type, and later we shall generalize considerably on the
basis of the special case.

A single-letter distortion measure is defined as follows. There is given a matrix d;; with
d;; 2 0. Here i ranges over the letters of the m alphabet of, say, a letters (assumed glven a
numerical ordering), while j ranges over the Z alphabet. The quantity d,; may be thought of as
a *‘cost’” if letter i is reproduced as letter j.

If the Z alphabet includes the m alphabet, we will assume the distortion between an m letter
and its correct reproduction to be zero and all incorrect reproductions to have positive
distortion. It is convenient in this case to assume that the alphabets are arranged in the same
indexing order so thatd;; = 0,d;; > 0 (i # j).

The distortion d, if word m is reproduced as word Z, is to be measured by
1 r
d(my Z) = — m‘
L=
If, in a communication system, word m occurs with probability P(m) and the conditional
probability, if m is transmitted, that word Z will be reproduced, is P(Z|m), then we assume that
the over-all distortion of the system is given by

d=Y P(m) P(Z|m) d(m,Z) .
m,Z

Here we are supposing that all messages and reproduced words are of the same length . In
variable-length coding systems the analogous measure is merely the over-all probability that
letter i reproduced as j, multiplied by d;; and summed on i and j. Note thatd = 0 if and only if
each word is correctly reproduced w1th probability I, otherwise d > 0 (in cases where the Z
alphabet includes the m alphabet).

Some Simple Examples. A distortion measure may be represented by giving the matrix of its
elements, all terms of which are non-negative. An alternative representation is in terms of a
line diagram similar to those used for representing a memoryless noisy channel. The lines are
now labeled, however, with the values d;; rather than probabilities.

A simple example of a distortion measure, with identical m and Z alphabets, is the error
probability per letter. In this case, if the alphabets are ordered similarly, d;; = 1 - §;;. If
there were three letters in the m and and Z alphabets, the line diagram would be that shown in
Fig. 1(a). Such a distortion measure might be appropriate in measuring the fidelity of a teletype
or a remote typesetting system.
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I
ALL'S WELL ALL'S WELL

(b)

Fig. 1.

Another example is that of transmitting the quantized position of a wheel or shaft. Suppose
that the circumference is divided into five equal arcs. It might be only half as costly to have an
error of plus or minus one segment as larger errors. Thus the distortion measure might be

0 i=j
d,‘j = Vs ll—]l =1 (mOd 5),
1 Ji-jl>1 (mod5).

A third example might be a binary system sending information each second, either *‘all’s
well”” or ‘‘emergency,”’ for some situation. Generally, it would be considerably more
important that the ‘‘emergency’’ signal be correctly received than that the ‘““all’s well’’ signal
be correctly received. Thus if these were weighted 10 to 1, the diagram would be as shown in
Fig. 1(b).

A fourth example with entirely distinct m and Z alphabets is a case in which the m alphabet
consists of three possible readings, — 1, 0 and + 1. Perhaps, for some reasons of economy, it is
desired to work with a reproduced alphabet of two letters, — 2 and + 2. One might then have
the matrix that is shown in Fig. 2.

L

-2 t3

-1 | 2

0 | |

| |
Fig. 2.

The Rate-Distortion Function R(d). Now suppose that successive letters of the message are
statistically independent but chosen with the same probabilities, P; being the probability of
letter i from the alphabet. This type of source we call an independent letter source.
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Given such a set of probabilities P; and a distortion measure d;, we define a rate-distortion
curve as follows. Assign an arbitrary set of transition probabilities g, (j) for transitions from i
to j. (Of course, ¢;(j) 20and 3 g,(j) = 1.) One could calculate for this assignment two

J
things: first, the distortion measure d(q,(j)) = 3, P; q;(j) d;; if letter i were reproduced as j

iy
with conditional probability ¢, (j), and, second, the average mutual information between i and j
if this were the case, namely
. q,(j)
R(q:i())) = E log

> Praw())
P

q,(j)
= Pigi(j)1 ~ o T -
% 9:()) log > Pigi())
k

The rate-distortion function R(d") is defined as the greatest lower bound of R(q,(j)) when the
qi(j) are varied subject to their probability limitations and subject to the average distortion d
being less than or equal 10 d” .

Note that R(q;(j)) is a continuous function of the ¢, () in the allowed region of variation
of ¢;(j) which is closed. Consequently, the greatest lower bound of R is actually attained as a
minimum for each value of R that can occur at all. Further, from its definition it is clear that
R(d) is a monotonically decreasing function of d.

Convexity of the R(d) Curve. Suppose that two points on the R(d) curve are (R, d) obtained
with assignment ¢,(j) and (R’, d’) attained with assignment g;(j). Consider a mixture of
these assignments Ag,(j) + (1 — A) g7 (j). This produces a d’’ (because of the linearity of d)
not greater than Ad + (1 — L) d’. On the other hand, R(q,(j)) is known to be a convex
downward function (the rate for a channel as a function of its transition probabilities). Hence
R” < AR + (1 = L) R’. The minimizing ¢, (j) for d”’ must give at least this low a value of
R"'. Hence the curve R as a function of d (or conversely) is convex downward.

The minimum possible d value clearly occurs if, for each i, ¢, () is assigned the value 1 for
the j having the minimum d;;. Thus the lowest possible d is given by

dmin = Z P,‘ n:ln d'l .

If the m alphabet is imaged in the Z alphabet, then d,;, = 0O, and the corresponding R value is

the ordinary entropy or rate for the source. In the more general situation, R(d;,) may be

readily evaluated if there is a unique min d;; by evaluating R for the assignment mentioned.
J

Otherwise the evaluation of R(d , ) is a bit more complex.

On the other hand, R = 0 is obtained if and only if ¢;(j) = Q}, a function of j only. This
is because an average mutual information is positive unless the events are independent. For a
given Q; giving R = 0, the dis then Y P, Q;d;; = Y, Q; Y. P;d;;. The inner sum is

ij J i
non-negative. If we wish the minimum d for R = 0, this would result by finding a j that gives a
minimum Y, P, d,; (sayj") and making Q; = 1. This can be done by assigning ¢, (") = 1
(all other g, ( j) are made 0).

