
Naked objects: a technique for designing more expressive
systems

Richard Pawson
Computer Sciences Corporation

and Computer Science Department,
Tdnity College, Dublin, IE
rpawson@csc;com

Robert Matthews
NakedObjects.org

ABSTRACT
Naked objects is an approach to systems design in which core
business objects show directly through to the user interface, and

in which all interaction consists of invoking methods on those

objects in the noun-verb style. One advantage of this approach

is that it reaults in systems that arc more expressive from the

viewpoint of the user: they treat the user like a problem solver,

not as merely a process-follower. Another advantage is that the
1:1 mapping between the user's representation and the

underlying model means that it is possible to auto-generate the

former from the latter, which yields benefits to the development

process. The authors have designed a Java-based, open source

toolkit called Naked Objects which facilitates this style of

development. This paper describes the design and operation of

the toolkit and its application to the prototyping of a core

business system. Some initial foedhack from the project is

provided, together with a list of future research directions both

for the toolkit and for a methodology to apply the naked objects

approach.

1. INTRODUCTION
Advocates of object-oriented user-interfaces (OOUIs) argue that

object-orientation is potentially a user concept. In an OOUI the

user can identify the objects that he or she is working with,

ascertain the behaviours offered by those objects and invoke

them directly on those objects. (OOUIs combine well both with

graphical representations and with the principles of direct

manipulation but these concepts should not be confused. You

can certainly have graphical, direct manipulation interfaces that
are not object-oriented: the point-and-click calculator is an

example, and it is most unfortunate that this is sometimes cited

as an example of an OOUI [2]. It is also possible to have a text-

based OOUI, as demonstrated in the earliest versions of

SmallTalk [7]. However, for the remainder of this paper where

we refer to an OOUI, we assume that it supports graphics and

direct manipulation.)

OOUIs provide a number of advantages to the user including

reduced modality [6], and greater expressiveness for the user

[10], and have become the norm for 'creative' applications such

as drawing, computer aided design (CAD), page make-up and

multimedia editing. OOUIs are far less common in transactional

business systems. This may be because the need for

expressiveness is less clear. It may also be because the
underlying structure of most transactional business applications,

comprising scripted procedures and data operations, does not

map well onto an OOUI.

Surprisingly, though, even where a transactional business

system is based upon a true business object model, the core

business objects are typically hidden from the user. The users

view of the system, and interaction with the system, continues to

be defined by a user interface that has been optimised to a
particular set of tasks. The artifacts of this user interface -

menus, buttons, forms, reports, dialogue boxes and message

windows - are common to most business systems. The user
would usually have no indication whether the corn of the system

was an object modal or a conventional composition of

functional procedures and data elements. And many software

designers would argue that this is right and proper: that one of

the purposes of multi-layered architectures is to shield the user

from the structure of the underlying software. Obj~t-

orientation, this view suggests, is a tool for analysts and/or

programmers, offering benefits such as improved development

productivity, soRware maintainability, or overall quality.

A few years ago, we became interested in trying to reconcile

these two views. There already exists a body of research on

combining OOUIs with object modelling techniques [13], but

we wanted to take a more radical step. We wanted to explore
the possibility of designing core business systems where there

was a 1:1 correspondence between the user's view and the

underlying business object model, and where all user

interactions would take the form of invoking a method upon an

instance of a core business object class, or a method on the class

itself. In other words the style of interaction would be entirely
noun-verb instead of the more common verb-nonn style used in

most core business systems [11]. Our goal was to eliminate

every other construct from the user int rface - no forms, no

dialogne boxes, no message windows - and get back to just the

business objects. We nicknamed this the 'naked objects'

approach.

A C M S I G P L A N No t i ce s 61 V. 36(12) D e c e m b e r 2001

We had two main hypotheses. The frost was that the naked

objects approach would lead to systems that were more

expressive from the perspective of the user. We meant

something more than just making it easier to realise the

functional benefits of OOUIs in core business systems. Rather

we sought to achieve what Hutchins, HoUan and Norman refer

to as 'direct engagement': "There are two major metaphors for

human-computer interaction: a conversation metaphor and a

model world metaphor. In a system built on the conversation

metaphor, the interface is a language medium in which the user

and the computer have a conversation about an assumed, but not

explicitly represented world. In this case, the interface is an

implied intermediary between the user and the world about

which things are said. In a system built on the model world

metaphor, the interface itself is a world where the user can act,

and that changes in state in response to user a c t i o n s . . .