Summarizing, then, R(d) is a convex downward function as shown in Fig. 3 running from
R(dpin) at dpin = Y, P, mind,; to zero at dy,,c = min Y, P; d;;. It is continuous both
i J S
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ways (R as a function of d or d as a function of R) in the interior of this interval because of its
convexity. Ford > d,,,,, we have R = 0. The curve is strictly monotonically decreasing from
d min 10 d .. Also it is easily seen that in this interval the assignment of g;(j) to obtain any
point R(d") must give a d satisfying the equality d = d* (not the inequality d < d*). For
d” > d . the inequality will occur for the minimizing ¢;(j). Thus the minimizing problem
can be limited to a consideration of minima in the subspace where d = d”*, except in the range
d” > d . (Where R(d™) = 0).

The convex downward nature of R as a function of the assigned ¢q;(j) is helpful in
evaluating the R(d) in specific cases. It implies that any local minimum (in the subspace for a
fixed d) is the absolute minimum in this subspace. For otherwise we could connect the local
and absolute minima by a straight line and find a continuous series of points lower than the
local minimum along this line. This would contradict its being a local minimum.

Furthermore, the functions R(q,(j)) and d(q;(j)) have continuous derivatives interior to
the allowed g, () set. Hence ordinary calculus methods (e.g., Lagrangian multipliers) may be
used to locate the minimum. In general, however, this still involves the solution of a set of
simultaneous equations.

Solution for R(d) in Certain Simple Cases. One special type of situation leads to a simple
explicit solution for the R(d) curve. Suppose that all ¢ input letters are equiprobable:
P; = 1/a. Suppose further that the d;; matrix is square and is such that each row has the same
set of entries and each column also has the same set of entries, although, of course, in different
order.

R{d)

Fig. 3.

An example of this type is the positioning of a wheel mentioned earlier if all positions are
equally likely. Another example is the simple error probability distortion measure if all letters
are equally likely.

In general, let the entries in any row or column be d,, d,, d;,...,d,. Then we shall
show that the minimizing R for a given d occurs when all lines with distortion assignment d
are given the probability assignment
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-Ad,
e

Z e—-)»d,

i

qdx =

Here A is a parameter ranging from O to o which determines the value of d. With this
minimizing assignment, d and R are given parametrically in terms of A:

Z d,‘ e—M‘
d = i

-Ad
Xe ™
i

R=10g———_iz——;\.d.
Z ,

a
e

When A = Oitcanbeseenthatd = — ¥ d; and R = 0. When A — oo, d — d,;, and

1
a
R — log f}:— where £ is the number of d; with value d ;.

This solution is proved as follows. Suppose that we have an assignment ¢;(j) giving a
certain d* and a certain R*. Consider now a new assignment where each line with d; j value d
is assigned the average of the assignments for these lines in the original assignment. Similarly,
each line labeled d, is given the average of all the d, original assignments, and so on. Because
of the linearity of d, this new assignment has the same d value, namely d*. The new R is the
same as or smaller than R*. This is shown as follows. R may be written H(m) — H(m|Z).
H(m) is not changed, and H(m|Z) can only be increased by this averaging. The latter fact can

be seen by observing that because of the convexity of — ¥ x; log x; we have
i

- Yo ¥ logx) 23 [Z ajx}"] log ¥ o xf",
J t J J

t

where for a given 1, x{"’ is a set of probabilities, and «; is a set of weighting factors. In
particular

q;I) q](f)
T 4 g 3 ¢
J J
k)

S

Zq L
J

Y q”
- 2 s
7Y e
s,

X

[}

)

log !
T Y Y g
s, s,

where q}" is the original assignment to the line of value d; from letter s. But this inequality
can be interpreted on the left as H(m|Z) after the averaging process, while the right-hand side
is H(m|Z) before the averaging. The desired result then follows.

Hence, for the minimizing assignment, all lines with the same d value will have equal
probability assignments. We denote these by ¢, corresponding to a line labeled d;. The rate R
and distortion d can now be written
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d = E q:d;,
i
R =1loga+ Y q;loggq,; ,
i

since all z's are now equiprobable, and H(m) = log a, Hm|Z) = — Y q, log q;. We wish,

!
by proper choice of the g;, to minimize R for a given d and subject to Y, g, = 1. Consider

1

then, using Lagrange multipliers,

U=loga+ Y qilogg; +A Y q;di+1nY q;,
9 _ l1+logg;, +Ad; + p =0,
dq;
q; = Ae_ldl .
If we choose A = ——l—m— we satisfy ¥ g; = 1. This then gives a stationary point and by

e
i
the convexity properties mentioned above it must be the absolute minimum for the

corresponding value of d. By substituting this probability assignment in the formulas for 4 and
R we obtain the results stated above.

Rate for a Product Source with a Sum Distortion Measure. Suppose that we have two
independent sources each with its own distortion measure, d;; and d}’;/, and resulting in rate
distortion functions R (d,) and R,(d,). Suppose that each source produces one letter each
second. Considering ordered pairs of letters as single letters the combined system may be
called the product source. If the total distortion is to be measured by the sum of the individual
distortions, d = d| + d,, then there is a simple method of determining the function R(d) for
the product source. In fact, we shall show that R(d) is obtained by adding both coordinates of
the curves R (d,) and R,(d,) at points on the two curves having the same slope. The set of
points obtained in this manner is the curve R(d). Furthermore, a probability assignment to
obtain any point of R(d) is the product of the assignments for the component points.

We shall first show that given any assignment g, (j, j) for the product source, we can do
at least as well in the minimizing process using an assignment of the form g, (j) g;" (j’) where
q and g’ are derived from the given g, / (j, j*). Namely, let

> Pirq.i(j.j) .
(Y]

q:(j)

qr () = X Piqis (. J) .

ij

We see that these are non-negative and, summed on j and j* respectively, give 1, so they are
satisfactory transition probabilities. Also the assignment q,(j) ¢/’ (j’) gives the same total
distortion as the assignment ¢, / (j,j"). The former is
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_ Z ; P, P q;()) qtl"(j,)[dij + d,"'j']

]

3 Pigi(dy + X Pigi(j) diy
ij ey

Z P, P} qi,i'(j,j')[dij + d:;] -
ii

i

This last may be recognized as the distortion with ¢, ;/ (j,j).

On the other hand, the mutual information R is decreased or left constant if we use
q:(j) qi (j) instead of q; /(j,j'). In fact, this average mutual information can be written in
terms of entropies as follows (using asterisks for entropies with the assignment q,(j) q;' (j")
and none for the assignment ¢; / (j,j’)). We have

r=H(i, i) - HG, i'lj, j")
2 H(i,i") = H(lj) = H('|j")
= Hi,i") = H"(ilj) - H"("]j") -

Here we use the fact that with our definition of q;(j) and g} (j") we have Pr* (i|j) = Pr(i|j)
and Pr*(i’|j") = pr(i’|j’). (This follows immediately on writing out these probabilities.)
Now, using the fact that the sources are independent, H(i,i’) = H(i) + H(i")
= H"(i) + H*(I"). Hence our last reduction above is equal to R*. This is the desired
conclusion.

It follows that any point on the R(d) curve for the product source is obtained by an
independent or product assignment q,(j) ¢i’(j’), and consequently is the sum in both
coordinates of a pair of points on the two curves. The best choice for a given distortion d is
clearly given by

R(d) = min [R,(1) + Ry(d - D)] ,
t

and this minimum will occur when

d d
ER'(I) = E—Rz(d— 1) .

Thus the component points to be added are points where the component curves have the same
slope. The convexity of these curves insures the uniqueness of this pair for any particular d.

The Lower Bound on Distortion for a Given Channel Capacity. The importance of the
R(d) function is that it determines the channel capacity required to send at a certain rate and
with a certain minimum distortion. Consider the following situation. We have given an
independent letter source with probabilities P; for the different possible letters. We have given
a single-letter distortion measure d;; which leads to the rate distortion function R(d). Finally,
there is a memoryless discrete channel K of capacity C bits per second (we assume that this
channel may be used once each second). We wish to transmit words of length ¢ from the source
over the channel with a block code. The length of the code words in the channel is n. What is
the lowest distortion d that might be obtained with a code and a decoding system of this sort?

Theorem 1. Under the assumptions given above it is not possible to have a code with
distortion d smaller than the (minimum) d”* satisfying
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R(d") = %C,

, where ¢ is the function inverse to R (d).

or, equivalently, in any code, d = ¢ ’t—l c

This theorem, and a converse positive result to be given later, show that R(d) may be
thought of as the equivalent rate of the source for a given distortion d. Theorem 1 asserts that
for the distortion d and ¢ letters of text, one must supply in the channel at least ¢ R(d) total bits
of capacity spread over the n uses of the channel in the code. The converse theorem will show
that by taking n and ¢ sufficiently large and with suitable codes it is possible to approach this
limiting curve.

To prove Theorem 1, suppose that we have given a block code which encodes all message
words of length ¢ into channel words of length n and a decoding procedure for interpreting
channel output words of length n into Z words of length . Let a message word be represented
by m = m;, m,,...,m,. A channel input word is X = x;, x,,...,x,. A channel output
wordisY = y,,y,,...,y, and a reproduced, or Z, wordis Z = z,, z,,...,z,. By the given
code and decoding system, X is a function of m and Z is a function of Y. The m; are chosen
independently according to the letter probabilities, and the channel transition probabilities give
a set of conditional probabilities P(y|x) applying to each x;, y; pair. Finally, the source and
channel are independent in the sense that P(Y|m, X) = P(Y|X).

We wish first to show that H(m|Z) 2 H(m) — nC. We have that H(m|Z) 2 H(m|Y)
(since Z is a function of Y) and also that H(m|Y) 2 H(X|Y) — H(X) + H(m). This last is
because, from the independence condition above, H(Y|m,X) = H(Y|X), so
H(Y,m, X)-H(m,X) =H(X,Y) - HX). But Him, X) = H(m), since X is a function of
m, and for the same reason H(m, X, Y) = H(m, Y). Hence, rearranging, we have

H(X,Y) = Hm,Y) + HX) - Him, X)
=H(m,Y) + HXX) - H(m) ,
H(X|Y) < Hm|Y) + H(X) - H(m) .

Here we used H(m,x) = H(m) and then subtracted H(Y) from each side. Hence
H(m|Z) 2 H(X|Y) — H(X) + H(m).

Now we show that H(X|Y) = nC. This follows from a method we have used in other
similar situations, by considering the change in H(X|Y) with each received letter. Thus (using
Y, for the first k of the y letters, etc.),

AH(X|Y) = HX|y1, y2.-- 30 = HX|yi ya. oo Yiesr)
=HX, X)) —HWY) - HX, Y, yeer) + HY , yi40)
= Hyer |Yi) = Hyea 1X, Yy)
= Hyar 1Y) = HOwur 1Xis1)

S H(ygsr) = Hisr | Xesr)
<C.

Here we used the fact that the channel is memoryless, so P(y, . |X, Yi) = P(yi41|xis) and
therefore H(yi41|X, Yy) = H(yg+1|xx+1). Finally, C is the maximum possible
H(y) — H(y|X), giving the last inequality.
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Since the incremental change in H(X|Y ) is bounded by C, the total change after n steps is
bounded by nC. Consequently, the final H(X|Y) is at least the initial value H(X) less nC.
Therefore

H(m|Z) 2 H(X|Y) - H(X) + H(m)
2 H(X) — nC - HX) + Him) ,
H(m|Z) 2 H(m) ~ nC . (€))

We now wish to overbound H(m|Z) in terms of the distortion d. We have

H(m|Z) = Hmy m, ... m/|z) z; ... 2,)

IN

Z H(m,'|2i)

Z H(m,) - Z (H(m,) - H(m,|zi)) .

The quantity H(m;) ~ H(m,|z;) is the average mutual information between original message
letter m; and the reproduced letter z;. If we let d; be the distortion between these letters, then
R(d,) (the rate-distortion function evaluated for this d,) satisfies

R(d,) < H(m,) - H(m,lz,—) .
since R(d;) is the minimum mutual information for the distortion d;. Hence our inequality
may be written
! t
H(m|Z) < ¥ H(m;) - ¥ R(d,) .
i=1 i=1
Using now the fact that R(d) is a convex downward function, we have
d;
z -

i

H(m|Z) < Y H(m;) - tR

d:
T’ = d, the overall distortion of the system, so

But Y
i

H(m|Z) < ¥, H(m,) - t R(d) .

Combining this with our previous inequality (1) and using the independent letter assumption,
we have H(m) = Y H(m;),so

H(m) — nC < H(m) - tR(d) ,
nC 2 tR(d) .

This is essentially the result stated in Theorem 1.