Appropriate use of the model world metaphor can create the

sensation in the user of acting on the objects of the task domain

themselves."[4]. On a related theme Laurel suggests that

"Operating a computer program is all too often a second-person

experience: A person makes imperative statements, or pleas, to

the system and the system takes action, completely usurping the

role of agency . . . Even though we are in fact agents by virtue of

making choices and specifying action characteristics, these

shadowy forces manage to make us feel that we are patients -

those who are done unto rather than those who do."[9].

In other words, our first hypothesis was that systems based on

naked objects would empower the user. We recognised, even at

the outset, that not everyone would agree that empowering users

was important or even desirable in the context of key

operational business systems. However, our initial concern was

with whether it was possible to design such systems to be user-

empowering: if we proved that then we would return to the

business arguments for so doing, later.

The second initial hypothesis was that the naked objects

approach could offer several benefits to the development

process, irrespective of any desire to produce a different

experience for the end-user. I f the user-interface was envisaged

as a 1:1 mapping from the core business object model, then it

should be possible to generate one from the other, automatically.

This would save time and effort in development. More

importantly, perhaps, it would provide a common language

between users and developers, and this could change the whole

style of requirements gathering, prototyping and design. Many

people have discussed the advantages of objects for bridging the

semantic gap between programmers and business analysts, but

not typically between programmers and the end-users
themselves.

In this paper we describe the development of a toolkit to support

this approach, our early experiences of applying it, and some of

the evidence in support of our initial hypotheses. We then

describe our intentions for the future development of the toolkit,

some additional hypotheses concerning the benefits, and a more

formal programme of research to be conducted.

2. DESIGN AND OPERATION OF T H E

T O O L K I T

In 1999 we started to specify toolkit, which we now call Naked

Objectsk The toolkit is open source and can be downloaded

from vcww.nakedobjects.org. Being Java-based, the toolkit will

work happily on Windows, Mac, Linux and other client

platforms. Java is increasingly popular as a programming

language based on its suitability for adopting best-practice

design patterns, and its ease of refactoring. Allied to the J2EE

enterprise services, Java is well suited to the implementation of

transactional business systems. However, our decision to use

Java was also influenced by specific features of the language and

platform, such as the use of Interfaces to support polymorphism,

the idea of 'reflection' [1], whereby an object can be

interrogated by another object, at run-time, to reveal its

methods, and the ability to load new objects or changed object

definitions into the running system, dynamically.

Using Naked Objects, the programmer specifies the core

business objects (such as Customer, Order, Product) in the same

form as the 'model' objects would be specified in a classic

model-view-controller [8]arrangement. However, in Naked

Objects the programmer does not go on to specify any 'view'

and 'controller' objects - these responsibilities are provided,

transparently, by the toolkit in the form of a ready-built Object

Viewing Mechanism or OVM. When the set of business object

(model) classes is loaded into the toolkit, the OVM uses

reflection to Inspect these busIness objects, and portray them on

the screen. In other words the programmer need give no thought

whatever to the design of the user interface. Indeed, a

programmer developing a straightforward business application

using Naked Objects would not come into direct contact with

the OVM. (A programmer would only come into contact with

the OVM if they were seeking to extend the capabilities of the

toolkit itself). From the perspective of the programmer, the

system consists solely of the model, and each business object

class effectively inherits the abili~ to display itself and its

business bchaviours directly to the user. (In this respect toolkit

has some conceptual similarities with the Morphic user interface

originally developed within the SELF language [12] and

subsequently adopted within Squeak [5]).

The current version of the OVM assumes that the client device

has a high-resolution graphical display, a mouse, and a high

bandwidth connection to the other tiers of the architecture. It

generates a user interface with a very specific, and consistent,

look and feel. It represents each business object instance as an

icon that can be selected, dragged and dropped, fight-clicked to

reveal a pop-up menu of business behaviours specific to that

object type, or 'opened' to view its attributes and associations.

This look and feel will be immediately familiar to anyone who

has used a desktop metaphor. By default, the OVM also creates

a window containing a set of icons that represent the classes

themselves, and this is the means by which the user can perform

class methods such as creating a new instance, searching for an

existing one, or performing an action across all instances, such

as generating a report.