It should be noted that the result in the theorem is an assertion about the minimum
distortion after any finite number n of uses of the channel. It is not an asymptotic result for
large n. Also, as seen by the method of proof, it applies to any code, block or variable length,
provided only that after n uses of the channel, ¢ (or more) letters are reproduced at the receiving
point, whatever the received sequence may be.
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The Coding Theorem for a Single-Letter Distortion Measure. We now prove a positive
coding theorem corresponding to the negative statements of Theorem 1; namely, that it is
possible to approach the lower bound of distortion for a given ratio of number n of channel
letters to t message letters. We consider then a source of message letters and single-letter
distortion measure d,;. More generally than Theorem 1, however, this source may be ergodic;
it is not necessarily an independent letter source. This more general situation will be helpful in
a later generalization of the theorem. For an ergodic source there will still, of course, be letter
probabilities P;, and we could determine the rate distortion function R(d) based on these
probabilities as though it were an independent letter source.

We first establish the following result.

Lemma 1. Suppose that we have an ergodic source with letter probabilities P;, a single-
letter distortion measure d;, and a set of assigned transition probabilities g, (/) such that
Y Pigqi(jydy=d",
iJj

q,(j)
Pigi(j)log ————— =
Z Praiploe 5550
k

Let Q(Z) be the probability measure of a sequence Z in the space of reproduced sequences if
successive source letters had independent transition probabilities ¢, () into the Z alphabet.
Then, given € > 0, for all sufficiently large block lengths ¢, there exists a set o of messages of
length ¢ from the source with total source probability P(at) = 1 — ¢, and for each m belonging
to o a set of Z blocks of length ¢, say B,,, such that

1) dm,Z)<d +¢ for meoandZe B, ,

2) OB, 2e RO forany me o .

In other words, and somewhat roughly, long messages will, with high probability, fall in a
certain subset o.. Each member m of this subset has an associated set of Z sequences f3,,. The
members of B,, have only (at most) slightly more than d* distortion with m and the logarithm
of the total probability of B, in the Q measure is underbounded by e~/ * €,

To prove the lemma, consider source blocks of length r and the Z blocks of length t.
Consider the two random variables, the distortion d between an m block and a Z block and the
(unaveraged) mutual information type of expression below:

d=1 % dy.
Pr(z;|m;)
0(z;)

Here m;, is the i"™ letter of a source block m, and z, is the i™ letter of a Z block. Both R and d
are random variables, taking on different values corresponding to different choices of m and Z.
They are both the sum of ¢t random variables which are identical functions of the joint (m, Z)
process except for shifting along over ¢ positions.

1 I Pr(Z|m)

I(m; Z) tog 02

=—;~Zlog

Since the joint process is ergodic, we may apply the ergodic theorem and assert that when ¢
is large, d and R will, with probability nearly 1, be close to their expected values. In particular,
for any given £, and §, if ¢ is sufficiently large, we will have with probability 2 1 - 52/2 that
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dSZPiqi(j)dij+el=d*+€l'
ij

Also, with probability at least 1 — §2/2 we will have

. q:(Jj)
1<y Piqi(j) log A
iJ J

+€& =Rd") +¢g,.

Let y be the set of (m, Z) pairs for which both inequalities hold. Then Pr(y) 2 1 - 8?2 because
each of the conditions can exclude, at most, a set of probability 8%/2. Now for any m, define
B, as the set of Z such that (m, Z) belongs to .

We have
Pr(B,|m)21-8

on a set of o of m whose total probability satisfies Pr(a) = 1 — 8. This is true, since if it were
not we would have a total probability in the set complementary to y of at least § - 8 = &%, a
contradiction. The first  would be the probability of m not being in o, and the second & the
conditional probability for such m’s of Z not being in B,,. The product gives a lower bound on
the probability of the complementary set to .
IfZe B,,, then

1 Pr(Z|m,)

—log ———=— < RWd") +¢,,

T e

Pr(Z|m)) < Q(Z) '™

0(2) 2 Pr(Z|m,)e "R +e0

Sum this inequality overallZ € B, :

0B = X Q)

Ze B,

27Ty PrZimy) .
Ze B,

If m e o then Y Pr(Zlm)21-298 as seen above. Hence the inequality can be
ZeB,,
continued to give

OBm)2(1=-8e ™" mea.

We have now established that for any €, > 0and & > O there exists a set o of m’s and sets
B, of Z’s defined for each m with the three properties
1) Pr(a) 21-29,
2) d(Z,m)<d’ +¢,, ifZe B,,.

~1R +€,)

3) QB,)=2(1-8)e , ifme a,

provided that the block length ¢ is sufficiently large. Clearly, this implies that for any € > 0
and sufficiently large ¢ we will have
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1) Pr(a) 21 —k¢,
2) d(Z,m) <d" +e¢, ifZe B,

3) Q(Bm) 2 e_'(R+E),

since we may take the £, and 3 sufficiently small to satisfy these simplified conditions in which
we use the same €. This concludes the proof of the lemma.

Before attacking the general coding problem, we consider the problem indicated
schematically in Fig. 4. We have an ergodic source and a single-letter distortion measure that
gives the rate distortion function R(d). It is desired to encode this by a coder into sequences u
in such a way that the original messages can be reproduced by the reproducer with an average
distortion that does not exceed d* (d" being some fixed tolerable distortion level). We are
considering here block coding devices for both boxes. Thus the coder takes as input successive
blocks of length ¢ produced by the source and has, as output, corresponding to each possible m
block, a block from a u alphabet.

ERGODIC
SOURCE [—=— CODER -— REPRODUGER -
R(d) v
H(u)< R(d*) + € AVERAGE DISTORTION

WITHmM IS<d*

Fig. 4.

The aim is to do the coding in such a way as to keep the entropy of the u sequences as low
as possible, subject to this requirement of reproducibility with distortion d* or less. Here the
entropy to which we are referring is the entropy per letter of the original source. Alternatively,
we might think of the source as producing one letter per second and we are then interested in
the u entropy per second.

We shall show that, for any ¢" and any € > 0, coders and reproducers can be found that are
such that H(u) < R(d*) + €. As € — 0 the block length involved in the code in general
increases. This result, of course, is closely related to our interpretation of R(d") as the
equivalent rate of the source for distortion d*. It will follow readily from the following
theorem.

Theorem 2. Given an ergodic source, a distortion measure d;;, and rate distortion function
R(d) (based on the single-letter frequencies of the source), givend” 2 d,;, and § > 0, for any
sufficiently large ¢ there exists a set A containing M words of length ¢ in the Z alphabet with the
following properties:

l)—:— logM < R(d") + 8,
2) the average distortion between an m word of length r and its nearest (i.e., least distortion)
word in the set A is less than or equal tod ™ + d.

This theorem implies (except for the & in property (2) which will later be eliminated) the
results mentioned above. Namely, for the coder, one merely uses a device that maps any m
word into its nearest member of A. The reproducer is then merely an identity transformation.
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The entropy per source letter of the coded sequence cannot exceed R(d*) + 8, since this would

be maximized at 7 log M if all of the M members of A were equally probable and —:— log M is,
by the theorem, less than or equal to R(d*) + 9.

This theorem will be proved by a random coding argument. We shall consider an ensemble
of ways of selecting the members of A and estimate the average distortion for this ensemble.
From the bounds on the average it will follow that at least one code exists in the ensemble with
the desired properties.

The ensemble of codes is defined as follows. For the given d* there will be a set of
transition probabilities ¢;(j) that result in the minimum R, that is, R(d"). The set of letter
probabilities, together with these transition probabilities, induce a measure Q(Z) in the space of
reproduced words. The Q measure for a single Z letter, say letter j, is Y, P; q;(j). The Q

1

t
measure for a Z word consisting of letters j |, j,,...,j, is Q(Z) = [] [Z P,q,(jk)].
k=1 % i

In the ensemble of codes of length ¢, the integers from 1 to M are mapped into Z words of
length ¢ in all possible ways. An integer is mapped into a particular word Z,, say, with
probability Q(Z,), and the probabilities for different integers are statistically independent.
This is exactly the same process as that of constructing a random code ensemble for a
memoryless channel, except that here the integers are mapped into the Z space by using the
Q(Z) measure. Thus we arrive at a set of codes (if there are f letters in the Z alphabet there will
be f ™ different codes in the ensemble) and each code wil;whave an associated probability. The
code in which integer / is mapped into Z; has probability [T Q(Z,).

i=1

We now use Lemma 1 to bound the average distortion for this ensemble of codes (using the
probabilities associated with the codes in calculating the average). Note, first, that in the
ensemble of codes if Q(P) is the Q measure of a set B of Z words, then the probability that this
set contains no code words is [1 — Q(B)]", that is, the product of the probability that code
word 1 is not in B, that for code word 2, etc. Hence the probability that B contains at least one
code word is 1 — [1 — Q(B)]M . Now, referring to Lemma 1, the average distortion may be
bounded by

d<edy, +[1 - 0B dpa + (d* +€) .

Here d,,, is the largest possible distortion between an M letter and a Z letter. The first term,
€d .. arises from message words m which are not in the set o. These have total probability
less than or equal to € and, when they occur, average distortion less than or equal to d ,,. The
second term overbounds the contribution that is due to cases in which the set B, for the
message m does not contain at least one code word. The probability in the ensemble of this is
certainly bounded by [1 - Q(B,,)]1™, and the distortion is necessarily bounded by d ;.
Finally, if the message is in o and there is at least one code word in B, the distortion is
bounded by d* + €, according to Lemmal. Now, Q(B,) = e "Ré)+8  Also, for
0<x< 1,

e Y
2

1
L L_log(l—x) i
(1-x)' =¢" <e

By
-1+ = -0
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(using the alternating and monotonically decreasing nature of the terms of the logarithmic
expansion). Hence

[1 = QB )IM < (1 = e MREI+OM

and replacing the exponent by
M e!(RW) +€) ,—t(R") +€)

we see that this is

Sexp (-t e "RAI+O My

If we choose for M, the number of points, the value e"®(@) + 28) (or, if this is not an integer, the
smallest integer exceeding this quantity), then the expression given above is bounded by
exp { - e'®}. Thus the average distortion is bounded with this choice of M by

d<edpy +eXp{—"% €€ ) dpy +d* +¢

<d* +39,

provided that € in Lemma 1 is chosen small enough to make (€d,, + 1) < 8/2 and then ¢ is
chosen large enough to make exp {— “e'®} d . < 8/2. We also require that € be small
enough and ¢ large enough to make M , the integer just greater than or equal to e!(RWd) +28)
less than or equal to ¢'®@) *8  Since Lemma 1 holds for all sufficiently large ¢ and any
positive &, these can all be simultaneously satisfied.

We have shown, then, that the conditions of the theorem are satisfied by the average
distortion of the ensemble of codes. It follows that there exists at least one specific code in the
ensemble whose average distortion is bounded by d* + €. This concludes the proof.

Corollary: Theorem 2 remains true if 8 is replaced by 0 in property (1). It also remains true
if the § in property (1) is retained and the & in property (2) is replaced by 0, provided in this
case thatd™ > d;,, the smallest d for which R (d) is defined.

This corollary asserts that we can attain (or do better than) one coordinate of the R(d) curve
and approximate, as closely as desired, the other, except possibly for the d, point. To prove
the first statement of the corollary, note first that it is true for d* = d,, the value for which
R(d;) = 0. Indeed, we may achieve the point d= d, with M = 1 and a code of length 1,
using only the Z word consisting of the single Z letter which gives this point of the curve. For
d i, < d* < d,, apply Theorem 2 to approximate d** = d* + 8/2. Since the curve is strictly

decreasing, this approximation will lead to codes with d < d* + & and —:— log M < R(d"), if
the 8 in Theorem 2 is made sufficiently small.

The second simplification in the corollary is carried out in a similar fashion, by choosing a
d”* slightly smaller than the desired d” that is such that R(d"*) = R(d") + &/2, and by using
Theorem 2 to approximate this point of the curve.

Now suppose we have a memoryless channel of capacity C. By the coding theorem for
such channels it is possible to construct codes and decoding systems with rate approximating C
(per use of the channel) and error probability < €, for any £, > 0. We may combine such a
code for a channel with a code of the type mentioned above for a source at a given distortion
level d* and obtain the following result.

Theorem 3. Given a source characterized by R(d) and a memoryless channel with capacity
C > 0,givene > Oandd” > d,. there exists, for sufficiently large  and », a block code that
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maps source words of length ¢ into channel words of length n and a decoding system that maps
channel output words of length » into reproduced words of length ¢ which satisfy

Hd<ad,

2)—"7‘3—5R(d*)+e.

Thus we may attain a desired distortion level d* (greater than d,;,) and at the same time
approximate using the channel at a rate corresponding to R(d*). This is done, as in the
corollary stated above, by approximating the R(d) curve slightly to the left of d”, say, at
R(d*) — 8. Such a code will have M = 'R =8 +3) words, where 8, can be made small
by taking ¢ large. A code for the channel is constructed with M words and of length n, the

largest integer satisfying !%‘- < R(d” - &) + §,. By choosing ¢ sufficiently large, this will

approach zero error probability, since it corresponds to a rate less than channel capacity. If
these two codes are combined, it produces an over-all code with average distortion at mostd*.