1 The first version of the toolkit was known as Expressive
Objects

A C M S I G P L A N Not ices 62 V. 36(12) D e c e m b e r 2001

However, we expect in future to devise other OVMs to create
different kinds of user interfaces, again using reflection. For

example, we expect at some future point to provide a separate

OVM that will be designed for an HTML-only browser

interface, and assumes a low-bandwidth couneetion. (Our
current mechanism could be used via a browser, but only by

generating a large Java applct). The HTML-only version could

not implement drag-and-drop, but it might represent each object

as a page, with the actions or verbs shown as hyperlinks.

Separate OVMs could theoretically be generated for PDAs,

WAP phones, command-line interfaces, or voice-response

systems. The user's interaction gestures would be different in

each case, but each would strive to implement the underlying

principles of an OOUI (specifically, the noun-verb style of

interaction) to the maximum extent possible.

Within a specific OVM, the user may still choose several ways

to view a particular object. The OVM uses the common

Strategy pattern [3] to create alternative views of an object
within a lightweight Component (as done in Swing with

plug, gable look and feels). For example a Collection (of

business objects) can be viewed and manipulated as a single

icon, or it can be viewed as a list of the objects it contains

each of which could be dragged out, or expanded in situ to view

its contents. I f the Colleetion is homogeneous (all the business

objects it contains are of the same class e.g. Product), then the

user is automatically given the option to view it as a table.

These viewing options are shown in the right-click menu, above

the business methods.

3. USING THE TOOLKIT
The business objects themselves are written in standard Java.

The programmer must follow a few simple conventions to

ensure that the objects can work together in a dynamic fashion,

and that the OVM can display the object, but where possible,

these conventions have been based on existing practice. As with

JavaBeans we use reflection to find specific methods that relate

to specific attributes and to specific types of bchaviours - for

example, the OVM looks for method names beginning with 'set '

and 'get ' , and also ones that start with 'action'.

When the OVM observes a 'get ' method in a business object, it

automatically creates a field to represent the appropriate

attribute in the viewer for that object, and i f there is a

corresponding 'set' method, then the user can change the

contents of that field. I f the argument of the get aud set methods

is another business object (i.e. an association) then the OVM

will display an icon representing that object, which may itself be

right-clicked to view its contents or to invoke a method. The

user automatically acquires the ability to drag and drop any
object of the specified type into and out of that field.

(Attempting to drag in the wrong type of object causes the field

to flash red momentarily). In addition to business objects,

aceessor methods may refer to primitive object types such as
text, dates and numbers. Here we have adopted our own small

set of primitives based mainly on existing Java types, but which
can be interpreted by the OVMs. Thus TextString objects can

be portrayed as an editable text field, and Logical objects can be

portrayed as a check boxes.

Any method name with the prefix 'action' automatically

becomes a command in the pop-up menu for that object. By

default the OVM just strips the prefix, so that

'actionCommunicate' will show up in the menu as

Communicate. The programmer may also create corresponding

methods called 'aboutActionCommunicate' to determine the
circumstances in which that menu item will be unavailable (e.g.

greyed out) or not displayed at all. These techniques can be

used both to enforce universal business rules, such as that you

can't create a refund to a customer unless the original purchase

has been specified, and also to permit fine-grained levels of user
authorisation. At present the system does not indicate to the user

why a drop is not possible or why an action cannot take place.

In the future an object will be returned by these methods, and

the object will contain the mason, very much like the

'Throwable' objects is Java.

We use the keyword 'process' to provide a standard mechanism

for specifying how one object type interacts with another. Our

first OVM calls this method whenever one object is dragged

over another object (as distinct from being dragged directly into

a specific field within that object). However, it is important to

understand that, as with the action methods, the process method

is not specifically related to the user interface: it may be called

within the program itself.

Certain requirements must be met when declaring classes else

the system will not be able to use the objects, specifically the

OVM will not be able to create views. For example there must
be a default (zero parameter) constructor, in order to allow the

user to create new object instances. Another is a 'toString'

method capable of generating a concise description or summary

of each object (for example a concatenation of invoice number

and date) which our OVM uses to label the icon. The
programmer may optionally declare that the object keeps a

'Status' and provide a method to return a status code for the

object. Our OVM uses this to select between different versions

of an icon to show an object: such as an open folder or a closed

folder.

The programmer must make each business object implement the

NakedObject interface. We provide, for convenience, abstract

classes that provide the majority of the functionality required by

the NakedObject interface - so that the programmer can simply

specify their Customer and Product classes as extensions to (i.e.

subclasses of) the NakedObject class. In the future, we will add
helper classes, so that existing business objects that must inherit

~om other class hierarchies, can delegate most of these required

requests to the helper classes.