Numerical Results for Some Simple Channels. In this section some numerical results will be
given for certain simple channels and sources. Consider, first, the binary independent letter
source with equiprobable letters and suppose that the distortion measure is the error probability
(per digit). This falls into the class for which a simple explicit solution can be given. The R(d)
curve, in fact, is

R(d) =1+dlog,d+ (1 —d)log, (1 —d).

This, of course, is the capacity of a symmetric binary channel with probabilities d and (1 — d),
the reason being that this is the probability assignment g;(j) which solves the minimizing
problem.

This R(d) curve is shown in Fig. 5. Also plotted are a number of points corresponding to
specific simple codes, with the assumption of a noiseless binary channel. These will give some
idea of how well the lower bound may be approximated by simple means. One point,d = 0, is
obtained at rate R = 1 simply by sending the binary digits through the channel. Other simple
codes which encode 2, 3, 4 and 5 message letters into one channel letter are the following. For
the ratio 3 or 5, encode message sequences of three or five digits into 0 or 1 accordingly as the
sequence contains more than half zeros or more than half ones. For the ratios 2 and 4, the same
procedure is followed, while sequences with half zeros and half ones are encoded into O.

At the receiving point, a 0 is decoded into a sequence of zeros of the appropriate length and
a 1 into a sequence of ones. These rather degenerate codes are plotted in Fig. 5 with crosses.
Simple though they are, with block length of the channel sequences only one, they still
approximate to some extent the lower bound.

Plotted on the same curve are square points corresponding to the well-known single-error
correcting codes with block lengths 3, 7, 15 and 31. These codes are used backwards here —
any message in the 15-dimensional cube, for example, is transmitted over the channel as the
eleven message digits of its nearest code point. At the receiving point, the corresponding
fifteen-digit message is reconstructed. This can differ at most in one place from the original

. . .11
message. Thus for this case the ratio of channel to message letters is T and the error

probability is easily found to be -% This series of points gives a closer approximation to the

lower bound.
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It is possible to fill in densely between points of these discrete series by a technique of
mixing codes. For example, one may alternate in using two codes. More generally, one may
mix them in proportions A and 1 — A, where A is any rational number. Such a mixture gives a

code with a new ratio R of message to channel letters, given by ri Rl_ + QT—ZL—)— where
1 2
R, and R, are the ratios for the given codes, and with new error probability
ARIP“ + (] - A)Rz P('Z

Pe = AR, + (1 - M) R,

This interpolation gives a convex upward curve between any two code points. When applied to
the series of simple codes and single-error correcting codes in Fig. 5, it produces the dotted-line
interpolations indicated.

Another channel was also considered in this connection, namely, the binary symmetric
channel of capacity C = 4. This has probabilities 0.89 that a digit is received correctly and
0.11 incorrectly. Here the series of points (Fig. 6) for simple codes actually touches the lower
bound at the point R = '4. This is because the channel itself, without coding, produces just this
error probability. Any symmetric binary channel will have one point that can be attained
exactly by means of straight transmission.

Figure 7 shows the R(d) curve for another simple situation, a binary independent letter
source but with the reproduced Z alphabet consisting of three letters, 0, 1, and ?. The distortion
measure is zero for a correct digit, one for an incorrect digit, and 0.25 for ?. In the same figure
is shown, for comparison, the R(d) curve without the ? option.

Figure 8 shows the R(d) curves for independent letter sources with various numbers of
equiprobable letters in the alphabet (2, 3, 4, 5, 10, 100). Here again the distortion measure is
taken to be error probability (per digit). With b letters in the alphabet the R(d, b) curve is
given by

R(d,b) = log, b+ dlog, d+ (1 -4d) log, ;—!

Generalization to Continuous Cases. We will now sketch briefly a generalization of the
single-letter distortion measure to cases where the input and output alphabets are not restricted
to finite sets but vary over arbitrary spaces.

Assume a message alphabet A = {m]} and a reproduced letter alphabet B = {z}. For each
pair (m, z) in these alphabets let d(m, z) be a non-negative number, the distortion if m is
reproduced as z. Further, we assume a probability measure P defined over a Borel field of
subsets of the A space. Finally, we require that, for each z belonging to B, d(m, z) is a
measurable function with finite expectation.

Consider a finite selection of points z; (i = 1,2,...,/) from the B space, and a
measurable assignment of transition probabilities g(z;|m). (That is, for each i, g(z;|m) is a
measurable function in the A space.) For such a choice of z; and assignment g(z; |m), a mutual
information and an average distortion are determined:

q(zi|m)

Y f q(z;|m) log dP(m) ,
i j q(z;|m)dP(m)

R

QU
I

3 [ dim. z,) gz, |m) dP(m) .
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We define the rate distortion function R(d") for such a case as the greatest lower bound of
R when the set of points z; is varied (both in choice and number) and the q(z;|m) is varied over
measurable transition probabilities, subject to keeping the distortion at the level d* or less.

Most of the results we have found for the finite alphabet case carry through easily under this
generalization. In particular, the convexity property of the R(d) curve still holds. In fact, if
R(d) can be approximated to within € by a choice z, and q(z;|m,) and R(d") by a choice of z;
and ¢’ (z/|m), then one considers the choice z;” consisting of the union of the points z; and z/,
together with ¢”’ (z/"|m) = Y [q(z{’|m) + q’(z]"|m)] (using zero if q(z""|m) or q" (2" |m)
is undefined). This leads, by the convexity of R and by the linearity of d, to an assignment for
d” ='%d+'d, giving an R”" within € of the midpoint of the line joining d R(d) and
d’R(d’). It follows, since € can be made arbitrarily small, that the greatest lower bound of
R(d’") is on or below this midpoint.

In the general case it is, however, not necessarily true that the R(d) curve approaches a
finite end-point when d decreases toward its minimum possible value. The behavior may be as
indicated in Fig. 9 with R(d) going to infinity as d goes to d ;. On the other hand, under the
conditions we have stated, there is a finite d,,,, for which R(d,x) = 0. This value of d is
given by

dmax = 8.1.b. E[d(m, 2)] .