4. AN EXAMPLE APPLICATION
Figure 1 shows a typical screen from a system built using Naked

Objects. It is taken from a prototype developed in 2000 by the

Irish Department of Social, Community and Family Affairs
(DSCFA) for a new benefits administration system.

A C M S I G P L A N No t i ce s 63 V. 36(12) D e c e m b e r 2001

Figure 1: The prototype Child Benefit Administration

system

A window on the lefc hand side lists the six primary classes of

business object that make up the system. 'Customers' are the

individuals involved in a claim. 'Communications' include

emails, printed letters, phone calls, or notes from face to face

meetings. 'Cases' are folders that hold all the information

associated with a claim and which permit the current workload

to be monitored and allocated between Officers. A 'Scheme'

object can be thought of as a workshect used by an Officer for

collecting the supporting information, recording formal

decisions, and for calculating entitlement levels. (The Scheme

class will eventually have some forty sub-classes representing

the various legislated benefit schemes that the DSCFA

administers. This screen shows only the sub-class for the Child

Benefit Scheme - which wilt be the first one to be implemented

on the new system) 'Payment' objects represent actual benefit

payments, whether as cheques, electronic funds transfers, or
books of vouchers to be cashed at a local Post Office. 'Officers'

are the employees of the DSCFA that administer benefits.

Clicking the fight-hand mouse button on one of the six icons

representing the core classes will bring up a menu of class that

the user can invoke. These class methods arc mostly generic:

create a new instance of this class, retrieve an instance from

storage, list instances that match a set of criteria, and show any

sub-classes available to the user.

Elsewhere on the screen there are a number of individual object
instances, either minimised to an icon, or expanded to view its

contents. The contents consist of primitive data such as numbers

and text, and other object instances represented as small icons

with labels. In addition to instances of the six primary classes

you will also see some instances of secondary business object

classes such as Payment Method, and Address (for

communication).

Right-clicking on any object instance, in any context, reveals the

menu of the instance methods available to the user. A few of

these methods are generic, including different ways to view the

object, but most are specific to that type of business object. For

Customer, the instance methods include Authenticate,
Communicate, Register new child, and Request an update of

basic details. Some of these methods perform simple operations

on that object alone; others initiate more complex transactions.

A C M S I G P L A N Not ices 64 V. 36(12) D e c e m b e r 2001

Apart from these right click menu methods, the only other way

to invoke any functionality is by dragging and dropping objects

onto other objects, or into specific fields within objects. The

meaning of any such drag and drop depends upon the objects

involved. For example, dragging a Customer instance onto the

Child Benefit class would check whether that customer was

already claiming child benefit, and if not, initiate a new claim by

creating an instance of the Child Benefit Scheme, inserting a

reference to the customer object inside it, and inserting the

whole within a new instance of Case, with the case owner being

the object representing the officer logged onto the system.

Which menu operations and which drag-and-drop operations are

permissible depend upon the authorisation levels of the specific

user, and on the context. For example, the Communicate

Decision (. . to the customer) method on the Scheme Object

will be greyed-out until a formal sign-off has been made. Thus,

the system does enforce business rules, but these are contained

entirely within the business objects, not represented in some
external rule base or set of scripts.

5. FEEDBACK
When the prototype Child Benefit Administration system was

first shown to the senior management of the DSCFA, three
reactions were noted:

'We can see how everyone in the entire organization, right

up to [the Government Minister_], could use the same system '.

This did not mean that all users would be doing the same

operations, or indeed have the same levels of authorization - it

meant that they saw how everything the organization did could

be represented in terms of direct actions on the handful of key

business objects representing the departments sphere of

responsibility. Such a consistent interface could help to break

down some of the divisional barriers, as well as malting it easier

for individuals to move into new areas of responsibility.

"This interface might be sub-optimal for high volume data entry
tas/¢' There was some debate about whether this was in fact the

case, but this evaporated when it was pointed out the DSCFA's

commitment to the various e-Government initiatives, including

the ability to make enquiries and initiate applications for

benefits online, much of the routine data entry work is expected

to disappear over the next few years. This led to the third

comment.

'This system reinforces the message we have been sending to the

workforce about changing the style of working'. The DSCFA is

committed to moving away from an old fashioned assembly-line

approacb to claims processing (where each person performs a

small step in the process) towards a model where more of its

people can handle a complete claim, and experienced officers

could handle all the benefits for one customer. The prototype

conveyed a strong message to the users: you are problem

solvers, not process followers. This was in marked contrast to

the approach that several systems vendors had proposed for the

replacement system, using rules-based technology, workflow

engines, and software agents to allow the system to automate as

much decision making as possible. The system prototyped with

our toolkit had nothing in the way of 'artificial intelligence'.

Rather, it provided an environment where employees' natural

problem-solving skills would be highly leveraged.

Shortly after this, the prototype was shown to a handful of Child

Benefit administration officers the eventual users of the

system - excluding those who had been involved in the design

process. Some trepidation was observed, but much of this

turned out to be because several of those present had no

previous experience of using a PC, the current system being

green-screen dumb-terminal based. General windows and PC

training will obviously be provided before the new system is

rolled out. It was striking, though, that within a few minutes of

their first exposure to the prototype, these users had picked up
the object language and were already asking questions about the

system in those terms, such as 'Could I have two Customer

objects open at once?' and ' I f I dragged a Customer object onto

the Payment Class, would that tell me whether we had made any

recent payments to that Customer?' The point is that this style

of system seems to encourage an exploratory attitude that

normal systems do not. In this sense it is very much like the

web, but with a bias towards conducting transactions rather than

browsing published information.

Whilst this is not sufficient evidence to consider our first

hypothesis (that naked objects empower the users) proven, these

positive reactions from real business sponsors and users are very

encouraging. Similarly, our experience in developing the

DSCFA prototype has given us some very positive feedback in

regard to the second hypothesis (that designing with naked

objects would improve the development process). The ability to

translate object ideas into a tangible form that the users could

see and manipulate, proved to be a far more effective way to get

business representatives involved in the object modelling

process than drawing UML diagrams. (In fact, we did not draw

a single UML diagram during that entire process). Moreover,

the speed with which ideas for new objects, or modifications to

existing objects, could be translated into this tangible form,

meant that we often found ourselves doing live prototyping in

front of the customer. Finally, we found that, compared to

previous object modelling exercises that we had been involved
with, the concrete form of the naked objects helped to avoid

many of the protracted debates about abstraction in general, and

inheritance hierarchies in particular, that tend to plague object

modelling.

6. FUTURE DIRECTIONS
The DSCFA Child Benefit system has now moved from a

prototyping stage to full-scale implementation, with roll-out

scheduled for early in 2002. The full-scale implementation is

being implemented using different tools (centred on the COM+

object technologies) but both the design ethos and the user

interaction remain strongly consistent with the prototype that we

described.

We have now also started to work with a handful of other

organisations wishing to explore the naked objects approach.

One of these, intends to use our Naked Objects toolkit not only

for prototyping, but for full-scale implementation, by extending
the toolkit to work with their existing J2EE infrastructure. We

hope to be able to report on this shortly.

Meantime, we have a lot of work to do on the Naked Objects

toolkit itself. Over the next few months we shall be
concenUating on the integration of the toolkit with ente~rise

object services so that we can be confident of building large

A C M S I G P L A N Not ices
65 V. 36(12) December 2001

scale systems using this approach. Then there are many minor
improvements needed to the basic look and feel, in which we
must draw on best practices from usability engineering and user
interface design, yet without getting drawn into the trap of
optimising the user interface to a specific task whilst losing the
overall expressiveness. We need to improve the toolkit's
current handling of associations, with the aim of eventually

making it as rich as the UML notation in this area. We would
like to extend the Classes window into a more general class
browser (but oriented to users, not developers). As previously
mentioned, we also want to generate alternative Object Viewing

Mechanisms for different user platforms including the web

browser.

Our greatest research effort, however, will now he concentrated
on the development process. It is not our intent to develop

another new methodology. We believe that the naked objects
approach is broadly compatible with the bulk of the more

modem, or lightweight, development methodologies and may
offer some significant advantages to them. At the same time, we
suspect that the naked objects approach may suggest, may even
require, some subtle changes to those methodologies, and where
this is the case, we want to be able to clearly demonstrate the
advantage of adopting these changes. We are especially
interested in exploring the benefits of using the naked objects
approach within the context of Extreme Programming [2]. Our
first experiments in this direction are promising, but we need

more experience before reporting them.