The negative part of the coding theorem goes through in a manner essentially the same as
the finite alphabet case, it being assumed that the only allowed coding functions from the
source sequences to channel inputs correspond to measurable subsets of the source space. (If
this assumption were not made, the average distortion would not, in general, even be defined.)
The various inequalities may be followed through, changing the appropriate sums in the A
space to integrals and resulting in the corresponding negative theorem.

For the positive coding theorem also, substantially the same argument may be used with an
additional € involved to account for the approximation to the greatest lower bound of R(d) with
a finite selection of z; points. Thus one chooses a set of z; to approximate the R(d) curve to
within €, and then proceeds with the random coding method. The only point to be noted is that
the d,,, term must now be handled in a slightly different fashion. To each code in the
ensemble one may add a particular point, say zq, and replace d ., by E(d(m, z¢)), a finite
quantity. The results of the theorem then follow.

Difference Distortion Measure. A special class of distortion measures for certain continuous
cases of some importance and for which more explicit results can be obtained will now be
considered. For these the m and z spaces are both the sets of all real numbers. The distortion
measure d(m, z) will be called a difference distortion measure if it is a function only of the
difference m — z, thus d(m, z) = d(m — z). A common example is the squared error measure,
dim,z) = (m - z)? or, again, the absolute error criteriond(m, z) = |m - z}

We will develop a lower bound on R (d) for a difference distortion measure. First we define
a function ¢(d) for a given difference measure d(u) as follows. Consider an arbitrary
distribution function G(u) and let H be its entropy and d the average distortion between a
random variable with a given distribution and zero. Thus

H =~ | logdGu) dGu) .

d

7 dw) dGuy .
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We wish to vary the distribution G (u), keeping d < d”, and seek the maximum H. The least
upper bound, if finite, is clearly actually attained as a maximum for some distribution. This
maximum H for a given d* we call ¢(d"), and a corresponding distribution function is called a
maximizing distribution for this d".

Now suppose we have a distribution function for the m space (generalized letter
probabilities) P(m), with entropy H(m). We wish to show that

R(d) = H(m) - 6(d) .

Let z; be a set of z points and g(z;|m) an assignment of transition probabilities. Then the
mutual information between m and z may be written

R =Hm) - ¥ Q H(m|z)) .

1
where Q; is the resulting probability of z;. If we let d; be the average distortion between m and
z;, then
H(m|z;) < ¢(d;) .
This is because ¢(d) was the maximum H for a given average distortion and also because the

distortion is a function only of the difference between m and z, so that this maximizing value
applies for any z;. Thus

R2H(m) - ¥ Q. 6(d;) .
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Now ¢(d) is a concave function. This is a consequence of the concavity of entropy
considered as a function of a distribution function and the linearity of d in the same space of
distribution functions, by an argument identical with that used previously. Hence
Z 0 d(d;) < ¢( Z Q;d;) = ¢(d), where d is the average distortion with the choice z; and

the assigned transmon probabilities. It follows that
r2H(m) - ¢(d) .

This is true for any assignment z; and g(z;|m), and proves the desired result.

If, for a particular P(m) and d(u), assignments can be made which approach this lower
bound, then, of course, this is the R(d) function. Such is the case, for example, if P(m) is
Gaussian and d(u) = u? (mean square error measure of distortion). Suppose that the message
has variance 62, and consider a Gaussian distribution of mean zero and variance 6> — d in the
z space. (If this is zero or negative, clearly R(d) = 0 by using only the z point zero.) Let the
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conditional probabilities g(m|z) be Gaussian with variance d. This is consistent with the
Gaussian character of P(m), since normal distributions convolve to give normal distributions
with the sum of the individual variances. These assignments determine the conditional
probability measure q(z|m), also then normal.

A simple calculation shows that this assignment attains the lower bound given above. The
resulting R (d) curve is

log -
R(d) = Vd

This is shown for 6> = 1 in Fig. 9.

Definition of a Local Distortion Measure. Thus far we have considered only a distortion
measure d;; (or d(m, z)) which depends upon comparison of a message letter with the
corresponding reproduced letter, this letter-to-letter distortion to be averaged over the length of
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message and over the set of possible messages and possible reproduced messages. In many
practical cases, however, this type of measure is not sufficiently general. The seriousness of a
particular type of error often depends on the context.

Thus in transmitting a stock market quotation, say: ‘‘A.T.&T. 5900 shares, closing 194,”
an error in the 9 of 5900 shares would normally be much less serious than an error in the 9 of
the closing price.

We shall now consider a distortion measure that depends upon local context and, in fact,
compares blocks of g message letters with the corresponding blocks of g letters of the
reproduced message.

A local distortion measure of span g is a function d(m,, m,, ..., mg; 2y, 22,...,2,) of
message sequences of length g and reproduced message sequences of length g (from a possibly
different or larger alphabet) with the property that 4 =2 0. The distortion between
m=m;,my,...,mandz = z,,2,,...,2, (t 2 g)is defined by

+1

1 &
dim,Z) = ﬁ Y d(my, Mypys e s Mpyg 1 5 Zks Zkado oo Zkag=1) -
—8 k=1

The distortion of a block code in which message m and reproduced version Z occur with
probability P(m, Z) is defined by

d=Y P(m,Z)dm,2) .
m,Z2

In other words, we assume, with a local distortion measure, that the evaluation of an entire
system is obtained by averaging the distortions for all block comparisons of length g each with
its probability of occurrence a weighting factor.

The Functions R, (d) and R(d) for a Local Distortion Measure and Ergodic Source.
Assume that we have given an ergodic message source and a local distortion measure.
Consider blocks of m message letters with their associated probabilities (as determined by the
source) together with possible blocks Z of reproduced message of length n. Let an arbitrary
assignment of transition probabilities from the m blocks to the Z blocks, g(Z|m), be made. For
this assignment we can calculate two quantities: 1) the average mutual information per letter

R = 1 E l]og —‘%(—lz%’l} and 2) the average distortion if the m’s were reproduced as Z’s with
n
the probabilities g(Z|m). This is d = Y, P(m, Z) d(m, Z). By variation of q(Z|m), while

m,Z
holding d < d”, we can, in principle, find the minimum R for each d”. This we call R, (d").

The minimizing problem here is identical with that discussed previously if we think of m
and Z as individual letters in a (large) alphabet, and various results relating to this minimum can
be applied. In particular, R ,(d) is a convex downward function.