We are aware that there are many queries, concerns and
objections that we will have to address before the naked objects
approach will be more widely accepted. A common question

from the development side concerns scalability. If scalability is
taken to mean number of users, volume of transactions, or the
size of relational database tables used to persist the objects, then
this is more a function of the underlying object services. The

Naked Objects toolkit is primarily concerned with the
relationship between the middle tier and the client presentation
and makes few assumptions about the connection between the

middle and lower tiers.

A more valid concern is the possibility of 'bloated' objects. If
all business fimctionality must be encapsulated in the core
business objects, then as these objects start to be shared between

different types of user or application, won't they necessarily
become bloated with attributes, associations and methods? The
toolkit already provides mechanisms for limiting which

attributes, associations and methods are shown to the user,
according to the role(s) that user fulfils. This removes much of
the clutter. Additionally, we have found that this risk of bloated
objects forces good partitioning of responsibilities between

objects in the model. In several of the prototypes, for example,
the Customer object has started to become bloated, but we have
easily been able to delegate responsibilities onto associated or
aggregated objects, immediately accessible to the user. Users

are typically comfortable with this approach.

A common issue from the user-side, or at least from some
business managers purporting to represent the users, concerns
business controls. How can a system that permits the user to
conduct any action in any context provide necessary business
controls? In fact, as we have already seen in the DSCFA
example, the system does support the enforcement of essential

rules and controls. But these are implemented as responsibilities

of the objects affected, in other words at the lowest level
possible, not by limiting the users interaction to a small number

of tightly proscribed scripts or processes. Nevertheless, this is

an area where we wish to do more formal evaluation.

7. C O N C L U S I O N
So far, we are aware of approximately 50 soRwarc developers
whom we have taught, or who have taught themselves, to use
the naked objects approach (in most cases using our Naked

Objects toolkit). The majority have become very enthusiastic
about it. Frequently, they cite its 'flexibility' as a plus point.
This is a very interesting response, because the naked objects
approach is almost draconian in the constraints that it places on

the developers: no, you can't design screens or form layouts;
no, you can't write user scripts or dialogue boxes; no, you can't
generate a top-level menu. Yet very quickly these constraints

seem to become invisible as both the developers, end the users

involved in the design, learn to think in terms of pure, naked

objects.

8. REFERENCES
[1] Java Core Reflection. 1997, Sun Mierosystems.

[2] CoUins, D., Designing Object-oriented User
interfaces. 1995, Redwood City, CA:

Benjamin/Cummings.

[3] Gamma, E., et al., Design Patterns - Elements of
Reusable Object Oriented Software. 1995, Reading,

MA: Addison-Wesley.

[4] Hutohins, E., J. Hollan, and D. Norman, Direct
Manipulation Interfaces, in User Centered System
Design: New Perspectives on Human-Computer
Interaction, D. Norman and S. Draper, Editors. 1986,

Lawrence Erlbaum: Hillsdale, NJ.

[5] Ingalls, D., et al. Back to the Future: The story of
Squeak. in OOPSLA'97. 1997: Association of

Computing Machinery.

[6] Kay, A., User lnterface: A Personal View, in The Art
of Human-Computer Interface Design, B. Laurel,

Editor. 1990, Addison-Wesley: Reading, MA. p. 191-

207.

[7] Kay, A., The early history of SmalITalk, in History of
Programming Languages, T. Bergin and R. Gibson,

Editors. 1996, Addison-Wesley / ACM Press:

Reading, MA.

[8] Krasner, G. and S. Pope, A cookbook for using the
Model-View-Controller user interface paradigm in
Smalltalk-80. Journal o f Object Oriented

Programming, 19880): p. 26.-49.

[9] Lanrel, B., Computers as Theatre. 1991, Reading,

MA: Addison-Wesley.

[10]Pawson, R., J.-L. Bravard, andL. Cameron, The Case
for Expressive Systems. Sloan Management Review,

1995(Winter 1995): p. 41-48.

ACM S I G P L A N Notices 66 V. 36(12) December 2001

[l l] Raskin, J., The Humane Interface. 2000, Reading,
MA: Addison-Wesley / ACM Press.

[12]Smith, R., J. Maloney, and D. Ungar. The Self-4.0
User Interface: Manifesting a System-wide Vision of
Concreteness, Uniformity, and Flexibility. in

OOPSL,4 '95. 1995: Association of Computing
Machinery.

[13]Van Harmelen, M., ed. Object Modelling and User
Interface Design. 2001, Addison-Wesley: Reading,

MA.

ACM SIGPLAN Notices 67 V. 36(12) December 2001