We now define the rate distortion function for the given source relative to the distortion
measure as

R(d) = liminf R,(d) .
n = oo

It can be shown, by a direct but tedious argument that we shall omit, that the *‘inf’’ may be
deleted from this definition. In other words, R, (d) approaches a limit as n — oo.
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We are now in a position to prove coding theorems for a general ergodic source with a local
distortion measure.

The Positive Coding Theorem for a Local Distortion Measure.

Theorem 4. Suppose that we are given an ergodic source and a local distortion measure
with rate distortion function R(d). Let K be a memoryless discrete channel with capacity C, let
d” be a value of distortion, and let € be a positive number. Then there exists a block code with

L Lo C
distortion less than or equal to d* + €, and a signaling rate at least 7 €| message letters

per channel letter.
Proof. Choose an n; so that R,,I(d') - R(d") <—§— and, also, so large that

== dpax < —38- Now consider blocks of length n; and ‘‘letters’’ of an enlarged alphabet.

Using Theorem 3 we can construct a block code using sufficiently long sequences of these
“‘letters’’ signaling at a rate close to (say within €/3 of) R, (d *)/C (in terms of original

. . . € .
message letters) and with distortion less than d* + —. It must be remembered that this
8 3

distortion is based on a single ‘‘letter’’ comparison. However, the distortion by the given local
distortion measure will differ from this only because of overlap comparisons (g for each n,

. . € .
letters of message) and hence the discrepancy is, at most, £ dmax < 3 It follows that this
n,

code signals at a rate within € of R(d ") and at a distortion within € of d".

The Converse Coding Theorem.

Theorem 5. Suppose that we are given an ergodic source and a local distortion measure
with rate distortion function R(d). Let K be a memoryless discrete channel with capacity C, let
d” be a value of distortion, and let € be a positive number. Then there exists 7y which is such
that any code transmitting ¢ > ¢, message letters with n uses of the channel at distortion d*, or
less, satisfies

n
t

C2>2Rd") -¢.

That is, the channel capacity bits used per message letter must be nearly R(d") for long
transmissions.

Proof. Choose t( so that for ¢ > 1y we have R,(d) > R(d) - €. Since R(d) was defined
as lim inf R, (d), this is possible. Suppose that we have a code for such a ¢t > t; which maps
= oo

sequences m consisting of t message letters into sequences X of n channel letters and decodes
sequences Y of n channel output letters into sequences Z of reproduced messages. The channel
will have, from its transition probabilities, some P(Y|X). Furthermore, from the encoding and
decoding functions, we shall have X = f(m) and Z = g(Y). Finally there will be, from the
source, probabilities for the message sequences P(m). By the encoding function f(m) this will
induce a set of probabilities P(X) for input sequences. If the channel capacity is C, the average
mutual information R (X, Y) between input and output sequences must satisfy

_ P(X|V)
R(X,Y) = Elog —7n= < nC

since nC is the maximum possible value of this quantity when P(X) is varied. Also, since X is
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a function of m and Z is a function of Y, we have
P(m|Z)

<
POm) <SRX,Y) £nC.

R(m,Z) = E log
The coding system in question amounts, overall, to a set of conditional probabilities from m
sequences to Z sequences as determined by the two coding functions and the transition
probabilities. If the distortion of the overall system is less than or equal to d”, then

tR,(d") = miln R(m, Z) is certainly less than or equal to the particular R(m, Z) obtained
P(Z|m)
with the probabilities given by the channel and coding system. (The ¢ factor is present because

R ,(d) is measured on a per message letter basis, while the R(m, Z) quantities are for sequences
of length ¢.) Thus

(R, (d*) < R(m,Z) < nC ,
t(R(d") —€) < nC,

%CZRMU—E.

This is the conclusion of the theorem.

Notice from the method of proof that again the code used need not be a block code,
provided only that, after n uses of the channel,  recovered letters are written down. If one has
some kind of variable-length code and, starting at time zero, uses this code continually, the
inequality of the theorem will hold for any finite time after 1, message letters have been
recovered; and of course as longer and longer blocks are compared, € — 0. It is even possible
to generalize this to variable-length codes in which, after n uses of the channel, the number of
recovered message letters is a random variable depending, perhaps, on the particular message
and the particular chance operation of the channel. If, as is usually the case in such codes, there
exists an average signaling rate with the properties that after n uses of the channel then, with
probability nearly one, ¢ letters will be written down, with ¢ lying between ¢, (1 — 8) and
t;(1 + 3) (the d — 0 as n — o), then essentially the same theorem applies, using the mean ¢,
for .

Channels with Memory. Finally we mention that while we have, in the above discussion,
assumed the channel to be memoryless, very similar results, both of positive and negative type,
can be obtained for channels with memory.

For a channel with memory one may define a capacity C, for the first n use of the channel

starting at state so3. This C, is — times the maximum average mutual information between
n

input sequences of length n and resulting output sequences when the probabilities assigned the
input sequences of length n are varied. The lower bound on distortion after n uses of the
channel is that given by Theorem 1 using C,, for C.

We can also define the capacity C for such a channel as C = lim sup C,. The positive

n = oo

parts of the theorem then state that one can find arbitrarily long block codes satisfying
Theorem 3. In most channels of interest, of course, historical influences die out in such a way
as to make C, — C as n — oo. For memoryless channels, C, = C for all n.

Duality of a Source and a Channel. There is a curious and provocative duality between the
properties of a source with a distortion measure and those of a channel. This duality is
enhanced if we consider channels in which there is a ‘‘cost’’ associated with the different input
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letters, and it is desired to find the capacity subject to the constraint that the expected cost not

exceed a certain quantity. Thus input letter i might have cost a; and we wish to find the

capacity with the side condition Y P;a; < a, say, where P; is the probability of using input
i

letter i. This problem amounts, mathematically, to maximizing a mutual information under
variation of the P; with a linear inequality as constraint. The solution of this problem leads to a
capacity cost function C(a) for the channel. It can be shown readily that this function is
concave downward. Solving this problem corresponds, in a sense, to finding a source that is
just right for the channel and the desired cost.

In a somewhat dual way, evaluating the rate distortion function R(d) for a source amounts,
mathematically, to minimizing a mutual information under variation of the ¢;(j), again with a
linear inequality as constraint. The solution leads to a function R(d) which is convex
downward. Solving this problem corresponds to finding a channel that is just right for the
source and allowed distortion level. This duality can be pursued further and is related to a
duality between past and future and the notions of control and knowledge. Thus we may have
knowledge of the past but cannot control it; we may control the future but have no knowledge
of it.
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